1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.bitsLT(PartEVT)) { 439 // Bitcast Val back the original type and extract the corresponding 440 // vector we want. 441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 443 ValueVT.getVectorElementType(), Elts); 444 Val = DAG.getBitcast(WiderVecType, Val); 445 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 446 DAG.getVectorIdxConstant(0, DL)); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, 614 SDValue Val, const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isFixedLengthVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 unsigned PartNumElts = PartVT.getVectorNumElements(); 620 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 621 if (PartNumElts > ValueNumElts && 622 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 623 EVT ElementVT = PartVT.getVectorElementType(); 624 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 625 // undef elements. 626 SmallVector<SDValue, 16> Ops; 627 DAG.ExtractVectorElements(Val, Ops); 628 SDValue EltUndef = DAG.getUNDEF(ElementVT); 629 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 630 Ops.push_back(EltUndef); 631 632 // FIXME: Use CONCAT for 2x -> 4x. 633 return DAG.getBuildVector(PartVT, DL, Ops); 634 } 635 636 return SDValue(); 637 } 638 639 /// getCopyToPartsVector - Create a series of nodes that contain the specified 640 /// value split into legal parts. 641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 642 SDValue Val, SDValue *Parts, unsigned NumParts, 643 MVT PartVT, const Value *V, 644 Optional<CallingConv::ID> CallConv) { 645 EVT ValueVT = Val.getValueType(); 646 assert(ValueVT.isVector() && "Not a vector"); 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 const bool IsABIRegCopy = CallConv.hasValue(); 649 650 if (NumParts == 1) { 651 EVT PartEVT = PartVT; 652 if (PartEVT == ValueVT) { 653 // Nothing to do. 654 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 655 // Bitconvert vector->vector case. 656 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 657 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 658 Val = Widened; 659 } else if (PartVT.isVector() && 660 PartEVT.getVectorElementType().bitsGE( 661 ValueVT.getVectorElementType()) && 662 PartEVT.getVectorElementCount() == 663 ValueVT.getVectorElementCount()) { 664 665 // Promoted vector extract 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } else { 668 if (ValueVT.getVectorElementCount().isScalar()) { 669 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 670 DAG.getVectorIdxConstant(0, DL)); 671 } else { 672 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 673 assert(PartVT.getFixedSizeInBits() > ValueSize && 674 "lossy conversion of vector to scalar type"); 675 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 676 Val = DAG.getBitcast(IntermediateType, Val); 677 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 678 } 679 } 680 681 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 682 Parts[0] = Val; 683 return; 684 } 685 686 // Handle a multi-element vector. 687 EVT IntermediateVT; 688 MVT RegisterVT; 689 unsigned NumIntermediates; 690 unsigned NumRegs; 691 if (IsABIRegCopy) { 692 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 693 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 694 NumIntermediates, RegisterVT); 695 } else { 696 NumRegs = 697 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } 700 701 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 702 NumParts = NumRegs; // Silence a compiler warning. 703 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 704 705 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 706 "Mixing scalable and fixed vectors when copying in parts"); 707 708 Optional<ElementCount> DestEltCnt; 709 710 if (IntermediateVT.isVector()) 711 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 712 else 713 DestEltCnt = ElementCount::getFixed(NumIntermediates); 714 715 EVT BuiltVectorTy = EVT::getVectorVT( 716 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 717 if (ValueVT != BuiltVectorTy) { 718 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 719 Val = Widened; 720 721 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 722 } 723 724 // Split the vector into intermediate operands. 725 SmallVector<SDValue, 8> Ops(NumIntermediates); 726 for (unsigned i = 0; i != NumIntermediates; ++i) { 727 if (IntermediateVT.isVector()) { 728 // This does something sensible for scalable vectors - see the 729 // definition of EXTRACT_SUBVECTOR for further details. 730 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 731 Ops[i] = 732 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 734 } else { 735 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getVectorIdxConstant(i, DL)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!Register::isVirtualRegister(Regs[Part + i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 941 // Put the register class of the virtual registers in the flag word. That 942 // way, later passes can recompute register class constraints for inline 943 // assembly as well as normal instructions. 944 // Don't do this for tied operands that can use the regclass information 945 // from the def. 946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 949 } 950 951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 952 Ops.push_back(Res); 953 954 if (Code == InlineAsm::Kind_Clobber) { 955 // Clobbers should always have a 1:1 mapping with registers, and may 956 // reference registers that have illegal (e.g. vector) types. Hence, we 957 // shouldn't try to apply any sort of splitting logic to them. 958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 959 "No 1:1 mapping from clobbers to regs?"); 960 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 961 (void)SP; 962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 964 assert( 965 (Regs[I] != SP || 966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 967 "If we clobbered the stack pointer, MFI should know about it."); 968 } 969 return; 970 } 971 972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 974 MVT RegisterVT = RegVTs[Value]; 975 for (unsigned i = 0; i != NumRegs; ++i) { 976 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 977 unsigned TheReg = Regs[Reg++]; 978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 979 } 980 } 981 } 982 983 SmallVector<std::pair<unsigned, TypeSize>, 4> 984 RegsForValue::getRegsAndSizes() const { 985 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 986 unsigned I = 0; 987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 988 unsigned RegCount = std::get<0>(CountAndVT); 989 MVT RegisterVT = std::get<1>(CountAndVT); 990 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 991 for (unsigned E = I + RegCount; I != E; ++I) 992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 993 } 994 return OutVec; 995 } 996 997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 998 const TargetLibraryInfo *li) { 999 AA = aa; 1000 GFI = gfi; 1001 LibInfo = li; 1002 DL = &DAG.getDataLayout(); 1003 Context = DAG.getContext(); 1004 LPadToCallSiteMap.clear(); 1005 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 PendingConstrainedFP.clear(); 1014 PendingConstrainedFPStrict.clear(); 1015 CurInst = nullptr; 1016 HasTailCall = false; 1017 SDNodeOrder = LowestSDNodeOrder; 1018 StatepointLowering.clear(); 1019 } 1020 1021 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1022 DanglingDebugInfoMap.clear(); 1023 } 1024 1025 // Update DAG root to include dependencies on Pending chains. 1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1027 SDValue Root = DAG.getRoot(); 1028 1029 if (Pending.empty()) 1030 return Root; 1031 1032 // Add current root to PendingChains, unless we already indirectly 1033 // depend on it. 1034 if (Root.getOpcode() != ISD::EntryToken) { 1035 unsigned i = 0, e = Pending.size(); 1036 for (; i != e; ++i) { 1037 assert(Pending[i].getNode()->getNumOperands() > 1); 1038 if (Pending[i].getNode()->getOperand(0) == Root) 1039 break; // Don't add the root if we already indirectly depend on it. 1040 } 1041 1042 if (i == e) 1043 Pending.push_back(Root); 1044 } 1045 1046 if (Pending.size() == 1) 1047 Root = Pending[0]; 1048 else 1049 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1050 1051 DAG.setRoot(Root); 1052 Pending.clear(); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getMemoryRoot() { 1057 return updateRoot(PendingLoads); 1058 } 1059 1060 SDValue SelectionDAGBuilder::getRoot() { 1061 // Chain up all pending constrained intrinsics together with all 1062 // pending loads, by simply appending them to PendingLoads and 1063 // then calling getMemoryRoot(). 1064 PendingLoads.reserve(PendingLoads.size() + 1065 PendingConstrainedFP.size() + 1066 PendingConstrainedFPStrict.size()); 1067 PendingLoads.append(PendingConstrainedFP.begin(), 1068 PendingConstrainedFP.end()); 1069 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1070 PendingConstrainedFPStrict.end()); 1071 PendingConstrainedFP.clear(); 1072 PendingConstrainedFPStrict.clear(); 1073 return getMemoryRoot(); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getControlRoot() { 1077 // We need to emit pending fpexcept.strict constrained intrinsics, 1078 // so append them to the PendingExports list. 1079 PendingExports.append(PendingConstrainedFPStrict.begin(), 1080 PendingConstrainedFPStrict.end()); 1081 PendingConstrainedFPStrict.clear(); 1082 return updateRoot(PendingExports); 1083 } 1084 1085 void SelectionDAGBuilder::visit(const Instruction &I) { 1086 // Set up outgoing PHI node register values before emitting the terminator. 1087 if (I.isTerminator()) { 1088 HandlePHINodesInSuccessorBlocks(I.getParent()); 1089 } 1090 1091 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1092 if (!isa<DbgInfoIntrinsic>(I)) 1093 ++SDNodeOrder; 1094 1095 CurInst = &I; 1096 1097 visit(I.getOpcode(), I); 1098 1099 if (!I.isTerminator() && !HasTailCall && 1100 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1101 CopyToExportRegsIfNeeded(&I); 1102 1103 CurInst = nullptr; 1104 } 1105 1106 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1107 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1108 } 1109 1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1111 // Note: this doesn't use InstVisitor, because it has to work with 1112 // ConstantExpr's in addition to instructions. 1113 switch (Opcode) { 1114 default: llvm_unreachable("Unknown instruction type encountered!"); 1115 // Build the switch statement using the Instruction.def file. 1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1117 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1118 #include "llvm/IR/Instruction.def" 1119 } 1120 } 1121 1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1123 const DIExpression *Expr) { 1124 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1125 const DbgValueInst *DI = DDI.getDI(); 1126 DIVariable *DanglingVariable = DI->getVariable(); 1127 DIExpression *DanglingExpr = DI->getExpression(); 1128 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1129 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1130 return true; 1131 } 1132 return false; 1133 }; 1134 1135 for (auto &DDIMI : DanglingDebugInfoMap) { 1136 DanglingDebugInfoVector &DDIV = DDIMI.second; 1137 1138 // If debug info is to be dropped, run it through final checks to see 1139 // whether it can be salvaged. 1140 for (auto &DDI : DDIV) 1141 if (isMatchingDbgValue(DDI)) 1142 salvageUnresolvedDbgValue(DDI); 1143 1144 erase_if(DDIV, isMatchingDbgValue); 1145 } 1146 } 1147 1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1149 // generate the debug data structures now that we've seen its definition. 1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1151 SDValue Val) { 1152 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1153 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1154 return; 1155 1156 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1157 for (auto &DDI : DDIV) { 1158 const DbgValueInst *DI = DDI.getDI(); 1159 assert(DI && "Ill-formed DanglingDebugInfo"); 1160 DebugLoc dl = DDI.getdl(); 1161 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1162 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1163 DILocalVariable *Variable = DI->getVariable(); 1164 DIExpression *Expr = DI->getExpression(); 1165 assert(Variable->isValidLocationForIntrinsic(dl) && 1166 "Expected inlined-at fields to agree"); 1167 SDDbgValue *SDV; 1168 if (Val.getNode()) { 1169 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1170 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1171 // we couldn't resolve it directly when examining the DbgValue intrinsic 1172 // in the first place we should not be more successful here). Unless we 1173 // have some test case that prove this to be correct we should avoid 1174 // calling EmitFuncArgumentDbgValue here. 1175 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1176 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1177 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1178 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1179 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1180 // inserted after the definition of Val when emitting the instructions 1181 // after ISel. An alternative could be to teach 1182 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1183 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1184 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1185 << ValSDNodeOrder << "\n"); 1186 SDV = getDbgValue(Val, Variable, Expr, dl, 1187 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1188 DAG.AddDbgValue(SDV, Val.getNode(), false); 1189 } else 1190 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1191 << "in EmitFuncArgumentDbgValue\n"); 1192 } else { 1193 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1194 auto Undef = 1195 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1196 auto SDV = 1197 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1198 DAG.AddDbgValue(SDV, nullptr, false); 1199 } 1200 } 1201 DDIV.clear(); 1202 } 1203 1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1205 Value *V = DDI.getDI()->getValue(); 1206 DILocalVariable *Var = DDI.getDI()->getVariable(); 1207 DIExpression *Expr = DDI.getDI()->getExpression(); 1208 DebugLoc DL = DDI.getdl(); 1209 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1210 unsigned SDOrder = DDI.getSDNodeOrder(); 1211 1212 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1213 // that DW_OP_stack_value is desired. 1214 assert(isa<DbgValueInst>(DDI.getDI())); 1215 bool StackValue = true; 1216 1217 // Can this Value can be encoded without any further work? 1218 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1219 return; 1220 1221 // Attempt to salvage back through as many instructions as possible. Bail if 1222 // a non-instruction is seen, such as a constant expression or global 1223 // variable. FIXME: Further work could recover those too. 1224 while (isa<Instruction>(V)) { 1225 Instruction &VAsInst = *cast<Instruction>(V); 1226 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1227 1228 // If we cannot salvage any further, and haven't yet found a suitable debug 1229 // expression, bail out. 1230 if (!NewExpr) 1231 break; 1232 1233 // New value and expr now represent this debuginfo. 1234 V = VAsInst.getOperand(0); 1235 Expr = NewExpr; 1236 1237 // Some kind of simplification occurred: check whether the operand of the 1238 // salvaged debug expression can be encoded in this DAG. 1239 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1240 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1241 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1242 return; 1243 } 1244 } 1245 1246 // This was the final opportunity to salvage this debug information, and it 1247 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1248 // any earlier variable location. 1249 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1250 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1251 DAG.AddDbgValue(SDV, nullptr, false); 1252 1253 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1254 << "\n"); 1255 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1256 << "\n"); 1257 } 1258 1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1260 DIExpression *Expr, DebugLoc dl, 1261 DebugLoc InstDL, unsigned Order) { 1262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1263 SDDbgValue *SDV; 1264 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1265 isa<ConstantPointerNull>(V)) { 1266 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1267 DAG.AddDbgValue(SDV, nullptr, false); 1268 return true; 1269 } 1270 1271 // If the Value is a frame index, we can create a FrameIndex debug value 1272 // without relying on the DAG at all. 1273 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1274 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1275 if (SI != FuncInfo.StaticAllocaMap.end()) { 1276 auto SDV = 1277 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1278 /*IsIndirect*/ false, dl, SDNodeOrder); 1279 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1280 // is still available even if the SDNode gets optimized out. 1281 DAG.AddDbgValue(SDV, nullptr, false); 1282 return true; 1283 } 1284 } 1285 1286 // Do not use getValue() in here; we don't want to generate code at 1287 // this point if it hasn't been done yet. 1288 SDValue N = NodeMap[V]; 1289 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1290 N = UnusedArgNodeMap[V]; 1291 if (N.getNode()) { 1292 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1293 return true; 1294 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1295 DAG.AddDbgValue(SDV, N.getNode(), false); 1296 return true; 1297 } 1298 1299 // Special rules apply for the first dbg.values of parameter variables in a 1300 // function. Identify them by the fact they reference Argument Values, that 1301 // they're parameters, and they are parameters of the current function. We 1302 // need to let them dangle until they get an SDNode. 1303 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1304 !InstDL.getInlinedAt(); 1305 if (!IsParamOfFunc) { 1306 // The value is not used in this block yet (or it would have an SDNode). 1307 // We still want the value to appear for the user if possible -- if it has 1308 // an associated VReg, we can refer to that instead. 1309 auto VMI = FuncInfo.ValueMap.find(V); 1310 if (VMI != FuncInfo.ValueMap.end()) { 1311 unsigned Reg = VMI->second; 1312 // If this is a PHI node, it may be split up into several MI PHI nodes 1313 // (in FunctionLoweringInfo::set). 1314 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1315 V->getType(), None); 1316 if (RFV.occupiesMultipleRegs()) { 1317 unsigned Offset = 0; 1318 unsigned BitsToDescribe = 0; 1319 if (auto VarSize = Var->getSizeInBits()) 1320 BitsToDescribe = *VarSize; 1321 if (auto Fragment = Expr->getFragmentInfo()) 1322 BitsToDescribe = Fragment->SizeInBits; 1323 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1324 unsigned RegisterSize = RegAndSize.second; 1325 // Bail out if all bits are described already. 1326 if (Offset >= BitsToDescribe) 1327 break; 1328 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1329 ? BitsToDescribe - Offset 1330 : RegisterSize; 1331 auto FragmentExpr = DIExpression::createFragmentExpression( 1332 Expr, Offset, FragmentSize); 1333 if (!FragmentExpr) 1334 continue; 1335 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1336 false, dl, SDNodeOrder); 1337 DAG.AddDbgValue(SDV, nullptr, false); 1338 Offset += RegisterSize; 1339 } 1340 } else { 1341 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1342 DAG.AddDbgValue(SDV, nullptr, false); 1343 } 1344 return true; 1345 } 1346 } 1347 1348 return false; 1349 } 1350 1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1352 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1353 for (auto &Pair : DanglingDebugInfoMap) 1354 for (auto &DDI : Pair.second) 1355 salvageUnresolvedDbgValue(DDI); 1356 clearDanglingDebugInfo(); 1357 } 1358 1359 /// getCopyFromRegs - If there was virtual register allocated for the value V 1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1361 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1362 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1363 SDValue Result; 1364 1365 if (It != FuncInfo.ValueMap.end()) { 1366 Register InReg = It->second; 1367 1368 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1369 DAG.getDataLayout(), InReg, Ty, 1370 None); // This is not an ABI copy. 1371 SDValue Chain = DAG.getEntryNode(); 1372 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1373 V); 1374 resolveDanglingDebugInfo(V, Result); 1375 } 1376 1377 return Result; 1378 } 1379 1380 /// getValue - Return an SDValue for the given Value. 1381 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1382 // If we already have an SDValue for this value, use it. It's important 1383 // to do this first, so that we don't create a CopyFromReg if we already 1384 // have a regular SDValue. 1385 SDValue &N = NodeMap[V]; 1386 if (N.getNode()) return N; 1387 1388 // If there's a virtual register allocated and initialized for this 1389 // value, use it. 1390 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1391 return copyFromReg; 1392 1393 // Otherwise create a new SDValue and remember it. 1394 SDValue Val = getValueImpl(V); 1395 NodeMap[V] = Val; 1396 resolveDanglingDebugInfo(V, Val); 1397 return Val; 1398 } 1399 1400 /// getNonRegisterValue - Return an SDValue for the given Value, but 1401 /// don't look in FuncInfo.ValueMap for a virtual register. 1402 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1403 // If we already have an SDValue for this value, use it. 1404 SDValue &N = NodeMap[V]; 1405 if (N.getNode()) { 1406 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1407 // Remove the debug location from the node as the node is about to be used 1408 // in a location which may differ from the original debug location. This 1409 // is relevant to Constant and ConstantFP nodes because they can appear 1410 // as constant expressions inside PHI nodes. 1411 N->setDebugLoc(DebugLoc()); 1412 } 1413 return N; 1414 } 1415 1416 // Otherwise create a new SDValue and remember it. 1417 SDValue Val = getValueImpl(V); 1418 NodeMap[V] = Val; 1419 resolveDanglingDebugInfo(V, Val); 1420 return Val; 1421 } 1422 1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1424 /// Create an SDValue for the given value. 1425 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1427 1428 if (const Constant *C = dyn_cast<Constant>(V)) { 1429 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1430 1431 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1432 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1433 1434 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1435 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1436 1437 if (isa<ConstantPointerNull>(C)) { 1438 unsigned AS = V->getType()->getPointerAddressSpace(); 1439 return DAG.getConstant(0, getCurSDLoc(), 1440 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1441 } 1442 1443 if (match(C, m_VScale(DAG.getDataLayout()))) 1444 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1445 1446 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1447 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1448 1449 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1450 return DAG.getUNDEF(VT); 1451 1452 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1453 visit(CE->getOpcode(), *CE); 1454 SDValue N1 = NodeMap[V]; 1455 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1456 return N1; 1457 } 1458 1459 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1460 SmallVector<SDValue, 4> Constants; 1461 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1462 OI != OE; ++OI) { 1463 SDNode *Val = getValue(*OI).getNode(); 1464 // If the operand is an empty aggregate, there are no values. 1465 if (!Val) continue; 1466 // Add each leaf value from the operand to the Constants list 1467 // to form a flattened list of all the values. 1468 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1469 Constants.push_back(SDValue(Val, i)); 1470 } 1471 1472 return DAG.getMergeValues(Constants, getCurSDLoc()); 1473 } 1474 1475 if (const ConstantDataSequential *CDS = 1476 dyn_cast<ConstantDataSequential>(C)) { 1477 SmallVector<SDValue, 4> Ops; 1478 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1479 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1480 // Add each leaf value from the operand to the Constants list 1481 // to form a flattened list of all the values. 1482 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1483 Ops.push_back(SDValue(Val, i)); 1484 } 1485 1486 if (isa<ArrayType>(CDS->getType())) 1487 return DAG.getMergeValues(Ops, getCurSDLoc()); 1488 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1489 } 1490 1491 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1492 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1493 "Unknown struct or array constant!"); 1494 1495 SmallVector<EVT, 4> ValueVTs; 1496 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1497 unsigned NumElts = ValueVTs.size(); 1498 if (NumElts == 0) 1499 return SDValue(); // empty struct 1500 SmallVector<SDValue, 4> Constants(NumElts); 1501 for (unsigned i = 0; i != NumElts; ++i) { 1502 EVT EltVT = ValueVTs[i]; 1503 if (isa<UndefValue>(C)) 1504 Constants[i] = DAG.getUNDEF(EltVT); 1505 else if (EltVT.isFloatingPoint()) 1506 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1507 else 1508 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1509 } 1510 1511 return DAG.getMergeValues(Constants, getCurSDLoc()); 1512 } 1513 1514 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1515 return DAG.getBlockAddress(BA, VT); 1516 1517 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1518 return getValue(Equiv->getGlobalValue()); 1519 1520 VectorType *VecTy = cast<VectorType>(V->getType()); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1525 SmallVector<SDValue, 16> Ops; 1526 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1527 for (unsigned i = 0; i != NumElements; ++i) 1528 Ops.push_back(getValue(CV->getOperand(i))); 1529 1530 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1531 } else if (isa<ConstantAggregateZero>(C)) { 1532 EVT EltVT = 1533 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1534 1535 SDValue Op; 1536 if (EltVT.isFloatingPoint()) 1537 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1538 else 1539 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1540 1541 if (isa<ScalableVectorType>(VecTy)) 1542 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1543 else { 1544 SmallVector<SDValue, 16> Ops; 1545 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1546 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1547 } 1548 } 1549 llvm_unreachable("Unknown vector constant"); 1550 } 1551 1552 // If this is a static alloca, generate it as the frameindex instead of 1553 // computation. 1554 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1555 DenseMap<const AllocaInst*, int>::iterator SI = 1556 FuncInfo.StaticAllocaMap.find(AI); 1557 if (SI != FuncInfo.StaticAllocaMap.end()) 1558 return DAG.getFrameIndex(SI->second, 1559 TLI.getFrameIndexTy(DAG.getDataLayout())); 1560 } 1561 1562 // If this is an instruction which fast-isel has deferred, select it now. 1563 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1564 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1565 1566 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1567 Inst->getType(), None); 1568 SDValue Chain = DAG.getEntryNode(); 1569 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1570 } 1571 1572 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1573 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1574 } 1575 llvm_unreachable("Can't get register for value!"); 1576 } 1577 1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1582 bool IsSEH = isAsynchronousEHPersonality(Pers); 1583 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1584 if (!IsSEH) 1585 CatchPadMBB->setIsEHScopeEntry(); 1586 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1587 if (IsMSVCCXX || IsCoreCLR) 1588 CatchPadMBB->setIsEHFuncletEntry(); 1589 } 1590 1591 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1592 // Update machine-CFG edge. 1593 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1594 FuncInfo.MBB->addSuccessor(TargetMBB); 1595 1596 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1597 bool IsSEH = isAsynchronousEHPersonality(Pers); 1598 if (IsSEH) { 1599 // If this is not a fall-through branch or optimizations are switched off, 1600 // emit the branch. 1601 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1602 TM.getOptLevel() == CodeGenOpt::None) 1603 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1604 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1605 return; 1606 } 1607 1608 // Figure out the funclet membership for the catchret's successor. 1609 // This will be used by the FuncletLayout pass to determine how to order the 1610 // BB's. 1611 // A 'catchret' returns to the outer scope's color. 1612 Value *ParentPad = I.getCatchSwitchParentPad(); 1613 const BasicBlock *SuccessorColor; 1614 if (isa<ConstantTokenNone>(ParentPad)) 1615 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1616 else 1617 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1618 assert(SuccessorColor && "No parent funclet for catchret!"); 1619 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1620 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1621 1622 // Create the terminator node. 1623 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1624 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1625 DAG.getBasicBlock(SuccessorColorMBB)); 1626 DAG.setRoot(Ret); 1627 } 1628 1629 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1630 // Don't emit any special code for the cleanuppad instruction. It just marks 1631 // the start of an EH scope/funclet. 1632 FuncInfo.MBB->setIsEHScopeEntry(); 1633 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1634 if (Pers != EHPersonality::Wasm_CXX) { 1635 FuncInfo.MBB->setIsEHFuncletEntry(); 1636 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1637 } 1638 } 1639 1640 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1641 // not match, it is OK to add only the first unwind destination catchpad to the 1642 // successors, because there will be at least one invoke instruction within the 1643 // catch scope that points to the next unwind destination, if one exists, so 1644 // CFGSort cannot mess up with BB sorting order. 1645 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1646 // call within them, and catchpads only consisting of 'catch (...)' have a 1647 // '__cxa_end_catch' call within them, both of which generate invokes in case 1648 // the next unwind destination exists, i.e., the next unwind destination is not 1649 // the caller.) 1650 // 1651 // Having at most one EH pad successor is also simpler and helps later 1652 // transformations. 1653 // 1654 // For example, 1655 // current: 1656 // invoke void @foo to ... unwind label %catch.dispatch 1657 // catch.dispatch: 1658 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1659 // catch.start: 1660 // ... 1661 // ... in this BB or some other child BB dominated by this BB there will be an 1662 // invoke that points to 'next' BB as an unwind destination 1663 // 1664 // next: ; We don't need to add this to 'current' BB's successor 1665 // ... 1666 static void findWasmUnwindDestinations( 1667 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1668 BranchProbability Prob, 1669 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1670 &UnwindDests) { 1671 while (EHPadBB) { 1672 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1673 if (isa<CleanupPadInst>(Pad)) { 1674 // Stop on cleanup pads. 1675 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1676 UnwindDests.back().first->setIsEHScopeEntry(); 1677 break; 1678 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1679 // Add the catchpad handlers to the possible destinations. We don't 1680 // continue to the unwind destination of the catchswitch for wasm. 1681 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1682 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1683 UnwindDests.back().first->setIsEHScopeEntry(); 1684 } 1685 break; 1686 } else { 1687 continue; 1688 } 1689 } 1690 } 1691 1692 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1693 /// many places it could ultimately go. In the IR, we have a single unwind 1694 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1695 /// This function skips over imaginary basic blocks that hold catchswitch 1696 /// instructions, and finds all the "real" machine 1697 /// basic block destinations. As those destinations may not be successors of 1698 /// EHPadBB, here we also calculate the edge probability to those destinations. 1699 /// The passed-in Prob is the edge probability to EHPadBB. 1700 static void findUnwindDestinations( 1701 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1702 BranchProbability Prob, 1703 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1704 &UnwindDests) { 1705 EHPersonality Personality = 1706 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1707 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1708 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1709 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1710 bool IsSEH = isAsynchronousEHPersonality(Personality); 1711 1712 if (IsWasmCXX) { 1713 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1714 assert(UnwindDests.size() <= 1 && 1715 "There should be at most one unwind destination for wasm"); 1716 return; 1717 } 1718 1719 while (EHPadBB) { 1720 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1721 BasicBlock *NewEHPadBB = nullptr; 1722 if (isa<LandingPadInst>(Pad)) { 1723 // Stop on landingpads. They are not funclets. 1724 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1725 break; 1726 } else if (isa<CleanupPadInst>(Pad)) { 1727 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1728 // personalities. 1729 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1730 UnwindDests.back().first->setIsEHScopeEntry(); 1731 UnwindDests.back().first->setIsEHFuncletEntry(); 1732 break; 1733 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1734 // Add the catchpad handlers to the possible destinations. 1735 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1736 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1737 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1738 if (IsMSVCCXX || IsCoreCLR) 1739 UnwindDests.back().first->setIsEHFuncletEntry(); 1740 if (!IsSEH) 1741 UnwindDests.back().first->setIsEHScopeEntry(); 1742 } 1743 NewEHPadBB = CatchSwitch->getUnwindDest(); 1744 } else { 1745 continue; 1746 } 1747 1748 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1749 if (BPI && NewEHPadBB) 1750 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1751 EHPadBB = NewEHPadBB; 1752 } 1753 } 1754 1755 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1756 // Update successor info. 1757 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1758 auto UnwindDest = I.getUnwindDest(); 1759 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1760 BranchProbability UnwindDestProb = 1761 (BPI && UnwindDest) 1762 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1763 : BranchProbability::getZero(); 1764 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1765 for (auto &UnwindDest : UnwindDests) { 1766 UnwindDest.first->setIsEHPad(); 1767 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1768 } 1769 FuncInfo.MBB->normalizeSuccProbs(); 1770 1771 // Create the terminator node. 1772 SDValue Ret = 1773 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1774 DAG.setRoot(Ret); 1775 } 1776 1777 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1778 report_fatal_error("visitCatchSwitch not yet implemented!"); 1779 } 1780 1781 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1783 auto &DL = DAG.getDataLayout(); 1784 SDValue Chain = getControlRoot(); 1785 SmallVector<ISD::OutputArg, 8> Outs; 1786 SmallVector<SDValue, 8> OutVals; 1787 1788 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1789 // lower 1790 // 1791 // %val = call <ty> @llvm.experimental.deoptimize() 1792 // ret <ty> %val 1793 // 1794 // differently. 1795 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1796 LowerDeoptimizingReturn(); 1797 return; 1798 } 1799 1800 if (!FuncInfo.CanLowerReturn) { 1801 unsigned DemoteReg = FuncInfo.DemoteRegister; 1802 const Function *F = I.getParent()->getParent(); 1803 1804 // Emit a store of the return value through the virtual register. 1805 // Leave Outs empty so that LowerReturn won't try to load return 1806 // registers the usual way. 1807 SmallVector<EVT, 1> PtrValueVTs; 1808 ComputeValueVTs(TLI, DL, 1809 F->getReturnType()->getPointerTo( 1810 DAG.getDataLayout().getAllocaAddrSpace()), 1811 PtrValueVTs); 1812 1813 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1814 DemoteReg, PtrValueVTs[0]); 1815 SDValue RetOp = getValue(I.getOperand(0)); 1816 1817 SmallVector<EVT, 4> ValueVTs, MemVTs; 1818 SmallVector<uint64_t, 4> Offsets; 1819 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1820 &Offsets); 1821 unsigned NumValues = ValueVTs.size(); 1822 1823 SmallVector<SDValue, 4> Chains(NumValues); 1824 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1825 for (unsigned i = 0; i != NumValues; ++i) { 1826 // An aggregate return value cannot wrap around the address space, so 1827 // offsets to its parts don't wrap either. 