xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision deab451e7a7f2dff42097049274637052c87eabd)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <iterator>
108 #include <limits>
109 #include <optional>
110 #include <tuple>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 using namespace SwitchCG;
115 
116 #define DEBUG_TYPE "isel"
117 
118 /// LimitFloatPrecision - Generate low-precision inline sequences for
119 /// some float libcalls (6, 8 or 12 bits).
120 static unsigned LimitFloatPrecision;
121 
122 static cl::opt<bool>
123     InsertAssertAlign("insert-assert-align", cl::init(true),
124                       cl::desc("Insert the experimental `assertalign` node."),
125                       cl::ReallyHidden);
126 
127 static cl::opt<unsigned, true>
128     LimitFPPrecision("limit-float-precision",
129                      cl::desc("Generate low-precision inline sequences "
130                               "for some float libcalls"),
131                      cl::location(LimitFloatPrecision), cl::Hidden,
132                      cl::init(0));
133 
134 static cl::opt<unsigned> SwitchPeelThreshold(
135     "switch-peel-threshold", cl::Hidden, cl::init(66),
136     cl::desc("Set the case probability threshold for peeling the case from a "
137              "switch statement. A value greater than 100 will void this "
138              "optimization"));
139 
140 // Limit the width of DAG chains. This is important in general to prevent
141 // DAG-based analysis from blowing up. For example, alias analysis and
142 // load clustering may not complete in reasonable time. It is difficult to
143 // recognize and avoid this situation within each individual analysis, and
144 // future analyses are likely to have the same behavior. Limiting DAG width is
145 // the safe approach and will be especially important with global DAGs.
146 //
147 // MaxParallelChains default is arbitrarily high to avoid affecting
148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
149 // sequence over this should have been converted to llvm.memcpy by the
150 // frontend. It is easy to induce this behavior with .ll code such as:
151 // %buffer = alloca [4096 x i8]
152 // %data = load [4096 x i8]* %argPtr
153 // store [4096 x i8] %data, [4096 x i8]* %buffer
154 static const unsigned MaxParallelChains = 64;
155 
156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
157                                       const SDValue *Parts, unsigned NumParts,
158                                       MVT PartVT, EVT ValueVT, const Value *V,
159                                       SDValue InChain,
160                                       std::optional<CallingConv::ID> CC);
161 
162 /// getCopyFromParts - Create a value that contains the specified legal parts
163 /// combined into the value they represent.  If the parts combine to a type
164 /// larger than ValueVT then AssertOp can be used to specify whether the extra
165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
166 /// (ISD::AssertSext).
167 static SDValue
168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
169                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
170                  SDValue InChain,
171                  std::optional<CallingConv::ID> CC = std::nullopt,
172                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
173   // Let the target assemble the parts if it wants to
174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
175   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
176                                                    PartVT, ValueVT, CC))
177     return Val;
178 
179   if (ValueVT.isVector())
180     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
181                                   InChain, CC);
182 
183   assert(NumParts > 0 && "No parts to assemble!");
184   SDValue Val = Parts[0];
185 
186   if (NumParts > 1) {
187     // Assemble the value from multiple parts.
188     if (ValueVT.isInteger()) {
189       unsigned PartBits = PartVT.getSizeInBits();
190       unsigned ValueBits = ValueVT.getSizeInBits();
191 
192       // Assemble the power of 2 part.
193       unsigned RoundParts = llvm::bit_floor(NumParts);
194       unsigned RoundBits = PartBits * RoundParts;
195       EVT RoundVT = RoundBits == ValueBits ?
196         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
197       SDValue Lo, Hi;
198 
199       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
200 
201       if (RoundParts > 2) {
202         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
203                               InChain);
204         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
205                               PartVT, HalfVT, V, InChain);
206       } else {
207         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
208         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
209       }
210 
211       if (DAG.getDataLayout().isBigEndian())
212         std::swap(Lo, Hi);
213 
214       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
215 
216       if (RoundParts < NumParts) {
217         // Assemble the trailing non-power-of-2 part.
218         unsigned OddParts = NumParts - RoundParts;
219         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
220         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
221                               OddVT, V, InChain, CC);
222 
223         // Combine the round and odd parts.
224         Lo = Val;
225         if (DAG.getDataLayout().isBigEndian())
226           std::swap(Lo, Hi);
227         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
228         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
229         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
230                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
231                                          TLI.getShiftAmountTy(
232                                              TotalVT, DAG.getDataLayout())));
233         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
234         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
235       }
236     } else if (PartVT.isFloatingPoint()) {
237       // FP split into multiple FP parts (for ppcf128)
238       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
239              "Unexpected split");
240       SDValue Lo, Hi;
241       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
242       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
243       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
244         std::swap(Lo, Hi);
245       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
246     } else {
247       // FP split into integer parts (soft fp)
248       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
249              !PartVT.isVector() && "Unexpected split");
250       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
251       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
252                              InChain, CC);
253     }
254   }
255 
256   // There is now one part, held in Val.  Correct it to match ValueVT.
257   // PartEVT is the type of the register class that holds the value.
258   // ValueVT is the type of the inline asm operation.
259   EVT PartEVT = Val.getValueType();
260 
261   if (PartEVT == ValueVT)
262     return Val;
263 
264   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
265       ValueVT.bitsLT(PartEVT)) {
266     // For an FP value in an integer part, we need to truncate to the right
267     // width first.
268     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
269     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
270   }
271 
272   // Handle types that have the same size.
273   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
274     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
275 
276   // Handle types with different sizes.
277   if (PartEVT.isInteger() && ValueVT.isInteger()) {
278     if (ValueVT.bitsLT(PartEVT)) {
279       // For a truncate, see if we have any information to
280       // indicate whether the truncated bits will always be
281       // zero or sign-extension.
282       if (AssertOp)
283         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
284                           DAG.getValueType(ValueVT));
285       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
286     }
287     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
288   }
289 
290   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
291     // FP_ROUND's are always exact here.
292     if (ValueVT.bitsLT(Val.getValueType())) {
293 
294       SDValue NoChange =
295           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
296 
297       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
298               llvm::Attribute::StrictFP)) {
299         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
300                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
301                            NoChange);
302       }
303 
304       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
305     }
306 
307     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
308   }
309 
310   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
311   // then truncating.
312   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
313       ValueVT.bitsLT(PartEVT)) {
314     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
315     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
316   }
317 
318   report_fatal_error("Unknown mismatch in getCopyFromParts!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (CI->isInlineAsm())
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       SDValue InChain,
344                                       std::optional<CallingConv::ID> CallConv) {
345   assert(ValueVT.isVector() && "Not a vector value");
346   assert(NumParts > 0 && "No parts to assemble!");
347   const bool IsABIRegCopy = CallConv.has_value();
348 
349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
350   SDValue Val = Parts[0];
351 
352   // Handle a multi-element vector.
353   if (NumParts > 1) {
354     EVT IntermediateVT;
355     MVT RegisterVT;
356     unsigned NumIntermediates;
357     unsigned NumRegs;
358 
359     if (IsABIRegCopy) {
360       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
361           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
362           NumIntermediates, RegisterVT);
363     } else {
364       NumRegs =
365           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
366                                      NumIntermediates, RegisterVT);
367     }
368 
369     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
370     NumParts = NumRegs; // Silence a compiler warning.
371     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
372     assert(RegisterVT.getSizeInBits() ==
373            Parts[0].getSimpleValueType().getSizeInBits() &&
374            "Part type sizes don't match!");
375 
376     // Assemble the parts into intermediate operands.
377     SmallVector<SDValue, 8> Ops(NumIntermediates);
378     if (NumIntermediates == NumParts) {
379       // If the register was not expanded, truncate or copy the value,
380       // as appropriate.
381       for (unsigned i = 0; i != NumParts; ++i)
382         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
383                                   V, InChain, CallConv);
384     } else if (NumParts > 0) {
385       // If the intermediate type was expanded, build the intermediate
386       // operands from the parts.
387       assert(NumParts % NumIntermediates == 0 &&
388              "Must expand into a divisible number of parts!");
389       unsigned Factor = NumParts / NumIntermediates;
390       for (unsigned i = 0; i != NumIntermediates; ++i)
391         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
392                                   IntermediateVT, V, InChain, CallConv);
393     }
394 
395     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
396     // intermediate operands.
397     EVT BuiltVectorTy =
398         IntermediateVT.isVector()
399             ? EVT::getVectorVT(
400                   *DAG.getContext(), IntermediateVT.getScalarType(),
401                   IntermediateVT.getVectorElementCount() * NumParts)
402             : EVT::getVectorVT(*DAG.getContext(),
403                                IntermediateVT.getScalarType(),
404                                NumIntermediates);
405     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
406                                                 : ISD::BUILD_VECTOR,
407                       DL, BuiltVectorTy, Ops);
408   }
409 
410   // There is now one part, held in Val.  Correct it to match ValueVT.
411   EVT PartEVT = Val.getValueType();
412 
413   if (PartEVT == ValueVT)
414     return Val;
415 
416   if (PartEVT.isVector()) {
417     // Vector/Vector bitcast.
418     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
419       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420 
421     // If the parts vector has more elements than the value vector, then we
422     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
423     // Extract the elements we want.
424     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
425       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
426               ValueVT.getVectorElementCount().getKnownMinValue()) &&
427              (PartEVT.getVectorElementCount().isScalable() ==
428               ValueVT.getVectorElementCount().isScalable()) &&
429              "Cannot narrow, it would be a lossy transformation");
430       PartEVT =
431           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
432                            ValueVT.getVectorElementCount());
433       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
434                         DAG.getVectorIdxConstant(0, DL));
435       if (PartEVT == ValueVT)
436         return Val;
437       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
438         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
441       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443     }
444 
445     // Promoted vector extract
446     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
447   }
448 
449   // Trivial bitcast if the types are the same size and the destination
450   // vector type is legal.
451   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
452       TLI.isTypeLegal(ValueVT))
453     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454 
455   if (ValueVT.getVectorNumElements() != 1) {
456      // Certain ABIs require that vectors are passed as integers. For vectors
457      // are the same size, this is an obvious bitcast.
458      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
459        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
460      } else if (ValueVT.bitsLT(PartEVT)) {
461        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
462        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
463        // Drop the extra bits.
464        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
465        return DAG.getBitcast(ValueVT, Val);
466      }
467 
468      diagnosePossiblyInvalidConstraint(
469          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
470      return DAG.getUNDEF(ValueVT);
471   }
472 
473   // Handle cases such as i8 -> <1 x i1>
474   EVT ValueSVT = ValueVT.getVectorElementType();
475   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
476     unsigned ValueSize = ValueSVT.getSizeInBits();
477     if (ValueSize == PartEVT.getSizeInBits()) {
478       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
479     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
480       // It's possible a scalar floating point type gets softened to integer and
481       // then promoted to a larger integer. If PartEVT is the larger integer
482       // we need to truncate it and then bitcast to the FP type.
483       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
484       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
485       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
486       Val = DAG.getBitcast(ValueSVT, Val);
487     } else {
488       Val = ValueVT.isFloatingPoint()
489                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
490                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
491     }
492   }
493 
494   return DAG.getBuildVector(ValueVT, DL, Val);
495 }
496 
497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
498                                  SDValue Val, SDValue *Parts, unsigned NumParts,
499                                  MVT PartVT, const Value *V,
500                                  std::optional<CallingConv::ID> CallConv);
501 
502 /// getCopyToParts - Create a series of nodes that contain the specified value
503 /// split into legal parts.  If the parts contain more bits than Val, then, for
504 /// integers, ExtendKind can be used to specify how to generate the extra bits.
505 static void
506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
507                unsigned NumParts, MVT PartVT, const Value *V,
508                std::optional<CallingConv::ID> CallConv = std::nullopt,
509                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
510   // Let the target split the parts if it wants to
511   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
512   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
513                                       CallConv))
514     return;
515   EVT ValueVT = Val.getValueType();
516 
517   // Handle the vector case separately.
518   if (ValueVT.isVector())
519     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
520                                 CallConv);
521 
522   unsigned OrigNumParts = NumParts;
523   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
524          "Copying to an illegal type!");
525 
526   if (NumParts == 0)
527     return;
528 
529   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
530   EVT PartEVT = PartVT;
531   if (PartEVT == ValueVT) {
532     assert(NumParts == 1 && "No-op copy with multiple parts!");
533     Parts[0] = Val;
534     return;
535   }
536 
537   unsigned PartBits = PartVT.getSizeInBits();
538   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
539     // If the parts cover more bits than the value has, promote the value.
540     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
541       assert(NumParts == 1 && "Do not know what to promote to!");
542       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
543     } else {
544       if (ValueVT.isFloatingPoint()) {
545         // FP values need to be bitcast, then extended if they are being put
546         // into a larger container.
547         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
548         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
549       }
550       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
551              ValueVT.isInteger() &&
552              "Unknown mismatch!");
553       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
554       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
555       if (PartVT == MVT::x86mmx)
556         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557     }
558   } else if (PartBits == ValueVT.getSizeInBits()) {
559     // Different types of the same size.
560     assert(NumParts == 1 && PartEVT != ValueVT);
561     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
562   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
563     // If the parts cover less bits than value has, truncate the value.
564     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
565            ValueVT.isInteger() &&
566            "Unknown mismatch!");
567     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
568     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
569     if (PartVT == MVT::x86mmx)
570       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571   }
572 
573   // The value may have changed - recompute ValueVT.
574   ValueVT = Val.getValueType();
575   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
576          "Failed to tile the value with PartVT!");
577 
578   if (NumParts == 1) {
579     if (PartEVT != ValueVT) {
580       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
581                                         "scalar-to-vector conversion failed");
582       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
583     }
584 
585     Parts[0] = Val;
586     return;
587   }
588 
589   // Expand the value into multiple parts.
590   if (NumParts & (NumParts - 1)) {
591     // The number of parts is not a power of 2.  Split off and copy the tail.
592     assert(PartVT.isInteger() && ValueVT.isInteger() &&
593            "Do not know what to expand to!");
594     unsigned RoundParts = llvm::bit_floor(NumParts);
595     unsigned RoundBits = RoundParts * PartBits;
596     unsigned OddParts = NumParts - RoundParts;
597     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
598       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
599 
600     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
601                    CallConv);
602 
603     if (DAG.getDataLayout().isBigEndian())
604       // The odd parts were reversed by getCopyToParts - unreverse them.
605       std::reverse(Parts + RoundParts, Parts + NumParts);
606 
607     NumParts = RoundParts;
608     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
609     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
610   }
611 
612   // The number of parts is a power of 2.  Repeatedly bisect the value using
613   // EXTRACT_ELEMENT.
614   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
615                          EVT::getIntegerVT(*DAG.getContext(),
616                                            ValueVT.getSizeInBits()),
617                          Val);
618 
619   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
620     for (unsigned i = 0; i < NumParts; i += StepSize) {
621       unsigned ThisBits = StepSize * PartBits / 2;
622       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
623       SDValue &Part0 = Parts[i];
624       SDValue &Part1 = Parts[i+StepSize/2];
625 
626       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
628       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
629                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
630 
631       if (ThisBits == PartBits && ThisVT != PartVT) {
632         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
633         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
634       }
635     }
636   }
637 
638   if (DAG.getDataLayout().isBigEndian())
639     std::reverse(Parts, Parts + OrigNumParts);
640 }
641 
642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
643                                      const SDLoc &DL, EVT PartVT) {
644   if (!PartVT.isVector())
645     return SDValue();
646 
647   EVT ValueVT = Val.getValueType();
648   EVT PartEVT = PartVT.getVectorElementType();
649   EVT ValueEVT = ValueVT.getVectorElementType();
650   ElementCount PartNumElts = PartVT.getVectorElementCount();
651   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
652 
653   // We only support widening vectors with equivalent element types and
654   // fixed/scalable properties. If a target needs to widen a fixed-length type
655   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
656   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
657       PartNumElts.isScalable() != ValueNumElts.isScalable())
658     return SDValue();
659 
660   // Have a try for bf16 because some targets share its ABI with fp16.
661   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
662     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
663            "Cannot widen to illegal type");
664     Val = DAG.getNode(ISD::BITCAST, DL,
665                       ValueVT.changeVectorElementType(MVT::f16), Val);
666   } else if (PartEVT != ValueEVT) {
667     return SDValue();
668   }
669 
670   // Widening a scalable vector to another scalable vector is done by inserting
671   // the vector into a larger undef one.
672   if (PartNumElts.isScalable())
673     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
674                        Val, DAG.getVectorIdxConstant(0, DL));
675 
676   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
677   // undef elements.
678   SmallVector<SDValue, 16> Ops;
679   DAG.ExtractVectorElements(Val, Ops);
680   SDValue EltUndef = DAG.getUNDEF(PartEVT);
681   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
682 
683   // FIXME: Use CONCAT for 2x -> 4x.
684   return DAG.getBuildVector(PartVT, DL, Ops);
685 }
686 
687 /// getCopyToPartsVector - Create a series of nodes that contain the specified
688 /// value split into legal parts.
689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
690                                  SDValue Val, SDValue *Parts, unsigned NumParts,
691                                  MVT PartVT, const Value *V,
692                                  std::optional<CallingConv::ID> CallConv) {
693   EVT ValueVT = Val.getValueType();
694   assert(ValueVT.isVector() && "Not a vector");
695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
696   const bool IsABIRegCopy = CallConv.has_value();
697 
698   if (NumParts == 1) {
699     EVT PartEVT = PartVT;
700     if (PartEVT == ValueVT) {
701       // Nothing to do.
702     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
703       // Bitconvert vector->vector case.
704       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
705     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
706       Val = Widened;
707     } else if (PartVT.isVector() &&
708                PartEVT.getVectorElementType().bitsGE(
709                    ValueVT.getVectorElementType()) &&
710                PartEVT.getVectorElementCount() ==
711                    ValueVT.getVectorElementCount()) {
712 
713       // Promoted vector extract
714       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
715     } else if (PartEVT.isVector() &&
716                PartEVT.getVectorElementType() !=
717                    ValueVT.getVectorElementType() &&
718                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
719                    TargetLowering::TypeWidenVector) {
720       // Combination of widening and promotion.
721       EVT WidenVT =
722           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
723                            PartVT.getVectorElementCount());
724       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
725       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
726     } else {
727       // Don't extract an integer from a float vector. This can happen if the
728       // FP type gets softened to integer and then promoted. The promotion
729       // prevents it from being picked up by the earlier bitcast case.
730       if (ValueVT.getVectorElementCount().isScalar() &&
731           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
732         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
733                           DAG.getVectorIdxConstant(0, DL));
734       } else {
735         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
736         assert(PartVT.getFixedSizeInBits() > ValueSize &&
737                "lossy conversion of vector to scalar type");
738         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
739         Val = DAG.getBitcast(IntermediateType, Val);
740         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
741       }
742     }
743 
744     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
745     Parts[0] = Val;
746     return;
747   }
748 
749   // Handle a multi-element vector.
750   EVT IntermediateVT;
751   MVT RegisterVT;
752   unsigned NumIntermediates;
753   unsigned NumRegs;
754   if (IsABIRegCopy) {
755     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
756         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
757         RegisterVT);
758   } else {
759     NumRegs =
760         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
761                                    NumIntermediates, RegisterVT);
762   }
763 
764   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
765   NumParts = NumRegs; // Silence a compiler warning.
766   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
767 
768   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
769          "Mixing scalable and fixed vectors when copying in parts");
770 
771   std::optional<ElementCount> DestEltCnt;
772 
773   if (IntermediateVT.isVector())
774     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
775   else
776     DestEltCnt = ElementCount::getFixed(NumIntermediates);
777 
778   EVT BuiltVectorTy = EVT::getVectorVT(
779       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
780 
781   if (ValueVT == BuiltVectorTy) {
782     // Nothing to do.
783   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
784     // Bitconvert vector->vector case.
785     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
786   } else {
787     if (BuiltVectorTy.getVectorElementType().bitsGT(
788             ValueVT.getVectorElementType())) {
789       // Integer promotion.
790       ValueVT = EVT::getVectorVT(*DAG.getContext(),
791                                  BuiltVectorTy.getVectorElementType(),
792                                  ValueVT.getVectorElementCount());
793       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
794     }
795 
796     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
797       Val = Widened;
798     }
799   }
800 
801   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
802 
803   // Split the vector into intermediate operands.
804   SmallVector<SDValue, 8> Ops(NumIntermediates);
805   for (unsigned i = 0; i != NumIntermediates; ++i) {
806     if (IntermediateVT.isVector()) {
807       // This does something sensible for scalable vectors - see the
808       // definition of EXTRACT_SUBVECTOR for further details.
809       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
810       Ops[i] =
811           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
812                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
813     } else {
814       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
815                            DAG.getVectorIdxConstant(i, DL));
816     }
817   }
818 
819   // Split the intermediate operands into legal parts.
820   if (NumParts == NumIntermediates) {
821     // If the register was not expanded, promote or copy the value,
822     // as appropriate.
823     for (unsigned i = 0; i != NumParts; ++i)
824       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
825   } else if (NumParts > 0) {
826     // If the intermediate type was expanded, split each the value into
827     // legal parts.
828     assert(NumIntermediates != 0 && "division by zero");
829     assert(NumParts % NumIntermediates == 0 &&
830            "Must expand into a divisible number of parts!");
831     unsigned Factor = NumParts / NumIntermediates;
832     for (unsigned i = 0; i != NumIntermediates; ++i)
833       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
834                      CallConv);
835   }
836 }
837 
838 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
839                            EVT valuevt, std::optional<CallingConv::ID> CC)
840     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
841       RegCount(1, regs.size()), CallConv(CC) {}
842 
843 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
844                            const DataLayout &DL, unsigned Reg, Type *Ty,
845                            std::optional<CallingConv::ID> CC) {
846   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
847 
848   CallConv = CC;
849 
850   for (EVT ValueVT : ValueVTs) {
851     unsigned NumRegs =
852         isABIMangled()
853             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
854             : TLI.getNumRegisters(Context, ValueVT);
855     MVT RegisterVT =
856         isABIMangled()
857             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
858             : TLI.getRegisterType(Context, ValueVT);
859     for (unsigned i = 0; i != NumRegs; ++i)
860       Regs.push_back(Reg + i);
861     RegVTs.push_back(RegisterVT);
862     RegCount.push_back(NumRegs);
863     Reg += NumRegs;
864   }
865 }
866 
867 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
868                                       FunctionLoweringInfo &FuncInfo,
869                                       const SDLoc &dl, SDValue &Chain,
870                                       SDValue *Glue, const Value *V) const {
871   // A Value with type {} or [0 x %t] needs no registers.
872   if (ValueVTs.empty())
873     return SDValue();
874 
875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
876 
877   // Assemble the legal parts into the final values.
878   SmallVector<SDValue, 4> Values(ValueVTs.size());
879   SmallVector<SDValue, 8> Parts;
880   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
881     // Copy the legal parts from the registers.
882     EVT ValueVT = ValueVTs[Value];
883     unsigned NumRegs = RegCount[Value];
884     MVT RegisterVT = isABIMangled()
885                          ? TLI.getRegisterTypeForCallingConv(
886                                *DAG.getContext(), *CallConv, RegVTs[Value])
887                          : RegVTs[Value];
888 
889     Parts.resize(NumRegs);
890     for (unsigned i = 0; i != NumRegs; ++i) {
891       SDValue P;
892       if (!Glue) {
893         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
894       } else {
895         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
896         *Glue = P.getValue(2);
897       }
898 
899       Chain = P.getValue(1);
900       Parts[i] = P;
901 
902       // If the source register was virtual and if we know something about it,
903       // add an assert node.
904       if (!Register::isVirtualRegister(Regs[Part + i]) ||
905           !RegisterVT.isInteger())
906         continue;
907 
908       const FunctionLoweringInfo::LiveOutInfo *LOI =
909         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
910       if (!LOI)
911         continue;
912 
913       unsigned RegSize = RegisterVT.getScalarSizeInBits();
914       unsigned NumSignBits = LOI->NumSignBits;
915       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
916 
917       if (NumZeroBits == RegSize) {
918         // The current value is a zero.
919         // Explicitly express that as it would be easier for
920         // optimizations to kick in.
921         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
922         continue;
923       }
924 
925       // FIXME: We capture more information than the dag can represent.  For
926       // now, just use the tightest assertzext/assertsext possible.
927       bool isSExt;
928       EVT FromVT(MVT::Other);
929       if (NumZeroBits) {
930         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
931         isSExt = false;
932       } else if (NumSignBits > 1) {
933         FromVT =
934             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
935         isSExt = true;
936       } else {
937         continue;
938       }
939       // Add an assertion node.
940       assert(FromVT != MVT::Other);
941       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
942                              RegisterVT, P, DAG.getValueType(FromVT));
943     }
944 
945     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
946                                      RegisterVT, ValueVT, V, Chain, CallConv);
947     Part += NumRegs;
948     Parts.clear();
949   }
950 
951   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
952 }
953 
954 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
955                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
956                                  const Value *V,
957                                  ISD::NodeType PreferredExtendType) const {
958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
959   ISD::NodeType ExtendKind = PreferredExtendType;
960 
961   // Get the list of the values's legal parts.
962   unsigned NumRegs = Regs.size();
963   SmallVector<SDValue, 8> Parts(NumRegs);
964   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
965     unsigned NumParts = RegCount[Value];
966 
967     MVT RegisterVT = isABIMangled()
968                          ? TLI.getRegisterTypeForCallingConv(
969                                *DAG.getContext(), *CallConv, RegVTs[Value])
970                          : RegVTs[Value];
971 
972     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
973       ExtendKind = ISD::ZERO_EXTEND;
974 
975     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
976                    NumParts, RegisterVT, V, CallConv, ExtendKind);
977     Part += NumParts;
978   }
979 
980   // Copy the parts into the registers.
981   SmallVector<SDValue, 8> Chains(NumRegs);
982   for (unsigned i = 0; i != NumRegs; ++i) {
983     SDValue Part;
984     if (!Glue) {
985       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
986     } else {
987       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
988       *Glue = Part.getValue(1);
989     }
990 
991     Chains[i] = Part.getValue(0);
992   }
993 
994   if (NumRegs == 1 || Glue)
995     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
996     // flagged to it. That is the CopyToReg nodes and the user are considered
997     // a single scheduling unit. If we create a TokenFactor and return it as
998     // chain, then the TokenFactor is both a predecessor (operand) of the
999     // user as well as a successor (the TF operands are flagged to the user).
1000     // c1, f1 = CopyToReg
1001     // c2, f2 = CopyToReg
1002     // c3     = TokenFactor c1, c2
1003     // ...
1004     //        = op c3, ..., f2
1005     Chain = Chains[NumRegs-1];
1006   else
1007     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1008 }
1009 
1010 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1011                                         unsigned MatchingIdx, const SDLoc &dl,
1012                                         SelectionDAG &DAG,
1013                                         std::vector<SDValue> &Ops) const {
1014   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1015 
1016   InlineAsm::Flag Flag(Code, Regs.size());
1017   if (HasMatching)
1018     Flag.setMatchingOp(MatchingIdx);
1019   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1020     // Put the register class of the virtual registers in the flag word.  That
1021     // way, later passes can recompute register class constraints for inline
1022     // assembly as well as normal instructions.
1023     // Don't do this for tied operands that can use the regclass information
1024     // from the def.
1025     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1026     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1027     Flag.setRegClass(RC->getID());
1028   }
1029 
1030   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1031   Ops.push_back(Res);
1032 
1033   if (Code == InlineAsm::Kind::Clobber) {
1034     // Clobbers should always have a 1:1 mapping with registers, and may
1035     // reference registers that have illegal (e.g. vector) types. Hence, we
1036     // shouldn't try to apply any sort of splitting logic to them.
1037     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1038            "No 1:1 mapping from clobbers to regs?");
1039     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1040     (void)SP;
1041     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1042       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1043       assert(
1044           (Regs[I] != SP ||
1045            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1046           "If we clobbered the stack pointer, MFI should know about it.");
1047     }
1048     return;
1049   }
1050 
1051   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1052     MVT RegisterVT = RegVTs[Value];
1053     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1054                                            RegisterVT);
1055     for (unsigned i = 0; i != NumRegs; ++i) {
1056       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1057       unsigned TheReg = Regs[Reg++];
1058       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1059     }
1060   }
1061 }
1062 
1063 SmallVector<std::pair<unsigned, TypeSize>, 4>
1064 RegsForValue::getRegsAndSizes() const {
1065   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1066   unsigned I = 0;
1067   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1068     unsigned RegCount = std::get<0>(CountAndVT);
1069     MVT RegisterVT = std::get<1>(CountAndVT);
1070     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1071     for (unsigned E = I + RegCount; I != E; ++I)
1072       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1073   }
1074   return OutVec;
1075 }
1076 
1077 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1078                                AssumptionCache *ac,
1079                                const TargetLibraryInfo *li) {
1080   AA = aa;
1081   AC = ac;
1082   GFI = gfi;
1083   LibInfo = li;
1084   Context = DAG.getContext();
1085   LPadToCallSiteMap.clear();
1086   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1087   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1088       *DAG.getMachineFunction().getFunction().getParent());
1089 }
1090 
1091 void SelectionDAGBuilder::clear() {
1092   NodeMap.clear();
1093   UnusedArgNodeMap.clear();
1094   PendingLoads.clear();
1095   PendingExports.clear();
1096   PendingConstrainedFP.clear();
1097   PendingConstrainedFPStrict.clear();
1098   CurInst = nullptr;
1099   HasTailCall = false;
1100   SDNodeOrder = LowestSDNodeOrder;
1101   StatepointLowering.clear();
1102 }
1103 
1104 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1105   DanglingDebugInfoMap.clear();
1106 }
1107 
1108 // Update DAG root to include dependencies on Pending chains.
1109 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1110   SDValue Root = DAG.getRoot();
1111 
1112   if (Pending.empty())
1113     return Root;
1114 
1115   // Add current root to PendingChains, unless we already indirectly
1116   // depend on it.
1117   if (Root.getOpcode() != ISD::EntryToken) {
1118     unsigned i = 0, e = Pending.size();
1119     for (; i != e; ++i) {
1120       assert(Pending[i].getNode()->getNumOperands() > 1);
1121       if (Pending[i].getNode()->getOperand(0) == Root)
1122         break;  // Don't add the root if we already indirectly depend on it.
1123     }
1124 
1125     if (i == e)
1126       Pending.push_back(Root);
1127   }
1128 
1129   if (Pending.size() == 1)
1130     Root = Pending[0];
1131   else
1132     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1133 
1134   DAG.setRoot(Root);
1135   Pending.clear();
1136   return Root;
1137 }
1138 
1139 SDValue SelectionDAGBuilder::getMemoryRoot() {
1140   return updateRoot(PendingLoads);
1141 }
1142 
1143 SDValue SelectionDAGBuilder::getRoot() {
1144   // Chain up all pending constrained intrinsics together with all
1145   // pending loads, by simply appending them to PendingLoads and
1146   // then calling getMemoryRoot().
1147   PendingLoads.reserve(PendingLoads.size() +
1148                        PendingConstrainedFP.size() +
1149                        PendingConstrainedFPStrict.size());
1150   PendingLoads.append(PendingConstrainedFP.begin(),
1151                       PendingConstrainedFP.end());
1152   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1153                       PendingConstrainedFPStrict.end());
1154   PendingConstrainedFP.clear();
1155   PendingConstrainedFPStrict.clear();
1156   return getMemoryRoot();
1157 }
1158 
1159 SDValue SelectionDAGBuilder::getControlRoot() {
1160   // We need to emit pending fpexcept.strict constrained intrinsics,
1161   // so append them to the PendingExports list.
1162   PendingExports.append(PendingConstrainedFPStrict.begin(),
1163                         PendingConstrainedFPStrict.end());
1164   PendingConstrainedFPStrict.clear();
1165   return updateRoot(PendingExports);
1166 }
1167 
1168 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1169                                              DILocalVariable *Variable,
1170                                              DIExpression *Expression,
1171                                              DebugLoc DL) {
1172   assert(Variable && "Missing variable");
1173 
1174   // Check if address has undef value.
1175   if (!Address || isa<UndefValue>(Address) ||
1176       (Address->use_empty() && !isa<Argument>(Address))) {
1177     LLVM_DEBUG(
1178         dbgs()
1179         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1180     return;
1181   }
1182 
1183   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1184 
1185   SDValue &N = NodeMap[Address];
1186   if (!N.getNode() && isa<Argument>(Address))
1187     // Check unused arguments map.
1188     N = UnusedArgNodeMap[Address];
1189   SDDbgValue *SDV;
1190   if (N.getNode()) {
1191     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1192       Address = BCI->getOperand(0);
1193     // Parameters are handled specially.
1194     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1195     if (IsParameter && FINode) {
1196       // Byval parameter. We have a frame index at this point.
1197       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1198                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1199     } else if (isa<Argument>(Address)) {
1200       // Address is an argument, so try to emit its dbg value using
1201       // virtual register info from the FuncInfo.ValueMap.
1202       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1203                                FuncArgumentDbgValueKind::Declare, N);
1204       return;
1205     } else {
1206       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1207                             true, DL, SDNodeOrder);
1208     }
1209     DAG.AddDbgValue(SDV, IsParameter);
1210   } else {
1211     // If Address is an argument then try to emit its dbg value using
1212     // virtual register info from the FuncInfo.ValueMap.
1213     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1214                                   FuncArgumentDbgValueKind::Declare, N)) {
1215       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1216                         << " (could not emit func-arg dbg_value)\n");
1217     }
1218   }
1219   return;
1220 }
1221 
1222 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1223   // Add SDDbgValue nodes for any var locs here. Do so before updating
1224   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1225   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1226     // Add SDDbgValue nodes for any var locs here. Do so before updating
1227     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1228     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1229          It != End; ++It) {
1230       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1231       dropDanglingDebugInfo(Var, It->Expr);
1232       if (It->Values.isKillLocation(It->Expr)) {
1233         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1234         continue;
1235       }
1236       SmallVector<Value *> Values(It->Values.location_ops());
1237       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1238                             It->Values.hasArgList())) {
1239         SmallVector<Value *, 4> Vals;
1240         for (Value *V : It->Values.location_ops())
1241           Vals.push_back(V);
1242         addDanglingDebugInfo(Vals,
1243                              FnVarLocs->getDILocalVariable(It->VariableID),
1244                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1245       }
1246     }
1247   }
1248 
1249   // We must skip DbgVariableRecords if they've already been processed above as
1250   // we have just emitted the debug values resulting from assignment tracking
1251   // analysis, making any existing DbgVariableRecords redundant (and probably
1252   // less correct). We still need to process DbgLabelRecords. This does sink
1253   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1254   // be important as it does so deterministcally and ordering between
1255   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1256   // printing).
1257   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1258   // Is there is any debug-info attached to this instruction, in the form of
1259   // DbgRecord non-instruction debug-info records.
1260   for (DbgRecord &DR : I.getDbgRecordRange()) {
1261     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1262       assert(DLR->getLabel() && "Missing label");
1263       SDDbgLabel *SDV =
1264           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1265       DAG.AddDbgLabel(SDV);
1266       continue;
1267     }
1268 
1269     if (SkipDbgVariableRecords)
1270       continue;
1271     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1272     DILocalVariable *Variable = DVR.getVariable();
1273     DIExpression *Expression = DVR.getExpression();
1274     dropDanglingDebugInfo(Variable, Expression);
1275 
1276     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1277       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1278         continue;
1279       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1280                         << "\n");
1281       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1282                          DVR.getDebugLoc());
1283       continue;
1284     }
1285 
1286     // A DbgVariableRecord with no locations is a kill location.
1287     SmallVector<Value *, 4> Values(DVR.location_ops());
1288     if (Values.empty()) {
1289       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1290                            SDNodeOrder);
1291       continue;
1292     }
1293 
1294     // A DbgVariableRecord with an undef or absent location is also a kill
1295     // location.
1296     if (llvm::any_of(Values,
1297                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1298       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1299                            SDNodeOrder);
1300       continue;
1301     }
1302 
1303     bool IsVariadic = DVR.hasArgList();
1304     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1305                           SDNodeOrder, IsVariadic)) {
1306       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1307                            DVR.getDebugLoc(), SDNodeOrder);
1308     }
1309   }
1310 }
1311 
1312 void SelectionDAGBuilder::visit(const Instruction &I) {
1313   visitDbgInfo(I);
1314 
1315   // Set up outgoing PHI node register values before emitting the terminator.
1316   if (I.isTerminator()) {
1317     HandlePHINodesInSuccessorBlocks(I.getParent());
1318   }
1319 
1320   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1321   if (!isa<DbgInfoIntrinsic>(I))
1322     ++SDNodeOrder;
1323 
1324   CurInst = &I;
1325 
1326   // Set inserted listener only if required.
1327   bool NodeInserted = false;
1328   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1329   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1330   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1331   if (PCSectionsMD || MMRA) {
1332     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1333         DAG, [&](SDNode *) { NodeInserted = true; });
1334   }
1335 
1336   visit(I.getOpcode(), I);
1337 
1338   if (!I.isTerminator() && !HasTailCall &&
1339       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1340     CopyToExportRegsIfNeeded(&I);
1341 
1342   // Handle metadata.
1343   if (PCSectionsMD || MMRA) {
1344     auto It = NodeMap.find(&I);
1345     if (It != NodeMap.end()) {
1346       if (PCSectionsMD)
1347         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1348       if (MMRA)
1349         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1350     } else if (NodeInserted) {
1351       // This should not happen; if it does, don't let it go unnoticed so we can
1352       // fix it. Relevant visit*() function is probably missing a setValue().
1353       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1354              << I.getModule()->getName() << "]\n";
1355       LLVM_DEBUG(I.dump());
1356       assert(false);
1357     }
1358   }
1359 
1360   CurInst = nullptr;
1361 }
1362 
1363 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1364   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1365 }
1366 
1367 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1368   // Note: this doesn't use InstVisitor, because it has to work with
1369   // ConstantExpr's in addition to instructions.
1370   switch (Opcode) {
1371   default: llvm_unreachable("Unknown instruction type encountered!");
1372     // Build the switch statement using the Instruction.def file.
1373 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1374     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1375 #include "llvm/IR/Instruction.def"
1376   }
1377 }
1378 
1379 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1380                                             DILocalVariable *Variable,
1381                                             DebugLoc DL, unsigned Order,
1382                                             SmallVectorImpl<Value *> &Values,
1383                                             DIExpression *Expression) {
1384   // For variadic dbg_values we will now insert an undef.
1385   // FIXME: We can potentially recover these!
1386   SmallVector<SDDbgOperand, 2> Locs;
1387   for (const Value *V : Values) {
1388     auto *Undef = UndefValue::get(V->getType());
1389     Locs.push_back(SDDbgOperand::fromConst(Undef));
1390   }
1391   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1392                                         /*IsIndirect=*/false, DL, Order,
1393                                         /*IsVariadic=*/true);
1394   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1395   return true;
1396 }
1397 
1398 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1399                                                DILocalVariable *Var,
1400                                                DIExpression *Expr,
1401                                                bool IsVariadic, DebugLoc DL,
1402                                                unsigned Order) {
1403   if (IsVariadic) {
1404     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1405     return;
1406   }
1407   // TODO: Dangling debug info will eventually either be resolved or produce
1408   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1409   // between the original dbg.value location and its resolved DBG_VALUE,
1410   // which we should ideally fill with an extra Undef DBG_VALUE.
1411   assert(Values.size() == 1);
1412   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1413 }
1414 
1415 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1416                                                 const DIExpression *Expr) {
1417   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1418     DIVariable *DanglingVariable = DDI.getVariable();
1419     DIExpression *DanglingExpr = DDI.getExpression();
1420     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1421       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1422                         << printDDI(nullptr, DDI) << "\n");
1423       return true;
1424     }
1425     return false;
1426   };
1427 
1428   for (auto &DDIMI : DanglingDebugInfoMap) {
1429     DanglingDebugInfoVector &DDIV = DDIMI.second;
1430 
1431     // If debug info is to be dropped, run it through final checks to see
1432     // whether it can be salvaged.
1433     for (auto &DDI : DDIV)
1434       if (isMatchingDbgValue(DDI))
1435         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1436 
1437     erase_if(DDIV, isMatchingDbgValue);
1438   }
1439 }
1440 
1441 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1442 // generate the debug data structures now that we've seen its definition.
1443 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1444                                                    SDValue Val) {
1445   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1446   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1447     return;
1448 
1449   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1450   for (auto &DDI : DDIV) {
1451     DebugLoc DL = DDI.getDebugLoc();
1452     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1453     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1454     DILocalVariable *Variable = DDI.getVariable();
1455     DIExpression *Expr = DDI.getExpression();
1456     assert(Variable->isValidLocationForIntrinsic(DL) &&
1457            "Expected inlined-at fields to agree");
1458     SDDbgValue *SDV;
1459     if (Val.getNode()) {
1460       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1461       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1462       // we couldn't resolve it directly when examining the DbgValue intrinsic
1463       // in the first place we should not be more successful here). Unless we
1464       // have some test case that prove this to be correct we should avoid
1465       // calling EmitFuncArgumentDbgValue here.
1466       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1467                                     FuncArgumentDbgValueKind::Value, Val)) {
1468         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1469                           << printDDI(V, DDI) << "\n");
1470         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1471         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1472         // inserted after the definition of Val when emitting the instructions
1473         // after ISel. An alternative could be to teach
1474         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1475         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1476                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1477                    << ValSDNodeOrder << "\n");
1478         SDV = getDbgValue(Val, Variable, Expr, DL,
1479                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1480         DAG.AddDbgValue(SDV, false);
1481       } else
1482         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1483                           << printDDI(V, DDI)
1484                           << " in EmitFuncArgumentDbgValue\n");
1485     } else {
1486       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1487                         << "\n");
1488       auto Undef = UndefValue::get(V->getType());
1489       auto SDV =
1490           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1491       DAG.AddDbgValue(SDV, false);
1492     }
1493   }
1494   DDIV.clear();
1495 }
1496 
1497 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1498                                                     DanglingDebugInfo &DDI) {
1499   // TODO: For the variadic implementation, instead of only checking the fail
1500   // state of `handleDebugValue`, we need know specifically which values were
1501   // invalid, so that we attempt to salvage only those values when processing
1502   // a DIArgList.
1503   const Value *OrigV = V;
1504   DILocalVariable *Var = DDI.getVariable();
1505   DIExpression *Expr = DDI.getExpression();
1506   DebugLoc DL = DDI.getDebugLoc();
1507   unsigned SDOrder = DDI.getSDNodeOrder();
1508 
1509   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1510   // that DW_OP_stack_value is desired.
1511   bool StackValue = true;
1512 
1513   // Can this Value can be encoded without any further work?
1514   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1515     return;
1516 
1517   // Attempt to salvage back through as many instructions as possible. Bail if
1518   // a non-instruction is seen, such as a constant expression or global
1519   // variable. FIXME: Further work could recover those too.
1520   while (isa<Instruction>(V)) {
1521     const Instruction &VAsInst = *cast<const Instruction>(V);
1522     // Temporary "0", awaiting real implementation.
1523     SmallVector<uint64_t, 16> Ops;
1524     SmallVector<Value *, 4> AdditionalValues;
1525     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1526                              Expr->getNumLocationOperands(), Ops,
1527                              AdditionalValues);
1528     // If we cannot salvage any further, and haven't yet found a suitable debug
1529     // expression, bail out.
1530     if (!V)
1531       break;
1532 
1533     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1534     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1535     // here for variadic dbg_values, remove that condition.
1536     if (!AdditionalValues.empty())
1537       break;
1538 
1539     // New value and expr now represent this debuginfo.
1540     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1541 
1542     // Some kind of simplification occurred: check whether the operand of the
1543     // salvaged debug expression can be encoded in this DAG.
1544     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1545       LLVM_DEBUG(
1546           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1547                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1548       return;
1549     }
1550   }
1551 
1552   // This was the final opportunity to salvage this debug information, and it
1553   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1554   // any earlier variable location.
1555   assert(OrigV && "V shouldn't be null");
1556   auto *Undef = UndefValue::get(OrigV->getType());
1557   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1558   DAG.AddDbgValue(SDV, false);
1559   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1560                     << printDDI(OrigV, DDI) << "\n");
1561 }
1562 
1563 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1564                                                DIExpression *Expr,
1565                                                DebugLoc DbgLoc,
1566                                                unsigned Order) {
1567   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1568   DIExpression *NewExpr =
1569       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1570   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1571                    /*IsVariadic*/ false);
1572 }
1573 
1574 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1575                                            DILocalVariable *Var,
1576                                            DIExpression *Expr, DebugLoc DbgLoc,
1577                                            unsigned Order, bool IsVariadic) {
1578   if (Values.empty())
1579     return true;
1580 
1581   // Filter EntryValue locations out early.
1582   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1583     return true;
1584 
1585   SmallVector<SDDbgOperand> LocationOps;
1586   SmallVector<SDNode *> Dependencies;
1587   for (const Value *V : Values) {
1588     // Constant value.
1589     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1590         isa<ConstantPointerNull>(V)) {
1591       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1592       continue;
1593     }
1594 
1595     // Look through IntToPtr constants.
1596     if (auto *CE = dyn_cast<ConstantExpr>(V))
1597       if (CE->getOpcode() == Instruction::IntToPtr) {
1598         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1599         continue;
1600       }
1601 
1602     // If the Value is a frame index, we can create a FrameIndex debug value
1603     // without relying on the DAG at all.
1604     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1605       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1606       if (SI != FuncInfo.StaticAllocaMap.end()) {
1607         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1608         continue;
1609       }
1610     }
1611 
1612     // Do not use getValue() in here; we don't want to generate code at
1613     // this point if it hasn't been done yet.
1614     SDValue N = NodeMap[V];
1615     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1616       N = UnusedArgNodeMap[V];
1617     if (N.getNode()) {
1618       // Only emit func arg dbg value for non-variadic dbg.values for now.
1619       if (!IsVariadic &&
1620           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1621                                    FuncArgumentDbgValueKind::Value, N))
1622         return true;
1623       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1624         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1625         // describe stack slot locations.
1626         //
1627         // Consider "int x = 0; int *px = &x;". There are two kinds of
1628         // interesting debug values here after optimization:
1629         //
1630         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1631         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1632         //
1633         // Both describe the direct values of their associated variables.
1634         Dependencies.push_back(N.getNode());
1635         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1636         continue;
1637       }
1638       LocationOps.emplace_back(
1639           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1640       continue;
1641     }
1642 
1643     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1644     // Special rules apply for the first dbg.values of parameter variables in a
1645     // function. Identify them by the fact they reference Argument Values, that
1646     // they're parameters, and they are parameters of the current function. We
1647     // need to let them dangle until they get an SDNode.
1648     bool IsParamOfFunc =
1649         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1650     if (IsParamOfFunc)
1651       return false;
1652 
1653     // The value is not used in this block yet (or it would have an SDNode).
1654     // We still want the value to appear for the user if possible -- if it has
1655     // an associated VReg, we can refer to that instead.
1656     auto VMI = FuncInfo.ValueMap.find(V);
1657     if (VMI != FuncInfo.ValueMap.end()) {
1658       unsigned Reg = VMI->second;
1659       // If this is a PHI node, it may be split up into several MI PHI nodes
1660       // (in FunctionLoweringInfo::set).
1661       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1662                        V->getType(), std::nullopt);
1663       if (RFV.occupiesMultipleRegs()) {
1664         // FIXME: We could potentially support variadic dbg_values here.
1665         if (IsVariadic)
1666           return false;
1667         unsigned Offset = 0;
1668         unsigned BitsToDescribe = 0;
1669         if (auto VarSize = Var->getSizeInBits())
1670           BitsToDescribe = *VarSize;
1671         if (auto Fragment = Expr->getFragmentInfo())
1672           BitsToDescribe = Fragment->SizeInBits;
1673         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1674           // Bail out if all bits are described already.
1675           if (Offset >= BitsToDescribe)
1676             break;
1677           // TODO: handle scalable vectors.
1678           unsigned RegisterSize = RegAndSize.second;
1679           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1680                                       ? BitsToDescribe - Offset
1681                                       : RegisterSize;
1682           auto FragmentExpr = DIExpression::createFragmentExpression(
1683               Expr, Offset, FragmentSize);
1684           if (!FragmentExpr)
1685             continue;
1686           SDDbgValue *SDV = DAG.getVRegDbgValue(
1687               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1688           DAG.AddDbgValue(SDV, false);
1689           Offset += RegisterSize;
1690         }
1691         return true;
1692       }
1693       // We can use simple vreg locations for variadic dbg_values as well.