1828 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1829 TypeSize::Fixed(Offsets[i])); 1830 1831 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1832 if (MemVTs[i] != ValueVTs[i]) 1833 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1834 Chains[i] = DAG.getStore( 1835 Chain, getCurSDLoc(), Val, 1836 // FIXME: better loc info would be nice. 1837 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1838 commonAlignment(BaseAlign, Offsets[i])); 1839 } 1840 1841 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1842 MVT::Other, Chains); 1843 } else if (I.getNumOperands() != 0) { 1844 SmallVector<EVT, 4> ValueVTs; 1845 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1846 unsigned NumValues = ValueVTs.size(); 1847 if (NumValues) { 1848 SDValue RetOp = getValue(I.getOperand(0)); 1849 1850 const Function *F = I.getParent()->getParent(); 1851 1852 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1853 I.getOperand(0)->getType(), F->getCallingConv(), 1854 /*IsVarArg*/ false); 1855 1856 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1857 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1858 Attribute::SExt)) 1859 ExtendKind = ISD::SIGN_EXTEND; 1860 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1861 Attribute::ZExt)) 1862 ExtendKind = ISD::ZERO_EXTEND; 1863 1864 LLVMContext &Context = F->getContext(); 1865 bool RetInReg = F->getAttributes().hasAttribute( 1866 AttributeList::ReturnIndex, Attribute::InReg); 1867 1868 for (unsigned j = 0; j != NumValues; ++j) { 1869 EVT VT = ValueVTs[j]; 1870 1871 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1872 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1873 1874 CallingConv::ID CC = F->getCallingConv(); 1875 1876 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1877 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1878 SmallVector<SDValue, 4> Parts(NumParts); 1879 getCopyToParts(DAG, getCurSDLoc(), 1880 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1881 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1882 1883 // 'inreg' on function refers to return value 1884 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1885 if (RetInReg) 1886 Flags.setInReg(); 1887 1888 if (I.getOperand(0)->getType()->isPointerTy()) { 1889 Flags.setPointer(); 1890 Flags.setPointerAddrSpace( 1891 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1892 } 1893 1894 if (NeedsRegBlock) { 1895 Flags.setInConsecutiveRegs(); 1896 if (j == NumValues - 1) 1897 Flags.setInConsecutiveRegsLast(); 1898 } 1899 1900 // Propagate extension type if any 1901 if (ExtendKind == ISD::SIGN_EXTEND) 1902 Flags.setSExt(); 1903 else if (ExtendKind == ISD::ZERO_EXTEND) 1904 Flags.setZExt(); 1905 1906 for (unsigned i = 0; i < NumParts; ++i) { 1907 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1908 VT, /*isfixed=*/true, 0, 0)); 1909 OutVals.push_back(Parts[i]); 1910 } 1911 } 1912 } 1913 } 1914 1915 // Push in swifterror virtual register as the last element of Outs. This makes 1916 // sure swifterror virtual register will be returned in the swifterror 1917 // physical register. 1918 const Function *F = I.getParent()->getParent(); 1919 if (TLI.supportSwiftError() && 1920 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1921 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1922 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1923 Flags.setSwiftError(); 1924 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1925 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1926 true /*isfixed*/, 1 /*origidx*/, 1927 0 /*partOffs*/)); 1928 // Create SDNode for the swifterror virtual register. 1929 OutVals.push_back( 1930 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1931 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1932 EVT(TLI.getPointerTy(DL)))); 1933 } 1934 1935 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1936 CallingConv::ID CallConv = 1937 DAG.getMachineFunction().getFunction().getCallingConv(); 1938 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1939 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1940 1941 // Verify that the target's LowerReturn behaved as expected. 1942 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1943 "LowerReturn didn't return a valid chain!"); 1944 1945 // Update the DAG with the new chain value resulting from return lowering. 1946 DAG.setRoot(Chain); 1947 } 1948 1949 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1950 /// created for it, emit nodes to copy the value into the virtual 1951 /// registers. 1952 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1953 // Skip empty types 1954 if (V->getType()->isEmptyTy()) 1955 return; 1956 1957 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1958 if (VMI != FuncInfo.ValueMap.end()) { 1959 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1960 CopyValueToVirtualRegister(V, VMI->second); 1961 } 1962 } 1963 1964 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1965 /// the current basic block, add it to ValueMap now so that we'll get a 1966 /// CopyTo/FromReg. 1967 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1968 // No need to export constants. 1969 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1970 1971 // Already exported? 1972 if (FuncInfo.isExportedInst(V)) return; 1973 1974 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1975 CopyValueToVirtualRegister(V, Reg); 1976 } 1977 1978 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1979 const BasicBlock *FromBB) { 1980 // The operands of the setcc have to be in this block. We don't know 1981 // how to export them from some other block. 1982 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1983 // Can export from current BB. 1984 if (VI->getParent() == FromBB) 1985 return true; 1986 1987 // Is already exported, noop. 1988 return FuncInfo.isExportedInst(V); 1989 } 1990 1991 // If this is an argument, we can export it if the BB is the entry block or 1992 // if it is already exported. 1993 if (isa<Argument>(V)) { 1994 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1995 return true; 1996 1997 // Otherwise, can only export this if it is already exported. 1998 return FuncInfo.isExportedInst(V); 1999 } 2000 2001 // Otherwise, constants can always be exported. 2002 return true; 2003 } 2004 2005 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2006 BranchProbability 2007 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2008 const MachineBasicBlock *Dst) const { 2009 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2010 const BasicBlock *SrcBB = Src->getBasicBlock(); 2011 const BasicBlock *DstBB = Dst->getBasicBlock(); 2012 if (!BPI) { 2013 // If BPI is not available, set the default probability as 1 / N, where N is 2014 // the number of successors. 2015 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2016 return BranchProbability(1, SuccSize); 2017 } 2018 return BPI->getEdgeProbability(SrcBB, DstBB); 2019 } 2020 2021 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2022 MachineBasicBlock *Dst, 2023 BranchProbability Prob) { 2024 if (!FuncInfo.BPI) 2025 Src->addSuccessorWithoutProb(Dst); 2026 else { 2027 if (Prob.isUnknown()) 2028 Prob = getEdgeProbability(Src, Dst); 2029 Src->addSuccessor(Dst, Prob); 2030 } 2031 } 2032 2033 static bool InBlock(const Value *V, const BasicBlock *BB) { 2034 if (const Instruction *I = dyn_cast<Instruction>(V)) 2035 return I->getParent() == BB; 2036 return true; 2037 } 2038 2039 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2040 /// This function emits a branch and is used at the leaves of an OR or an 2041 /// AND operator tree. 2042 void 2043 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2044 MachineBasicBlock *TBB, 2045 MachineBasicBlock *FBB, 2046 MachineBasicBlock *CurBB, 2047 MachineBasicBlock *SwitchBB, 2048 BranchProbability TProb, 2049 BranchProbability FProb, 2050 bool InvertCond) { 2051 const BasicBlock *BB = CurBB->getBasicBlock(); 2052 2053 // If the leaf of the tree is a comparison, merge the condition into 2054 // the caseblock. 2055 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2056 // The operands of the cmp have to be in this block. We don't know 2057 // how to export them from some other block. If this is the first block 2058 // of the sequence, no exporting is needed. 2059 if (CurBB == SwitchBB || 2060 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2061 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2062 ISD::CondCode Condition; 2063 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2064 ICmpInst::Predicate Pred = 2065 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2066 Condition = getICmpCondCode(Pred); 2067 } else { 2068 const FCmpInst *FC = cast<FCmpInst>(Cond); 2069 FCmpInst::Predicate Pred = 2070 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2071 Condition = getFCmpCondCode(Pred); 2072 if (TM.Options.NoNaNsFPMath) 2073 Condition = getFCmpCodeWithoutNaN(Condition); 2074 } 2075 2076 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2077 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2078 SL->SwitchCases.push_back(CB); 2079 return; 2080 } 2081 } 2082 2083 // Create a CaseBlock record representing this branch. 2084 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2085 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2086 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2087 SL->SwitchCases.push_back(CB); 2088 } 2089 2090 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2091 MachineBasicBlock *TBB, 2092 MachineBasicBlock *FBB, 2093 MachineBasicBlock *CurBB, 2094 MachineBasicBlock *SwitchBB, 2095 Instruction::BinaryOps Opc, 2096 BranchProbability TProb, 2097 BranchProbability FProb, 2098 bool InvertCond) { 2099 // Skip over not part of the tree and remember to invert op and operands at 2100 // next level. 2101 Value *NotCond; 2102 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2103 InBlock(NotCond, CurBB->getBasicBlock())) { 2104 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2105 !InvertCond); 2106 return; 2107 } 2108 2109 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2110 const Value *BOpOp0, *BOpOp1; 2111 // Compute the effective opcode for Cond, taking into account whether it needs 2112 // to be inverted, e.g. 2113 // and (not (or A, B)), C 2114 // gets lowered as 2115 // and (and (not A, not B), C) 2116 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2117 if (BOp) { 2118 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2119 ? Instruction::And 2120 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2121 ? Instruction::Or 2122 : (Instruction::BinaryOps)0); 2123 if (InvertCond) { 2124 if (BOpc == Instruction::And) 2125 BOpc = Instruction::Or; 2126 else if (BOpc == Instruction::Or) 2127 BOpc = Instruction::And; 2128 } 2129 } 2130 2131 // If this node is not part of the or/and tree, emit it as a branch. 2132 // Note that all nodes in the tree should have same opcode. 2133 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2134 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2135 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2136 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2137 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2138 TProb, FProb, InvertCond); 2139 return; 2140 } 2141 2142 // Create TmpBB after CurBB. 2143 MachineFunction::iterator BBI(CurBB); 2144 MachineFunction &MF = DAG.getMachineFunction(); 2145 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2146 CurBB->getParent()->insert(++BBI, TmpBB); 2147 2148 if (Opc == Instruction::Or) { 2149 // Codegen X | Y as: 2150 // BB1: 2151 // jmp_if_X TBB 2152 // jmp TmpBB 2153 // TmpBB: 2154 // jmp_if_Y TBB 2155 // jmp FBB 2156 // 2157 2158 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2159 // The requirement is that 2160 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2161 // = TrueProb for original BB. 2162 // Assuming the original probabilities are A and B, one choice is to set 2163 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2164 // A/(1+B) and 2B/(1+B). This choice assumes that 2165 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2166 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2167 // TmpBB, but the math is more complicated. 2168 2169 auto NewTrueProb = TProb / 2; 2170 auto NewFalseProb = TProb / 2 + FProb; 2171 // Emit the LHS condition. 2172 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2173 NewFalseProb, InvertCond); 2174 2175 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2176 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2177 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2178 // Emit the RHS condition into TmpBB. 2179 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2180 Probs[1], InvertCond); 2181 } else { 2182 assert(Opc == Instruction::And && "Unknown merge op!"); 2183 // Codegen X & Y as: 2184 // BB1: 2185 // jmp_if_X TmpBB 2186 // jmp FBB 2187 // TmpBB: 2188 // jmp_if_Y TBB 2189 // jmp FBB 2190 // 2191 // This requires creation of TmpBB after CurBB. 2192 2193 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2194 // The requirement is that 2195 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2196 // = FalseProb for original BB. 2197 // Assuming the original probabilities are A and B, one choice is to set 2198 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2199 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2200 // TrueProb for BB1 * FalseProb for TmpBB. 2201 2202 auto NewTrueProb = TProb + FProb / 2; 2203 auto NewFalseProb = FProb / 2; 2204 // Emit the LHS condition. 2205 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2206 NewFalseProb, InvertCond); 2207 2208 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2209 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2210 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2211 // Emit the RHS condition into TmpBB. 2212 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2213 Probs[1], InvertCond); 2214 } 2215 } 2216 2217 /// If the set of cases should be emitted as a series of branches, return true. 2218 /// If we should emit this as a bunch of and/or'd together conditions, return 2219 /// false. 2220 bool 2221 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2222 if (Cases.size() != 2) return true; 2223 2224 // If this is two comparisons of the same values or'd or and'd together, they 2225 // will get folded into a single comparison, so don't emit two blocks. 2226 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2227 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2228 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2229 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2230 return false; 2231 } 2232 2233 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2234 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2235 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2236 Cases[0].CC == Cases[1].CC && 2237 isa<Constant>(Cases[0].CmpRHS) && 2238 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2239 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2240 return false; 2241 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2242 return false; 2243 } 2244 2245 return true; 2246 } 2247 2248 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2249 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2250 2251 // Update machine-CFG edges. 2252 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2253 2254 if (I.isUnconditional()) { 2255 // Update machine-CFG edges. 2256 BrMBB->addSuccessor(Succ0MBB); 2257 2258 // If this is not a fall-through branch or optimizations are switched off, 2259 // emit the branch. 2260 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2261 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2262 MVT::Other, getControlRoot(), 2263 DAG.getBasicBlock(Succ0MBB))); 2264 2265 return; 2266 } 2267 2268 // If this condition is one of the special cases we handle, do special stuff 2269 // now. 2270 const Value *CondVal = I.getCondition(); 2271 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2272 2273 // If this is a series of conditions that are or'd or and'd together, emit 2274 // this as a sequence of branches instead of setcc's with and/or operations. 2275 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2276 // unpredictable branches, and vector extracts because those jumps are likely 2277 // expensive for any target), this should improve performance. 2278 // For example, instead of something like: 2279 // cmp A, B 2280 // C = seteq 2281 // cmp D, E 2282 // F = setle 2283 // or C, F 2284 // jnz foo 2285 // Emit: 2286 // cmp A, B 2287 // je foo 2288 // cmp D, E 2289 // jle foo 2290 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2291 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2292 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2293 Value *Vec; 2294 const Value *BOp0, *BOp1; 2295 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2296 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2297 Opcode = Instruction::And; 2298 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2299 Opcode = Instruction::Or; 2300 2301 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2302 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2303 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2304 getEdgeProbability(BrMBB, Succ0MBB), 2305 getEdgeProbability(BrMBB, Succ1MBB), 2306 /*InvertCond=*/false); 2307 // If the compares in later blocks need to use values not currently 2308 // exported from this block, export them now. This block should always 2309 // be the first entry. 2310 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2311 2312 // Allow some cases to be rejected. 2313 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2314 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2315 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2316 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2317 } 2318 2319 // Emit the branch for this block. 2320 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2321 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2322 return; 2323 } 2324 2325 // Okay, we decided not to do this, remove any inserted MBB's and clear 2326 // SwitchCases. 2327 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2328 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2329 2330 SL->SwitchCases.clear(); 2331 } 2332 } 2333 2334 // Create a CaseBlock record representing this branch. 2335 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2336 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2337 2338 // Use visitSwitchCase to actually insert the fast branch sequence for this 2339 // cond branch. 2340 visitSwitchCase(CB, BrMBB); 2341 } 2342 2343 /// visitSwitchCase - Emits the necessary code to represent a single node in 2344 /// the binary search tree resulting from lowering a switch instruction. 2345 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2346 MachineBasicBlock *SwitchBB) { 2347 SDValue Cond; 2348 SDValue CondLHS = getValue(CB.CmpLHS); 2349 SDLoc dl = CB.DL; 2350 2351 if (CB.CC == ISD::SETTRUE) { 2352 // Branch or fall through to TrueBB. 2353 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2354 SwitchBB->normalizeSuccProbs(); 2355 if (CB.TrueBB != NextBlock(SwitchBB)) { 2356 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2357 DAG.getBasicBlock(CB.TrueBB))); 2358 } 2359 return; 2360 } 2361 2362 auto &TLI = DAG.getTargetLoweringInfo(); 2363 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2364 2365 // Build the setcc now. 2366 if (!CB.CmpMHS) { 2367 // Fold "(X == true)" to X and "(X == false)" to !X to 2368 // handle common cases produced by branch lowering. 2369 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2370 CB.CC == ISD::SETEQ) 2371 Cond = CondLHS; 2372 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2373 CB.CC == ISD::SETEQ) { 2374 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2375 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2376 } else { 2377 SDValue CondRHS = getValue(CB.CmpRHS); 2378 2379 // If a pointer's DAG type is larger than its memory type then the DAG 2380 // values are zero-extended. This breaks signed comparisons so truncate 2381 // back to the underlying type before doing the compare. 2382 if (CondLHS.getValueType() != MemVT) { 2383 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2384 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2385 } 2386 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2387 } 2388 } else { 2389 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2390 2391 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2392 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2393 2394 SDValue CmpOp = getValue(CB.CmpMHS); 2395 EVT VT = CmpOp.getValueType(); 2396 2397 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2398 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2399 ISD::SETLE); 2400 } else { 2401 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2402 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2403 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2404 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2405 } 2406 } 2407 2408 // Update successor info 2409 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2410 // TrueBB and FalseBB are always different unless the incoming IR is 2411 // degenerate. This only happens when running llc on weird IR. 2412 if (CB.TrueBB != CB.FalseBB) 2413 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2414 SwitchBB->normalizeSuccProbs(); 2415 2416 // If the lhs block is the next block, invert the condition so that we can 2417 // fall through to the lhs instead of the rhs block. 2418 if (CB.TrueBB == NextBlock(SwitchBB)) { 2419 std::swap(CB.TrueBB, CB.FalseBB); 2420 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2421 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2422 } 2423 2424 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2425 MVT::Other, getControlRoot(), Cond, 2426 DAG.getBasicBlock(CB.TrueBB)); 2427 2428 // Insert the false branch. Do this even if it's a fall through branch, 2429 // this makes it easier to do DAG optimizations which require inverting 2430 // the branch condition. 2431 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2432 DAG.getBasicBlock(CB.FalseBB)); 2433 2434 DAG.setRoot(BrCond); 2435 } 2436 2437 /// visitJumpTable - Emit JumpTable node in the current MBB 2438 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2439 // Emit the code for the jump table 2440 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2441 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2442 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2443 JT.Reg, PTy); 2444 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2445 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2446 MVT::Other, Index.getValue(1), 2447 Table, Index); 2448 DAG.setRoot(BrJumpTable); 2449 } 2450 2451 /// visitJumpTableHeader - This function emits necessary code to produce index 2452 /// in the JumpTable from switch case. 2453 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2454 JumpTableHeader &JTH, 2455 MachineBasicBlock *SwitchBB) { 2456 SDLoc dl = getCurSDLoc(); 2457 2458 // Subtract the lowest switch case value from the value being switched on. 2459 SDValue SwitchOp = getValue(JTH.SValue); 2460 EVT VT = SwitchOp.getValueType(); 2461 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2462 DAG.getConstant(JTH.First, dl, VT)); 2463 2464 // The SDNode we just created, which holds the value being switched on minus 2465 // the smallest case value, needs to be copied to a virtual register so it 2466 // can be used as an index into the jump table in a subsequent basic block. 2467 // This value may be smaller or larger than the target's pointer type, and 2468 // therefore require extension or truncating. 2469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2470 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2471 2472 unsigned JumpTableReg = 2473 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2474 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2475 JumpTableReg, SwitchOp); 2476 JT.Reg = JumpTableReg; 2477 2478 if (!JTH.OmitRangeCheck) { 2479 // Emit the range check for the jump table, and branch to the default block 2480 // for the switch statement if the value being switched on exceeds the 2481 // largest case in the switch. 2482 SDValue CMP = DAG.getSetCC( 2483 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2484 Sub.getValueType()), 2485 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2486 2487 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2488 MVT::Other, CopyTo, CMP, 2489 DAG.getBasicBlock(JT.Default)); 2490 2491 // Avoid emitting unnecessary branches to the next block. 2492 if (JT.MBB != NextBlock(SwitchBB)) 2493 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2494 DAG.getBasicBlock(JT.MBB)); 2495 2496 DAG.setRoot(BrCond); 2497 } else { 2498 // Avoid emitting unnecessary branches to the next block. 2499 if (JT.MBB != NextBlock(SwitchBB)) 2500 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2501 DAG.getBasicBlock(JT.MBB))); 2502 else 2503 DAG.setRoot(CopyTo); 2504 } 2505 } 2506 2507 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2508 /// variable if there exists one. 2509 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2510 SDValue &Chain) { 2511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2512 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2513 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2514 MachineFunction &MF = DAG.getMachineFunction(); 2515 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2516 MachineSDNode *Node = 2517 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2518 if (Global) { 2519 MachinePointerInfo MPInfo(Global); 2520 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2521 MachineMemOperand::MODereferenceable; 2522 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2523 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2524 DAG.setNodeMemRefs(Node, {MemRef}); 2525 } 2526 if (PtrTy != PtrMemTy) 2527 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2528 return SDValue(Node, 0); 2529 } 2530 2531 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2532 /// tail spliced into a stack protector check success bb. 2533 /// 2534 /// For a high level explanation of how this fits into the stack protector 2535 /// generation see the comment on the declaration of class 2536 /// StackProtectorDescriptor. 2537 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2538 MachineBasicBlock *ParentBB) { 2539 2540 // First create the loads to the guard/stack slot for the comparison. 2541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2542 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2543 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2544 2545 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2546 int FI = MFI.getStackProtectorIndex(); 2547 2548 SDValue Guard; 2549 SDLoc dl = getCurSDLoc(); 2550 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2551 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2552 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2553 2554 // Generate code to load the content of the guard slot. 2555 SDValue GuardVal = DAG.getLoad( 2556 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2557 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2558 MachineMemOperand::MOVolatile); 2559 2560 if (TLI.useStackGuardXorFP()) 2561 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2562 2563 // Retrieve guard check function, nullptr if instrumentation is inlined. 2564 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2565 // The target provides a guard check function to validate the guard value. 2566 // Generate a call to that function with the content of the guard slot as 2567 // argument. 2568 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2569 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2570 2571 TargetLowering::ArgListTy Args; 2572 TargetLowering::ArgListEntry Entry; 2573 Entry.Node = GuardVal; 2574 Entry.Ty = FnTy->getParamType(0); 2575 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2576 Entry.IsInReg = true; 2577 Args.push_back(Entry); 2578 2579 TargetLowering::CallLoweringInfo CLI(DAG); 2580 CLI.setDebugLoc(getCurSDLoc()) 2581 .setChain(DAG.getEntryNode()) 2582 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2583 getValue(GuardCheckFn), std::move(Args)); 2584 2585 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2586 DAG.setRoot(Result.second); 2587 return; 2588 } 2589 2590 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2591 // Otherwise, emit a volatile load to retrieve the stack guard value. 2592 SDValue Chain = DAG.getEntryNode(); 2593 if (TLI.useLoadStackGuardNode()) { 2594 Guard = getLoadStackGuard(DAG, dl, Chain); 2595 } else { 2596 const Value *IRGuard = TLI.getSDagStackGuard(M); 2597 SDValue GuardPtr = getValue(IRGuard); 2598 2599 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2600 MachinePointerInfo(IRGuard, 0), Align, 2601 MachineMemOperand::MOVolatile); 2602 } 2603 2604 // Perform the comparison via a getsetcc. 2605 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2606 *DAG.getContext(), 2607 Guard.getValueType()), 2608 Guard, GuardVal, ISD::SETNE); 2609 2610 // If the guard/stackslot do not equal, branch to failure MBB. 2611 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2612 MVT::Other, GuardVal.getOperand(0), 2613 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2614 // Otherwise branch to success MBB. 2615 SDValue Br = DAG.getNode(ISD::BR, dl, 2616 MVT::Other, BrCond, 2617 DAG.getBasicBlock(SPD.getSuccessMBB())); 2618 2619 DAG.setRoot(Br); 2620 } 2621 2622 /// Codegen the failure basic block for a stack protector check. 2623 /// 2624 /// A failure stack protector machine basic block consists simply of a call to 2625 /// __stack_chk_fail(). 2626 /// 2627 /// For a high level explanation of how this fits into the stack protector 2628 /// generation see the comment on the declaration of class 2629 /// StackProtectorDescriptor. 2630 void 2631 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2633 TargetLowering::MakeLibCallOptions CallOptions; 2634 CallOptions.setDiscardResult(true); 2635 SDValue Chain = 2636 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2637 None, CallOptions, getCurSDLoc()).second; 2638 // On PS4, the "return address" must still be within the calling function, 2639 // even if it's at the very end, so emit an explicit TRAP here. 2640 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2641 if (TM.getTargetTriple().isPS4CPU()) 2642 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2643 // WebAssembly needs an unreachable instruction after a non-returning call, 2644 // because the function return type can be different from __stack_chk_fail's 2645 // return type (void). 2646 if (TM.getTargetTriple().isWasm()) 2647 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2648 2649 DAG.setRoot(Chain); 2650 } 2651 2652 /// visitBitTestHeader - This function emits necessary code to produce value 2653 /// suitable for "bit tests" 2654 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2655 MachineBasicBlock *SwitchBB) { 2656 SDLoc dl = getCurSDLoc(); 2657 2658 // Subtract the minimum value. 2659 SDValue SwitchOp = getValue(B.SValue); 2660 EVT VT = SwitchOp.getValueType(); 2661 SDValue RangeSub = 2662 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2663 2664 // Determine the type of the test operands. 2665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2666 bool UsePtrType = false; 2667 if (!TLI.isTypeLegal(VT)) { 2668 UsePtrType = true; 2669 } else { 2670 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2671 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2672 // Switch table case range are encoded into series of masks. 2673 // Just use pointer type, it's guaranteed to fit. 2674 UsePtrType = true; 2675 break; 2676 } 2677 } 2678 SDValue Sub = RangeSub; 2679 if (UsePtrType) { 2680 VT = TLI.getPointerTy(DAG.getDataLayout()); 2681 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2682 } 2683 2684 B.RegVT = VT.getSimpleVT(); 2685 B.Reg = FuncInfo.CreateReg(B.RegVT); 2686 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2687 2688 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2689 2690 if (!B.OmitRangeCheck) 2691 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2692 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2693 SwitchBB->normalizeSuccProbs(); 2694 2695 SDValue Root = CopyTo; 2696 if (!B.OmitRangeCheck) { 2697 // Conditional branch to the default block. 2698 SDValue RangeCmp = DAG.getSetCC(dl, 2699 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2700 RangeSub.getValueType()), 2701 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2702 ISD::SETUGT); 2703 2704 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2705 DAG.getBasicBlock(B.Default)); 2706 } 2707 2708 // Avoid emitting unnecessary branches to the next block. 2709 if (MBB != NextBlock(SwitchBB)) 2710 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2711 2712 DAG.setRoot(Root); 2713 } 2714 2715 /// visitBitTestCase - this function produces one "bit test" 2716 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2717 MachineBasicBlock* NextMBB, 2718 BranchProbability BranchProbToNext, 2719 unsigned Reg, 2720 BitTestCase &B, 2721 MachineBasicBlock *SwitchBB) { 2722 SDLoc dl = getCurSDLoc(); 2723 MVT VT = BB.RegVT; 2724 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2725 SDValue Cmp; 2726 unsigned PopCount = countPopulation(B.Mask); 2727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2728 if (PopCount == 1) { 2729 // Testing for a single bit; just compare the shift count with what it 2730 // would need to be to shift a 1 bit in that position. 2731 Cmp = DAG.getSetCC( 2732 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2733 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2734 ISD::SETEQ); 2735 } else if (PopCount == BB.Range) { 2736 // There is only one zero bit in the range, test for it directly. 2737 Cmp = DAG.getSetCC( 2738 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2739 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2740 ISD::SETNE); 2741 } else { 2742 // Make desired shift 2743 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2744 DAG.getConstant(1, dl, VT), ShiftOp); 2745 2746 // Emit bit tests and jumps 2747 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2748 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2749 Cmp = DAG.getSetCC( 2750 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2751 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2752 } 2753 2754 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2755 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2756 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2757 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2758 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2759 // one as they are relative probabilities (and thus work more like weights), 2760 // and hence we need to normalize them to let the sum of them become one. 2761 SwitchBB->normalizeSuccProbs(); 2762 2763 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2764 MVT::Other, getControlRoot(), 2765 Cmp, DAG.getBasicBlock(B.TargetBB)); 2766 2767 // Avoid emitting unnecessary branches to the next block. 2768 if (NextMBB != NextBlock(SwitchBB)) 2769 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2770 DAG.getBasicBlock(NextMBB)); 2771 2772 DAG.setRoot(BrAnd); 2773 } 2774 2775 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2776 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2777 2778 // Retrieve successors. Look through artificial IR level blocks like 2779 // catchswitch for successors. 2780 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2781 const BasicBlock *EHPadBB = I.getSuccessor(1); 2782 2783 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2784 // have to do anything here to lower funclet bundles. 2785 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2786 LLVMContext::OB_gc_transition, 2787 LLVMContext::OB_gc_live, 2788 LLVMContext::OB_funclet, 2789 LLVMContext::OB_cfguardtarget}) && 2790 "Cannot lower invokes with arbitrary operand bundles yet!"); 2791 2792 const Value *Callee(I.getCalledOperand()); 2793 const Function *Fn = dyn_cast<Function>(Callee); 2794 if (isa<InlineAsm>(Callee)) 2795 visitInlineAsm(I); 2796 else if (Fn && Fn->isIntrinsic()) { 2797 switch (Fn->getIntrinsicID()) { 2798 default: 2799 llvm_unreachable("Cannot invoke this intrinsic"); 2800 case Intrinsic::donothing: 2801 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2802 break; 2803 case Intrinsic::experimental_patchpoint_void: 2804 case Intrinsic::experimental_patchpoint_i64: 2805 visitPatchpoint(I, EHPadBB); 2806 break; 2807 case Intrinsic::experimental_gc_statepoint: 2808 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2809 break; 2810 case Intrinsic::wasm_rethrow: { 2811 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2812 // special because it can be invoked, so we manually lower it to a DAG 2813 // node here. 2814 SmallVector<SDValue, 8> Ops; 2815 Ops.push_back(getRoot()); // inchain 2816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2817 Ops.push_back( 2818 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2819 TLI.getPointerTy(DAG.getDataLayout()))); 2820 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2821 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2822 break; 2823 } 2824 } 2825 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2826 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2827 // Eventually we will support lowering the @llvm.experimental.deoptimize 2828 // intrinsic, and right now there are no plans to support other intrinsics 2829 // with deopt state. 2830 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2831 } else { 2832 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2833 } 2834 2835 // If the value of the invoke is used outside of its defining block, make it 2836 // available as a virtual register. 2837 // We already took care of the exported value for the statepoint instruction 2838 // during call to the LowerStatepoint. 2839 if (!isa<GCStatepointInst>(I)) { 2840 CopyToExportRegsIfNeeded(&I); 2841 } 2842 2843 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2844 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2845 BranchProbability EHPadBBProb = 2846 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2847 : BranchProbability::getZero(); 2848 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2849 2850 // Update successor info. 2851 addSuccessorWithProb(InvokeMBB, Return); 2852 for (auto &UnwindDest : UnwindDests) { 2853 UnwindDest.first->setIsEHPad(); 2854 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2855 } 2856 InvokeMBB->normalizeSuccProbs(); 2857 2858 // Drop into normal successor. 