1694       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1695       continue;
1696     }
1697     // We failed to create a SDDbgOperand for V.
1698     return false;
1699   }
1700 
1701   // We have created a SDDbgOperand for each Value in Values.
1702   // Should use Order instead of SDNodeOrder?
1703   assert(!LocationOps.empty());
1704   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1705                                         /*IsIndirect=*/false, DbgLoc,
1706                                         SDNodeOrder, IsVariadic);
1707   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1708   return true;
1709 }
1710 
1711 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1712   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1713   for (auto &Pair : DanglingDebugInfoMap)
1714     for (auto &DDI : Pair.second)
1715       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1716   clearDanglingDebugInfo();
1717 }
1718 
1719 /// getCopyFromRegs - If there was virtual register allocated for the value V
1720 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1721 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1722   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1723   SDValue Result;
1724 
1725   if (It != FuncInfo.ValueMap.end()) {
1726     Register InReg = It->second;
1727 
1728     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1729                      DAG.getDataLayout(), InReg, Ty,
1730                      std::nullopt); // This is not an ABI copy.
1731     SDValue Chain = DAG.getEntryNode();
1732     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1733                                  V);
1734     resolveDanglingDebugInfo(V, Result);
1735   }
1736 
1737   return Result;
1738 }
1739 
1740 /// getValue - Return an SDValue for the given Value.
1741 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1742   // If we already have an SDValue for this value, use it. It's important
1743   // to do this first, so that we don't create a CopyFromReg if we already
1744   // have a regular SDValue.
1745   SDValue &N = NodeMap[V];
1746   if (N.getNode()) return N;
1747 
1748   // If there's a virtual register allocated and initialized for this
1749   // value, use it.
1750   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1751     return copyFromReg;
1752 
1753   // Otherwise create a new SDValue and remember it.
1754   SDValue Val = getValueImpl(V);
1755   NodeMap[V] = Val;
1756   resolveDanglingDebugInfo(V, Val);
1757   return Val;
1758 }
1759 
1760 /// getNonRegisterValue - Return an SDValue for the given Value, but
1761 /// don't look in FuncInfo.ValueMap for a virtual register.
1762 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1763   // If we already have an SDValue for this value, use it.
1764   SDValue &N = NodeMap[V];
1765   if (N.getNode()) {
1766     if (isIntOrFPConstant(N)) {
1767       // Remove the debug location from the node as the node is about to be used
1768       // in a location which may differ from the original debug location.  This
1769       // is relevant to Constant and ConstantFP nodes because they can appear
1770       // as constant expressions inside PHI nodes.
1771       N->setDebugLoc(DebugLoc());
1772     }
1773     return N;
1774   }
1775 
1776   // Otherwise create a new SDValue and remember it.
1777   SDValue Val = getValueImpl(V);
1778   NodeMap[V] = Val;
1779   resolveDanglingDebugInfo(V, Val);
1780   return Val;
1781 }
1782 
1783 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1784 /// Create an SDValue for the given value.
1785 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1787 
1788   if (const Constant *C = dyn_cast<Constant>(V)) {
1789     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1790 
1791     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1792       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1793 
1794     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1795       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1796 
1797     if (isa<ConstantPointerNull>(C)) {
1798       unsigned AS = V->getType()->getPointerAddressSpace();
1799       return DAG.getConstant(0, getCurSDLoc(),
1800                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1801     }
1802 
1803     if (match(C, m_VScale()))
1804       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1805 
1806     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1807       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1808 
1809     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1810       return DAG.getUNDEF(VT);
1811 
1812     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1813       visit(CE->getOpcode(), *CE);
1814       SDValue N1 = NodeMap[V];
1815       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1816       return N1;
1817     }
1818 
1819     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1820       SmallVector<SDValue, 4> Constants;
1821       for (const Use &U : C->operands()) {
1822         SDNode *Val = getValue(U).getNode();
1823         // If the operand is an empty aggregate, there are no values.
1824         if (!Val) continue;
1825         // Add each leaf value from the operand to the Constants list
1826         // to form a flattened list of all the values.
1827         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1828           Constants.push_back(SDValue(Val, i));
1829       }
1830 
1831       return DAG.getMergeValues(Constants, getCurSDLoc());
1832     }
1833 
1834     if (const ConstantDataSequential *CDS =
1835           dyn_cast<ConstantDataSequential>(C)) {
1836       SmallVector<SDValue, 4> Ops;
1837       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1838         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1839         // Add each leaf value from the operand to the Constants list
1840         // to form a flattened list of all the values.
1841         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1842           Ops.push_back(SDValue(Val, i));
1843       }
1844 
1845       if (isa<ArrayType>(CDS->getType()))
1846         return DAG.getMergeValues(Ops, getCurSDLoc());
1847       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1848     }
1849 
1850     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1851       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1852              "Unknown struct or array constant!");
1853 
1854       SmallVector<EVT, 4> ValueVTs;
1855       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1856       unsigned NumElts = ValueVTs.size();
1857       if (NumElts == 0)
1858         return SDValue(); // empty struct
1859       SmallVector<SDValue, 4> Constants(NumElts);
1860       for (unsigned i = 0; i != NumElts; ++i) {
1861         EVT EltVT = ValueVTs[i];
1862         if (isa<UndefValue>(C))
1863           Constants[i] = DAG.getUNDEF(EltVT);
1864         else if (EltVT.isFloatingPoint())
1865           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1866         else
1867           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1868       }
1869 
1870       return DAG.getMergeValues(Constants, getCurSDLoc());
1871     }
1872 
1873     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1874       return DAG.getBlockAddress(BA, VT);
1875 
1876     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1877       return getValue(Equiv->getGlobalValue());
1878 
1879     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1880       return getValue(NC->getGlobalValue());
1881 
1882     if (VT == MVT::aarch64svcount) {
1883       assert(C->isNullValue() && "Can only zero this target type!");
1884       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1885                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1886     }
1887 
1888     VectorType *VecTy = cast<VectorType>(V->getType());
1889 
1890     // Now that we know the number and type of the elements, get that number of
1891     // elements into the Ops array based on what kind of constant it is.
1892     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1893       SmallVector<SDValue, 16> Ops;
1894       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1895       for (unsigned i = 0; i != NumElements; ++i)
1896         Ops.push_back(getValue(CV->getOperand(i)));
1897 
1898       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1899     }
1900 
1901     if (isa<ConstantAggregateZero>(C)) {
1902       EVT EltVT =
1903           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1904 
1905       SDValue Op;
1906       if (EltVT.isFloatingPoint())
1907         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1908       else
1909         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1910 
1911       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1912     }
1913 
1914     llvm_unreachable("Unknown vector constant");
1915   }
1916 
1917   // If this is a static alloca, generate it as the frameindex instead of
1918   // computation.
1919   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1920     DenseMap<const AllocaInst*, int>::iterator SI =
1921       FuncInfo.StaticAllocaMap.find(AI);
1922     if (SI != FuncInfo.StaticAllocaMap.end())
1923       return DAG.getFrameIndex(
1924           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1925   }
1926 
1927   // If this is an instruction which fast-isel has deferred, select it now.
1928   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1929     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1930 
1931     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1932                      Inst->getType(), std::nullopt);
1933     SDValue Chain = DAG.getEntryNode();
1934     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1935   }
1936 
1937   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1938     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1939 
1940   if (const auto *BB = dyn_cast<BasicBlock>(V))
1941     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1942 
1943   llvm_unreachable("Can't get register for value!");
1944 }
1945 
1946 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1947   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1948   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1949   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1950   bool IsSEH = isAsynchronousEHPersonality(Pers);
1951   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1952   if (!IsSEH)
1953     CatchPadMBB->setIsEHScopeEntry();
1954   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1955   if (IsMSVCCXX || IsCoreCLR)
1956     CatchPadMBB->setIsEHFuncletEntry();
1957 }
1958 
1959 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1960   // Update machine-CFG edge.
1961   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1962   FuncInfo.MBB->addSuccessor(TargetMBB);
1963   TargetMBB->setIsEHCatchretTarget(true);
1964   DAG.getMachineFunction().setHasEHCatchret(true);
1965 
1966   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1967   bool IsSEH = isAsynchronousEHPersonality(Pers);
1968   if (IsSEH) {
1969     // If this is not a fall-through branch or optimizations are switched off,
1970     // emit the branch.
1971     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1972         TM.getOptLevel() == CodeGenOptLevel::None)
1973       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1974                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1975     return;
1976   }
1977 
1978   // Figure out the funclet membership for the catchret's successor.
1979   // This will be used by the FuncletLayout pass to determine how to order the
1980   // BB's.
1981   // A 'catchret' returns to the outer scope's color.
1982   Value *ParentPad = I.getCatchSwitchParentPad();
1983   const BasicBlock *SuccessorColor;
1984   if (isa<ConstantTokenNone>(ParentPad))
1985     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1986   else
1987     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1988   assert(SuccessorColor && "No parent funclet for catchret!");
1989   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1990   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1991 
1992   // Create the terminator node.
1993   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1994                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1995                             DAG.getBasicBlock(SuccessorColorMBB));
1996   DAG.setRoot(Ret);
1997 }
1998 
1999 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2000   // Don't emit any special code for the cleanuppad instruction. It just marks
2001   // the start of an EH scope/funclet.
2002   FuncInfo.MBB->setIsEHScopeEntry();
2003   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2004   if (Pers != EHPersonality::Wasm_CXX) {
2005     FuncInfo.MBB->setIsEHFuncletEntry();
2006     FuncInfo.MBB->setIsCleanupFuncletEntry();
2007   }
2008 }
2009 
2010 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2011 // not match, it is OK to add only the first unwind destination catchpad to the
2012 // successors, because there will be at least one invoke instruction within the
2013 // catch scope that points to the next unwind destination, if one exists, so
2014 // CFGSort cannot mess up with BB sorting order.
2015 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2016 // call within them, and catchpads only consisting of 'catch (...)' have a
2017 // '__cxa_end_catch' call within them, both of which generate invokes in case
2018 // the next unwind destination exists, i.e., the next unwind destination is not
2019 // the caller.)
2020 //
2021 // Having at most one EH pad successor is also simpler and helps later
2022 // transformations.
2023 //
2024 // For example,
2025 // current:
2026 //   invoke void @foo to ... unwind label %catch.dispatch
2027 // catch.dispatch:
2028 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2029 // catch.start:
2030 //   ...
2031 //   ... in this BB or some other child BB dominated by this BB there will be an
2032 //   invoke that points to 'next' BB as an unwind destination
2033 //
2034 // next: ; We don't need to add this to 'current' BB's successor
2035 //   ...
2036 static void findWasmUnwindDestinations(
2037     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2038     BranchProbability Prob,
2039     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2040         &UnwindDests) {
2041   while (EHPadBB) {
2042     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2043     if (isa<CleanupPadInst>(Pad)) {
2044       // Stop on cleanup pads.
2045       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2046       UnwindDests.back().first->setIsEHScopeEntry();
2047       break;
2048     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2049       // Add the catchpad handlers to the possible destinations. We don't
2050       // continue to the unwind destination of the catchswitch for wasm.
2051       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2052         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2053         UnwindDests.back().first->setIsEHScopeEntry();
2054       }
2055       break;
2056     } else {
2057       continue;
2058     }
2059   }
2060 }
2061 
2062 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2063 /// many places it could ultimately go. In the IR, we have a single unwind
2064 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2065 /// This function skips over imaginary basic blocks that hold catchswitch
2066 /// instructions, and finds all the "real" machine
2067 /// basic block destinations. As those destinations may not be successors of
2068 /// EHPadBB, here we also calculate the edge probability to those destinations.
2069 /// The passed-in Prob is the edge probability to EHPadBB.
2070 static void findUnwindDestinations(
2071     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2072     BranchProbability Prob,
2073     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2074         &UnwindDests) {
2075   EHPersonality Personality =
2076     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2077   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2078   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2079   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2080   bool IsSEH = isAsynchronousEHPersonality(Personality);
2081 
2082   if (IsWasmCXX) {
2083     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2084     assert(UnwindDests.size() <= 1 &&
2085            "There should be at most one unwind destination for wasm");
2086     return;
2087   }
2088 
2089   while (EHPadBB) {
2090     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2091     BasicBlock *NewEHPadBB = nullptr;
2092     if (isa<LandingPadInst>(Pad)) {
2093       // Stop on landingpads. They are not funclets.
2094       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2095       break;
2096     } else if (isa<CleanupPadInst>(Pad)) {
2097       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2098       // personalities.
2099       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2100       UnwindDests.back().first->setIsEHScopeEntry();
2101       UnwindDests.back().first->setIsEHFuncletEntry();
2102       break;
2103     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2104       // Add the catchpad handlers to the possible destinations.
2105       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2106         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2107         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2108         if (IsMSVCCXX || IsCoreCLR)
2109           UnwindDests.back().first->setIsEHFuncletEntry();
2110         if (!IsSEH)
2111           UnwindDests.back().first->setIsEHScopeEntry();
2112       }
2113       NewEHPadBB = CatchSwitch->getUnwindDest();
2114     } else {
2115       continue;
2116     }
2117 
2118     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2119     if (BPI && NewEHPadBB)
2120       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2121     EHPadBB = NewEHPadBB;
2122   }
2123 }
2124 
2125 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2126   // Update successor info.
2127   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2128   auto UnwindDest = I.getUnwindDest();
2129   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2130   BranchProbability UnwindDestProb =
2131       (BPI && UnwindDest)
2132           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2133           : BranchProbability::getZero();
2134   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2135   for (auto &UnwindDest : UnwindDests) {
2136     UnwindDest.first->setIsEHPad();
2137     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2138   }
2139   FuncInfo.MBB->normalizeSuccProbs();
2140 
2141   // Create the terminator node.
2142   SDValue Ret =
2143       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2144   DAG.setRoot(Ret);
2145 }
2146 
2147 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2148   report_fatal_error("visitCatchSwitch not yet implemented!");
2149 }
2150 
2151 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2152   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2153   auto &DL = DAG.getDataLayout();
2154   SDValue Chain = getControlRoot();
2155   SmallVector<ISD::OutputArg, 8> Outs;
2156   SmallVector<SDValue, 8> OutVals;
2157 
2158   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2159   // lower
2160   //
2161   //   %val = call <ty> @llvm.experimental.deoptimize()
2162   //   ret <ty> %val
2163   //
2164   // differently.
2165   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2166     LowerDeoptimizingReturn();
2167     return;
2168   }
2169 
2170   if (!FuncInfo.CanLowerReturn) {
2171     unsigned DemoteReg = FuncInfo.DemoteRegister;
2172     const Function *F = I.getParent()->getParent();
2173 
2174     // Emit a store of the return value through the virtual register.
2175     // Leave Outs empty so that LowerReturn won't try to load return
2176     // registers the usual way.
2177     SmallVector<EVT, 1> PtrValueVTs;
2178     ComputeValueVTs(TLI, DL,
2179                     PointerType::get(F->getContext(),
2180                                      DAG.getDataLayout().getAllocaAddrSpace()),
2181                     PtrValueVTs);
2182 
2183     SDValue RetPtr =
2184         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2185     SDValue RetOp = getValue(I.getOperand(0));
2186 
2187     SmallVector<EVT, 4> ValueVTs, MemVTs;
2188     SmallVector<uint64_t, 4> Offsets;
2189     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2190                     &Offsets, 0);
2191     unsigned NumValues = ValueVTs.size();
2192 
2193     SmallVector<SDValue, 4> Chains(NumValues);
2194     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2195     for (unsigned i = 0; i != NumValues; ++i) {
2196       // An aggregate return value cannot wrap around the address space, so
2197       // offsets to its parts don't wrap either.
2198       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2199                                            TypeSize::getFixed(Offsets[i]));
2200 
2201       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2202       if (MemVTs[i] != ValueVTs[i])
2203         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2204       Chains[i] = DAG.getStore(
2205           Chain, getCurSDLoc(), Val,
2206           // FIXME: better loc info would be nice.
2207           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2208           commonAlignment(BaseAlign, Offsets[i]));
2209     }
2210 
2211     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2212                         MVT::Other, Chains);
2213   } else if (I.getNumOperands() != 0) {
2214     SmallVector<EVT, 4> ValueVTs;
2215     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2216     unsigned NumValues = ValueVTs.size();
2217     if (NumValues) {
2218       SDValue RetOp = getValue(I.getOperand(0));
2219 
2220       const Function *F = I.getParent()->getParent();
2221 
2222       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2223           I.getOperand(0)->getType(), F->getCallingConv(),
2224           /*IsVarArg*/ false, DL);
2225 
2226       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2227       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2228         ExtendKind = ISD::SIGN_EXTEND;
2229       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2230         ExtendKind = ISD::ZERO_EXTEND;
2231 
2232       LLVMContext &Context = F->getContext();
2233       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2234 
2235       for (unsigned j = 0; j != NumValues; ++j) {
2236         EVT VT = ValueVTs[j];
2237 
2238         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2239           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2240 
2241         CallingConv::ID CC = F->getCallingConv();
2242 
2243         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2244         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2245         SmallVector<SDValue, 4> Parts(NumParts);
2246         getCopyToParts(DAG, getCurSDLoc(),
2247                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2248                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2249 
2250         // 'inreg' on function refers to return value
2251         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2252         if (RetInReg)
2253           Flags.setInReg();
2254 
2255         if (I.getOperand(0)->getType()->isPointerTy()) {
2256           Flags.setPointer();
2257           Flags.setPointerAddrSpace(
2258               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2259         }
2260 
2261         if (NeedsRegBlock) {
2262           Flags.setInConsecutiveRegs();
2263           if (j == NumValues - 1)
2264             Flags.setInConsecutiveRegsLast();
2265         }
2266 
2267         // Propagate extension type if any
2268         if (ExtendKind == ISD::SIGN_EXTEND)
2269           Flags.setSExt();
2270         else if (ExtendKind == ISD::ZERO_EXTEND)
2271           Flags.setZExt();
2272 
2273         for (unsigned i = 0; i < NumParts; ++i) {
2274           Outs.push_back(ISD::OutputArg(Flags,
2275                                         Parts[i].getValueType().getSimpleVT(),
2276                                         VT, /*isfixed=*/true, 0, 0));
2277           OutVals.push_back(Parts[i]);
2278         }
2279       }
2280     }
2281   }
2282 
2283   // Push in swifterror virtual register as the last element of Outs. This makes
2284   // sure swifterror virtual register will be returned in the swifterror
2285   // physical register.
2286   const Function *F = I.getParent()->getParent();
2287   if (TLI.supportSwiftError() &&
2288       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2289     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2290     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2291     Flags.setSwiftError();
2292     Outs.push_back(ISD::OutputArg(
2293         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2294         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2295     // Create SDNode for the swifterror virtual register.
2296     OutVals.push_back(
2297         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2298                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2299                         EVT(TLI.getPointerTy(DL))));
2300   }
2301 
2302   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2303   CallingConv::ID CallConv =
2304     DAG.getMachineFunction().getFunction().getCallingConv();
2305   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2306       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2307 
2308   // Verify that the target's LowerReturn behaved as expected.
2309   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2310          "LowerReturn didn't return a valid chain!");
2311 
2312   // Update the DAG with the new chain value resulting from return lowering.
2313   DAG.setRoot(Chain);
2314 }
2315 
2316 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2317 /// created for it, emit nodes to copy the value into the virtual
2318 /// registers.
2319 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2320   // Skip empty types
2321   if (V->getType()->isEmptyTy())
2322     return;
2323 
2324   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2325   if (VMI != FuncInfo.ValueMap.end()) {
2326     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2327            "Unused value assigned virtual registers!");
2328     CopyValueToVirtualRegister(V, VMI->second);
2329   }
2330 }
2331 
2332 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2333 /// the current basic block, add it to ValueMap now so that we'll get a
2334 /// CopyTo/FromReg.
2335 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2336   // No need to export constants.
2337   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2338 
2339   // Already exported?
2340   if (FuncInfo.isExportedInst(V)) return;
2341 
2342   Register Reg = FuncInfo.InitializeRegForValue(V);
2343   CopyValueToVirtualRegister(V, Reg);
2344 }
2345 
2346 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2347                                                      const BasicBlock *FromBB) {
2348   // The operands of the setcc have to be in this block.  We don't know
2349   // how to export them from some other block.
2350   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2351     // Can export from current BB.
2352     if (VI->getParent() == FromBB)
2353       return true;
2354 
2355     // Is already exported, noop.
2356     return FuncInfo.isExportedInst(V);
2357   }
2358 
2359   // If this is an argument, we can export it if the BB is the entry block or
2360   // if it is already exported.
2361   if (isa<Argument>(V)) {
2362     if (FromBB->isEntryBlock())
2363       return true;
2364 
2365     // Otherwise, can only export this if it is already exported.
2366     return FuncInfo.isExportedInst(V);
2367   }
2368 
2369   // Otherwise, constants can always be exported.
2370   return true;
2371 }
2372 
2373 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2374 BranchProbability
2375 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2376                                         const MachineBasicBlock *Dst) const {
2377   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2378   const BasicBlock *SrcBB = Src->getBasicBlock();
2379   const BasicBlock *DstBB = Dst->getBasicBlock();
2380   if (!BPI) {
2381     // If BPI is not available, set the default probability as 1 / N, where N is
2382     // the number of successors.
2383     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2384     return BranchProbability(1, SuccSize);
2385   }
2386   return BPI->getEdgeProbability(SrcBB, DstBB);
2387 }
2388 
2389 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2390                                                MachineBasicBlock *Dst,
2391                                                BranchProbability Prob) {
2392   if (!FuncInfo.BPI)
2393     Src->addSuccessorWithoutProb(Dst);
2394   else {
2395     if (Prob.isUnknown())
2396       Prob = getEdgeProbability(Src, Dst);
2397     Src->addSuccessor(Dst, Prob);
2398   }
2399 }
2400 
2401 static bool InBlock(const Value *V, const BasicBlock *BB) {
2402   if (const Instruction *I = dyn_cast<Instruction>(V))
2403     return I->getParent() == BB;
2404   return true;
2405 }
2406 
2407 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2408 /// This function emits a branch and is used at the leaves of an OR or an
2409 /// AND operator tree.
2410 void
2411 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2412                                                   MachineBasicBlock *TBB,
2413                                                   MachineBasicBlock *FBB,
2414                                                   MachineBasicBlock *CurBB,
2415                                                   MachineBasicBlock *SwitchBB,
2416                                                   BranchProbability TProb,
2417                                                   BranchProbability FProb,
2418                                                   bool InvertCond) {
2419   const BasicBlock *BB = CurBB->getBasicBlock();
2420 
2421   // If the leaf of the tree is a comparison, merge the condition into
2422   // the caseblock.
2423   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2424     // The operands of the cmp have to be in this block.  We don't know
2425     // how to export them from some other block.  If this is the first block
2426     // of the sequence, no exporting is needed.
2427     if (CurBB == SwitchBB ||
2428         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2429          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2430       ISD::CondCode Condition;
2431       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2432         ICmpInst::Predicate Pred =
2433             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2434         Condition = getICmpCondCode(Pred);
2435       } else {
2436         const FCmpInst *FC = cast<FCmpInst>(Cond);
2437         FCmpInst::Predicate Pred =
2438             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2439         Condition = getFCmpCondCode(Pred);
2440         if (TM.Options.NoNaNsFPMath)
2441           Condition = getFCmpCodeWithoutNaN(Condition);
2442       }
2443 
2444       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2445                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2446       SL->SwitchCases.push_back(CB);
2447       return;
2448     }
2449   }
2450 
2451   // Create a CaseBlock record representing this branch.
2452   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2453   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2454                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2455   SL->SwitchCases.push_back(CB);
2456 }
2457 
2458 // Collect dependencies on V recursively. This is used for the cost analysis in
2459 // `shouldKeepJumpConditionsTogether`.
2460 static bool collectInstructionDeps(
2461     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2462     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2463     unsigned Depth = 0) {
2464   // Return false if we have an incomplete count.
2465   if (Depth >= SelectionDAG::MaxRecursionDepth)
2466     return false;
2467 
2468   auto *I = dyn_cast<Instruction>(V);
2469   if (I == nullptr)
2470     return true;
2471 
2472   if (Necessary != nullptr) {
2473     // This instruction is necessary for the other side of the condition so
2474     // don't count it.
2475     if (Necessary->contains(I))
2476       return true;
2477   }
2478 
2479   // Already added this dep.
2480   if (!Deps->try_emplace(I, false).second)
2481     return true;
2482 
2483   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2484     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2485                                 Depth + 1))
2486       return false;
2487   return true;
2488 }
2489 
2490 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2491     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2492     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2493     TargetLoweringBase::CondMergingParams Params) const {
2494   if (I.getNumSuccessors() != 2)
2495     return false;
2496 
2497   if (!I.isConditional())
2498     return false;
2499 
2500   if (Params.BaseCost < 0)
2501     return false;
2502 
2503   // Baseline cost.
2504   InstructionCost CostThresh = Params.BaseCost;
2505 
2506   BranchProbabilityInfo *BPI = nullptr;
2507   if (Params.LikelyBias || Params.UnlikelyBias)
2508     BPI = FuncInfo.BPI;
2509   if (BPI != nullptr) {
2510     // See if we are either likely to get an early out or compute both lhs/rhs
2511     // of the condition.
2512     BasicBlock *IfFalse = I.getSuccessor(0);
2513     BasicBlock *IfTrue = I.getSuccessor(1);
2514 
2515     std::optional<bool> Likely;
2516     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2517       Likely = true;
2518     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2519       Likely = false;
2520 
2521     if (Likely) {
2522       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2523         // Its likely we will have to compute both lhs and rhs of condition
2524         CostThresh += Params.LikelyBias;
2525       else {
2526         if (Params.UnlikelyBias < 0)
2527           return false;
2528         // Its likely we will get an early out.
2529         CostThresh -= Params.UnlikelyBias;
2530       }
2531     }
2532   }
2533 
2534   if (CostThresh <= 0)
2535     return false;
2536 
2537   // Collect "all" instructions that lhs condition is dependent on.
2538   // Use map for stable iteration (to avoid non-determanism of iteration of
2539   // SmallPtrSet). The `bool` value is just a dummy.
2540   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2541   collectInstructionDeps(&LhsDeps, Lhs);
2542   // Collect "all" instructions that rhs condition is dependent on AND are
2543   // dependencies of lhs. This gives us an estimate on which instructions we
2544   // stand to save by splitting the condition.
2545   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2546     return false;
2547   // Add the compare instruction itself unless its a dependency on the LHS.
2548   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2549     if (!LhsDeps.contains(RhsI))
2550       RhsDeps.try_emplace(RhsI, false);
2551 
2552   const auto &TLI = DAG.getTargetLoweringInfo();
2553   const auto &TTI =
2554       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2555 
2556   InstructionCost CostOfIncluding = 0;
2557   // See if this instruction will need to computed independently of whether RHS
2558   // is.
2559   Value *BrCond = I.getCondition();
2560   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2561     for (const auto *U : Ins->users()) {
2562       // If user is independent of RHS calculation we don't need to count it.
2563       if (auto *UIns = dyn_cast<Instruction>(U))
2564         if (UIns != BrCond && !RhsDeps.contains(UIns))
2565           return false;
2566     }
2567     return true;
2568   };
2569 
2570   // Prune instructions from RHS Deps that are dependencies of unrelated
2571   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2572   // arbitrary and just meant to cap the how much time we spend in the pruning
2573   // loop. Its highly unlikely to come into affect.
2574   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2575   // Stop after a certain point. No incorrectness from including too many
2576   // instructions.
2577   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2578     const Instruction *ToDrop = nullptr;
2579     for (const auto &InsPair : RhsDeps) {
2580       if (!ShouldCountInsn(InsPair.first)) {
2581         ToDrop = InsPair.first;
2582         break;
2583       }
2584     }
2585     if (ToDrop == nullptr)
2586       break;
2587     RhsDeps.erase(ToDrop);
2588   }
2589 
2590   for (const auto &InsPair : RhsDeps) {
2591     // Finally accumulate latency that we can only attribute to computing the
2592     // RHS condition. Use latency because we are essentially trying to calculate
2593     // the cost of the dependency chain.
2594     // Possible TODO: We could try to estimate ILP and make this more precise.
2595     CostOfIncluding +=
2596         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2597 
2598     if (CostOfIncluding > CostThresh)
2599       return false;
2600   }
2601   return true;
2602 }
2603 
2604 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2605                                                MachineBasicBlock *TBB,
2606                                                MachineBasicBlock *FBB,
2607                                                MachineBasicBlock *CurBB,
2608                                                MachineBasicBlock *SwitchBB,
2609                                                Instruction::BinaryOps Opc,
2610                                                BranchProbability TProb,
2611                                                BranchProbability FProb,
2612                                                bool InvertCond) {
2613   // Skip over not part of the tree and remember to invert op and operands at
2614   // next level.
2615   Value *NotCond;
2616   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2617       InBlock(NotCond, CurBB->getBasicBlock())) {
2618     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2619                          !InvertCond);
2620     return;
2621   }
2622 
2623   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2624   const Value *BOpOp0, *BOpOp1;
2625   // Compute the effective opcode for Cond, taking into account whether it needs
2626   // to be inverted, e.g.
2627   //   and (not (or A, B)), C
2628   // gets lowered as
2629   //   and (and (not A, not B), C)
2630   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2631   if (BOp) {
2632     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2633                ? Instruction::And
2634                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2635                       ? Instruction::Or
2636                       : (Instruction::BinaryOps)0);
2637     if (InvertCond) {
2638       if (BOpc == Instruction::And)
2639         BOpc = Instruction::Or;
2640       else if (BOpc == Instruction::Or)
2641         BOpc = Instruction::And;
2642     }
2643   }
2644 
2645   // If this node is not part of the or/and tree, emit it as a branch.
2646   // Note that all nodes in the tree should have same opcode.
2647   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2648   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2649       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2650       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2651     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2652                                  TProb, FProb, InvertCond);
2653     return;
2654   }
2655 
2656   //  Create TmpBB after CurBB.
2657   MachineFunction::iterator BBI(CurBB);
2658   MachineFunction &MF = DAG.getMachineFunction();
2659   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2660   CurBB->getParent()->insert(++BBI, TmpBB);
2661 
2662   if (Opc == Instruction::Or) {
2663     // Codegen X | Y as:
2664     // BB1:
2665     //   jmp_if_X TBB
2666     //   jmp TmpBB
2667     // TmpBB:
2668     //   jmp_if_Y TBB
2669     //   jmp FBB
2670     //
2671 
2672     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2673     // The requirement is that
2674     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2675     //     = TrueProb for original BB.
2676     // Assuming the original probabilities are A and B, one choice is to set
2677     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2678     // A/(1+B) and 2B/(1+B). This choice assumes that
2679     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2680     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2681     // TmpBB, but the math is more complicated.
2682 
2683     auto NewTrueProb = TProb / 2;
2684     auto NewFalseProb = TProb / 2 + FProb;
2685     // Emit the LHS condition.
2686     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2687                          NewFalseProb, InvertCond);
2688 
2689     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2690     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2691     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2692     // Emit the RHS condition into TmpBB.
2693     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2694                          Probs[1], InvertCond);
2695   } else {
2696     assert(Opc == Instruction::And && "Unknown merge op!");
2697     // Codegen X & Y as:
2698     // BB1:
2699     //   jmp_if_X TmpBB
2700     //   jmp FBB
2701     // TmpBB:
2702     //   jmp_if_Y TBB
2703     //   jmp FBB
2704     //
2705     //  This requires creation of TmpBB after CurBB.
2706 
2707     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2708     // The requirement is that
2709     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2710     //     = FalseProb for original BB.
2711     // Assuming the original probabilities are A and B, one choice is to set
2712     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2713     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2714     // TrueProb for BB1 * FalseProb for TmpBB.
2715 
2716     auto NewTrueProb = TProb + FProb / 2;
2717     auto NewFalseProb = FProb / 2;
2718     // Emit the LHS condition.
2719     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2720                          NewFalseProb, InvertCond);
2721 
2722     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2723     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2724     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2725     // Emit the RHS condition into TmpBB.
2726     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2727                          Probs[1], InvertCond);
2728   }
2729 }
2730 
2731 /// If the set of cases should be emitted as a series of branches, return true.
2732 /// If we should emit this as a bunch of and/or'd together conditions, return
2733 /// false.
2734 bool
2735 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2736   if (Cases.size() != 2) return true;
2737 
2738   // If this is two comparisons of the same values or'd or and'd together, they
2739   // will get folded into a single comparison, so don't emit two blocks.
2740   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2741        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2742       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2743        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2744     return false;
2745   }
2746 
2747   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2748   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2749   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2750       Cases[0].CC == Cases[1].CC &&
2751       isa<Constant>(Cases[0].CmpRHS) &&
2752       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2753     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2754       return false;
2755     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2756       return false;
2757   }
2758 
2759   return true;
2760 }
2761 
2762 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2763   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2764 
2765   // Update machine-CFG edges.
2766   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2767 
2768   if (I.isUnconditional()) {
2769     // Update machine-CFG edges.
2770     BrMBB->addSuccessor(Succ0MBB);
2771 
2772     // If this is not a fall-through branch or optimizations are switched off,
2773     // emit the branch.
2774     if (Succ0MBB != NextBlock(BrMBB) ||
2775         TM.getOptLevel() == CodeGenOptLevel::None) {
2776       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2777                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2778       setValue(&I, Br);
2779       DAG.setRoot(Br);
2780     }
2781 
2782     return;
2783   }
2784 
2785   // If this condition is one of the special cases we handle, do special stuff
2786   // now.
2787   const Value *CondVal = I.getCondition();
2788   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2789 
2790   // If this is a series of conditions that are or'd or and'd together, emit
2791   // this as a sequence of branches instead of setcc's with and/or operations.
2792   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2793   // unpredictable branches, and vector extracts because those jumps are likely
2794   // expensive for any target), this should improve performance.
2795   // For example, instead of something like:
2796   //     cmp A, B
2797   //     C = seteq
2798   //     cmp D, E
2799   //     F = setle
2800   //     or C, F
2801   //     jnz foo
2802   // Emit:
2803   //     cmp A, B
2804   //     je foo
2805   //     cmp D, E
2806   //     jle foo
2807   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2808   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2809       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2810     Value *Vec;
2811     const Value *BOp0, *BOp1;
2812     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2813     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2814       Opcode = Instruction::And;
2815     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2816       Opcode = Instruction::Or;
2817 
2818     if (Opcode &&
2819         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2820           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2821         !shouldKeepJumpConditionsTogether(
2822             FuncInfo, I, Opcode, BOp0, BOp1,
2823             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2824                 Opcode, BOp0, BOp1))) {
2825       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2826                            getEdgeProbability(BrMBB, Succ0MBB),
2827                            getEdgeProbability(BrMBB, Succ1MBB),
2828                            /*InvertCond=*/false);
2829       // If the compares in later blocks need to use values not currently
2830       // exported from this block, export them now.  This block should always
2831       // be the first entry.
2832       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2833 
2834       // Allow some cases to be rejected.
2835       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2836         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2837           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2838           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2839         }
2840 
2841         // Emit the branch for this block.
2842         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2843         SL->SwitchCases.erase(SL->SwitchCases.begin());
2844         return;
2845       }
2846 
2847       // Okay, we decided not to do this, remove any inserted MBB's and clear
2848       // SwitchCases.
2849       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2850         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2851 
2852       SL->SwitchCases.clear();
2853     }
2854   }
2855 
2856   // Create a CaseBlock record representing this branch.
2857   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2858                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2859 
2860   // Use visitSwitchCase to actually insert the fast branch sequence for this
2861   // cond branch.
2862   visitSwitchCase(CB, BrMBB);
2863 }
2864 
2865 /// visitSwitchCase - Emits the necessary code to represent a single node in
2866 /// the binary search tree resulting from lowering a switch instruction.
2867 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2868                                           MachineBasicBlock *SwitchBB) {
2869   SDValue Cond;
2870   SDValue CondLHS = getValue(CB.CmpLHS);
2871   SDLoc dl = CB.DL;
2872 
2873   if (CB.CC == ISD::SETTRUE) {
2874     // Branch or fall through to TrueBB.
2875     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2876     SwitchBB->normalizeSuccProbs();
2877     if (CB.TrueBB != NextBlock(SwitchBB)) {
2878       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2879                               DAG.getBasicBlock(CB.TrueBB)));
2880     }
2881     return;
2882   }
2883 
2884   auto &TLI = DAG.getTargetLoweringInfo();
2885   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2886 
2887   // Build the setcc now.
2888   if (!CB.CmpMHS) {
2889     // Fold "(X == true)" to X and "(X == false)" to !X to
2890     // handle common cases produced by branch lowering.
2891     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2892         CB.CC == ISD::SETEQ)
2893       Cond = CondLHS;
2894     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2895              CB.CC == ISD::SETEQ) {
2896       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2897       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2898     } else {
2899       SDValue CondRHS = getValue(CB.CmpRHS);
2900 
2901       // If a pointer's DAG type is larger than its memory type then the DAG
2902       // values are zero-extended. This breaks signed comparisons so truncate
2903       // back to the underlying type before doing the compare.
2904       if (CondLHS.getValueType() != MemVT) {
2905         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2906         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2907       }
2908       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2909     }
2910   } else {
2911     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2912 
2913     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2914     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2915 
2916     SDValue CmpOp = getValue(CB.CmpMHS);
2917     EVT VT = CmpOp.getValueType();
2918 
2919     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2920       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2921                           ISD::SETLE);
2922     } else {
2923       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2924                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2925       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2926                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2927     }
2928   }
2929 
2930   // Update successor info
2931   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2932   // TrueBB and FalseBB are always different unless the incoming IR is
2933   // degenerate. This only happens when running llc on weird IR.
2934   if (CB.TrueBB != CB.FalseBB)
2935     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2936   SwitchBB->normalizeSuccProbs();
2937 
2938   // If the lhs block is the next block, invert the condition so that we can
2939   // fall through to the lhs instead of the rhs block.
2940   if (CB.TrueBB == NextBlock(SwitchBB)) {
2941     std::swap(CB.TrueBB, CB.FalseBB);
2942     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2943     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2944   }
2945 
2946   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2947                                MVT::Other, getControlRoot(), Cond,
2948                                DAG.getBasicBlock(CB.TrueBB));
2949 
2950   setValue(CurInst, BrCond);
2951 
2952   // Insert the false branch. Do this even if it's a fall through branch,
2953   // this makes it easier to do DAG optimizations which require inverting
2954   // the branch condition.
2955   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2956                        DAG.getBasicBlock(CB.FalseBB));
2957 
2958   DAG.setRoot(BrCond);
2959 }
2960 
2961 /// visitJumpTable - Emit JumpTable node in the current MBB
2962 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2963   // Emit the code for the jump table
2964   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2965   assert(JT.Reg != -1U && "Should lower JT Header first!");
2966   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2967   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2968   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2969   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2970                                     Index.getValue(1), Table, Index);
2971   DAG.setRoot(BrJumpTable);
2972 }
2973 
2974 /// visitJumpTableHeader - This function emits necessary code to produce index
2975 /// in the JumpTable from switch case.
2976 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2977                                                JumpTableHeader &JTH,
2978                                                MachineBasicBlock *SwitchBB) {
2979   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2980   const SDLoc &dl = *JT.SL;
2981 
2982   // Subtract the lowest switch case value from the value being switched on.
2983   SDValue SwitchOp = getValue(JTH.SValue);
2984   EVT VT = SwitchOp.getValueType();
2985   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2986                             DAG.getConstant(JTH.First, dl, VT));
2987 
2988   // The SDNode we just created, which holds the value being switched on minus
2989   // the smallest case value, needs to be copied to a virtual register so it
2990   // can be used as an index into the jump table in a subsequent basic block.
2991   // This value may be smaller or larger than the target's pointer type, and
2992   // therefore require extension or truncating.
2993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2994   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2995 
2996   unsigned JumpTableReg =
2997       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2998   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2999                                     JumpTableReg, SwitchOp);
3000   JT.Reg = JumpTableReg;
3001 
3002   if (!JTH.FallthroughUnreachable) {
3003     // Emit the range check for the jump table, and branch to the default block
3004     // for the switch statement if the value being switched on exceeds the
3005     // largest case in the switch.
3006     SDValue CMP = DAG.getSetCC(
3007         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3008                                    Sub.getValueType()),
3009         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3010 
3011     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3012                                  MVT::Other, CopyTo, CMP,
3013                                  DAG.getBasicBlock(JT.Default));
3014 
3015     // Avoid emitting unnecessary branches to the next block.
3016     if (JT.MBB != NextBlock(SwitchBB))
3017       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3018                            DAG.getBasicBlock(JT.MBB));
3019 
3020     DAG.setRoot(BrCond);
3021   } else {
3022     // Avoid emitting unnecessary branches to the next block.
3023     if (JT.MBB != NextBlock(SwitchBB))
3024       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3025                               DAG.getBasicBlock(JT.MBB)));
3026     else
3027       DAG.setRoot(CopyTo);
3028   }
3029 }
3030 
3031 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3032 /// variable if there exists one.
3033 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3034                                  SDValue &Chain) {
3035   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3036   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3037   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3038   MachineFunction &MF = DAG.getMachineFunction();
3039   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3040   MachineSDNode *Node =
3041       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3042   if (Global) {
3043     MachinePointerInfo MPInfo(Global);
3044     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3045                  MachineMemOperand::MODereferenceable;
3046     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3047         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3048         DAG.getEVTAlign(PtrTy));
3049     DAG.setNodeMemRefs(Node, {MemRef});
3050   }
3051   if (PtrTy != PtrMemTy)
3052     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3053   return SDValue(Node, 0);
3054 }
3055 
3056 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3057 /// tail spliced into a stack protector check success bb.
3058 ///
3059 /// For a high level explanation of how this fits into the stack protector
3060 /// generation see the comment on the declaration of class
3061 /// StackProtectorDescriptor.
3062 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3063                                                   MachineBasicBlock *ParentBB) {
3064 
3065   // First create the loads to the guard/stack slot for the comparison.
3066   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3067   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3068   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3069 
3070   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3071   int FI = MFI.getStackProtectorIndex();
3072 
3073   SDValue Guard;
3074   SDLoc dl = getCurSDLoc();
3075   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3076   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3077   Align Align =
3078       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3079 
3080   // Generate code to load the content of the guard slot.
3081   SDValue GuardVal = DAG.getLoad(
3082       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3083       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3084       MachineMemOperand::MOVolatile);
3085 
3086   if (TLI.useStackGuardXorFP())
3087     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3088 
3089   // Retrieve guard check function, nullptr if instrumentation is inlined.
3090   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3091     // The target provides a guard check function to validate the guard value.
3092     // Generate a call to that function with the content of the guard slot as
3093     // argument.
3094     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3095     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3096 
3097     TargetLowering::ArgListTy Args;
3098     TargetLowering::ArgListEntry Entry;
3099     Entry.Node = GuardVal;
3100     Entry.Ty = FnTy->getParamType(0);
3101     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3102       Entry.IsInReg = true;
3103     Args.push_back(Entry);
3104 
3105     TargetLowering::CallLoweringInfo CLI(DAG);
3106     CLI.setDebugLoc(getCurSDLoc())
3107         .setChain(DAG.getEntryNode())
3108         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3109                    getValue(GuardCheckFn), std::move(Args));
3110 
3111     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3112     DAG.setRoot(Result.second);
3113     return;
3114   }
3115 
3116   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3117   // Otherwise, emit a volatile load to retrieve the stack guard value.
3118   SDValue Chain = DAG.getEntryNode();
3119   if (TLI.useLoadStackGuardNode()) {
3120     Guard = getLoadStackGuard(DAG, dl, Chain);
3121   } else {
3122     const Value *IRGuard = TLI.getSDagStackGuard(M);
3123     SDValue GuardPtr = getValue(IRGuard);
3124 
3125     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3126                         MachinePointerInfo(IRGuard, 0), Align,
3127                         MachineMemOperand::MOVolatile);
3128   }
3129 
3130   // Perform the comparison via a getsetcc.
3131   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3132                                                         *DAG.getContext(),
3133                                                         Guard.getValueType()),
3134                              Guard, GuardVal, ISD::SETNE);
3135 
3136   // If the guard/stackslot do not equal, branch to failure MBB.
3137   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3138                                MVT::Other, GuardVal.getOperand(0),
3139                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3140   // Otherwise branch to success MBB.
3141   SDValue Br = DAG.getNode(ISD::BR, dl,
3142                            MVT::Other, BrCond,
3143                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3144 
3145   DAG.setRoot(Br);
3146 }
3147 
3148 /// Codegen the failure basic block for a stack protector check.
3149 ///
3150 /// A failure stack protector machine basic block consists simply of a call to
3151 /// __stack_chk_fail().
3152 ///
3153 /// For a high level explanation of how this fits into the stack protector
3154 /// generation see the comment on the declaration of class
3155 /// StackProtectorDescriptor.
3156 void
3157 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3158   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3159   TargetLowering::MakeLibCallOptions CallOptions;
3160   CallOptions.setDiscardResult(true);
3161   SDValue Chain =
3162       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3163                       std::nullopt, CallOptions, getCurSDLoc())
3164           .second;
3165   // On PS4/PS5, the "return address" must still be within the calling
3166   // function, even if it's at the very end, so emit an explicit TRAP here.
3167   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3168   if (TM.getTargetTriple().isPS())
3169     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3170   // WebAssembly needs an unreachable instruction after a non-returning call,
3171   // because the function return type can be different from __stack_chk_fail's
3172   // return type (void).
3173   if (TM.getTargetTriple().isWasm())
3174     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3175 
3176   DAG.setRoot(Chain);
3177 }
3178 
3179 /// visitBitTestHeader - This function emits necessary code to produce value
3180 /// suitable for "bit tests"
3181 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3182                                              MachineBasicBlock *SwitchBB) {
3183   SDLoc dl = getCurSDLoc();
3184 
3185   // Subtract the minimum value.
3186   SDValue SwitchOp = getValue(B.SValue);
3187   EVT VT = SwitchOp.getValueType();
3188   SDValue RangeSub =
3189       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3190 
3191   // Determine the type of the test operands.
3192   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3193   bool UsePtrType = false;
3194   if (!TLI.isTypeLegal(VT)) {
3195     UsePtrType = true;
3196   } else {
3197     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3198       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3199         // Switch table case range are encoded into series of masks.
3200         // Just use pointer type, it's guaranteed to fit.
3201         UsePtrType = true;
3202         break;
3203       }
3204   }
3205   SDValue Sub = RangeSub;
3206   if (UsePtrType) {
3207     VT = TLI.getPointerTy(DAG.getDataLayout());
3208     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3209   }
3210 
3211   B.RegVT = VT.getSimpleVT();
3212   B.Reg = FuncInfo.CreateReg(B.RegVT);
3213   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3214 
3215   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3216 
3217   if (!B.FallthroughUnreachable)
3218     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3219   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3220   SwitchBB->normalizeSuccProbs();
3221 
3222   SDValue Root = CopyTo;
3223   if (!B.FallthroughUnreachable) {
3224     // Conditional branch to the default block.
3225     SDValue RangeCmp = DAG.getSetCC(dl,
3226         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3227                                RangeSub.getValueType()),
3228         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3229         ISD::SETUGT);
3230 
3231     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3232                        DAG.getBasicBlock(B.Default));
3233   }
3234 
3235   // Avoid emitting unnecessary branches to the next block.
3236   if (MBB != NextBlock(SwitchBB))
3237     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3238 
3239   DAG.setRoot(Root);
3240 }
3241 
3242 /// visitBitTestCase - this function produces one "bit test"
3243 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3244                                            MachineBasicBlock* NextMBB,
3245                                            BranchProbability BranchProbToNext,
3246                                            unsigned Reg,
3247                                            BitTestCase &B,
3248                                            MachineBasicBlock *SwitchBB) {
3249   SDLoc dl = getCurSDLoc();
3250   MVT VT = BB.RegVT;
3251   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3252   SDValue Cmp;
3253   unsigned PopCount = llvm::popcount(B.Mask);
3254   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3255   if (PopCount == 1) {
3256     // Testing for a single bit; just compare the shift count with what it
3257     // would need to be to shift a 1 bit in that position.
3258     Cmp = DAG.getSetCC(
3259         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3260         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3261         ISD::SETEQ);
3262   } else if (PopCount == BB.Range) {
3263     // There is only one zero bit in the range, test for it directly.
3264     Cmp = DAG.getSetCC(
3265         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3266         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3267   } else {
3268     // Make desired shift
3269     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3270                                     DAG.getConstant(1, dl, VT), ShiftOp);
3271 
3272     // Emit bit tests and jumps
3273     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3274                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3275     Cmp = DAG.getSetCC(
3276         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3277         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3278   }
3279 
3280   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3281   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3282   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3283   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3284   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3285   // one as they are relative probabilities (and thus work more like weights),
3286   // and hence we need to normalize them to let the sum of them become one.
3287   SwitchBB->normalizeSuccProbs();
3288 
3289   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3290                               MVT::Other, getControlRoot(),
3291                               Cmp, DAG.getBasicBlock(B.TargetBB));
3292 
3293   // Avoid emitting unnecessary branches to the next block.
3294   if (NextMBB != NextBlock(SwitchBB))
3295     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3296                         DAG.getBasicBlock(NextMBB));
3297 
3298   DAG.setRoot(BrAnd);
3299 }
3300 
3301 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3302   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3303 
3304   // Retrieve successors. Look through artificial IR level blocks like
3305   // catchswitch for successors.
3306   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3307   const BasicBlock *EHPadBB = I.getSuccessor(1);
3308   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3309 
3310   // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3311   // have to do anything here to lower funclet bundles.
3312   assert(!I.hasOperandBundlesOtherThan(
3313              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3314               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3315               LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3316               LLVMContext::OB_clang_arc_attachedcall}) &&
3317          "Cannot lower invokes with arbitrary operand bundles yet!");
3318 
3319   const Value *Callee(I.getCalledOperand());
3320   const Function *Fn = dyn_cast<Function>(Callee);
3321   if (isa<InlineAsm>(Callee))
3322     visitInlineAsm(I, EHPadBB);
3323   else if (Fn && Fn->isIntrinsic()) {
3324     switch (Fn->getIntrinsicID()) {
3325     default:
3326       llvm_unreachable("Cannot invoke this intrinsic");
3327     case Intrinsic::donothing:
3328       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3329     case Intrinsic::seh_try_begin:
3330     case Intrinsic::seh_scope_begin:
3331     case Intrinsic::seh_try_end:
3332     case Intrinsic::seh_scope_end:
3333       if (EHPadMBB)
3334           // a block referenced by EH table
3335           // so dtor-funclet not removed by opts
3336           EHPadMBB->setMachineBlockAddressTaken();
3337       break;
3338     case Intrinsic::experimental_patchpoint_void:
3339     case Intrinsic::experimental_patchpoint:
3340       visitPatchpoint(I, EHPadBB);
3341       break;
3342     case Intrinsic::experimental_gc_statepoint:
3343       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3344       break;
3345     case Intrinsic::wasm_rethrow: {
3346       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3347       // special because it can be invoked, so we manually lower it to a DAG
3348       // node here.
3349       SmallVector<SDValue, 8> Ops;
3350       Ops.push_back(getRoot()); // inchain
3351       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3352       Ops.push_back(
3353           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3354                                 TLI.getPointerTy(DAG.getDataLayout())));
3355       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3356       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3357       break;
3358     }
3359     }
3360   } else if (I.hasDeoptState()) {
3361     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3362     // Eventually we will support lowering the @llvm.experimental.deoptimize
3363     // intrinsic, and right now there are no plans to support other intrinsics
3364     // with deopt state.
3365     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3366   } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3367     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3368   } else {
3369     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3370   }
3371 
3372   // If the value of the invoke is used outside of its defining block, make it
3373   // available as a virtual register.
3374   // We already took care of the exported value for the statepoint instruction
3375   // during call to the LowerStatepoint.
3376   if (!isa<GCStatepointInst>(I)) {
3377     CopyToExportRegsIfNeeded(&I);
3378   }
3379 
3380   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3381   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3382   BranchProbability EHPadBBProb =
3383       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3384           : BranchProbability::getZero();
3385   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3386 
3387   // Update successor info.
3388   addSuccessorWithProb(InvokeMBB, Return);
3389   for (auto &UnwindDest : UnwindDests) {
3390     UnwindDest.first->setIsEHPad();
3391     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3392   }
3393   InvokeMBB->normalizeSuccProbs();
3394 
3395   // Drop into normal successor.
3396   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3397                           DAG.getBasicBlock(Return)));
3398 }
3399 
3400 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3401   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3402 
3403   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3404   // have to do anything here to lower funclet bundles.
3405   assert(!I.hasOperandBundlesOtherThan(
3406              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3407          "Cannot lower callbrs with arbitrary operand bundles yet!");
3408 
3409   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3410   visitInlineAsm(I);
3411   CopyToExportRegsIfNeeded(&I);
3412 
3413   // Retrieve successors.
3414   SmallPtrSet<BasicBlock *, 8> Dests;
3415   Dests.insert(I.getDefaultDest());
3416   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3417 
3418   // Update successor info.
3419   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3420   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3421     BasicBlock *Dest = I.getIndirectDest(i);
3422     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3423     Target->setIsInlineAsmBrIndirectTarget();
3424     Target->setMachineBlockAddressTaken();
3425     Target->setLabelMustBeEmitted();
3426     // Don't add duplicate machine successors.
3427     if (Dests.insert(Dest).second)
3428       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3429   }
3430   CallBrMBB->normalizeSuccProbs();
3431 
3432   // Drop into default successor.
3433   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3434                           MVT::Other, getControlRoot(),
3435                           DAG.getBasicBlock(Return)));
3436 }
3437 
3438 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3439   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3440 }
3441 
3442 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3443   assert(FuncInfo.MBB->isEHPad() &&
3444          "Call to landingpad not in landing pad!");
3445 
3446   // If there aren't registers to copy the values into (e.g., during SjLj
3447   // exceptions), then don't bother to create these DAG nodes.
3448   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3449   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3450   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3451       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3452     return;
3453 
3454   // If landingpad's return type is token type, we don't create DAG nodes
3455   // for its exception pointer and selector value. The extraction of exception
3456   // pointer or selector value from token type landingpads is not currently
3457   // supported.
3458   if (LP.getType()->isTokenTy())
3459     return;
3460 
3461   SmallVector<EVT, 2> ValueVTs;
3462   SDLoc dl = getCurSDLoc();
3463   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3464   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3465 
3466   // Get the two live-in registers as SDValues. The physregs have already been
3467   // copied into virtual registers.
3468   SDValue Ops[2];
3469   if (FuncInfo.ExceptionPointerVirtReg) {
3470     Ops[0] = DAG.getZExtOrTrunc(
3471         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3472                            FuncInfo.ExceptionPointerVirtReg,
3473                            TLI.getPointerTy(DAG.getDataLayout())),
3474         dl, ValueVTs[0]);
3475   } else {
3476     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3477   }
3478   Ops[1] = DAG.getZExtOrTrunc(
3479       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3480                          FuncInfo.ExceptionSelectorVirtReg,
3481                          TLI.getPointerTy(DAG.getDataLayout())),
3482       dl, ValueVTs[1]);
3483 
3484   // Merge into one.
3485   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3486                             DAG.getVTList(ValueVTs), Ops);
3487   setValue(&LP, Res);
3488 }
3489 
3490 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3491                                            MachineBasicBlock *Last) {
3492   // Update JTCases.
3493   for (JumpTableBlock &JTB : SL->JTCases)
3494     if (JTB.first.HeaderBB == First)
3495       JTB.first.HeaderBB = Last;
3496 
3497   // Update BitTestCases.
3498   for (BitTestBlock &BTB : SL->BitTestCases)
3499     if (BTB.Parent == First)
3500       BTB.Parent = Last;
3501 }
3502 
3503 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3504   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3505 
3506   // Update machine-CFG edges with unique successors.
3507   SmallSet<BasicBlock*, 32> Done;
3508   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3509     BasicBlock *BB = I.getSuccessor(i);
3510     bool Inserted = Done.insert(BB).second;
3511     if (!Inserted)
3512         continue;
3513 
3514     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3515     addSuccessorWithProb(IndirectBrMBB, Succ);
3516   }
3517   IndirectBrMBB->normalizeSuccProbs();
3518 
3519   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3520                           MVT::Other, getControlRoot(),
3521                           getValue(I.getAddress())));
3522 }
3523 
3524 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3525   if (!DAG.getTarget().Options.TrapUnreachable)
3526     return;
3527 
3528   // We may be able to ignore unreachable behind a noreturn call.
3529   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3530     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3531       if (Call->doesNotReturn())
3532         return;
3533     }
3534   }
3535 
3536   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3537 }
3538 
3539 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3540   SDNodeFlags Flags;
3541   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3542     Flags.copyFMF(*FPOp);
3543 
3544   SDValue Op = getValue(I.getOperand(0));
3545   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3546                                     Op, Flags);
3547   setValue(&I, UnNodeValue);
3548 }
3549 
3550 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3551   SDNodeFlags Flags;
3552   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3553     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3554     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3555   }
3556   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3557     Flags.setExact(ExactOp->isExact());
3558   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3559     Flags.setDisjoint(DisjointOp->isDisjoint());
3560   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3561     Flags.copyFMF(*FPOp);
3562 
3563   SDValue Op1 = getValue(I.getOperand(0));
3564   SDValue Op2 = getValue(I.getOperand(1));
3565   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3566                                      Op1, Op2, Flags);
3567   setValue(&I, BinNodeValue);
3568 }
3569 
3570 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3571   SDValue Op1 = getValue(I.getOperand(0));
3572   SDValue Op2 = getValue(I.getOperand(1));
3573 
3574   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3575       Op1.getValueType(), DAG.getDataLayout());
3576 
3577   // Coerce the shift amount to the right type if we can. This exposes the
3578   // truncate or zext to optimization early.
3579   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3580     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3581            "Unexpected shift type");
3582     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3583   }
3584 
3585   bool nuw = false;
3586   bool nsw = false;
3587   bool exact = false;
3588 
3589   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3590 
3591     if (const OverflowingBinaryOperator *OFBinOp =
3592             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3593       nuw = OFBinOp->hasNoUnsignedWrap();
3594       nsw = OFBinOp->hasNoSignedWrap();
3595     }
3596     if (const PossiblyExactOperator *ExactOp =
3597             dyn_cast<const PossiblyExactOperator>(&I))
3598       exact = ExactOp->isExact();
3599   }
3600   SDNodeFlags Flags;
3601   Flags.setExact(exact);
3602   Flags.setNoSignedWrap(nsw);
3603   Flags.setNoUnsignedWrap(nuw);
3604   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3605                             Flags);
3606   setValue(&I, Res);
3607 }
3608 
3609 void SelectionDAGBuilder::visitSDiv(const User &I) {
3610   SDValue Op1 = getValue(I.getOperand(0));
3611   SDValue Op2 = getValue(I.getOperand(1));
3612 
3613   SDNodeFlags Flags;
3614   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3615                  cast<PossiblyExactOperator>(&I)->isExact());
3616   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3617                            Op2, Flags));
3618 }
3619 
3620 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3621   ICmpInst::Predicate predicate = I.getPredicate();
3622   SDValue Op1 = getValue(I.getOperand(0));
3623   SDValue Op2 = getValue(I.getOperand(1));
3624   ISD::CondCode Opcode = getICmpCondCode(predicate);
3625 
3626   auto &TLI = DAG.getTargetLoweringInfo();
3627   EVT MemVT =
3628       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3629 
3630   // If a pointer's DAG type is larger than its memory type then the DAG values
3631   // are zero-extended. This breaks signed comparisons so truncate back to the
3632   // underlying type before doing the compare.
3633   if (Op1.getValueType() != MemVT) {
3634     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3635     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3636   }
3637 
3638   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3639                                                         I.getType());
3640   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3641 }
3642 
3643 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3644   FCmpInst::Predicate predicate = I.getPredicate();
3645   SDValue Op1 = getValue(I.getOperand(0));
3646   SDValue Op2 = getValue(I.getOperand(1));
3647 
3648   ISD::CondCode Condition = getFCmpCondCode(predicate);
3649   auto *FPMO = cast<FPMathOperator>(&I);
3650   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3651     Condition = getFCmpCodeWithoutNaN(Condition);
3652 
3653   SDNodeFlags Flags;
3654   Flags.copyFMF(*FPMO);
3655   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3656 
3657   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3658                                                         I.getType());
3659   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3660 }
3661 
3662 // Check if the condition of the select has one use or two users that are both
3663 // selects with the same condition.
3664 static bool hasOnlySelectUsers(const Value *Cond) {
3665   return llvm::all_of(Cond->users(), [](const Value *V) {
3666     return isa<SelectInst>(V);
3667   });
3668 }
3669 
3670 void SelectionDAGBuilder::visitSelect(const User &I) {
3671   SmallVector<EVT, 4> ValueVTs;
3672   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3673                   ValueVTs);
3674   unsigned NumValues = ValueVTs.size();
3675   if (NumValues == 0) return;
3676 
3677   SmallVector<SDValue, 4> Values(NumValues);
3678   SDValue Cond     = getValue(I.getOperand(0));
3679   SDValue LHSVal   = getValue(I.getOperand(1));
3680   SDValue RHSVal   = getValue(I.getOperand(2));
3681   SmallVector<SDValue, 1> BaseOps(1, Cond);
3682   ISD::NodeType OpCode =
3683       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3684 
3685   bool IsUnaryAbs = false;
3686   bool Negate = false;
3687 
3688   SDNodeFlags Flags;
3689   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3690     Flags.copyFMF(*FPOp);
3691 
3692   Flags.setUnpredictable(
3693       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3694 
3695   // Min/max matching is only viable if all output VTs are the same.
3696   if (all_equal(ValueVTs)) {
3697     EVT VT = ValueVTs[0];
3698     LLVMContext &Ctx = *DAG.getContext();
3699     auto &TLI = DAG.getTargetLoweringInfo();
3700 
3701     // We care about the legality of the operation after it has been type
3702     // legalized.
3703     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3704       VT = TLI.getTypeToTransformTo(Ctx, VT);
3705 
3706     // If the vselect is legal, assume we want to leave this as a vector setcc +
3707     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3708     // min/max is legal on the scalar type.
3709     bool UseScalarMinMax = VT.isVector() &&
3710       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3711 
3712     // ValueTracking's select pattern matching does not account for -0.0,
3713     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3714     // -0.0 is less than +0.0.
3715     Value *LHS, *RHS;
3716     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3717     ISD::NodeType Opc = ISD::DELETED_NODE;
3718     switch (SPR.Flavor) {
3719     case SPF_UMAX:    Opc = ISD::UMAX; break;
3720     case SPF_UMIN:    Opc = ISD::UMIN; break;
3721     case SPF_SMAX:    Opc = ISD::SMAX; break;
3722     case SPF_SMIN:    Opc = ISD::SMIN; break;
3723     case SPF_FMINNUM:
3724       switch (SPR.NaNBehavior) {
3725       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3726       case SPNB_RETURNS_NAN: break;
3727       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3728       case SPNB_RETURNS_ANY:
3729         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3730             (UseScalarMinMax &&
3731              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3732           Opc = ISD::FMINNUM;
3733         break;
3734       }
3735       break;
3736     case SPF_FMAXNUM:
3737       switch (SPR.NaNBehavior) {
3738       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3739       case SPNB_RETURNS_NAN: break;
3740       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3741       case SPNB_RETURNS_ANY:
3742         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3743             (UseScalarMinMax &&
3744              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3745           Opc = ISD::FMAXNUM;
3746         break;
3747       }
3748       break;
3749     case SPF_NABS:
3750       Negate = true;
3751       [[fallthrough]];
3752     case SPF_ABS:
3753       IsUnaryAbs = true;
3754       Opc = ISD::ABS;
3755       break;
3756     default: break;
3757     }
3758 
3759     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3760         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3761          (UseScalarMinMax &&
3762           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3763         // If the underlying comparison instruction is used by any other
3764         // instruction, the consumed instructions won't be destroyed, so it is
3765         // not profitable to convert to a min/max.
3766         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3767       OpCode = Opc;
3768       LHSVal = getValue(LHS);
3769       RHSVal = getValue(RHS);
3770       BaseOps.clear();
3771     }
3772 
3773     if (IsUnaryAbs) {
3774       OpCode = Opc;
3775       LHSVal = getValue(LHS);
3776       BaseOps.clear();
3777     }
3778   }
3779 
3780   if (IsUnaryAbs) {
3781     for (unsigned i = 0; i != NumValues; ++i) {
3782       SDLoc dl = getCurSDLoc();
3783       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3784       Values[i] =
3785           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3786       if (Negate)
3787         Values[i] = DAG.getNegative(Values[i], dl, VT);
3788     }
3789   } else {
3790     for (unsigned i = 0; i != NumValues; ++i) {
3791       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3792       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3793       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3794       Values[i] = DAG.getNode(
3795           OpCode, getCurSDLoc(),
3796           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3797     }
3798   }
3799 
3800   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3801                            DAG.getVTList(ValueVTs), Values));
3802 }
3803 
3804 void SelectionDAGBuilder::visitTrunc(const User &I) {
3805   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3806   SDValue N = getValue(I.getOperand(0));
3807   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3808                                                         I.getType());
3809   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3810 }
3811 
3812 void SelectionDAGBuilder::visitZExt(const User &I) {
3813   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3814   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3815   SDValue N = getValue(I.getOperand(0));
3816   auto &TLI = DAG.getTargetLoweringInfo();
3817   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3818 
3819   SDNodeFlags Flags;
3820   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3821     Flags.setNonNeg(PNI->hasNonNeg());
3822 
3823   // Eagerly use nonneg information to canonicalize towards sign_extend if
3824   // that is the target's preference.
3825   // TODO: Let the target do this later.
3826   if (Flags.hasNonNeg() &&
3827       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3828     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3829     return;
3830   }
3831 
3832   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3833 }
3834 
3835 void SelectionDAGBuilder::visitSExt(const User &I) {
3836   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3837   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3838   SDValue N = getValue(I.getOperand(0));
3839   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3840                                                         I.getType());
3841   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3842 }
3843 
3844 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3845   // FPTrunc is never a no-op cast, no need to check
3846   SDValue N = getValue(I.getOperand(0));
3847   SDLoc dl = getCurSDLoc();
3848   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3849   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3850   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3851                            DAG.getTargetConstant(
3852                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3853 }
3854 
3855 void SelectionDAGBuilder::visitFPExt(const User &I) {
3856   // FPExt is never a no-op cast, no need to check
3857   SDValue N = getValue(I.getOperand(0));
3858   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3859                                                         I.getType());
3860   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3861 }
3862 
3863 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3864   // FPToUI is never a no-op cast, no need to check
3865   SDValue N = getValue(I.getOperand(0));
3866   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3867                                                         I.getType());
3868   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3869 }
3870 
3871 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3872   // FPToSI is never a no-op cast, no need to check
3873   SDValue N = getValue(I.getOperand(0));
3874   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3875                                                         I.getType());
3876   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3877 }
3878 
3879 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3880   // UIToFP is never a no-op cast, no need to check
3881   SDValue N = getValue(I.getOperand(0));
3882   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3883                                                         I.getType());
3884   SDNodeFlags Flags;
3885   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3886     Flags.setNonNeg(PNI->hasNonNeg());
3887 
3888   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3889 }
3890 
3891 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3892   // SIToFP is never a no-op cast, no need to check
3893   SDValue N = getValue(I.getOperand(0));
3894   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3895                                                         I.getType());
3896   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3897 }
3898 
3899 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3900   // What to do depends on the size of the integer and the size of the pointer.
3901   // We can either truncate, zero extend, or no-op, accordingly.
3902   SDValue N = getValue(I.getOperand(0));
3903   auto &TLI = DAG.getTargetLoweringInfo();
3904   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3905                                                         I.getType());
3906   EVT PtrMemVT =
3907       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3908   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3909   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3910   setValue(&I, N);
3911 }
3912 
3913 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3914   // What to do depends on the size of the integer and the size of the pointer.
3915   // We can either truncate, zero extend, or no-op, accordingly.
3916   SDValue N = getValue(I.getOperand(0));
3917   auto &TLI = DAG.getTargetLoweringInfo();
3918   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3919   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3920   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3921   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3922   setValue(&I, N);
3923 }
3924 
3925 void SelectionDAGBuilder::visitBitCast(const User &I) {
3926   SDValue N = getValue(I.getOperand(0));
3927   SDLoc dl = getCurSDLoc();
3928   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3929                                                         I.getType());
3930 
3931   // BitCast assures us that source and destination are the same size so this is
3932   // either a BITCAST or a no-op.
3933   if (DestVT != N.getValueType())
3934     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3935                              DestVT, N)); // convert types.
3936   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3937   // might fold any kind of constant expression to an integer constant and that
3938   // is not what we are looking for. Only recognize a bitcast of a genuine
3939   // constant integer as an opaque constant.
3940   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3941     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3942                                  /*isOpaque*/true));
3943   else
3944     setValue(&I, N);            // noop cast.
3945 }
3946 
3947 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3948   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3949   const Value *SV = I.getOperand(0);
3950   SDValue N = getValue(SV);
3951   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3952 
3953   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3954   unsigned DestAS = I.getType()->getPointerAddressSpace();
3955 
3956   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3957     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3958 
3959   setValue(&I, N);
3960 }
3961 
3962 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3963   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3964   SDValue InVec = getValue(I.getOperand(0));
3965   SDValue InVal = getValue(I.getOperand(1));
3966   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3967                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3968   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3969                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3970                            InVec, InVal, InIdx));
3971 }
3972 
3973 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3974   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3975   SDValue InVec = getValue(I.getOperand(0));
3976   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3977                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3978   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3979                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3980                            InVec, InIdx));
3981 }
3982 
3983 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3984   SDValue Src1 = getValue(I.getOperand(0));
3985   SDValue Src2 = getValue(I.getOperand(1));
3986   ArrayRef<int> Mask;
3987   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3988     Mask = SVI->getShuffleMask();
3989   else
3990     Mask = cast<ConstantExpr>(I).getShuffleMask();
3991   SDLoc DL = getCurSDLoc();
3992   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3993   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3994   EVT SrcVT = Src1.getValueType();
3995 
3996   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3997       VT.isScalableVector()) {
3998     // Canonical splat form of first element of first input vector.
3999     SDValue FirstElt =
4000         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4001                     DAG.getVectorIdxConstant(0, DL));
4002     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4003     return;
4004   }
4005 
4006   // For now, we only handle splats for scalable vectors.
4007   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4008   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4009   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4010 
4011   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4012   unsigned MaskNumElts = Mask.size();
4013 
4014   if (SrcNumElts == MaskNumElts) {
4015     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4016     return;
4017   }
4018 
4019   // Normalize the shuffle vector since mask and vector length don't match.
4020   if (SrcNumElts < MaskNumElts) {
4021     // Mask is longer than the source vectors. We can use concatenate vector to
4022     // make the mask and vectors lengths match.
4023 
4024     if (MaskNumElts % SrcNumElts == 0) {
4025       // Mask length is a multiple of the source vector length.
4026       // Check if the shuffle is some kind of concatenation of the input
4027       // vectors.
4028       unsigned NumConcat = MaskNumElts / SrcNumElts;
4029       bool IsConcat = true;
4030       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4031       for (unsigned i = 0; i != MaskNumElts; ++i) {
4032         int Idx = Mask[i];
4033         if (Idx < 0)
4034           continue;
4035         // Ensure the indices in each SrcVT sized piece are sequential and that
4036         // the same source is used for the whole piece.
4037         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4038             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4039              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4040           IsConcat = false;
4041           break;
4042         }
4043         // Remember which source this index came from.
4044         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4045       }
4046 
4047       // The shuffle is concatenating multiple vectors together. Just emit
4048       // a CONCAT_VECTORS operation.
4049       if (IsConcat) {
4050         SmallVector<SDValue, 8> ConcatOps;
4051         for (auto Src : ConcatSrcs) {
4052           if (Src < 0)
4053             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4054           else if (Src == 0)
4055             ConcatOps.push_back(Src1);
4056           else
4057             ConcatOps.push_back(Src2);
4058         }
4059         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4060         return;
4061       }
4062     }
4063 
4064     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4065     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4066     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4067                                     PaddedMaskNumElts);
4068 
4069     // Pad both vectors with undefs to make them the same length as the mask.
4070     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4071 
4072     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4073     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4074     MOps1[0] = Src1;
4075     MOps2[0] = Src2;
4076 
4077     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4078     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4079 
4080     // Readjust mask for new input vector length.
4081     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4082     for (unsigned i = 0; i != MaskNumElts; ++i) {
4083       int Idx = Mask[i];
4084       if (Idx >= (int)SrcNumElts)
4085         Idx -= SrcNumElts - PaddedMaskNumElts;
4086       MappedOps[i] = Idx;
4087     }
4088 
4089     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4090 
4091     // If the concatenated vector was padded, extract a subvector with the
4092     // correct number of elements.
4093     if (MaskNumElts != PaddedMaskNumElts)
4094       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4095                            DAG.getVectorIdxConstant(0, DL));
4096 
4097     setValue(&I, Result);
4098     return;
4099   }
4100 
4101   if (SrcNumElts > MaskNumElts) {
4102     // Analyze the access pattern of the vector to see if we can extract
4103     // two subvectors and do the shuffle.
4104     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4105     bool CanExtract = true;
4106     for (int Idx : Mask) {
4107       unsigned Input = 0;
4108       if (Idx < 0)
4109         continue;
4110 
4111       if (Idx >= (int)SrcNumElts) {
4112         Input = 1;
4113         Idx -= SrcNumElts;
4114       }
4115 
4116       // If all the indices come from the same MaskNumElts sized portion of
4117       // the sources we can use extract. Also make sure the extract wouldn't
4118       // extract past the end of the source.
4119       int NewStartIdx = alignDown(Idx, MaskNumElts);
4120       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4121           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4122         CanExtract = false;
4123       // Make sure we always update StartIdx as we use it to track if all
4124       // elements are undef.
4125       StartIdx[Input] = NewStartIdx;
4126     }
4127 
4128     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4129       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4130       return;
4131     }
4132     if (CanExtract) {
4133       // Extract appropriate subvector and generate a vector shuffle
4134       for (unsigned Input = 0; Input < 2; ++Input) {
4135         SDValue &Src = Input == 0 ? Src1 : Src2;
4136         if (StartIdx[Input] < 0)
4137           Src = DAG.getUNDEF(VT);
4138         else {
4139           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4140                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4141         }
4142       }
4143 
4144       // Calculate new mask.
4145       SmallVector<int, 8> MappedOps(Mask);
4146       for (int &Idx : MappedOps) {
4147         if (Idx >= (int)SrcNumElts)
4148           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4149         else if (Idx >= 0)
4150           Idx -= StartIdx[0];
4151       }
4152 
4153       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4154       return;
4155     }
4156   }
4157 
4158   // We can't use either concat vectors or extract subvectors so fall back to
4159   // replacing the shuffle with extract and build vector.
4160   // to insert and build vector.
4161   EVT EltVT = VT.getVectorElementType();
4162   SmallVector<SDValue,8> Ops;
4163   for (int Idx : Mask) {
4164     SDValue Res;
4165 
4166     if (Idx < 0) {
4167       Res = DAG.getUNDEF(EltVT);
4168     } else {
4169       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4170       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4171 
4172       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4173                         DAG.getVectorIdxConstant(Idx, DL));
4174     }
4175 
4176     Ops.push_back(Res);
4177   }
4178 
4179   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4180 }
4181 
4182 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4183   ArrayRef<unsigned> Indices = I.getIndices();
4184   const Value *Op0 = I.getOperand(0);
4185   const Value *Op1 = I.getOperand(1);
4186   Type *AggTy = I.getType();
4187   Type *ValTy = Op1->getType();
4188   bool IntoUndef = isa<UndefValue>(Op0);
4189   bool FromUndef = isa<UndefValue>(Op1);
4190 
4191   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4192 
4193   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4194   SmallVector<EVT, 4> AggValueVTs;
4195   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4196   SmallVector<EVT, 4> ValValueVTs;
4197   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4198 
4199   unsigned NumAggValues = AggValueVTs.size();
4200   unsigned NumValValues = ValValueVTs.size();
4201   SmallVector<SDValue, 4> Values(NumAggValues);
4202 
4203   // Ignore an insertvalue that produces an empty object
4204   if (!NumAggValues) {
4205     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4206     return;
4207   }
4208 
4209   SDValue Agg = getValue(Op0);
4210   unsigned i = 0;
4211   // Copy the beginning value(s) from the original aggregate.
4212   for (; i != LinearIndex; ++i)
4213     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4214                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4215   // Copy values from the inserted value(s).
4216   if (NumValValues) {
4217     SDValue Val = getValue(Op1);
4218     for (; i != LinearIndex + NumValValues; ++i)
4219       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4220                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4221   }
4222   // Copy remaining value(s) from the original aggregate.
4223   for (; i != NumAggValues; ++i)
4224     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4225                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4226 
4227   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4228                            DAG.getVTList(AggValueVTs), Values));
4229 }
4230 
4231 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4232   ArrayRef<unsigned> Indices = I.getIndices();
4233   const Value *Op0 = I.getOperand(0);
4234   Type *AggTy = Op0->getType();
4235   Type *ValTy = I.getType();
4236   bool OutOfUndef = isa<UndefValue>(Op0);
4237 
4238   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4239 
4240   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4241   SmallVector<EVT, 4> ValValueVTs;
4242   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4243 
4244   unsigned NumValValues = ValValueVTs.size();
4245 
4246   // Ignore a extractvalue that produces an empty object
4247   if (!NumValValues) {
4248     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4249     return;
4250   }
4251 
4252   SmallVector<SDValue, 4> Values(NumValValues);
4253 
4254   SDValue Agg = getValue(Op0);
4255   // Copy out the selected value(s).
4256   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4257     Values[i - LinearIndex] =
4258       OutOfUndef ?
4259         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4260         SDValue(Agg.getNode(), Agg.getResNo() + i);
4261 
4262   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4263                            DAG.getVTList(ValValueVTs), Values));
4264 }
4265 
4266 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4267   Value *Op0 = I.getOperand(0);
4268   // Note that the pointer operand may be a vector of pointers. Take the scalar
4269   // element which holds a pointer.
4270   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4271   SDValue N = getValue(Op0);
4272   SDLoc dl = getCurSDLoc();
4273   auto &TLI = DAG.getTargetLoweringInfo();
4274 
4275   // Normalize Vector GEP - all scalar operands should be converted to the
4276   // splat vector.
4277   bool IsVectorGEP = I.getType()->isVectorTy();
4278   ElementCount VectorElementCount =
4279       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4280                   : ElementCount::getFixed(0);
4281 
4282   if (IsVectorGEP && !N.getValueType().isVector()) {
4283     LLVMContext &Context = *DAG.getContext();
4284     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4285     N = DAG.getSplat(VT, dl, N);
4286   }
4287 
4288   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4289        GTI != E; ++GTI) {
4290     const Value *Idx = GTI.getOperand();
4291     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4292       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4293       if (Field) {
4294         // N = N + Offset
4295         uint64_t Offset =
4296             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4297 
4298         // In an inbounds GEP with an offset that is nonnegative even when
4299         // interpreted as signed, assume there is no unsigned overflow.
4300         SDNodeFlags Flags;
4301         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4302           Flags.setNoUnsignedWrap(true);
4303 
4304         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4305                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4306       }
4307     } else {
4308       // IdxSize is the width of the arithmetic according to IR semantics.
4309       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4310       // (and fix up the result later).
4311       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4312       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4313       TypeSize ElementSize =
4314           GTI.getSequentialElementStride(DAG.getDataLayout());
4315       // We intentionally mask away the high bits here; ElementSize may not
4316       // fit in IdxTy.
4317       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4318       bool ElementScalable = ElementSize.isScalable();
4319 
4320       // If this is a scalar constant or a splat vector of constants,
4321       // handle it quickly.
4322       const auto *C = dyn_cast<Constant>(Idx);
4323       if (C && isa<VectorType>(C->getType()))
4324         C = C->getSplatValue();
4325 
4326       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4327       if (CI && CI->isZero())
4328         continue;
4329       if (CI && !ElementScalable) {
4330         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4331         LLVMContext &Context = *DAG.getContext();
4332         SDValue OffsVal;
4333         if (IsVectorGEP)
4334           OffsVal = DAG.getConstant(
4335               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4336         else
4337           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4338 
4339         // In an inbounds GEP with an offset that is nonnegative even when
4340         // interpreted as signed, assume there is no unsigned overflow.
4341         SDNodeFlags Flags;
4342         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4343           Flags.setNoUnsignedWrap(true);
4344 
4345         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4346 
4347         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4348         continue;
4349       }
4350 
4351       // N = N + Idx * ElementMul;
4352       SDValue IdxN = getValue(Idx);
4353 
4354       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4355         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4356                                   VectorElementCount);
4357         IdxN = DAG.getSplat(VT, dl, IdxN);
4358       }
4359 
4360       // If the index is smaller or larger than intptr_t, truncate or extend
4361       // it.
4362       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4363 
4364       if (ElementScalable) {
4365         EVT VScaleTy = N.getValueType().getScalarType();
4366         SDValue VScale = DAG.getNode(
4367             ISD::VSCALE, dl, VScaleTy,
4368             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4369         if (IsVectorGEP)
4370           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4371         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4372       } else {
4373         // If this is a multiply by a power of two, turn it into a shl
4374         // immediately.  This is a very common case.
4375         if (ElementMul != 1) {
4376           if (ElementMul.isPowerOf2()) {
4377             unsigned Amt = ElementMul.logBase2();
4378             IdxN = DAG.getNode(ISD::SHL, dl,
4379                                N.getValueType(), IdxN,
4380                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4381           } else {
4382             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4383                                             IdxN.getValueType());
4384             IdxN = DAG.getNode(ISD::MUL, dl,
4385                                N.getValueType(), IdxN, Scale);
4386           }
4387         }
4388       }
4389 
4390       N = DAG.getNode(ISD::ADD, dl,
4391                       N.getValueType(), N, IdxN);
4392     }
4393   }
4394 
4395   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4396   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4397   if (IsVectorGEP) {
4398     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4399     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4400   }
4401 
4402   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4403     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4404 
4405   setValue(&I, N);
4406 }
4407 
4408 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4409   // If this is a fixed sized alloca in the entry block of the function,
4410   // allocate it statically on the stack.
4411   if (FuncInfo.StaticAllocaMap.count(&I))
4412     return;   // getValue will auto-populate this.
4413 
4414   SDLoc dl = getCurSDLoc();
4415   Type *Ty = I.getAllocatedType();
4416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4417   auto &DL = DAG.getDataLayout();
4418   TypeSize TySize = DL.getTypeAllocSize(Ty);
4419   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4420 
4421   SDValue AllocSize = getValue(I.getArraySize());
4422 
4423   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4424   if (AllocSize.getValueType() != IntPtr)
4425     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4426 
4427   if (TySize.isScalable())
4428     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4429                             DAG.getVScale(dl, IntPtr,
4430                                           APInt(IntPtr.getScalarSizeInBits(),
4431                                                 TySize.getKnownMinValue())));
4432   else {
4433     SDValue TySizeValue =
4434         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4435     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4436                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4437   }
4438 
4439   // Handle alignment.  If the requested alignment is less than or equal to
4440   // the stack alignment, ignore it.  If the size is greater than or equal to
4441   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4442   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4443   if (*Alignment <= StackAlign)
4444     Alignment = std::nullopt;
4445 
4446   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4447   // Round the size of the allocation up to the stack alignment size
4448   // by add SA-1 to the size. This doesn't overflow because we're computing
4449   // an address inside an alloca.
4450   SDNodeFlags Flags;
4451   Flags.setNoUnsignedWrap(true);
4452   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4453                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4454 
4455   // Mask out the low bits for alignment purposes.
4456   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4457                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4458 
4459   SDValue Ops[] = {
4460       getRoot(), AllocSize,
4461       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4462   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4463   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4464   setValue(&I, DSA);
4465   DAG.setRoot(DSA.getValue(1));
4466 
4467   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4468 }
4469 
4470 static const MDNode *getRangeMetadata(const Instruction &I) {
4471   // If !noundef is not present, then !range violation results in a poison
4472   // value rather than immediate undefined behavior. In theory, transferring
4473   // these annotations to SDAG is fine, but in practice there are key SDAG
4474   // transforms that are known not to be poison-safe, such as folding logical
4475   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4476   // also present.
4477   if (!I.hasMetadata(LLVMContext::MD_noundef))
4478     return nullptr;
4479   return I.getMetadata(LLVMContext::MD_range);
4480 }
4481 
4482 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4483   if (I.isAtomic())
4484     return visitAtomicLoad(I);
4485 
4486   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4487   const Value *SV = I.getOperand(0);
4488   if (TLI.supportSwiftError()) {
4489     // Swifterror values can come from either a function parameter with
4490     // swifterror attribute or an alloca with swifterror attribute.
4491     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4492       if (Arg->hasSwiftErrorAttr())
4493         return visitLoadFromSwiftError(I);
4494     }
4495 
4496     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4497       if (Alloca->isSwiftError())
4498         return visitLoadFromSwiftError(I);
4499     }
4500   }
4501 
4502   SDValue Ptr = getValue(SV);
4503 
4504   Type *Ty = I.getType();
4505   SmallVector<EVT, 4> ValueVTs, MemVTs;
4506   SmallVector<TypeSize, 4> Offsets;
4507   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4508   unsigned NumValues = ValueVTs.size();
4509   if (NumValues == 0)
4510     return;
4511 
4512   Align Alignment = I.getAlign();
4513   AAMDNodes AAInfo = I.getAAMetadata();
4514   const MDNode *Ranges = getRangeMetadata(I);
4515   bool isVolatile = I.isVolatile();
4516   MachineMemOperand::Flags MMOFlags =
4517       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4518 
4519   SDValue Root;
4520   bool ConstantMemory = false;
4521   if (isVolatile)
4522     // Serialize volatile loads with other side effects.
4523     Root = getRoot();
4524   else if (NumValues > MaxParallelChains)
4525     Root = getMemoryRoot();
4526   else if (AA &&
4527            AA->pointsToConstantMemory(MemoryLocation(
4528                SV,
4529                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4530                AAInfo))) {
4531     // Do not serialize (non-volatile) loads of constant memory with anything.
4532     Root = DAG.getEntryNode();
4533     ConstantMemory = true;
4534     MMOFlags |= MachineMemOperand::MOInvariant;
4535   } else {
4536     // Do not serialize non-volatile loads against each other.
4537     Root = DAG.getRoot();
4538   }
4539 
4540   SDLoc dl = getCurSDLoc();
4541 
4542   if (isVolatile)
4543     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4544 
4545   SmallVector<SDValue, 4> Values(NumValues);
4546   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4547 
4548   unsigned ChainI = 0;
4549   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4550     // Serializing loads here may result in excessive register pressure, and
4551     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4552     // could recover a bit by hoisting nodes upward in the chain by recognizing
4553     // they are side-effect free or do not alias. The optimizer should really
4554     // avoid this case by converting large object/array copies to llvm.memcpy
4555     // (MaxParallelChains should always remain as failsafe).
4556     if (ChainI == MaxParallelChains) {
4557       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4558       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4559                                   ArrayRef(Chains.data(), ChainI));
4560       Root = Chain;
4561       ChainI = 0;
4562     }
4563 
4564     // TODO: MachinePointerInfo only supports a fixed length offset.
4565     MachinePointerInfo PtrInfo =
4566         !Offsets[i].isScalable() || Offsets[i].isZero()
4567             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4568             : MachinePointerInfo();
4569 
4570     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4571     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4572                             MMOFlags, AAInfo, Ranges);
4573     Chains[ChainI] = L.getValue(1);
4574 
4575     if (MemVTs[i] != ValueVTs[i])
4576       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4577 
4578     Values[i] = L;
4579   }
4580 
4581   if (!ConstantMemory) {
4582     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4583                                 ArrayRef(Chains.data(), ChainI));
4584     if (isVolatile)
4585       DAG.setRoot(Chain);
4586     else
4587       PendingLoads.push_back(Chain);
4588   }
4589 
4590   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4591                            DAG.getVTList(ValueVTs), Values));
4592 }
4593 
4594 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4595   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4596          "call visitStoreToSwiftError when backend supports swifterror");
4597 
4598   SmallVector<EVT, 4> ValueVTs;
4599   SmallVector<uint64_t, 4> Offsets;
4600   const Value *SrcV = I.getOperand(0);
4601   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4602                   SrcV->getType(), ValueVTs, &Offsets, 0);
4603   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4604          "expect a single EVT for swifterror");
4605 
4606   SDValue Src = getValue(SrcV);
4607   // Create a virtual register, then update the virtual register.
4608   Register VReg =
4609       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4610   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4611   // Chain can be getRoot or getControlRoot.
4612   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4613                                       SDValue(Src.getNode(), Src.getResNo()));
4614   DAG.setRoot(CopyNode);
4615 }
4616 
4617 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4618   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4619          "call visitLoadFromSwiftError when backend supports swifterror");
4620 
4621   assert(!I.isVolatile() &&
4622          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4623          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4624          "Support volatile, non temporal, invariant for load_from_swift_error");
4625 
4626   const Value *SV = I.getOperand(0);
4627   Type *Ty = I.getType();
4628   assert(
4629       (!AA ||
4630        !AA->pointsToConstantMemory(MemoryLocation(
4631            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4632            I.getAAMetadata()))) &&
4633       "load_from_swift_error should not be constant memory");
4634 
4635   SmallVector<EVT, 4> ValueVTs;
4636   SmallVector<uint64_t, 4> Offsets;
4637   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4638                   ValueVTs, &Offsets, 0);
4639   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4640          "expect a single EVT for swifterror");
4641 
4642   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4643   SDValue L = DAG.getCopyFromReg(
4644       getRoot(), getCurSDLoc(),
4645       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4646 
4647   setValue(&I, L);
4648 }
4649 
4650 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4651   if (I.isAtomic())
4652     return visitAtomicStore(I);
4653 
4654   const Value *SrcV = I.getOperand(0);
4655   const Value *PtrV = I.getOperand(1);
4656 
4657   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4658   if (TLI.supportSwiftError()) {
4659     // Swifterror values can come from either a function parameter with
4660     // swifterror attribute or an alloca with swifterror attribute.
4661     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4662       if (Arg->hasSwiftErrorAttr())
4663         return visitStoreToSwiftError(I);
4664     }
4665 
4666     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4667       if (Alloca->isSwiftError())
4668         return visitStoreToSwiftError(I);
4669     }
4670   }
4671 
4672   SmallVector<EVT, 4> ValueVTs, MemVTs;
4673   SmallVector<TypeSize, 4> Offsets;
4674   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4675                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4676   unsigned NumValues = ValueVTs.size();
4677   if (NumValues == 0)
4678     return;
4679 
4680   // Get the lowered operands. Note that we do this after
4681   // checking if NumResults is zero, because with zero results
4682   // the operands won't have values in the map.
4683   SDValue Src = getValue(SrcV);
4684   SDValue Ptr = getValue(PtrV);
4685 
4686   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4687   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4688   SDLoc dl = getCurSDLoc();
4689   Align Alignment = I.getAlign();
4690   AAMDNodes AAInfo = I.getAAMetadata();
4691 
4692   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4693 
4694   unsigned ChainI = 0;
4695   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4696     // See visitLoad comments.
4697     if (ChainI == MaxParallelChains) {
4698       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4699                                   ArrayRef(Chains.data(), ChainI));
4700       Root = Chain;
4701       ChainI = 0;
4702     }
4703 
4704     // TODO: MachinePointerInfo only supports a fixed length offset.
4705     MachinePointerInfo PtrInfo =
4706         !Offsets[i].isScalable() || Offsets[i].isZero()
4707             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4708             : MachinePointerInfo();
4709 
4710     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4711     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4712     if (MemVTs[i] != ValueVTs[i])
4713       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4714     SDValue St =
4715         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4716     Chains[ChainI] = St;
4717   }
4718 
4719   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4720                                   ArrayRef(Chains.data(), ChainI));
4721   setValue(&I, StoreNode);
4722   DAG.setRoot(StoreNode);
4723 }
4724 
4725 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4726                                            bool IsCompressing) {
4727   SDLoc sdl = getCurSDLoc();
4728 
4729   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4730                                Align &Alignment) {
4731     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4732     Src0 = I.getArgOperand(0);
4733     Ptr = I.getArgOperand(1);
4734     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4735     Mask = I.getArgOperand(3);
4736   };
4737   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4738                                     Align &Alignment) {
4739     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4740     Src0 = I.getArgOperand(0);
4741     Ptr = I.getArgOperand(1);
4742     Mask = I.getArgOperand(2);
4743     Alignment = I.getParamAlign(1).valueOrOne();
4744   };
4745 
4746   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4747   Align Alignment;
4748   if (IsCompressing)
4749     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4750   else
4751     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4752 
4753   SDValue Ptr = getValue(PtrOperand);
4754   SDValue Src0 = getValue(Src0Operand);
4755   SDValue Mask = getValue(MaskOperand);
4756   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4757 
4758   EVT VT = Src0.getValueType();
4759 
4760   auto MMOFlags = MachineMemOperand::MOStore;
4761   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4762     MMOFlags |= MachineMemOperand::MONonTemporal;
4763 
4764   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4765       MachinePointerInfo(PtrOperand), MMOFlags,
4766       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4767   SDValue StoreNode =
4768       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4769                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4770   DAG.setRoot(StoreNode);
4771   setValue(&I, StoreNode);
4772 }
4773 
4774 // Get a uniform base for the Gather/Scatter intrinsic.
4775 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4776 // We try to represent it as a base pointer + vector of indices.
4777 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4778 // The first operand of the GEP may be a single pointer or a vector of pointers
4779 // Example:
4780 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4781 //  or
4782 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4783 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4784 //
4785 // When the first GEP operand is a single pointer - it is the uniform base we
4786 // are looking for. If first operand of the GEP is a splat vector - we
4787 // extract the splat value and use it as a uniform base.
4788 // In all other cases the function returns 'false'.
4789 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4790                            ISD::MemIndexType &IndexType, SDValue &Scale,
4791                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4792                            uint64_t ElemSize) {
4793   SelectionDAG& DAG = SDB->DAG;
4794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4795   const DataLayout &DL = DAG.getDataLayout();
4796 
4797   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4798 
4799   // Handle splat constant pointer.
4800   if (auto *C = dyn_cast<Constant>(Ptr)) {
4801     C = C->getSplatValue();
4802     if (!C)
4803       return false;
4804 
4805     Base = SDB->getValue(C);
4806 
4807     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4808     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4809     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4810     IndexType = ISD::SIGNED_SCALED;
4811     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4812     return true;
4813   }
4814 
4815   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4816   if (!GEP || GEP->getParent() != CurBB)
4817     return false;
4818 
4819   if (GEP->getNumOperands() != 2)
4820     return false;
4821 
4822   const Value *BasePtr = GEP->getPointerOperand();
4823   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4824 
4825   // Make sure the base is scalar and the index is a vector.
4826   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4827     return false;
4828 
4829   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4830   if (ScaleVal.isScalable())
4831     return false;
4832 
4833   // Target may not support the required addressing mode.