2859 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2860 DAG.getBasicBlock(Return))); 2861 } 2862 2863 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2864 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2865 2866 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2867 // have to do anything here to lower funclet bundles. 2868 assert(!I.hasOperandBundlesOtherThan( 2869 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2870 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2871 2872 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2873 visitInlineAsm(I); 2874 CopyToExportRegsIfNeeded(&I); 2875 2876 // Retrieve successors. 2877 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2878 2879 // Update successor info. 2880 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2881 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2882 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2883 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2884 Target->setIsInlineAsmBrIndirectTarget(); 2885 } 2886 CallBrMBB->normalizeSuccProbs(); 2887 2888 // Drop into default successor. 2889 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2890 MVT::Other, getControlRoot(), 2891 DAG.getBasicBlock(Return))); 2892 } 2893 2894 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2895 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2896 } 2897 2898 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2899 assert(FuncInfo.MBB->isEHPad() && 2900 "Call to landingpad not in landing pad!"); 2901 2902 // If there aren't registers to copy the values into (e.g., during SjLj 2903 // exceptions), then don't bother to create these DAG nodes. 2904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2905 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2906 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2907 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2908 return; 2909 2910 // If landingpad's return type is token type, we don't create DAG nodes 2911 // for its exception pointer and selector value. The extraction of exception 2912 // pointer or selector value from token type landingpads is not currently 2913 // supported. 2914 if (LP.getType()->isTokenTy()) 2915 return; 2916 2917 SmallVector<EVT, 2> ValueVTs; 2918 SDLoc dl = getCurSDLoc(); 2919 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2920 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2921 2922 // Get the two live-in registers as SDValues. The physregs have already been 2923 // copied into virtual registers. 2924 SDValue Ops[2]; 2925 if (FuncInfo.ExceptionPointerVirtReg) { 2926 Ops[0] = DAG.getZExtOrTrunc( 2927 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2928 FuncInfo.ExceptionPointerVirtReg, 2929 TLI.getPointerTy(DAG.getDataLayout())), 2930 dl, ValueVTs[0]); 2931 } else { 2932 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2933 } 2934 Ops[1] = DAG.getZExtOrTrunc( 2935 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2936 FuncInfo.ExceptionSelectorVirtReg, 2937 TLI.getPointerTy(DAG.getDataLayout())), 2938 dl, ValueVTs[1]); 2939 2940 // Merge into one. 2941 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2942 DAG.getVTList(ValueVTs), Ops); 2943 setValue(&LP, Res); 2944 } 2945 2946 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2947 MachineBasicBlock *Last) { 2948 // Update JTCases. 2949 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2950 if (SL->JTCases[i].first.HeaderBB == First) 2951 SL->JTCases[i].first.HeaderBB = Last; 2952 2953 // Update BitTestCases. 2954 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2955 if (SL->BitTestCases[i].Parent == First) 2956 SL->BitTestCases[i].Parent = Last; 2957 } 2958 2959 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2960 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2961 2962 // Update machine-CFG edges with unique successors. 2963 SmallSet<BasicBlock*, 32> Done; 2964 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2965 BasicBlock *BB = I.getSuccessor(i); 2966 bool Inserted = Done.insert(BB).second; 2967 if (!Inserted) 2968 continue; 2969 2970 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2971 addSuccessorWithProb(IndirectBrMBB, Succ); 2972 } 2973 IndirectBrMBB->normalizeSuccProbs(); 2974 2975 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2976 MVT::Other, getControlRoot(), 2977 getValue(I.getAddress()))); 2978 } 2979 2980 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2981 if (!DAG.getTarget().Options.TrapUnreachable) 2982 return; 2983 2984 // We may be able to ignore unreachable behind a noreturn call. 2985 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2986 const BasicBlock &BB = *I.getParent(); 2987 if (&I != &BB.front()) { 2988 BasicBlock::const_iterator PredI = 2989 std::prev(BasicBlock::const_iterator(&I)); 2990 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2991 if (Call->doesNotReturn()) 2992 return; 2993 } 2994 } 2995 } 2996 2997 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2998 } 2999 3000 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3001 SDNodeFlags Flags; 3002 3003 SDValue Op = getValue(I.getOperand(0)); 3004 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3005 Op, Flags); 3006 setValue(&I, UnNodeValue); 3007 } 3008 3009 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3010 SDNodeFlags Flags; 3011 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3012 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3013 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3014 } 3015 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3016 Flags.setExact(ExactOp->isExact()); 3017 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3018 Flags.copyFMF(*FPOp); 3019 3020 SDValue Op1 = getValue(I.getOperand(0)); 3021 SDValue Op2 = getValue(I.getOperand(1)); 3022 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3023 Op1, Op2, Flags); 3024 setValue(&I, BinNodeValue); 3025 } 3026 3027 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3028 SDValue Op1 = getValue(I.getOperand(0)); 3029 SDValue Op2 = getValue(I.getOperand(1)); 3030 3031 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3032 Op1.getValueType(), DAG.getDataLayout()); 3033 3034 // Coerce the shift amount to the right type if we can. 3035 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3036 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3037 unsigned Op2Size = Op2.getValueSizeInBits(); 3038 SDLoc DL = getCurSDLoc(); 3039 3040 // If the operand is smaller than the shift count type, promote it. 3041 if (ShiftSize > Op2Size) 3042 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3043 3044 // If the operand is larger than the shift count type but the shift 3045 // count type has enough bits to represent any shift value, truncate 3046 // it now. This is a common case and it exposes the truncate to 3047 // optimization early. 3048 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3049 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3050 // Otherwise we'll need to temporarily settle for some other convenient 3051 // type. Type legalization will make adjustments once the shiftee is split. 3052 else 3053 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3054 } 3055 3056 bool nuw = false; 3057 bool nsw = false; 3058 bool exact = false; 3059 3060 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3061 3062 if (const OverflowingBinaryOperator *OFBinOp = 3063 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3064 nuw = OFBinOp->hasNoUnsignedWrap(); 3065 nsw = OFBinOp->hasNoSignedWrap(); 3066 } 3067 if (const PossiblyExactOperator *ExactOp = 3068 dyn_cast<const PossiblyExactOperator>(&I)) 3069 exact = ExactOp->isExact(); 3070 } 3071 SDNodeFlags Flags; 3072 Flags.setExact(exact); 3073 Flags.setNoSignedWrap(nsw); 3074 Flags.setNoUnsignedWrap(nuw); 3075 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3076 Flags); 3077 setValue(&I, Res); 3078 } 3079 3080 void SelectionDAGBuilder::visitSDiv(const User &I) { 3081 SDValue Op1 = getValue(I.getOperand(0)); 3082 SDValue Op2 = getValue(I.getOperand(1)); 3083 3084 SDNodeFlags Flags; 3085 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3086 cast<PossiblyExactOperator>(&I)->isExact()); 3087 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3088 Op2, Flags)); 3089 } 3090 3091 void SelectionDAGBuilder::visitICmp(const User &I) { 3092 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3093 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3094 predicate = IC->getPredicate(); 3095 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3096 predicate = ICmpInst::Predicate(IC->getPredicate()); 3097 SDValue Op1 = getValue(I.getOperand(0)); 3098 SDValue Op2 = getValue(I.getOperand(1)); 3099 ISD::CondCode Opcode = getICmpCondCode(predicate); 3100 3101 auto &TLI = DAG.getTargetLoweringInfo(); 3102 EVT MemVT = 3103 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3104 3105 // If a pointer's DAG type is larger than its memory type then the DAG values 3106 // are zero-extended. This breaks signed comparisons so truncate back to the 3107 // underlying type before doing the compare. 3108 if (Op1.getValueType() != MemVT) { 3109 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3110 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3111 } 3112 3113 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3114 I.getType()); 3115 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3116 } 3117 3118 void SelectionDAGBuilder::visitFCmp(const User &I) { 3119 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3120 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3121 predicate = FC->getPredicate(); 3122 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3123 predicate = FCmpInst::Predicate(FC->getPredicate()); 3124 SDValue Op1 = getValue(I.getOperand(0)); 3125 SDValue Op2 = getValue(I.getOperand(1)); 3126 3127 ISD::CondCode Condition = getFCmpCondCode(predicate); 3128 auto *FPMO = cast<FPMathOperator>(&I); 3129 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3130 Condition = getFCmpCodeWithoutNaN(Condition); 3131 3132 SDNodeFlags Flags; 3133 Flags.copyFMF(*FPMO); 3134 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3135 3136 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3137 I.getType()); 3138 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3139 } 3140 3141 // Check if the condition of the select has one use or two users that are both 3142 // selects with the same condition. 3143 static bool hasOnlySelectUsers(const Value *Cond) { 3144 return llvm::all_of(Cond->users(), [](const Value *V) { 3145 return isa<SelectInst>(V); 3146 }); 3147 } 3148 3149 void SelectionDAGBuilder::visitSelect(const User &I) { 3150 SmallVector<EVT, 4> ValueVTs; 3151 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3152 ValueVTs); 3153 unsigned NumValues = ValueVTs.size(); 3154 if (NumValues == 0) return; 3155 3156 SmallVector<SDValue, 4> Values(NumValues); 3157 SDValue Cond = getValue(I.getOperand(0)); 3158 SDValue LHSVal = getValue(I.getOperand(1)); 3159 SDValue RHSVal = getValue(I.getOperand(2)); 3160 SmallVector<SDValue, 1> BaseOps(1, Cond); 3161 ISD::NodeType OpCode = 3162 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3163 3164 bool IsUnaryAbs = false; 3165 bool Negate = false; 3166 3167 SDNodeFlags Flags; 3168 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3169 Flags.copyFMF(*FPOp); 3170 3171 // Min/max matching is only viable if all output VTs are the same. 3172 if (is_splat(ValueVTs)) { 3173 EVT VT = ValueVTs[0]; 3174 LLVMContext &Ctx = *DAG.getContext(); 3175 auto &TLI = DAG.getTargetLoweringInfo(); 3176 3177 // We care about the legality of the operation after it has been type 3178 // legalized. 3179 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3180 VT = TLI.getTypeToTransformTo(Ctx, VT); 3181 3182 // If the vselect is legal, assume we want to leave this as a vector setcc + 3183 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3184 // min/max is legal on the scalar type. 3185 bool UseScalarMinMax = VT.isVector() && 3186 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3187 3188 Value *LHS, *RHS; 3189 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3190 ISD::NodeType Opc = ISD::DELETED_NODE; 3191 switch (SPR.Flavor) { 3192 case SPF_UMAX: Opc = ISD::UMAX; break; 3193 case SPF_UMIN: Opc = ISD::UMIN; break; 3194 case SPF_SMAX: Opc = ISD::SMAX; break; 3195 case SPF_SMIN: Opc = ISD::SMIN; break; 3196 case SPF_FMINNUM: 3197 switch (SPR.NaNBehavior) { 3198 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3199 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3200 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3201 case SPNB_RETURNS_ANY: { 3202 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3203 Opc = ISD::FMINNUM; 3204 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3205 Opc = ISD::FMINIMUM; 3206 else if (UseScalarMinMax) 3207 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3208 ISD::FMINNUM : ISD::FMINIMUM; 3209 break; 3210 } 3211 } 3212 break; 3213 case SPF_FMAXNUM: 3214 switch (SPR.NaNBehavior) { 3215 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3216 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3217 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3218 case SPNB_RETURNS_ANY: 3219 3220 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3221 Opc = ISD::FMAXNUM; 3222 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3223 Opc = ISD::FMAXIMUM; 3224 else if (UseScalarMinMax) 3225 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3226 ISD::FMAXNUM : ISD::FMAXIMUM; 3227 break; 3228 } 3229 break; 3230 case SPF_NABS: 3231 Negate = true; 3232 LLVM_FALLTHROUGH; 3233 case SPF_ABS: 3234 IsUnaryAbs = true; 3235 Opc = ISD::ABS; 3236 break; 3237 default: break; 3238 } 3239 3240 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3241 (TLI.isOperationLegalOrCustom(Opc, VT) || 3242 (UseScalarMinMax && 3243 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3244 // If the underlying comparison instruction is used by any other 3245 // instruction, the consumed instructions won't be destroyed, so it is 3246 // not profitable to convert to a min/max. 3247 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3248 OpCode = Opc; 3249 LHSVal = getValue(LHS); 3250 RHSVal = getValue(RHS); 3251 BaseOps.clear(); 3252 } 3253 3254 if (IsUnaryAbs) { 3255 OpCode = Opc; 3256 LHSVal = getValue(LHS); 3257 BaseOps.clear(); 3258 } 3259 } 3260 3261 if (IsUnaryAbs) { 3262 for (unsigned i = 0; i != NumValues; ++i) { 3263 SDLoc dl = getCurSDLoc(); 3264 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3265 Values[i] = 3266 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3267 if (Negate) 3268 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3269 Values[i]); 3270 } 3271 } else { 3272 for (unsigned i = 0; i != NumValues; ++i) { 3273 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3274 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3275 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3276 Values[i] = DAG.getNode( 3277 OpCode, getCurSDLoc(), 3278 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3279 } 3280 } 3281 3282 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3283 DAG.getVTList(ValueVTs), Values)); 3284 } 3285 3286 void SelectionDAGBuilder::visitTrunc(const User &I) { 3287 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3288 SDValue N = getValue(I.getOperand(0)); 3289 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3290 I.getType()); 3291 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3292 } 3293 3294 void SelectionDAGBuilder::visitZExt(const User &I) { 3295 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3296 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3297 SDValue N = getValue(I.getOperand(0)); 3298 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3299 I.getType()); 3300 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3301 } 3302 3303 void SelectionDAGBuilder::visitSExt(const User &I) { 3304 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3305 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3306 SDValue N = getValue(I.getOperand(0)); 3307 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3308 I.getType()); 3309 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3310 } 3311 3312 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3313 // FPTrunc is never a no-op cast, no need to check 3314 SDValue N = getValue(I.getOperand(0)); 3315 SDLoc dl = getCurSDLoc(); 3316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3317 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3318 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3319 DAG.getTargetConstant( 3320 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3321 } 3322 3323 void SelectionDAGBuilder::visitFPExt(const User &I) { 3324 // FPExt is never a no-op cast, no need to check 3325 SDValue N = getValue(I.getOperand(0)); 3326 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3327 I.getType()); 3328 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3329 } 3330 3331 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3332 // FPToUI is never a no-op cast, no need to check 3333 SDValue N = getValue(I.getOperand(0)); 3334 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3335 I.getType()); 3336 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3337 } 3338 3339 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3340 // FPToSI is never a no-op cast, no need to check 3341 SDValue N = getValue(I.getOperand(0)); 3342 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3343 I.getType()); 3344 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3345 } 3346 3347 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3348 // UIToFP is never a no-op cast, no need to check 3349 SDValue N = getValue(I.getOperand(0)); 3350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3351 I.getType()); 3352 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3353 } 3354 3355 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3356 // SIToFP is never a no-op cast, no need to check 3357 SDValue N = getValue(I.getOperand(0)); 3358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3359 I.getType()); 3360 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3361 } 3362 3363 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3364 // What to do depends on the size of the integer and the size of the pointer. 3365 // We can either truncate, zero extend, or no-op, accordingly. 3366 SDValue N = getValue(I.getOperand(0)); 3367 auto &TLI = DAG.getTargetLoweringInfo(); 3368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3369 I.getType()); 3370 EVT PtrMemVT = 3371 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3372 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3373 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3374 setValue(&I, N); 3375 } 3376 3377 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3378 // What to do depends on the size of the integer and the size of the pointer. 3379 // We can either truncate, zero extend, or no-op, accordingly. 3380 SDValue N = getValue(I.getOperand(0)); 3381 auto &TLI = DAG.getTargetLoweringInfo(); 3382 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3383 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3384 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3385 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3386 setValue(&I, N); 3387 } 3388 3389 void SelectionDAGBuilder::visitBitCast(const User &I) { 3390 SDValue N = getValue(I.getOperand(0)); 3391 SDLoc dl = getCurSDLoc(); 3392 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3393 I.getType()); 3394 3395 // BitCast assures us that source and destination are the same size so this is 3396 // either a BITCAST or a no-op. 3397 if (DestVT != N.getValueType()) 3398 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3399 DestVT, N)); // convert types. 3400 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3401 // might fold any kind of constant expression to an integer constant and that 3402 // is not what we are looking for. Only recognize a bitcast of a genuine 3403 // constant integer as an opaque constant. 3404 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3405 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3406 /*isOpaque*/true)); 3407 else 3408 setValue(&I, N); // noop cast. 3409 } 3410 3411 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3413 const Value *SV = I.getOperand(0); 3414 SDValue N = getValue(SV); 3415 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3416 3417 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3418 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3419 3420 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3421 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3422 3423 setValue(&I, N); 3424 } 3425 3426 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3428 SDValue InVec = getValue(I.getOperand(0)); 3429 SDValue InVal = getValue(I.getOperand(1)); 3430 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3431 TLI.getVectorIdxTy(DAG.getDataLayout())); 3432 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3433 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3434 InVec, InVal, InIdx)); 3435 } 3436 3437 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3439 SDValue InVec = getValue(I.getOperand(0)); 3440 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3441 TLI.getVectorIdxTy(DAG.getDataLayout())); 3442 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3443 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3444 InVec, InIdx)); 3445 } 3446 3447 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3448 SDValue Src1 = getValue(I.getOperand(0)); 3449 SDValue Src2 = getValue(I.getOperand(1)); 3450 ArrayRef<int> Mask; 3451 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3452 Mask = SVI->getShuffleMask(); 3453 else 3454 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3455 SDLoc DL = getCurSDLoc(); 3456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3457 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3458 EVT SrcVT = Src1.getValueType(); 3459 3460 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3461 VT.isScalableVector()) { 3462 // Canonical splat form of first element of first input vector. 3463 SDValue FirstElt = 3464 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3465 DAG.getVectorIdxConstant(0, DL)); 3466 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3467 return; 3468 } 3469 3470 // For now, we only handle splats for scalable vectors. 3471 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3472 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3473 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3474 3475 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3476 unsigned MaskNumElts = Mask.size(); 3477 3478 if (SrcNumElts == MaskNumElts) { 3479 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3480 return; 3481 } 3482 3483 // Normalize the shuffle vector since mask and vector length don't match. 3484 if (SrcNumElts < MaskNumElts) { 3485 // Mask is longer than the source vectors. We can use concatenate vector to 3486 // make the mask and vectors lengths match. 3487 3488 if (MaskNumElts % SrcNumElts == 0) { 3489 // Mask length is a multiple of the source vector length. 3490 // Check if the shuffle is some kind of concatenation of the input 3491 // vectors. 3492 unsigned NumConcat = MaskNumElts / SrcNumElts; 3493 bool IsConcat = true; 3494 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3495 for (unsigned i = 0; i != MaskNumElts; ++i) { 3496 int Idx = Mask[i]; 3497 if (Idx < 0) 3498 continue; 3499 // Ensure the indices in each SrcVT sized piece are sequential and that 3500 // the same source is used for the whole piece. 3501 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3502 (ConcatSrcs[i / SrcNumElts] >= 0 && 3503 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3504 IsConcat = false; 3505 break; 3506 } 3507 // Remember which source this index came from. 3508 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3509 } 3510 3511 // The shuffle is concatenating multiple vectors together. Just emit 3512 // a CONCAT_VECTORS operation. 3513 if (IsConcat) { 3514 SmallVector<SDValue, 8> ConcatOps; 3515 for (auto Src : ConcatSrcs) { 3516 if (Src < 0) 3517 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3518 else if (Src == 0) 3519 ConcatOps.push_back(Src1); 3520 else 3521 ConcatOps.push_back(Src2); 3522 } 3523 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3524 return; 3525 } 3526 } 3527 3528 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3529 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3530 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3531 PaddedMaskNumElts); 3532 3533 // Pad both vectors with undefs to make them the same length as the mask. 3534 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3535 3536 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3537 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3538 MOps1[0] = Src1; 3539 MOps2[0] = Src2; 3540 3541 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3542 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3543 3544 // Readjust mask for new input vector length. 3545 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3546 for (unsigned i = 0; i != MaskNumElts; ++i) { 3547 int Idx = Mask[i]; 3548 if (Idx >= (int)SrcNumElts) 3549 Idx -= SrcNumElts - PaddedMaskNumElts; 3550 MappedOps[i] = Idx; 3551 } 3552 3553 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3554 3555 // If the concatenated vector was padded, extract a subvector with the 3556 // correct number of elements. 3557 if (MaskNumElts != PaddedMaskNumElts) 3558 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3559 DAG.getVectorIdxConstant(0, DL)); 3560 3561 setValue(&I, Result); 3562 return; 3563 } 3564 3565 if (SrcNumElts > MaskNumElts) { 3566 // Analyze the access pattern of the vector to see if we can extract 3567 // two subvectors and do the shuffle. 3568 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3569 bool CanExtract = true; 3570 for (int Idx : Mask) { 3571 unsigned Input = 0; 3572 if (Idx < 0) 3573 continue; 3574 3575 if (Idx >= (int)SrcNumElts) { 3576 Input = 1; 3577 Idx -= SrcNumElts; 3578 } 3579 3580 // If all the indices come from the same MaskNumElts sized portion of 3581 // the sources we can use extract. Also make sure the extract wouldn't 3582 // extract past the end of the source. 3583 int NewStartIdx = alignDown(Idx, MaskNumElts); 3584 if (NewStartIdx + MaskNumElts > SrcNumElts || 3585 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3586 CanExtract = false; 3587 // Make sure we always update StartIdx as we use it to track if all 3588 // elements are undef. 3589 StartIdx[Input] = NewStartIdx; 3590 } 3591 3592 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3593 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3594 return; 3595 } 3596 if (CanExtract) { 3597 // Extract appropriate subvector and generate a vector shuffle 3598 for (unsigned Input = 0; Input < 2; ++Input) { 3599 SDValue &Src = Input == 0 ? Src1 : Src2; 3600 if (StartIdx[Input] < 0) 3601 Src = DAG.getUNDEF(VT); 3602 else { 3603 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3604 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3605 } 3606 } 3607 3608 // Calculate new mask. 3609 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3610 for (int &Idx : MappedOps) { 3611 if (Idx >= (int)SrcNumElts) 3612 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3613 else if (Idx >= 0) 3614 Idx -= StartIdx[0]; 3615 } 3616 3617 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3618 return; 3619 } 3620 } 3621 3622 // We can't use either concat vectors or extract subvectors so fall back to 3623 // replacing the shuffle with extract and build vector. 3624 // to insert and build vector. 3625 EVT EltVT = VT.getVectorElementType(); 3626 SmallVector<SDValue,8> Ops; 3627 for (int Idx : Mask) { 3628 SDValue Res; 3629 3630 if (Idx < 0) { 3631 Res = DAG.getUNDEF(EltVT); 3632 } else { 3633 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3634 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3635 3636 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3637 DAG.getVectorIdxConstant(Idx, DL)); 3638 } 3639 3640 Ops.push_back(Res); 3641 } 3642 3643 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3644 } 3645 3646 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3647 ArrayRef<unsigned> Indices; 3648 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3649 Indices = IV->getIndices(); 3650 else 3651 Indices = cast<ConstantExpr>(&I)->getIndices(); 3652 3653 const Value *Op0 = I.getOperand(0); 3654 const Value *Op1 = I.getOperand(1); 3655 Type *AggTy = I.getType(); 3656 Type *ValTy = Op1->getType(); 3657 bool IntoUndef = isa<UndefValue>(Op0); 3658 bool FromUndef = isa<UndefValue>(Op1); 3659 3660 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3661 3662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3663 SmallVector<EVT, 4> AggValueVTs; 3664 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3665 SmallVector<EVT, 4> ValValueVTs; 3666 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3667 3668 unsigned NumAggValues = AggValueVTs.size(); 3669 unsigned NumValValues = ValValueVTs.size(); 3670 SmallVector<SDValue, 4> Values(NumAggValues); 3671 3672 // Ignore an insertvalue that produces an empty object 3673 if (!NumAggValues) { 3674 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3675 return; 3676 } 3677 3678 SDValue Agg = getValue(Op0); 3679 unsigned i = 0; 3680 // Copy the beginning value(s) from the original aggregate. 3681 for (; i != LinearIndex; ++i) 3682 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3683 SDValue(Agg.getNode(), Agg.getResNo() + i); 3684 // Copy values from the inserted value(s). 3685 if (NumValValues) { 3686 SDValue Val = getValue(Op1); 3687 for (; i != LinearIndex + NumValValues; ++i) 3688 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3689 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3690 } 3691 // Copy remaining value(s) from the original aggregate. 3692 for (; i != NumAggValues; ++i) 3693 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3694 SDValue(Agg.getNode(), Agg.getResNo() + i); 3695 3696 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3697 DAG.getVTList(AggValueVTs), Values)); 3698 } 3699 3700 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3701 ArrayRef<unsigned> Indices; 3702 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3703 Indices = EV->getIndices(); 3704 else 3705 Indices = cast<ConstantExpr>(&I)->getIndices(); 3706 3707 const Value *Op0 = I.getOperand(0); 3708 Type *AggTy = Op0->getType(); 3709 Type *ValTy = I.getType(); 3710 bool OutOfUndef = isa<UndefValue>(Op0); 3711 3712 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3713 3714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3715 SmallVector<EVT, 4> ValValueVTs; 3716 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3717 3718 unsigned NumValValues = ValValueVTs.size(); 3719 3720 // Ignore a extractvalue that produces an empty object 3721 if (!NumValValues) { 3722 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3723 return; 3724 } 3725 3726 SmallVector<SDValue, 4> Values(NumValValues); 3727 3728 SDValue Agg = getValue(Op0); 3729 // Copy out the selected value(s). 3730 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3731 Values[i - LinearIndex] = 3732 OutOfUndef ? 3733 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3734 SDValue(Agg.getNode(), Agg.getResNo() + i); 3735 3736 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3737 DAG.getVTList(ValValueVTs), Values)); 3738 } 3739 3740 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3741 Value *Op0 = I.getOperand(0); 3742 // Note that the pointer operand may be a vector of pointers. Take the scalar 3743 // element which holds a pointer. 3744 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3745 SDValue N = getValue(Op0); 3746 SDLoc dl = getCurSDLoc(); 3747 auto &TLI = DAG.getTargetLoweringInfo(); 3748 3749 // Normalize Vector GEP - all scalar operands should be converted to the 3750 // splat vector. 3751 bool IsVectorGEP = I.getType()->isVectorTy(); 3752 ElementCount VectorElementCount = 3753 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3754 : ElementCount::getFixed(0); 3755 3756 if (IsVectorGEP && !N.getValueType().isVector()) { 3757 LLVMContext &Context = *DAG.getContext(); 3758 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3759 if (VectorElementCount.isScalable()) 3760 N = DAG.getSplatVector(VT, dl, N); 3761 else 3762 N = DAG.getSplatBuildVector(VT, dl, N); 3763 } 3764 3765 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3766 GTI != E; ++GTI) { 3767 const Value *Idx = GTI.getOperand(); 3768 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3769 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3770 if (Field) { 3771 // N = N + Offset 3772 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3773 3774 // In an inbounds GEP with an offset that is nonnegative even when 3775 // interpreted as signed, assume there is no unsigned overflow. 3776 SDNodeFlags Flags; 3777 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3778 Flags.setNoUnsignedWrap(true); 3779 3780 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3781 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3782 } 3783 } else { 3784 // IdxSize is the width of the arithmetic according to IR semantics. 3785 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3786 // (and fix up the result later). 3787 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3788 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3789 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3790 // We intentionally mask away the high bits here; ElementSize may not 3791 // fit in IdxTy. 3792 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3793 bool ElementScalable = ElementSize.isScalable(); 3794 3795 // If this is a scalar constant or a splat vector of constants, 3796 // handle it quickly. 3797 const auto *C = dyn_cast<Constant>(Idx); 3798 if (C && isa<VectorType>(C->getType())) 3799 C = C->getSplatValue(); 3800 3801 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3802 if (CI && CI->isZero()) 3803 continue; 3804 if (CI && !ElementScalable) { 3805 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3806 LLVMContext &Context = *DAG.getContext(); 3807 SDValue OffsVal; 3808 if (IsVectorGEP) 3809 OffsVal = DAG.getConstant( 3810 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3811 else 3812 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3813 3814 // In an inbounds GEP with an offset that is nonnegative even when 3815 // interpreted as signed, assume there is no unsigned overflow. 3816 SDNodeFlags Flags; 3817 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3818 Flags.setNoUnsignedWrap(true); 3819 3820 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3821 3822 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3823 continue; 3824 } 3825 3826 // N = N + Idx * ElementMul; 3827 SDValue IdxN = getValue(Idx); 3828 3829 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3830 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3831 VectorElementCount); 3832 if (VectorElementCount.isScalable()) 3833 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3834 else 3835 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3836 } 3837 3838 // If the index is smaller or larger than intptr_t, truncate or extend 3839 // it. 3840 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3841 3842 if (ElementScalable) { 3843 EVT VScaleTy = N.getValueType().getScalarType(); 3844 SDValue VScale = DAG.getNode( 3845 ISD::VSCALE, dl, VScaleTy, 3846 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3847 if (IsVectorGEP) 3848 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3849 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3850 } else { 3851 // If this is a multiply by a power of two, turn it into a shl 3852 // immediately. This is a very common case. 3853 if (ElementMul != 1) { 3854 if (ElementMul.isPowerOf2()) { 3855 unsigned Amt = ElementMul.logBase2(); 3856 IdxN = DAG.getNode(ISD::SHL, dl, 3857 N.getValueType(), IdxN, 3858 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3859 } else { 3860 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3861 IdxN.getValueType()); 3862 IdxN = DAG.getNode(ISD::MUL, dl, 3863 N.getValueType(), IdxN, Scale); 3864 } 3865 } 3866 } 3867 3868 N = DAG.getNode(ISD::ADD, dl, 3869 N.getValueType(), N, IdxN); 3870 } 3871 } 3872 3873 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3874 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3875 if (IsVectorGEP) { 3876 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3877 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3878 } 3879 3880 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3881 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3882 3883 setValue(&I, N); 3884 } 3885 3886 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3887 // If this is a fixed sized alloca in the entry block of the function, 3888 // allocate it statically on the stack. 3889 if (FuncInfo.StaticAllocaMap.count(&I)) 3890 return; // getValue will auto-populate this. 3891 3892 SDLoc dl = getCurSDLoc(); 3893 Type *Ty = I.getAllocatedType(); 3894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3895 auto &DL = DAG.getDataLayout(); 3896 uint64_t TySize = DL.getTypeAllocSize(Ty); 3897 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3898 3899 SDValue AllocSize = getValue(I.getArraySize()); 3900 3901 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3902 if (AllocSize.getValueType() != IntPtr) 3903 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3904 3905 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3906 AllocSize, 3907 DAG.getConstant(TySize, dl, IntPtr)); 3908 3909 // Handle alignment. If the requested alignment is less than or equal to 3910 // the stack alignment, ignore it. If the size is greater than or equal to 3911 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3912 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3913 if (*Alignment <= StackAlign) 3914 Alignment = None; 3915 3916 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3917 // Round the size of the allocation up to the stack alignment size 3918 // by add SA-1 to the size. This doesn't overflow because we're computing 3919 // an address inside an alloca. 