4834   if (ScaleVal != 1 &&
4835       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4836     return false;
4837 
4838   Base = SDB->getValue(BasePtr);
4839   Index = SDB->getValue(IndexVal);
4840   IndexType = ISD::SIGNED_SCALED;
4841 
4842   Scale =
4843       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4844   return true;
4845 }
4846 
4847 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4848   SDLoc sdl = getCurSDLoc();
4849 
4850   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4851   const Value *Ptr = I.getArgOperand(1);
4852   SDValue Src0 = getValue(I.getArgOperand(0));
4853   SDValue Mask = getValue(I.getArgOperand(3));
4854   EVT VT = Src0.getValueType();
4855   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4856                         ->getMaybeAlignValue()
4857                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4859 
4860   SDValue Base;
4861   SDValue Index;
4862   ISD::MemIndexType IndexType;
4863   SDValue Scale;
4864   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4865                                     I.getParent(), VT.getScalarStoreSize());
4866 
4867   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4868   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4869       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4870       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4871   if (!UniformBase) {
4872     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4873     Index = getValue(Ptr);
4874     IndexType = ISD::SIGNED_SCALED;
4875     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4876   }
4877 
4878   EVT IdxVT = Index.getValueType();
4879   EVT EltTy = IdxVT.getVectorElementType();
4880   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4881     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4882     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4883   }
4884 
4885   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4886   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4887                                          Ops, MMO, IndexType, false);
4888   DAG.setRoot(Scatter);
4889   setValue(&I, Scatter);
4890 }
4891 
4892 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4893   SDLoc sdl = getCurSDLoc();
4894 
4895   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4896                               Align &Alignment) {
4897     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4898     Ptr = I.getArgOperand(0);
4899     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4900     Mask = I.getArgOperand(2);
4901     Src0 = I.getArgOperand(3);
4902   };
4903   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4904                                  Align &Alignment) {
4905     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4906     Ptr = I.getArgOperand(0);
4907     Alignment = I.getParamAlign(0).valueOrOne();
4908     Mask = I.getArgOperand(1);
4909     Src0 = I.getArgOperand(2);
4910   };
4911 
4912   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4913   Align Alignment;
4914   if (IsExpanding)
4915     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4916   else
4917     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4918 
4919   SDValue Ptr = getValue(PtrOperand);
4920   SDValue Src0 = getValue(Src0Operand);
4921   SDValue Mask = getValue(MaskOperand);
4922   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4923 
4924   EVT VT = Src0.getValueType();
4925   AAMDNodes AAInfo = I.getAAMetadata();
4926   const MDNode *Ranges = getRangeMetadata(I);
4927 
4928   // Do not serialize masked loads of constant memory with anything.
4929   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4930   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4931 
4932   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4933 
4934   auto MMOFlags = MachineMemOperand::MOLoad;
4935   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4936     MMOFlags |= MachineMemOperand::MONonTemporal;
4937 
4938   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4939       MachinePointerInfo(PtrOperand), MMOFlags,
4940       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4941 
4942   SDValue Load =
4943       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4944                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4945   if (AddToChain)
4946     PendingLoads.push_back(Load.getValue(1));
4947   setValue(&I, Load);
4948 }
4949 
4950 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4951   SDLoc sdl = getCurSDLoc();
4952 
4953   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4954   const Value *Ptr = I.getArgOperand(0);
4955   SDValue Src0 = getValue(I.getArgOperand(3));
4956   SDValue Mask = getValue(I.getArgOperand(2));
4957 
4958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4959   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4960   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4961                         ->getMaybeAlignValue()
4962                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4963 
4964   const MDNode *Ranges = getRangeMetadata(I);
4965 
4966   SDValue Root = DAG.getRoot();
4967   SDValue Base;
4968   SDValue Index;
4969   ISD::MemIndexType IndexType;
4970   SDValue Scale;
4971   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4972                                     I.getParent(), VT.getScalarStoreSize());
4973   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4974   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4975       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4976       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
4977       Ranges);
4978 
4979   if (!UniformBase) {
4980     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4981     Index = getValue(Ptr);
4982     IndexType = ISD::SIGNED_SCALED;
4983     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4984   }
4985 
4986   EVT IdxVT = Index.getValueType();
4987   EVT EltTy = IdxVT.getVectorElementType();
4988   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4989     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4990     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4991   }
4992 
4993   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4994   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4995                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4996 
4997   PendingLoads.push_back(Gather.getValue(1));
4998   setValue(&I, Gather);
4999 }
5000 
5001 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5002   SDLoc dl = getCurSDLoc();
5003   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5004   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5005   SyncScope::ID SSID = I.getSyncScopeID();
5006 
5007   SDValue InChain = getRoot();
5008 
5009   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5010   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5011 
5012   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5013   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5014 
5015   MachineFunction &MF = DAG.getMachineFunction();
5016   MachineMemOperand *MMO = MF.getMachineMemOperand(
5017       MachinePointerInfo(I.getPointerOperand()), Flags,
5018       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5019       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5020 
5021   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5022                                    dl, MemVT, VTs, InChain,
5023                                    getValue(I.getPointerOperand()),
5024                                    getValue(I.getCompareOperand()),
5025                                    getValue(I.getNewValOperand()), MMO);
5026 
5027   SDValue OutChain = L.getValue(2);
5028 
5029   setValue(&I, L);
5030   DAG.setRoot(OutChain);
5031 }
5032 
5033 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5034   SDLoc dl = getCurSDLoc();
5035   ISD::NodeType NT;
5036   switch (I.getOperation()) {
5037   default: llvm_unreachable("Unknown atomicrmw operation");
5038   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5039   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5040   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5041   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5042   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5043   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5044   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5045   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5046   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5047   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5048   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5049   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5050   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5051   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5052   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5053   case AtomicRMWInst::UIncWrap:
5054     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5055     break;
5056   case AtomicRMWInst::UDecWrap:
5057     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5058     break;
5059   }
5060   AtomicOrdering Ordering = I.getOrdering();
5061   SyncScope::ID SSID = I.getSyncScopeID();
5062 
5063   SDValue InChain = getRoot();
5064 
5065   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5066   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5067   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5068 
5069   MachineFunction &MF = DAG.getMachineFunction();
5070   MachineMemOperand *MMO = MF.getMachineMemOperand(
5071       MachinePointerInfo(I.getPointerOperand()), Flags,
5072       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5073       AAMDNodes(), nullptr, SSID, Ordering);
5074 
5075   SDValue L =
5076     DAG.getAtomic(NT, dl, MemVT, InChain,
5077                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5078                   MMO);
5079 
5080   SDValue OutChain = L.getValue(1);
5081 
5082   setValue(&I, L);
5083   DAG.setRoot(OutChain);
5084 }
5085 
5086 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5087   SDLoc dl = getCurSDLoc();
5088   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5089   SDValue Ops[3];
5090   Ops[0] = getRoot();
5091   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5092                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5093   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5094                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5095   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5096   setValue(&I, N);
5097   DAG.setRoot(N);
5098 }
5099 
5100 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5101   SDLoc dl = getCurSDLoc();
5102   AtomicOrdering Order = I.getOrdering();
5103   SyncScope::ID SSID = I.getSyncScopeID();
5104 
5105   SDValue InChain = getRoot();
5106 
5107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5108   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5109   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5110 
5111   if (!TLI.supportsUnalignedAtomics() &&
5112       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5113     report_fatal_error("Cannot generate unaligned atomic load");
5114 
5115   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5116 
5117   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5118       MachinePointerInfo(I.getPointerOperand()), Flags,
5119       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5120       nullptr, SSID, Order);
5121 
5122   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5123 
5124   SDValue Ptr = getValue(I.getPointerOperand());
5125   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5126                             Ptr, MMO);
5127 
5128   SDValue OutChain = L.getValue(1);
5129   if (MemVT != VT)
5130     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5131 
5132   setValue(&I, L);
5133   DAG.setRoot(OutChain);
5134 }
5135 
5136 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5137   SDLoc dl = getCurSDLoc();
5138 
5139   AtomicOrdering Ordering = I.getOrdering();
5140   SyncScope::ID SSID = I.getSyncScopeID();
5141 
5142   SDValue InChain = getRoot();
5143 
5144   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5145   EVT MemVT =
5146       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5147 
5148   if (!TLI.supportsUnalignedAtomics() &&
5149       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5150     report_fatal_error("Cannot generate unaligned atomic store");
5151 
5152   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5153 
5154   MachineFunction &MF = DAG.getMachineFunction();
5155   MachineMemOperand *MMO = MF.getMachineMemOperand(
5156       MachinePointerInfo(I.getPointerOperand()), Flags,
5157       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5158       nullptr, SSID, Ordering);
5159 
5160   SDValue Val = getValue(I.getValueOperand());
5161   if (Val.getValueType() != MemVT)
5162     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5163   SDValue Ptr = getValue(I.getPointerOperand());
5164 
5165   SDValue OutChain =
5166       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5167 
5168   setValue(&I, OutChain);
5169   DAG.setRoot(OutChain);
5170 }
5171 
5172 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5173 /// node.
5174 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5175                                                unsigned Intrinsic) {
5176   // Ignore the callsite's attributes. A specific call site may be marked with
5177   // readnone, but the lowering code will expect the chain based on the
5178   // definition.
5179   const Function *F = I.getCalledFunction();
5180   bool HasChain = !F->doesNotAccessMemory();
5181   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5182 
5183   // Build the operand list.
5184   SmallVector<SDValue, 8> Ops;
5185   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5186     if (OnlyLoad) {
5187       // We don't need to serialize loads against other loads.
5188       Ops.push_back(DAG.getRoot());
5189     } else {
5190       Ops.push_back(getRoot());
5191     }
5192   }
5193 
5194   // Info is set by getTgtMemIntrinsic
5195   TargetLowering::IntrinsicInfo Info;
5196   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5197   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5198                                                DAG.getMachineFunction(),
5199                                                Intrinsic);
5200 
5201   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5202   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5203       Info.opc == ISD::INTRINSIC_W_CHAIN)
5204     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5205                                         TLI.getPointerTy(DAG.getDataLayout())));
5206 
5207   // Add all operands of the call to the operand list.
5208   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5209     const Value *Arg = I.getArgOperand(i);
5210     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5211       Ops.push_back(getValue(Arg));
5212       continue;
5213     }
5214 
5215     // Use TargetConstant instead of a regular constant for immarg.
5216     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5217     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5218       assert(CI->getBitWidth() <= 64 &&
5219              "large intrinsic immediates not handled");
5220       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5221     } else {
5222       Ops.push_back(
5223           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5224     }
5225   }
5226 
5227   SmallVector<EVT, 4> ValueVTs;
5228   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5229 
5230   if (HasChain)
5231     ValueVTs.push_back(MVT::Other);
5232 
5233   SDVTList VTs = DAG.getVTList(ValueVTs);
5234 
5235   // Propagate fast-math-flags from IR to node(s).
5236   SDNodeFlags Flags;
5237   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5238     Flags.copyFMF(*FPMO);
5239   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5240 
5241   // Create the node.
5242   SDValue Result;
5243 
5244   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5245     auto *Token = Bundle->Inputs[0].get();
5246     SDValue ConvControlToken = getValue(Token);
5247     assert(Ops.back().getValueType() != MVT::Glue &&
5248            "Did not expected another glue node here.");
5249     ConvControlToken =
5250         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5251     Ops.push_back(ConvControlToken);
5252   }
5253 
5254   // In some cases, custom collection of operands from CallInst I may be needed.
5255   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5256   if (IsTgtIntrinsic) {
5257     // This is target intrinsic that touches memory
5258     //
5259     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5260     //       didn't yield anything useful.
5261     MachinePointerInfo MPI;
5262     if (Info.ptrVal)
5263       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5264     else if (Info.fallbackAddressSpace)
5265       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5266     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5267                                      Info.memVT, MPI, Info.align, Info.flags,
5268                                      Info.size, I.getAAMetadata());
5269   } else if (!HasChain) {
5270     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5271   } else if (!I.getType()->isVoidTy()) {
5272     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5273   } else {
5274     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5275   }
5276 
5277   if (HasChain) {
5278     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5279     if (OnlyLoad)
5280       PendingLoads.push_back(Chain);
5281     else
5282       DAG.setRoot(Chain);
5283   }
5284 
5285   if (!I.getType()->isVoidTy()) {
5286     if (!isa<VectorType>(I.getType()))
5287       Result = lowerRangeToAssertZExt(DAG, I, Result);
5288 
5289     MaybeAlign Alignment = I.getRetAlign();
5290 
5291     // Insert `assertalign` node if there's an alignment.
5292     if (InsertAssertAlign && Alignment) {
5293       Result =
5294           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5295     }
5296   }
5297 
5298   setValue(&I, Result);
5299 }
5300 
5301 /// GetSignificand - Get the significand and build it into a floating-point
5302 /// number with exponent of 1:
5303 ///
5304 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5305 ///
5306 /// where Op is the hexadecimal representation of floating point value.
5307 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5308   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5309                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5310   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5311                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5312   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5313 }
5314 
5315 /// GetExponent - Get the exponent:
5316 ///
5317 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5318 ///
5319 /// where Op is the hexadecimal representation of floating point value.
5320 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5321                            const TargetLowering &TLI, const SDLoc &dl) {
5322   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5323                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5324   SDValue t1 = DAG.getNode(
5325       ISD::SRL, dl, MVT::i32, t0,
5326       DAG.getConstant(23, dl,
5327                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5328   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5329                            DAG.getConstant(127, dl, MVT::i32));
5330   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5331 }
5332 
5333 /// getF32Constant - Get 32-bit floating point constant.
5334 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5335                               const SDLoc &dl) {
5336   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5337                            MVT::f32);
5338 }
5339 
5340 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5341                                        SelectionDAG &DAG) {
5342   // TODO: What fast-math-flags should be set on the floating-point nodes?
5343 
5344   //   IntegerPartOfX = ((int32_t)(t0);
5345   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5346 
5347   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5348   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5349   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5350 
5351   //   IntegerPartOfX <<= 23;
5352   IntegerPartOfX =
5353       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5354                   DAG.getConstant(23, dl,
5355                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5356                                       MVT::i32, DAG.getDataLayout())));
5357 
5358   SDValue TwoToFractionalPartOfX;
5359   if (LimitFloatPrecision <= 6) {
5360     // For floating-point precision of 6:
5361     //
5362     //   TwoToFractionalPartOfX =
5363     //     0.997535578f +
5364     //       (0.735607626f + 0.252464424f * x) * x;
5365     //
5366     // error 0.0144103317, which is 6 bits
5367     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5368                              getF32Constant(DAG, 0x3e814304, dl));
5369     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5370                              getF32Constant(DAG, 0x3f3c50c8, dl));
5371     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5372     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5373                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5374   } else if (LimitFloatPrecision <= 12) {
5375     // For floating-point precision of 12:
5376     //
5377     //   TwoToFractionalPartOfX =
5378     //     0.999892986f +
5379     //       (0.696457318f +
5380     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5381     //
5382     // error 0.000107046256, which is 13 to 14 bits
5383     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5384                              getF32Constant(DAG, 0x3da235e3, dl));
5385     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5386                              getF32Constant(DAG, 0x3e65b8f3, dl));
5387     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5388     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5389                              getF32Constant(DAG, 0x3f324b07, dl));
5390     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5391     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5392                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5393   } else { // LimitFloatPrecision <= 18
5394     // For floating-point precision of 18:
5395     //
5396     //   TwoToFractionalPartOfX =
5397     //     0.999999982f +
5398     //       (0.693148872f +
5399     //         (0.240227044f +
5400     //           (0.554906021e-1f +
5401     //             (0.961591928e-2f +
5402     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5403     // error 2.47208000*10^(-7), which is better than 18 bits
5404     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5405                              getF32Constant(DAG, 0x3924b03e, dl));
5406     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5407                              getF32Constant(DAG, 0x3ab24b87, dl));
5408     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5409     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5410                              getF32Constant(DAG, 0x3c1d8c17, dl));
5411     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5412     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5413                              getF32Constant(DAG, 0x3d634a1d, dl));
5414     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5415     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5416                              getF32Constant(DAG, 0x3e75fe14, dl));
5417     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5418     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5419                               getF32Constant(DAG, 0x3f317234, dl));
5420     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5421     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5422                                          getF32Constant(DAG, 0x3f800000, dl));
5423   }
5424 
5425   // Add the exponent into the result in integer domain.
5426   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5427   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5428                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5429 }
5430 
5431 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5432 /// limited-precision mode.
5433 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5434                          const TargetLowering &TLI, SDNodeFlags Flags) {
5435   if (Op.getValueType() == MVT::f32 &&
5436       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5437 
5438     // Put the exponent in the right bit position for later addition to the
5439     // final result:
5440     //
5441     // t0 = Op * log2(e)
5442 
5443     // TODO: What fast-math-flags should be set here?
5444     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5445                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5446     return getLimitedPrecisionExp2(t0, dl, DAG);
5447   }
5448 
5449   // No special expansion.
5450   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5451 }
5452 
5453 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5454 /// limited-precision mode.
5455 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5456                          const TargetLowering &TLI, SDNodeFlags Flags) {
5457   // TODO: What fast-math-flags should be set on the floating-point nodes?
5458 
5459   if (Op.getValueType() == MVT::f32 &&
5460       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5461     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5462 
5463     // Scale the exponent by log(2).
5464     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5465     SDValue LogOfExponent =
5466         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5467                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5468 
5469     // Get the significand and build it into a floating-point number with
5470     // exponent of 1.
5471     SDValue X = GetSignificand(DAG, Op1, dl);
5472 
5473     SDValue LogOfMantissa;
5474     if (LimitFloatPrecision <= 6) {
5475       // For floating-point precision of 6:
5476       //
5477       //   LogofMantissa =
5478       //     -1.1609546f +
5479       //       (1.4034025f - 0.23903021f * x) * x;
5480       //
5481       // error 0.0034276066, which is better than 8 bits
5482       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5483                                getF32Constant(DAG, 0xbe74c456, dl));
5484       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5485                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5486       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5487       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5488                                   getF32Constant(DAG, 0x3f949a29, dl));
5489     } else if (LimitFloatPrecision <= 12) {
5490       // For floating-point precision of 12:
5491       //
5492       //   LogOfMantissa =
5493       //     -1.7417939f +
5494       //       (2.8212026f +
5495       //         (-1.4699568f +
5496       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5497       //
5498       // error 0.000061011436, which is 14 bits
5499       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5500                                getF32Constant(DAG, 0xbd67b6d6, dl));
5501       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5502                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5503       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5504       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5505                                getF32Constant(DAG, 0x3fbc278b, dl));
5506       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5507       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5508                                getF32Constant(DAG, 0x40348e95, dl));
5509       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5510       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5511                                   getF32Constant(DAG, 0x3fdef31a, dl));
5512     } else { // LimitFloatPrecision <= 18
5513       // For floating-point precision of 18:
5514       //
5515       //   LogOfMantissa =
5516       //     -2.1072184f +
5517       //       (4.2372794f +
5518       //         (-3.7029485f +
5519       //           (2.2781945f +
5520       //             (-0.87823314f +
5521       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5522       //
5523       // error 0.0000023660568, which is better than 18 bits
5524       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5525                                getF32Constant(DAG, 0xbc91e5ac, dl));
5526       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5527                                getF32Constant(DAG, 0x3e4350aa, dl));
5528       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5529       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5530                                getF32Constant(DAG, 0x3f60d3e3, dl));
5531       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5532       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5533                                getF32Constant(DAG, 0x4011cdf0, dl));
5534       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5535       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5536                                getF32Constant(DAG, 0x406cfd1c, dl));
5537       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5538       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5539                                getF32Constant(DAG, 0x408797cb, dl));
5540       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5541       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5542                                   getF32Constant(DAG, 0x4006dcab, dl));
5543     }
5544 
5545     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5546   }
5547 
5548   // No special expansion.
5549   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5550 }
5551 
5552 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5553 /// limited-precision mode.
5554 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5555                           const TargetLowering &TLI, SDNodeFlags Flags) {
5556   // TODO: What fast-math-flags should be set on the floating-point nodes?
5557 
5558   if (Op.getValueType() == MVT::f32 &&
5559       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5560     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5561 
5562     // Get the exponent.
5563     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5564 
5565     // Get the significand and build it into a floating-point number with
5566     // exponent of 1.
5567     SDValue X = GetSignificand(DAG, Op1, dl);
5568 
5569     // Different possible minimax approximations of significand in
5570     // floating-point for various degrees of accuracy over [1,2].
5571     SDValue Log2ofMantissa;
5572     if (LimitFloatPrecision <= 6) {
5573       // For floating-point precision of 6:
5574       //
5575       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5576       //
5577       // error 0.0049451742, which is more than 7 bits
5578       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5579                                getF32Constant(DAG, 0xbeb08fe0, dl));
5580       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5581                                getF32Constant(DAG, 0x40019463, dl));
5582       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5583       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5584                                    getF32Constant(DAG, 0x3fd6633d, dl));
5585     } else if (LimitFloatPrecision <= 12) {
5586       // For floating-point precision of 12:
5587       //
5588       //   Log2ofMantissa =
5589       //     -2.51285454f +
5590       //       (4.07009056f +
5591       //         (-2.12067489f +
5592       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5593       //
5594       // error 0.0000876136000, which is better than 13 bits
5595       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5596                                getF32Constant(DAG, 0xbda7262e, dl));
5597       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5598                                getF32Constant(DAG, 0x3f25280b, dl));
5599       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5600       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5601                                getF32Constant(DAG, 0x4007b923, dl));
5602       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5603       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5604                                getF32Constant(DAG, 0x40823e2f, dl));
5605       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5606       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5607                                    getF32Constant(DAG, 0x4020d29c, dl));
5608     } else { // LimitFloatPrecision <= 18
5609       // For floating-point precision of 18:
5610       //
5611       //   Log2ofMantissa =
5612       //     -3.0400495f +
5613       //       (6.1129976f +
5614       //         (-5.3420409f +
5615       //           (3.2865683f +
5616       //             (-1.2669343f +
5617       //               (0.27515199f -
5618       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5619       //
5620       // error 0.0000018516, which is better than 18 bits
5621       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5622                                getF32Constant(DAG, 0xbcd2769e, dl));
5623       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5624                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5625       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5626       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5627                                getF32Constant(DAG, 0x3fa22ae7, dl));
5628       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5629       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5630                                getF32Constant(DAG, 0x40525723, dl));
5631       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5632       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5633                                getF32Constant(DAG, 0x40aaf200, dl));
5634       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5635       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5636                                getF32Constant(DAG, 0x40c39dad, dl));
5637       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5638       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5639                                    getF32Constant(DAG, 0x4042902c, dl));
5640     }
5641 
5642     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5643   }
5644 
5645   // No special expansion.
5646   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5647 }
5648 
5649 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5650 /// limited-precision mode.
5651 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5652                            const TargetLowering &TLI, SDNodeFlags Flags) {
5653   // TODO: What fast-math-flags should be set on the floating-point nodes?
5654 
5655   if (Op.getValueType() == MVT::f32 &&
5656       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5657     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5658 
5659     // Scale the exponent by log10(2) [0.30102999f].
5660     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5661     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5662                                         getF32Constant(DAG, 0x3e9a209a, dl));
5663 
5664     // Get the significand and build it into a floating-point number with
5665     // exponent of 1.
5666     SDValue X = GetSignificand(DAG, Op1, dl);
5667 
5668     SDValue Log10ofMantissa;
5669     if (LimitFloatPrecision <= 6) {
5670       // For floating-point precision of 6:
5671       //
5672       //   Log10ofMantissa =
5673       //     -0.50419619f +
5674       //       (0.60948995f - 0.10380950f * x) * x;
5675       //
5676       // error 0.0014886165, which is 6 bits
5677       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5678                                getF32Constant(DAG, 0xbdd49a13, dl));
5679       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5680                                getF32Constant(DAG, 0x3f1c0789, dl));
5681       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5682       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5683                                     getF32Constant(DAG, 0x3f011300, dl));
5684     } else if (LimitFloatPrecision <= 12) {
5685       // For floating-point precision of 12:
5686       //
5687       //   Log10ofMantissa =
5688       //     -0.64831180f +
5689       //       (0.91751397f +
5690       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5691       //
5692       // error 0.00019228036, which is better than 12 bits
5693       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5694                                getF32Constant(DAG, 0x3d431f31, dl));
5695       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5696                                getF32Constant(DAG, 0x3ea21fb2, dl));
5697       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5698       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5699                                getF32Constant(DAG, 0x3f6ae232, dl));
5700       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5701       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5702                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5703     } else { // LimitFloatPrecision <= 18
5704       // For floating-point precision of 18:
5705       //
5706       //   Log10ofMantissa =
5707       //     -0.84299375f +
5708       //       (1.5327582f +
5709       //         (-1.0688956f +
5710       //           (0.49102474f +
5711       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5712       //
5713       // error 0.0000037995730, which is better than 18 bits
5714       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5715                                getF32Constant(DAG, 0x3c5d51ce, dl));
5716       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5717                                getF32Constant(DAG, 0x3e00685a, dl));
5718       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5719       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5720                                getF32Constant(DAG, 0x3efb6798, dl));
5721       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5722       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5723                                getF32Constant(DAG, 0x3f88d192, dl));
5724       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5725       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5726                                getF32Constant(DAG, 0x3fc4316c, dl));
5727       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5728       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5729                                     getF32Constant(DAG, 0x3f57ce70, dl));
5730     }
5731 
5732     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5733   }
5734 
5735   // No special expansion.
5736   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5737 }
5738 
5739 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5740 /// limited-precision mode.
5741 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5742                           const TargetLowering &TLI, SDNodeFlags Flags) {
5743   if (Op.getValueType() == MVT::f32 &&
5744       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5745     return getLimitedPrecisionExp2(Op, dl, DAG);
5746 
5747   // No special expansion.
5748   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5749 }
5750 
5751 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5752 /// limited-precision mode with x == 10.0f.
5753 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5754                          SelectionDAG &DAG, const TargetLowering &TLI,
5755                          SDNodeFlags Flags) {
5756   bool IsExp10 = false;
5757   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5758       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5759     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5760       APFloat Ten(10.0f);
5761       IsExp10 = LHSC->isExactlyValue(Ten);
5762     }
5763   }
5764 
5765   // TODO: What fast-math-flags should be set on the FMUL node?
5766   if (IsExp10) {
5767     // Put the exponent in the right bit position for later addition to the
5768     // final result:
5769     //
5770     //   #define LOG2OF10 3.3219281f
5771     //   t0 = Op * LOG2OF10;
5772     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5773                              getF32Constant(DAG, 0x40549a78, dl));
5774     return getLimitedPrecisionExp2(t0, dl, DAG);
5775   }
5776 
5777   // No special expansion.
5778   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5779 }
5780 
5781 /// ExpandPowI - Expand a llvm.powi intrinsic.
5782 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5783                           SelectionDAG &DAG) {
5784   // If RHS is a constant, we can expand this out to a multiplication tree if
5785   // it's beneficial on the target, otherwise we end up lowering to a call to
5786   // __powidf2 (for example).
5787   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5788     unsigned Val = RHSC->getSExtValue();
5789 
5790     // powi(x, 0) -> 1.0
5791     if (Val == 0)
5792       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5793 
5794     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5795             Val, DAG.shouldOptForSize())) {
5796       // Get the exponent as a positive value.
5797       if ((int)Val < 0)
5798         Val = -Val;
5799       // We use the simple binary decomposition method to generate the multiply
5800       // sequence.  There are more optimal ways to do this (for example,
5801       // powi(x,15) generates one more multiply than it should), but this has
5802       // the benefit of being both really simple and much better than a libcall.
5803       SDValue Res; // Logically starts equal to 1.0
5804       SDValue CurSquare = LHS;
5805       // TODO: Intrinsics should have fast-math-flags that propagate to these
5806       // nodes.
5807       while (Val) {
5808         if (Val & 1) {
5809           if (Res.getNode())
5810             Res =
5811                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5812           else
5813             Res = CurSquare; // 1.0*CurSquare.
5814         }
5815 
5816         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5817                                 CurSquare, CurSquare);
5818         Val >>= 1;
5819       }
5820 
5821       // If the original was negative, invert the result, producing 1/(x*x*x).
5822       if (RHSC->getSExtValue() < 0)
5823         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5824                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5825       return Res;
5826     }
5827   }
5828 
5829   // Otherwise, expand to a libcall.
5830   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5831 }
5832 
5833 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5834                             SDValue LHS, SDValue RHS, SDValue Scale,
5835                             SelectionDAG &DAG, const TargetLowering &TLI) {
5836   EVT VT = LHS.getValueType();
5837   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5838   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5839   LLVMContext &Ctx = *DAG.getContext();
5840 
5841   // If the type is legal but the operation isn't, this node might survive all
5842   // the way to operation legalization. If we end up there and we do not have
5843   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5844   // node.
5845 
5846   // Coax the legalizer into expanding the node during type legalization instead
5847   // by bumping the size by one bit. This will force it to Promote, enabling the
5848   // early expansion and avoiding the need to expand later.
5849 
5850   // We don't have to do this if Scale is 0; that can always be expanded, unless
5851   // it's a saturating signed operation. Those can experience true integer
5852   // division overflow, a case which we must avoid.
5853 
5854   // FIXME: We wouldn't have to do this (or any of the early
5855   // expansion/promotion) if it was possible to expand a libcall of an
5856   // illegal type during operation legalization. But it's not, so things
5857   // get a bit hacky.
5858   unsigned ScaleInt = Scale->getAsZExtVal();
5859   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5860       (TLI.isTypeLegal(VT) ||
5861        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5862     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5863         Opcode, VT, ScaleInt);
5864     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5865       EVT PromVT;
5866       if (VT.isScalarInteger())
5867         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5868       else if (VT.isVector()) {
5869         PromVT = VT.getVectorElementType();
5870         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5871         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5872       } else
5873         llvm_unreachable("Wrong VT for DIVFIX?");
5874       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5875       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5876       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5877       // For saturating operations, we need to shift up the LHS to get the
5878       // proper saturation width, and then shift down again afterwards.
5879       if (Saturating)
5880         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5881                           DAG.getConstant(1, DL, ShiftTy));
5882       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5883       if (Saturating)
5884         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5885                           DAG.getConstant(1, DL, ShiftTy));
5886       return DAG.getZExtOrTrunc(Res, DL, VT);
5887     }
5888   }
5889 
5890   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5891 }
5892 
5893 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5894 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5895 static void
5896 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5897                      const SDValue &N) {
5898   switch (N.getOpcode()) {
5899   case ISD::CopyFromReg: {
5900     SDValue Op = N.getOperand(1);
5901     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5902                       Op.getValueType().getSizeInBits());
5903     return;
5904   }
5905   case ISD::BITCAST:
5906   case ISD::AssertZext:
5907   case ISD::AssertSext:
5908   case ISD::TRUNCATE:
5909     getUnderlyingArgRegs(Regs, N.getOperand(0));
5910     return;
5911   case ISD::BUILD_PAIR:
5912   case ISD::BUILD_VECTOR:
5913   case ISD::CONCAT_VECTORS:
5914     for (SDValue Op : N->op_values())
5915       getUnderlyingArgRegs(Regs, Op);
5916     return;
5917   default:
5918     return;
5919   }
5920 }
5921 
5922 /// If the DbgValueInst is a dbg_value of a function argument, create the
5923 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5924 /// instruction selection, they will be inserted to the entry BB.
5925 /// We don't currently support this for variadic dbg_values, as they shouldn't
5926 /// appear for function arguments or in the prologue.
5927 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5928     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5929     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5930   const Argument *Arg = dyn_cast<Argument>(V);
5931   if (!Arg)
5932     return false;
5933 
5934   MachineFunction &MF = DAG.getMachineFunction();
5935   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5936 
5937   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5938   // we've been asked to pursue.
5939   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5940                               bool Indirect) {
5941     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5942       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5943       // pointing at the VReg, which will be patched up later.
5944       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5945       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5946           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5947           /* isKill */ false, /* isDead */ false,
5948           /* isUndef */ false, /* isEarlyClobber */ false,
5949           /* SubReg */ 0, /* isDebug */ true)});
5950 
5951       auto *NewDIExpr = FragExpr;
5952       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5953       // the DIExpression.
5954       if (Indirect)
5955         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5956       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5957       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5958       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5959     } else {
5960       // Create a completely standard DBG_VALUE.
5961       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5962       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5963     }
5964   };
5965 
5966   if (Kind == FuncArgumentDbgValueKind::Value) {
5967     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5968     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5969     // the entry block.
5970     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5971     if (!IsInEntryBlock)
5972       return false;
5973 
5974     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5975     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5976     // variable that also is a param.
5977     //
5978     // Although, if we are at the top of the entry block already, we can still
5979     // emit using ArgDbgValue. This might catch some situations when the
5980     // dbg.value refers to an argument that isn't used in the entry block, so
5981     // any CopyToReg node would be optimized out and the only way to express
5982     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5983     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5984     // we should only emit as ArgDbgValue if the Variable is an argument to the
5985     // current function, and the dbg.value intrinsic is found in the entry
5986     // block.
5987     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5988         !DL->getInlinedAt();
5989     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5990     if (!IsInPrologue && !VariableIsFunctionInputArg)
5991       return false;
5992 
5993     // Here we assume that a function argument on IR level only can be used to
5994     // describe one input parameter on source level. If we for example have
5995     // source code like this
5996     //
5997     //    struct A { long x, y; };
5998     //    void foo(struct A a, long b) {
5999     //      ...
6000     //      b = a.x;
6001     //      ...
6002     //    }
6003     //
6004     // and IR like this
6005     //
6006     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6007     //  entry:
6008     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6009     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6010     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6011     //    ...
6012     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6013     //    ...
6014     //
6015     // then the last dbg.value is describing a parameter "b" using a value that
6016     // is an argument. But since we already has used %a1 to describe a parameter
6017     // we should not handle that last dbg.value here (that would result in an
6018     // incorrect hoisting of the DBG_VALUE to the function entry).
6019     // Notice that we allow one dbg.value per IR level argument, to accommodate
6020     // for the situation with fragments above.
6021     // If there is no node for the value being handled, we return true to skip
6022     // the normal generation of debug info, as it would kill existing debug
6023     // info for the parameter in case of duplicates.
6024     if (VariableIsFunctionInputArg) {
6025       unsigned ArgNo = Arg->getArgNo();
6026       if (ArgNo >= FuncInfo.DescribedArgs.size())
6027         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6028       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6029         return !NodeMap[V].getNode();
6030       FuncInfo.DescribedArgs.set(ArgNo);
6031     }
6032   }
6033 
6034   bool IsIndirect = false;
6035   std::optional<MachineOperand> Op;
6036   // Some arguments' frame index is recorded during argument lowering.
6037   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6038   if (FI != std::numeric_limits<int>::max())
6039     Op = MachineOperand::CreateFI(FI);
6040 
6041   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6042   if (!Op && N.getNode()) {
6043     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6044     Register Reg;
6045     if (ArgRegsAndSizes.size() == 1)
6046       Reg = ArgRegsAndSizes.front().first;
6047 
6048     if (Reg && Reg.isVirtual()) {
6049       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6050       Register PR = RegInfo.getLiveInPhysReg(Reg);
6051       if (PR)
6052         Reg = PR;
6053     }
6054     if (Reg) {
6055       Op = MachineOperand::CreateReg(Reg, false);
6056       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6057     }
6058   }
6059 
6060   if (!Op && N.getNode()) {
6061     // Check if frame index is available.
6062     SDValue LCandidate = peekThroughBitcasts(N);
6063     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6064       if (FrameIndexSDNode *FINode =
6065           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6066         Op = MachineOperand::CreateFI(FINode->getIndex());
6067   }
6068 
6069   if (!Op) {
6070     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6071     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6072                                          SplitRegs) {
6073       unsigned Offset = 0;
6074       for (const auto &RegAndSize : SplitRegs) {
6075         // If the expression is already a fragment, the current register
6076         // offset+size might extend beyond the fragment. In this case, only
6077         // the register bits that are inside the fragment are relevant.
6078         int RegFragmentSizeInBits = RegAndSize.second;
6079         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6080           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6081           // The register is entirely outside the expression fragment,
6082           // so is irrelevant for debug info.
6083           if (Offset >= ExprFragmentSizeInBits)
6084             break;
6085           // The register is partially outside the expression fragment, only
6086           // the low bits within the fragment are relevant for debug info.
6087           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6088             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6089           }
6090         }
6091 
6092         auto FragmentExpr = DIExpression::createFragmentExpression(
6093             Expr, Offset, RegFragmentSizeInBits);
6094         Offset += RegAndSize.second;
6095         // If a valid fragment expression cannot be created, the variable's
6096         // correct value cannot be determined and so it is set as Undef.
6097         if (!FragmentExpr) {
6098           SDDbgValue *SDV = DAG.getConstantDbgValue(
6099               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6100           DAG.AddDbgValue(SDV, false);
6101           continue;
6102         }
6103         MachineInstr *NewMI =
6104             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6105                              Kind != FuncArgumentDbgValueKind::Value);
6106         FuncInfo.ArgDbgValues.push_back(NewMI);
6107       }
6108     };
6109 
6110     // Check if ValueMap has reg number.
6111     DenseMap<const Value *, Register>::const_iterator
6112       VMI = FuncInfo.ValueMap.find(V);
6113     if (VMI != FuncInfo.ValueMap.end()) {
6114       const auto &TLI = DAG.getTargetLoweringInfo();
6115       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6116                        V->getType(), std::nullopt);
6117       if (RFV.occupiesMultipleRegs()) {
6118         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6119         return true;
6120       }
6121 
6122       Op = MachineOperand::CreateReg(VMI->second, false);
6123       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6124     } else if (ArgRegsAndSizes.size() > 1) {
6125       // This was split due to the calling convention, and no virtual register
6126       // mapping exists for the value.
6127       splitMultiRegDbgValue(ArgRegsAndSizes);
6128       return true;
6129     }
6130   }
6131 
6132   if (!Op)
6133     return false;
6134 
6135   assert(Variable->isValidLocationForIntrinsic(DL) &&
6136          "Expected inlined-at fields to agree");
6137   MachineInstr *NewMI = nullptr;
6138 
6139   if (Op->isReg())
6140     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6141   else
6142     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6143                     Variable, Expr);
6144 
6145   // Otherwise, use ArgDbgValues.
6146   FuncInfo.ArgDbgValues.push_back(NewMI);
6147   return true;
6148 }
6149 
6150 /// Return the appropriate SDDbgValue based on N.
6151 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6152                                              DILocalVariable *Variable,
6153                                              DIExpression *Expr,
6154                                              const DebugLoc &dl,
6155                                              unsigned DbgSDNodeOrder) {
6156   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6157     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6158     // stack slot locations.
6159     //
6160     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6161     // debug values here after optimization:
6162     //
6163     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6164     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6165     //
6166     // Both describe the direct values of their associated variables.
6167     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6168                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6169   }
6170   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6171                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6172 }
6173 
6174 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6175   switch (Intrinsic) {
6176   case Intrinsic::smul_fix:
6177     return ISD::SMULFIX;
6178   case Intrinsic::umul_fix:
6179     return ISD::UMULFIX;
6180   case Intrinsic::smul_fix_sat:
6181     return ISD::SMULFIXSAT;
6182   case Intrinsic::umul_fix_sat:
6183     return ISD::UMULFIXSAT;
6184   case Intrinsic::sdiv_fix:
6185     return ISD::SDIVFIX;
6186   case Intrinsic::udiv_fix:
6187     return ISD::UDIVFIX;
6188   case Intrinsic::sdiv_fix_sat:
6189     return ISD::SDIVFIXSAT;
6190   case Intrinsic::udiv_fix_sat:
6191     return ISD::UDIVFIXSAT;
6192   default:
6193     llvm_unreachable("Unhandled fixed point intrinsic");
6194   }
6195 }
6196 
6197 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6198                                            const char *FunctionName) {
6199   assert(FunctionName && "FunctionName must not be nullptr");
6200   SDValue Callee = DAG.getExternalSymbol(
6201       FunctionName,
6202       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6203   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6204 }
6205 
6206 /// Given a @llvm.call.preallocated.setup, return the corresponding
6207 /// preallocated call.
6208 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6209   assert(cast<CallBase>(PreallocatedSetup)
6210                  ->getCalledFunction()
6211                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6212          "expected call_preallocated_setup Value");
6213   for (const auto *U : PreallocatedSetup->users()) {
6214     auto *UseCall = cast<CallBase>(U);
6215     const Function *Fn = UseCall->getCalledFunction();
6216     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6217       return UseCall;
6218     }
6219   }
6220   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6221 }
6222 
6223 /// If DI is a debug value with an EntryValue expression, lower it using the
6224 /// corresponding physical register of the associated Argument value
6225 /// (guaranteed to exist by the verifier).
6226 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6227     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6228     DIExpression *Expr, DebugLoc DbgLoc) {
6229   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6230     return false;
6231 
6232   // These properties are guaranteed by the verifier.
6233   const Argument *Arg = cast<Argument>(Values[0]);
6234   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6235 
6236   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6237   if (ArgIt == FuncInfo.ValueMap.end()) {
6238     LLVM_DEBUG(
6239         dbgs() << "Dropping dbg.value: expression is entry_value but "
6240                   "couldn't find an associated register for the Argument\n");
6241     return true;
6242   }
6243   Register ArgVReg = ArgIt->getSecond();
6244 
6245   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6246     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6247       SDDbgValue *SDV = DAG.getVRegDbgValue(
6248           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6249       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6250       return true;
6251     }
6252   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6253                        "couldn't find a physical register\n");
6254   return true;
6255 }
6256 
6257 /// Lower the call to the specified intrinsic function.
6258 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6259                                                   unsigned Intrinsic) {
6260   SDLoc sdl = getCurSDLoc();
6261   switch (Intrinsic) {
6262   case Intrinsic::experimental_convergence_anchor:
6263     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6264     break;
6265   case Intrinsic::experimental_convergence_entry:
6266     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6267     break;
6268   case Intrinsic::experimental_convergence_loop: {
6269     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6270     auto *Token = Bundle->Inputs[0].get();
6271     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6272                              getValue(Token)));
6273     break;
6274   }
6275   }
6276 }
6277 
6278 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6279                                                unsigned IntrinsicID) {
6280   // For now, we're only lowering an 'add' histogram.
6281   // We can add others later, e.g. saturating adds, min/max.
6282   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6283          "Tried to lower unsupported histogram type");
6284   SDLoc sdl = getCurSDLoc();
6285   Value *Ptr = I.getOperand(0);
6286   SDValue Inc = getValue(I.getOperand(1));
6287   SDValue Mask = getValue(I.getOperand(2));
6288 
6289   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6290   DataLayout TargetDL = DAG.getDataLayout();
6291   EVT VT = Inc.getValueType();
6292   Align Alignment = DAG.getEVTAlign(VT);
6293 
6294   const MDNode *Ranges = getRangeMetadata(I);
6295 
6296   SDValue Root = DAG.getRoot();
6297   SDValue Base;
6298   SDValue Index;
6299   ISD::MemIndexType IndexType;
6300   SDValue Scale;
6301   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6302                                     I.getParent(), VT.getScalarStoreSize());
6303 
6304   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6305 
6306   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6307       MachinePointerInfo(AS),
6308       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6309       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6310 
6311   if (!UniformBase) {
6312     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6313     Index = getValue(Ptr);
6314     IndexType = ISD::SIGNED_SCALED;
6315     Scale =
6316         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6317   }
6318 
6319   EVT IdxVT = Index.getValueType();
6320   EVT EltTy = IdxVT.getVectorElementType();
6321   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6322     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6323     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6324   }
6325 
6326   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6327 
6328   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6329   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6330                                              Ops, MMO, IndexType);
6331 
6332   setValue(&I, Histogram);
6333   DAG.setRoot(Histogram);
6334 }
6335 
6336 /// Lower the call to the specified intrinsic function.
6337 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6338                                              unsigned Intrinsic) {
6339   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6340   SDLoc sdl = getCurSDLoc();
6341   DebugLoc dl = getCurDebugLoc();
6342   SDValue Res;
6343 
6344   SDNodeFlags Flags;
6345   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6346     Flags.copyFMF(*FPOp);
6347 
6348   switch (Intrinsic) {
6349   default:
6350     // By default, turn this into a target intrinsic node.
6351     visitTargetIntrinsic(I, Intrinsic);
6352     return;
6353   case Intrinsic::vscale: {
6354     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6355     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6356     return;
6357   }
6358   case Intrinsic::vastart:  visitVAStart(I); return;
6359   case Intrinsic::vaend:    visitVAEnd(I); return;
6360   case Intrinsic::vacopy:   visitVACopy(I); return;
6361   case Intrinsic::returnaddress:
6362     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6363                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6364                              getValue(I.getArgOperand(0))));
6365     return;
6366   case Intrinsic::addressofreturnaddress:
6367     setValue(&I,
6368              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6369                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6370     return;
6371   case Intrinsic::sponentry:
6372     setValue(&I,
6373              DAG.getNode(ISD::SPONENTRY, sdl,
6374                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6375     return;
6376   case Intrinsic::frameaddress:
6377     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6378                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6379                              getValue(I.getArgOperand(0))));
6380     return;
6381   case Intrinsic::read_volatile_register:
6382   case Intrinsic::read_register: {
6383     Value *Reg = I.getArgOperand(0);
6384     SDValue Chain = getRoot();
6385     SDValue RegName =
6386         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6387     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6388     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6389       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6390     setValue(&I, Res);
6391     DAG.setRoot(Res.getValue(1));
6392     return;
6393   }
6394   case Intrinsic::write_register: {
6395     Value *Reg = I.getArgOperand(0);
6396     Value *RegValue = I.getArgOperand(1);
6397     SDValue Chain = getRoot();
6398     SDValue RegName =
6399         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6400     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6401                             RegName, getValue(RegValue)));
6402     return;
6403   }
6404   case Intrinsic::memcpy: {
6405     const auto &MCI = cast<MemCpyInst>(I);
6406     SDValue Op1 = getValue(I.getArgOperand(0));
6407     SDValue Op2 = getValue(I.getArgOperand(1));
6408     SDValue Op3 = getValue(I.getArgOperand(2));
6409     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6410     Align DstAlign = MCI.getDestAlign().valueOrOne();
6411     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6412     Align Alignment = std::min(DstAlign, SrcAlign);
6413     bool isVol = MCI.isVolatile();
6414     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6415     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6416     // node.
6417     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6418     SDValue MC = DAG.getMemcpy(
6419         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6420         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6421         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6422     updateDAGForMaybeTailCall(MC);
6423     return;
6424   }
6425   case Intrinsic::memcpy_inline: {
6426     const auto &MCI = cast<MemCpyInlineInst>(I);
6427     SDValue Dst = getValue(I.getArgOperand(0));
6428     SDValue Src = getValue(I.getArgOperand(1));
6429     SDValue Size = getValue(I.getArgOperand(2));
6430     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6431     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6432     Align DstAlign = MCI.getDestAlign().valueOrOne();
6433     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6434     Align Alignment = std::min(DstAlign, SrcAlign);
6435     bool isVol = MCI.isVolatile();
6436     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6437     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6438     // node.
6439     SDValue MC = DAG.getMemcpy(
6440         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6441         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6442         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6443     updateDAGForMaybeTailCall(MC);
6444     return;
6445   }
6446   case Intrinsic::memset: {
6447     const auto &MSI = cast<MemSetInst>(I);
6448     SDValue Op1 = getValue(I.getArgOperand(0));
6449     SDValue Op2 = getValue(I.getArgOperand(1));
6450     SDValue Op3 = getValue(I.getArgOperand(2));
6451     // @llvm.memset defines 0 and 1 to both mean no alignment.
6452     Align Alignment = MSI.getDestAlign().valueOrOne();
6453     bool isVol = MSI.isVolatile();
6454     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6455     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6456     SDValue MS = DAG.getMemset(
6457         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6458         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6459     updateDAGForMaybeTailCall(MS);
6460     return;
6461   }
6462   case Intrinsic::memset_inline: {
6463     const auto &MSII = cast<MemSetInlineInst>(I);
6464     SDValue Dst = getValue(I.getArgOperand(0));
6465     SDValue Value = getValue(I.getArgOperand(1));
6466     SDValue Size = getValue(I.getArgOperand(2));
6467     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6468     // @llvm.memset defines 0 and 1 to both mean no alignment.
6469     Align DstAlign = MSII.getDestAlign().valueOrOne();
6470     bool isVol = MSII.isVolatile();
6471     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6472     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6473     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6474                                /* AlwaysInline */ true, isTC,
6475                                MachinePointerInfo(I.getArgOperand(0)),
6476                                I.getAAMetadata());
6477     updateDAGForMaybeTailCall(MC);
6478     return;
6479   }
6480   case Intrinsic::memmove: {
6481     const auto &MMI = cast<MemMoveInst>(I);
6482     SDValue Op1 = getValue(I.getArgOperand(0));
6483     SDValue Op2 = getValue(I.getArgOperand(1));
6484     SDValue Op3 = getValue(I.getArgOperand(2));
6485     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6486     Align DstAlign = MMI.getDestAlign().valueOrOne();
6487     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6488     Align Alignment = std::min(DstAlign, SrcAlign);
6489     bool isVol = MMI.isVolatile();
6490     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6491     // FIXME: Support passing different dest/src alignments to the memmove DAG
6492     // node.
6493     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6494     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6495                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6496                                 MachinePointerInfo(I.getArgOperand(1)),
6497                                 I.getAAMetadata(), AA);
6498     updateDAGForMaybeTailCall(MM);
6499     return;
6500   }
6501   case Intrinsic::memcpy_element_unordered_atomic: {
6502     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6503     SDValue Dst = getValue(MI.getRawDest());
6504     SDValue Src = getValue(MI.getRawSource());
6505     SDValue Length = getValue(MI.getLength());
6506 
6507     Type *LengthTy = MI.getLength()->getType();
6508     unsigned ElemSz = MI.getElementSizeInBytes();
6509     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6510     SDValue MC =
6511         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6512                             isTC, MachinePointerInfo(MI.getRawDest()),
6513                             MachinePointerInfo(MI.getRawSource()));
6514     updateDAGForMaybeTailCall(MC);
6515     return;
6516   }
6517   case Intrinsic::memmove_element_unordered_atomic: {
6518     auto &MI = cast<AtomicMemMoveInst>(I);
6519     SDValue Dst = getValue(MI.getRawDest());
6520     SDValue Src = getValue(MI.getRawSource());
6521     SDValue Length = getValue(MI.getLength());
6522 
6523     Type *LengthTy = MI.getLength()->getType();
6524     unsigned ElemSz = MI.getElementSizeInBytes();
6525     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6526     SDValue MC =
6527         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6528                              isTC, MachinePointerInfo(MI.getRawDest()),
6529                              MachinePointerInfo(MI.getRawSource()));
6530     updateDAGForMaybeTailCall(MC);
6531     return;
6532   }
6533   case Intrinsic::memset_element_unordered_atomic: {
6534     auto &MI = cast<AtomicMemSetInst>(I);
6535     SDValue Dst = getValue(MI.getRawDest());
6536     SDValue Val = getValue(MI.getValue());
6537     SDValue Length = getValue(MI.getLength());
6538 
6539     Type *LengthTy = MI.getLength()->getType();
6540     unsigned ElemSz = MI.getElementSizeInBytes();
6541     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6542     SDValue MC =
6543         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6544                             isTC, MachinePointerInfo(MI.getRawDest()));
6545     updateDAGForMaybeTailCall(MC);
6546     return;
6547   }
6548   case Intrinsic::call_preallocated_setup: {
6549     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6550     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6551     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6552                               getRoot(), SrcValue);
6553     setValue(&I, Res);
6554     DAG.setRoot(Res);
6555     return;
6556   }
6557   case Intrinsic::call_preallocated_arg: {
6558     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6559     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6560     SDValue Ops[3];
6561     Ops[0] = getRoot();
6562     Ops[1] = SrcValue;
6563     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6564                                    MVT::i32); // arg index
6565     SDValue Res = DAG.getNode(
6566         ISD::PREALLOCATED_ARG, sdl,
6567         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6568     setValue(&I, Res);
6569     DAG.setRoot(Res.getValue(1));
6570     return;
6571   }
6572   case Intrinsic::dbg_declare: {
6573     const auto &DI = cast<DbgDeclareInst>(I);
6574     // Debug intrinsics are handled separately in assignment tracking mode.
6575     // Some intrinsics are handled right after Argument lowering.
6576     if (AssignmentTrackingEnabled ||
6577         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6578       return;
6579     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6580     DILocalVariable *Variable = DI.getVariable();
6581     DIExpression *Expression = DI.getExpression();
6582     dropDanglingDebugInfo(Variable, Expression);
6583     // Assume dbg.declare can not currently use DIArgList, i.e.
6584     // it is non-variadic.
6585     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6586     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6587                        DI.getDebugLoc());
6588     return;
6589   }
6590   case Intrinsic::dbg_label: {
6591     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6592     DILabel *Label = DI.getLabel();
6593     assert(Label && "Missing label");
6594 
6595     SDDbgLabel *SDV;
6596     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6597     DAG.AddDbgLabel(SDV);
6598     return;
6599   }
6600   case Intrinsic::dbg_assign: {
6601     // Debug intrinsics are handled seperately in assignment tracking mode.
6602     if (AssignmentTrackingEnabled)
6603       return;
6604     // If assignment tracking hasn't been enabled then fall through and treat
6605     // the dbg.assign as a dbg.value.
6606     [[fallthrough]];
6607   }
6608   case Intrinsic::dbg_value: {
6609     // Debug intrinsics are handled seperately in assignment tracking mode.
6610     if (AssignmentTrackingEnabled)
6611       return;
6612     const DbgValueInst &DI = cast<DbgValueInst>(I);
6613     assert(DI.getVariable() && "Missing variable");
6614 
6615     DILocalVariable *Variable = DI.getVariable();
6616     DIExpression *Expression = DI.getExpression();
6617     dropDanglingDebugInfo(Variable, Expression);
6618 
6619     if (DI.isKillLocation()) {
6620       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6621       return;
6622     }
6623 
6624     SmallVector<Value *, 4> Values(DI.getValues());
6625     if (Values.empty())
6626       return;
6627 
6628     bool IsVariadic = DI.hasArgList();
6629     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6630                           SDNodeOrder, IsVariadic))
6631       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6632                            DI.getDebugLoc(), SDNodeOrder);
6633     return;
6634   }
6635 
6636   case Intrinsic::eh_typeid_for: {
6637     // Find the type id for the given typeinfo.
6638     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6639     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6640     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6641     setValue(&I, Res);
6642     return;
6643   }
6644 
6645   case Intrinsic::eh_return_i32:
6646   case Intrinsic::eh_return_i64:
6647     DAG.getMachineFunction().setCallsEHReturn(true);
6648     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6649                             MVT::Other,
6650                             getControlRoot(),
6651                             getValue(I.getArgOperand(0)),
6652                             getValue(I.getArgOperand(1))));
6653     return;
6654   case Intrinsic::eh_unwind_init:
6655     DAG.getMachineFunction().setCallsUnwindInit(true);
6656     return;
6657   case Intrinsic::eh_dwarf_cfa:
6658     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6659                              TLI.getPointerTy(DAG.getDataLayout()),
6660                              getValue(I.getArgOperand(0))));
6661     return;
6662   case Intrinsic::eh_sjlj_callsite: {
6663     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6664     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6665     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6666 
6667     MMI.setCurrentCallSite(CI->getZExtValue());
6668     return;
6669   }
6670   case Intrinsic::eh_sjlj_functioncontext: {
6671     // Get and store the index of the function context.
6672     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6673     AllocaInst *FnCtx =
6674       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6675     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6676     MFI.setFunctionContextIndex(FI);
6677     return;
6678   }
6679   case Intrinsic::eh_sjlj_setjmp: {
6680     SDValue Ops[2];
6681     Ops[0] = getRoot();
6682     Ops[1] = getValue(I.getArgOperand(0));
6683     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6684                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6685     setValue(&I, Op.getValue(0));
6686     DAG.setRoot(Op.getValue(1));
6687     return;
6688   }
6689   case Intrinsic::eh_sjlj_longjmp:
6690     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6691                             getRoot(), getValue(I.getArgOperand(0))));
6692     return;
6693   case Intrinsic::eh_sjlj_setup_dispatch:
6694     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6695                             getRoot()));
6696     return;
6697   case Intrinsic::masked_gather:
6698     visitMaskedGather(I);
6699     return;
6700   case Intrinsic::masked_load:
6701     visitMaskedLoad(I);
6702     return;
6703   case Intrinsic::masked_scatter:
6704     visitMaskedScatter(I);
6705     return;
6706   case Intrinsic::masked_store:
6707     visitMaskedStore(I);
6708     return;
6709   case Intrinsic::masked_expandload:
6710     visitMaskedLoad(I, true /* IsExpanding */);
6711     return;
6712   case Intrinsic::masked_compressstore:
6713     visitMaskedStore(I, true /* IsCompressing */);
6714     return;
6715   case Intrinsic::powi:
6716     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6717                             getValue(I.getArgOperand(1)), DAG));
6718     return;
6719   case Intrinsic::log:
6720     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6721     return;
6722   case Intrinsic::log2:
6723     setValue(&I,
6724              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6725     return;
6726   case Intrinsic::log10:
6727     setValue(&I,
6728              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6729     return;
6730   case Intrinsic::exp:
6731     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6732     return;
6733   case Intrinsic::exp2:
6734     setValue(&I,
6735              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6736     return;
6737   case Intrinsic::pow:
6738     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6739                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6740     return;
6741   case Intrinsic::sqrt:
6742   case Intrinsic::fabs:
6743   case Intrinsic::sin:
6744   case Intrinsic::cos:
6745   case Intrinsic::exp10:
6746   case Intrinsic::floor:
6747   case Intrinsic::ceil:
6748   case Intrinsic::trunc:
6749   case Intrinsic::rint:
6750   case Intrinsic::nearbyint:
6751   case Intrinsic::round:
6752   case Intrinsic::roundeven:
6753   case Intrinsic::canonicalize: {
6754     unsigned Opcode;
6755     // clang-format off
6756     switch (Intrinsic) {
6757     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6758     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6759     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6760     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6761     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6762     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6763     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6764     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6765     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6766     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6767     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6768     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6769     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6770     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6771     }
6772     // clang-format on
6773 
6774     setValue(&I, DAG.getNode(Opcode, sdl,
6775                              getValue(I.getArgOperand(0)).getValueType(),
6776                              getValue(I.getArgOperand(0)), Flags));
6777     return;
6778   }
6779   case Intrinsic::lround:
6780   case Intrinsic::llround:
6781   case Intrinsic::lrint:
6782   case Intrinsic::llrint: {
6783     unsigned Opcode;
6784     // clang-format off
6785     switch (Intrinsic) {
6786     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6787     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6788     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6789     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6790     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6791     }
6792     // clang-format on
6793 
6794     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6795     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6796                              getValue(I.getArgOperand(0))));
6797     return;
6798   }
6799   case Intrinsic::minnum:
6800     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6801                              getValue(I.getArgOperand(0)).getValueType(),
6802                              getValue(I.getArgOperand(0)),
6803                              getValue(I.getArgOperand(1)), Flags));
6804     return;
6805   case Intrinsic::maxnum:
6806     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6807                              getValue(I.getArgOperand(0)).getValueType(),
6808                              getValue(I.getArgOperand(0)),
6809                              getValue(I.getArgOperand(1)), Flags));
6810     return;
6811   case Intrinsic::minimum:
6812     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6813                              getValue(I.getArgOperand(0)).getValueType(),
6814                              getValue(I.getArgOperand(0)),
6815                              getValue(I.getArgOperand(1)), Flags));
6816     return;
6817   case Intrinsic::maximum:
6818     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6819                              getValue(I.getArgOperand(0)).getValueType(),
6820                              getValue(I.getArgOperand(0)),
6821                              getValue(I.getArgOperand(1)), Flags));
6822     return;
6823   case Intrinsic::copysign:
6824     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6825                              getValue(I.getArgOperand(0)).getValueType(),
6826                              getValue(I.getArgOperand(0)),
6827                              getValue(I.getArgOperand(1)), Flags));
6828     return;
6829   case Intrinsic::ldexp:
6830     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6831                              getValue(I.getArgOperand(0)).getValueType(),
6832                              getValue(I.getArgOperand(0)),
6833                              getValue(I.getArgOperand(1)), Flags));
6834     return;
6835   case Intrinsic::frexp: {
6836     SmallVector<EVT, 2> ValueVTs;
6837     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6838     SDVTList VTs = DAG.getVTList(ValueVTs);
6839     setValue(&I,
6840              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6841     return;
6842   }
6843   case Intrinsic::arithmetic_fence: {
6844     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6845                              getValue(I.getArgOperand(0)).getValueType(),
6846                              getValue(I.getArgOperand(0)), Flags));
6847     return;
6848   }
6849   case Intrinsic::fma:
6850     setValue(&I, DAG.getNode(
6851                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6852                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6853                      getValue(I.getArgOperand(2)), Flags));
6854     return;
6855 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6856   case Intrinsic::INTRINSIC:
6857 #include "llvm/IR/ConstrainedOps.def"
6858     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6859     return;
6860 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6861 #include "llvm/IR/VPIntrinsics.def"
6862     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6863     return;
6864   case Intrinsic::fptrunc_round: {
6865     // Get the last argument, the metadata and convert it to an integer in the
6866     // call
6867     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6868     std::optional<RoundingMode> RoundMode =
6869         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6870 
6871     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6872 
6873     // Propagate fast-math-flags from IR to node(s).
6874     SDNodeFlags Flags;
6875     Flags.copyFMF(*cast<FPMathOperator>(&I));
6876     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6877 
6878     SDValue Result;
6879     Result = DAG.getNode(
6880         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6881         DAG.getTargetConstant((int)*RoundMode, sdl,
6882                               TLI.getPointerTy(DAG.getDataLayout())));
6883     setValue(&I, Result);
6884 
6885     return;
6886   }
6887   case Intrinsic::fmuladd: {
6888     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6889     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6890         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6891       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6892                                getValue(I.getArgOperand(0)).getValueType(),
6893                                getValue(I.getArgOperand(0)),
6894                                getValue(I.getArgOperand(1)),
6895                                getValue(I.getArgOperand(2)), Flags));
6896     } else {
6897       // TODO: Intrinsic calls should have fast-math-flags.
6898       SDValue Mul = DAG.getNode(
6899           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6900           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6901       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6902                                 getValue(I.getArgOperand(0)).getValueType(),
6903                                 Mul, getValue(I.getArgOperand(2)), Flags);
6904       setValue(&I, Add);
6905     }
6906     return;
6907   }
6908   case Intrinsic::convert_to_fp16:
6909     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6910                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6911                                          getValue(I.getArgOperand(0)),
6912                                          DAG.getTargetConstant(0, sdl,
6913                                                                MVT::i32))));
6914     return;
6915   case Intrinsic::convert_from_fp16:
6916     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6917                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6918                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6919                                          getValue(I.getArgOperand(0)))));
6920     return;
6921   case Intrinsic::fptosi_sat: {
6922     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6923     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6924                              getValue(I.getArgOperand(0)),
6925                              DAG.getValueType(VT.getScalarType())));
6926     return;
6927   }
6928   case Intrinsic::fptoui_sat: {
6929     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6930     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6931                              getValue(I.getArgOperand(0)),
6932                              DAG.getValueType(VT.getScalarType())));
6933     return;
6934   }
6935   case Intrinsic::set_rounding:
6936     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6937                       {getRoot(), getValue(I.getArgOperand(0))});
6938     setValue(&I, Res);
6939     DAG.setRoot(Res.getValue(0));
6940     return;
6941   case Intrinsic::is_fpclass: {
6942     const DataLayout DLayout = DAG.getDataLayout();
6943     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6944     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6945     FPClassTest Test = static_cast<FPClassTest>(
6946         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6947     MachineFunction &MF = DAG.getMachineFunction();
6948     const Function &F = MF.getFunction();
6949     SDValue Op = getValue(I.getArgOperand(0));
6950     SDNodeFlags Flags;
6951     Flags.setNoFPExcept(
6952         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6953     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6954     // expansion can use illegal types. Making expansion early allows
6955     // legalizing these types prior to selection.
6956     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6957       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6958       setValue(&I, Result);
6959       return;
6960     }
6961 
6962     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6963     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6964     setValue(&I, V);
6965     return;
6966   }
6967   case Intrinsic::get_fpenv: {
6968     const DataLayout DLayout = DAG.getDataLayout();
6969     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6970     Align TempAlign = DAG.getEVTAlign(EnvVT);
6971     SDValue Chain = getRoot();
6972     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6973     // and temporary storage in stack.
6974     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6975       Res = DAG.getNode(
6976           ISD::GET_FPENV, sdl,
6977           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6978                         MVT::Other),
6979           Chain);
6980     } else {
6981       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6982       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6983       auto MPI =
6984           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6985       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6986           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
6987           TempAlign);
6988       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6989       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6990     }
6991     setValue(&I, Res);
6992     DAG.setRoot(Res.getValue(1));
6993     return;
6994   }
6995   case Intrinsic::set_fpenv: {
6996     const DataLayout DLayout = DAG.getDataLayout();
6997     SDValue Env = getValue(I.getArgOperand(0));
6998     EVT EnvVT = Env.getValueType();
6999     Align TempAlign = DAG.getEVTAlign(EnvVT);
7000     SDValue Chain = getRoot();
7001     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7002     // environment from memory.
7003     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7004       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7005     } else {
7006       // Allocate space in stack, copy environment bits into it and use this
7007       // memory in SET_FPENV_MEM.
7008       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7009       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7010       auto MPI =
7011           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7012       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7013                            MachineMemOperand::MOStore);
7014       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7015           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7016           TempAlign);
7017       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7018     }
7019     DAG.setRoot(Chain);
7020     return;
7021   }
7022   case Intrinsic::reset_fpenv:
7023     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7024     return;
7025   case Intrinsic::get_fpmode:
7026     Res = DAG.getNode(
7027         ISD::GET_FPMODE, sdl,
7028         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7029                       MVT::Other),
7030         DAG.getRoot());
7031     setValue(&I, Res);
7032     DAG.setRoot(Res.getValue(1));
7033     return;
7034   case Intrinsic::set_fpmode:
7035     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7036                       getValue(I.getArgOperand(0)));
7037     DAG.setRoot(Res);
7038     return;
7039   case Intrinsic::reset_fpmode: {
7040     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7041     DAG.setRoot(Res);
7042     return;
7043   }
7044   case Intrinsic::pcmarker: {
7045     SDValue Tmp = getValue(I.getArgOperand(0));
7046     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7047     return;
7048   }
7049   case Intrinsic::readcyclecounter: {
7050     SDValue Op = getRoot();
7051     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7052                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7053     setValue(&I, Res);
7054     DAG.setRoot(Res.getValue(1));
7055     return;
7056   }
7057   case Intrinsic::readsteadycounter: {
7058     SDValue Op = getRoot();
7059     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7060                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7061     setValue(&I, Res);
7062     DAG.setRoot(Res.getValue(1));
7063     return;
7064   }
7065   case Intrinsic::bitreverse:
7066     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7067                              getValue(I.getArgOperand(0)).getValueType(),
7068                              getValue(I.getArgOperand(0))));
7069     return;
7070   case Intrinsic::bswap:
7071     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7072                              getValue(I.getArgOperand(0)).getValueType(),
7073                              getValue(I.getArgOperand(0))));
7074     return;
7075   case Intrinsic::cttz: {
7076     SDValue Arg = getValue(I.getArgOperand(0));
7077     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7078     EVT Ty = Arg.getValueType();
7079     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7080                              sdl, Ty, Arg));
7081     return;
7082   }
7083   case Intrinsic::ctlz: {
7084     SDValue Arg = getValue(I.getArgOperand(0));
7085     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7086     EVT Ty = Arg.getValueType();
7087     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7088                              sdl, Ty, Arg));
7089     return;
7090   }
7091   case Intrinsic::ctpop: {
7092     SDValue Arg = getValue(I.getArgOperand(0));
7093     EVT Ty = Arg.getValueType();
7094     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7095     return;
7096   }
7097   case Intrinsic::fshl:
7098   case Intrinsic::fshr: {
7099     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7100     SDValue X = getValue(I.getArgOperand(0));
7101     SDValue Y = getValue(I.getArgOperand(1));
7102     SDValue Z = getValue(I.getArgOperand(2));
7103     EVT VT = X.getValueType();
7104 
7105     if (X == Y) {
7106       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7107       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7108     } else {
7109       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7110       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7111     }
7112     return;
7113   }
7114   case Intrinsic::sadd_sat: {
7115     SDValue Op1 = getValue(I.getArgOperand(0));
7116     SDValue Op2 = getValue(I.getArgOperand(1));
7117     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7118     return;
7119   }
7120   case Intrinsic::uadd_sat: {
7121     SDValue Op1 = getValue(I.getArgOperand(0));
7122     SDValue Op2 = getValue(I.getArgOperand(1));
7123     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7124     return;
7125   }
7126   case Intrinsic::ssub_sat: {
7127     SDValue Op1 = getValue(I.getArgOperand(0));
7128     SDValue Op2 = getValue(I.getArgOperand(1));
7129     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7130     return;
7131   }
7132   case Intrinsic::usub_sat: {
7133     SDValue Op1 = getValue(I.getArgOperand(0));
7134     SDValue Op2 = getValue(I.getArgOperand(1));
7135     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7136     return;
7137   }
7138   case Intrinsic::sshl_sat: {
7139     SDValue Op1 = getValue(I.getArgOperand(0));
7140     SDValue Op2 = getValue(I.getArgOperand(1));
7141     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7142     return;
7143   }
7144   case Intrinsic::ushl_sat: {
7145     SDValue Op1 = getValue(I.getArgOperand(0));
7146     SDValue Op2 = getValue(I.getArgOperand(1));
7147     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7148     return;
7149   }
7150   case Intrinsic::smul_fix:
7151   case Intrinsic::umul_fix:
7152   case Intrinsic::smul_fix_sat:
7153   case Intrinsic::umul_fix_sat: {
7154     SDValue Op1 = getValue(I.getArgOperand(0));
7155     SDValue Op2 = getValue(I.getArgOperand(1));
7156     SDValue Op3 = getValue(I.getArgOperand(2));
7157     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7158                              Op1.getValueType(), Op1, Op2, Op3));
7159     return;
7160   }
7161   case Intrinsic::sdiv_fix:
7162   case Intrinsic::udiv_fix:
7163   case Intrinsic::sdiv_fix_sat:
7164   case Intrinsic::udiv_fix_sat: {
7165     SDValue Op1 = getValue(I.getArgOperand(0));
7166     SDValue Op2 = getValue(I.getArgOperand(1));
7167     SDValue Op3 = getValue(I.getArgOperand(2));
7168     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7169                               Op1, Op2, Op3, DAG, TLI));
7170     return;
7171   }
7172   case Intrinsic::smax: {
7173     SDValue Op1 = getValue(I.getArgOperand(0));
7174     SDValue Op2 = getValue(I.getArgOperand(1));
7175     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7176     return;
7177   }
7178   case Intrinsic::smin: {
7179     SDValue Op1 = getValue(I.getArgOperand(0));
7180     SDValue Op2 = getValue(I.getArgOperand(1));
7181     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7182     return;
7183   }
7184   case Intrinsic::umax: {
7185     SDValue Op1 = getValue(I.getArgOperand(0));
7186     SDValue Op2 = getValue(I.getArgOperand(1));
7187     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7188     return;
7189   }
7190   case Intrinsic::umin: {
7191     SDValue Op1 = getValue(I.getArgOperand(0));
7192     SDValue Op2 = getValue(I.getArgOperand(1));
7193     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7194     return;
7195   }
7196   case Intrinsic::abs: {
7197     // TODO: Preserve "int min is poison" arg in SDAG?
7198     SDValue Op1 = getValue(I.getArgOperand(0));
7199     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7200     return;
7201   }
7202   case Intrinsic::stacksave: {
7203     SDValue Op = getRoot();
7204     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7205     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7206     setValue(&I, Res);
7207     DAG.setRoot(Res.getValue(1));
7208     return;
7209   }
7210   case Intrinsic::stackrestore:
7211     Res = getValue(I.getArgOperand(0));
7212     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7213     return;
7214   case Intrinsic::get_dynamic_area_offset: {
7215     SDValue Op = getRoot();
7216     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7217     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7218     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7219     // target.
7220     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7221       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7222                          " intrinsic!");
7223     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7224                       Op);
7225     DAG.setRoot(Op);
7226     setValue(&I, Res);
7227     return;
7228   }
7229   case Intrinsic::stackguard: {
7230     MachineFunction &MF = DAG.getMachineFunction();
7231     const Module &M = *MF.getFunction().getParent();
7232     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7233     SDValue Chain = getRoot();
7234     if (TLI.useLoadStackGuardNode()) {
7235       Res = getLoadStackGuard(DAG, sdl, Chain);
7236       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7237     } else {
7238       const Value *Global = TLI.getSDagStackGuard(M);
7239       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7240       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7241                         MachinePointerInfo(Global, 0), Align,
7242                         MachineMemOperand::MOVolatile);
7243     }
7244     if (TLI.useStackGuardXorFP())
7245       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7246     DAG.setRoot(Chain);
7247     setValue(&I, Res);
7248     return;
7249   }
7250   case Intrinsic::stackprotector: {
7251     // Emit code into the DAG to store the stack guard onto the stack.
7252     MachineFunction &MF = DAG.getMachineFunction();
7253     MachineFrameInfo &MFI = MF.getFrameInfo();
7254     SDValue Src, Chain = getRoot();
7255 
7256     if (TLI.useLoadStackGuardNode())
7257       Src = getLoadStackGuard(DAG, sdl, Chain);
7258     else
7259       Src = getValue(I.getArgOperand(0));   // The guard's value.
7260 
7261     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7262 
7263     int FI = FuncInfo.StaticAllocaMap[Slot];
7264     MFI.setStackProtectorIndex(FI);
7265     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7266 
7267     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7268 
7269     // Store the stack protector onto the stack.
7270     Res = DAG.getStore(
7271         Chain, sdl, Src, FIN,
7272         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7273         MaybeAlign(), MachineMemOperand::MOVolatile);
7274     setValue(&I, Res);
7275     DAG.setRoot(Res);
7276     return;
7277   }
7278   case Intrinsic::objectsize:
7279     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7280 
7281   case Intrinsic::is_constant:
7282     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7283 
7284   case Intrinsic::annotation:
7285   case Intrinsic::ptr_annotation:
7286   case Intrinsic::launder_invariant_group:
7287   case Intrinsic::strip_invariant_group:
7288     // Drop the intrinsic, but forward the value
7289     setValue(&I, getValue(I.getOperand(0)));
7290     return;
7291 
7292   case Intrinsic::assume:
7293   case Intrinsic::experimental_noalias_scope_decl:
7294   case Intrinsic::var_annotation:
7295   case Intrinsic::sideeffect:
7296     // Discard annotate attributes, noalias scope declarations, assumptions, and
7297     // artificial side-effects.
7298     return;
7299 
7300   case Intrinsic::codeview_annotation: {
7301     // Emit a label associated with this metadata.
7302     MachineFunction &MF = DAG.getMachineFunction();
7303     MCSymbol *Label =
7304         MF.getMMI().getContext().createTempSymbol("annotation", true);
7305     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7306     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7307     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7308     DAG.setRoot(Res);
7309     return;
7310   }
7311 
7312   case Intrinsic::init_trampoline: {
7313     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7314 
7315     SDValue Ops[6];
7316     Ops[0] = getRoot();
7317     Ops[1] = getValue(I.getArgOperand(0));
7318     Ops[2] = getValue(I.getArgOperand(1));
7319     Ops[3] = getValue(I.getArgOperand(2));
7320     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7321     Ops[5] = DAG.getSrcValue(F);
7322 
7323     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7324 
7325     DAG.setRoot(Res);
7326     return;
7327   }
7328   case Intrinsic::adjust_trampoline:
7329     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7330                              TLI.getPointerTy(DAG.getDataLayout()),
7331                              getValue(I.getArgOperand(0))));
7332     return;
7333   case Intrinsic::gcroot: {
7334     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7335            "only valid in functions with gc specified, enforced by Verifier");
7336     assert(GFI && "implied by previous");
7337     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7338     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7339 
7340     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7341     GFI->addStackRoot(FI->getIndex(), TypeMap);
7342     return;
7343   }
7344   case Intrinsic::gcread:
7345   case Intrinsic::gcwrite:
7346     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7347   case Intrinsic::get_rounding:
7348     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7349     setValue(&I, Res);
7350     DAG.setRoot(Res.getValue(1));
7351     return;
7352 
7353   case Intrinsic::expect:
7354     // Just replace __builtin_expect(exp, c) with EXP.
7355     setValue(&I, getValue(I.getArgOperand(0)));
7356     return;
7357 
7358   case Intrinsic::ubsantrap:
7359   case Intrinsic::debugtrap:
7360   case Intrinsic::trap: {
7361     StringRef TrapFuncName =
7362         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7363     if (TrapFuncName.empty()) {
7364       switch (Intrinsic) {
7365       case Intrinsic::trap:
7366         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7367         break;
7368       case Intrinsic::debugtrap:
7369         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7370         break;
7371       case Intrinsic::ubsantrap:
7372         DAG.setRoot(DAG.getNode(
7373             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7374             DAG.getTargetConstant(
7375                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7376                 MVT::i32)));
7377         break;
7378       default: llvm_unreachable("unknown trap intrinsic");
7379       }
7380       return;
7381     }
7382     TargetLowering::ArgListTy Args;
7383     if (Intrinsic == Intrinsic::ubsantrap) {
7384       Args.push_back(TargetLoweringBase::ArgListEntry());
7385       Args[0].Val = I.getArgOperand(0);
7386       Args[0].Node = getValue(Args[0].Val);
7387       Args[0].Ty = Args[0].Val->getType();
7388     }
7389 
7390     TargetLowering::CallLoweringInfo CLI(DAG);
7391     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7392         CallingConv::C, I.getType(),
7393         DAG.getExternalSymbol(TrapFuncName.data(),
7394                               TLI.getPointerTy(DAG.getDataLayout())),
7395         std::move(Args));
7396 
7397     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7398     DAG.setRoot(Result.second);
7399     return;
7400   }
7401 
7402   case Intrinsic::allow_runtime_check:
7403   case Intrinsic::allow_ubsan_check:
7404     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7405     return;
7406 
7407   case Intrinsic::uadd_with_overflow:
7408   case Intrinsic::sadd_with_overflow:
7409   case Intrinsic::usub_with_overflow:
7410   case Intrinsic::ssub_with_overflow:
7411   case Intrinsic::umul_with_overflow:
7412   case Intrinsic::smul_with_overflow: {
7413     ISD::NodeType Op;
7414     switch (Intrinsic) {
7415     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7416     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7417     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7418     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7419     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7420     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7421     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7422     }
7423     SDValue Op1 = getValue(I.getArgOperand(0));
7424     SDValue Op2 = getValue(I.getArgOperand(1));
7425 
7426     EVT ResultVT = Op1.getValueType();
7427     EVT OverflowVT = MVT::i1;
7428     if (ResultVT.isVector())
7429       OverflowVT = EVT::getVectorVT(
7430           *Context, OverflowVT, ResultVT.getVectorElementCount());
7431 
7432     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7433     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7434     return;
7435   }
7436   case Intrinsic::prefetch: {
7437     SDValue Ops[5];
7438     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7439     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7440     Ops[0] = DAG.getRoot();
7441     Ops[1] = getValue(I.getArgOperand(0));
7442     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7443                                    MVT::i32);
7444     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7445                                    MVT::i32);
7446     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7447                                    MVT::i32);
7448     SDValue Result = DAG.getMemIntrinsicNode(
7449         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7450         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7451         /* align */ std::nullopt, Flags);
7452 
7453     // Chain the prefetch in parallel with any pending loads, to stay out of
7454     // the way of later optimizations.
7455     PendingLoads.push_back(Result);
7456     Result = getRoot();
7457     DAG.setRoot(Result);
7458     return;
7459   }
7460   case Intrinsic::lifetime_start:
7461   case Intrinsic::lifetime_end: {
7462     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7463     // Stack coloring is not enabled in O0, discard region information.
7464     if (TM.getOptLevel() == CodeGenOptLevel::None)
7465       return;
7466 
7467     const int64_t ObjectSize =
7468         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7469     Value *const ObjectPtr = I.getArgOperand(1);
7470     SmallVector<const Value *, 4> Allocas;
7471     getUnderlyingObjects(ObjectPtr, Allocas);
7472 
7473     for (const Value *Alloca : Allocas) {
7474       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7475 
7476       // Could not find an Alloca.
7477       if (!LifetimeObject)
7478         continue;
7479 
7480       // First check that the Alloca is static, otherwise it won't have a
7481       // valid frame index.
7482       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7483       if (SI == FuncInfo.StaticAllocaMap.end())
7484         return;
7485 
7486       const int FrameIndex = SI->second;
7487       int64_t Offset;
7488       if (GetPointerBaseWithConstantOffset(
7489               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7490         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7491       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7492                                 Offset);
7493       DAG.setRoot(Res);
7494     }
7495     return;
7496   }
7497   case Intrinsic::pseudoprobe: {
7498     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7499     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7500     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7501     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7502     DAG.setRoot(Res);
7503     return;
7504   }
7505   case Intrinsic::invariant_start:
7506     // Discard region information.
7507     setValue(&I,
7508              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7509     return;
7510   case Intrinsic::invariant_end:
7511     // Discard region information.
7512     return;
7513   case Intrinsic::clear_cache: {
7514     SDValue InputChain = DAG.getRoot();
7515     SDValue StartVal = getValue(I.getArgOperand(0));
7516     SDValue EndVal = getValue(I.getArgOperand(1));
7517     Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7518                       {InputChain, StartVal, EndVal});
7519     setValue(&I, Res);
7520     DAG.setRoot(Res);
7521     return;
7522   }
7523   case Intrinsic::donothing:
7524   case Intrinsic::seh_try_begin:
7525   case Intrinsic::seh_scope_begin:
7526   case Intrinsic::seh_try_end:
7527   case Intrinsic::seh_scope_end:
7528     // ignore
7529     return;
7530   case Intrinsic::experimental_stackmap:
7531     visitStackmap(I);
7532     return;
7533   case Intrinsic::experimental_patchpoint_void:
7534   case Intrinsic::experimental_patchpoint:
7535     visitPatchpoint(I);
7536     return;
7537   case Intrinsic::experimental_gc_statepoint:
7538     LowerStatepoint(cast<GCStatepointInst>(I));
7539     return;
7540   case Intrinsic::experimental_gc_result:
7541     visitGCResult(cast<GCResultInst>(I));
7542     return;
7543   case Intrinsic::experimental_gc_relocate:
7544     visitGCRelocate(cast<GCRelocateInst>(I));
7545     return;
7546   case Intrinsic::instrprof_cover:
7547     llvm_unreachable("instrprof failed to lower a cover");
7548   case Intrinsic::instrprof_increment:
7549     llvm_unreachable("instrprof failed to lower an increment");
7550   case Intrinsic::instrprof_timestamp:
7551     llvm_unreachable("instrprof failed to lower a timestamp");
7552   case Intrinsic::instrprof_value_profile:
7553     llvm_unreachable("instrprof failed to lower a value profiling call");
7554   case Intrinsic::instrprof_mcdc_parameters:
7555     llvm_unreachable("instrprof failed to lower mcdc parameters");
7556   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7557     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7558   case Intrinsic::instrprof_mcdc_condbitmap_update:
7559     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7560   case Intrinsic::localescape: {
7561     MachineFunction &MF = DAG.getMachineFunction();
7562     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7563 
7564     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7565     // is the same on all targets.
7566     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7567       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7568       if (isa<ConstantPointerNull>(Arg))
7569         continue; // Skip null pointers. They represent a hole in index space.
7570       AllocaInst *Slot = cast<AllocaInst>(Arg);
7571       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7572              "can only escape static allocas");
7573       int FI = FuncInfo.StaticAllocaMap[Slot];
7574       MCSymbol *FrameAllocSym =
7575           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7576               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7577       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7578               TII->get(TargetOpcode::LOCAL_ESCAPE))
7579           .addSym(FrameAllocSym)
7580           .addFrameIndex(FI);
7581     }
7582 
7583     return;
7584   }
7585 
7586   case Intrinsic::localrecover: {
7587     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7588     MachineFunction &MF = DAG.getMachineFunction();
7589 
7590     // Get the symbol that defines the frame offset.
7591     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7592     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7593     unsigned IdxVal =
7594         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7595     MCSymbol *FrameAllocSym =
7596         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7597             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7598 
7599     Value *FP = I.getArgOperand(1);
7600     SDValue FPVal = getValue(FP);
7601     EVT PtrVT = FPVal.getValueType();
7602 
7603     // Create a MCSymbol for the label to avoid any target lowering
7604     // that would make this PC relative.
7605     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7606     SDValue OffsetVal =
7607         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7608 
7609     // Add the offset to the FP.
7610     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7611     setValue(&I, Add);
7612 
7613     return;
7614   }
7615 
7616   case Intrinsic::eh_exceptionpointer:
7617   case Intrinsic::eh_exceptioncode: {
7618     // Get the exception pointer vreg, copy from it, and resize it to fit.
7619     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7620     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7621     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7622     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7623     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7624     if (Intrinsic == Intrinsic::eh_exceptioncode)
7625       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7626     setValue(&I, N);
7627     return;
7628   }
7629   case Intrinsic::xray_customevent: {
7630     // Here we want to make sure that the intrinsic behaves as if it has a
7631     // specific calling convention.
7632     const auto &Triple = DAG.getTarget().getTargetTriple();
7633     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7634       return;
7635 
7636     SmallVector<SDValue, 8> Ops;
7637 
7638     // We want to say that we always want the arguments in registers.
7639     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7640     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7641     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7642     SDValue Chain = getRoot();
7643     Ops.push_back(LogEntryVal);
7644     Ops.push_back(StrSizeVal);
7645     Ops.push_back(Chain);
7646 
7647     // We need to enforce the calling convention for the callsite, so that
7648     // argument ordering is enforced correctly, and that register allocation can
7649     // see that some registers may be assumed clobbered and have to preserve
7650     // them across calls to the intrinsic.
7651     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7652                                            sdl, NodeTys, Ops);
7653     SDValue patchableNode = SDValue(MN, 0);
7654     DAG.setRoot(patchableNode);
7655     setValue(&I, patchableNode);
7656     return;
7657   }
7658   case Intrinsic::xray_typedevent: {
7659     // Here we want to make sure that the intrinsic behaves as if it has a
7660     // specific calling convention.
7661     const auto &Triple = DAG.getTarget().getTargetTriple();
7662     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7663       return;
7664 
7665     SmallVector<SDValue, 8> Ops;
7666 
7667     // We want to say that we always want the arguments in registers.
7668     // It's unclear to me how manipulating the selection DAG here forces callers
7669     // to provide arguments in registers instead of on the stack.
7670     SDValue LogTypeId = getValue(I.getArgOperand(0));
7671     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7672     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7673     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7674     SDValue Chain = getRoot();
7675     Ops.push_back(LogTypeId);
7676     Ops.push_back(LogEntryVal);
7677     Ops.push_back(StrSizeVal);
7678     Ops.push_back(Chain);
7679 
7680     // We need to enforce the calling convention for the callsite, so that
7681     // argument ordering is enforced correctly, and that register allocation can
7682     // see that some registers may be assumed clobbered and have to preserve
7683     // them across calls to the intrinsic.
7684     MachineSDNode *MN = DAG.getMachineNode(
7685         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7686     SDValue patchableNode = SDValue(MN, 0);
7687     DAG.setRoot(patchableNode);
7688     setValue(&I, patchableNode);
7689     return;
7690   }
7691   case Intrinsic::experimental_deoptimize:
7692     LowerDeoptimizeCall(&I);
7693     return;
7694   case Intrinsic::experimental_stepvector:
7695     visitStepVector(I);
7696     return;
7697   case Intrinsic::vector_reduce_fadd:
7698   case Intrinsic::vector_reduce_fmul:
7699   case Intrinsic::vector_reduce_add:
7700   case Intrinsic::vector_reduce_mul:
7701   case Intrinsic::vector_reduce_and:
7702   case Intrinsic::vector_reduce_or:
7703   case Intrinsic::vector_reduce_xor:
7704   case Intrinsic::vector_reduce_smax:
7705   case Intrinsic::vector_reduce_smin:
7706   case Intrinsic::vector_reduce_umax:
7707   case Intrinsic::vector_reduce_umin:
7708   case Intrinsic::vector_reduce_fmax:
7709   case Intrinsic::vector_reduce_fmin:
7710   case Intrinsic::vector_reduce_fmaximum:
7711   case Intrinsic::vector_reduce_fminimum:
7712     visitVectorReduce(I, Intrinsic);
7713     return;
7714 
7715   case Intrinsic::icall_branch_funnel: {
7716     SmallVector<SDValue, 16> Ops;
7717     Ops.push_back(getValue(I.getArgOperand(0)));
7718 
7719     int64_t Offset;
7720     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7721         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7722     if (!Base)
7723       report_fatal_error(
7724           "llvm.icall.branch.funnel operand must be a GlobalValue");
7725     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7726 
7727     struct BranchFunnelTarget {
7728       int64_t Offset;
7729       SDValue Target;
7730     };
7731     SmallVector<BranchFunnelTarget, 8> Targets;
7732 
7733     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7734       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7735           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7736       if (ElemBase != Base)
7737         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7738                            "to the same GlobalValue");
7739 
7740       SDValue Val = getValue(I.getArgOperand(Op + 1));
7741       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7742       if (!GA)
7743         report_fatal_error(
7744             "llvm.icall.branch.funnel operand must be a GlobalValue");
7745       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7746                                      GA->getGlobal(), sdl, Val.getValueType(),
7747                                      GA->getOffset())});
7748     }
7749     llvm::sort(Targets,
7750                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7751                  return T1.Offset < T2.Offset;
7752                });
7753 
7754     for (auto &T : Targets) {
7755       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7756       Ops.push_back(T.Target);
7757     }
7758 
7759     Ops.push_back(DAG.getRoot()); // Chain
7760     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7761                                  MVT::Other, Ops),
7762               0);
7763     DAG.setRoot(N);
7764     setValue(&I, N);
7765     HasTailCall = true;
7766     return;
7767   }
7768 
7769   case Intrinsic::wasm_landingpad_index:
7770     // Information this intrinsic contained has been transferred to
7771     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7772     // delete it now.
7773     return;
7774 
7775   case Intrinsic::aarch64_settag:
7776   case Intrinsic::aarch64_settag_zero: {
7777     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7778     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7779     SDValue Val = TSI.EmitTargetCodeForSetTag(
7780         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7781         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7782         ZeroMemory);
7783     DAG.setRoot(Val);
7784     setValue(&I, Val);
7785     return;
7786   }
7787   case Intrinsic::amdgcn_cs_chain: {
7788     assert(I.arg_size() == 5 && "Additional args not supported yet");
7789     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7790            "Non-zero flags not supported yet");
7791 
7792     // At this point we don't care if it's amdgpu_cs_chain or
7793     // amdgpu_cs_chain_preserve.
7794     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7795 
7796     Type *RetTy = I.getType();
7797     assert(RetTy->isVoidTy() && "Should not return");
7798 
7799     SDValue Callee = getValue(I.getOperand(0));
7800 
7801     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7802     // We'll also tack the value of the EXEC mask at the end.
7803     TargetLowering::ArgListTy Args;
7804     Args.reserve(3);
7805 
7806     for (unsigned Idx : {2, 3, 1}) {
7807       TargetLowering::ArgListEntry Arg;
7808       Arg.Node = getValue(I.getOperand(Idx));
7809       Arg.Ty = I.getOperand(Idx)->getType();
7810       Arg.setAttributes(&I, Idx);
7811       Args.push_back(Arg);
7812     }
7813 
7814     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7815     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7816     Args[2].IsInReg = true; // EXEC should be inreg
7817 
7818     TargetLowering::CallLoweringInfo CLI(DAG);
7819     CLI.setDebugLoc(getCurSDLoc())
7820         .setChain(getRoot())
7821         .setCallee(CC, RetTy, Callee, std::move(Args))
7822         .setNoReturn(true)
7823         .setTailCall(true)
7824         .setConvergent(I.isConvergent());
7825     CLI.CB = &I;
7826     std::pair<SDValue, SDValue> Result =
7827         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7828     (void)Result;
7829     assert(!Result.first.getNode() && !Result.second.getNode() &&
7830            "Should've lowered as tail call");
7831 
7832     HasTailCall = true;
7833     return;
7834   }
7835   case Intrinsic::ptrmask: {
7836     SDValue Ptr = getValue(I.getOperand(0));
7837     SDValue Mask = getValue(I.getOperand(1));
7838 
7839     // On arm64_32, pointers are 32 bits when stored in memory, but
7840     // zero-extended to 64 bits when in registers.  Thus the mask is 32 bits to
7841     // match the index type, but the pointer is 64 bits, so the the mask must be
7842     // zero-extended up to 64 bits to match the pointer.
7843     EVT PtrVT =
7844         TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7845     EVT MemVT =
7846         TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7847     assert(PtrVT == Ptr.getValueType());
7848     assert(MemVT == Mask.getValueType());
7849     if (MemVT != PtrVT)
7850       Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
7851 
7852     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7853     return;
7854   }
7855   case Intrinsic::threadlocal_address: {
7856     setValue(&I, getValue(I.getOperand(0)));
7857     return;
7858   }
7859   case Intrinsic::get_active_lane_mask: {
7860     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7861     SDValue Index = getValue(I.getOperand(0));
7862     EVT ElementVT = Index.getValueType();
7863 
7864     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7865       visitTargetIntrinsic(I, Intrinsic);
7866       return;
7867     }
7868 
7869     SDValue TripCount = getValue(I.getOperand(1));
7870     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7871                                  CCVT.getVectorElementCount());
7872 
7873     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7874     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7875     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7876     SDValue VectorInduction = DAG.getNode(
7877         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7878     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7879                                  VectorTripCount, ISD::CondCode::SETULT);
7880     setValue(&I, SetCC);
7881     return;
7882   }
7883   case Intrinsic::experimental_get_vector_length: {
7884     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7885            "Expected positive VF");
7886     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7887     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7888 
7889     SDValue Count = getValue(I.getOperand(0));
7890     EVT CountVT = Count.getValueType();
7891 
7892     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7893       visitTargetIntrinsic(I, Intrinsic);
7894       return;
7895     }
7896 
7897     // Expand to a umin between the trip count and the maximum elements the type
7898     // can hold.
7899     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7900 
7901     // Extend the trip count to at least the result VT.
7902     if (CountVT.bitsLT(VT)) {
7903       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7904       CountVT = VT;
7905     }
7906 
7907     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7908                                          ElementCount::get(VF, IsScalable));
7909 
7910     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7911     // Clip to the result type if needed.
7912     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7913 
7914     setValue(&I, Trunc);
7915     return;
7916   }
7917   case Intrinsic::experimental_cttz_elts: {
7918     auto DL = getCurSDLoc();
7919     SDValue Op = getValue(I.getOperand(0));
7920     EVT OpVT = Op.getValueType();
7921 
7922     if (!TLI.shouldExpandCttzElements(OpVT)) {
7923       visitTargetIntrinsic(I, Intrinsic);
7924       return;
7925     }
7926 
7927     if (OpVT.getScalarType() != MVT::i1) {
7928       // Compare the input vector elements to zero & use to count trailing zeros
7929       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7930       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7931                               OpVT.getVectorElementCount());
7932       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7933     }
7934 
7935     // If the zero-is-poison flag is set, we can assume the upper limit
7936     // of the result is VF-1.
7937     bool ZeroIsPoison =
7938         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
7939     ConstantRange VScaleRange(1, true); // Dummy value.
7940     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
7941       VScaleRange = getVScaleRange(I.getCaller(), 64);
7942     unsigned EltWidth = TLI.getBitWidthForCttzElements(
7943         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
7944 
7945     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7946 
7947     // Create the new vector type & get the vector length
7948     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7949                                  OpVT.getVectorElementCount());
7950 
7951     SDValue VL =
7952         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7953 
7954     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7955     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7956     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7957     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7958     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7959     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7960     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7961 
7962     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7963     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7964 
7965     setValue(&I, Ret);
7966     return;
7967   }
7968   case Intrinsic::vector_insert: {
7969     SDValue Vec = getValue(I.getOperand(0));
7970     SDValue SubVec = getValue(I.getOperand(1));
7971     SDValue Index = getValue(I.getOperand(2));
7972 
7973     // The intrinsic's index type is i64, but the SDNode requires an index type
7974     // suitable for the target. Convert the index as required.
7975     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7976     if (Index.getValueType() != VectorIdxTy)
7977       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7978 
7979     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7980     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7981                              Index));
7982     return;
7983   }
7984   case Intrinsic::vector_extract: {
7985     SDValue Vec = getValue(I.getOperand(0));
7986     SDValue Index = getValue(I.getOperand(1));
7987     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7988 
7989     // The intrinsic's index type is i64, but the SDNode requires an index type
7990     // suitable for the target. Convert the index as required.