3920 SDNodeFlags Flags; 3921 Flags.setNoUnsignedWrap(true); 3922 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3923 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3924 3925 // Mask out the low bits for alignment purposes. 3926 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3927 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3928 3929 SDValue Ops[] = { 3930 getRoot(), AllocSize, 3931 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3932 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3933 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3934 setValue(&I, DSA); 3935 DAG.setRoot(DSA.getValue(1)); 3936 3937 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3938 } 3939 3940 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3941 if (I.isAtomic()) 3942 return visitAtomicLoad(I); 3943 3944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3945 const Value *SV = I.getOperand(0); 3946 if (TLI.supportSwiftError()) { 3947 // Swifterror values can come from either a function parameter with 3948 // swifterror attribute or an alloca with swifterror attribute. 3949 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3950 if (Arg->hasSwiftErrorAttr()) 3951 return visitLoadFromSwiftError(I); 3952 } 3953 3954 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3955 if (Alloca->isSwiftError()) 3956 return visitLoadFromSwiftError(I); 3957 } 3958 } 3959 3960 SDValue Ptr = getValue(SV); 3961 3962 Type *Ty = I.getType(); 3963 Align Alignment = I.getAlign(); 3964 3965 AAMDNodes AAInfo; 3966 I.getAAMetadata(AAInfo); 3967 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3968 3969 SmallVector<EVT, 4> ValueVTs, MemVTs; 3970 SmallVector<uint64_t, 4> Offsets; 3971 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3972 unsigned NumValues = ValueVTs.size(); 3973 if (NumValues == 0) 3974 return; 3975 3976 bool isVolatile = I.isVolatile(); 3977 3978 SDValue Root; 3979 bool ConstantMemory = false; 3980 if (isVolatile) 3981 // Serialize volatile loads with other side effects. 3982 Root = getRoot(); 3983 else if (NumValues > MaxParallelChains) 3984 Root = getMemoryRoot(); 3985 else if (AA && 3986 AA->pointsToConstantMemory(MemoryLocation( 3987 SV, 3988 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3989 AAInfo))) { 3990 // Do not serialize (non-volatile) loads of constant memory with anything. 3991 Root = DAG.getEntryNode(); 3992 ConstantMemory = true; 3993 } else { 3994 // Do not serialize non-volatile loads against each other. 3995 Root = DAG.getRoot(); 3996 } 3997 3998 SDLoc dl = getCurSDLoc(); 3999 4000 if (isVolatile) 4001 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4002 4003 // An aggregate load cannot wrap around the address space, so offsets to its 4004 // parts don't wrap either. 4005 SDNodeFlags Flags; 4006 Flags.setNoUnsignedWrap(true); 4007 4008 SmallVector<SDValue, 4> Values(NumValues); 4009 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4010 EVT PtrVT = Ptr.getValueType(); 4011 4012 MachineMemOperand::Flags MMOFlags 4013 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4014 4015 unsigned ChainI = 0; 4016 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4017 // Serializing loads here may result in excessive register pressure, and 4018 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4019 // could recover a bit by hoisting nodes upward in the chain by recognizing 4020 // they are side-effect free or do not alias. The optimizer should really 4021 // avoid this case by converting large object/array copies to llvm.memcpy 4022 // (MaxParallelChains should always remain as failsafe). 4023 if (ChainI == MaxParallelChains) { 4024 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4025 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4026 makeArrayRef(Chains.data(), ChainI)); 4027 Root = Chain; 4028 ChainI = 0; 4029 } 4030 SDValue A = DAG.getNode(ISD::ADD, dl, 4031 PtrVT, Ptr, 4032 DAG.getConstant(Offsets[i], dl, PtrVT), 4033 Flags); 4034 4035 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4036 MachinePointerInfo(SV, Offsets[i]), Alignment, 4037 MMOFlags, AAInfo, Ranges); 4038 Chains[ChainI] = L.getValue(1); 4039 4040 if (MemVTs[i] != ValueVTs[i]) 4041 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4042 4043 Values[i] = L; 4044 } 4045 4046 if (!ConstantMemory) { 4047 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4048 makeArrayRef(Chains.data(), ChainI)); 4049 if (isVolatile) 4050 DAG.setRoot(Chain); 4051 else 4052 PendingLoads.push_back(Chain); 4053 } 4054 4055 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4056 DAG.getVTList(ValueVTs), Values)); 4057 } 4058 4059 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4060 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4061 "call visitStoreToSwiftError when backend supports swifterror"); 4062 4063 SmallVector<EVT, 4> ValueVTs; 4064 SmallVector<uint64_t, 4> Offsets; 4065 const Value *SrcV = I.getOperand(0); 4066 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4067 SrcV->getType(), ValueVTs, &Offsets); 4068 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4069 "expect a single EVT for swifterror"); 4070 4071 SDValue Src = getValue(SrcV); 4072 // Create a virtual register, then update the virtual register. 4073 Register VReg = 4074 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4075 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4076 // Chain can be getRoot or getControlRoot. 4077 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4078 SDValue(Src.getNode(), Src.getResNo())); 4079 DAG.setRoot(CopyNode); 4080 } 4081 4082 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4083 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4084 "call visitLoadFromSwiftError when backend supports swifterror"); 4085 4086 assert(!I.isVolatile() && 4087 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4088 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4089 "Support volatile, non temporal, invariant for load_from_swift_error"); 4090 4091 const Value *SV = I.getOperand(0); 4092 Type *Ty = I.getType(); 4093 AAMDNodes AAInfo; 4094 I.getAAMetadata(AAInfo); 4095 assert( 4096 (!AA || 4097 !AA->pointsToConstantMemory(MemoryLocation( 4098 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4099 AAInfo))) && 4100 "load_from_swift_error should not be constant memory"); 4101 4102 SmallVector<EVT, 4> ValueVTs; 4103 SmallVector<uint64_t, 4> Offsets; 4104 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4105 ValueVTs, &Offsets); 4106 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4107 "expect a single EVT for swifterror"); 4108 4109 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4110 SDValue L = DAG.getCopyFromReg( 4111 getRoot(), getCurSDLoc(), 4112 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4113 4114 setValue(&I, L); 4115 } 4116 4117 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4118 if (I.isAtomic()) 4119 return visitAtomicStore(I); 4120 4121 const Value *SrcV = I.getOperand(0); 4122 const Value *PtrV = I.getOperand(1); 4123 4124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4125 if (TLI.supportSwiftError()) { 4126 // Swifterror values can come from either a function parameter with 4127 // swifterror attribute or an alloca with swifterror attribute. 4128 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4129 if (Arg->hasSwiftErrorAttr()) 4130 return visitStoreToSwiftError(I); 4131 } 4132 4133 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4134 if (Alloca->isSwiftError()) 4135 return visitStoreToSwiftError(I); 4136 } 4137 } 4138 4139 SmallVector<EVT, 4> ValueVTs, MemVTs; 4140 SmallVector<uint64_t, 4> Offsets; 4141 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4142 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4143 unsigned NumValues = ValueVTs.size(); 4144 if (NumValues == 0) 4145 return; 4146 4147 // Get the lowered operands. Note that we do this after 4148 // checking if NumResults is zero, because with zero results 4149 // the operands won't have values in the map. 4150 SDValue Src = getValue(SrcV); 4151 SDValue Ptr = getValue(PtrV); 4152 4153 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4154 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4155 SDLoc dl = getCurSDLoc(); 4156 Align Alignment = I.getAlign(); 4157 AAMDNodes AAInfo; 4158 I.getAAMetadata(AAInfo); 4159 4160 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4161 4162 // An aggregate load cannot wrap around the address space, so offsets to its 4163 // parts don't wrap either. 4164 SDNodeFlags Flags; 4165 Flags.setNoUnsignedWrap(true); 4166 4167 unsigned ChainI = 0; 4168 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4169 // See visitLoad comments. 4170 if (ChainI == MaxParallelChains) { 4171 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4172 makeArrayRef(Chains.data(), ChainI)); 4173 Root = Chain; 4174 ChainI = 0; 4175 } 4176 SDValue Add = 4177 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4178 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4179 if (MemVTs[i] != ValueVTs[i]) 4180 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4181 SDValue St = 4182 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4183 Alignment, MMOFlags, AAInfo); 4184 Chains[ChainI] = St; 4185 } 4186 4187 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4188 makeArrayRef(Chains.data(), ChainI)); 4189 DAG.setRoot(StoreNode); 4190 } 4191 4192 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4193 bool IsCompressing) { 4194 SDLoc sdl = getCurSDLoc(); 4195 4196 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4197 MaybeAlign &Alignment) { 4198 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4199 Src0 = I.getArgOperand(0); 4200 Ptr = I.getArgOperand(1); 4201 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4202 Mask = I.getArgOperand(3); 4203 }; 4204 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4205 MaybeAlign &Alignment) { 4206 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4207 Src0 = I.getArgOperand(0); 4208 Ptr = I.getArgOperand(1); 4209 Mask = I.getArgOperand(2); 4210 Alignment = None; 4211 }; 4212 4213 Value *PtrOperand, *MaskOperand, *Src0Operand; 4214 MaybeAlign Alignment; 4215 if (IsCompressing) 4216 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4217 else 4218 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4219 4220 SDValue Ptr = getValue(PtrOperand); 4221 SDValue Src0 = getValue(Src0Operand); 4222 SDValue Mask = getValue(MaskOperand); 4223 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4224 4225 EVT VT = Src0.getValueType(); 4226 if (!Alignment) 4227 Alignment = DAG.getEVTAlign(VT); 4228 4229 AAMDNodes AAInfo; 4230 I.getAAMetadata(AAInfo); 4231 4232 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4233 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4234 // TODO: Make MachineMemOperands aware of scalable 4235 // vectors. 4236 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4237 SDValue StoreNode = 4238 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4239 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4240 DAG.setRoot(StoreNode); 4241 setValue(&I, StoreNode); 4242 } 4243 4244 // Get a uniform base for the Gather/Scatter intrinsic. 4245 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4246 // We try to represent it as a base pointer + vector of indices. 4247 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4248 // The first operand of the GEP may be a single pointer or a vector of pointers 4249 // Example: 4250 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4251 // or 4252 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4253 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4254 // 4255 // When the first GEP operand is a single pointer - it is the uniform base we 4256 // are looking for. If first operand of the GEP is a splat vector - we 4257 // extract the splat value and use it as a uniform base. 4258 // In all other cases the function returns 'false'. 4259 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4260 ISD::MemIndexType &IndexType, SDValue &Scale, 4261 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4262 SelectionDAG& DAG = SDB->DAG; 4263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4264 const DataLayout &DL = DAG.getDataLayout(); 4265 4266 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4267 4268 // Handle splat constant pointer. 4269 if (auto *C = dyn_cast<Constant>(Ptr)) { 4270 C = C->getSplatValue(); 4271 if (!C) 4272 return false; 4273 4274 Base = SDB->getValue(C); 4275 4276 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4277 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4278 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4279 IndexType = ISD::SIGNED_SCALED; 4280 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4281 return true; 4282 } 4283 4284 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4285 if (!GEP || GEP->getParent() != CurBB) 4286 return false; 4287 4288 if (GEP->getNumOperands() != 2) 4289 return false; 4290 4291 const Value *BasePtr = GEP->getPointerOperand(); 4292 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4293 4294 // Make sure the base is scalar and the index is a vector. 4295 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4296 return false; 4297 4298 Base = SDB->getValue(BasePtr); 4299 Index = SDB->getValue(IndexVal); 4300 IndexType = ISD::SIGNED_SCALED; 4301 Scale = DAG.getTargetConstant( 4302 DL.getTypeAllocSize(GEP->getResultElementType()), 4303 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4304 return true; 4305 } 4306 4307 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4308 SDLoc sdl = getCurSDLoc(); 4309 4310 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4311 const Value *Ptr = I.getArgOperand(1); 4312 SDValue Src0 = getValue(I.getArgOperand(0)); 4313 SDValue Mask = getValue(I.getArgOperand(3)); 4314 EVT VT = Src0.getValueType(); 4315 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4316 ->getMaybeAlignValue() 4317 .getValueOr(DAG.getEVTAlign(VT)); 4318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4319 4320 AAMDNodes AAInfo; 4321 I.getAAMetadata(AAInfo); 4322 4323 SDValue Base; 4324 SDValue Index; 4325 ISD::MemIndexType IndexType; 4326 SDValue Scale; 4327 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4328 I.getParent()); 4329 4330 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4331 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4332 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4333 // TODO: Make MachineMemOperands aware of scalable 4334 // vectors. 4335 MemoryLocation::UnknownSize, Alignment, AAInfo); 4336 if (!UniformBase) { 4337 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4338 Index = getValue(Ptr); 4339 IndexType = ISD::SIGNED_UNSCALED; 4340 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4341 } 4342 4343 EVT IdxVT = Index.getValueType(); 4344 EVT EltTy = IdxVT.getVectorElementType(); 4345 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4346 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4347 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4348 } 4349 4350 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4351 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4352 Ops, MMO, IndexType, false); 4353 DAG.setRoot(Scatter); 4354 setValue(&I, Scatter); 4355 } 4356 4357 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4358 SDLoc sdl = getCurSDLoc(); 4359 4360 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4361 MaybeAlign &Alignment) { 4362 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4363 Ptr = I.getArgOperand(0); 4364 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4365 Mask = I.getArgOperand(2); 4366 Src0 = I.getArgOperand(3); 4367 }; 4368 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4369 MaybeAlign &Alignment) { 4370 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4371 Ptr = I.getArgOperand(0); 4372 Alignment = None; 4373 Mask = I.getArgOperand(1); 4374 Src0 = I.getArgOperand(2); 4375 }; 4376 4377 Value *PtrOperand, *MaskOperand, *Src0Operand; 4378 MaybeAlign Alignment; 4379 if (IsExpanding) 4380 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4381 else 4382 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4383 4384 SDValue Ptr = getValue(PtrOperand); 4385 SDValue Src0 = getValue(Src0Operand); 4386 SDValue Mask = getValue(MaskOperand); 4387 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4388 4389 EVT VT = Src0.getValueType(); 4390 if (!Alignment) 4391 Alignment = DAG.getEVTAlign(VT); 4392 4393 AAMDNodes AAInfo; 4394 I.getAAMetadata(AAInfo); 4395 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4396 4397 // Do not serialize masked loads of constant memory with anything. 4398 MemoryLocation ML; 4399 if (VT.isScalableVector()) 4400 ML = MemoryLocation::getAfter(PtrOperand); 4401 else 4402 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4403 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4404 AAInfo); 4405 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4406 4407 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4408 4409 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4410 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4411 // TODO: Make MachineMemOperands aware of scalable 4412 // vectors. 4413 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4414 4415 SDValue Load = 4416 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4417 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4418 if (AddToChain) 4419 PendingLoads.push_back(Load.getValue(1)); 4420 setValue(&I, Load); 4421 } 4422 4423 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4424 SDLoc sdl = getCurSDLoc(); 4425 4426 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4427 const Value *Ptr = I.getArgOperand(0); 4428 SDValue Src0 = getValue(I.getArgOperand(3)); 4429 SDValue Mask = getValue(I.getArgOperand(2)); 4430 4431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4432 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4433 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4434 ->getMaybeAlignValue() 4435 .getValueOr(DAG.getEVTAlign(VT)); 4436 4437 AAMDNodes AAInfo; 4438 I.getAAMetadata(AAInfo); 4439 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4440 4441 SDValue Root = DAG.getRoot(); 4442 SDValue Base; 4443 SDValue Index; 4444 ISD::MemIndexType IndexType; 4445 SDValue Scale; 4446 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4447 I.getParent()); 4448 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4449 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4450 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4451 // TODO: Make MachineMemOperands aware of scalable 4452 // vectors. 4453 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4454 4455 if (!UniformBase) { 4456 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4457 Index = getValue(Ptr); 4458 IndexType = ISD::SIGNED_UNSCALED; 4459 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4460 } 4461 4462 EVT IdxVT = Index.getValueType(); 4463 EVT EltTy = IdxVT.getVectorElementType(); 4464 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4465 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4466 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4467 } 4468 4469 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4470 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4471 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4472 4473 PendingLoads.push_back(Gather.getValue(1)); 4474 setValue(&I, Gather); 4475 } 4476 4477 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4478 SDLoc dl = getCurSDLoc(); 4479 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4480 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4481 SyncScope::ID SSID = I.getSyncScopeID(); 4482 4483 SDValue InChain = getRoot(); 4484 4485 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4486 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4487 4488 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4489 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4490 4491 MachineFunction &MF = DAG.getMachineFunction(); 4492 MachineMemOperand *MMO = MF.getMachineMemOperand( 4493 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4494 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4495 FailureOrdering); 4496 4497 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4498 dl, MemVT, VTs, InChain, 4499 getValue(I.getPointerOperand()), 4500 getValue(I.getCompareOperand()), 4501 getValue(I.getNewValOperand()), MMO); 4502 4503 SDValue OutChain = L.getValue(2); 4504 4505 setValue(&I, L); 4506 DAG.setRoot(OutChain); 4507 } 4508 4509 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4510 SDLoc dl = getCurSDLoc(); 4511 ISD::NodeType NT; 4512 switch (I.getOperation()) { 4513 default: llvm_unreachable("Unknown atomicrmw operation"); 4514 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4515 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4516 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4517 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4518 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4519 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4520 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4521 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4522 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4523 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4524 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4525 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4526 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4527 } 4528 AtomicOrdering Ordering = I.getOrdering(); 4529 SyncScope::ID SSID = I.getSyncScopeID(); 4530 4531 SDValue InChain = getRoot(); 4532 4533 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4535 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4536 4537 MachineFunction &MF = DAG.getMachineFunction(); 4538 MachineMemOperand *MMO = MF.getMachineMemOperand( 4539 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4540 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4541 4542 SDValue L = 4543 DAG.getAtomic(NT, dl, MemVT, InChain, 4544 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4545 MMO); 4546 4547 SDValue OutChain = L.getValue(1); 4548 4549 setValue(&I, L); 4550 DAG.setRoot(OutChain); 4551 } 4552 4553 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4554 SDLoc dl = getCurSDLoc(); 4555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4556 SDValue Ops[3]; 4557 Ops[0] = getRoot(); 4558 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4559 TLI.getFenceOperandTy(DAG.getDataLayout())); 4560 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4561 TLI.getFenceOperandTy(DAG.getDataLayout())); 4562 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4563 } 4564 4565 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4566 SDLoc dl = getCurSDLoc(); 4567 AtomicOrdering Order = I.getOrdering(); 4568 SyncScope::ID SSID = I.getSyncScopeID(); 4569 4570 SDValue InChain = getRoot(); 4571 4572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4573 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4574 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4575 4576 if (!TLI.supportsUnalignedAtomics() && 4577 I.getAlignment() < MemVT.getSizeInBits() / 8) 4578 report_fatal_error("Cannot generate unaligned atomic load"); 4579 4580 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4581 4582 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4583 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4584 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4585 4586 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4587 4588 SDValue Ptr = getValue(I.getPointerOperand()); 4589 4590 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4591 // TODO: Once this is better exercised by tests, it should be merged with 4592 // the normal path for loads to prevent future divergence. 4593 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4594 if (MemVT != VT) 4595 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4596 4597 setValue(&I, L); 4598 SDValue OutChain = L.getValue(1); 4599 if (!I.isUnordered()) 4600 DAG.setRoot(OutChain); 4601 else 4602 PendingLoads.push_back(OutChain); 4603 return; 4604 } 4605 4606 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4607 Ptr, MMO); 4608 4609 SDValue OutChain = L.getValue(1); 4610 if (MemVT != VT) 4611 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4612 4613 setValue(&I, L); 4614 DAG.setRoot(OutChain); 4615 } 4616 4617 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4618 SDLoc dl = getCurSDLoc(); 4619 4620 AtomicOrdering Ordering = I.getOrdering(); 4621 SyncScope::ID SSID = I.getSyncScopeID(); 4622 4623 SDValue InChain = getRoot(); 4624 4625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4626 EVT MemVT = 4627 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4628 4629 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4630 report_fatal_error("Cannot generate unaligned atomic store"); 4631 4632 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4633 4634 MachineFunction &MF = DAG.getMachineFunction(); 4635 MachineMemOperand *MMO = MF.getMachineMemOperand( 4636 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4637 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4638 4639 SDValue Val = getValue(I.getValueOperand()); 4640 if (Val.getValueType() != MemVT) 4641 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4642 SDValue Ptr = getValue(I.getPointerOperand()); 4643 4644 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4645 // TODO: Once this is better exercised by tests, it should be merged with 4646 // the normal path for stores to prevent future divergence. 4647 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4648 DAG.setRoot(S); 4649 return; 4650 } 4651 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4652 Ptr, Val, MMO); 4653 4654 4655 DAG.setRoot(OutChain); 4656 } 4657 4658 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4659 /// node. 4660 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4661 unsigned Intrinsic) { 4662 // Ignore the callsite's attributes. A specific call site may be marked with 4663 // readnone, but the lowering code will expect the chain based on the 4664 // definition. 4665 const Function *F = I.getCalledFunction(); 4666 bool HasChain = !F->doesNotAccessMemory(); 4667 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4668 4669 // Build the operand list. 4670 SmallVector<SDValue, 8> Ops; 4671 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4672 if (OnlyLoad) { 4673 // We don't need to serialize loads against other loads. 4674 Ops.push_back(DAG.getRoot()); 4675 } else { 4676 Ops.push_back(getRoot()); 4677 } 4678 } 4679 4680 // Info is set by getTgtMemInstrinsic 4681 TargetLowering::IntrinsicInfo Info; 4682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4683 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4684 DAG.getMachineFunction(), 4685 Intrinsic); 4686 4687 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4688 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4689 Info.opc == ISD::INTRINSIC_W_CHAIN) 4690 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4691 TLI.getPointerTy(DAG.getDataLayout()))); 4692 4693 // Add all operands of the call to the operand list. 4694 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4695 const Value *Arg = I.getArgOperand(i); 4696 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4697 Ops.push_back(getValue(Arg)); 4698 continue; 4699 } 4700 4701 // Use TargetConstant instead of a regular constant for immarg. 4702 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4703 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4704 assert(CI->getBitWidth() <= 64 && 4705 "large intrinsic immediates not handled"); 4706 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4707 } else { 4708 Ops.push_back( 4709 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4710 } 4711 } 4712 4713 SmallVector<EVT, 4> ValueVTs; 4714 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4715 4716 if (HasChain) 4717 ValueVTs.push_back(MVT::Other); 4718 4719 SDVTList VTs = DAG.getVTList(ValueVTs); 4720 4721 // Create the node. 4722 SDValue Result; 4723 if (IsTgtIntrinsic) { 4724 // This is target intrinsic that touches memory 4725 AAMDNodes AAInfo; 4726 I.getAAMetadata(AAInfo); 4727 Result = 4728 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4729 MachinePointerInfo(Info.ptrVal, Info.offset), 4730 Info.align, Info.flags, Info.size, AAInfo); 4731 } else if (!HasChain) { 4732 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4733 } else if (!I.getType()->isVoidTy()) { 4734 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4735 } else { 4736 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4737 } 4738 4739 if (HasChain) { 4740 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4741 if (OnlyLoad) 4742 PendingLoads.push_back(Chain); 4743 else 4744 DAG.setRoot(Chain); 4745 } 4746 4747 if (!I.getType()->isVoidTy()) { 4748 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4749 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4750 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4751 } else 4752 Result = lowerRangeToAssertZExt(DAG, I, Result); 4753 4754 MaybeAlign Alignment = I.getRetAlign(); 4755 if (!Alignment) 4756 Alignment = F->getAttributes().getRetAlignment(); 4757 // Insert `assertalign` node if there's an alignment. 4758 if (InsertAssertAlign && Alignment) { 4759 Result = 4760 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4761 } 4762 4763 setValue(&I, Result); 4764 } 4765 } 4766 4767 /// GetSignificand - Get the significand and build it into a floating-point 4768 /// number with exponent of 1: 4769 /// 4770 /// Op = (Op & 0x007fffff) | 0x3f800000; 4771 /// 4772 /// where Op is the hexadecimal representation of floating point value. 4773 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4774 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4775 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4776 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4777 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4778 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4779 } 4780 4781 /// GetExponent - Get the exponent: 4782 /// 4783 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4784 /// 4785 /// where Op is the hexadecimal representation of floating point value. 4786 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4787 const TargetLowering &TLI, const SDLoc &dl) { 4788 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4789 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4790 SDValue t1 = DAG.getNode( 4791 ISD::SRL, dl, MVT::i32, t0, 4792 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4793 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4794 DAG.getConstant(127, dl, MVT::i32)); 4795 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4796 } 4797 4798 /// getF32Constant - Get 32-bit floating point constant. 4799 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4800 const SDLoc &dl) { 4801 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4802 MVT::f32); 4803 } 4804 4805 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4806 SelectionDAG &DAG) { 4807 // TODO: What fast-math-flags should be set on the floating-point nodes? 4808 4809 // IntegerPartOfX = ((int32_t)(t0); 4810 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4811 4812 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4813 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4814 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4815 4816 // IntegerPartOfX <<= 23; 4817 IntegerPartOfX = DAG.getNode( 4818 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4819 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4820 DAG.getDataLayout()))); 4821 4822 SDValue TwoToFractionalPartOfX; 4823 if (LimitFloatPrecision <= 6) { 4824 // For floating-point precision of 6: 4825 // 4826 // TwoToFractionalPartOfX = 4827 // 0.997535578f + 4828 // (0.735607626f + 0.252464424f * x) * x; 4829 // 4830 // error 0.0144103317, which is 6 bits 4831 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4832 getF32Constant(DAG, 0x3e814304, dl)); 4833 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4834 getF32Constant(DAG, 0x3f3c50c8, dl)); 4835 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4836 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4837 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4838 } else if (LimitFloatPrecision <= 12) { 4839 // For floating-point precision of 12: 4840 // 4841 // TwoToFractionalPartOfX = 4842 // 0.999892986f + 4843 // (0.696457318f + 4844 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4845 // 4846 // error 0.000107046256, which is 13 to 14 bits 4847 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4848 getF32Constant(DAG, 0x3da235e3, dl)); 4849 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4850 getF32Constant(DAG, 0x3e65b8f3, dl)); 4851 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4852 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4853 getF32Constant(DAG, 0x3f324b07, dl)); 4854 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4855 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4856 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4857 } else { // LimitFloatPrecision <= 18 4858 // For floating-point precision of 18: 4859 // 4860 // TwoToFractionalPartOfX = 4861 // 0.999999982f + 4862 // (0.693148872f + 4863 // (0.240227044f + 4864 // (0.554906021e-1f + 4865 // (0.961591928e-2f + 4866 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4867 // error 2.47208000*10^(-7), which is better than 18 bits 4868 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4869 getF32Constant(DAG, 0x3924b03e, dl)); 4870 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4871 getF32Constant(DAG, 0x3ab24b87, dl)); 4872 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4873 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4874 getF32Constant(DAG, 0x3c1d8c17, dl)); 4875 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4876 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4877 getF32Constant(DAG, 0x3d634a1d, dl)); 4878 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4879 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4880 getF32Constant(DAG, 0x3e75fe14, dl)); 4881 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4882 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4883 getF32Constant(DAG, 0x3f317234, dl)); 4884 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4885 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4886 getF32Constant(DAG, 0x3f800000, dl)); 4887 } 4888 4889 // Add the exponent into the result in integer domain. 4890 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4891 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4892 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4893 } 4894 4895 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4896 /// limited-precision mode. 4897 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4898 const TargetLowering &TLI, SDNodeFlags Flags) { 4899 if (Op.getValueType() == MVT::f32 && 4900 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4901 4902 // Put the exponent in the right bit position for later addition to the 4903 // final result: 4904 // 4905 // t0 = Op * log2(e) 4906 4907 // TODO: What fast-math-flags should be set here? 4908 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4909 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4910 return getLimitedPrecisionExp2(t0, dl, DAG); 4911 } 4912 4913 // No special expansion. 4914 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 4915 } 4916 4917 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4918 /// limited-precision mode. 4919 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4920 const TargetLowering &TLI, SDNodeFlags Flags) { 4921 // TODO: What fast-math-flags should be set on the floating-point nodes? 4922 4923 if (Op.getValueType() == MVT::f32 && 4924 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4925 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4926 4927 // Scale the exponent by log(2). 4928 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4929 SDValue LogOfExponent = 4930 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4931 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4932 4933 // Get the significand and build it into a floating-point number with 4934 // exponent of 1. 4935 SDValue X = GetSignificand(DAG, Op1, dl); 4936 4937 SDValue LogOfMantissa; 4938 if (LimitFloatPrecision <= 6) { 4939 // For floating-point precision of 6: 4940 // 4941 // LogofMantissa = 4942 // -1.1609546f + 4943 // (1.4034025f - 0.23903021f * x) * x; 4944 // 4945 // error 0.0034276066, which is better than 8 bits 4946 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4947 getF32Constant(DAG, 0xbe74c456, dl)); 4948 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4949 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4950 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4951 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4952 getF32Constant(DAG, 0x3f949a29, dl)); 4953 } else if (LimitFloatPrecision <= 12) { 4954 // For floating-point precision of 12: 4955 // 4956 // LogOfMantissa = 4957 // -1.7417939f + 4958 // (2.8212026f + 4959 // (-1.4699568f + 4960 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4961 // 4962 // error 0.000061011436, which is 14 bits 4963 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4964 getF32Constant(DAG, 0xbd67b6d6, dl)); 4965 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4966 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4967 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4968 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4969 getF32Constant(DAG, 0x3fbc278b, dl)); 4970 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4971 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4972 getF32Constant(DAG, 0x40348e95, dl)); 4973 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4974 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4975 getF32Constant(DAG, 0x3fdef31a, dl)); 4976 } else { // LimitFloatPrecision <= 18 4977 // For floating-point precision of 18: 4978 // 4979 // LogOfMantissa = 4980 // -2.1072184f + 4981 // (4.2372794f + 4982 // (-3.7029485f + 4983 // (2.2781945f + 4984 // (-0.87823314f + 4985 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4986 // 4987 // error 0.0000023660568, which is better than 18 bits 4988 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4989 getF32Constant(DAG, 0xbc91e5ac, dl)); 4990 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4991 getF32Constant(DAG, 0x3e4350aa, dl)); 4992 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4993 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4994 getF32Constant(DAG, 0x3f60d3e3, dl)); 4995 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4996 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4997 getF32Constant(DAG, 0x4011cdf0, dl)); 4998 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4999 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5000 getF32Constant(DAG, 0x406cfd1c, dl)); 5001 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5002 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5003 getF32Constant(DAG, 0x408797cb, dl)); 5004 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5005 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5006 getF32Constant(DAG, 0x4006dcab, dl)); 5007 } 5008 5009 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5010 } 5011 5012 // No special expansion. 5013 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5014 } 5015 5016 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5017 /// limited-precision mode. 5018 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5019 const TargetLowering &TLI, SDNodeFlags Flags) { 5020 // TODO: What fast-math-flags should be set on the floating-point nodes? 5021 5022 if (Op.getValueType() == MVT::f32 && 5023 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5024 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5025 5026 // Get the exponent. 5027 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5028 5029 // Get the significand and build it into a floating-point number with 5030 // exponent of 1. 5031 SDValue X = GetSignificand(DAG, Op1, dl); 5032 5033 // Different possible minimax approximations of significand in 5034 // floating-point for various degrees of accuracy over [1,2]. 5035 SDValue Log2ofMantissa; 5036 if (LimitFloatPrecision <= 6) { 5037 // For floating-point precision of 6: 5038 // 5039 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5040 // 5041 // error 0.0049451742, which is more than 7 bits 5042 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5043 getF32Constant(DAG, 0xbeb08fe0, dl)); 5044 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5045 getF32Constant(DAG, 0x40019463, dl)); 5046 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5047 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5048 getF32Constant(DAG, 0x3fd6633d, dl)); 5049 } else if (LimitFloatPrecision <= 12) { 5050 // For floating-point precision of 12: 5051 // 5052 // Log2ofMantissa = 5053 // -2.51285454f + 5054 // (4.07009056f + 5055 // (-2.12067489f + 5056 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5057 // 5058 // error 0.0000876136000, which is better than 13 bits 5059 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5060 getF32Constant(DAG, 0xbda7262e, dl)); 5061 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5062 getF32Constant(DAG, 0x3f25280b, dl)); 5063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5064 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5065 getF32Constant(DAG, 0x4007b923, dl)); 5066 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5067 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5068 getF32Constant(DAG, 0x40823e2f, dl)); 5069 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5070 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5071 getF32Constant(DAG, 0x4020d29c, dl)); 5072 } else { // LimitFloatPrecision <= 18 5073 // For floating-point precision of 18: 5074 // 5075 // Log2ofMantissa = 5076 // -3.0400495f + 5077 // (6.1129976f + 5078 // (-5.3420409f + 5079 // (3.2865683f + 5080 // (-1.2669343f + 5081 // (0.27515199f - 5082 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5083 // 5084 // error 0.0000018516, which is better than 18 bits 5085 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5086 getF32Constant(DAG, 0xbcd2769e, dl)); 5087 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5088 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5089 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5090 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5091 getF32Constant(DAG, 0x3fa22ae7, dl)); 5092 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5093 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5094 getF32Constant(DAG, 0x40525723, dl)); 5095 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5096 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5097 getF32Constant(DAG, 0x40aaf200, dl)); 5098 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5099 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5100 getF32Constant(DAG, 0x40c39dad, dl)); 5101 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5102 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5103 getF32Constant(DAG, 0x4042902c, dl)); 5104 } 5105 5106 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5107 } 5108 5109 // No special expansion. 5110 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5111 } 5112 5113 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5114 /// limited-precision mode. 5115 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5116 const TargetLowering &TLI, SDNodeFlags Flags) { 5117 // TODO: What fast-math-flags should be set on the floating-point nodes? 5118 5119 if (Op.getValueType() == MVT::f32 && 5120 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5121 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5122 5123 // Scale the exponent by log10(2) [0.30102999f]. 5124 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5125 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5126 getF32Constant(DAG, 0x3e9a209a, dl)); 5127 5128 // Get the significand and build it into a floating-point number with 5129 // exponent of 1. 5130 SDValue X = GetSignificand(DAG, Op1, dl); 5131 5132 SDValue Log10ofMantissa; 5133 if (LimitFloatPrecision <= 6) { 5134 // For floating-point precision of 6: 5135 // 5136 // Log10ofMantissa = 5137 // -0.50419619f + 5138 // (0.60948995f - 0.10380950f * x) * x; 5139 // 5140 // error 0.0014886165, which is 6 bits 5141 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5142 getF32Constant(DAG, 0xbdd49a13, dl)); 5143 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5144 getF32Constant(DAG, 0x3f1c0789, dl)); 5145 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5146 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5147 getF32Constant(DAG, 0x3f011300, dl)); 5148 } else if (LimitFloatPrecision <= 12) { 5149 // For floating-point precision of 12: 5150 // 5151 // Log10ofMantissa = 5152 // -0.64831180f + 5153 // (0.91751397f + 5154 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5155 // 5156 // error 0.00019228036, which is better than 12 bits 5157 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5158 getF32Constant(DAG, 0x3d431f31, dl)); 5159 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5160 getF32Constant(DAG, 0x3ea21fb2, dl)); 5161 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5162 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5163 getF32Constant(DAG, 0x3f6ae232, dl)); 5164 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5165 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5166 getF32Constant(DAG, 0x3f25f7c3, dl)); 5167 } else { // LimitFloatPrecision <= 18 5168 // For floating-point precision of 18: 5169 // 5170 // Log10ofMantissa = 5171 // -0.84299375f + 5172 // (1.5327582f + 5173 // (-1.0688956f + 5174 // (0.49102474f + 5175 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5176 // 5177 // error 0.0000037995730, which is better than 18 bits 5178 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5179 getF32Constant(DAG, 0x3c5d51ce, dl)); 5180 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5181 getF32Constant(DAG, 0x3e00685a, dl)); 5182 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5183 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5184 getF32Constant(DAG, 0x3efb6798, dl)); 5185 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5186 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5187 getF32Constant(DAG, 0x3f88d192, dl)); 5188 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5189 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5190 getF32Constant(DAG, 0x3fc4316c, dl)); 5191 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5192 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5193 getF32Constant(DAG, 0x3f57ce70, dl)); 5194 } 5195 5196 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5197 } 5198 5199 // No special expansion. 5200 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5201 } 5202 5203 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5204 /// limited-precision mode. 5205 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5206 const TargetLowering &TLI, SDNodeFlags Flags) { 5207 if (Op.getValueType() == MVT::f32 && 5208 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5209 return getLimitedPrecisionExp2(Op, dl, DAG); 5210 5211 // No special expansion. 5212 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5213 } 5214 5215 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5216 /// limited-precision mode with x == 10.0f. 5217 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5218 SelectionDAG &DAG, const TargetLowering &TLI, 5219 SDNodeFlags Flags) { 5220 bool IsExp10 = false; 5221 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5222 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5223 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5224 APFloat Ten(10.0f); 5225 IsExp10 = LHSC->isExactlyValue(Ten); 5226 } 5227 } 5228 5229 // TODO: What fast-math-flags should be set on the FMUL node? 5230 if (IsExp10) { 5231 // Put the exponent in the right bit position for later addition to the 5232 // final result: 5233 // 5234 // #define LOG2OF10 3.3219281f 5235 // t0 = Op * LOG2OF10; 5236 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5237 getF32Constant(DAG, 0x40549a78, dl)); 5238 return getLimitedPrecisionExp2(t0, dl, DAG); 5239 } 5240 5241 // No special expansion. 5242 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5243 } 5244 5245 /// ExpandPowI - Expand a llvm.powi intrinsic. 5246 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5247 SelectionDAG &DAG) { 5248 // If RHS is a constant, we can expand this out to a multiplication tree, 5249 // otherwise we end up lowering to a call to __powidf2 (for example). When 5250 // optimizing for size, we only want to do this if the expansion would produce 5251 // a small number of multiplies, otherwise we do the full expansion. 5252 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5253 // Get the exponent as a positive value. 5254 unsigned Val = RHSC->getSExtValue(); 5255 if ((int)Val < 0) Val = -Val; 5256 5257 // powi(x, 0) -> 1.0 5258 if (Val == 0) 5259 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5260 5261 bool OptForSize = DAG.shouldOptForSize(); 5262 if (!OptForSize || 5263 // If optimizing for size, don't insert too many multiplies. 5264 // This inserts up to 5 multiplies. 5265 countPopulation(Val) + Log2_32(Val) < 7) { 5266 // We use the simple binary decomposition method to generate the multiply 5267 // sequence. There are more optimal ways to do this (for example, 5268 // powi(x,15) generates one more multiply than it should), but this has 5269 // the benefit of being both really simple and much better than a libcall. 5270 SDValue Res; // Logically starts equal to 1.0 5271 SDValue CurSquare = LHS; 5272 // TODO: Intrinsics should have fast-math-flags that propagate to these 5273 // nodes. 5274 while (Val) { 5275 if (Val & 1) { 5276 if (Res.getNode()) 5277 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5278 else 5279 Res = CurSquare; // 1.0*CurSquare. 5280 } 5281 5282 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5283 CurSquare, CurSquare); 5284 Val >>= 1; 5285 } 5286 5287 // If the original was negative, invert the result, producing 1/(x*x*x). 5288 if (RHSC->getSExtValue() < 0) 5289 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5290 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5291 return Res; 5292 } 5293 } 5294 5295 // Otherwise, expand to a libcall. 5296 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5297 } 5298 5299 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5300 SDValue LHS, SDValue RHS, SDValue Scale, 5301 SelectionDAG &DAG, const TargetLowering &TLI) { 5302 EVT VT = LHS.getValueType(); 5303 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5304 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5305 LLVMContext &Ctx = *DAG.getContext(); 5306 5307 // If the type is legal but the operation isn't, this node might survive all 5308 // the way to operation legalization. If we end up there and we do not have 5309 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5310 // node. 5311 5312 // Coax the legalizer into expanding the node during type legalization instead 5313 // by bumping the size by one bit. This will force it to Promote, enabling the 5314 // early expansion and avoiding the need to expand later. 5315 5316 // We don't have to do this if Scale is 0; that can always be expanded, unless 5317 // it's a saturating signed operation. Those can experience true integer 5318 // division overflow, a case which we must avoid. 5319 5320 // FIXME: We wouldn't have to do this (or any of the early 5321 // expansion/promotion) if it was possible to expand a libcall of an 5322 // illegal type during operation legalization. But it's not, so things 5323 // get a bit hacky. 5324 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5325 if ((ScaleInt > 0 || (Saturating && Signed)) && 5326 (TLI.isTypeLegal(VT) || 5327 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5328 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5329 Opcode, VT, ScaleInt); 5330 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5331 EVT PromVT; 5332 if (VT.isScalarInteger()) 5333 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5334 else if (VT.isVector()) { 5335 PromVT = VT.getVectorElementType(); 5336 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5337 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5338 } else 5339 llvm_unreachable("Wrong VT for DIVFIX?"); 5340 if (Signed) { 5341 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5342 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5343 } else { 5344 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5345 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5346 } 5347 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5348 // For saturating operations, we need to shift up the LHS to get the 5349 // proper saturation width, and then shift down again afterwards. 5350 if (Saturating) 5351 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5352 DAG.getConstant(1, DL, ShiftTy)); 5353 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5354 if (Saturating) 5355 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5356 DAG.getConstant(1, DL, ShiftTy)); 5357 return DAG.getZExtOrTrunc(Res, DL, VT); 5358 } 5359 } 5360 5361 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5362 } 5363 5364 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5365 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5366 static void 5367 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5368 const SDValue &N) { 5369 switch (N.getOpcode()) { 5370 case ISD::CopyFromReg: { 5371 SDValue Op = N.getOperand(1); 5372 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5373 Op.getValueType().getSizeInBits()); 5374 return; 5375 } 5376 case ISD::BITCAST: 5377 case ISD::AssertZext: 5378 case ISD::AssertSext: 5379 case ISD::TRUNCATE: 5380 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5381 return; 5382 case ISD::BUILD_PAIR: 5383 case ISD::BUILD_VECTOR: 5384 case ISD::CONCAT_VECTORS: 5385 for (SDValue Op : N->op_values()) 5386 getUnderlyingArgRegs(Regs, Op); 5387 return; 5388 default: 5389 return; 5390 } 5391 } 5392 5393 /// If the DbgValueInst is a dbg_value of a function argument, create the 5394 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5395 /// instruction selection, they will be inserted to the entry BB. 5396 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5397 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5398 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5399 const Argument *Arg = dyn_cast<Argument>(V); 5400 if (!Arg) 5401 return false; 5402 5403 if (!IsDbgDeclare) { 5404 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5405 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5406 // the entry block. 5407 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5408 if (!IsInEntryBlock) 5409 return false; 5410 5411 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5412 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5413 // variable that also is a param. 5414 // 5415 // Although, if we are at the top of the entry block already, we can still 5416 // emit using ArgDbgValue. This might catch some situations when the 5417 // dbg.value refers to an argument that isn't used in the entry block, so 5418 // any CopyToReg node would be optimized out and the only way to express 5419 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5420 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5421 // we should only emit as ArgDbgValue if the Variable is an argument to the 5422 // current function, and the dbg.value intrinsic is found in the entry 5423 // block. 5424 bool VariableIsFunctionInputArg = Variable->isParameter() && 5425 !DL->getInlinedAt(); 5426 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5427 if (!IsInPrologue && !VariableIsFunctionInputArg) 5428 return false; 5429 5430 // Here we assume that a function argument on IR level only can be used to 5431 // describe one input parameter on source level. If we for example have 5432 // source code like this 5433 // 5434 // struct A { long x, y; }; 5435 // void foo(struct A a, long b) { 5436 // ... 5437 // b = a.x; 5438 // ... 5439 // } 5440 // 5441 // and IR like this 5442 // 5443 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5444 // entry: 5445 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5446 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5447 // call void @llvm.dbg.value(metadata i32 %b, "b", 5448 // ... 5449 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5450 // ... 5451 // 5452 // then the last dbg.value is describing a parameter "b" using a value that 5453 // is an argument. But since we already has used %a1 to describe a parameter 5454 // we should not handle that last dbg.value here (that would result in an 5455 // incorrect hoisting of the DBG_VALUE to the function entry). 5456 // Notice that we allow one dbg.value per IR level argument, to accommodate 5457 // for the situation with fragments above. 5458 if (VariableIsFunctionInputArg) { 5459 unsigned ArgNo = Arg->getArgNo(); 5460 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5461 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5462 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5463 return false; 5464 FuncInfo.DescribedArgs.set(ArgNo); 5465 } 5466 } 5467 5468 MachineFunction &MF = DAG.getMachineFunction(); 5469 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5470 5471 bool IsIndirect = false; 5472 Optional<MachineOperand> Op; 5473 // Some arguments' frame index is recorded during argument lowering. 5474 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5475 if (FI != std::numeric_limits<int>::max()) 5476 Op = MachineOperand::CreateFI(FI); 5477 5478 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5479 if (!Op && N.getNode()) { 5480 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5481 Register Reg; 5482 if (ArgRegsAndSizes.size() == 1) 5483 Reg = ArgRegsAndSizes.front().first; 5484 5485 if (Reg && Reg.isVirtual()) { 5486 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5487 Register PR = RegInfo.getLiveInPhysReg(Reg); 5488 if (PR) 5489 Reg = PR; 5490 } 5491 if (Reg) { 5492 Op = MachineOperand::CreateReg(Reg, false); 5493 IsIndirect = IsDbgDeclare; 5494 } 5495 } 5496 5497 if (!Op && N.getNode()) { 5498 // Check if frame index is available. 5499 SDValue LCandidate = peekThroughBitcasts(N); 5500 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5501 if (FrameIndexSDNode *FINode = 5502 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5503 Op = MachineOperand::CreateFI(FINode->getIndex()); 5504 } 5505 5506 if (!Op) { 5507 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5508 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5509 SplitRegs) { 5510 unsigned Offset = 0; 5511 for (auto RegAndSize : SplitRegs) { 5512 // If the expression is already a fragment, the current register 5513 // offset+size might extend beyond the fragment. In this case, only 5514 // the register bits that are inside the fragment are relevant. 5515 int RegFragmentSizeInBits = RegAndSize.second; 5516 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5517 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5518 // The register is entirely outside the expression fragment, 5519 // so is irrelevant for debug info. 5520 if (Offset >= ExprFragmentSizeInBits) 5521 break; 5522 // The register is partially outside the expression fragment, only 5523 // the low bits within the fragment are relevant for debug info. 5524 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5525 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5526 } 5527 } 5528 5529 auto FragmentExpr = DIExpression::createFragmentExpression( 5530 Expr, Offset, RegFragmentSizeInBits); 5531 Offset += RegAndSize.second; 5532 // If a valid fragment expression cannot be created, the variable's 5533 // correct value cannot be determined and so it is set as Undef. 5534 if (!FragmentExpr) { 5535 SDDbgValue *SDV = DAG.getConstantDbgValue( 5536 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5537 DAG.AddDbgValue(SDV, nullptr, false); 5538 continue; 5539 } 5540 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5541 FuncInfo.ArgDbgValues.push_back( 5542 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5543 RegAndSize.first, Variable, *FragmentExpr)); 5544 } 5545 }; 5546 5547 // Check if ValueMap has reg number. 5548 DenseMap<const Value *, Register>::const_iterator 5549 VMI = FuncInfo.ValueMap.find(V); 5550 if (VMI != FuncInfo.ValueMap.end()) { 5551 const auto &TLI = DAG.getTargetLoweringInfo(); 5552 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5553 V->getType(), None); 5554 if (RFV.occupiesMultipleRegs()) { 5555 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5556 return true; 5557 } 5558 5559 Op = MachineOperand::CreateReg(VMI->second, false); 5560 IsIndirect = IsDbgDeclare; 5561 } else if (ArgRegsAndSizes.size() > 1) { 5562 // This was split due to the calling convention, and no virtual register 5563 // mapping exists for the value. 5564 splitMultiRegDbgValue(ArgRegsAndSizes); 5565 return true; 5566 } 5567 } 5568 5569 if (!Op) 5570 return false; 5571 5572 assert(Variable->isValidLocationForIntrinsic(DL) && 5573 "Expected inlined-at fields to agree"); 5574 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5575 FuncInfo.ArgDbgValues.push_back( 5576 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5577 *Op, Variable, Expr)); 5578 5579 return true; 5580 } 5581 5582 /// Return the appropriate SDDbgValue based on N. 5583 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5584 DILocalVariable *Variable, 5585 DIExpression *Expr, 5586 const DebugLoc &dl, 5587 unsigned DbgSDNodeOrder) { 5588 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5589 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5590 // stack slot locations. 5591 // 5592 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5593 // debug values here after optimization: 5594 // 5595 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5596 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5597 // 5598 // Both describe the direct values of their associated variables. 5599 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5600 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5601 } 5602 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5603 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5604 } 5605 5606 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5607 switch (Intrinsic) { 5608 case Intrinsic::smul_fix: 5609 return ISD::SMULFIX; 5610 case Intrinsic::umul_fix: 5611 return ISD::UMULFIX; 5612 case Intrinsic::smul_fix_sat: 5613 return ISD::SMULFIXSAT; 5614 case Intrinsic::umul_fix_sat: 5615 return ISD::UMULFIXSAT; 5616 case Intrinsic::sdiv_fix: 5617 return ISD::SDIVFIX; 5618 case Intrinsic::udiv_fix: 5619 return ISD::UDIVFIX; 5620 case Intrinsic::sdiv_fix_sat: 5621 return ISD::SDIVFIXSAT; 5622 case Intrinsic::udiv_fix_sat: 5623 return ISD::UDIVFIXSAT; 5624 default: 5625 llvm_unreachable("Unhandled fixed point intrinsic"); 5626 } 5627 } 5628 5629 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5630 const char *FunctionName) { 5631 assert(FunctionName && "FunctionName must not be nullptr"); 5632 SDValue Callee = DAG.getExternalSymbol( 5633 FunctionName, 5634 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5635 LowerCallTo(I, Callee, I.isTailCall()); 5636 } 5637 5638 /// Given a @llvm.call.preallocated.setup, return the corresponding 5639 /// preallocated call. 5640 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5641 assert(cast<CallBase>(PreallocatedSetup) 5642 ->getCalledFunction() 5643 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5644 "expected call_preallocated_setup Value"); 5645 for (auto *U : PreallocatedSetup->users()) { 5646 auto *UseCall = cast<CallBase>(U); 5647 const Function *Fn = UseCall->getCalledFunction(); 5648 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5649 return UseCall; 5650 } 5651 } 5652 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5653 } 5654 5655 /// Lower the call to the specified intrinsic function. 5656 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5657 unsigned Intrinsic) { 5658 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5659 SDLoc sdl = getCurSDLoc(); 5660 DebugLoc dl = getCurDebugLoc(); 5661 SDValue Res; 5662 5663 SDNodeFlags Flags; 5664 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5665 Flags.copyFMF(*FPOp); 5666 5667 switch (Intrinsic) { 5668 default: 5669 // By default, turn this into a target intrinsic node. 5670 visitTargetIntrinsic(I, Intrinsic); 5671 return; 5672 case Intrinsic::vscale: { 5673 match(&I, m_VScale(DAG.getDataLayout())); 5674 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5675 setValue(&I, 5676 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5677 return; 5678 } 5679 case Intrinsic::vastart: visitVAStart(I); return; 5680 case Intrinsic::vaend: visitVAEnd(I); return; 5681 case Intrinsic::vacopy: visitVACopy(I); return; 5682 case Intrinsic::returnaddress: 5683 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5684 TLI.getPointerTy(DAG.getDataLayout()), 5685 getValue(I.getArgOperand(0)))); 5686 return; 5687 case Intrinsic::addressofreturnaddress: 5688 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5689 TLI.getPointerTy(DAG.getDataLayout()))); 5690 return; 5691 case Intrinsic::sponentry: 5692 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5693 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5694 return; 5695 case Intrinsic::frameaddress: 5696 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5697 TLI.getFrameIndexTy(DAG.getDataLayout()), 5698 getValue(I.getArgOperand(0)))); 5699 return; 5700 case Intrinsic::read_volatile_register: 5701 case Intrinsic::read_register: { 5702 Value *Reg = I.getArgOperand(0); 5703 SDValue Chain = getRoot(); 5704 SDValue RegName = 5705 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5706 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5707 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5708 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5709 setValue(&I, Res); 5710 DAG.setRoot(Res.getValue(1)); 5711 return; 5712 } 5713 case Intrinsic::write_register: { 5714 Value *Reg = I.getArgOperand(0); 5715 Value *RegValue = I.getArgOperand(1); 5716 SDValue Chain = getRoot(); 5717 SDValue RegName = 5718 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5719 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5720 RegName, getValue(RegValue))); 5721 return; 5722 } 5723 case Intrinsic::memcpy: { 5724 const auto &MCI = cast<MemCpyInst>(I); 5725 SDValue Op1 = getValue(I.getArgOperand(0)); 5726 SDValue Op2 = getValue(I.getArgOperand(1)); 5727 SDValue Op3 = getValue(I.getArgOperand(2)); 5728 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5729 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5730 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5731 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5732 bool isVol = MCI.isVolatile(); 5733 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5734 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5735 // node. 5736 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5737 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5738 /* AlwaysInline */ false, isTC, 5739 MachinePointerInfo(I.getArgOperand(0)), 5740 MachinePointerInfo(I.getArgOperand(1))); 5741 updateDAGForMaybeTailCall(MC); 5742 return; 5743 } 5744 case Intrinsic::memcpy_inline: { 5745 const auto &MCI = cast<MemCpyInlineInst>(I); 5746 SDValue Dst = getValue(I.getArgOperand(0)); 5747 SDValue Src = getValue(I.getArgOperand(1)); 5748 SDValue Size = getValue(I.getArgOperand(2)); 5749 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5750 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5751 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5752 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5753 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5754 bool isVol = MCI.isVolatile(); 5755 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5756 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5757 // node. 5758 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5759 /* AlwaysInline */ true, isTC, 5760 MachinePointerInfo(I.getArgOperand(0)), 5761 MachinePointerInfo(I.getArgOperand(1))); 5762 updateDAGForMaybeTailCall(MC); 5763 return; 5764 } 5765 case Intrinsic::memset: { 5766 const auto &MSI = cast<MemSetInst>(I); 5767 SDValue Op1 = getValue(I.getArgOperand(0)); 5768 SDValue Op2 = getValue(I.getArgOperand(1)); 5769 SDValue Op3 = getValue(I.getArgOperand(2)); 5770 // @llvm.memset defines 0 and 1 to both mean no alignment. 5771 Align Alignment = MSI.getDestAlign().valueOrOne(); 5772 bool isVol = MSI.isVolatile(); 5773 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5774 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5775 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5776 MachinePointerInfo(I.getArgOperand(0))); 5777 updateDAGForMaybeTailCall(MS); 5778 return; 5779 } 5780 case Intrinsic::memmove: { 5781 const auto &MMI = cast<MemMoveInst>(I); 5782 SDValue Op1 = getValue(I.getArgOperand(0)); 5783 SDValue Op2 = getValue(I.getArgOperand(1)); 5784 SDValue Op3 = getValue(I.getArgOperand(2)); 5785 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5786 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5787 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5788 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5789 bool isVol = MMI.isVolatile(); 5790 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5791 // FIXME: Support passing different dest/src alignments to the memmove DAG 5792 // node. 5793 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5794 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5795 isTC, MachinePointerInfo(I.getArgOperand(0)), 5796 MachinePointerInfo(I.getArgOperand(1))); 5797 updateDAGForMaybeTailCall(MM); 5798 return; 5799 } 5800 case Intrinsic::memcpy_element_unordered_atomic: { 5801 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5802 SDValue Dst = getValue(MI.getRawDest()); 5803 SDValue Src = getValue(MI.getRawSource()); 5804 SDValue Length = getValue(MI.getLength()); 5805 5806 unsigned DstAlign = MI.getDestAlignment(); 5807 unsigned SrcAlign = MI.getSourceAlignment(); 5808 Type *LengthTy = MI.getLength()->getType(); 5809 unsigned ElemSz = MI.getElementSizeInBytes(); 5810 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5811 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5812 SrcAlign, Length, LengthTy, ElemSz, isTC, 5813 MachinePointerInfo(MI.getRawDest()), 5814 MachinePointerInfo(MI.getRawSource())); 5815 updateDAGForMaybeTailCall(MC); 5816 return; 5817 } 5818 case Intrinsic::memmove_element_unordered_atomic: { 5819 auto &MI = cast<AtomicMemMoveInst>(I); 5820 SDValue Dst = getValue(MI.getRawDest()); 5821 SDValue Src = getValue(MI.getRawSource()); 5822 SDValue Length = getValue(MI.getLength()); 5823 5824 unsigned DstAlign = MI.getDestAlignment(); 5825 unsigned SrcAlign = MI.getSourceAlignment(); 5826 Type *LengthTy = MI.getLength()->getType(); 5827 unsigned ElemSz = MI.getElementSizeInBytes(); 5828 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5829 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5830 SrcAlign, Length, LengthTy, ElemSz, isTC, 5831 MachinePointerInfo(MI.getRawDest()), 5832 MachinePointerInfo(MI.getRawSource())); 5833 updateDAGForMaybeTailCall(MC); 5834 return; 5835 } 5836 case Intrinsic::memset_element_unordered_atomic: { 5837 auto &MI = cast<AtomicMemSetInst>(I); 5838 SDValue Dst = getValue(MI.getRawDest()); 5839 SDValue Val = getValue(MI.getValue()); 5840 SDValue Length = getValue(MI.getLength()); 5841 5842 unsigned DstAlign = MI.getDestAlignment(); 5843 Type *LengthTy = MI.getLength()->getType(); 5844 unsigned ElemSz = MI.getElementSizeInBytes(); 5845 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5846 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5847 LengthTy, ElemSz, isTC, 5848 MachinePointerInfo(MI.getRawDest())); 5849 updateDAGForMaybeTailCall(MC); 5850 return; 5851 } 5852 case Intrinsic::call_preallocated_setup: { 5853 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5854 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5855 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5856 getRoot(), SrcValue); 5857 setValue(&I, Res); 5858 DAG.setRoot(Res); 5859 return; 5860 } 5861 case Intrinsic::call_preallocated_arg: { 5862 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5863 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5864 SDValue Ops[3]; 5865 Ops[0] = getRoot(); 5866 Ops[1] = SrcValue; 5867 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5868 MVT::i32); // arg index 5869 SDValue Res = DAG.getNode( 5870 ISD::PREALLOCATED_ARG, sdl, 5871 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5872 setValue(&I, Res); 5873 DAG.setRoot(Res.getValue(1)); 5874 return; 5875 } 5876 case Intrinsic::dbg_addr: 5877 case Intrinsic::dbg_declare: { 5878 const auto &DI = cast<DbgVariableIntrinsic>(I); 5879 DILocalVariable *Variable = DI.getVariable(); 5880 DIExpression *Expression = DI.getExpression(); 5881 dropDanglingDebugInfo(Variable, Expression); 5882 assert(Variable && "Missing variable"); 5883 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5884 << "\n"); 5885 // Check if address has undef value. 5886 const Value *Address = DI.getVariableLocation(); 5887 if (!Address || isa<UndefValue>(Address) || 5888 (Address->use_empty() && !isa<Argument>(Address))) { 5889 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5890 << " (bad/undef/unused-arg address)\n"); 5891 return; 5892 } 5893 5894 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5895 5896 // Check if this variable can be described by a frame index, typically 5897 // either as a static alloca or a byval parameter. 5898 int FI = std::numeric_limits<int>::max(); 5899 if (const auto *AI = 5900 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5901 if (AI->isStaticAlloca()) { 5902 auto I = FuncInfo.StaticAllocaMap.find(AI); 5903 if (I != FuncInfo.StaticAllocaMap.end()) 5904 FI = I->second; 5905 } 5906 } else if (const auto *Arg = dyn_cast<Argument>( 5907 Address->stripInBoundsConstantOffsets())) { 5908 FI = FuncInfo.getArgumentFrameIndex(Arg); 5909 } 5910 5911 // llvm.dbg.addr is control dependent and always generates indirect 5912 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5913 // the MachineFunction variable table. 5914 if (FI != std::numeric_limits<int>::max()) { 5915 if (Intrinsic == Intrinsic::dbg_addr) { 5916 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5917 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5918 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5919 } else { 5920 LLVM_DEBUG(dbgs() << "Skipping " << DI 5921 << " (variable info stashed in MF side table)\n"); 5922 } 5923 return; 5924 } 5925 5926 SDValue &N = NodeMap[Address]; 5927 if (!N.getNode() && isa<Argument>(Address)) 5928 // Check unused arguments map. 5929 N = UnusedArgNodeMap[Address]; 5930 SDDbgValue *SDV; 5931 if (N.getNode()) { 5932 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5933 Address = BCI->getOperand(0); 5934 // Parameters are handled specially. 5935 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5936 if (isParameter && FINode) { 5937 // Byval parameter. We have a frame index at this point. 5938 SDV = 5939 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5940 /*IsIndirect*/ true, dl, SDNodeOrder); 5941 } else if (isa<Argument>(Address)) { 5942 // Address is an argument, so try to emit its dbg value using 5943 // virtual register info from the FuncInfo.ValueMap. 5944 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5945 return; 5946 } else { 5947 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5948 true, dl, SDNodeOrder); 5949 } 5950 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5951 } else { 5952 // If Address is an argument then try to emit its dbg value using 5953 // virtual register info from the FuncInfo.ValueMap. 