7991     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7992     if (Index.getValueType() != VectorIdxTy)
7993       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7994 
7995     setValue(&I,
7996              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7997     return;
7998   }
7999   case Intrinsic::vector_reverse:
8000     visitVectorReverse(I);
8001     return;
8002   case Intrinsic::vector_splice:
8003     visitVectorSplice(I);
8004     return;
8005   case Intrinsic::callbr_landingpad:
8006     visitCallBrLandingPad(I);
8007     return;
8008   case Intrinsic::vector_interleave2:
8009     visitVectorInterleave(I);
8010     return;
8011   case Intrinsic::vector_deinterleave2:
8012     visitVectorDeinterleave(I);
8013     return;
8014   case Intrinsic::experimental_convergence_anchor:
8015   case Intrinsic::experimental_convergence_entry:
8016   case Intrinsic::experimental_convergence_loop:
8017     visitConvergenceControl(I, Intrinsic);
8018     return;
8019   case Intrinsic::experimental_vector_histogram_add: {
8020     visitVectorHistogram(I, Intrinsic);
8021     return;
8022   }
8023   }
8024 }
8025 
8026 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8027     const ConstrainedFPIntrinsic &FPI) {
8028   SDLoc sdl = getCurSDLoc();
8029 
8030   // We do not need to serialize constrained FP intrinsics against
8031   // each other or against (nonvolatile) loads, so they can be
8032   // chained like loads.
8033   SDValue Chain = DAG.getRoot();
8034   SmallVector<SDValue, 4> Opers;
8035   Opers.push_back(Chain);
8036   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8037     Opers.push_back(getValue(FPI.getArgOperand(I)));
8038 
8039   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8040     assert(Result.getNode()->getNumValues() == 2);
8041 
8042     // Push node to the appropriate list so that future instructions can be
8043     // chained up correctly.
8044     SDValue OutChain = Result.getValue(1);
8045     switch (EB) {
8046     case fp::ExceptionBehavior::ebIgnore:
8047       // The only reason why ebIgnore nodes still need to be chained is that
8048       // they might depend on the current rounding mode, and therefore must
8049       // not be moved across instruction that may change that mode.
8050       [[fallthrough]];
8051     case fp::ExceptionBehavior::ebMayTrap:
8052       // These must not be moved across calls or instructions that may change
8053       // floating-point exception masks.
8054       PendingConstrainedFP.push_back(OutChain);
8055       break;
8056     case fp::ExceptionBehavior::ebStrict:
8057       // These must not be moved across calls or instructions that may change
8058       // floating-point exception masks or read floating-point exception flags.
8059       // In addition, they cannot be optimized out even if unused.
8060       PendingConstrainedFPStrict.push_back(OutChain);
8061       break;
8062     }
8063   };
8064 
8065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8066   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8067   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8068   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8069 
8070   SDNodeFlags Flags;
8071   if (EB == fp::ExceptionBehavior::ebIgnore)
8072     Flags.setNoFPExcept(true);
8073 
8074   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8075     Flags.copyFMF(*FPOp);
8076 
8077   unsigned Opcode;
8078   switch (FPI.getIntrinsicID()) {
8079   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8080 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8081   case Intrinsic::INTRINSIC:                                                   \
8082     Opcode = ISD::STRICT_##DAGN;                                               \
8083     break;
8084 #include "llvm/IR/ConstrainedOps.def"
8085   case Intrinsic::experimental_constrained_fmuladd: {
8086     Opcode = ISD::STRICT_FMA;
8087     // Break fmuladd into fmul and fadd.
8088     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8089         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8090       Opers.pop_back();
8091       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8092       pushOutChain(Mul, EB);
8093       Opcode = ISD::STRICT_FADD;
8094       Opers.clear();
8095       Opers.push_back(Mul.getValue(1));
8096       Opers.push_back(Mul.getValue(0));
8097       Opers.push_back(getValue(FPI.getArgOperand(2)));
8098     }
8099     break;
8100   }
8101   }
8102 
8103   // A few strict DAG nodes carry additional operands that are not
8104   // set up by the default code above.
8105   switch (Opcode) {
8106   default: break;
8107   case ISD::STRICT_FP_ROUND:
8108     Opers.push_back(
8109         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8110     break;
8111   case ISD::STRICT_FSETCC:
8112   case ISD::STRICT_FSETCCS: {
8113     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8114     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8115     if (TM.Options.NoNaNsFPMath)
8116       Condition = getFCmpCodeWithoutNaN(Condition);
8117     Opers.push_back(DAG.getCondCode(Condition));
8118     break;
8119   }
8120   }
8121 
8122   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8123   pushOutChain(Result, EB);
8124 
8125   SDValue FPResult = Result.getValue(0);
8126   setValue(&FPI, FPResult);
8127 }
8128 
8129 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8130   std::optional<unsigned> ResOPC;
8131   switch (VPIntrin.getIntrinsicID()) {
8132   case Intrinsic::vp_ctlz: {
8133     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8134     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8135     break;
8136   }
8137   case Intrinsic::vp_cttz: {
8138     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8139     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8140     break;
8141   }
8142   case Intrinsic::vp_cttz_elts: {
8143     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8144     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8145     break;
8146   }
8147 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8148   case Intrinsic::VPID:                                                        \
8149     ResOPC = ISD::VPSD;                                                        \
8150     break;
8151 #include "llvm/IR/VPIntrinsics.def"
8152   }
8153 
8154   if (!ResOPC)
8155     llvm_unreachable(
8156         "Inconsistency: no SDNode available for this VPIntrinsic!");
8157 
8158   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8159       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8160     if (VPIntrin.getFastMathFlags().allowReassoc())
8161       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8162                                                 : ISD::VP_REDUCE_FMUL;
8163   }
8164 
8165   return *ResOPC;
8166 }
8167 
8168 void SelectionDAGBuilder::visitVPLoad(
8169     const VPIntrinsic &VPIntrin, EVT VT,
8170     const SmallVectorImpl<SDValue> &OpValues) {
8171   SDLoc DL = getCurSDLoc();
8172   Value *PtrOperand = VPIntrin.getArgOperand(0);
8173   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8174   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8175   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8176   SDValue LD;
8177   // Do not serialize variable-length loads of constant memory with
8178   // anything.
8179   if (!Alignment)
8180     Alignment = DAG.getEVTAlign(VT);
8181   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8182   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8183   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8184   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8185       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8186       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8187   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8188                      MMO, false /*IsExpanding */);
8189   if (AddToChain)
8190     PendingLoads.push_back(LD.getValue(1));
8191   setValue(&VPIntrin, LD);
8192 }
8193 
8194 void SelectionDAGBuilder::visitVPGather(
8195     const VPIntrinsic &VPIntrin, EVT VT,
8196     const SmallVectorImpl<SDValue> &OpValues) {
8197   SDLoc DL = getCurSDLoc();
8198   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8199   Value *PtrOperand = VPIntrin.getArgOperand(0);
8200   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8201   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8202   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8203   SDValue LD;
8204   if (!Alignment)
8205     Alignment = DAG.getEVTAlign(VT.getScalarType());
8206   unsigned AS =
8207     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8208   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8209       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8210       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8211   SDValue Base, Index, Scale;
8212   ISD::MemIndexType IndexType;
8213   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8214                                     this, VPIntrin.getParent(),
8215                                     VT.getScalarStoreSize());
8216   if (!UniformBase) {
8217     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8218     Index = getValue(PtrOperand);
8219     IndexType = ISD::SIGNED_SCALED;
8220     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8221   }
8222   EVT IdxVT = Index.getValueType();
8223   EVT EltTy = IdxVT.getVectorElementType();
8224   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8225     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8226     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8227   }
8228   LD = DAG.getGatherVP(
8229       DAG.getVTList(VT, MVT::Other), VT, DL,
8230       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8231       IndexType);
8232   PendingLoads.push_back(LD.getValue(1));
8233   setValue(&VPIntrin, LD);
8234 }
8235 
8236 void SelectionDAGBuilder::visitVPStore(
8237     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8238   SDLoc DL = getCurSDLoc();
8239   Value *PtrOperand = VPIntrin.getArgOperand(1);
8240   EVT VT = OpValues[0].getValueType();
8241   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8242   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8243   SDValue ST;
8244   if (!Alignment)
8245     Alignment = DAG.getEVTAlign(VT);
8246   SDValue Ptr = OpValues[1];
8247   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8248   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8249       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8250       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8251   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8252                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8253                       /* IsTruncating */ false, /*IsCompressing*/ false);
8254   DAG.setRoot(ST);
8255   setValue(&VPIntrin, ST);
8256 }
8257 
8258 void SelectionDAGBuilder::visitVPScatter(
8259     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8260   SDLoc DL = getCurSDLoc();
8261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8262   Value *PtrOperand = VPIntrin.getArgOperand(1);
8263   EVT VT = OpValues[0].getValueType();
8264   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8265   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8266   SDValue ST;
8267   if (!Alignment)
8268     Alignment = DAG.getEVTAlign(VT.getScalarType());
8269   unsigned AS =
8270       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8271   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8272       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8273       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8274   SDValue Base, Index, Scale;
8275   ISD::MemIndexType IndexType;
8276   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8277                                     this, VPIntrin.getParent(),
8278                                     VT.getScalarStoreSize());
8279   if (!UniformBase) {
8280     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8281     Index = getValue(PtrOperand);
8282     IndexType = ISD::SIGNED_SCALED;
8283     Scale =
8284       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8285   }
8286   EVT IdxVT = Index.getValueType();
8287   EVT EltTy = IdxVT.getVectorElementType();
8288   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8289     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8290     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8291   }
8292   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8293                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8294                          OpValues[2], OpValues[3]},
8295                         MMO, IndexType);
8296   DAG.setRoot(ST);
8297   setValue(&VPIntrin, ST);
8298 }
8299 
8300 void SelectionDAGBuilder::visitVPStridedLoad(
8301     const VPIntrinsic &VPIntrin, EVT VT,
8302     const SmallVectorImpl<SDValue> &OpValues) {
8303   SDLoc DL = getCurSDLoc();
8304   Value *PtrOperand = VPIntrin.getArgOperand(0);
8305   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8306   if (!Alignment)
8307     Alignment = DAG.getEVTAlign(VT.getScalarType());
8308   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8309   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8310   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8311   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8312   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8313   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8314   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8315       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8316       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8317 
8318   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8319                                     OpValues[2], OpValues[3], MMO,
8320                                     false /*IsExpanding*/);
8321 
8322   if (AddToChain)
8323     PendingLoads.push_back(LD.getValue(1));
8324   setValue(&VPIntrin, LD);
8325 }
8326 
8327 void SelectionDAGBuilder::visitVPStridedStore(
8328     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8329   SDLoc DL = getCurSDLoc();
8330   Value *PtrOperand = VPIntrin.getArgOperand(1);
8331   EVT VT = OpValues[0].getValueType();
8332   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8333   if (!Alignment)
8334     Alignment = DAG.getEVTAlign(VT.getScalarType());
8335   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8336   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8337   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8338       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8339       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8340 
8341   SDValue ST = DAG.getStridedStoreVP(
8342       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8343       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8344       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8345       /*IsCompressing*/ false);
8346 
8347   DAG.setRoot(ST);
8348   setValue(&VPIntrin, ST);
8349 }
8350 
8351 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8352   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8353   SDLoc DL = getCurSDLoc();
8354 
8355   ISD::CondCode Condition;
8356   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8357   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8358   if (IsFP) {
8359     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8360     // flags, but calls that don't return floating-point types can't be
8361     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8362     Condition = getFCmpCondCode(CondCode);
8363     if (TM.Options.NoNaNsFPMath)
8364       Condition = getFCmpCodeWithoutNaN(Condition);
8365   } else {
8366     Condition = getICmpCondCode(CondCode);
8367   }
8368 
8369   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8370   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8371   // #2 is the condition code
8372   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8373   SDValue EVL = getValue(VPIntrin.getOperand(4));
8374   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8375   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8376          "Unexpected target EVL type");
8377   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8378 
8379   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8380                                                         VPIntrin.getType());
8381   setValue(&VPIntrin,
8382            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8383 }
8384 
8385 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8386     const VPIntrinsic &VPIntrin) {
8387   SDLoc DL = getCurSDLoc();
8388   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8389 
8390   auto IID = VPIntrin.getIntrinsicID();
8391 
8392   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8393     return visitVPCmp(*CmpI);
8394 
8395   SmallVector<EVT, 4> ValueVTs;
8396   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8397   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8398   SDVTList VTs = DAG.getVTList(ValueVTs);
8399 
8400   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8401 
8402   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8403   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8404          "Unexpected target EVL type");
8405 
8406   // Request operands.
8407   SmallVector<SDValue, 7> OpValues;
8408   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8409     auto Op = getValue(VPIntrin.getArgOperand(I));
8410     if (I == EVLParamPos)
8411       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8412     OpValues.push_back(Op);
8413   }
8414 
8415   switch (Opcode) {
8416   default: {
8417     SDNodeFlags SDFlags;
8418     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8419       SDFlags.copyFMF(*FPMO);
8420     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8421     setValue(&VPIntrin, Result);
8422     break;
8423   }
8424   case ISD::VP_LOAD:
8425     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8426     break;
8427   case ISD::VP_GATHER:
8428     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8429     break;
8430   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8431     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8432     break;
8433   case ISD::VP_STORE:
8434     visitVPStore(VPIntrin, OpValues);
8435     break;
8436   case ISD::VP_SCATTER:
8437     visitVPScatter(VPIntrin, OpValues);
8438     break;
8439   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8440     visitVPStridedStore(VPIntrin, OpValues);
8441     break;
8442   case ISD::VP_FMULADD: {
8443     assert(OpValues.size() == 5 && "Unexpected number of operands");
8444     SDNodeFlags SDFlags;
8445     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8446       SDFlags.copyFMF(*FPMO);
8447     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8448         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8449       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8450     } else {
8451       SDValue Mul = DAG.getNode(
8452           ISD::VP_FMUL, DL, VTs,
8453           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8454       SDValue Add =
8455           DAG.getNode(ISD::VP_FADD, DL, VTs,
8456                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8457       setValue(&VPIntrin, Add);
8458     }
8459     break;
8460   }
8461   case ISD::VP_IS_FPCLASS: {
8462     const DataLayout DLayout = DAG.getDataLayout();
8463     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8464     auto Constant = OpValues[1]->getAsZExtVal();
8465     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8466     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8467                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8468     setValue(&VPIntrin, V);
8469     return;
8470   }
8471   case ISD::VP_INTTOPTR: {
8472     SDValue N = OpValues[0];
8473     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8474     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8475     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8476                                OpValues[2]);
8477     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8478                              OpValues[2]);
8479     setValue(&VPIntrin, N);
8480     break;
8481   }
8482   case ISD::VP_PTRTOINT: {
8483     SDValue N = OpValues[0];
8484     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8485                                                           VPIntrin.getType());
8486     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8487                                        VPIntrin.getOperand(0)->getType());
8488     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8489                                OpValues[2]);
8490     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8491                              OpValues[2]);
8492     setValue(&VPIntrin, N);
8493     break;
8494   }
8495   case ISD::VP_ABS:
8496   case ISD::VP_CTLZ:
8497   case ISD::VP_CTLZ_ZERO_UNDEF:
8498   case ISD::VP_CTTZ:
8499   case ISD::VP_CTTZ_ZERO_UNDEF:
8500   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8501   case ISD::VP_CTTZ_ELTS: {
8502     SDValue Result =
8503         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8504     setValue(&VPIntrin, Result);
8505     break;
8506   }
8507   }
8508 }
8509 
8510 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8511                                           const BasicBlock *EHPadBB,
8512                                           MCSymbol *&BeginLabel) {
8513   MachineFunction &MF = DAG.getMachineFunction();
8514   MachineModuleInfo &MMI = MF.getMMI();
8515 
8516   // Insert a label before the invoke call to mark the try range.  This can be
8517   // used to detect deletion of the invoke via the MachineModuleInfo.
8518   BeginLabel = MMI.getContext().createTempSymbol();
8519 
8520   // For SjLj, keep track of which landing pads go with which invokes
8521   // so as to maintain the ordering of pads in the LSDA.
8522   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8523   if (CallSiteIndex) {
8524     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8525     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8526 
8527     // Now that the call site is handled, stop tracking it.
8528     MMI.setCurrentCallSite(0);
8529   }
8530 
8531   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8532 }
8533 
8534 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8535                                         const BasicBlock *EHPadBB,
8536                                         MCSymbol *BeginLabel) {
8537   assert(BeginLabel && "BeginLabel should've been set");
8538 
8539   MachineFunction &MF = DAG.getMachineFunction();
8540   MachineModuleInfo &MMI = MF.getMMI();
8541 
8542   // Insert a label at the end of the invoke call to mark the try range.  This
8543   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8544   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8545   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8546 
8547   // Inform MachineModuleInfo of range.
8548   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8549   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8550   // actually use outlined funclets and their LSDA info style.
8551   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8552     assert(II && "II should've been set");
8553     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8554     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8555   } else if (!isScopedEHPersonality(Pers)) {
8556     assert(EHPadBB);
8557     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8558   }
8559 
8560   return Chain;
8561 }
8562 
8563 std::pair<SDValue, SDValue>
8564 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8565                                     const BasicBlock *EHPadBB) {
8566   MCSymbol *BeginLabel = nullptr;
8567 
8568   if (EHPadBB) {
8569     // Both PendingLoads and PendingExports must be flushed here;
8570     // this call might not return.
8571     (void)getRoot();
8572     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8573     CLI.setChain(getRoot());
8574   }
8575 
8576   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8577   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8578 
8579   assert((CLI.IsTailCall || Result.second.getNode()) &&
8580          "Non-null chain expected with non-tail call!");
8581   assert((Result.second.getNode() || !Result.first.getNode()) &&
8582          "Null value expected with tail call!");
8583 
8584   if (!Result.second.getNode()) {
8585     // As a special case, a null chain means that a tail call has been emitted
8586     // and the DAG root is already updated.
8587     HasTailCall = true;
8588 
8589     // Since there's no actual continuation from this block, nothing can be
8590     // relying on us setting vregs for them.
8591     PendingExports.clear();
8592   } else {
8593     DAG.setRoot(Result.second);
8594   }
8595 
8596   if (EHPadBB) {
8597     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8598                            BeginLabel));
8599   }
8600 
8601   return Result;
8602 }
8603 
8604 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8605                                       bool isTailCall, bool isMustTailCall,
8606                                       const BasicBlock *EHPadBB,
8607                                       const TargetLowering::PtrAuthInfo *PAI) {
8608   auto &DL = DAG.getDataLayout();
8609   FunctionType *FTy = CB.getFunctionType();
8610   Type *RetTy = CB.getType();
8611 
8612   TargetLowering::ArgListTy Args;
8613   Args.reserve(CB.arg_size());
8614 
8615   const Value *SwiftErrorVal = nullptr;
8616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8617 
8618   if (isTailCall) {
8619     // Avoid emitting tail calls in functions with the disable-tail-calls
8620     // attribute.
8621     auto *Caller = CB.getParent()->getParent();
8622     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8623         "true" && !isMustTailCall)
8624       isTailCall = false;
8625 
8626     // We can't tail call inside a function with a swifterror argument. Lowering
8627     // does not support this yet. It would have to move into the swifterror
8628     // register before the call.
8629     if (TLI.supportSwiftError() &&
8630         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8631       isTailCall = false;
8632   }
8633 
8634   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8635     TargetLowering::ArgListEntry Entry;
8636     const Value *V = *I;
8637 
8638     // Skip empty types
8639     if (V->getType()->isEmptyTy())
8640       continue;
8641 
8642     SDValue ArgNode = getValue(V);
8643     Entry.Node = ArgNode; Entry.Ty = V->getType();
8644 
8645     Entry.setAttributes(&CB, I - CB.arg_begin());
8646 
8647     // Use swifterror virtual register as input to the call.
8648     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8649       SwiftErrorVal = V;
8650       // We find the virtual register for the actual swifterror argument.
8651       // Instead of using the Value, we use the virtual register instead.
8652       Entry.Node =
8653           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8654                           EVT(TLI.getPointerTy(DL)));
8655     }
8656 
8657     Args.push_back(Entry);
8658 
8659     // If we have an explicit sret argument that is an Instruction, (i.e., it
8660     // might point to function-local memory), we can't meaningfully tail-call.
8661     if (Entry.IsSRet && isa<Instruction>(V))
8662       isTailCall = false;
8663   }
8664 
8665   // If call site has a cfguardtarget operand bundle, create and add an
8666   // additional ArgListEntry.
8667   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8668     TargetLowering::ArgListEntry Entry;
8669     Value *V = Bundle->Inputs[0];
8670     SDValue ArgNode = getValue(V);
8671     Entry.Node = ArgNode;
8672     Entry.Ty = V->getType();
8673     Entry.IsCFGuardTarget = true;
8674     Args.push_back(Entry);
8675   }
8676 
8677   // Check if target-independent constraints permit a tail call here.
8678   // Target-dependent constraints are checked within TLI->LowerCallTo.
8679   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8680     isTailCall = false;
8681 
8682   // Disable tail calls if there is an swifterror argument. Targets have not
8683   // been updated to support tail calls.
8684   if (TLI.supportSwiftError() && SwiftErrorVal)
8685     isTailCall = false;
8686 
8687   ConstantInt *CFIType = nullptr;
8688   if (CB.isIndirectCall()) {
8689     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8690       if (!TLI.supportKCFIBundles())
8691         report_fatal_error(
8692             "Target doesn't support calls with kcfi operand bundles.");
8693       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8694       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8695     }
8696   }
8697 
8698   SDValue ConvControlToken;
8699   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8700     auto *Token = Bundle->Inputs[0].get();
8701     ConvControlToken = getValue(Token);
8702   }
8703 
8704   TargetLowering::CallLoweringInfo CLI(DAG);
8705   CLI.setDebugLoc(getCurSDLoc())
8706       .setChain(getRoot())
8707       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8708       .setTailCall(isTailCall)
8709       .setConvergent(CB.isConvergent())
8710       .setIsPreallocated(
8711           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8712       .setCFIType(CFIType)
8713       .setConvergenceControlToken(ConvControlToken);
8714 
8715   // Set the pointer authentication info if we have it.
8716   if (PAI) {
8717     if (!TLI.supportPtrAuthBundles())
8718       report_fatal_error(
8719           "This target doesn't support calls with ptrauth operand bundles.");
8720     CLI.setPtrAuth(*PAI);
8721   }
8722 
8723   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8724 
8725   if (Result.first.getNode()) {
8726     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8727     setValue(&CB, Result.first);
8728   }
8729 
8730   // The last element of CLI.InVals has the SDValue for swifterror return.
8731   // Here we copy it to a virtual register and update SwiftErrorMap for
8732   // book-keeping.
8733   if (SwiftErrorVal && TLI.supportSwiftError()) {
8734     // Get the last element of InVals.
8735     SDValue Src = CLI.InVals.back();
8736     Register VReg =
8737         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8738     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8739     DAG.setRoot(CopyNode);
8740   }
8741 }
8742 
8743 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8744                              SelectionDAGBuilder &Builder) {
8745   // Check to see if this load can be trivially constant folded, e.g. if the
8746   // input is from a string literal.
8747   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8748     // Cast pointer to the type we really want to load.
8749     Type *LoadTy =
8750         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8751     if (LoadVT.isVector())
8752       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8753 
8754     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8755                                          PointerType::getUnqual(LoadTy));
8756 
8757     if (const Constant *LoadCst =
8758             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8759                                          LoadTy, Builder.DAG.getDataLayout()))
8760       return Builder.getValue(LoadCst);
8761   }
8762 
8763   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8764   // still constant memory, the input chain can be the entry node.
8765   SDValue Root;
8766   bool ConstantMemory = false;
8767 
8768   // Do not serialize (non-volatile) loads of constant memory with anything.
8769   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8770     Root = Builder.DAG.getEntryNode();
8771     ConstantMemory = true;
8772   } else {
8773     // Do not serialize non-volatile loads against each other.
8774     Root = Builder.DAG.getRoot();
8775   }
8776 
8777   SDValue Ptr = Builder.getValue(PtrVal);
8778   SDValue LoadVal =
8779       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8780                           MachinePointerInfo(PtrVal), Align(1));
8781 
8782   if (!ConstantMemory)
8783     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8784   return LoadVal;
8785 }
8786 
8787 /// Record the value for an instruction that produces an integer result,
8788 /// converting the type where necessary.
8789 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8790                                                   SDValue Value,
8791                                                   bool IsSigned) {
8792   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8793                                                     I.getType(), true);
8794   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8795   setValue(&I, Value);
8796 }
8797 
8798 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8799 /// true and lower it. Otherwise return false, and it will be lowered like a
8800 /// normal call.
8801 /// The caller already checked that \p I calls the appropriate LibFunc with a
8802 /// correct prototype.
8803 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8804   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8805   const Value *Size = I.getArgOperand(2);
8806   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8807   if (CSize && CSize->getZExtValue() == 0) {
8808     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8809                                                           I.getType(), true);
8810     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8811     return true;
8812   }
8813 
8814   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8815   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8816       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8817       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8818   if (Res.first.getNode()) {
8819     processIntegerCallValue(I, Res.first, true);
8820     PendingLoads.push_back(Res.second);
8821     return true;
8822   }
8823 
8824   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8825   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8826   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8827     return false;
8828 
8829   // If the target has a fast compare for the given size, it will return a
8830   // preferred load type for that size. Require that the load VT is legal and
8831   // that the target supports unaligned loads of that type. Otherwise, return
8832   // INVALID.
8833   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8834     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8835     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8836     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8837       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8838       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8839       // TODO: Check alignment of src and dest ptrs.
8840       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8841       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8842       if (!TLI.isTypeLegal(LVT) ||
8843           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8844           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8845         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8846     }
8847 
8848     return LVT;
8849   };
8850 
8851   // This turns into unaligned loads. We only do this if the target natively
8852   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8853   // we'll only produce a small number of byte loads.
8854   MVT LoadVT;
8855   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8856   switch (NumBitsToCompare) {
8857   default:
8858     return false;
8859   case 16:
8860     LoadVT = MVT::i16;
8861     break;
8862   case 32:
8863     LoadVT = MVT::i32;
8864     break;
8865   case 64:
8866   case 128:
8867   case 256:
8868     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8869     break;
8870   }
8871 
8872   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8873     return false;
8874 
8875   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8876   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8877 
8878   // Bitcast to a wide integer type if the loads are vectors.
8879   if (LoadVT.isVector()) {
8880     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8881     LoadL = DAG.getBitcast(CmpVT, LoadL);
8882     LoadR = DAG.getBitcast(CmpVT, LoadR);
8883   }
8884 
8885   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8886   processIntegerCallValue(I, Cmp, false);
8887   return true;
8888 }
8889 
8890 /// See if we can lower a memchr call into an optimized form. If so, return
8891 /// true and lower it. Otherwise return false, and it will be lowered like a
8892 /// normal call.
8893 /// The caller already checked that \p I calls the appropriate LibFunc with a
8894 /// correct prototype.
8895 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8896   const Value *Src = I.getArgOperand(0);
8897   const Value *Char = I.getArgOperand(1);
8898   const Value *Length = I.getArgOperand(2);
8899 
8900   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8901   std::pair<SDValue, SDValue> Res =
8902     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8903                                 getValue(Src), getValue(Char), getValue(Length),
8904                                 MachinePointerInfo(Src));
8905   if (Res.first.getNode()) {
8906     setValue(&I, Res.first);
8907     PendingLoads.push_back(Res.second);
8908     return true;
8909   }
8910 
8911   return false;
8912 }
8913 
8914 /// See if we can lower a mempcpy call into an optimized form. If so, return
8915 /// true and lower it. Otherwise return false, and it will be lowered like a
8916 /// normal call.
8917 /// The caller already checked that \p I calls the appropriate LibFunc with a
8918 /// correct prototype.
8919 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8920   SDValue Dst = getValue(I.getArgOperand(0));
8921   SDValue Src = getValue(I.getArgOperand(1));
8922   SDValue Size = getValue(I.getArgOperand(2));
8923 
8924   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8925   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8926   // DAG::getMemcpy needs Alignment to be defined.
8927   Align Alignment = std::min(DstAlign, SrcAlign);
8928 
8929   SDLoc sdl = getCurSDLoc();
8930 
8931   // In the mempcpy context we need to pass in a false value for isTailCall
8932   // because the return pointer needs to be adjusted by the size of
8933   // the copied memory.
8934   SDValue Root = getMemoryRoot();
8935   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8936                              /*isTailCall=*/false,
8937                              MachinePointerInfo(I.getArgOperand(0)),
8938                              MachinePointerInfo(I.getArgOperand(1)),
8939                              I.getAAMetadata());
8940   assert(MC.getNode() != nullptr &&
8941          "** memcpy should not be lowered as TailCall in mempcpy context **");
8942   DAG.setRoot(MC);
8943 
8944   // Check if Size needs to be truncated or extended.
8945   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8946 
8947   // Adjust return pointer to point just past the last dst byte.
8948   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8949                                     Dst, Size);
8950   setValue(&I, DstPlusSize);
8951   return true;
8952 }
8953 
8954 /// See if we can lower a strcpy call into an optimized form.  If so, return
8955 /// true and lower it, otherwise return false and it will be lowered like a
8956 /// normal call.
8957 /// The caller already checked that \p I calls the appropriate LibFunc with a
8958 /// correct prototype.
8959 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8960   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8961 
8962   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8963   std::pair<SDValue, SDValue> Res =
8964     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8965                                 getValue(Arg0), getValue(Arg1),
8966                                 MachinePointerInfo(Arg0),
8967                                 MachinePointerInfo(Arg1), isStpcpy);
8968   if (Res.first.getNode()) {
8969     setValue(&I, Res.first);
8970     DAG.setRoot(Res.second);
8971     return true;
8972   }
8973 
8974   return false;
8975 }
8976 
8977 /// See if we can lower a strcmp call into an optimized form.  If so, return
8978 /// true and lower it, otherwise return false and it will be lowered like a
8979 /// normal call.
8980 /// The caller already checked that \p I calls the appropriate LibFunc with a
8981 /// correct prototype.
8982 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8983   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8984 
8985   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8986   std::pair<SDValue, SDValue> Res =
8987     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8988                                 getValue(Arg0), getValue(Arg1),
8989                                 MachinePointerInfo(Arg0),
8990                                 MachinePointerInfo(Arg1));
8991   if (Res.first.getNode()) {
8992     processIntegerCallValue(I, Res.first, true);
8993     PendingLoads.push_back(Res.second);
8994     return true;
8995   }
8996 
8997   return false;
8998 }
8999 
9000 /// See if we can lower a strlen call into an optimized form.  If so, return
9001 /// true and lower it, otherwise return false and it will be lowered like a
9002 /// normal call.
9003 /// The caller already checked that \p I calls the appropriate LibFunc with a
9004 /// correct prototype.
9005 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9006   const Value *Arg0 = I.getArgOperand(0);
9007 
9008   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9009   std::pair<SDValue, SDValue> Res =
9010     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9011                                 getValue(Arg0), MachinePointerInfo(Arg0));
9012   if (Res.first.getNode()) {
9013     processIntegerCallValue(I, Res.first, false);
9014     PendingLoads.push_back(Res.second);
9015     return true;
9016   }
9017 
9018   return false;
9019 }
9020 
9021 /// See if we can lower a strnlen call into an optimized form.  If so, return
9022 /// true and lower it, otherwise return false and it will be lowered like a
9023 /// normal call.
9024 /// The caller already checked that \p I calls the appropriate LibFunc with a
9025 /// correct prototype.
9026 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9027   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9028 
9029   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9030   std::pair<SDValue, SDValue> Res =
9031     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9032                                  getValue(Arg0), getValue(Arg1),
9033                                  MachinePointerInfo(Arg0));
9034   if (Res.first.getNode()) {
9035     processIntegerCallValue(I, Res.first, false);
9036     PendingLoads.push_back(Res.second);
9037     return true;
9038   }
9039 
9040   return false;
9041 }
9042 
9043 /// See if we can lower a unary floating-point operation into an SDNode with
9044 /// the specified Opcode.  If so, return true and lower it, otherwise return
9045 /// false and it will be lowered like a normal call.
9046 /// The caller already checked that \p I calls the appropriate LibFunc with a
9047 /// correct prototype.
9048 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9049                                               unsigned Opcode) {
9050   // We already checked this call's prototype; verify it doesn't modify errno.
9051   if (!I.onlyReadsMemory())
9052     return false;
9053 
9054   SDNodeFlags Flags;
9055   Flags.copyFMF(cast<FPMathOperator>(I));
9056 
9057   SDValue Tmp = getValue(I.getArgOperand(0));
9058   setValue(&I,
9059            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9060   return true;
9061 }
9062 
9063 /// See if we can lower a binary floating-point operation into an SDNode with
9064 /// the specified Opcode. If so, return true and lower it. Otherwise return
9065 /// false, and it will be lowered like a normal call.
9066 /// The caller already checked that \p I calls the appropriate LibFunc with a
9067 /// correct prototype.
9068 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9069                                                unsigned Opcode) {
9070   // We already checked this call's prototype; verify it doesn't modify errno.
9071   if (!I.onlyReadsMemory())
9072     return false;
9073 
9074   SDNodeFlags Flags;
9075   Flags.copyFMF(cast<FPMathOperator>(I));
9076 
9077   SDValue Tmp0 = getValue(I.getArgOperand(0));
9078   SDValue Tmp1 = getValue(I.getArgOperand(1));
9079   EVT VT = Tmp0.getValueType();
9080   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9081   return true;
9082 }
9083 
9084 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9085   // Handle inline assembly differently.
9086   if (I.isInlineAsm()) {
9087     visitInlineAsm(I);
9088     return;
9089   }
9090 
9091   diagnoseDontCall(I);
9092 
9093   if (Function *F = I.getCalledFunction()) {
9094     if (F->isDeclaration()) {
9095       // Is this an LLVM intrinsic or a target-specific intrinsic?
9096       unsigned IID = F->getIntrinsicID();
9097       if (!IID)
9098         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9099           IID = II->getIntrinsicID(F);
9100 
9101       if (IID) {
9102         visitIntrinsicCall(I, IID);
9103         return;
9104       }
9105     }
9106 
9107     // Check for well-known libc/libm calls.  If the function is internal, it
9108     // can't be a library call.  Don't do the check if marked as nobuiltin for
9109     // some reason or the call site requires strict floating point semantics.
9110     LibFunc Func;
9111     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9112         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9113         LibInfo->hasOptimizedCodeGen(Func)) {
9114       switch (Func) {
9115       default: break;
9116       case LibFunc_bcmp:
9117         if (visitMemCmpBCmpCall(I))
9118           return;
9119         break;
9120       case LibFunc_copysign:
9121       case LibFunc_copysignf:
9122       case LibFunc_copysignl:
9123         // We already checked this call's prototype; verify it doesn't modify
9124         // errno.
9125         if (I.onlyReadsMemory()) {
9126           SDValue LHS = getValue(I.getArgOperand(0));
9127           SDValue RHS = getValue(I.getArgOperand(1));
9128           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9129                                    LHS.getValueType(), LHS, RHS));
9130           return;
9131         }
9132         break;
9133       case LibFunc_fabs:
9134       case LibFunc_fabsf:
9135       case LibFunc_fabsl:
9136         if (visitUnaryFloatCall(I, ISD::FABS))
9137           return;
9138         break;
9139       case LibFunc_fmin:
9140       case LibFunc_fminf:
9141       case LibFunc_fminl:
9142         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9143           return;
9144         break;
9145       case LibFunc_fmax:
9146       case LibFunc_fmaxf:
9147       case LibFunc_fmaxl:
9148         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9149           return;
9150         break;
9151       case LibFunc_sin:
9152       case LibFunc_sinf:
9153       case LibFunc_sinl:
9154         if (visitUnaryFloatCall(I, ISD::FSIN))
9155           return;
9156         break;
9157       case LibFunc_cos:
9158       case LibFunc_cosf:
9159       case LibFunc_cosl:
9160         if (visitUnaryFloatCall(I, ISD::FCOS))
9161           return;
9162         break;
9163       case LibFunc_sqrt:
9164       case LibFunc_sqrtf:
9165       case LibFunc_sqrtl:
9166       case LibFunc_sqrt_finite:
9167       case LibFunc_sqrtf_finite:
9168       case LibFunc_sqrtl_finite:
9169         if (visitUnaryFloatCall(I, ISD::FSQRT))
9170           return;
9171         break;
9172       case LibFunc_floor:
9173       case LibFunc_floorf:
9174       case LibFunc_floorl:
9175         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9176           return;
9177         break;
9178       case LibFunc_nearbyint:
9179       case LibFunc_nearbyintf:
9180       case LibFunc_nearbyintl:
9181         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9182           return;
9183         break;
9184       case LibFunc_ceil:
9185       case LibFunc_ceilf:
9186       case LibFunc_ceill:
9187         if (visitUnaryFloatCall(I, ISD::FCEIL))
9188           return;
9189         break;
9190       case LibFunc_rint:
9191       case LibFunc_rintf:
9192       case LibFunc_rintl:
9193         if (visitUnaryFloatCall(I, ISD::FRINT))
9194           return;
9195         break;
9196       case LibFunc_round:
9197       case LibFunc_roundf:
9198       case LibFunc_roundl:
9199         if (visitUnaryFloatCall(I, ISD::FROUND))
9200           return;
9201         break;
9202       case LibFunc_trunc:
9203       case LibFunc_truncf:
9204       case LibFunc_truncl:
9205         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9206           return;
9207         break;
9208       case LibFunc_log2:
9209       case LibFunc_log2f:
9210       case LibFunc_log2l:
9211         if (visitUnaryFloatCall(I, ISD::FLOG2))
9212           return;
9213         break;
9214       case LibFunc_exp2:
9215       case LibFunc_exp2f:
9216       case LibFunc_exp2l:
9217         if (visitUnaryFloatCall(I, ISD::FEXP2))
9218           return;
9219         break;
9220       case LibFunc_exp10:
9221       case LibFunc_exp10f:
9222       case LibFunc_exp10l:
9223         if (visitUnaryFloatCall(I, ISD::FEXP10))
9224           return;
9225         break;
9226       case LibFunc_ldexp:
9227       case LibFunc_ldexpf:
9228       case LibFunc_ldexpl:
9229         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9230           return;
9231         break;
9232       case LibFunc_memcmp:
9233         if (visitMemCmpBCmpCall(I))
9234           return;
9235         break;
9236       case LibFunc_mempcpy:
9237         if (visitMemPCpyCall(I))
9238           return;
9239         break;
9240       case LibFunc_memchr:
9241         if (visitMemChrCall(I))
9242           return;
9243         break;
9244       case LibFunc_strcpy:
9245         if (visitStrCpyCall(I, false))
9246           return;
9247         break;
9248       case LibFunc_stpcpy:
9249         if (visitStrCpyCall(I, true))
9250           return;
9251         break;
9252       case LibFunc_strcmp:
9253         if (visitStrCmpCall(I))
9254           return;
9255         break;
9256       case LibFunc_strlen:
9257         if (visitStrLenCall(I))
9258           return;
9259         break;
9260       case LibFunc_strnlen:
9261         if (visitStrNLenCall(I))
9262           return;
9263         break;
9264       }
9265     }
9266   }
9267 
9268   if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9269     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9270     return;
9271   }
9272 
9273   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9274   // have to do anything here to lower funclet bundles.
9275   // CFGuardTarget bundles are lowered in LowerCallTo.
9276   assert(!I.hasOperandBundlesOtherThan(
9277              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9278               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9279               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9280               LLVMContext::OB_convergencectrl}) &&
9281          "Cannot lower calls with arbitrary operand bundles!");
9282 
9283   SDValue Callee = getValue(I.getCalledOperand());
9284 
9285   if (I.hasDeoptState())
9286     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9287   else
9288     // Check if we can potentially perform a tail call. More detailed checking
9289     // is be done within LowerCallTo, after more information about the call is
9290     // known.
9291     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9292 }
9293 
9294 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9295     const CallBase &CB, const BasicBlock *EHPadBB) {
9296   auto PAB = CB.getOperandBundle("ptrauth");
9297   const Value *CalleeV = CB.getCalledOperand();
9298 
9299   // Gather the call ptrauth data from the operand bundle:
9300   //   [ i32 <key>, i64 <discriminator> ]
9301   const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9302   const Value *Discriminator = PAB->Inputs[1];
9303 
9304   assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9305   assert(Discriminator->getType()->isIntegerTy(64) &&
9306          "Invalid ptrauth discriminator");
9307 
9308   // Functions should never be ptrauth-called directly.
9309   assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9310 
9311   // Otherwise, do an authenticated indirect call.
9312   TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9313                                      getValue(Discriminator)};
9314 
9315   LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9316               EHPadBB, &PAI);
9317 }
9318 
9319 namespace {
9320 
9321 /// AsmOperandInfo - This contains information for each constraint that we are
9322 /// lowering.
9323 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9324 public:
9325   /// CallOperand - If this is the result output operand or a clobber
9326   /// this is null, otherwise it is the incoming operand to the CallInst.
9327   /// This gets modified as the asm is processed.
9328   SDValue CallOperand;
9329 
9330   /// AssignedRegs - If this is a register or register class operand, this
9331   /// contains the set of register corresponding to the operand.
9332   RegsForValue AssignedRegs;
9333 
9334   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9335     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9336   }
9337 
9338   /// Whether or not this operand accesses memory
9339   bool hasMemory(const TargetLowering &TLI) const {
9340     // Indirect operand accesses access memory.
9341     if (isIndirect)
9342       return true;
9343 
9344     for (const auto &Code : Codes)
9345       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9346         return true;
9347 
9348     return false;
9349   }
9350 };
9351 
9352 
9353 } // end anonymous namespace
9354 
9355 /// Make sure that the output operand \p OpInfo and its corresponding input
9356 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9357 /// out).
9358 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9359                                SDISelAsmOperandInfo &MatchingOpInfo,
9360                                SelectionDAG &DAG) {
9361   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9362     return;
9363 
9364   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9365   const auto &TLI = DAG.getTargetLoweringInfo();
9366 
9367   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9368       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9369                                        OpInfo.ConstraintVT);
9370   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9371       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9372                                        MatchingOpInfo.ConstraintVT);
9373   if ((OpInfo.ConstraintVT.isInteger() !=
9374        MatchingOpInfo.ConstraintVT.isInteger()) ||
9375       (MatchRC.second != InputRC.second)) {
9376     // FIXME: error out in a more elegant fashion
9377     report_fatal_error("Unsupported asm: input constraint"
9378                        " with a matching output constraint of"
9379                        " incompatible type!");
9380   }
9381   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9382 }
9383 
9384 /// Get a direct memory input to behave well as an indirect operand.
9385 /// This may introduce stores, hence the need for a \p Chain.
9386 /// \return The (possibly updated) chain.
9387 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9388                                         SDISelAsmOperandInfo &OpInfo,
9389                                         SelectionDAG &DAG) {
9390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9391 
9392   // If we don't have an indirect input, put it in the constpool if we can,
9393   // otherwise spill it to a stack slot.
9394   // TODO: This isn't quite right. We need to handle these according to
9395   // the addressing mode that the constraint wants. Also, this may take
9396   // an additional register for the computation and we don't want that
9397   // either.
9398 
9399   // If the operand is a float, integer, or vector constant, spill to a
9400   // constant pool entry to get its address.
9401   const Value *OpVal = OpInfo.CallOperandVal;
9402   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9403       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9404     OpInfo.CallOperand = DAG.getConstantPool(
9405         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9406     return Chain;
9407   }
9408 
9409   // Otherwise, create a stack slot and emit a store to it before the asm.
9410   Type *Ty = OpVal->getType();
9411   auto &DL = DAG.getDataLayout();
9412   uint64_t TySize = DL.getTypeAllocSize(Ty);
9413   MachineFunction &MF = DAG.getMachineFunction();
9414   int SSFI = MF.getFrameInfo().CreateStackObject(
9415       TySize, DL.getPrefTypeAlign(Ty), false);
9416   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9417   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9418                             MachinePointerInfo::getFixedStack(MF, SSFI),
9419                             TLI.getMemValueType(DL, Ty));
9420   OpInfo.CallOperand = StackSlot;
9421 
9422   return Chain;
9423 }
9424 
9425 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9426 /// specified operand.  We prefer to assign virtual registers, to allow the
9427 /// register allocator to handle the assignment process.  However, if the asm
9428 /// uses features that we can't model on machineinstrs, we have SDISel do the
9429 /// allocation.  This produces generally horrible, but correct, code.
9430 ///
9431 ///   OpInfo describes the operand
9432 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9433 static std::optional<unsigned>
9434 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9435                      SDISelAsmOperandInfo &OpInfo,
9436                      SDISelAsmOperandInfo &RefOpInfo) {
9437   LLVMContext &Context = *DAG.getContext();
9438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9439 
9440   MachineFunction &MF = DAG.getMachineFunction();
9441   SmallVector<unsigned, 4> Regs;
9442   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9443 
9444   // No work to do for memory/address operands.
9445   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9446       OpInfo.ConstraintType == TargetLowering::C_Address)
9447     return std::nullopt;
9448 
9449   // If this is a constraint for a single physreg, or a constraint for a
9450   // register class, find it.
9451   unsigned AssignedReg;
9452   const TargetRegisterClass *RC;
9453   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9454       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9455   // RC is unset only on failure. Return immediately.
9456   if (!RC)
9457     return std::nullopt;
9458 
9459   // Get the actual register value type.  This is important, because the user
9460   // may have asked for (e.g.) the AX register in i32 type.  We need to
9461   // remember that AX is actually i16 to get the right extension.
9462   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9463 
9464   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9465     // If this is an FP operand in an integer register (or visa versa), or more
9466     // generally if the operand value disagrees with the register class we plan
9467     // to stick it in, fix the operand type.
9468     //
9469     // If this is an input value, the bitcast to the new type is done now.
9470     // Bitcast for output value is done at the end of visitInlineAsm().
9471     if ((OpInfo.Type == InlineAsm::isOutput ||
9472          OpInfo.Type == InlineAsm::isInput) &&
9473         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9474       // Try to convert to the first EVT that the reg class contains.  If the
9475       // types are identical size, use a bitcast to convert (e.g. two differing
9476       // vector types).  Note: output bitcast is done at the end of
9477       // visitInlineAsm().
9478       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9479         // Exclude indirect inputs while they are unsupported because the code
9480         // to perform the load is missing and thus OpInfo.CallOperand still
9481         // refers to the input address rather than the pointed-to value.
9482         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9483           OpInfo.CallOperand =
9484               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9485         OpInfo.ConstraintVT = RegVT;
9486         // If the operand is an FP value and we want it in integer registers,
9487         // use the corresponding integer type. This turns an f64 value into
9488         // i64, which can be passed with two i32 values on a 32-bit machine.
9489       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9490         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9491         if (OpInfo.Type == InlineAsm::isInput)
9492           OpInfo.CallOperand =
9493               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9494         OpInfo.ConstraintVT = VT;
9495       }
9496     }
9497   }
9498 
9499   // No need to allocate a matching input constraint since the constraint it's
9500   // matching to has already been allocated.
9501   if (OpInfo.isMatchingInputConstraint())
9502     return std::nullopt;
9503 
9504   EVT ValueVT = OpInfo.ConstraintVT;
9505   if (OpInfo.ConstraintVT == MVT::Other)
9506     ValueVT = RegVT;
9507 
9508   // Initialize NumRegs.
9509   unsigned NumRegs = 1;
9510   if (OpInfo.ConstraintVT != MVT::Other)
9511     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9512 
9513   // If this is a constraint for a specific physical register, like {r17},
9514   // assign it now.
9515 
9516   // If this associated to a specific register, initialize iterator to correct
9517   // place. If virtual, make sure we have enough registers
9518 
9519   // Initialize iterator if necessary
9520   TargetRegisterClass::iterator I = RC->begin();
9521   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9522 
9523   // Do not check for single registers.
9524   if (AssignedReg) {
9525     I = std::find(I, RC->end(), AssignedReg);
9526     if (I == RC->end()) {
9527       // RC does not contain the selected register, which indicates a
9528       // mismatch between the register and the required type/bitwidth.
9529       return {AssignedReg};
9530     }
9531   }
9532 
9533   for (; NumRegs; --NumRegs, ++I) {
9534     assert(I != RC->end() && "Ran out of registers to allocate!");
9535     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9536     Regs.push_back(R);
9537   }
9538 
9539   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9540   return std::nullopt;
9541 }
9542 
9543 static unsigned
9544 findMatchingInlineAsmOperand(unsigned OperandNo,
9545                              const std::vector<SDValue> &AsmNodeOperands) {
9546   // Scan until we find the definition we already emitted of this operand.