5954 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5955 N)) { 5956 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5957 << " (could not emit func-arg dbg_value)\n"); 5958 } 5959 } 5960 return; 5961 } 5962 case Intrinsic::dbg_label: { 5963 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5964 DILabel *Label = DI.getLabel(); 5965 assert(Label && "Missing label"); 5966 5967 SDDbgLabel *SDV; 5968 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5969 DAG.AddDbgLabel(SDV); 5970 return; 5971 } 5972 case Intrinsic::dbg_value: { 5973 const DbgValueInst &DI = cast<DbgValueInst>(I); 5974 assert(DI.getVariable() && "Missing variable"); 5975 5976 DILocalVariable *Variable = DI.getVariable(); 5977 DIExpression *Expression = DI.getExpression(); 5978 dropDanglingDebugInfo(Variable, Expression); 5979 const Value *V = DI.getValue(); 5980 if (!V) 5981 return; 5982 5983 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5984 SDNodeOrder)) 5985 return; 5986 5987 // TODO: Dangling debug info will eventually either be resolved or produce 5988 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5989 // between the original dbg.value location and its resolved DBG_VALUE, which 5990 // we should ideally fill with an extra Undef DBG_VALUE. 5991 5992 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5993 return; 5994 } 5995 5996 case Intrinsic::eh_typeid_for: { 5997 // Find the type id for the given typeinfo. 5998 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5999 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6000 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6001 setValue(&I, Res); 6002 return; 6003 } 6004 6005 case Intrinsic::eh_return_i32: 6006 case Intrinsic::eh_return_i64: 6007 DAG.getMachineFunction().setCallsEHReturn(true); 6008 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6009 MVT::Other, 6010 getControlRoot(), 6011 getValue(I.getArgOperand(0)), 6012 getValue(I.getArgOperand(1)))); 6013 return; 6014 case Intrinsic::eh_unwind_init: 6015 DAG.getMachineFunction().setCallsUnwindInit(true); 6016 return; 6017 case Intrinsic::eh_dwarf_cfa: 6018 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6019 TLI.getPointerTy(DAG.getDataLayout()), 6020 getValue(I.getArgOperand(0)))); 6021 return; 6022 case Intrinsic::eh_sjlj_callsite: { 6023 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6024 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6025 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6026 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6027 6028 MMI.setCurrentCallSite(CI->getZExtValue()); 6029 return; 6030 } 6031 case Intrinsic::eh_sjlj_functioncontext: { 6032 // Get and store the index of the function context. 6033 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6034 AllocaInst *FnCtx = 6035 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6036 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6037 MFI.setFunctionContextIndex(FI); 6038 return; 6039 } 6040 case Intrinsic::eh_sjlj_setjmp: { 6041 SDValue Ops[2]; 6042 Ops[0] = getRoot(); 6043 Ops[1] = getValue(I.getArgOperand(0)); 6044 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6045 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6046 setValue(&I, Op.getValue(0)); 6047 DAG.setRoot(Op.getValue(1)); 6048 return; 6049 } 6050 case Intrinsic::eh_sjlj_longjmp: 6051 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6052 getRoot(), getValue(I.getArgOperand(0)))); 6053 return; 6054 case Intrinsic::eh_sjlj_setup_dispatch: 6055 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6056 getRoot())); 6057 return; 6058 case Intrinsic::masked_gather: 6059 visitMaskedGather(I); 6060 return; 6061 case Intrinsic::masked_load: 6062 visitMaskedLoad(I); 6063 return; 6064 case Intrinsic::masked_scatter: 6065 visitMaskedScatter(I); 6066 return; 6067 case Intrinsic::masked_store: 6068 visitMaskedStore(I); 6069 return; 6070 case Intrinsic::masked_expandload: 6071 visitMaskedLoad(I, true /* IsExpanding */); 6072 return; 6073 case Intrinsic::masked_compressstore: 6074 visitMaskedStore(I, true /* IsCompressing */); 6075 return; 6076 case Intrinsic::powi: 6077 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6078 getValue(I.getArgOperand(1)), DAG)); 6079 return; 6080 case Intrinsic::log: 6081 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6082 return; 6083 case Intrinsic::log2: 6084 setValue(&I, 6085 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6086 return; 6087 case Intrinsic::log10: 6088 setValue(&I, 6089 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6090 return; 6091 case Intrinsic::exp: 6092 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6093 return; 6094 case Intrinsic::exp2: 6095 setValue(&I, 6096 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6097 return; 6098 case Intrinsic::pow: 6099 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6100 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6101 return; 6102 case Intrinsic::sqrt: 6103 case Intrinsic::fabs: 6104 case Intrinsic::sin: 6105 case Intrinsic::cos: 6106 case Intrinsic::floor: 6107 case Intrinsic::ceil: 6108 case Intrinsic::trunc: 6109 case Intrinsic::rint: 6110 case Intrinsic::nearbyint: 6111 case Intrinsic::round: 6112 case Intrinsic::roundeven: 6113 case Intrinsic::canonicalize: { 6114 unsigned Opcode; 6115 switch (Intrinsic) { 6116 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6117 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6118 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6119 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6120 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6121 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6122 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6123 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6124 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6125 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6126 case Intrinsic::round: Opcode = ISD::FROUND; break; 6127 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6128 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6129 } 6130 6131 setValue(&I, DAG.getNode(Opcode, sdl, 6132 getValue(I.getArgOperand(0)).getValueType(), 6133 getValue(I.getArgOperand(0)), Flags)); 6134 return; 6135 } 6136 case Intrinsic::lround: 6137 case Intrinsic::llround: 6138 case Intrinsic::lrint: 6139 case Intrinsic::llrint: { 6140 unsigned Opcode; 6141 switch (Intrinsic) { 6142 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6143 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6144 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6145 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6146 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6147 } 6148 6149 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6150 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6151 getValue(I.getArgOperand(0)))); 6152 return; 6153 } 6154 case Intrinsic::minnum: 6155 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6156 getValue(I.getArgOperand(0)).getValueType(), 6157 getValue(I.getArgOperand(0)), 6158 getValue(I.getArgOperand(1)), Flags)); 6159 return; 6160 case Intrinsic::maxnum: 6161 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6162 getValue(I.getArgOperand(0)).getValueType(), 6163 getValue(I.getArgOperand(0)), 6164 getValue(I.getArgOperand(1)), Flags)); 6165 return; 6166 case Intrinsic::minimum: 6167 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6168 getValue(I.getArgOperand(0)).getValueType(), 6169 getValue(I.getArgOperand(0)), 6170 getValue(I.getArgOperand(1)), Flags)); 6171 return; 6172 case Intrinsic::maximum: 6173 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6174 getValue(I.getArgOperand(0)).getValueType(), 6175 getValue(I.getArgOperand(0)), 6176 getValue(I.getArgOperand(1)), Flags)); 6177 return; 6178 case Intrinsic::copysign: 6179 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6180 getValue(I.getArgOperand(0)).getValueType(), 6181 getValue(I.getArgOperand(0)), 6182 getValue(I.getArgOperand(1)), Flags)); 6183 return; 6184 case Intrinsic::fma: 6185 setValue(&I, DAG.getNode( 6186 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6187 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6188 getValue(I.getArgOperand(2)), Flags)); 6189 return; 6190 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6191 case Intrinsic::INTRINSIC: 6192 #include "llvm/IR/ConstrainedOps.def" 6193 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6194 return; 6195 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6196 #include "llvm/IR/VPIntrinsics.def" 6197 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6198 return; 6199 case Intrinsic::fmuladd: { 6200 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6201 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6202 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6203 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6204 getValue(I.getArgOperand(0)).getValueType(), 6205 getValue(I.getArgOperand(0)), 6206 getValue(I.getArgOperand(1)), 6207 getValue(I.getArgOperand(2)), Flags)); 6208 } else { 6209 // TODO: Intrinsic calls should have fast-math-flags. 6210 SDValue Mul = DAG.getNode( 6211 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6212 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6213 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6214 getValue(I.getArgOperand(0)).getValueType(), 6215 Mul, getValue(I.getArgOperand(2)), Flags); 6216 setValue(&I, Add); 6217 } 6218 return; 6219 } 6220 case Intrinsic::convert_to_fp16: 6221 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6222 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6223 getValue(I.getArgOperand(0)), 6224 DAG.getTargetConstant(0, sdl, 6225 MVT::i32)))); 6226 return; 6227 case Intrinsic::convert_from_fp16: 6228 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6229 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6230 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6231 getValue(I.getArgOperand(0))))); 6232 return; 6233 case Intrinsic::fptosi_sat: { 6234 EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6235 SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32); 6236 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, Type, 6237 getValue(I.getArgOperand(0)), SatW)); 6238 return; 6239 } 6240 case Intrinsic::fptoui_sat: { 6241 EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6242 SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32); 6243 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, Type, 6244 getValue(I.getArgOperand(0)), SatW)); 6245 return; 6246 } 6247 case Intrinsic::set_rounding: 6248 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6249 {getRoot(), getValue(I.getArgOperand(0))}); 6250 setValue(&I, Res); 6251 DAG.setRoot(Res.getValue(0)); 6252 return; 6253 case Intrinsic::pcmarker: { 6254 SDValue Tmp = getValue(I.getArgOperand(0)); 6255 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6256 return; 6257 } 6258 case Intrinsic::readcyclecounter: { 6259 SDValue Op = getRoot(); 6260 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6261 DAG.getVTList(MVT::i64, MVT::Other), Op); 6262 setValue(&I, Res); 6263 DAG.setRoot(Res.getValue(1)); 6264 return; 6265 } 6266 case Intrinsic::bitreverse: 6267 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6268 getValue(I.getArgOperand(0)).getValueType(), 6269 getValue(I.getArgOperand(0)))); 6270 return; 6271 case Intrinsic::bswap: 6272 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6273 getValue(I.getArgOperand(0)).getValueType(), 6274 getValue(I.getArgOperand(0)))); 6275 return; 6276 case Intrinsic::cttz: { 6277 SDValue Arg = getValue(I.getArgOperand(0)); 6278 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6279 EVT Ty = Arg.getValueType(); 6280 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6281 sdl, Ty, Arg)); 6282 return; 6283 } 6284 case Intrinsic::ctlz: { 6285 SDValue Arg = getValue(I.getArgOperand(0)); 6286 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6287 EVT Ty = Arg.getValueType(); 6288 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6289 sdl, Ty, Arg)); 6290 return; 6291 } 6292 case Intrinsic::ctpop: { 6293 SDValue Arg = getValue(I.getArgOperand(0)); 6294 EVT Ty = Arg.getValueType(); 6295 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6296 return; 6297 } 6298 case Intrinsic::fshl: 6299 case Intrinsic::fshr: { 6300 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6301 SDValue X = getValue(I.getArgOperand(0)); 6302 SDValue Y = getValue(I.getArgOperand(1)); 6303 SDValue Z = getValue(I.getArgOperand(2)); 6304 EVT VT = X.getValueType(); 6305 6306 if (X == Y) { 6307 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6308 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6309 } else { 6310 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6311 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6312 } 6313 return; 6314 } 6315 case Intrinsic::sadd_sat: { 6316 SDValue Op1 = getValue(I.getArgOperand(0)); 6317 SDValue Op2 = getValue(I.getArgOperand(1)); 6318 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6319 return; 6320 } 6321 case Intrinsic::uadd_sat: { 6322 SDValue Op1 = getValue(I.getArgOperand(0)); 6323 SDValue Op2 = getValue(I.getArgOperand(1)); 6324 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6325 return; 6326 } 6327 case Intrinsic::ssub_sat: { 6328 SDValue Op1 = getValue(I.getArgOperand(0)); 6329 SDValue Op2 = getValue(I.getArgOperand(1)); 6330 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6331 return; 6332 } 6333 case Intrinsic::usub_sat: { 6334 SDValue Op1 = getValue(I.getArgOperand(0)); 6335 SDValue Op2 = getValue(I.getArgOperand(1)); 6336 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6337 return; 6338 } 6339 case Intrinsic::sshl_sat: { 6340 SDValue Op1 = getValue(I.getArgOperand(0)); 6341 SDValue Op2 = getValue(I.getArgOperand(1)); 6342 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6343 return; 6344 } 6345 case Intrinsic::ushl_sat: { 6346 SDValue Op1 = getValue(I.getArgOperand(0)); 6347 SDValue Op2 = getValue(I.getArgOperand(1)); 6348 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6349 return; 6350 } 6351 case Intrinsic::smul_fix: 6352 case Intrinsic::umul_fix: 6353 case Intrinsic::smul_fix_sat: 6354 case Intrinsic::umul_fix_sat: { 6355 SDValue Op1 = getValue(I.getArgOperand(0)); 6356 SDValue Op2 = getValue(I.getArgOperand(1)); 6357 SDValue Op3 = getValue(I.getArgOperand(2)); 6358 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6359 Op1.getValueType(), Op1, Op2, Op3)); 6360 return; 6361 } 6362 case Intrinsic::sdiv_fix: 6363 case Intrinsic::udiv_fix: 6364 case Intrinsic::sdiv_fix_sat: 6365 case Intrinsic::udiv_fix_sat: { 6366 SDValue Op1 = getValue(I.getArgOperand(0)); 6367 SDValue Op2 = getValue(I.getArgOperand(1)); 6368 SDValue Op3 = getValue(I.getArgOperand(2)); 6369 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6370 Op1, Op2, Op3, DAG, TLI)); 6371 return; 6372 } 6373 case Intrinsic::smax: { 6374 SDValue Op1 = getValue(I.getArgOperand(0)); 6375 SDValue Op2 = getValue(I.getArgOperand(1)); 6376 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6377 return; 6378 } 6379 case Intrinsic::smin: { 6380 SDValue Op1 = getValue(I.getArgOperand(0)); 6381 SDValue Op2 = getValue(I.getArgOperand(1)); 6382 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6383 return; 6384 } 6385 case Intrinsic::umax: { 6386 SDValue Op1 = getValue(I.getArgOperand(0)); 6387 SDValue Op2 = getValue(I.getArgOperand(1)); 6388 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6389 return; 6390 } 6391 case Intrinsic::umin: { 6392 SDValue Op1 = getValue(I.getArgOperand(0)); 6393 SDValue Op2 = getValue(I.getArgOperand(1)); 6394 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6395 return; 6396 } 6397 case Intrinsic::abs: { 6398 // TODO: Preserve "int min is poison" arg in SDAG? 6399 SDValue Op1 = getValue(I.getArgOperand(0)); 6400 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6401 return; 6402 } 6403 case Intrinsic::stacksave: { 6404 SDValue Op = getRoot(); 6405 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6406 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6407 setValue(&I, Res); 6408 DAG.setRoot(Res.getValue(1)); 6409 return; 6410 } 6411 case Intrinsic::stackrestore: 6412 Res = getValue(I.getArgOperand(0)); 6413 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6414 return; 6415 case Intrinsic::get_dynamic_area_offset: { 6416 SDValue Op = getRoot(); 6417 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6418 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6419 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6420 // target. 6421 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6422 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6423 " intrinsic!"); 6424 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6425 Op); 6426 DAG.setRoot(Op); 6427 setValue(&I, Res); 6428 return; 6429 } 6430 case Intrinsic::stackguard: { 6431 MachineFunction &MF = DAG.getMachineFunction(); 6432 const Module &M = *MF.getFunction().getParent(); 6433 SDValue Chain = getRoot(); 6434 if (TLI.useLoadStackGuardNode()) { 6435 Res = getLoadStackGuard(DAG, sdl, Chain); 6436 } else { 6437 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6438 const Value *Global = TLI.getSDagStackGuard(M); 6439 Align Align = DL->getPrefTypeAlign(Global->getType()); 6440 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6441 MachinePointerInfo(Global, 0), Align, 6442 MachineMemOperand::MOVolatile); 6443 } 6444 if (TLI.useStackGuardXorFP()) 6445 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6446 DAG.setRoot(Chain); 6447 setValue(&I, Res); 6448 return; 6449 } 6450 case Intrinsic::stackprotector: { 6451 // Emit code into the DAG to store the stack guard onto the stack. 6452 MachineFunction &MF = DAG.getMachineFunction(); 6453 MachineFrameInfo &MFI = MF.getFrameInfo(); 6454 SDValue Src, Chain = getRoot(); 6455 6456 if (TLI.useLoadStackGuardNode()) 6457 Src = getLoadStackGuard(DAG, sdl, Chain); 6458 else 6459 Src = getValue(I.getArgOperand(0)); // The guard's value. 6460 6461 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6462 6463 int FI = FuncInfo.StaticAllocaMap[Slot]; 6464 MFI.setStackProtectorIndex(FI); 6465 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6466 6467 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6468 6469 // Store the stack protector onto the stack. 6470 Res = DAG.getStore( 6471 Chain, sdl, Src, FIN, 6472 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6473 MaybeAlign(), MachineMemOperand::MOVolatile); 6474 setValue(&I, Res); 6475 DAG.setRoot(Res); 6476 return; 6477 } 6478 case Intrinsic::objectsize: 6479 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6480 6481 case Intrinsic::is_constant: 6482 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6483 6484 case Intrinsic::annotation: 6485 case Intrinsic::ptr_annotation: 6486 case Intrinsic::launder_invariant_group: 6487 case Intrinsic::strip_invariant_group: 6488 // Drop the intrinsic, but forward the value 6489 setValue(&I, getValue(I.getOperand(0))); 6490 return; 6491 6492 case Intrinsic::assume: 6493 case Intrinsic::experimental_noalias_scope_decl: 6494 case Intrinsic::var_annotation: 6495 case Intrinsic::sideeffect: 6496 // Discard annotate attributes, noalias scope declarations, assumptions, and 6497 // artificial side-effects. 6498 return; 6499 6500 case Intrinsic::codeview_annotation: { 6501 // Emit a label associated with this metadata. 6502 MachineFunction &MF = DAG.getMachineFunction(); 6503 MCSymbol *Label = 6504 MF.getMMI().getContext().createTempSymbol("annotation", true); 6505 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6506 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6507 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6508 DAG.setRoot(Res); 6509 return; 6510 } 6511 6512 case Intrinsic::init_trampoline: { 6513 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6514 6515 SDValue Ops[6]; 6516 Ops[0] = getRoot(); 6517 Ops[1] = getValue(I.getArgOperand(0)); 6518 Ops[2] = getValue(I.getArgOperand(1)); 6519 Ops[3] = getValue(I.getArgOperand(2)); 6520 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6521 Ops[5] = DAG.getSrcValue(F); 6522 6523 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6524 6525 DAG.setRoot(Res); 6526 return; 6527 } 6528 case Intrinsic::adjust_trampoline: 6529 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6530 TLI.getPointerTy(DAG.getDataLayout()), 6531 getValue(I.getArgOperand(0)))); 6532 return; 6533 case Intrinsic::gcroot: { 6534 assert(DAG.getMachineFunction().getFunction().hasGC() && 6535 "only valid in functions with gc specified, enforced by Verifier"); 6536 assert(GFI && "implied by previous"); 6537 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6538 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6539 6540 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6541 GFI->addStackRoot(FI->getIndex(), TypeMap); 6542 return; 6543 } 6544 case Intrinsic::gcread: 6545 case Intrinsic::gcwrite: 6546 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6547 case Intrinsic::flt_rounds: 6548 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6549 setValue(&I, Res); 6550 DAG.setRoot(Res.getValue(1)); 6551 return; 6552 6553 case Intrinsic::expect: 6554 // Just replace __builtin_expect(exp, c) with EXP. 6555 setValue(&I, getValue(I.getArgOperand(0))); 6556 return; 6557 6558 case Intrinsic::ubsantrap: 6559 case Intrinsic::debugtrap: 6560 case Intrinsic::trap: { 6561 StringRef TrapFuncName = 6562 I.getAttributes() 6563 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6564 .getValueAsString(); 6565 if (TrapFuncName.empty()) { 6566 switch (Intrinsic) { 6567 case Intrinsic::trap: 6568 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6569 break; 6570 case Intrinsic::debugtrap: 6571 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6572 break; 6573 case Intrinsic::ubsantrap: 6574 DAG.setRoot(DAG.getNode( 6575 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6576 DAG.getTargetConstant( 6577 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6578 MVT::i32))); 6579 break; 6580 default: llvm_unreachable("unknown trap intrinsic"); 6581 } 6582 return; 6583 } 6584 TargetLowering::ArgListTy Args; 6585 if (Intrinsic == Intrinsic::ubsantrap) { 6586 Args.push_back(TargetLoweringBase::ArgListEntry()); 6587 Args[0].Val = I.getArgOperand(0); 6588 Args[0].Node = getValue(Args[0].Val); 6589 Args[0].Ty = Args[0].Val->getType(); 6590 } 6591 6592 TargetLowering::CallLoweringInfo CLI(DAG); 6593 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6594 CallingConv::C, I.getType(), 6595 DAG.getExternalSymbol(TrapFuncName.data(), 6596 TLI.getPointerTy(DAG.getDataLayout())), 6597 std::move(Args)); 6598 6599 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6600 DAG.setRoot(Result.second); 6601 return; 6602 } 6603 6604 case Intrinsic::uadd_with_overflow: 6605 case Intrinsic::sadd_with_overflow: 6606 case Intrinsic::usub_with_overflow: 6607 case Intrinsic::ssub_with_overflow: 6608 case Intrinsic::umul_with_overflow: 6609 case Intrinsic::smul_with_overflow: { 6610 ISD::NodeType Op; 6611 switch (Intrinsic) { 6612 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6613 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6614 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6615 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6616 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6617 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6618 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6619 } 6620 SDValue Op1 = getValue(I.getArgOperand(0)); 6621 SDValue Op2 = getValue(I.getArgOperand(1)); 6622 6623 EVT ResultVT = Op1.getValueType(); 6624 EVT OverflowVT = MVT::i1; 6625 if (ResultVT.isVector()) 6626 OverflowVT = EVT::getVectorVT( 6627 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6628 6629 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6630 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6631 return; 6632 } 6633 case Intrinsic::prefetch: { 6634 SDValue Ops[5]; 6635 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6636 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6637 Ops[0] = DAG.getRoot(); 6638 Ops[1] = getValue(I.getArgOperand(0)); 6639 Ops[2] = getValue(I.getArgOperand(1)); 6640 Ops[3] = getValue(I.getArgOperand(2)); 6641 Ops[4] = getValue(I.getArgOperand(3)); 6642 SDValue Result = DAG.getMemIntrinsicNode( 6643 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6644 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6645 /* align */ None, Flags); 6646 6647 // Chain the prefetch in parallell with any pending loads, to stay out of 6648 // the way of later optimizations. 6649 PendingLoads.push_back(Result); 6650 Result = getRoot(); 6651 DAG.setRoot(Result); 6652 return; 6653 } 6654 case Intrinsic::lifetime_start: 6655 case Intrinsic::lifetime_end: { 6656 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6657 // Stack coloring is not enabled in O0, discard region information. 6658 if (TM.getOptLevel() == CodeGenOpt::None) 6659 return; 6660 6661 const int64_t ObjectSize = 6662 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6663 Value *const ObjectPtr = I.getArgOperand(1); 6664 SmallVector<const Value *, 4> Allocas; 6665 getUnderlyingObjects(ObjectPtr, Allocas); 6666 6667 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6668 E = Allocas.end(); Object != E; ++Object) { 6669 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6670 6671 // Could not find an Alloca. 6672 if (!LifetimeObject) 6673 continue; 6674 6675 // First check that the Alloca is static, otherwise it won't have a 6676 // valid frame index. 6677 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6678 if (SI == FuncInfo.StaticAllocaMap.end()) 6679 return; 6680 6681 const int FrameIndex = SI->second; 6682 int64_t Offset; 6683 if (GetPointerBaseWithConstantOffset( 6684 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6685 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6686 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6687 Offset); 6688 DAG.setRoot(Res); 6689 } 6690 return; 6691 } 6692 case Intrinsic::pseudoprobe: { 6693 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6694 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6695 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6696 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6697 DAG.setRoot(Res); 6698 return; 6699 } 6700 case Intrinsic::invariant_start: 6701 // Discard region information. 6702 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6703 return; 6704 case Intrinsic::invariant_end: 6705 // Discard region information. 6706 return; 6707 case Intrinsic::clear_cache: 6708 /// FunctionName may be null. 6709 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6710 lowerCallToExternalSymbol(I, FunctionName); 6711 return; 6712 case Intrinsic::donothing: 6713 // ignore 6714 return; 6715 case Intrinsic::experimental_stackmap: 6716 visitStackmap(I); 6717 return; 6718 case Intrinsic::experimental_patchpoint_void: 6719 case Intrinsic::experimental_patchpoint_i64: 6720 visitPatchpoint(I); 6721 return; 6722 case Intrinsic::experimental_gc_statepoint: 6723 LowerStatepoint(cast<GCStatepointInst>(I)); 6724 return; 6725 case Intrinsic::experimental_gc_result: 6726 visitGCResult(cast<GCResultInst>(I)); 6727 return; 6728 case Intrinsic::experimental_gc_relocate: 6729 visitGCRelocate(cast<GCRelocateInst>(I)); 6730 return; 6731 case Intrinsic::instrprof_increment: 6732 llvm_unreachable("instrprof failed to lower an increment"); 6733 case Intrinsic::instrprof_value_profile: 6734 llvm_unreachable("instrprof failed to lower a value profiling call"); 6735 case Intrinsic::localescape: { 6736 MachineFunction &MF = DAG.getMachineFunction(); 6737 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6738 6739 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6740 // is the same on all targets. 6741 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6742 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6743 if (isa<ConstantPointerNull>(Arg)) 6744 continue; // Skip null pointers. They represent a hole in index space. 6745 AllocaInst *Slot = cast<AllocaInst>(Arg); 6746 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6747 "can only escape static allocas"); 6748 int FI = FuncInfo.StaticAllocaMap[Slot]; 6749 MCSymbol *FrameAllocSym = 6750 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6751 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6752 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6753 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6754 .addSym(FrameAllocSym) 6755 .addFrameIndex(FI); 6756 } 6757 6758 return; 6759 } 6760 6761 case Intrinsic::localrecover: { 6762 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6763 MachineFunction &MF = DAG.getMachineFunction(); 6764 6765 // Get the symbol that defines the frame offset. 6766 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6767 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6768 unsigned IdxVal = 6769 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6770 MCSymbol *FrameAllocSym = 6771 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6772 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6773 6774 Value *FP = I.getArgOperand(1); 6775 SDValue FPVal = getValue(FP); 6776 EVT PtrVT = FPVal.getValueType(); 6777 6778 // Create a MCSymbol for the label to avoid any target lowering 6779 // that would make this PC relative. 6780 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6781 SDValue OffsetVal = 6782 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6783 6784 // Add the offset to the FP. 6785 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6786 setValue(&I, Add); 6787 6788 return; 6789 } 6790 6791 case Intrinsic::eh_exceptionpointer: 6792 case Intrinsic::eh_exceptioncode: { 6793 // Get the exception pointer vreg, copy from it, and resize it to fit. 6794 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6795 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6796 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6797 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6798 SDValue N = 6799 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6800 if (Intrinsic == Intrinsic::eh_exceptioncode) 6801 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6802 setValue(&I, N); 6803 return; 6804 } 6805 case Intrinsic::xray_customevent: { 6806 // Here we want to make sure that the intrinsic behaves as if it has a 6807 // specific calling convention, and only for x86_64. 6808 // FIXME: Support other platforms later. 6809 const auto &Triple = DAG.getTarget().getTargetTriple(); 6810 if (Triple.getArch() != Triple::x86_64) 6811 return; 6812 6813 SDLoc DL = getCurSDLoc(); 6814 SmallVector<SDValue, 8> Ops; 6815 6816 // We want to say that we always want the arguments in registers. 6817 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6818 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6819 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6820 SDValue Chain = getRoot(); 6821 Ops.push_back(LogEntryVal); 6822 Ops.push_back(StrSizeVal); 6823 Ops.push_back(Chain); 6824 6825 // We need to enforce the calling convention for the callsite, so that 6826 // argument ordering is enforced correctly, and that register allocation can 6827 // see that some registers may be assumed clobbered and have to preserve 6828 // them across calls to the intrinsic. 6829 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6830 DL, NodeTys, Ops); 6831 SDValue patchableNode = SDValue(MN, 0); 6832 DAG.setRoot(patchableNode); 6833 setValue(&I, patchableNode); 6834 return; 6835 } 6836 case Intrinsic::xray_typedevent: { 6837 // Here we want to make sure that the intrinsic behaves as if it has a 6838 // specific calling convention, and only for x86_64. 6839 // FIXME: Support other platforms later. 6840 const auto &Triple = DAG.getTarget().getTargetTriple(); 6841 if (Triple.getArch() != Triple::x86_64) 6842 return; 6843 6844 SDLoc DL = getCurSDLoc(); 6845 SmallVector<SDValue, 8> Ops; 6846 6847 // We want to say that we always want the arguments in registers. 6848 // It's unclear to me how manipulating the selection DAG here forces callers 6849 // to provide arguments in registers instead of on the stack. 6850 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6851 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6852 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6853 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6854 SDValue Chain = getRoot(); 6855 Ops.push_back(LogTypeId); 6856 Ops.push_back(LogEntryVal); 6857 Ops.push_back(StrSizeVal); 6858 Ops.push_back(Chain); 6859 6860 // We need to enforce the calling convention for the callsite, so that 6861 // argument ordering is enforced correctly, and that register allocation can 6862 // see that some registers may be assumed clobbered and have to preserve 6863 // them across calls to the intrinsic. 6864 MachineSDNode *MN = DAG.getMachineNode( 6865 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6866 SDValue patchableNode = SDValue(MN, 0); 6867 DAG.setRoot(patchableNode); 6868 setValue(&I, patchableNode); 6869 return; 6870 } 6871 case Intrinsic::experimental_deoptimize: 6872 LowerDeoptimizeCall(&I); 6873 return; 6874 6875 case Intrinsic::vector_reduce_fadd: 6876 case Intrinsic::vector_reduce_fmul: 6877 case Intrinsic::vector_reduce_add: 6878 case Intrinsic::vector_reduce_mul: 6879 case Intrinsic::vector_reduce_and: 6880 case Intrinsic::vector_reduce_or: 6881 case Intrinsic::vector_reduce_xor: 6882 case Intrinsic::vector_reduce_smax: 6883 case Intrinsic::vector_reduce_smin: 6884 case Intrinsic::vector_reduce_umax: 6885 case Intrinsic::vector_reduce_umin: 6886 case Intrinsic::vector_reduce_fmax: 6887 case Intrinsic::vector_reduce_fmin: 6888 visitVectorReduce(I, Intrinsic); 6889 return; 6890 6891 case Intrinsic::icall_branch_funnel: { 6892 SmallVector<SDValue, 16> Ops; 6893 Ops.push_back(getValue(I.getArgOperand(0))); 6894 6895 int64_t Offset; 6896 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6897 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6898 if (!Base) 6899 report_fatal_error( 6900 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6901 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6902 6903 struct BranchFunnelTarget { 6904 int64_t Offset; 6905 SDValue Target; 6906 }; 6907 SmallVector<BranchFunnelTarget, 8> Targets; 6908 6909 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6910 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6911 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6912 if (ElemBase != Base) 6913 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6914 "to the same GlobalValue"); 6915 6916 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6917 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6918 if (!GA) 6919 report_fatal_error( 6920 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6921 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6922 GA->getGlobal(), getCurSDLoc(), 6923 Val.getValueType(), GA->getOffset())}); 6924 } 6925 llvm::sort(Targets, 6926 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6927 return T1.Offset < T2.Offset; 6928 }); 6929 6930 for (auto &T : Targets) { 6931 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6932 Ops.push_back(T.Target); 6933 } 6934 6935 Ops.push_back(DAG.getRoot()); // Chain 6936 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6937 getCurSDLoc(), MVT::Other, Ops), 6938 0); 6939 DAG.setRoot(N); 6940 setValue(&I, N); 6941 HasTailCall = true; 6942 return; 6943 } 6944 6945 case Intrinsic::wasm_landingpad_index: 6946 // Information this intrinsic contained has been transferred to 6947 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6948 // delete it now. 6949 return; 6950 6951 case Intrinsic::aarch64_settag: 6952 case Intrinsic::aarch64_settag_zero: { 6953 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6954 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6955 SDValue Val = TSI.EmitTargetCodeForSetTag( 6956 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6957 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6958 ZeroMemory); 6959 DAG.setRoot(Val); 6960 setValue(&I, Val); 6961 return; 6962 } 6963 case Intrinsic::ptrmask: { 6964 SDValue Ptr = getValue(I.getOperand(0)); 6965 SDValue Const = getValue(I.getOperand(1)); 6966 6967 EVT PtrVT = Ptr.getValueType(); 6968 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6969 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6970 return; 6971 } 6972 case Intrinsic::get_active_lane_mask: { 6973 auto DL = getCurSDLoc(); 6974 SDValue Index = getValue(I.getOperand(0)); 6975 SDValue TripCount = getValue(I.getOperand(1)); 6976 Type *ElementTy = I.getOperand(0)->getType(); 6977 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6978 unsigned VecWidth = VT.getVectorNumElements(); 6979 6980 SmallVector<SDValue, 16> OpsTripCount; 6981 SmallVector<SDValue, 16> OpsIndex; 6982 SmallVector<SDValue, 16> OpsStepConstants; 6983 for (unsigned i = 0; i < VecWidth; i++) { 6984 OpsTripCount.push_back(TripCount); 6985 OpsIndex.push_back(Index); 6986 OpsStepConstants.push_back( 6987 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 6988 } 6989 6990 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 6991 6992 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 6993 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6994 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6995 SDValue VectorInduction = DAG.getNode( 6996 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6997 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 6998 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 6999 VectorTripCount, ISD::CondCode::SETULT); 7000 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 7001 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 7002 SetCC)); 7003 return; 7004 } 7005 case Intrinsic::experimental_vector_insert: { 7006 auto DL = getCurSDLoc(); 7007 7008 SDValue Vec = getValue(I.getOperand(0)); 7009 SDValue SubVec = getValue(I.getOperand(1)); 7010 SDValue Index = getValue(I.getOperand(2)); 7011 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7012 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec, 7013 Index)); 7014 return; 7015 } 7016 case Intrinsic::experimental_vector_extract: { 7017 auto DL = getCurSDLoc(); 7018 7019 SDValue Vec = getValue(I.getOperand(0)); 7020 SDValue Index = getValue(I.getOperand(1)); 7021 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7022 7023 setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index)); 7024 return; 7025 } 7026 } 7027 } 7028 7029 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7030 const ConstrainedFPIntrinsic &FPI) { 7031 SDLoc sdl = getCurSDLoc(); 7032 7033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7034 SmallVector<EVT, 4> ValueVTs; 7035 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7036 ValueVTs.push_back(MVT::Other); // Out chain 7037 7038 // We do not need to serialize constrained FP intrinsics against 7039 // each other or against (nonvolatile) loads, so they can be 7040 // chained like loads. 7041 SDValue Chain = DAG.getRoot(); 7042 SmallVector<SDValue, 4> Opers; 7043 Opers.push_back(Chain); 7044 if (FPI.isUnaryOp()) { 7045 Opers.push_back(getValue(FPI.getArgOperand(0))); 7046 } else if (FPI.isTernaryOp()) { 7047 Opers.push_back(getValue(FPI.getArgOperand(0))); 7048 Opers.push_back(getValue(FPI.getArgOperand(1))); 7049 Opers.push_back(getValue(FPI.getArgOperand(2))); 7050 } else { 7051 Opers.push_back(getValue(FPI.getArgOperand(0))); 7052 Opers.push_back(getValue(FPI.getArgOperand(1))); 7053 } 7054 7055 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7056 assert(Result.getNode()->getNumValues() == 2); 7057 7058 // Push node to the appropriate list so that future instructions can be 7059 // chained up correctly. 7060 SDValue OutChain = Result.getValue(1); 7061 switch (EB) { 7062 case fp::ExceptionBehavior::ebIgnore: 7063 // The only reason why ebIgnore nodes still need to be chained is that 7064 // they might depend on the current rounding mode, and therefore must 7065 // not be moved across instruction that may change that mode. 7066 LLVM_FALLTHROUGH; 7067 case fp::ExceptionBehavior::ebMayTrap: 7068 // These must not be moved across calls or instructions that may change 7069 // floating-point exception masks. 7070 PendingConstrainedFP.push_back(OutChain); 7071 break; 7072 case fp::ExceptionBehavior::ebStrict: 7073 // These must not be moved across calls or instructions that may change 7074 // floating-point exception masks or read floating-point exception flags. 7075 // In addition, they cannot be optimized out even if unused. 7076 PendingConstrainedFPStrict.push_back(OutChain); 7077 break; 7078 } 7079 }; 7080 7081 SDVTList VTs = DAG.getVTList(ValueVTs); 7082 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7083 7084 SDNodeFlags Flags; 7085 if (EB == fp::ExceptionBehavior::ebIgnore) 7086 Flags.setNoFPExcept(true); 7087 7088 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7089 Flags.copyFMF(*FPOp); 7090 7091 unsigned Opcode; 7092 switch (FPI.getIntrinsicID()) { 7093 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7094 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7095 case Intrinsic::INTRINSIC: \ 7096 Opcode = ISD::STRICT_##DAGN; \ 7097 break; 7098 #include "llvm/IR/ConstrainedOps.def" 7099 case Intrinsic::experimental_constrained_fmuladd: { 7100 Opcode = ISD::STRICT_FMA; 7101 // Break fmuladd into fmul and fadd. 7102 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7103 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7104 ValueVTs[0])) { 7105 Opers.pop_back(); 7106 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7107 pushOutChain(Mul, EB); 7108 Opcode = ISD::STRICT_FADD; 7109 Opers.clear(); 7110 Opers.push_back(Mul.getValue(1)); 7111 Opers.push_back(Mul.getValue(0)); 7112 Opers.push_back(getValue(FPI.getArgOperand(2))); 7113 } 7114 break; 7115 } 7116 } 7117 7118 // A few strict DAG nodes carry additional operands that are not 7119 // set up by the default code above. 7120 switch (Opcode) { 7121 default: break; 7122 case ISD::STRICT_FP_ROUND: 7123 Opers.push_back( 7124 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7125 break; 7126 case ISD::STRICT_FSETCC: 7127 case ISD::STRICT_FSETCCS: { 7128 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7129 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7130 break; 7131 } 7132 } 7133 7134 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7135 pushOutChain(Result, EB); 7136 7137 SDValue FPResult = Result.getValue(0); 7138 setValue(&FPI, FPResult); 7139 } 7140 7141 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7142 Optional<unsigned> ResOPC; 7143 switch (VPIntrin.getIntrinsicID()) { 7144 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN: 7145 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID; 7146 #define END_REGISTER_VP_INTRINSIC(...) break; 7147 #include "llvm/IR/VPIntrinsics.def" 7148 } 7149 7150 if (!ResOPC.hasValue()) 7151 llvm_unreachable( 7152 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7153 7154 return ResOPC.getValue(); 7155 } 7156 7157 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7158 const VPIntrinsic &VPIntrin) { 7159 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7160 7161 SmallVector<EVT, 4> ValueVTs; 7162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7163 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7164 SDVTList VTs = DAG.getVTList(ValueVTs); 7165 7166 // Request operands. 7167 SmallVector<SDValue, 7> OpValues; 7168 for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i) 7169 OpValues.push_back(getValue(VPIntrin.getArgOperand(i))); 7170 7171 SDLoc DL = getCurSDLoc(); 7172 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7173 setValue(&VPIntrin, Result); 7174 } 7175 7176 std::pair<SDValue, SDValue> 7177 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7178 const BasicBlock *EHPadBB) { 7179 MachineFunction &MF = DAG.getMachineFunction(); 7180 MachineModuleInfo &MMI = MF.getMMI(); 7181 MCSymbol *BeginLabel = nullptr; 7182 7183 if (EHPadBB) { 7184 // Insert a label before the invoke call to mark the try range. This can be 7185 // used to detect deletion of the invoke via the MachineModuleInfo. 7186 BeginLabel = MMI.getContext().createTempSymbol(); 7187 7188 // For SjLj, keep track of which landing pads go with which invokes 7189 // so as to maintain the ordering of pads in the LSDA. 7190 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7191 if (CallSiteIndex) { 7192 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7193 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7194 7195 // Now that the call site is handled, stop tracking it. 7196 MMI.setCurrentCallSite(0); 7197 } 7198 7199 // Both PendingLoads and PendingExports must be flushed here; 7200 // this call might not return. 7201 (void)getRoot(); 7202 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7203 7204 CLI.setChain(getRoot()); 7205 } 7206 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7207 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7208 7209 assert((CLI.IsTailCall || Result.second.getNode()) && 7210 "Non-null chain expected with non-tail call!"); 7211 assert((Result.second.getNode() || !Result.first.getNode()) && 7212 "Null value expected with tail call!"); 7213 7214 if (!Result.second.getNode()) { 7215 // As a special case, a null chain means that a tail call has been emitted 7216 // and the DAG root is already updated. 7217 HasTailCall = true; 7218 7219 // Since there's no actual continuation from this block, nothing can be 7220 // relying on us setting vregs for them. 7221 PendingExports.clear(); 7222 } else { 7223 DAG.setRoot(Result.second); 7224 } 7225 7226 if (EHPadBB) { 7227 // Insert a label at the end of the invoke call to mark the try range. This 7228 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7229 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7230 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7231 7232 // Inform MachineModuleInfo of range. 7233 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7234 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7235 // actually use outlined funclets and their LSDA info style. 7236 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7237 assert(CLI.CB); 7238 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7239 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7240 } else if (!isScopedEHPersonality(Pers)) { 7241 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7242 } 7243 } 7244 7245 return Result; 7246 } 7247 7248 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7249 bool isTailCall, 7250 const BasicBlock *EHPadBB) { 7251 auto &DL = DAG.getDataLayout(); 7252 FunctionType *FTy = CB.getFunctionType(); 7253 Type *RetTy = CB.getType(); 7254 7255 TargetLowering::ArgListTy Args; 7256 Args.reserve(CB.arg_size()); 7257 7258 const Value *SwiftErrorVal = nullptr; 7259 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7260 7261 if (isTailCall) { 7262 // Avoid emitting tail calls in functions with the disable-tail-calls 7263 // attribute. 7264 auto *Caller = CB.getParent()->getParent(); 7265 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7266 "true") 7267 isTailCall = false; 7268 7269 // We can't tail call inside a function with a swifterror argument. Lowering 7270 // does not support this yet. It would have to move into the swifterror 7271 // register before the call. 7272 if (TLI.supportSwiftError() && 7273 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7274 isTailCall = false; 7275 } 7276 7277 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7278 TargetLowering::ArgListEntry Entry; 7279 const Value *V = *I; 7280 7281 // Skip empty types 7282 if (V->getType()->isEmptyTy()) 7283 continue; 7284 7285 SDValue ArgNode = getValue(V); 7286 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7287 7288 Entry.setAttributes(&CB, I - CB.arg_begin()); 7289 7290 // Use swifterror virtual register as input to the call. 7291 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7292 SwiftErrorVal = V; 7293 // We find the virtual register for the actual swifterror argument. 7294 // Instead of using the Value, we use the virtual register instead. 7295 Entry.Node = 7296 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7297 EVT(TLI.getPointerTy(DL))); 7298 } 7299 7300 Args.push_back(Entry); 7301 7302 // If we have an explicit sret argument that is an Instruction, (i.e., it 7303 // might point to function-local memory), we can't meaningfully tail-call. 7304 if (Entry.IsSRet && isa<Instruction>(V)) 7305 isTailCall = false; 7306 } 7307 7308 // If call site has a cfguardtarget operand bundle, create and add an 7309 // additional ArgListEntry. 7310 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7311 TargetLowering::ArgListEntry Entry; 7312 Value *V = Bundle->Inputs[0]; 7313 SDValue ArgNode = getValue(V); 7314 Entry.Node = ArgNode; 7315 Entry.Ty = V->getType(); 7316 Entry.IsCFGuardTarget = true; 7317 Args.push_back(Entry); 7318 } 7319 7320 // Check if target-independent constraints permit a tail call here. 7321 // Target-dependent constraints are checked within TLI->LowerCallTo. 7322 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7323 isTailCall = false; 7324 7325 // Disable tail calls if there is an swifterror argument. Targets have not 7326 // been updated to support tail calls. 7327 if (TLI.supportSwiftError() && SwiftErrorVal) 7328 isTailCall = false; 7329 7330 TargetLowering::CallLoweringInfo CLI(DAG); 7331 CLI.setDebugLoc(getCurSDLoc()) 7332 .setChain(getRoot()) 7333 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7334 .setTailCall(isTailCall) 7335 .setConvergent(CB.isConvergent()) 7336 .setIsPreallocated( 7337 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7338 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7339 7340 if (Result.first.getNode()) { 7341 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7342 setValue(&CB, Result.first); 7343 } 7344 7345 // The last element of CLI.InVals has the SDValue for swifterror return. 7346 // Here we copy it to a virtual register and update SwiftErrorMap for 7347 // book-keeping. 7348 if (SwiftErrorVal && TLI.supportSwiftError()) { 7349 // Get the last element of InVals. 7350 SDValue Src = CLI.InVals.back(); 7351 Register VReg = 7352 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7353 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7354 DAG.setRoot(CopyNode); 7355 } 7356 } 7357 7358 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7359 SelectionDAGBuilder &Builder) { 7360 // Check to see if this load can be trivially constant folded, e.g. if the 7361 // input is from a string literal. 7362 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7363 // Cast pointer to the type we really want to load. 7364 Type *LoadTy = 7365 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7366 if (LoadVT.isVector()) 7367 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7368 7369 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7370 PointerType::getUnqual(LoadTy)); 7371 7372 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7373 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7374 return Builder.getValue(LoadCst); 7375 } 7376 7377 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7378 // still constant memory, the input chain can be the entry node. 7379 SDValue Root; 7380 bool ConstantMemory = false; 7381 7382 // Do not serialize (non-volatile) loads of constant memory with anything. 7383 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7384 Root = Builder.DAG.getEntryNode(); 7385 ConstantMemory = true; 7386 } else { 7387 // Do not serialize non-volatile loads against each other. 7388 Root = Builder.DAG.getRoot(); 7389 } 7390 7391 SDValue Ptr = Builder.getValue(PtrVal); 7392 SDValue LoadVal = 7393 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7394 MachinePointerInfo(PtrVal), Align(1)); 7395 7396 if (!ConstantMemory) 7397 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7398 return LoadVal; 7399 } 7400 7401 /// Record the value for an instruction that produces an integer result, 7402 /// converting the type where necessary. 7403 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7404 SDValue Value, 7405 bool IsSigned) { 7406 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7407 I.getType(), true); 7408 if (IsSigned) 7409 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7410 else 7411 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7412 setValue(&I, Value); 7413 } 7414 7415 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7416 /// true and lower it. Otherwise return false, and it will be lowered like a 7417 /// normal call. 7418 /// The caller already checked that \p I calls the appropriate LibFunc with a 7419 /// correct prototype. 7420 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7421 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7422 const Value *Size = I.getArgOperand(2); 7423 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7424 if (CSize && CSize->getZExtValue() == 0) { 7425 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7426 I.getType(), true); 7427 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7428 return true; 7429 } 7430 7431 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7432 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7433 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7434 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7435 if (Res.first.getNode()) { 7436 processIntegerCallValue(I, Res.first, true); 7437 PendingLoads.push_back(Res.second); 7438 return true; 7439 } 7440 7441 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7442 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7443 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7444 return false; 7445 7446 // If the target has a fast compare for the given size, it will return a 7447 // preferred load type for that size. Require that the load VT is legal and 7448 // that the target supports unaligned loads of that type. Otherwise, return 7449 // INVALID. 7450 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7452 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7453 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7454 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7455 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7456 // TODO: Check alignment of src and dest ptrs. 7457 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7458 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7459 if (!TLI.isTypeLegal(LVT) || 7460 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7461 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7462 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7463 } 7464 7465 return LVT; 7466 }; 7467 7468 // This turns into unaligned loads. We only do this if the target natively 7469 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7470 // we'll only produce a small number of byte loads. 7471 MVT LoadVT; 7472 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7473 switch (NumBitsToCompare) { 7474 default: 7475 return false; 7476 case 16: 7477 LoadVT = MVT::i16; 7478 break; 7479 case 32: 7480 LoadVT = MVT::i32; 7481 break; 7482 case 64: 7483 case 128: 7484 case 256: 7485 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7486 break; 7487 } 7488 7489 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7490 return false; 7491 7492 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7493 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7494 7495 // Bitcast to a wide integer type if the loads are vectors. 7496 if (LoadVT.isVector()) { 7497 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7498 LoadL = DAG.getBitcast(CmpVT, LoadL); 7499 LoadR = DAG.getBitcast(CmpVT, LoadR); 7500 } 7501 7502 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7503 processIntegerCallValue(I, Cmp, false); 7504 return true; 7505 } 7506 7507 /// See if we can lower a memchr call into an optimized form. If so, return 7508 /// true and lower it. Otherwise return false, and it will be lowered like a 7509 /// normal call. 7510 /// The caller already checked that \p I calls the appropriate LibFunc with a 7511 /// correct prototype. 7512 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7513 const Value *Src = I.getArgOperand(0); 7514 const Value *Char = I.getArgOperand(1); 7515 const Value *Length = I.getArgOperand(2); 7516 7517 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7518 std::pair<SDValue, SDValue> Res = 7519 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7520 getValue(Src), getValue(Char), getValue(Length), 7521 MachinePointerInfo(Src)); 7522 if (Res.first.getNode()) { 7523 setValue(&I, Res.first); 7524 PendingLoads.push_back(Res.second); 7525 return true; 7526 } 7527 7528 return false; 7529 } 7530 7531 /// See if we can lower a mempcpy call into an optimized form. If so, return 7532 /// true and lower it. Otherwise return false, and it will be lowered like a 7533 /// normal call. 7534 /// The caller already checked that \p I calls the appropriate LibFunc with a 7535 /// correct prototype. 7536 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7537 SDValue Dst = getValue(I.getArgOperand(0)); 7538 SDValue Src = getValue(I.getArgOperand(1)); 7539 SDValue Size = getValue(I.getArgOperand(2)); 7540 7541 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7542 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7543 // DAG::getMemcpy needs Alignment to be defined. 7544 Align Alignment = std::min(DstAlign, SrcAlign); 7545 7546 bool isVol = false; 7547 SDLoc sdl = getCurSDLoc(); 7548 7549 // In the mempcpy context we need to pass in a false value for isTailCall 7550 // because the return pointer needs to be adjusted by the size of 7551 // the copied memory. 7552 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7553 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7554 /*isTailCall=*/false, 7555 MachinePointerInfo(I.getArgOperand(0)), 7556 MachinePointerInfo(I.getArgOperand(1))); 7557 assert(MC.getNode() != nullptr && 7558 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7559 DAG.setRoot(MC); 7560 7561 // Check if Size needs to be truncated or extended. 7562 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7563 7564 // Adjust return pointer to point just past the last dst byte. 7565 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7566 Dst, Size); 7567 setValue(&I, DstPlusSize); 7568 return true; 7569 } 7570 7571 /// See if we can lower a strcpy call into an optimized form. If so, return 7572 /// true and lower it, otherwise return false and it will be lowered like a 7573 /// normal call. 7574 /// The caller already checked that \p I calls the appropriate LibFunc with a 7575 /// correct prototype. 7576 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7577 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7578 7579 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7580 std::pair<SDValue, SDValue> Res = 7581 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7582 getValue(Arg0), getValue(Arg1), 7583 MachinePointerInfo(Arg0), 7584 MachinePointerInfo(Arg1), isStpcpy); 7585 if (Res.first.getNode()) { 7586 setValue(&I, Res.first); 7587 DAG.setRoot(Res.second); 7588 return true; 7589 } 7590 7591 return false; 7592 } 7593 7594 /// See if we can lower a strcmp call into an optimized form. If so, return 7595 /// true and lower it, otherwise return false and it will be lowered like a 7596 /// normal call. 7597 /// The caller already checked that \p I calls the appropriate LibFunc with a 7598 /// correct prototype. 7599 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7600 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7601 7602 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7603 std::pair<SDValue, SDValue> Res = 7604 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7605 getValue(Arg0), getValue(Arg1), 7606 MachinePointerInfo(Arg0), 7607 MachinePointerInfo(Arg1)); 7608 if (Res.first.getNode()) { 7609 processIntegerCallValue(I, Res.first, true); 7610 PendingLoads.push_back(Res.second); 7611 return true; 7612 } 7613 7614 return false; 7615 } 7616 7617 /// See if we can lower a strlen call into an optimized form. If so, return 7618 /// true and lower it, otherwise return false and it will be lowered like a 7619 /// normal call. 7620 /// The caller already checked that \p I calls the appropriate LibFunc with a 7621 /// correct prototype. 7622 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7623 const Value *Arg0 = I.getArgOperand(0); 7624 7625 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7626 std::pair<SDValue, SDValue> Res = 7627 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7628 getValue(Arg0), MachinePointerInfo(Arg0)); 7629 if (Res.first.getNode()) { 7630 processIntegerCallValue(I, Res.first, false); 7631 PendingLoads.push_back(Res.second); 7632 return true; 7633 } 7634 7635 return false; 7636 } 7637 7638 /// See if we can lower a strnlen call into an optimized form. If so, return 7639 /// true and lower it, otherwise return false and it will be lowered like a 7640 /// normal call. 7641 /// The caller already checked that \p I calls the appropriate LibFunc with a 7642 /// correct prototype. 7643 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7644 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7645 7646 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7647 std::pair<SDValue, SDValue> Res = 7648 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7649 getValue(Arg0), getValue(Arg1), 7650 MachinePointerInfo(Arg0)); 7651 if (Res.first.getNode()) { 7652 processIntegerCallValue(I, Res.first, false); 7653 PendingLoads.push_back(Res.second); 7654 return true; 7655 } 7656 7657 return false; 7658 } 7659 7660 /// See if we can lower a unary floating-point operation into an SDNode with 7661 /// the specified Opcode. If so, return true and lower it, otherwise return 7662 /// false and it will be lowered like a normal call. 7663 /// The caller already checked that \p I calls the appropriate LibFunc with a 7664 /// correct prototype. 7665 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7666 unsigned Opcode) { 7667 // We already checked this call's prototype; verify it doesn't modify errno. 7668 if (!I.onlyReadsMemory()) 7669 return false; 7670 7671 SDNodeFlags Flags; 7672 Flags.copyFMF(cast<FPMathOperator>(I)); 7673 7674 SDValue Tmp = getValue(I.getArgOperand(0)); 7675 setValue(&I, 7676 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7677 return true; 7678 } 7679 7680 /// See if we can lower a binary floating-point operation into an SDNode with 7681 /// the specified Opcode. If so, return true and lower it. Otherwise return 7682 /// false, and it will be lowered like a normal call. 7683 /// The caller already checked that \p I calls the appropriate LibFunc with a 7684 /// correct prototype. 7685 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7686 unsigned Opcode) { 7687 // We already checked this call's prototype; verify it doesn't modify errno. 7688 if (!I.onlyReadsMemory()) 7689 return false; 7690 7691 SDNodeFlags Flags; 7692 Flags.copyFMF(cast<FPMathOperator>(I)); 7693 7694 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7695 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7696 EVT VT = Tmp0.getValueType(); 7697 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7698 return true; 7699 } 7700 7701 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7702 // Handle inline assembly differently. 7703 if (I.isInlineAsm()) { 7704 visitInlineAsm(I); 7705 return; 7706 } 7707 7708 if (Function *F = I.getCalledFunction()) { 7709 if (F->isDeclaration()) { 7710 // Is this an LLVM intrinsic or a target-specific intrinsic? 7711 unsigned IID = F->getIntrinsicID(); 7712 if (!IID) 7713 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7714 IID = II->getIntrinsicID(F); 7715 7716 if (IID) { 7717 visitIntrinsicCall(I, IID); 7718 return; 7719 } 7720 } 7721 7722 // Check for well-known libc/libm calls. If the function is internal, it 7723 // can't be a library call. Don't do the check if marked as nobuiltin for 7724 // some reason or the call site requires strict floating point semantics. 7725 LibFunc Func; 7726 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7727 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7728 LibInfo->hasOptimizedCodeGen(Func)) { 7729 switch (Func) { 7730 default: break; 7731 case LibFunc_bcmp: 7732 if (visitMemCmpBCmpCall(I)) 7733 return; 7734 break; 7735 case LibFunc_copysign: 7736 case LibFunc_copysignf: 7737 case LibFunc_copysignl: 7738 // We already checked this call's prototype; verify it doesn't modify 7739 // errno. 7740 if (I.onlyReadsMemory()) { 7741 SDValue LHS = getValue(I.getArgOperand(0)); 7742 SDValue RHS = getValue(I.getArgOperand(1)); 7743 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7744 LHS.getValueType(), LHS, RHS)); 7745 return; 7746 } 7747 break; 7748 case LibFunc_fabs: 7749 case LibFunc_fabsf: 7750 case LibFunc_fabsl: 7751 if (visitUnaryFloatCall(I, ISD::FABS)) 7752 return; 7753 break; 7754 case LibFunc_fmin: 7755 case LibFunc_fminf: 7756 case LibFunc_fminl: 7757 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7758 return; 7759 break; 7760 case LibFunc_fmax: 7761 case LibFunc_fmaxf: 7762 case LibFunc_fmaxl: 7763 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7764 return; 7765 break; 7766 case LibFunc_sin: 7767 case LibFunc_sinf: 7768 case LibFunc_sinl: 7769 if (visitUnaryFloatCall(I, ISD::FSIN)) 7770 return; 7771 break; 7772 case LibFunc_cos: 7773 case LibFunc_cosf: 7774 case LibFunc_cosl: 7775 if (visitUnaryFloatCall(I, ISD::FCOS)) 7776 return; 7777 break; 7778 case LibFunc_sqrt: 7779 case LibFunc_sqrtf: 7780 case LibFunc_sqrtl: 7781 case LibFunc_sqrt_finite: 7782 case LibFunc_sqrtf_finite: 7783 case LibFunc_sqrtl_finite: 7784 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7785 return; 7786 break; 7787 case LibFunc_floor: 7788 case LibFunc_floorf: 7789 case LibFunc_floorl: 7790 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7791 return; 7792 break; 7793 case LibFunc_nearbyint: 7794 case LibFunc_nearbyintf: 7795 case LibFunc_nearbyintl: 7796 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7797 return; 7798 break; 7799 case LibFunc_ceil: 7800 case LibFunc_ceilf: 7801 case LibFunc_ceill: 7802 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7803 return; 7804 break; 7805 case LibFunc_rint: 7806 case LibFunc_rintf: 7807 case LibFunc_rintl: 7808 if (visitUnaryFloatCall(I, ISD::FRINT)) 7809 return; 7810 break; 7811 case LibFunc_round: 7812 case LibFunc_roundf: 7813 case LibFunc_roundl: 7814 if (visitUnaryFloatCall(I, ISD::FROUND)) 7815 return; 7816 break; 7817 case LibFunc_trunc: 7818 case LibFunc_truncf: 7819 case LibFunc_truncl: 7820 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7821 return; 7822 break; 7823 case LibFunc_log2: 7824 case LibFunc_log2f: 7825 case LibFunc_log2l: 7826 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7827 return; 7828 break; 7829 case LibFunc_exp2: 7830 case LibFunc_exp2f: 7831 case LibFunc_exp2l: 7832 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7833 return; 7834 break; 7835 case LibFunc_memcmp: 7836 if (visitMemCmpBCmpCall(I)) 7837 return; 7838 break; 7839 case LibFunc_mempcpy: 7840 if (visitMemPCpyCall(I)) 7841 return; 7842 break; 7843 case LibFunc_memchr: 7844 if (visitMemChrCall(I)) 7845 return; 7846 break; 7847 case LibFunc_strcpy: 7848 if (visitStrCpyCall(I, false)) 7849 return; 7850 break; 7851 case LibFunc_stpcpy: 7852 if (visitStrCpyCall(I, true)) 7853 return; 7854 break; 7855 case LibFunc_strcmp: 7856 if (visitStrCmpCall(I)) 7857 return; 7858 break; 7859 case LibFunc_strlen: 7860 if (visitStrLenCall(I)) 7861 return; 7862 break; 7863 case LibFunc_strnlen: 7864 if (visitStrNLenCall(I)) 7865 return; 7866 break; 7867 } 7868 } 7869 } 7870 7871 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7872 // have to do anything here to lower funclet bundles. 7873 // CFGuardTarget bundles are lowered in LowerCallTo. 7874 assert(!I.hasOperandBundlesOtherThan( 7875 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7876 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7877 "Cannot lower calls with arbitrary operand bundles!"); 7878 7879 SDValue Callee = getValue(I.getCalledOperand()); 7880 7881 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7882 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7883 else 7884 // Check if we can potentially perform a tail call. More detailed checking 7885 // is be done within LowerCallTo, after more information about the call is 7886 // known. 7887 LowerCallTo(I, Callee, I.isTailCall()); 7888 } 7889 7890 namespace { 7891 7892 /// AsmOperandInfo - This contains information for each constraint that we are 7893 /// lowering. 7894 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7895 public: 7896 /// CallOperand - If this is the result output operand or a clobber 7897 /// this is null, otherwise it is the incoming operand to the CallInst. 7898 /// This gets modified as the asm is processed. 7899 SDValue CallOperand; 7900 7901 /// AssignedRegs - If this is a register or register class operand, this 7902 /// contains the set of register corresponding to the operand. 7903 RegsForValue AssignedRegs; 7904 7905 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7906 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7907 } 7908 7909 /// Whether or not this operand accesses memory 7910 bool hasMemory(const TargetLowering &TLI) const { 7911 // Indirect operand accesses access memory. 7912 if (isIndirect) 7913 return true; 7914 7915 for (const auto &Code : Codes) 7916 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7917 return true; 7918 7919 return false; 7920 } 7921 7922 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7923 /// corresponds to. If there is no Value* for this operand, it returns 7924 /// MVT::Other. 7925 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7926 const DataLayout &DL) const { 7927 if (!CallOperandVal) return MVT::Other; 7928 7929 if (isa<BasicBlock>(CallOperandVal)) 7930 return TLI.getProgramPointerTy(DL); 7931 7932 llvm::Type *OpTy = CallOperandVal->getType(); 7933 7934 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7935 // If this is an indirect operand, the operand is a pointer to the 7936 // accessed type. 7937 if (isIndirect) { 7938 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7939 if (!PtrTy) 7940 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7941 OpTy = PtrTy->getElementType(); 7942 } 7943 7944 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7945 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7946 if (STy->getNumElements() == 1) 7947 OpTy = STy->getElementType(0); 7948 7949 // If OpTy is not a single value, it may be a struct/union that we 7950 // can tile with integers. 7951 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7952 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7953 switch (BitSize) { 7954 default: break; 7955 case 1: 7956 case 8: 7957 case 16: 7958 case 32: 7959 case 64: 7960 case 128: 7961 OpTy = IntegerType::get(Context, BitSize); 7962 break; 7963 } 7964 } 7965 7966 return TLI.getValueType(DL, OpTy, true); 7967 } 7968 }; 7969 7970 7971 } // end anonymous namespace 7972 7973 /// Make sure that the output operand \p OpInfo and its corresponding input 7974 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7975 /// out). 7976 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7977 SDISelAsmOperandInfo &MatchingOpInfo, 7978 SelectionDAG &DAG) { 7979 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7980 return; 7981 7982 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7983 const auto &TLI = DAG.getTargetLoweringInfo(); 7984 7985 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7986 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7987 OpInfo.ConstraintVT); 7988 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7989 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7990 MatchingOpInfo.ConstraintVT); 7991 if ((OpInfo.ConstraintVT.isInteger() != 7992 MatchingOpInfo.ConstraintVT.isInteger()) || 7993 (MatchRC.second != InputRC.second)) { 7994 // FIXME: error out in a more elegant fashion 7995 report_fatal_error("Unsupported asm: input constraint" 7996 " with a matching output constraint of" 7997 " incompatible type!"); 7998 } 7999 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8000 } 8001 8002 /// Get a direct memory input to behave well as an indirect operand. 8003 /// This may introduce stores, hence the need for a \p Chain. 8004 /// \return The (possibly updated) chain. 8005 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8006 SDISelAsmOperandInfo &OpInfo, 8007 SelectionDAG &DAG) { 8008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8009 8010 // If we don't have an indirect input, put it in the constpool if we can, 8011 // otherwise spill it to a stack slot. 8012 // TODO: This isn't quite right. We need to handle these according to 8013 // the addressing mode that the constraint wants. Also, this may take 8014 // an additional register for the computation and we don't want that 8015 // either. 8016 8017 // If the operand is a float, integer, or vector constant, spill to a 8018 // constant pool entry to get its address. 8019 const Value *OpVal = OpInfo.CallOperandVal; 8020 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8021 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8022 OpInfo.CallOperand = DAG.getConstantPool( 8023 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8024 return Chain; 8025 } 8026 8027 // Otherwise, create a stack slot and emit a store to it before the asm. 8028 Type *Ty = OpVal->getType(); 8029 auto &DL = DAG.getDataLayout(); 8030 uint64_t TySize = DL.getTypeAllocSize(Ty); 8031 MachineFunction &MF = DAG.getMachineFunction(); 8032 int SSFI = MF.getFrameInfo().CreateStackObject( 8033 TySize, DL.getPrefTypeAlign(Ty), false); 8034 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8035 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8036 MachinePointerInfo::getFixedStack(MF, SSFI), 8037 TLI.getMemValueType(DL, Ty)); 8038 OpInfo.CallOperand = StackSlot; 8039 8040 return Chain; 8041 } 8042 8043 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8044 /// specified operand. We prefer to assign virtual registers, to allow the 8045 /// register allocator to handle the assignment process. However, if the asm 8046 /// uses features that we can't model on machineinstrs, we have SDISel do the 8047 /// allocation. This produces generally horrible, but correct, code. 8048 /// 8049 /// OpInfo describes the operand 8050 /// RefOpInfo describes the matching operand if any, the operand otherwise 8051 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8052 SDISelAsmOperandInfo &OpInfo, 8053 SDISelAsmOperandInfo &RefOpInfo) { 8054 LLVMContext &Context = *DAG.getContext(); 8055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8056 8057 MachineFunction &MF = DAG.getMachineFunction(); 8058 SmallVector<unsigned, 4> Regs; 8059 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8060 8061 // No work to do for memory operations. 8062 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8063 return; 8064 8065 // If this is a constraint for a single physreg, or a constraint for a 8066 // register class, find it. 8067 unsigned AssignedReg; 8068 const TargetRegisterClass *RC; 8069 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8070 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8071 // RC is unset only on failure. Return immediately. 8072 if (!RC) 8073 return; 8074 8075 // Get the actual register value type. This is important, because the user 8076 // may have asked for (e.g.) the AX register in i32 type. We need to 8077 // remember that AX is actually i16 to get the right extension. 8078 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8079 8080 if (OpInfo.ConstraintVT != MVT::Other) { 8081 // If this is an FP operand in an integer register (or visa versa), or more 8082 // generally if the operand value disagrees with the register class we plan 8083 // to stick it in, fix the operand type. 8084 // 8085 // If this is an input value, the bitcast to the new type is done now. 8086 // Bitcast for output value is done at the end of visitInlineAsm(). 