9547   unsigned CurOp = InlineAsm::Op_FirstOperand;
9548   for (; OperandNo; --OperandNo) {
9549     // Advance to the next operand.
9550     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9551     const InlineAsm::Flag F(OpFlag);
9552     assert(
9553         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9554         "Skipped past definitions?");
9555     CurOp += F.getNumOperandRegisters() + 1;
9556   }
9557   return CurOp;
9558 }
9559 
9560 namespace {
9561 
9562 class ExtraFlags {
9563   unsigned Flags = 0;
9564 
9565 public:
9566   explicit ExtraFlags(const CallBase &Call) {
9567     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9568     if (IA->hasSideEffects())
9569       Flags |= InlineAsm::Extra_HasSideEffects;
9570     if (IA->isAlignStack())
9571       Flags |= InlineAsm::Extra_IsAlignStack;
9572     if (Call.isConvergent())
9573       Flags |= InlineAsm::Extra_IsConvergent;
9574     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9575   }
9576 
9577   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9578     // Ideally, we would only check against memory constraints.  However, the
9579     // meaning of an Other constraint can be target-specific and we can't easily
9580     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9581     // for Other constraints as well.
9582     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9583         OpInfo.ConstraintType == TargetLowering::C_Other) {
9584       if (OpInfo.Type == InlineAsm::isInput)
9585         Flags |= InlineAsm::Extra_MayLoad;
9586       else if (OpInfo.Type == InlineAsm::isOutput)
9587         Flags |= InlineAsm::Extra_MayStore;
9588       else if (OpInfo.Type == InlineAsm::isClobber)
9589         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9590     }
9591   }
9592 
9593   unsigned get() const { return Flags; }
9594 };
9595 
9596 } // end anonymous namespace
9597 
9598 static bool isFunction(SDValue Op) {
9599   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9600     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9601       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9602 
9603       // In normal "call dllimport func" instruction (non-inlineasm) it force
9604       // indirect access by specifing call opcode. And usually specially print
9605       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9606       // not do in this way now. (In fact, this is similar with "Data Access"
9607       // action). So here we ignore dllimport function.
9608       if (Fn && !Fn->hasDLLImportStorageClass())
9609         return true;
9610     }
9611   }
9612   return false;
9613 }
9614 
9615 /// visitInlineAsm - Handle a call to an InlineAsm object.
9616 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9617                                          const BasicBlock *EHPadBB) {
9618   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9619 
9620   /// ConstraintOperands - Information about all of the constraints.
9621   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9622 
9623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9624   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9625       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9626 
9627   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9628   // AsmDialect, MayLoad, MayStore).
9629   bool HasSideEffect = IA->hasSideEffects();
9630   ExtraFlags ExtraInfo(Call);
9631 
9632   for (auto &T : TargetConstraints) {
9633     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9634     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9635 
9636     if (OpInfo.CallOperandVal)
9637       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9638 
9639     if (!HasSideEffect)
9640       HasSideEffect = OpInfo.hasMemory(TLI);
9641 
9642     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9643     // FIXME: Could we compute this on OpInfo rather than T?
9644 
9645     // Compute the constraint code and ConstraintType to use.
9646     TLI.ComputeConstraintToUse(T, SDValue());
9647 
9648     if (T.ConstraintType == TargetLowering::C_Immediate &&
9649         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9650       // We've delayed emitting a diagnostic like the "n" constraint because
9651       // inlining could cause an integer showing up.
9652       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9653                                           "' expects an integer constant "
9654                                           "expression");
9655 
9656     ExtraInfo.update(T);
9657   }
9658 
9659   // We won't need to flush pending loads if this asm doesn't touch
9660   // memory and is nonvolatile.
9661   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9662 
9663   bool EmitEHLabels = isa<InvokeInst>(Call);
9664   if (EmitEHLabels) {
9665     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9666   }
9667   bool IsCallBr = isa<CallBrInst>(Call);
9668 
9669   if (IsCallBr || EmitEHLabels) {
9670     // If this is a callbr or invoke we need to flush pending exports since
9671     // inlineasm_br and invoke are terminators.
9672     // We need to do this before nodes are glued to the inlineasm_br node.
9673     Chain = getControlRoot();
9674   }
9675 
9676   MCSymbol *BeginLabel = nullptr;
9677   if (EmitEHLabels) {
9678     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9679   }
9680 
9681   int OpNo = -1;
9682   SmallVector<StringRef> AsmStrs;
9683   IA->collectAsmStrs(AsmStrs);
9684 
9685   // Second pass over the constraints: compute which constraint option to use.
9686   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9687     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9688       OpNo++;
9689 
9690     // If this is an output operand with a matching input operand, look up the
9691     // matching input. If their types mismatch, e.g. one is an integer, the
9692     // other is floating point, or their sizes are different, flag it as an
9693     // error.
9694     if (OpInfo.hasMatchingInput()) {
9695       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9696       patchMatchingInput(OpInfo, Input, DAG);
9697     }
9698 
9699     // Compute the constraint code and ConstraintType to use.
9700     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9701 
9702     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9703          OpInfo.Type == InlineAsm::isClobber) ||
9704         OpInfo.ConstraintType == TargetLowering::C_Address)
9705       continue;
9706 
9707     // In Linux PIC model, there are 4 cases about value/label addressing:
9708     //
9709     // 1: Function call or Label jmp inside the module.
9710     // 2: Data access (such as global variable, static variable) inside module.
9711     // 3: Function call or Label jmp outside the module.
9712     // 4: Data access (such as global variable) outside the module.
9713     //
9714     // Due to current llvm inline asm architecture designed to not "recognize"
9715     // the asm code, there are quite troubles for us to treat mem addressing
9716     // differently for same value/adress used in different instuctions.
9717     // For example, in pic model, call a func may in plt way or direclty
9718     // pc-related, but lea/mov a function adress may use got.
9719     //
9720     // Here we try to "recognize" function call for the case 1 and case 3 in
9721     // inline asm. And try to adjust the constraint for them.
9722     //
9723     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9724     // label, so here we don't handle jmp function label now, but we need to
9725     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9726     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9727         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9728         TM.getCodeModel() != CodeModel::Large) {
9729       OpInfo.isIndirect = false;
9730       OpInfo.ConstraintType = TargetLowering::C_Address;
9731     }
9732 
9733     // If this is a memory input, and if the operand is not indirect, do what we
9734     // need to provide an address for the memory input.
9735     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9736         !OpInfo.isIndirect) {
9737       assert((OpInfo.isMultipleAlternative ||
9738               (OpInfo.Type == InlineAsm::isInput)) &&
9739              "Can only indirectify direct input operands!");
9740 
9741       // Memory operands really want the address of the value.
9742       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9743 
9744       // There is no longer a Value* corresponding to this operand.
9745       OpInfo.CallOperandVal = nullptr;
9746 
9747       // It is now an indirect operand.
9748       OpInfo.isIndirect = true;
9749     }
9750 
9751   }
9752 
9753   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9754   std::vector<SDValue> AsmNodeOperands;
9755   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9756   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9757       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9758 
9759   // If we have a !srcloc metadata node associated with it, we want to attach
9760   // this to the ultimately generated inline asm machineinstr.  To do this, we
9761   // pass in the third operand as this (potentially null) inline asm MDNode.
9762   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9763   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9764 
9765   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9766   // bits as operand 3.
9767   AsmNodeOperands.push_back(DAG.getTargetConstant(
9768       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9769 
9770   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9771   // this, assign virtual and physical registers for inputs and otput.
9772   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9773     // Assign Registers.
9774     SDISelAsmOperandInfo &RefOpInfo =
9775         OpInfo.isMatchingInputConstraint()
9776             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9777             : OpInfo;
9778     const auto RegError =
9779         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9780     if (RegError) {
9781       const MachineFunction &MF = DAG.getMachineFunction();
9782       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9783       const char *RegName = TRI.getName(*RegError);
9784       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9785                                    "' allocated for constraint '" +
9786                                    Twine(OpInfo.ConstraintCode) +
9787                                    "' does not match required type");
9788       return;
9789     }
9790 
9791     auto DetectWriteToReservedRegister = [&]() {
9792       const MachineFunction &MF = DAG.getMachineFunction();
9793       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9794       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9795         if (Register::isPhysicalRegister(Reg) &&
9796             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9797           const char *RegName = TRI.getName(Reg);
9798           emitInlineAsmError(Call, "write to reserved register '" +
9799                                        Twine(RegName) + "'");
9800           return true;
9801         }
9802       }
9803       return false;
9804     };
9805     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9806             (OpInfo.Type == InlineAsm::isInput &&
9807              !OpInfo.isMatchingInputConstraint())) &&
9808            "Only address as input operand is allowed.");
9809 
9810     switch (OpInfo.Type) {
9811     case InlineAsm::isOutput:
9812       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9813         const InlineAsm::ConstraintCode ConstraintID =
9814             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9815         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9816                "Failed to convert memory constraint code to constraint id.");
9817 
9818         // Add information to the INLINEASM node to know about this output.
9819         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9820         OpFlags.setMemConstraint(ConstraintID);
9821         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9822                                                         MVT::i32));
9823         AsmNodeOperands.push_back(OpInfo.CallOperand);
9824       } else {
9825         // Otherwise, this outputs to a register (directly for C_Register /
9826         // C_RegisterClass, and a target-defined fashion for
9827         // C_Immediate/C_Other). Find a register that we can use.
9828         if (OpInfo.AssignedRegs.Regs.empty()) {
9829           emitInlineAsmError(
9830               Call, "couldn't allocate output register for constraint '" +
9831                         Twine(OpInfo.ConstraintCode) + "'");
9832           return;
9833         }
9834 
9835         if (DetectWriteToReservedRegister())
9836           return;
9837 
9838         // Add information to the INLINEASM node to know that this register is
9839         // set.
9840         OpInfo.AssignedRegs.AddInlineAsmOperands(
9841             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9842                                   : InlineAsm::Kind::RegDef,
9843             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9844       }
9845       break;
9846 
9847     case InlineAsm::isInput:
9848     case InlineAsm::isLabel: {
9849       SDValue InOperandVal = OpInfo.CallOperand;
9850 
9851       if (OpInfo.isMatchingInputConstraint()) {
9852         // If this is required to match an output register we have already set,
9853         // just use its register.
9854         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9855                                                   AsmNodeOperands);
9856         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9857         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9858           if (OpInfo.isIndirect) {
9859             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9860             emitInlineAsmError(Call, "inline asm not supported yet: "
9861                                      "don't know how to handle tied "
9862                                      "indirect register inputs");
9863             return;
9864           }
9865 
9866           SmallVector<unsigned, 4> Regs;
9867           MachineFunction &MF = DAG.getMachineFunction();
9868           MachineRegisterInfo &MRI = MF.getRegInfo();
9869           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9870           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9871           Register TiedReg = R->getReg();
9872           MVT RegVT = R->getSimpleValueType(0);
9873           const TargetRegisterClass *RC =
9874               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9875               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9876                                       : TRI.getMinimalPhysRegClass(TiedReg);
9877           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9878             Regs.push_back(MRI.createVirtualRegister(RC));
9879 
9880           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9881 
9882           SDLoc dl = getCurSDLoc();
9883           // Use the produced MatchedRegs object to
9884           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9885           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9886                                            OpInfo.getMatchedOperand(), dl, DAG,
9887                                            AsmNodeOperands);
9888           break;
9889         }
9890 
9891         assert(Flag.isMemKind() && "Unknown matching constraint!");
9892         assert(Flag.getNumOperandRegisters() == 1 &&
9893                "Unexpected number of operands");
9894         // Add information to the INLINEASM node to know about this input.
9895         // See InlineAsm.h isUseOperandTiedToDef.
9896         Flag.clearMemConstraint();
9897         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9898         AsmNodeOperands.push_back(DAG.getTargetConstant(
9899             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9900         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9901         break;
9902       }
9903 
9904       // Treat indirect 'X' constraint as memory.
9905       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9906           OpInfo.isIndirect)
9907         OpInfo.ConstraintType = TargetLowering::C_Memory;
9908 
9909       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9910           OpInfo.ConstraintType == TargetLowering::C_Other) {
9911         std::vector<SDValue> Ops;
9912         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9913                                           Ops, DAG);
9914         if (Ops.empty()) {
9915           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9916             if (isa<ConstantSDNode>(InOperandVal)) {
9917               emitInlineAsmError(Call, "value out of range for constraint '" +
9918                                            Twine(OpInfo.ConstraintCode) + "'");
9919               return;
9920             }
9921 
9922           emitInlineAsmError(Call,
9923                              "invalid operand for inline asm constraint '" +
9924                                  Twine(OpInfo.ConstraintCode) + "'");
9925           return;
9926         }
9927 
9928         // Add information to the INLINEASM node to know about this input.
9929         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9930         AsmNodeOperands.push_back(DAG.getTargetConstant(
9931             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9932         llvm::append_range(AsmNodeOperands, Ops);
9933         break;
9934       }
9935 
9936       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9937         assert((OpInfo.isIndirect ||
9938                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9939                "Operand must be indirect to be a mem!");
9940         assert(InOperandVal.getValueType() ==
9941                    TLI.getPointerTy(DAG.getDataLayout()) &&
9942                "Memory operands expect pointer values");
9943 
9944         const InlineAsm::ConstraintCode ConstraintID =
9945             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9946         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9947                "Failed to convert memory constraint code to constraint id.");
9948 
9949         // Add information to the INLINEASM node to know about this input.
9950         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9951         ResOpType.setMemConstraint(ConstraintID);
9952         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9953                                                         getCurSDLoc(),
9954                                                         MVT::i32));
9955         AsmNodeOperands.push_back(InOperandVal);
9956         break;
9957       }
9958 
9959       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9960         const InlineAsm::ConstraintCode ConstraintID =
9961             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9962         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9963                "Failed to convert memory constraint code to constraint id.");
9964 
9965         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9966 
9967         SDValue AsmOp = InOperandVal;
9968         if (isFunction(InOperandVal)) {
9969           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9970           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9971           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9972                                              InOperandVal.getValueType(),
9973                                              GA->getOffset());
9974         }
9975 
9976         // Add information to the INLINEASM node to know about this input.
9977         ResOpType.setMemConstraint(ConstraintID);
9978 
9979         AsmNodeOperands.push_back(
9980             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9981 
9982         AsmNodeOperands.push_back(AsmOp);
9983         break;
9984       }
9985 
9986       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9987               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9988              "Unknown constraint type!");
9989 
9990       // TODO: Support this.
9991       if (OpInfo.isIndirect) {
9992         emitInlineAsmError(
9993             Call, "Don't know how to handle indirect register inputs yet "
9994                   "for constraint '" +
9995                       Twine(OpInfo.ConstraintCode) + "'");
9996         return;
9997       }
9998 
9999       // Copy the input into the appropriate registers.
10000       if (OpInfo.AssignedRegs.Regs.empty()) {
10001         emitInlineAsmError(Call,
10002                            "couldn't allocate input reg for constraint '" +
10003                                Twine(OpInfo.ConstraintCode) + "'");
10004         return;
10005       }
10006 
10007       if (DetectWriteToReservedRegister())
10008         return;
10009 
10010       SDLoc dl = getCurSDLoc();
10011 
10012       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10013                                         &Call);
10014 
10015       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10016                                                0, dl, DAG, AsmNodeOperands);
10017       break;
10018     }
10019     case InlineAsm::isClobber:
10020       // Add the clobbered value to the operand list, so that the register
10021       // allocator is aware that the physreg got clobbered.
10022       if (!OpInfo.AssignedRegs.Regs.empty())
10023         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10024                                                  false, 0, getCurSDLoc(), DAG,
10025                                                  AsmNodeOperands);
10026       break;
10027     }
10028   }
10029 
10030   // Finish up input operands.  Set the input chain and add the flag last.
10031   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10032   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10033 
10034   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10035   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10036                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10037   Glue = Chain.getValue(1);
10038 
10039   // Do additional work to generate outputs.
10040 
10041   SmallVector<EVT, 1> ResultVTs;
10042   SmallVector<SDValue, 1> ResultValues;
10043   SmallVector<SDValue, 8> OutChains;
10044 
10045   llvm::Type *CallResultType = Call.getType();
10046   ArrayRef<Type *> ResultTypes;
10047   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10048     ResultTypes = StructResult->elements();
10049   else if (!CallResultType->isVoidTy())
10050     ResultTypes = ArrayRef(CallResultType);
10051 
10052   auto CurResultType = ResultTypes.begin();
10053   auto handleRegAssign = [&](SDValue V) {
10054     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10055     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10056     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10057     ++CurResultType;
10058     // If the type of the inline asm call site return value is different but has
10059     // same size as the type of the asm output bitcast it.  One example of this
10060     // is for vectors with different width / number of elements.  This can
10061     // happen for register classes that can contain multiple different value
10062     // types.  The preg or vreg allocated may not have the same VT as was
10063     // expected.
10064     //
10065     // This can also happen for a return value that disagrees with the register
10066     // class it is put in, eg. a double in a general-purpose register on a
10067     // 32-bit machine.
10068     if (ResultVT != V.getValueType() &&
10069         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10070       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10071     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10072              V.getValueType().isInteger()) {
10073       // If a result value was tied to an input value, the computed result
10074       // may have a wider width than the expected result.  Extract the
10075       // relevant portion.
10076       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10077     }
10078     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10079     ResultVTs.push_back(ResultVT);
10080     ResultValues.push_back(V);
10081   };
10082 
10083   // Deal with output operands.
10084   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10085     if (OpInfo.Type == InlineAsm::isOutput) {
10086       SDValue Val;
10087       // Skip trivial output operands.
10088       if (OpInfo.AssignedRegs.Regs.empty())
10089         continue;
10090 
10091       switch (OpInfo.ConstraintType) {
10092       case TargetLowering::C_Register:
10093       case TargetLowering::C_RegisterClass:
10094         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10095                                                   Chain, &Glue, &Call);
10096         break;
10097       case TargetLowering::C_Immediate:
10098       case TargetLowering::C_Other:
10099         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10100                                               OpInfo, DAG);
10101         break;
10102       case TargetLowering::C_Memory:
10103         break; // Already handled.
10104       case TargetLowering::C_Address:
10105         break; // Silence warning.
10106       case TargetLowering::C_Unknown:
10107         assert(false && "Unexpected unknown constraint");
10108       }
10109 
10110       // Indirect output manifest as stores. Record output chains.
10111       if (OpInfo.isIndirect) {
10112         const Value *Ptr = OpInfo.CallOperandVal;
10113         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10114         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10115                                      MachinePointerInfo(Ptr));
10116         OutChains.push_back(Store);
10117       } else {
10118         // generate CopyFromRegs to associated registers.
10119         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10120         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10121           for (const SDValue &V : Val->op_values())
10122             handleRegAssign(V);
10123         } else
10124           handleRegAssign(Val);
10125       }
10126     }
10127   }
10128 
10129   // Set results.
10130   if (!ResultValues.empty()) {
10131     assert(CurResultType == ResultTypes.end() &&
10132            "Mismatch in number of ResultTypes");
10133     assert(ResultValues.size() == ResultTypes.size() &&
10134            "Mismatch in number of output operands in asm result");
10135 
10136     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10137                             DAG.getVTList(ResultVTs), ResultValues);
10138     setValue(&Call, V);
10139   }
10140 
10141   // Collect store chains.
10142   if (!OutChains.empty())
10143     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10144 
10145   if (EmitEHLabels) {
10146     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10147   }
10148 
10149   // Only Update Root if inline assembly has a memory effect.
10150   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10151       EmitEHLabels)
10152     DAG.setRoot(Chain);
10153 }
10154 
10155 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10156                                              const Twine &Message) {
10157   LLVMContext &Ctx = *DAG.getContext();
10158   Ctx.emitError(&Call, Message);
10159 
10160   // Make sure we leave the DAG in a valid state
10161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10162   SmallVector<EVT, 1> ValueVTs;
10163   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10164 
10165   if (ValueVTs.empty())
10166     return;
10167 
10168   SmallVector<SDValue, 1> Ops;
10169   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
10170     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
10171 
10172   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10173 }
10174 
10175 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10176   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10177                           MVT::Other, getRoot(),
10178                           getValue(I.getArgOperand(0)),
10179                           DAG.getSrcValue(I.getArgOperand(0))));
10180 }
10181 
10182 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10184   const DataLayout &DL = DAG.getDataLayout();
10185   SDValue V = DAG.getVAArg(
10186       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10187       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10188       DL.getABITypeAlign(I.getType()).value());
10189   DAG.setRoot(V.getValue(1));
10190 
10191   if (I.getType()->isPointerTy())
10192     V = DAG.getPtrExtOrTrunc(
10193         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10194   setValue(&I, V);
10195 }
10196 
10197 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10198   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10199                           MVT::Other, getRoot(),
10200                           getValue(I.getArgOperand(0)),
10201                           DAG.getSrcValue(I.getArgOperand(0))));
10202 }
10203 
10204 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10205   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10206                           MVT::Other, getRoot(),
10207                           getValue(I.getArgOperand(0)),
10208                           getValue(I.getArgOperand(1)),
10209                           DAG.getSrcValue(I.getArgOperand(0)),
10210                           DAG.getSrcValue(I.getArgOperand(1))));
10211 }
10212 
10213 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10214                                                     const Instruction &I,
10215                                                     SDValue Op) {
10216   const MDNode *Range = getRangeMetadata(I);
10217   if (!Range)
10218     return Op;
10219 
10220   ConstantRange CR = getConstantRangeFromMetadata(*Range);
10221   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
10222     return Op;
10223 
10224   APInt Lo = CR.getUnsignedMin();
10225   if (!Lo.isMinValue())
10226     return Op;
10227 
10228   APInt Hi = CR.getUnsignedMax();
10229   unsigned Bits = std::max(Hi.getActiveBits(),
10230                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10231 
10232   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10233 
10234   SDLoc SL = getCurSDLoc();
10235 
10236   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10237                              DAG.getValueType(SmallVT));
10238   unsigned NumVals = Op.getNode()->getNumValues();
10239   if (NumVals == 1)
10240     return ZExt;
10241 
10242   SmallVector<SDValue, 4> Ops;
10243 
10244   Ops.push_back(ZExt);
10245   for (unsigned I = 1; I != NumVals; ++I)
10246     Ops.push_back(Op.getValue(I));
10247 
10248   return DAG.getMergeValues(Ops, SL);
10249 }
10250 
10251 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10252 /// the call being lowered.
10253 ///
10254 /// This is a helper for lowering intrinsics that follow a target calling
10255 /// convention or require stack pointer adjustment. Only a subset of the
10256 /// intrinsic's operands need to participate in the calling convention.
10257 void SelectionDAGBuilder::populateCallLoweringInfo(
10258     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10259     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10260     AttributeSet RetAttrs, bool IsPatchPoint) {
10261   TargetLowering::ArgListTy Args;
10262   Args.reserve(NumArgs);
10263 
10264   // Populate the argument list.
10265   // Attributes for args start at offset 1, after the return attribute.
10266   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10267        ArgI != ArgE; ++ArgI) {
10268     const Value *V = Call->getOperand(ArgI);
10269 
10270     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10271 
10272     TargetLowering::ArgListEntry Entry;
10273     Entry.Node = getValue(V);
10274     Entry.Ty = V->getType();
10275     Entry.setAttributes(Call, ArgI);
10276     Args.push_back(Entry);
10277   }
10278 
10279   CLI.setDebugLoc(getCurSDLoc())
10280       .setChain(getRoot())
10281       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10282                  RetAttrs)
10283       .setDiscardResult(Call->use_empty())
10284       .setIsPatchPoint(IsPatchPoint)
10285       .setIsPreallocated(
10286           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10287 }
10288 
10289 /// Add a stack map intrinsic call's live variable operands to a stackmap
10290 /// or patchpoint target node's operand list.
10291 ///
10292 /// Constants are converted to TargetConstants purely as an optimization to
10293 /// avoid constant materialization and register allocation.
10294 ///
10295 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10296 /// generate addess computation nodes, and so FinalizeISel can convert the
10297 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10298 /// address materialization and register allocation, but may also be required
10299 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10300 /// alloca in the entry block, then the runtime may assume that the alloca's
10301 /// StackMap location can be read immediately after compilation and that the
10302 /// location is valid at any point during execution (this is similar to the
10303 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10304 /// only available in a register, then the runtime would need to trap when
10305 /// execution reaches the StackMap in order to read the alloca's location.
10306 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10307                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10308                                 SelectionDAGBuilder &Builder) {
10309   SelectionDAG &DAG = Builder.DAG;
10310   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10311     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10312 
10313     // Things on the stack are pointer-typed, meaning that they are already
10314     // legal and can be emitted directly to target nodes.
10315     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10316       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10317     } else {
10318       // Otherwise emit a target independent node to be legalised.
10319       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10320     }
10321   }
10322 }
10323 
10324 /// Lower llvm.experimental.stackmap.
10325 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10326   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10327   //                                  [live variables...])
10328 
10329   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10330 
10331   SDValue Chain, InGlue, Callee;
10332   SmallVector<SDValue, 32> Ops;
10333 
10334   SDLoc DL = getCurSDLoc();
10335   Callee = getValue(CI.getCalledOperand());
10336 
10337   // The stackmap intrinsic only records the live variables (the arguments
10338   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10339   // intrinsic, this won't be lowered to a function call. This means we don't
10340   // have to worry about calling conventions and target specific lowering code.
10341   // Instead we perform the call lowering right here.
10342   //
10343   // chain, flag = CALLSEQ_START(chain, 0, 0)
10344   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10345   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10346   //
10347   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10348   InGlue = Chain.getValue(1);
10349 
10350   // Add the STACKMAP operands, starting with DAG house-keeping.
10351   Ops.push_back(Chain);
10352   Ops.push_back(InGlue);
10353 
10354   // Add the <id>, <numShadowBytes> operands.
10355   //
10356   // These do not require legalisation, and can be emitted directly to target
10357   // constant nodes.
10358   SDValue ID = getValue(CI.getArgOperand(0));
10359   assert(ID.getValueType() == MVT::i64);
10360   SDValue IDConst =
10361       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10362   Ops.push_back(IDConst);
10363 
10364   SDValue Shad = getValue(CI.getArgOperand(1));
10365   assert(Shad.getValueType() == MVT::i32);
10366   SDValue ShadConst =
10367       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10368   Ops.push_back(ShadConst);
10369 
10370   // Add the live variables.
10371   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10372 
10373   // Create the STACKMAP node.
10374   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10375   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10376   InGlue = Chain.getValue(1);
10377 
10378   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10379 
10380   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10381 
10382   // Set the root to the target-lowered call chain.
10383   DAG.setRoot(Chain);
10384 
10385   // Inform the Frame Information that we have a stackmap in this function.
10386   FuncInfo.MF->getFrameInfo().setHasStackMap();
10387 }
10388 
10389 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10390 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10391                                           const BasicBlock *EHPadBB) {
10392   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10393   //                                         i32 <numBytes>,
10394   //                                         i8* <target>,
10395   //                                         i32 <numArgs>,
10396   //                                         [Args...],
10397   //                                         [live variables...])
10398 
10399   CallingConv::ID CC = CB.getCallingConv();
10400   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10401   bool HasDef = !CB.getType()->isVoidTy();
10402   SDLoc dl = getCurSDLoc();
10403   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10404 
10405   // Handle immediate and symbolic callees.
10406   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10407     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10408                                    /*isTarget=*/true);
10409   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10410     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10411                                          SDLoc(SymbolicCallee),
10412                                          SymbolicCallee->getValueType(0));
10413 
10414   // Get the real number of arguments participating in the call <numArgs>
10415   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10416   unsigned NumArgs = NArgVal->getAsZExtVal();
10417 
10418   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10419   // Intrinsics include all meta-operands up to but not including CC.
10420   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10421   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10422          "Not enough arguments provided to the patchpoint intrinsic");
10423 
10424   // For AnyRegCC the arguments are lowered later on manually.
10425   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10426   Type *ReturnTy =
10427       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10428 
10429   TargetLowering::CallLoweringInfo CLI(DAG);
10430   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10431                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10432   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10433 
10434   SDNode *CallEnd = Result.second.getNode();
10435   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10436     CallEnd = CallEnd->getOperand(0).getNode();
10437 
10438   /// Get a call instruction from the call sequence chain.
10439   /// Tail calls are not allowed.
10440   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10441          "Expected a callseq node.");
10442   SDNode *Call = CallEnd->getOperand(0).getNode();
10443   bool HasGlue = Call->getGluedNode();
10444 
10445   // Replace the target specific call node with the patchable intrinsic.
10446   SmallVector<SDValue, 8> Ops;
10447 
10448   // Push the chain.
10449   Ops.push_back(*(Call->op_begin()));
10450 
10451   // Optionally, push the glue (if any).
10452   if (HasGlue)
10453     Ops.push_back(*(Call->op_end() - 1));
10454 
10455   // Push the register mask info.
10456   if (HasGlue)
10457     Ops.push_back(*(Call->op_end() - 2));
10458   else
10459     Ops.push_back(*(Call->op_end() - 1));
10460 
10461   // Add the <id> and <numBytes> constants.
10462   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10463   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10464   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10465   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10466 
10467   // Add the callee.
10468   Ops.push_back(Callee);
10469 
10470   // Adjust <numArgs> to account for any arguments that have been passed on the
10471   // stack instead.
10472   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10473   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10474   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10475   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10476 
10477   // Add the calling convention
10478   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10479 
10480   // Add the arguments we omitted previously. The register allocator should
10481   // place these in any free register.
10482   if (IsAnyRegCC)
10483     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10484       Ops.push_back(getValue(CB.getArgOperand(i)));
10485 
10486   // Push the arguments from the call instruction.
10487   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10488   Ops.append(Call->op_begin() + 2, e);
10489 
10490   // Push live variables for the stack map.
10491   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10492 
10493   SDVTList NodeTys;
10494   if (IsAnyRegCC && HasDef) {
10495     // Create the return types based on the intrinsic definition
10496     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10497     SmallVector<EVT, 3> ValueVTs;
10498     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10499     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10500 
10501     // There is always a chain and a glue type at the end
10502     ValueVTs.push_back(MVT::Other);
10503     ValueVTs.push_back(MVT::Glue);
10504     NodeTys = DAG.getVTList(ValueVTs);
10505   } else
10506     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10507 
10508   // Replace the target specific call node with a PATCHPOINT node.
10509   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10510 
10511   // Update the NodeMap.
10512   if (HasDef) {
10513     if (IsAnyRegCC)
10514       setValue(&CB, SDValue(PPV.getNode(), 0));
10515     else
10516       setValue(&CB, Result.first);
10517   }
10518 
10519   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10520   // call sequence. Furthermore the location of the chain and glue can change
10521   // when the AnyReg calling convention is used and the intrinsic returns a
10522   // value.
10523   if (IsAnyRegCC && HasDef) {
10524     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10525     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10526     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10527   } else
10528     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10529   DAG.DeleteNode(Call);
10530 
10531   // Inform the Frame Information that we have a patchpoint in this function.
10532   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10533 }
10534 
10535 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10536                                             unsigned Intrinsic) {
10537   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10538   SDValue Op1 = getValue(I.getArgOperand(0));
10539   SDValue Op2;
10540   if (I.arg_size() > 1)
10541     Op2 = getValue(I.getArgOperand(1));
10542   SDLoc dl = getCurSDLoc();
10543   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10544   SDValue Res;
10545   SDNodeFlags SDFlags;
10546   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10547     SDFlags.copyFMF(*FPMO);
10548 
10549   switch (Intrinsic) {
10550   case Intrinsic::vector_reduce_fadd:
10551     if (SDFlags.hasAllowReassociation())
10552       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10553                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10554                         SDFlags);
10555     else
10556       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10557     break;
10558   case Intrinsic::vector_reduce_fmul:
10559     if (SDFlags.hasAllowReassociation())
10560       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10561                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10562                         SDFlags);
10563     else
10564       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10565     break;
10566   case Intrinsic::vector_reduce_add:
10567     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10568     break;
10569   case Intrinsic::vector_reduce_mul:
10570     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10571     break;
10572   case Intrinsic::vector_reduce_and:
10573     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10574     break;
10575   case Intrinsic::vector_reduce_or:
10576     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10577     break;
10578   case Intrinsic::vector_reduce_xor:
10579     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10580     break;
10581   case Intrinsic::vector_reduce_smax:
10582     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10583     break;
10584   case Intrinsic::vector_reduce_smin:
10585     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10586     break;
10587   case Intrinsic::vector_reduce_umax:
10588     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10589     break;
10590   case Intrinsic::vector_reduce_umin:
10591     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10592     break;
10593   case Intrinsic::vector_reduce_fmax:
10594     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10595     break;
10596   case Intrinsic::vector_reduce_fmin:
10597     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10598     break;
10599   case Intrinsic::vector_reduce_fmaximum:
10600     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10601     break;
10602   case Intrinsic::vector_reduce_fminimum:
10603     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10604     break;
10605   default:
10606     llvm_unreachable("Unhandled vector reduce intrinsic");
10607   }
10608   setValue(&I, Res);
10609 }
10610 
10611 /// Returns an AttributeList representing the attributes applied to the return
10612 /// value of the given call.
10613 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10614   SmallVector<Attribute::AttrKind, 2> Attrs;
10615   if (CLI.RetSExt)
10616     Attrs.push_back(Attribute::SExt);
10617   if (CLI.RetZExt)
10618     Attrs.push_back(Attribute::ZExt);
10619   if (CLI.IsInReg)
10620     Attrs.push_back(Attribute::InReg);
10621 
10622   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10623                             Attrs);
10624 }
10625 
10626 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10627 /// implementation, which just calls LowerCall.
10628 /// FIXME: When all targets are
10629 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10630 std::pair<SDValue, SDValue>
10631 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10632   // Handle the incoming return values from the call.
10633   CLI.Ins.clear();
10634   Type *OrigRetTy = CLI.RetTy;
10635   SmallVector<EVT, 4> RetTys;
10636   SmallVector<TypeSize, 4> Offsets;
10637   auto &DL = CLI.DAG.getDataLayout();
10638   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10639 
10640   if (CLI.IsPostTypeLegalization) {
10641     // If we are lowering a libcall after legalization, split the return type.
10642     SmallVector<EVT, 4> OldRetTys;
10643     SmallVector<TypeSize, 4> OldOffsets;
10644     RetTys.swap(OldRetTys);
10645     Offsets.swap(OldOffsets);
10646 
10647     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10648       EVT RetVT = OldRetTys[i];
10649       uint64_t Offset = OldOffsets[i];
10650       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10651       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10652       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10653       RetTys.append(NumRegs, RegisterVT);
10654       for (unsigned j = 0; j != NumRegs; ++j)
10655         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10656     }
10657   }
10658 
10659   SmallVector<ISD::OutputArg, 4> Outs;
10660   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10661 
10662   bool CanLowerReturn =
10663       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10664                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10665 
10666   SDValue DemoteStackSlot;
10667   int DemoteStackIdx = -100;
10668   if (!CanLowerReturn) {
10669     // FIXME: equivalent assert?
10670     // assert(!CS.hasInAllocaArgument() &&
10671     //        "sret demotion is incompatible with inalloca");
10672     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10673     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10674     MachineFunction &MF = CLI.DAG.getMachineFunction();
10675     DemoteStackIdx =
10676         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10677     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10678                                               DL.getAllocaAddrSpace());
10679 
10680     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10681     ArgListEntry Entry;
10682     Entry.Node = DemoteStackSlot;
10683     Entry.Ty = StackSlotPtrType;
10684     Entry.IsSExt = false;
10685     Entry.IsZExt = false;
10686     Entry.IsInReg = false;
10687     Entry.IsSRet = true;
10688     Entry.IsNest = false;
10689     Entry.IsByVal = false;
10690     Entry.IsByRef = false;
10691     Entry.IsReturned = false;
10692     Entry.IsSwiftSelf = false;
10693     Entry.IsSwiftAsync = false;
10694     Entry.IsSwiftError = false;
10695     Entry.IsCFGuardTarget = false;
10696     Entry.Alignment = Alignment;
10697     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10698     CLI.NumFixedArgs += 1;
10699     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10700     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10701 
10702     // sret demotion isn't compatible with tail-calls, since the sret argument
10703     // points into the callers stack frame.
10704     CLI.IsTailCall = false;
10705   } else {
10706     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10707         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10708     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10709       ISD::ArgFlagsTy Flags;
10710       if (NeedsRegBlock) {
10711         Flags.setInConsecutiveRegs();
10712         if (I == RetTys.size() - 1)
10713           Flags.setInConsecutiveRegsLast();
10714       }
10715       EVT VT = RetTys[I];
10716       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10717                                                      CLI.CallConv, VT);
10718       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10719                                                        CLI.CallConv, VT);
10720       for (unsigned i = 0; i != NumRegs; ++i) {
10721         ISD::InputArg MyFlags;
10722         MyFlags.Flags = Flags;
10723         MyFlags.VT = RegisterVT;
10724         MyFlags.ArgVT = VT;
10725         MyFlags.Used = CLI.IsReturnValueUsed;
10726         if (CLI.RetTy->isPointerTy()) {
10727           MyFlags.Flags.setPointer();
10728           MyFlags.Flags.setPointerAddrSpace(
10729               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10730         }
10731         if (CLI.RetSExt)
10732           MyFlags.Flags.setSExt();
10733         if (CLI.RetZExt)
10734           MyFlags.Flags.setZExt();
10735         if (CLI.IsInReg)
10736           MyFlags.Flags.setInReg();
10737         CLI.Ins.push_back(MyFlags);
10738       }
10739     }
10740   }
10741 
10742   // We push in swifterror return as the last element of CLI.Ins.
10743   ArgListTy &Args = CLI.getArgs();
10744   if (supportSwiftError()) {
10745     for (const ArgListEntry &Arg : Args) {
10746       if (Arg.IsSwiftError) {
10747         ISD::InputArg MyFlags;
10748         MyFlags.VT = getPointerTy(DL);
10749         MyFlags.ArgVT = EVT(getPointerTy(DL));
10750         MyFlags.Flags.setSwiftError();
10751         CLI.Ins.push_back(MyFlags);
10752       }
10753     }
10754   }
10755 
10756   // Handle all of the outgoing arguments.
10757   CLI.Outs.clear();
10758   CLI.OutVals.clear();
10759   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10760     SmallVector<EVT, 4> ValueVTs;
10761     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10762     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10763     Type *FinalType = Args[i].Ty;
10764     if (Args[i].IsByVal)
10765       FinalType = Args[i].IndirectType;
10766     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10767         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10768     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10769          ++Value) {
10770       EVT VT = ValueVTs[Value];
10771       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10772       SDValue Op = SDValue(Args[i].Node.getNode(),
10773                            Args[i].Node.getResNo() + Value);
10774       ISD::ArgFlagsTy Flags;
10775 
10776       // Certain targets (such as MIPS), may have a different ABI alignment
10777       // for a type depending on the context. Give the target a chance to
10778       // specify the alignment it wants.
10779       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10780       Flags.setOrigAlign(OriginalAlignment);
10781 
10782       if (Args[i].Ty->isPointerTy()) {
10783         Flags.setPointer();
10784         Flags.setPointerAddrSpace(
10785             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10786       }
10787       if (Args[i].IsZExt)
10788         Flags.setZExt();
10789       if (Args[i].IsSExt)
10790         Flags.setSExt();
10791       if (Args[i].IsInReg) {
10792         // If we are using vectorcall calling convention, a structure that is
10793         // passed InReg - is surely an HVA
10794         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10795             isa<StructType>(FinalType)) {
10796           // The first value of a structure is marked
10797           if (0 == Value)
10798             Flags.setHvaStart();
10799           Flags.setHva();
10800         }
10801         // Set InReg Flag
10802         Flags.setInReg();
10803       }
10804       if (Args[i].IsSRet)
10805         Flags.setSRet();
10806       if (Args[i].IsSwiftSelf)
10807         Flags.setSwiftSelf();
10808       if (Args[i].IsSwiftAsync)
10809         Flags.setSwiftAsync();
10810       if (Args[i].IsSwiftError)
10811         Flags.setSwiftError();
10812       if (Args[i].IsCFGuardTarget)
10813         Flags.setCFGuardTarget();
10814       if (Args[i].IsByVal)
10815         Flags.setByVal();
10816       if (Args[i].IsByRef)
10817         Flags.setByRef();
10818       if (Args[i].IsPreallocated) {
10819         Flags.setPreallocated();
10820         // Set the byval flag for CCAssignFn callbacks that don't know about
10821         // preallocated.  This way we can know how many bytes we should've
10822         // allocated and how many bytes a callee cleanup function will pop.  If
10823         // we port preallocated to more targets, we'll have to add custom
10824         // preallocated handling in the various CC lowering callbacks.
10825         Flags.setByVal();
10826       }
10827       if (Args[i].IsInAlloca) {
10828         Flags.setInAlloca();
10829         // Set the byval flag for CCAssignFn callbacks that don't know about
10830         // inalloca.  This way we can know how many bytes we should've allocated
10831         // and how many bytes a callee cleanup function will pop.  If we port
10832         // inalloca to more targets, we'll have to add custom inalloca handling
10833         // in the various CC lowering callbacks.
10834         Flags.setByVal();
10835       }
10836       Align MemAlign;
10837       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10838         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10839         Flags.setByValSize(FrameSize);
10840 
10841         // info is not there but there are cases it cannot get right.
10842         if (auto MA = Args[i].Alignment)
10843           MemAlign = *MA;
10844         else
10845           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10846       } else if (auto MA = Args[i].Alignment) {
10847         MemAlign = *MA;
10848       } else {
10849         MemAlign = OriginalAlignment;
10850       }
10851       Flags.setMemAlign(MemAlign);
10852       if (Args[i].IsNest)
10853         Flags.setNest();
10854       if (NeedsRegBlock)
10855         Flags.setInConsecutiveRegs();
10856 
10857       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10858                                                  CLI.CallConv, VT);
10859       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10860                                                         CLI.CallConv, VT);
10861       SmallVector<SDValue, 4> Parts(NumParts);
10862       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10863 
10864       if (Args[i].IsSExt)
10865         ExtendKind = ISD::SIGN_EXTEND;
10866       else if (Args[i].IsZExt)
10867         ExtendKind = ISD::ZERO_EXTEND;
10868 
10869       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10870       // for now.
10871       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10872           CanLowerReturn) {
10873         assert((CLI.RetTy == Args[i].Ty ||
10874                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10875                  CLI.RetTy->getPointerAddressSpace() ==
10876                      Args[i].Ty->getPointerAddressSpace())) &&
10877                RetTys.size() == NumValues && "unexpected use of 'returned'");
10878         // Before passing 'returned' to the target lowering code, ensure that
10879         // either the register MVT and the actual EVT are the same size or that
10880         // the return value and argument are extended in the same way; in these
10881         // cases it's safe to pass the argument register value unchanged as the
10882         // return register value (although it's at the target's option whether
10883         // to do so)
10884         // TODO: allow code generation to take advantage of partially preserved
10885         // registers rather than clobbering the entire register when the
10886         // parameter extension method is not compatible with the return
10887         // extension method
10888         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10889             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10890              CLI.RetZExt == Args[i].IsZExt))
10891           Flags.setReturned();
10892       }
10893 
10894       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10895                      CLI.CallConv, ExtendKind);
10896 
10897       for (unsigned j = 0; j != NumParts; ++j) {
10898         // if it isn't first piece, alignment must be 1
10899         // For scalable vectors the scalable part is currently handled
10900         // by individual targets, so we just use the known minimum size here.
10901         ISD::OutputArg MyFlags(
10902             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10903             i < CLI.NumFixedArgs, i,
10904             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10905         if (NumParts > 1 && j == 0)
10906           MyFlags.Flags.setSplit();
10907         else if (j != 0) {
10908           MyFlags.Flags.setOrigAlign(Align(1));
10909           if (j == NumParts - 1)
10910             MyFlags.Flags.setSplitEnd();
10911         }
10912 
10913         CLI.Outs.push_back(MyFlags);
10914         CLI.OutVals.push_back(Parts[j]);
10915       }
10916 
10917       if (NeedsRegBlock && Value == NumValues - 1)
10918         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10919     }
10920   }
10921 
10922   SmallVector<SDValue, 4> InVals;
10923   CLI.Chain = LowerCall(CLI, InVals);
10924 
10925   // Update CLI.InVals to use outside of this function.
10926   CLI.InVals = InVals;
10927 
10928   // Verify that the target's LowerCall behaved as expected.
10929   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10930          "LowerCall didn't return a valid chain!");
10931   assert((!CLI.IsTailCall || InVals.empty()) &&
10932          "LowerCall emitted a return value for a tail call!");
10933   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10934          "LowerCall didn't emit the correct number of values!");
10935 
10936   // For a tail call, the return value is merely live-out and there aren't
10937   // any nodes in the DAG representing it. Return a special value to
10938   // indicate that a tail call has been emitted and no more Instructions
10939   // should be processed in the current block.
10940   if (CLI.IsTailCall) {
10941     CLI.DAG.setRoot(CLI.Chain);
10942     return std::make_pair(SDValue(), SDValue());
10943   }
10944 
10945 #ifndef NDEBUG
10946   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10947     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10948     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10949            "LowerCall emitted a value with the wrong type!");
10950   }
10951 #endif
10952 
10953   SmallVector<SDValue, 4> ReturnValues;
10954   if (!CanLowerReturn) {
10955     // The instruction result is the result of loading from the
10956     // hidden sret parameter.
10957     SmallVector<EVT, 1> PVTs;
10958     Type *PtrRetTy =
10959         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10960 
10961     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10962     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10963     EVT PtrVT = PVTs[0];
10964 
10965     unsigned NumValues = RetTys.size();
10966     ReturnValues.resize(NumValues);
10967     SmallVector<SDValue, 4> Chains(NumValues);
10968 
10969     // An aggregate return value cannot wrap around the address space, so
10970     // offsets to its parts don't wrap either.
10971     SDNodeFlags Flags;
10972     Flags.setNoUnsignedWrap(true);
10973 
10974     MachineFunction &MF = CLI.DAG.getMachineFunction();
10975     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10976     for (unsigned i = 0; i < NumValues; ++i) {
10977       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10978                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10979                                                         PtrVT), Flags);
10980       SDValue L = CLI.DAG.getLoad(
10981           RetTys[i], CLI.DL, CLI.Chain, Add,
10982           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10983                                             DemoteStackIdx, Offsets[i]),
10984           HiddenSRetAlign);
10985       ReturnValues[i] = L;
10986       Chains[i] = L.getValue(1);
10987     }
10988 
10989     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10990   } else {
10991     // Collect the legal value parts into potentially illegal values
10992     // that correspond to the original function's return values.
10993     std::optional<ISD::NodeType> AssertOp;
10994     if (CLI.RetSExt)
10995       AssertOp = ISD::AssertSext;
10996     else if (CLI.RetZExt)
10997       AssertOp = ISD::AssertZext;
10998     unsigned CurReg = 0;
10999     for (EVT VT : RetTys) {
11000       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11001                                                      CLI.CallConv, VT);
11002       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11003                                                        CLI.CallConv, VT);
11004 
11005       ReturnValues.push_back(getCopyFromParts(
11006           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11007           CLI.Chain, CLI.CallConv, AssertOp));
11008       CurReg += NumRegs;
11009     }
11010 
11011     // For a function returning void, there is no return value. We can't create
11012     // such a node, so we just return a null return value in that case. In
11013     // that case, nothing will actually look at the value.
11014     if (ReturnValues.empty())
11015       return std::make_pair(SDValue(), CLI.Chain);
11016   }
11017 
11018   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11019                                 CLI.DAG.getVTList(RetTys), ReturnValues);
11020   return std::make_pair(Res, CLI.Chain);
11021 }
11022 
11023 /// Places new result values for the node in Results (their number
11024 /// and types must exactly match those of the original return values of
11025 /// the node), or leaves Results empty, which indicates that the node is not
11026 /// to be custom lowered after all.
11027 void TargetLowering::LowerOperationWrapper(SDNode *N,
11028                                            SmallVectorImpl<SDValue> &Results,
11029                                            SelectionDAG &DAG) const {
11030   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11031 
11032   if (!Res.getNode())
11033     return;
11034 
11035   // If the original node has one result, take the return value from
11036   // LowerOperation as is. It might not be result number 0.
11037   if (N->getNumValues() == 1) {
11038     Results.push_back(Res);
11039     return;
11040   }
11041 
11042   // If the original node has multiple results, then the return node should
11043   // have the same number of results.
11044   assert((N->getNumValues() == Res->getNumValues()) &&
11045       "Lowering returned the wrong number of results!");
11046 
11047   // Places new result values base on N result number.
11048   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11049     Results.push_back(Res.getValue(I));
11050 }
11051 
11052 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11053   llvm_unreachable("LowerOperation not implemented for this target!");
11054 }
11055 
11056 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11057                                                      unsigned Reg,
11058                                                      ISD::NodeType ExtendType) {
11059   SDValue Op = getNonRegisterValue(V);
11060   assert((Op.getOpcode() != ISD::CopyFromReg ||
11061           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11062          "Copy from a reg to the same reg!");
11063   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11064 
11065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11066   // If this is an InlineAsm we have to match the registers required, not the
11067   // notional registers required by the type.
11068 
11069   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11070                    std::nullopt); // This is not an ABI copy.
11071   SDValue Chain = DAG.getEntryNode();
11072 
11073   if (ExtendType == ISD::ANY_EXTEND) {
11074     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11075     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11076       ExtendType = PreferredExtendIt->second;
11077   }
11078   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11079   PendingExports.push_back(Chain);
11080 }
11081 
11082 #include "llvm/CodeGen/SelectionDAGISel.h"
11083 
11084 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11085 /// entry block, return true.  This includes arguments used by switches, since
11086 /// the switch may expand into multiple basic blocks.
11087 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11088   // With FastISel active, we may be splitting blocks, so force creation
11089   // of virtual registers for all non-dead arguments.
11090   if (FastISel)
11091     return A->use_empty();
11092 
11093   const BasicBlock &Entry = A->getParent()->front();
11094   for (const User *U : A->users())
11095     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11096       return false;  // Use not in entry block.
11097 
11098   return true;
11099 }
11100 
11101 using ArgCopyElisionMapTy =
11102     DenseMap<const Argument *,
11103              std::pair<const AllocaInst *, const StoreInst *>>;
11104 
11105 /// Scan the entry block of the function in FuncInfo for arguments that look
11106 /// like copies into a local alloca. Record any copied arguments in
11107 /// ArgCopyElisionCandidates.
11108 static void
11109 findArgumentCopyElisionCandidates(const DataLayout &DL,
11110                                   FunctionLoweringInfo *FuncInfo,
11111                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11112   // Record the state of every static alloca used in the entry block. Argument
11113   // allocas are all used in the entry block, so we need approximately as many
11114   // entries as we have arguments.
11115   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11116   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11117   unsigned NumArgs = FuncInfo->Fn->arg_size();
11118   StaticAllocas.reserve(NumArgs * 2);
11119 
11120   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11121     if (!V)
11122       return nullptr;
11123     V = V->stripPointerCasts();
11124     const auto *AI = dyn_cast<AllocaInst>(V);
11125     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11126       return nullptr;
11127     auto Iter = StaticAllocas.insert({AI, Unknown});
11128     return &Iter.first->second;
11129   };
11130 
11131   // Look for stores of arguments to static allocas. Look through bitcasts and
11132   // GEPs to handle type coercions, as long as the alloca is fully initialized
11133   // by the store. Any non-store use of an alloca escapes it and any subsequent
11134   // unanalyzed store might write it.
11135   // FIXME: Handle structs initialized with multiple stores.
11136   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11137     // Look for stores, and handle non-store uses conservatively.
11138     const auto *SI = dyn_cast<StoreInst>(&I);
11139     if (!SI) {
11140       // We will look through cast uses, so ignore them completely.
11141       if (I.isCast())
11142         continue;
11143       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11144       // to allocas.
11145       if (I.isDebugOrPseudoInst())
11146         continue;
11147       // This is an unknown instruction. Assume it escapes or writes to all
11148       // static alloca operands.
11149       for (const Use &U : I.operands()) {
11150         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11151           *Info = StaticAllocaInfo::Clobbered;
11152       }
11153       continue;
11154     }
11155 
11156     // If the stored value is a static alloca, mark it as escaped.
11157     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11158       *Info = StaticAllocaInfo::Clobbered;
11159 
11160     // Check if the destination is a static alloca.
11161     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11162     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11163     if (!Info)
11164       continue;
11165     const AllocaInst *AI = cast<AllocaInst>(Dst);
11166 
11167     // Skip allocas that have been initialized or clobbered.
11168     if (*Info != StaticAllocaInfo::Unknown)
11169       continue;
11170 
11171     // Check if the stored value is an argument, and that this store fully
11172     // initializes the alloca.
11173     // If the argument type has padding bits we can't directly forward a pointer
11174     // as the upper bits may contain garbage.
11175     // Don't elide copies from the same argument twice.
11176     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11177     const auto *Arg = dyn_cast<Argument>(Val);
11178     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11179         Arg->getType()->isEmptyTy() ||
11180         DL.getTypeStoreSize(Arg->getType()) !=
11181             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11182         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11183         ArgCopyElisionCandidates.count(Arg)) {
11184       *Info = StaticAllocaInfo::Clobbered;
11185       continue;
11186     }
11187 
11188     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11189                       << '\n');
11190 
11191     // Mark this alloca and store for argument copy elision.
11192     *Info = StaticAllocaInfo::Elidable;
11193     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11194 
11195     // Stop scanning if we've seen all arguments. This will happen early in -O0
11196     // builds, which is useful, because -O0 builds have large entry blocks and
11197     // many allocas.
11198     if (ArgCopyElisionCandidates.size() == NumArgs)
11199       break;
11200   }
11201 }
11202 
11203 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11204 /// ArgVal is a load from a suitable fixed stack object.
11205 static void tryToElideArgumentCopy(
11206     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11207     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11208     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11209     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11210     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11211   // Check if this is a load from a fixed stack object.
11212   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11213   if (!LNode)
11214     return;
11215   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11216   if (!FINode)
11217     return;
11218 
11219   // Check that the fixed stack object is the right size and alignment.
11220   // Look at the alignment that the user wrote on the alloca instead of looking
11221   // at the stack object.
11222   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11223   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11224   const AllocaInst *AI = ArgCopyIter->second.first;
11225   int FixedIndex = FINode->getIndex();
11226   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11227   int OldIndex = AllocaIndex;
11228   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11229   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11230     LLVM_DEBUG(
11231         dbgs() << "  argument copy elision failed due to bad fixed stack "
11232                   "object size\n");
11233     return;
11234   }
11235   Align RequiredAlignment = AI->getAlign();
11236   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11237     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11238                          "greater than stack argument alignment ("
11239                       << DebugStr(RequiredAlignment) << " vs "
11240                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11241     return;
11242   }
11243 
11244   // Perform the elision. Delete the old stack object and replace its only use
11245   // in the variable info map. Mark the stack object as mutable and aliased.
11246   LLVM_DEBUG({
11247     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11248            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11249            << '\n';
11250   });
11251   MFI.RemoveStackObject(OldIndex);
11252   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11253   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11254   AllocaIndex = FixedIndex;
11255   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11256   for (SDValue ArgVal : ArgVals)
11257     Chains.push_back(ArgVal.getValue(1));
11258 
11259   // Avoid emitting code for the store implementing the copy.
11260   const StoreInst *SI = ArgCopyIter->second.second;
11261   ElidedArgCopyInstrs.insert(SI);
11262 
11263   // Check for uses of the argument again so that we can avoid exporting ArgVal
11264   // if it is't used by anything other than the store.
11265   for (const Value *U : Arg.users()) {
11266     if (U != SI) {
11267       ArgHasUses = true;
11268       break;
11269     }
11270   }
11271 }
11272 
11273 void SelectionDAGISel::LowerArguments(const Function &F) {
11274   SelectionDAG &DAG = SDB->DAG;
11275   SDLoc dl = SDB->getCurSDLoc();
11276   const DataLayout &DL = DAG.getDataLayout();
11277   SmallVector<ISD::InputArg, 16> Ins;
11278 
11279   // In Naked functions we aren't going to save any registers.
11280   if (F.hasFnAttribute(Attribute::Naked))
11281     return;
11282 
11283   if (!FuncInfo->CanLowerReturn) {
11284     // Put in an sret pointer parameter before all the other parameters.
11285     SmallVector<EVT, 1> ValueVTs;
11286     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11287                     PointerType::get(F.getContext(),
11288                                      DAG.getDataLayout().getAllocaAddrSpace()),
11289                     ValueVTs);
11290 
11291     // NOTE: Assuming that a pointer will never break down to more than one VT
11292     // or one register.
11293     ISD::ArgFlagsTy Flags;
11294     Flags.setSRet();
11295     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11296     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11297                          ISD::InputArg::NoArgIndex, 0);
11298     Ins.push_back(RetArg);
11299   }
11300 
11301   // Look for stores of arguments to static allocas. Mark such arguments with a
11302   // flag to ask the target to give us the memory location of that argument if
11303   // available.
11304   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11305   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11306                                     ArgCopyElisionCandidates);
11307 
11308   // Set up the incoming argument description vector.
11309   for (const Argument &Arg : F.args()) {
11310     unsigned ArgNo = Arg.getArgNo();
11311     SmallVector<EVT, 4> ValueVTs;
11312     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11313     bool isArgValueUsed = !Arg.use_empty();
11314     unsigned PartBase = 0;
11315     Type *FinalType = Arg.getType();
11316     if (Arg.hasAttribute(Attribute::ByVal))
11317       FinalType = Arg.getParamByValType();
11318     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11319         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11320     for (unsigned Value = 0, NumValues = ValueVTs.size();
11321          Value != NumValues; ++Value) {
11322       EVT VT = ValueVTs[Value];
11323       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11324       ISD::ArgFlagsTy Flags;
11325 
11326 
11327       if (Arg.getType()->isPointerTy()) {
11328         Flags.setPointer();
11329         Flags.setPointerAddrSpace(
11330             cast<PointerType>(Arg.getType())->getAddressSpace());
11331       }
11332       if (Arg.hasAttribute(Attribute::ZExt))
11333         Flags.setZExt();
11334       if (Arg.hasAttribute(Attribute::SExt))
11335         Flags.setSExt();
11336       if (Arg.hasAttribute(Attribute::InReg)) {
11337         // If we are using vectorcall calling convention, a structure that is
11338         // passed InReg - is surely an HVA
11339         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11340             isa<StructType>(Arg.getType())) {
11341           // The first value of a structure is marked
11342           if (0 == Value)
11343             Flags.setHvaStart();
11344           Flags.setHva();
11345         }
11346         // Set InReg Flag
11347         Flags.setInReg();
11348       }
11349       if (Arg.hasAttribute(Attribute::StructRet))
11350         Flags.setSRet();
11351       if (Arg.hasAttribute(Attribute::SwiftSelf))
11352         Flags.setSwiftSelf();
11353       if (Arg.hasAttribute(Attribute::SwiftAsync))
11354         Flags.setSwiftAsync();
11355       if (Arg.hasAttribute(Attribute::SwiftError))
11356         Flags.setSwiftError();
11357       if (Arg.hasAttribute(Attribute::ByVal))
11358         Flags.setByVal();
11359       if (Arg.hasAttribute(Attribute::ByRef))
11360         Flags.setByRef();
11361       if (Arg.hasAttribute(Attribute::InAlloca)) {
11362         Flags.setInAlloca();
11363         // Set the byval flag for CCAssignFn callbacks that don't know about
11364         // inalloca.  This way we can know how many bytes we should've allocated
11365         // and how many bytes a callee cleanup function will pop.  If we port
11366         // inalloca to more targets, we'll have to add custom inalloca handling
11367         // in the various CC lowering callbacks.
11368         Flags.setByVal();
11369       }
11370       if (Arg.hasAttribute(Attribute::Preallocated)) {
11371         Flags.setPreallocated();
11372         // Set the byval flag for CCAssignFn callbacks that don't know about
11373         // preallocated.  This way we can know how many bytes we should've
11374         // allocated and how many bytes a callee cleanup function will pop.  If
11375         // we port preallocated to more targets, we'll have to add custom
11376         // preallocated handling in the various CC lowering callbacks.
11377         Flags.setByVal();
11378       }
11379 
11380       // Certain targets (such as MIPS), may have a different ABI alignment
11381       // for a type depending on the context. Give the target a chance to
11382       // specify the alignment it wants.
11383       const Align OriginalAlignment(
11384           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11385       Flags.setOrigAlign(OriginalAlignment);
11386 
11387       Align MemAlign;
11388       Type *ArgMemTy = nullptr;
11389       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11390           Flags.isByRef()) {
11391         if (!ArgMemTy)
11392           ArgMemTy = Arg.getPointeeInMemoryValueType();
11393 
11394         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11395 
11396         // For in-memory arguments, size and alignment should be passed from FE.
11397         // BE will guess if this info is not there but there are cases it cannot
11398         // get right.
11399         if (auto ParamAlign = Arg.getParamStackAlign())
11400           MemAlign = *ParamAlign;
11401         else if ((ParamAlign = Arg.getParamAlign()))
11402           MemAlign = *ParamAlign;
11403         else
11404           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11405         if (Flags.isByRef())
11406           Flags.setByRefSize(MemSize);
11407         else
11408           Flags.setByValSize(MemSize);
11409       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11410         MemAlign = *ParamAlign;
11411       } else {
11412         MemAlign = OriginalAlignment;
11413       }
11414       Flags.setMemAlign(MemAlign);
11415 
11416       if (Arg.hasAttribute(Attribute::Nest))
11417         Flags.setNest();
11418       if (NeedsRegBlock)
11419         Flags.setInConsecutiveRegs();
11420       if (ArgCopyElisionCandidates.count(&Arg))
11421         Flags.setCopyElisionCandidate();
11422       if (Arg.hasAttribute(Attribute::Returned))
11423         Flags.setReturned();
11424 
11425       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11426           *CurDAG->getContext(), F.getCallingConv(), VT);
11427       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11428           *CurDAG->getContext(), F.getCallingConv(), VT);
11429       for (unsigned i = 0; i != NumRegs; ++i) {
11430         // For scalable vectors, use the minimum size; individual targets
11431         // are responsible for handling scalable vector arguments and
11432         // return values.
11433         ISD::InputArg MyFlags(
11434             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11435             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11436         if (NumRegs > 1 && i == 0)
11437           MyFlags.Flags.setSplit();
11438         // if it isn't first piece, alignment must be 1
11439         else if (i > 0) {
11440           MyFlags.Flags.setOrigAlign(Align(1));
11441           if (i == NumRegs - 1)
11442             MyFlags.Flags.setSplitEnd();
11443         }
11444         Ins.push_back(MyFlags);
11445       }
11446       if (NeedsRegBlock && Value == NumValues - 1)
11447         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11448       PartBase += VT.getStoreSize().getKnownMinValue();
11449     }
11450   }
11451 
11452   // Call the target to set up the argument values.
11453   SmallVector<SDValue, 8> InVals;
11454   SDValue NewRoot = TLI->LowerFormalArguments(
11455       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11456 
11457   // Verify that the target's LowerFormalArguments behaved as expected.
11458   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11459          "LowerFormalArguments didn't return a valid chain!");
11460   assert(InVals.size() == Ins.size() &&
11461          "LowerFormalArguments didn't emit the correct number of values!");
11462   LLVM_DEBUG({
11463     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11464       assert(InVals[i].getNode() &&
11465              "LowerFormalArguments emitted a null value!");
11466       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11467              "LowerFormalArguments emitted a value with the wrong type!");
11468     }
11469   });
11470 
11471   // Update the DAG with the new chain value resulting from argument lowering.
11472   DAG.setRoot(NewRoot);
11473 
11474   // Set up the argument values.
11475   unsigned i = 0;
11476   if (!FuncInfo->CanLowerReturn) {
11477     // Create a virtual register for the sret pointer, and put in a copy
11478     // from the sret argument into it.
11479     SmallVector<EVT, 1> ValueVTs;
11480     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11481                     PointerType::get(F.getContext(),
11482                                      DAG.getDataLayout().getAllocaAddrSpace()),
11483                     ValueVTs);
11484     MVT VT = ValueVTs[0].getSimpleVT();
11485     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11486     std::optional<ISD::NodeType> AssertOp;
11487     SDValue ArgValue =
11488         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11489                          F.getCallingConv(), AssertOp);
11490 
11491     MachineFunction& MF = SDB->DAG.getMachineFunction();
11492     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11493     Register SRetReg =
11494         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11495     FuncInfo->DemoteRegister = SRetReg;
11496     NewRoot =
11497         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11498     DAG.setRoot(NewRoot);
11499 
11500     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11501     ++i;
11502   }
11503 
11504   SmallVector<SDValue, 4> Chains;
11505   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11506   for (const Argument &Arg : F.args()) {
11507     SmallVector<SDValue, 4> ArgValues;
11508     SmallVector<EVT, 4> ValueVTs;
11509     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11510     unsigned NumValues = ValueVTs.size();
11511     if (NumValues == 0)
11512       continue;
11513 
11514     bool ArgHasUses = !Arg.use_empty();
11515 
11516     // Elide the copying store if the target loaded this argument from a
11517     // suitable fixed stack object.
11518     if (Ins[i].Flags.isCopyElisionCandidate()) {
11519       unsigned NumParts = 0;
11520       for (EVT VT : ValueVTs)
11521         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11522                                                        F.getCallingConv(), VT);
11523 
11524       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11525                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11526                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11527     }
11528 
11529     // If this argument is unused then remember its value. It is used to generate
11530     // debugging information.
11531     bool isSwiftErrorArg =
11532         TLI->supportSwiftError() &&
11533         Arg.hasAttribute(Attribute::SwiftError);
11534     if (!ArgHasUses && !isSwiftErrorArg) {
11535       SDB->setUnusedArgValue(&Arg, InVals[i]);
11536 
11537       // Also remember any frame index for use in FastISel.
11538       if (FrameIndexSDNode *FI =
11539           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11540         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11541     }
11542 
11543     for (unsigned Val = 0; Val != NumValues; ++Val) {
11544       EVT VT = ValueVTs[Val];
11545       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11546                                                       F.getCallingConv(), VT);
11547       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11548           *CurDAG->getContext(), F.getCallingConv(), VT);
11549 
11550       // Even an apparent 'unused' swifterror argument needs to be returned. So
11551       // we do generate a copy for it that can be used on return from the
11552       // function.
11553       if (ArgHasUses || isSwiftErrorArg) {
11554         std::optional<ISD::NodeType> AssertOp;
11555         if (Arg.hasAttribute(Attribute::SExt))
11556           AssertOp = ISD::AssertSext;
11557         else if (Arg.hasAttribute(Attribute::ZExt))
11558           AssertOp = ISD::AssertZext;
11559 
11560         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11561                                              PartVT, VT, nullptr, NewRoot,
11562                                              F.getCallingConv(), AssertOp));
11563       }
11564 
11565       i += NumParts;
11566     }
11567 
11568     // We don't need to do anything else for unused arguments.
11569     if (ArgValues.empty())
11570       continue;
11571 
11572     // Note down frame index.
11573     if (FrameIndexSDNode *FI =
11574         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11575       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11576 
11577     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11578                                      SDB->getCurSDLoc());
11579 
11580     SDB->setValue(&Arg, Res);
11581     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11582       // We want to associate the argument with the frame index, among
11583       // involved operands, that correspond to the lowest address. The
11584       // getCopyFromParts function, called earlier, is swapping the order of
11585       // the operands to BUILD_PAIR depending on endianness. The result of
11586       // that swapping is that the least significant bits of the argument will
11587       // be in the first operand of the BUILD_PAIR node, and the most
11588       // significant bits will be in the second operand.
11589       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11590       if (LoadSDNode *LNode =
11591           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11592         if (FrameIndexSDNode *FI =
11593             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11594           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11595     }
11596 
11597     // Analyses past this point are naive and don't expect an assertion.
11598     if (Res.getOpcode() == ISD::AssertZext)
11599       Res = Res.getOperand(0);
11600 
11601     // Update the SwiftErrorVRegDefMap.
11602     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11603       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11604       if (Register::isVirtualRegister(Reg))
11605         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11606                                    Reg);
11607     }
11608 
11609     // If this argument is live outside of the entry block, insert a copy from
11610     // wherever we got it to the vreg that other BB's will reference it as.
11611     if (Res.getOpcode() == ISD::CopyFromReg) {
11612       // If we can, though, try to skip creating an unnecessary vreg.
11613       // FIXME: This isn't very clean... it would be nice to make this more
11614       // general.
11615       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11616       if (Register::isVirtualRegister(Reg)) {
11617         FuncInfo->ValueMap[&Arg] = Reg;
11618         continue;
11619       }
11620     }
11621     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11622       FuncInfo->InitializeRegForValue(&Arg);
11623       SDB->CopyToExportRegsIfNeeded(&Arg);
11624     }
11625   }
11626 
11627   if (!Chains.empty()) {
11628     Chains.push_back(NewRoot);
11629     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11630   }
11631 
11632   DAG.setRoot(NewRoot);
11633 
11634   assert(i == InVals.size() && "Argument register count mismatch!");
11635 
11636   // If any argument copy elisions occurred and we have debug info, update the
11637   // stale frame indices used in the dbg.declare variable info table.
11638   if (!ArgCopyElisionFrameIndexMap.empty()) {
11639     for (MachineFunction::VariableDbgInfo &VI :
11640          MF->getInStackSlotVariableDbgInfo()) {
11641       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11642       if (I != ArgCopyElisionFrameIndexMap.end())
11643         VI.updateStackSlot(I->second);
11644     }
11645   }
11646 
11647   // Finally, if the target has anything special to do, allow it to do so.
11648   emitFunctionEntryCode();
11649 }
11650 
11651 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11652 /// ensure constants are generated when needed.  Remember the virtual registers
11653 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11654 /// directly add them, because expansion might result in multiple MBB's for one
11655 /// BB.  As such, the start of the BB might correspond to a different MBB than
11656 /// the end.
11657 void
11658 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11660 
11661   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11662 
11663   // Check PHI nodes in successors that expect a value to be available from this
11664   // block.
11665   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11666     if (!isa<PHINode>(SuccBB->begin())) continue;
11667     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11668 
11669     // If this terminator has multiple identical successors (common for
11670     // switches), only handle each succ once.
11671     if (!SuccsHandled.insert(SuccMBB).second)
11672       continue;
11673 
11674     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11675 
11676     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11677     // nodes and Machine PHI nodes, but the incoming operands have not been
11678     // emitted yet.
11679     for (const PHINode &PN : SuccBB->phis()) {
11680       // Ignore dead phi's.
11681       if (PN.use_empty())
11682         continue;
11683 
11684       // Skip empty types
11685       if (PN.getType()->isEmptyTy())
11686         continue;
11687 
11688       unsigned Reg;
11689       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11690 
11691       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11692         unsigned &RegOut = ConstantsOut[C];
11693         if (RegOut == 0) {
11694           RegOut = FuncInfo.CreateRegs(C);
11695           // We need to zero/sign extend ConstantInt phi operands to match
11696           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11697           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11698           if (auto *CI = dyn_cast<ConstantInt>(C))
11699             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11700                                                     : ISD::ZERO_EXTEND;
11701           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11702         }
11703         Reg = RegOut;
11704       } else {
11705         DenseMap<const Value *, Register>::iterator I =
11706           FuncInfo.ValueMap.find(PHIOp);
11707         if (I != FuncInfo.ValueMap.end())
11708           Reg = I->second;
11709         else {
11710           assert(isa<AllocaInst>(PHIOp) &&
11711                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11712                  "Didn't codegen value into a register!??");
11713           Reg = FuncInfo.CreateRegs(PHIOp);
11714           CopyValueToVirtualRegister(PHIOp, Reg);
11715         }
11716       }
11717 
11718       // Remember that this register needs to added to the machine PHI node as
11719       // the input for this MBB.
11720       SmallVector<EVT, 4> ValueVTs;
11721       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11722       for (EVT VT : ValueVTs) {
11723         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11724         for (unsigned i = 0; i != NumRegisters; ++i)
11725           FuncInfo.PHINodesToUpdate.push_back(
11726               std::make_pair(&*MBBI++, Reg + i));
11727         Reg += NumRegisters;
11728       }
11729     }
11730   }
11731 
11732   ConstantsOut.clear();
11733 }
11734 
11735 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11736   MachineFunction::iterator I(MBB);
11737   if (++I == FuncInfo.MF->end())
11738     return nullptr;
11739   return &*I;
11740 }
11741 
11742 /// During lowering new call nodes can be created (such as memset, etc.).
11743 /// Those will become new roots of the current DAG, but complications arise
11744 /// when they are tail calls. In such cases, the call lowering will update
11745 /// the root, but the builder still needs to know that a tail call has been
11746 /// lowered in order to avoid generating an additional return.
11747 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11748   // If the node is null, we do have a tail call.
11749   if (MaybeTC.getNode() != nullptr)
11750     DAG.setRoot(MaybeTC);
11751   else
11752     HasTailCall = true;
11753 }
11754 
11755 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11756                                         MachineBasicBlock *SwitchMBB,
11757                                         MachineBasicBlock *DefaultMBB) {
11758   MachineFunction *CurMF = FuncInfo.MF;
11759   MachineBasicBlock *NextMBB = nullptr;
11760   MachineFunction::iterator BBI(W.MBB);
11761   if (++BBI != FuncInfo.MF->end())
11762     NextMBB = &*BBI;
11763 
11764   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11765 
11766   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11767 
11768   if (Size == 2 && W.MBB == SwitchMBB) {
11769     // If any two of the cases has the same destination, and if one value
11770     // is the same as the other, but has one bit unset that the other has set,
11771     // use bit manipulation to do two compares at once.  For example:
11772     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11773     // TODO: This could be extended to merge any 2 cases in switches with 3
11774     // cases.
11775     // TODO: Handle cases where W.CaseBB != SwitchBB.
11776     CaseCluster &Small = *W.FirstCluster;
11777     CaseCluster &Big = *W.LastCluster;
11778 
11779     if (Small.Low == Small.High && Big.Low == Big.High &&
11780         Small.MBB == Big.MBB) {
11781       const APInt &SmallValue = Small.Low->getValue();
11782       const APInt &BigValue = Big.Low->getValue();
11783 
11784       // Check that there is only one bit different.
11785       APInt CommonBit = BigValue ^ SmallValue;
11786       if (CommonBit.isPowerOf2()) {
11787         SDValue CondLHS = getValue(Cond);
11788         EVT VT = CondLHS.getValueType();
11789         SDLoc DL = getCurSDLoc();
11790 
11791         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11792                                  DAG.getConstant(CommonBit, DL, VT));
11793         SDValue Cond = DAG.getSetCC(
11794             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11795             ISD::SETEQ);
11796 
11797         // Update successor info.
11798         // Both Small and Big will jump to Small.BB, so we sum up the
11799         // probabilities.
11800         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11801         if (BPI)
11802           addSuccessorWithProb(
11803               SwitchMBB, DefaultMBB,
11804               // The default destination is the first successor in IR.
11805               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11806         else
11807           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11808 
11809         // Insert the true branch.
11810         SDValue BrCond =
11811             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11812                         DAG.getBasicBlock(Small.MBB));
11813         // Insert the false branch.
11814         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11815                              DAG.getBasicBlock(DefaultMBB));
11816 
11817         DAG.setRoot(BrCond);
11818         return;
11819       }
11820     }
11821   }
11822 
11823   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11824     // Here, we order cases by probability so the most likely case will be
11825     // checked first. However, two clusters can have the same probability in
11826     // which case their relative ordering is non-deterministic. So we use Low
11827     // as a tie-breaker as clusters are guaranteed to never overlap.
11828     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11829                [](const CaseCluster &a, const CaseCluster &b) {
11830       return a.Prob != b.Prob ?
11831              a.Prob > b.Prob :
11832              a.Low->getValue().slt(b.Low->getValue());
11833     });
11834 
11835     // Rearrange the case blocks so that the last one falls through if possible
11836     // without changing the order of probabilities.
11837     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11838       --I;
11839       if (I->Prob > W.LastCluster->Prob)
11840         break;
11841       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11842         std::swap(*I, *W.LastCluster);
11843         break;
11844       }
11845     }
11846   }
11847 
11848   // Compute total probability.
11849   BranchProbability DefaultProb = W.DefaultProb;
11850   BranchProbability UnhandledProbs = DefaultProb;
11851   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11852     UnhandledProbs += I->Prob;
11853 
11854   MachineBasicBlock *CurMBB = W.MBB;
11855   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11856     bool FallthroughUnreachable = false;
11857     MachineBasicBlock *Fallthrough;
11858     if (I == W.LastCluster) {
11859       // For the last cluster, fall through to the default destination.
11860       Fallthrough = DefaultMBB;
11861       FallthroughUnreachable = isa<UnreachableInst>(
11862           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11863     } else {
11864       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11865       CurMF->insert(BBI, Fallthrough);
11866       // Put Cond in a virtual register to make it available from the new blocks.
11867       ExportFromCurrentBlock(Cond);
11868     }
11869     UnhandledProbs -= I->Prob;
11870 
11871     switch (I->Kind) {
11872       case CC_JumpTable: {
11873         // FIXME: Optimize away range check based on pivot comparisons.
11874         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11875         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11876 
11877         // The jump block hasn't been inserted yet; insert it here.
11878         MachineBasicBlock *JumpMBB = JT->MBB;
11879         CurMF->insert(BBI, JumpMBB);
11880 
11881         auto JumpProb = I->Prob;
11882         auto FallthroughProb = UnhandledProbs;
11883 
11884         // If the default statement is a target of the jump table, we evenly
11885         // distribute the default probability to successors of CurMBB. Also
11886         // update the probability on the edge from JumpMBB to Fallthrough.
11887         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11888                                               SE = JumpMBB->succ_end();
11889              SI != SE; ++SI) {
11890           if (*SI == DefaultMBB) {
11891             JumpProb += DefaultProb / 2;
11892             FallthroughProb -= DefaultProb / 2;
11893             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11894             JumpMBB->normalizeSuccProbs();
11895             break;
11896           }
11897         }
11898 
11899         // If the default clause is unreachable, propagate that knowledge into
11900         // JTH->FallthroughUnreachable which will use it to suppress the range
11901         // check.
11902         //
11903         // However, don't do this if we're doing branch target enforcement,
11904         // because a table branch _without_ a range check can be a tempting JOP
11905         // gadget - out-of-bounds inputs that are impossible in correct
11906         // execution become possible again if an attacker can influence the
11907         // control flow. So if an attacker doesn't already have a BTI bypass
11908         // available, we don't want them to be able to get one out of this
11909         // table branch.
11910         if (FallthroughUnreachable) {
11911           Function &CurFunc = CurMF->getFunction();
11912           bool HasBranchTargetEnforcement = false;
11913           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11914             HasBranchTargetEnforcement =
11915                 CurFunc.getFnAttribute("branch-target-enforcement")
11916                     .getValueAsBool();
11917           } else {
11918             HasBranchTargetEnforcement =
11919                 CurMF->getMMI().getModule()->getModuleFlag(
11920                     "branch-target-enforcement");
11921           }
11922           if (!HasBranchTargetEnforcement)
11923             JTH->FallthroughUnreachable = true;
11924         }
11925 
11926         if (!JTH->FallthroughUnreachable)
11927           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11928         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11929         CurMBB->normalizeSuccProbs();
11930 
11931         // The jump table header will be inserted in our current block, do the
11932         // range check, and fall through to our fallthrough block.
11933         JTH->HeaderBB = CurMBB;
11934         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11935 
11936         // If we're in the right place, emit the jump table header right now.
11937         if (CurMBB == SwitchMBB) {
11938           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11939           JTH->Emitted = true;
11940         }
11941         break;
11942       }
11943       case CC_BitTests: {
11944         // FIXME: Optimize away range check based on pivot comparisons.
11945         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11946 
11947         // The bit test blocks haven't been inserted yet; insert them here.
11948         for (BitTestCase &BTC : BTB->Cases)
11949           CurMF->insert(BBI, BTC.ThisBB);
11950 
11951         // Fill in fields of the BitTestBlock.
11952         BTB->Parent = CurMBB;
11953         BTB->Default = Fallthrough;
11954 
11955         BTB->DefaultProb = UnhandledProbs;
11956         // If the cases in bit test don't form a contiguous range, we evenly
11957         // distribute the probability on the edge to Fallthrough to two
11958         // successors of CurMBB.
11959         if (!BTB->ContiguousRange) {
11960           BTB->Prob += DefaultProb / 2;
11961           BTB->DefaultProb -= DefaultProb / 2;
11962         }
11963 
11964         if (FallthroughUnreachable)
11965           BTB->FallthroughUnreachable = true;
11966 
11967         // If we're in the right place, emit the bit test header right now.
11968         if (CurMBB == SwitchMBB) {
11969           visitBitTestHeader(*BTB, SwitchMBB);
11970           BTB->Emitted = true;
11971         }
11972         break;
11973       }
11974       case CC_Range: {
11975         const Value *RHS, *LHS, *MHS;
11976         ISD::CondCode CC;
11977         if (I->Low == I->High) {
11978           // Check Cond == I->Low.
11979           CC = ISD::SETEQ;
11980           LHS = Cond;
11981           RHS=I->Low;
11982           MHS = nullptr;
11983         } else {
11984           // Check I->Low <= Cond <= I->High.
11985           CC = ISD::SETLE;
11986           LHS = I->Low;
11987           MHS = Cond;
11988           RHS = I->High;
11989         }
11990 
11991         // If Fallthrough is unreachable, fold away the comparison.
11992         if (FallthroughUnreachable)
11993           CC = ISD::SETTRUE;
11994 
11995         // The false probability is the sum of all unhandled cases.
11996         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11997                      getCurSDLoc(), I->Prob, UnhandledProbs);
11998 
11999         if (CurMBB == SwitchMBB)
12000           visitSwitchCase(CB, SwitchMBB);
12001         else
12002           SL->SwitchCases.push_back(CB);
12003 
12004         break;
12005       }
12006     }
12007     CurMBB = Fallthrough;
12008   }
12009 }
12010 
12011 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12012                                         const SwitchWorkListItem &W,
12013                                         Value *Cond,
12014                                         MachineBasicBlock *SwitchMBB) {
12015   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12016          "Clusters not sorted?");
12017   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12018 
12019   auto [LastLeft, FirstRight, LeftProb, RightProb] =
12020       SL->computeSplitWorkItemInfo(W);
12021 
12022   // Use the first element on the right as pivot since we will make less-than
12023   // comparisons against it.
12024   CaseClusterIt PivotCluster = FirstRight;
12025   assert(PivotCluster > W.FirstCluster);
12026   assert(PivotCluster <= W.LastCluster);
12027 
12028   CaseClusterIt FirstLeft = W.FirstCluster;
12029   CaseClusterIt LastRight = W.LastCluster;
12030 
12031   const ConstantInt *Pivot = PivotCluster->Low;
12032 
12033   // New blocks will be inserted immediately after the current one.
12034   MachineFunction::iterator BBI(W.MBB);
12035   ++BBI;
12036 
12037   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12038   // we can branch to its destination directly if it's squeezed exactly in
12039   // between the known lower bound and Pivot - 1.
12040   MachineBasicBlock *LeftMBB;
12041   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12042       FirstLeft->Low == W.GE &&
12043       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12044     LeftMBB = FirstLeft->MBB;
12045   } else {
12046     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12047     FuncInfo.MF->insert(BBI, LeftMBB);
12048     WorkList.push_back(
12049         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12050     // Put Cond in a virtual register to make it available from the new blocks.
12051     ExportFromCurrentBlock(Cond);
12052   }
12053 
12054   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12055   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12056   // directly if RHS.High equals the current upper bound.
12057   MachineBasicBlock *RightMBB;
12058   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12059       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12060     RightMBB = FirstRight->MBB;
12061   } else {
12062     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12063     FuncInfo.MF->insert(BBI, RightMBB);
12064     WorkList.push_back(
12065         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12066     // Put Cond in a virtual register to make it available from the new blocks.
12067     ExportFromCurrentBlock(Cond);
12068   }
12069 
12070   // Create the CaseBlock record that will be used to lower the branch.
12071   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12072                getCurSDLoc(), LeftProb, RightProb);
12073 
12074   if (W.MBB == SwitchMBB)
12075     visitSwitchCase(CB, SwitchMBB);
12076   else
12077     SL->SwitchCases.push_back(CB);
12078 }
12079 
12080 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12081 // from the swith statement.
12082 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12083                                             BranchProbability PeeledCaseProb) {
12084   if (PeeledCaseProb == BranchProbability::getOne())
12085     return BranchProbability::getZero();
12086   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12087 
12088   uint32_t Numerator = CaseProb.getNumerator();
12089   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12090   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12091 }
12092 
12093 // Try to peel the top probability case if it exceeds the threshold.
12094 // Return current MachineBasicBlock for the switch statement if the peeling
12095 // does not occur.
12096 // If the peeling is performed, return the newly created MachineBasicBlock
12097 // for the peeled switch statement. Also update Clusters to remove the peeled
12098 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12099 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12100     const SwitchInst &SI, CaseClusterVector &Clusters,
12101     BranchProbability &PeeledCaseProb) {
12102   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12103   // Don't perform if there is only one cluster or optimizing for size.
12104   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12105       TM.getOptLevel() == CodeGenOptLevel::None ||
12106       SwitchMBB->getParent()->getFunction().hasMinSize())
12107     return SwitchMBB;
12108 
12109   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12110   unsigned PeeledCaseIndex = 0;
12111   bool SwitchPeeled = false;
12112   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12113     CaseCluster &CC = Clusters[Index];
12114     if (CC.Prob < TopCaseProb)
12115       continue;
12116     TopCaseProb = CC.Prob;
12117     PeeledCaseIndex = Index;
12118     SwitchPeeled = true;
12119   }
12120   if (!SwitchPeeled)
12121     return SwitchMBB;
12122 
12123   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12124                     << TopCaseProb << "\n");
12125 
12126   // Record the MBB for the peeled switch statement.
12127   MachineFunction::iterator BBI(SwitchMBB);
12128   ++BBI;
12129   MachineBasicBlock *PeeledSwitchMBB =
12130       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12131   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12132 
12133   ExportFromCurrentBlock(SI.getCondition());
12134   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12135   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12136                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12137   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12138 
12139   Clusters.erase(PeeledCaseIt);
12140   for (CaseCluster &CC : Clusters) {
12141     LLVM_DEBUG(
12142         dbgs() << "Scale the probablity for one cluster, before scaling: "
12143                << CC.Prob << "\n");
12144     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12145     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12146   }
12147   PeeledCaseProb = TopCaseProb;
12148   return PeeledSwitchMBB;
12149 }
12150 
12151 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12152   // Extract cases from the switch.
12153   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12154   CaseClusterVector Clusters;
12155   Clusters.reserve(SI.getNumCases());
12156   for (auto I : SI.cases()) {
12157     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12158     const ConstantInt *CaseVal = I.getCaseValue();
12159     BranchProbability Prob =
12160         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12161             : BranchProbability(1, SI.getNumCases() + 1);
12162     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12163   }
12164 
12165   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12166 
12167   // Cluster adjacent cases with the same destination. We do this at all
12168   // optimization levels because it's cheap to do and will make codegen faster
12169   // if there are many clusters.
12170   sortAndRangeify(Clusters);
12171 
12172   // The branch probablity of the peeled case.
12173   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12174   MachineBasicBlock *PeeledSwitchMBB =
12175       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12176 
12177   // If there is only the default destination, jump there directly.
12178   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12179   if (Clusters.empty()) {
12180     assert(PeeledSwitchMBB == SwitchMBB);
12181     SwitchMBB->addSuccessor(DefaultMBB);
12182     if (DefaultMBB != NextBlock(SwitchMBB)) {
12183       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12184                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12185     }
12186     return;
12187   }
12188 
12189   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12190                      DAG.getBFI());
12191   SL->findBitTestClusters(Clusters, &SI);
12192 
12193   LLVM_DEBUG({
12194     dbgs() << "Case clusters: ";
12195     for (const CaseCluster &C : Clusters) {
12196       if (C.Kind == CC_JumpTable)
12197         dbgs() << "JT:";
12198       if (C.Kind == CC_BitTests)
12199         dbgs() << "BT:";
12200 
12201       C.Low->getValue().print(dbgs(), true);
12202       if (C.Low != C.High) {
12203         dbgs() << '-';
12204         C.High->getValue().print(dbgs(), true);
12205       }
12206       dbgs() << ' ';
12207     }
12208     dbgs() << '\n';
12209   });
12210 
12211   assert(!Clusters.empty());
12212   SwitchWorkList WorkList;
12213   CaseClusterIt First = Clusters.begin();
12214   CaseClusterIt Last = Clusters.end() - 1;
12215   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12216   // Scale the branchprobability for DefaultMBB if the peel occurs and
12217   // DefaultMBB is not replaced.
12218   if (PeeledCaseProb != BranchProbability::getZero() &&
12219       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12220     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12221   WorkList.push_back(
12222       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12223 
12224   while (!WorkList.empty()) {
12225     SwitchWorkListItem W = WorkList.pop_back_val();
12226     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12227 
12228     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12229         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12230       // For optimized builds, lower large range as a balanced binary tree.
12231       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12232       continue;
12233     }
12234 
12235     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12236   }
12237 }
12238 
12239 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12240   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12241   auto DL = getCurSDLoc();
12242   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12243   setValue(&I, DAG.getStepVector(DL, ResultVT));
12244 }
12245 
12246 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12247   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12248   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12249 
12250   SDLoc DL = getCurSDLoc();
12251   SDValue V = getValue(I.getOperand(0));
12252   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12253 
12254   if (VT.isScalableVector()) {
12255     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12256     return;
12257   }
12258 
12259   // Use VECTOR_SHUFFLE for the fixed-length vector
12260   // to maintain existing behavior.
12261   SmallVector<int, 8> Mask;
12262   unsigned NumElts = VT.getVectorMinNumElements();
12263   for (unsigned i = 0; i != NumElts; ++i)
12264     Mask.push_back(NumElts - 1 - i);
12265 
12266   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12267 }
12268 
12269 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12270   auto DL = getCurSDLoc();
12271   SDValue InVec = getValue(I.getOperand(0));
12272   EVT OutVT =
12273       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12274 
12275   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12276 
12277   // ISD Node needs the input vectors split into two equal parts
12278   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12279                            DAG.getVectorIdxConstant(0, DL));
12280   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12281                            DAG.getVectorIdxConstant(OutNumElts, DL));
12282 
12283   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12284   // legalisation and combines.
12285   if (OutVT.isFixedLengthVector()) {
12286     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12287                                         createStrideMask(0, 2, OutNumElts));
12288     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12289                                        createStrideMask(1, 2, OutNumElts));
12290     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12291     setValue(&I, Res);
12292     return;
12293   }
12294 
12295   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12296                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12297   setValue(&I, Res);
12298 }
12299 
12300 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12301   auto DL = getCurSDLoc();
12302   EVT InVT = getValue(I.getOperand(0)).getValueType();
12303   SDValue InVec0 = getValue(I.getOperand(0));
12304   SDValue InVec1 = getValue(I.getOperand(1));
12305   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12306   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12307 
12308   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12309   // legalisation and combines.
12310   if (OutVT.isFixedLengthVector()) {
12311     unsigned NumElts = InVT.getVectorMinNumElements();
12312     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12313     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12314                                       createInterleaveMask(NumElts, 2)));
12315     return;
12316   }
12317 
12318   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12319                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12320   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12321                     Res.getValue(1));
12322   setValue(&I, Res);
12323 }
12324 
12325 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12326   SmallVector<EVT, 4> ValueVTs;
12327   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12328                   ValueVTs);
12329   unsigned NumValues = ValueVTs.size();
12330   if (NumValues == 0) return;
12331 
12332   SmallVector<SDValue, 4> Values(NumValues);
12333   SDValue Op = getValue(I.getOperand(0));
12334 
12335   for (unsigned i = 0; i != NumValues; ++i)
12336     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12337                             SDValue(Op.getNode(), Op.getResNo() + i));
12338 
12339   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12340                            DAG.getVTList(ValueVTs), Values));
12341 }
12342 
12343 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12345   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12346 
12347   SDLoc DL = getCurSDLoc();
12348   SDValue V1 = getValue(I.getOperand(0));
12349   SDValue V2 = getValue(I.getOperand(1));
12350   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12351 
12352   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12353   if (VT.isScalableVector()) {
12354     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12355                              DAG.getVectorIdxConstant(Imm, DL)));
12356     return;
12357   }
12358 
12359   unsigned NumElts = VT.getVectorNumElements();
12360 
12361   uint64_t Idx = (NumElts + Imm) % NumElts;
12362 
12363   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12364   SmallVector<int, 8> Mask;
12365   for (unsigned i = 0; i < NumElts; ++i)
12366     Mask.push_back(Idx + i);
12367   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12368 }
12369 
12370 // Consider the following MIR after SelectionDAG, which produces output in
12371 // phyregs in the first case or virtregs in the second case.
12372 //
12373 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12374 // %5:gr32 = COPY $ebx
12375 // %6:gr32 = COPY $edx
12376 // %1:gr32 = COPY %6:gr32
12377 // %0:gr32 = COPY %5:gr32
12378 //
12379 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12380 // %1:gr32 = COPY %6:gr32
12381 // %0:gr32 = COPY %5:gr32
12382 //
12383 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12384 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12385 //
12386 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12387 // to a single virtreg (such as %0). The remaining outputs monotonically
12388 // increase in virtreg number from there. If a callbr has no outputs, then it
12389 // should not have a corresponding callbr landingpad; in fact, the callbr
12390 // landingpad would not even be able to refer to such a callbr.
12391 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12392   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12393   // There is definitely at least one copy.
12394   assert(MI->getOpcode() == TargetOpcode::COPY &&
12395          "start of copy chain MUST be COPY");
12396   Reg = MI->getOperand(1).getReg();
12397   MI = MRI.def_begin(Reg)->getParent();
12398   // There may be an optional second copy.
12399   if (MI->getOpcode() == TargetOpcode::COPY) {
12400     assert(Reg.isVirtual() && "expected COPY of virtual register");
12401     Reg = MI->getOperand(1).getReg();
12402     assert(Reg.isPhysical() && "expected COPY of physical register");
12403     MI = MRI.def_begin(Reg)->getParent();
12404   }
12405   // The start of the chain must be an INLINEASM_BR.
12406   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12407          "end of copy chain MUST be INLINEASM_BR");
12408   return Reg;
12409 }
12410 
12411 // We must do this walk rather than the simpler
12412 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12413 // otherwise we will end up with copies of virtregs only valid along direct
12414 // edges.
12415 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12416   SmallVector<EVT, 8> ResultVTs;
12417   SmallVector<SDValue, 8> ResultValues;
12418   const auto *CBR =
12419       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12420 
12421   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12422   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12423   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12424 
12425   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12426   SDValue Chain = DAG.getRoot();
12427 
12428   // Re-parse the asm constraints string.
12429   TargetLowering::AsmOperandInfoVector TargetConstraints =
12430       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12431   for (auto &T : TargetConstraints) {
12432     SDISelAsmOperandInfo OpInfo(T);
12433     if (OpInfo.Type != InlineAsm::isOutput)
12434       continue;
12435 
12436     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12437     // individual constraint.
12438     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12439 
12440     switch (OpInfo.ConstraintType) {
12441     case TargetLowering::C_Register:
12442     case TargetLowering::C_RegisterClass: {
12443       // Fill in OpInfo.AssignedRegs.Regs.
12444       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12445 
12446       // getRegistersForValue may produce 1 to many registers based on whether
12447       // the OpInfo.ConstraintVT is legal on the target or not.
12448       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12449         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12450         if (Register::isPhysicalRegister(OriginalDef))
12451           FuncInfo.MBB->addLiveIn(OriginalDef);
12452         // Update the assigned registers to use the original defs.
12453         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12454       }
12455 
12456       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12457           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12458       ResultValues.push_back(V);
12459       ResultVTs.push_back(OpInfo.ConstraintVT);
12460       break;
12461     }
12462     case TargetLowering::C_Other: {
12463       SDValue Flag;
12464       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12465                                                   OpInfo, DAG);
12466       ++InitialDef;
12467       ResultValues.push_back(V);
12468       ResultVTs.push_back(OpInfo.ConstraintVT);
12469       break;
12470     }
12471     default:
12472       break;
12473     }
12474   }
12475   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12476                           DAG.getVTList(ResultVTs), ResultValues);
12477   setValue(&I, V);
12478 }
12479