8087 if ((OpInfo.Type == InlineAsm::isOutput || 8088 OpInfo.Type == InlineAsm::isInput) && 8089 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8090 // Try to convert to the first EVT that the reg class contains. If the 8091 // types are identical size, use a bitcast to convert (e.g. two differing 8092 // vector types). Note: output bitcast is done at the end of 8093 // visitInlineAsm(). 8094 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8095 // Exclude indirect inputs while they are unsupported because the code 8096 // to perform the load is missing and thus OpInfo.CallOperand still 8097 // refers to the input address rather than the pointed-to value. 8098 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8099 OpInfo.CallOperand = 8100 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8101 OpInfo.ConstraintVT = RegVT; 8102 // If the operand is an FP value and we want it in integer registers, 8103 // use the corresponding integer type. This turns an f64 value into 8104 // i64, which can be passed with two i32 values on a 32-bit machine. 8105 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8106 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8107 if (OpInfo.Type == InlineAsm::isInput) 8108 OpInfo.CallOperand = 8109 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8110 OpInfo.ConstraintVT = VT; 8111 } 8112 } 8113 } 8114 8115 // No need to allocate a matching input constraint since the constraint it's 8116 // matching to has already been allocated. 8117 if (OpInfo.isMatchingInputConstraint()) 8118 return; 8119 8120 EVT ValueVT = OpInfo.ConstraintVT; 8121 if (OpInfo.ConstraintVT == MVT::Other) 8122 ValueVT = RegVT; 8123 8124 // Initialize NumRegs. 8125 unsigned NumRegs = 1; 8126 if (OpInfo.ConstraintVT != MVT::Other) 8127 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8128 8129 // If this is a constraint for a specific physical register, like {r17}, 8130 // assign it now. 8131 8132 // If this associated to a specific register, initialize iterator to correct 8133 // place. If virtual, make sure we have enough registers 8134 8135 // Initialize iterator if necessary 8136 TargetRegisterClass::iterator I = RC->begin(); 8137 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8138 8139 // Do not check for single registers. 8140 if (AssignedReg) { 8141 for (; *I != AssignedReg; ++I) 8142 assert(I != RC->end() && "AssignedReg should be member of RC"); 8143 } 8144 8145 for (; NumRegs; --NumRegs, ++I) { 8146 assert(I != RC->end() && "Ran out of registers to allocate!"); 8147 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8148 Regs.push_back(R); 8149 } 8150 8151 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8152 } 8153 8154 static unsigned 8155 findMatchingInlineAsmOperand(unsigned OperandNo, 8156 const std::vector<SDValue> &AsmNodeOperands) { 8157 // Scan until we find the definition we already emitted of this operand. 8158 unsigned CurOp = InlineAsm::Op_FirstOperand; 8159 for (; OperandNo; --OperandNo) { 8160 // Advance to the next operand. 8161 unsigned OpFlag = 8162 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8163 assert((InlineAsm::isRegDefKind(OpFlag) || 8164 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8165 InlineAsm::isMemKind(OpFlag)) && 8166 "Skipped past definitions?"); 8167 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8168 } 8169 return CurOp; 8170 } 8171 8172 namespace { 8173 8174 class ExtraFlags { 8175 unsigned Flags = 0; 8176 8177 public: 8178 explicit ExtraFlags(const CallBase &Call) { 8179 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8180 if (IA->hasSideEffects()) 8181 Flags |= InlineAsm::Extra_HasSideEffects; 8182 if (IA->isAlignStack()) 8183 Flags |= InlineAsm::Extra_IsAlignStack; 8184 if (Call.isConvergent()) 8185 Flags |= InlineAsm::Extra_IsConvergent; 8186 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8187 } 8188 8189 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8190 // Ideally, we would only check against memory constraints. However, the 8191 // meaning of an Other constraint can be target-specific and we can't easily 8192 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8193 // for Other constraints as well. 8194 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8195 OpInfo.ConstraintType == TargetLowering::C_Other) { 8196 if (OpInfo.Type == InlineAsm::isInput) 8197 Flags |= InlineAsm::Extra_MayLoad; 8198 else if (OpInfo.Type == InlineAsm::isOutput) 8199 Flags |= InlineAsm::Extra_MayStore; 8200 else if (OpInfo.Type == InlineAsm::isClobber) 8201 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8202 } 8203 } 8204 8205 unsigned get() const { return Flags; } 8206 }; 8207 8208 } // end anonymous namespace 8209 8210 /// visitInlineAsm - Handle a call to an InlineAsm object. 8211 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8212 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8213 8214 /// ConstraintOperands - Information about all of the constraints. 8215 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8216 8217 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8218 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8219 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8220 8221 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8222 // AsmDialect, MayLoad, MayStore). 8223 bool HasSideEffect = IA->hasSideEffects(); 8224 ExtraFlags ExtraInfo(Call); 8225 8226 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8227 unsigned ResNo = 0; // ResNo - The result number of the next output. 8228 unsigned NumMatchingOps = 0; 8229 for (auto &T : TargetConstraints) { 8230 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8231 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8232 8233 // Compute the value type for each operand. 8234 if (OpInfo.Type == InlineAsm::isInput || 8235 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8236 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8237 8238 // Process the call argument. BasicBlocks are labels, currently appearing 8239 // only in asm's. 8240 if (isa<CallBrInst>(Call) && 8241 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8242 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8243 NumMatchingOps) && 8244 (NumMatchingOps == 0 || 8245 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8246 NumMatchingOps))) { 8247 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8248 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8249 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8250 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8251 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8252 } else { 8253 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8254 } 8255 8256 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8257 DAG.getDataLayout()); 8258 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8259 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8260 // The return value of the call is this value. As such, there is no 8261 // corresponding argument. 8262 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8263 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8264 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8265 DAG.getDataLayout(), STy->getElementType(ResNo)); 8266 } else { 8267 assert(ResNo == 0 && "Asm only has one result!"); 8268 OpInfo.ConstraintVT = 8269 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8270 } 8271 ++ResNo; 8272 } else { 8273 OpInfo.ConstraintVT = MVT::Other; 8274 } 8275 8276 if (OpInfo.hasMatchingInput()) 8277 ++NumMatchingOps; 8278 8279 if (!HasSideEffect) 8280 HasSideEffect = OpInfo.hasMemory(TLI); 8281 8282 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8283 // FIXME: Could we compute this on OpInfo rather than T? 8284 8285 // Compute the constraint code and ConstraintType to use. 8286 TLI.ComputeConstraintToUse(T, SDValue()); 8287 8288 if (T.ConstraintType == TargetLowering::C_Immediate && 8289 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8290 // We've delayed emitting a diagnostic like the "n" constraint because 8291 // inlining could cause an integer showing up. 8292 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8293 "' expects an integer constant " 8294 "expression"); 8295 8296 ExtraInfo.update(T); 8297 } 8298 8299 8300 // We won't need to flush pending loads if this asm doesn't touch 8301 // memory and is nonvolatile. 8302 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8303 8304 bool IsCallBr = isa<CallBrInst>(Call); 8305 if (IsCallBr) { 8306 // If this is a callbr we need to flush pending exports since inlineasm_br 8307 // is a terminator. We need to do this before nodes are glued to 8308 // the inlineasm_br node. 8309 Chain = getControlRoot(); 8310 } 8311 8312 // Second pass over the constraints: compute which constraint option to use. 8313 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8314 // If this is an output operand with a matching input operand, look up the 8315 // matching input. If their types mismatch, e.g. one is an integer, the 8316 // other is floating point, or their sizes are different, flag it as an 8317 // error. 8318 if (OpInfo.hasMatchingInput()) { 8319 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8320 patchMatchingInput(OpInfo, Input, DAG); 8321 } 8322 8323 // Compute the constraint code and ConstraintType to use. 8324 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8325 8326 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8327 OpInfo.Type == InlineAsm::isClobber) 8328 continue; 8329 8330 // If this is a memory input, and if the operand is not indirect, do what we 8331 // need to provide an address for the memory input. 8332 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8333 !OpInfo.isIndirect) { 8334 assert((OpInfo.isMultipleAlternative || 8335 (OpInfo.Type == InlineAsm::isInput)) && 8336 "Can only indirectify direct input operands!"); 8337 8338 // Memory operands really want the address of the value. 8339 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8340 8341 // There is no longer a Value* corresponding to this operand. 8342 OpInfo.CallOperandVal = nullptr; 8343 8344 // It is now an indirect operand. 8345 OpInfo.isIndirect = true; 8346 } 8347 8348 } 8349 8350 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8351 std::vector<SDValue> AsmNodeOperands; 8352 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8353 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8354 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8355 8356 // If we have a !srcloc metadata node associated with it, we want to attach 8357 // this to the ultimately generated inline asm machineinstr. To do this, we 8358 // pass in the third operand as this (potentially null) inline asm MDNode. 8359 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8360 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8361 8362 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8363 // bits as operand 3. 8364 AsmNodeOperands.push_back(DAG.getTargetConstant( 8365 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8366 8367 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8368 // this, assign virtual and physical registers for inputs and otput. 8369 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8370 // Assign Registers. 8371 SDISelAsmOperandInfo &RefOpInfo = 8372 OpInfo.isMatchingInputConstraint() 8373 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8374 : OpInfo; 8375 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8376 8377 auto DetectWriteToReservedRegister = [&]() { 8378 const MachineFunction &MF = DAG.getMachineFunction(); 8379 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8380 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8381 if (Register::isPhysicalRegister(Reg) && 8382 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8383 const char *RegName = TRI.getName(Reg); 8384 emitInlineAsmError(Call, "write to reserved register '" + 8385 Twine(RegName) + "'"); 8386 return true; 8387 } 8388 } 8389 return false; 8390 }; 8391 8392 switch (OpInfo.Type) { 8393 case InlineAsm::isOutput: 8394 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8395 unsigned ConstraintID = 8396 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8397 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8398 "Failed to convert memory constraint code to constraint id."); 8399 8400 // Add information to the INLINEASM node to know about this output. 8401 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8402 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8403 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8404 MVT::i32)); 8405 AsmNodeOperands.push_back(OpInfo.CallOperand); 8406 } else { 8407 // Otherwise, this outputs to a register (directly for C_Register / 8408 // C_RegisterClass, and a target-defined fashion for 8409 // C_Immediate/C_Other). Find a register that we can use. 8410 if (OpInfo.AssignedRegs.Regs.empty()) { 8411 emitInlineAsmError( 8412 Call, "couldn't allocate output register for constraint '" + 8413 Twine(OpInfo.ConstraintCode) + "'"); 8414 return; 8415 } 8416 8417 if (DetectWriteToReservedRegister()) 8418 return; 8419 8420 // Add information to the INLINEASM node to know that this register is 8421 // set. 8422 OpInfo.AssignedRegs.AddInlineAsmOperands( 8423 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8424 : InlineAsm::Kind_RegDef, 8425 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8426 } 8427 break; 8428 8429 case InlineAsm::isInput: { 8430 SDValue InOperandVal = OpInfo.CallOperand; 8431 8432 if (OpInfo.isMatchingInputConstraint()) { 8433 // If this is required to match an output register we have already set, 8434 // just use its register. 8435 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8436 AsmNodeOperands); 8437 unsigned OpFlag = 8438 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8439 if (InlineAsm::isRegDefKind(OpFlag) || 8440 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8441 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8442 if (OpInfo.isIndirect) { 8443 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8444 emitInlineAsmError(Call, "inline asm not supported yet: " 8445 "don't know how to handle tied " 8446 "indirect register inputs"); 8447 return; 8448 } 8449 8450 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8451 SmallVector<unsigned, 4> Regs; 8452 8453 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8454 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8455 MachineRegisterInfo &RegInfo = 8456 DAG.getMachineFunction().getRegInfo(); 8457 for (unsigned i = 0; i != NumRegs; ++i) 8458 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8459 } else { 8460 emitInlineAsmError(Call, 8461 "inline asm error: This value type register " 8462 "class is not natively supported!"); 8463 return; 8464 } 8465 8466 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8467 8468 SDLoc dl = getCurSDLoc(); 8469 // Use the produced MatchedRegs object to 8470 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8471 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8472 true, OpInfo.getMatchedOperand(), dl, 8473 DAG, AsmNodeOperands); 8474 break; 8475 } 8476 8477 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8478 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8479 "Unexpected number of operands"); 8480 // Add information to the INLINEASM node to know about this input. 8481 // See InlineAsm.h isUseOperandTiedToDef. 8482 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8483 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8484 OpInfo.getMatchedOperand()); 8485 AsmNodeOperands.push_back(DAG.getTargetConstant( 8486 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8487 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8488 break; 8489 } 8490 8491 // Treat indirect 'X' constraint as memory. 8492 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8493 OpInfo.isIndirect) 8494 OpInfo.ConstraintType = TargetLowering::C_Memory; 8495 8496 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8497 OpInfo.ConstraintType == TargetLowering::C_Other) { 8498 std::vector<SDValue> Ops; 8499 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8500 Ops, DAG); 8501 if (Ops.empty()) { 8502 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8503 if (isa<ConstantSDNode>(InOperandVal)) { 8504 emitInlineAsmError(Call, "value out of range for constraint '" + 8505 Twine(OpInfo.ConstraintCode) + "'"); 8506 return; 8507 } 8508 8509 emitInlineAsmError(Call, 8510 "invalid operand for inline asm constraint '" + 8511 Twine(OpInfo.ConstraintCode) + "'"); 8512 return; 8513 } 8514 8515 // Add information to the INLINEASM node to know about this input. 8516 unsigned ResOpType = 8517 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8518 AsmNodeOperands.push_back(DAG.getTargetConstant( 8519 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8520 llvm::append_range(AsmNodeOperands, Ops); 8521 break; 8522 } 8523 8524 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8525 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8526 assert(InOperandVal.getValueType() == 8527 TLI.getPointerTy(DAG.getDataLayout()) && 8528 "Memory operands expect pointer values"); 8529 8530 unsigned ConstraintID = 8531 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8532 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8533 "Failed to convert memory constraint code to constraint id."); 8534 8535 // Add information to the INLINEASM node to know about this input. 8536 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8537 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8538 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8539 getCurSDLoc(), 8540 MVT::i32)); 8541 AsmNodeOperands.push_back(InOperandVal); 8542 break; 8543 } 8544 8545 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8546 OpInfo.ConstraintType == TargetLowering::C_Register) && 8547 "Unknown constraint type!"); 8548 8549 // TODO: Support this. 8550 if (OpInfo.isIndirect) { 8551 emitInlineAsmError( 8552 Call, "Don't know how to handle indirect register inputs yet " 8553 "for constraint '" + 8554 Twine(OpInfo.ConstraintCode) + "'"); 8555 return; 8556 } 8557 8558 // Copy the input into the appropriate registers. 8559 if (OpInfo.AssignedRegs.Regs.empty()) { 8560 emitInlineAsmError(Call, 8561 "couldn't allocate input reg for constraint '" + 8562 Twine(OpInfo.ConstraintCode) + "'"); 8563 return; 8564 } 8565 8566 if (DetectWriteToReservedRegister()) 8567 return; 8568 8569 SDLoc dl = getCurSDLoc(); 8570 8571 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8572 &Call); 8573 8574 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8575 dl, DAG, AsmNodeOperands); 8576 break; 8577 } 8578 case InlineAsm::isClobber: 8579 // Add the clobbered value to the operand list, so that the register 8580 // allocator is aware that the physreg got clobbered. 8581 if (!OpInfo.AssignedRegs.Regs.empty()) 8582 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8583 false, 0, getCurSDLoc(), DAG, 8584 AsmNodeOperands); 8585 break; 8586 } 8587 } 8588 8589 // Finish up input operands. Set the input chain and add the flag last. 8590 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8591 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8592 8593 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8594 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8595 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8596 Flag = Chain.getValue(1); 8597 8598 // Do additional work to generate outputs. 8599 8600 SmallVector<EVT, 1> ResultVTs; 8601 SmallVector<SDValue, 1> ResultValues; 8602 SmallVector<SDValue, 8> OutChains; 8603 8604 llvm::Type *CallResultType = Call.getType(); 8605 ArrayRef<Type *> ResultTypes; 8606 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8607 ResultTypes = StructResult->elements(); 8608 else if (!CallResultType->isVoidTy()) 8609 ResultTypes = makeArrayRef(CallResultType); 8610 8611 auto CurResultType = ResultTypes.begin(); 8612 auto handleRegAssign = [&](SDValue V) { 8613 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8614 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8615 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8616 ++CurResultType; 8617 // If the type of the inline asm call site return value is different but has 8618 // same size as the type of the asm output bitcast it. One example of this 8619 // is for vectors with different width / number of elements. This can 8620 // happen for register classes that can contain multiple different value 8621 // types. The preg or vreg allocated may not have the same VT as was 8622 // expected. 8623 // 8624 // This can also happen for a return value that disagrees with the register 8625 // class it is put in, eg. a double in a general-purpose register on a 8626 // 32-bit machine. 8627 if (ResultVT != V.getValueType() && 8628 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8629 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8630 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8631 V.getValueType().isInteger()) { 8632 // If a result value was tied to an input value, the computed result 8633 // may have a wider width than the expected result. Extract the 8634 // relevant portion. 8635 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8636 } 8637 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8638 ResultVTs.push_back(ResultVT); 8639 ResultValues.push_back(V); 8640 }; 8641 8642 // Deal with output operands. 8643 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8644 if (OpInfo.Type == InlineAsm::isOutput) { 8645 SDValue Val; 8646 // Skip trivial output operands. 8647 if (OpInfo.AssignedRegs.Regs.empty()) 8648 continue; 8649 8650 switch (OpInfo.ConstraintType) { 8651 case TargetLowering::C_Register: 8652 case TargetLowering::C_RegisterClass: 8653 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8654 Chain, &Flag, &Call); 8655 break; 8656 case TargetLowering::C_Immediate: 8657 case TargetLowering::C_Other: 8658 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8659 OpInfo, DAG); 8660 break; 8661 case TargetLowering::C_Memory: 8662 break; // Already handled. 8663 case TargetLowering::C_Unknown: 8664 assert(false && "Unexpected unknown constraint"); 8665 } 8666 8667 // Indirect output manifest as stores. Record output chains. 8668 if (OpInfo.isIndirect) { 8669 const Value *Ptr = OpInfo.CallOperandVal; 8670 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8671 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8672 MachinePointerInfo(Ptr)); 8673 OutChains.push_back(Store); 8674 } else { 8675 // generate CopyFromRegs to associated registers. 8676 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8677 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8678 for (const SDValue &V : Val->op_values()) 8679 handleRegAssign(V); 8680 } else 8681 handleRegAssign(Val); 8682 } 8683 } 8684 } 8685 8686 // Set results. 8687 if (!ResultValues.empty()) { 8688 assert(CurResultType == ResultTypes.end() && 8689 "Mismatch in number of ResultTypes"); 8690 assert(ResultValues.size() == ResultTypes.size() && 8691 "Mismatch in number of output operands in asm result"); 8692 8693 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8694 DAG.getVTList(ResultVTs), ResultValues); 8695 setValue(&Call, V); 8696 } 8697 8698 // Collect store chains. 8699 if (!OutChains.empty()) 8700 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8701 8702 // Only Update Root if inline assembly has a memory effect. 8703 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8704 DAG.setRoot(Chain); 8705 } 8706 8707 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8708 const Twine &Message) { 8709 LLVMContext &Ctx = *DAG.getContext(); 8710 Ctx.emitError(&Call, Message); 8711 8712 // Make sure we leave the DAG in a valid state 8713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8714 SmallVector<EVT, 1> ValueVTs; 8715 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8716 8717 if (ValueVTs.empty()) 8718 return; 8719 8720 SmallVector<SDValue, 1> Ops; 8721 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8722 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8723 8724 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8725 } 8726 8727 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8728 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8729 MVT::Other, getRoot(), 8730 getValue(I.getArgOperand(0)), 8731 DAG.getSrcValue(I.getArgOperand(0)))); 8732 } 8733 8734 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8736 const DataLayout &DL = DAG.getDataLayout(); 8737 SDValue V = DAG.getVAArg( 8738 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8739 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8740 DL.getABITypeAlign(I.getType()).value()); 8741 DAG.setRoot(V.getValue(1)); 8742 8743 if (I.getType()->isPointerTy()) 8744 V = DAG.getPtrExtOrTrunc( 8745 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8746 setValue(&I, V); 8747 } 8748 8749 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8750 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8751 MVT::Other, getRoot(), 8752 getValue(I.getArgOperand(0)), 8753 DAG.getSrcValue(I.getArgOperand(0)))); 8754 } 8755 8756 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8757 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8758 MVT::Other, getRoot(), 8759 getValue(I.getArgOperand(0)), 8760 getValue(I.getArgOperand(1)), 8761 DAG.getSrcValue(I.getArgOperand(0)), 8762 DAG.getSrcValue(I.getArgOperand(1)))); 8763 } 8764 8765 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8766 const Instruction &I, 8767 SDValue Op) { 8768 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8769 if (!Range) 8770 return Op; 8771 8772 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8773 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8774 return Op; 8775 8776 APInt Lo = CR.getUnsignedMin(); 8777 if (!Lo.isMinValue()) 8778 return Op; 8779 8780 APInt Hi = CR.getUnsignedMax(); 8781 unsigned Bits = std::max(Hi.getActiveBits(), 8782 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8783 8784 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8785 8786 SDLoc SL = getCurSDLoc(); 8787 8788 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8789 DAG.getValueType(SmallVT)); 8790 unsigned NumVals = Op.getNode()->getNumValues(); 8791 if (NumVals == 1) 8792 return ZExt; 8793 8794 SmallVector<SDValue, 4> Ops; 8795 8796 Ops.push_back(ZExt); 8797 for (unsigned I = 1; I != NumVals; ++I) 8798 Ops.push_back(Op.getValue(I)); 8799 8800 return DAG.getMergeValues(Ops, SL); 8801 } 8802 8803 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8804 /// the call being lowered. 8805 /// 8806 /// This is a helper for lowering intrinsics that follow a target calling 8807 /// convention or require stack pointer adjustment. Only a subset of the 8808 /// intrinsic's operands need to participate in the calling convention. 8809 void SelectionDAGBuilder::populateCallLoweringInfo( 8810 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8811 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8812 bool IsPatchPoint) { 8813 TargetLowering::ArgListTy Args; 8814 Args.reserve(NumArgs); 8815 8816 // Populate the argument list. 8817 // Attributes for args start at offset 1, after the return attribute. 8818 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8819 ArgI != ArgE; ++ArgI) { 8820 const Value *V = Call->getOperand(ArgI); 8821 8822 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8823 8824 TargetLowering::ArgListEntry Entry; 8825 Entry.Node = getValue(V); 8826 Entry.Ty = V->getType(); 8827 Entry.setAttributes(Call, ArgI); 8828 Args.push_back(Entry); 8829 } 8830 8831 CLI.setDebugLoc(getCurSDLoc()) 8832 .setChain(getRoot()) 8833 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8834 .setDiscardResult(Call->use_empty()) 8835 .setIsPatchPoint(IsPatchPoint) 8836 .setIsPreallocated( 8837 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8838 } 8839 8840 /// Add a stack map intrinsic call's live variable operands to a stackmap 8841 /// or patchpoint target node's operand list. 8842 /// 8843 /// Constants are converted to TargetConstants purely as an optimization to 8844 /// avoid constant materialization and register allocation. 8845 /// 8846 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8847 /// generate addess computation nodes, and so FinalizeISel can convert the 8848 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8849 /// address materialization and register allocation, but may also be required 8850 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8851 /// alloca in the entry block, then the runtime may assume that the alloca's 8852 /// StackMap location can be read immediately after compilation and that the 8853 /// location is valid at any point during execution (this is similar to the 8854 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8855 /// only available in a register, then the runtime would need to trap when 8856 /// execution reaches the StackMap in order to read the alloca's location. 8857 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8858 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8859 SelectionDAGBuilder &Builder) { 8860 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8861 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8862 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8863 Ops.push_back( 8864 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8865 Ops.push_back( 8866 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8867 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8868 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8869 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8870 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8871 } else 8872 Ops.push_back(OpVal); 8873 } 8874 } 8875 8876 /// Lower llvm.experimental.stackmap directly to its target opcode. 8877 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8878 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8879 // [live variables...]) 8880 8881 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8882 8883 SDValue Chain, InFlag, Callee, NullPtr; 8884 SmallVector<SDValue, 32> Ops; 8885 8886 SDLoc DL = getCurSDLoc(); 8887 Callee = getValue(CI.getCalledOperand()); 8888 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8889 8890 // The stackmap intrinsic only records the live variables (the arguments 8891 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8892 // intrinsic, this won't be lowered to a function call. This means we don't 8893 // have to worry about calling conventions and target specific lowering code. 8894 // Instead we perform the call lowering right here. 8895 // 8896 // chain, flag = CALLSEQ_START(chain, 0, 0) 8897 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8898 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8899 // 8900 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8901 InFlag = Chain.getValue(1); 8902 8903 // Add the <id> and <numBytes> constants. 8904 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8905 Ops.push_back(DAG.getTargetConstant( 8906 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8907 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8908 Ops.push_back(DAG.getTargetConstant( 8909 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8910 MVT::i32)); 8911 8912 // Push live variables for the stack map. 8913 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8914 8915 // We are not pushing any register mask info here on the operands list, 8916 // because the stackmap doesn't clobber anything. 8917 8918 // Push the chain and the glue flag. 8919 Ops.push_back(Chain); 8920 Ops.push_back(InFlag); 8921 8922 // Create the STACKMAP node. 8923 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8924 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8925 Chain = SDValue(SM, 0); 8926 InFlag = Chain.getValue(1); 8927 8928 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8929 8930 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8931 8932 // Set the root to the target-lowered call chain. 8933 DAG.setRoot(Chain); 8934 8935 // Inform the Frame Information that we have a stackmap in this function. 8936 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8937 } 8938 8939 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8940 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8941 const BasicBlock *EHPadBB) { 8942 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8943 // i32 <numBytes>, 8944 // i8* <target>, 8945 // i32 <numArgs>, 8946 // [Args...], 8947 // [live variables...]) 8948 8949 CallingConv::ID CC = CB.getCallingConv(); 8950 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8951 bool HasDef = !CB.getType()->isVoidTy(); 8952 SDLoc dl = getCurSDLoc(); 8953 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8954 8955 // Handle immediate and symbolic callees. 8956 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8957 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8958 /*isTarget=*/true); 8959 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8960 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8961 SDLoc(SymbolicCallee), 8962 SymbolicCallee->getValueType(0)); 8963 8964 // Get the real number of arguments participating in the call <numArgs> 8965 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8966 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8967 8968 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8969 // Intrinsics include all meta-operands up to but not including CC. 8970 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8971 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8972 "Not enough arguments provided to the patchpoint intrinsic"); 8973 8974 // For AnyRegCC the arguments are lowered later on manually. 8975 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8976 Type *ReturnTy = 8977 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8978 8979 TargetLowering::CallLoweringInfo CLI(DAG); 8980 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8981 ReturnTy, true); 8982 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8983 8984 SDNode *CallEnd = Result.second.getNode(); 8985 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8986 CallEnd = CallEnd->getOperand(0).getNode(); 8987 8988 /// Get a call instruction from the call sequence chain. 8989 /// Tail calls are not allowed. 8990 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8991 "Expected a callseq node."); 8992 SDNode *Call = CallEnd->getOperand(0).getNode(); 8993 bool HasGlue = Call->getGluedNode(); 8994 8995 // Replace the target specific call node with the patchable intrinsic. 8996 SmallVector<SDValue, 8> Ops; 8997 8998 // Add the <id> and <numBytes> constants. 8999 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9000 Ops.push_back(DAG.getTargetConstant( 9001 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9002 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9003 Ops.push_back(DAG.getTargetConstant( 9004 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9005 MVT::i32)); 9006 9007 // Add the callee. 9008 Ops.push_back(Callee); 9009 9010 // Adjust <numArgs> to account for any arguments that have been passed on the 9011 // stack instead. 9012 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9013 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9014 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9015 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9016 9017 // Add the calling convention 9018 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9019 9020 // Add the arguments we omitted previously. The register allocator should 9021 // place these in any free register. 9022 if (IsAnyRegCC) 9023 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9024 Ops.push_back(getValue(CB.getArgOperand(i))); 9025 9026 // Push the arguments from the call instruction up to the register mask. 9027 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9028 Ops.append(Call->op_begin() + 2, e); 9029 9030 // Push live variables for the stack map. 9031 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9032 9033 // Push the register mask info. 9034 if (HasGlue) 9035 Ops.push_back(*(Call->op_end()-2)); 9036 else 9037 Ops.push_back(*(Call->op_end()-1)); 9038 9039 // Push the chain (this is originally the first operand of the call, but 9040 // becomes now the last or second to last operand). 9041 Ops.push_back(*(Call->op_begin())); 9042 9043 // Push the glue flag (last operand). 9044 if (HasGlue) 9045 Ops.push_back(*(Call->op_end()-1)); 9046 9047 SDVTList NodeTys; 9048 if (IsAnyRegCC && HasDef) { 9049 // Create the return types based on the intrinsic definition 9050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9051 SmallVector<EVT, 3> ValueVTs; 9052 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9053 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9054 9055 // There is always a chain and a glue type at the end 9056 ValueVTs.push_back(MVT::Other); 9057 ValueVTs.push_back(MVT::Glue); 9058 NodeTys = DAG.getVTList(ValueVTs); 9059 } else 9060 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9061 9062 // Replace the target specific call node with a PATCHPOINT node. 9063 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9064 dl, NodeTys, Ops); 9065 9066 // Update the NodeMap. 9067 if (HasDef) { 9068 if (IsAnyRegCC) 9069 setValue(&CB, SDValue(MN, 0)); 9070 else 9071 setValue(&CB, Result.first); 9072 } 9073 9074 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9075 // call sequence. Furthermore the location of the chain and glue can change 9076 // when the AnyReg calling convention is used and the intrinsic returns a 9077 // value. 9078 if (IsAnyRegCC && HasDef) { 9079 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9080 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9081 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9082 } else 9083 DAG.ReplaceAllUsesWith(Call, MN); 9084 DAG.DeleteNode(Call); 9085 9086 // Inform the Frame Information that we have a patchpoint in this function. 9087 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9088 } 9089 9090 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9091 unsigned Intrinsic) { 9092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9093 SDValue Op1 = getValue(I.getArgOperand(0)); 9094 SDValue Op2; 9095 if (I.getNumArgOperands() > 1) 9096 Op2 = getValue(I.getArgOperand(1)); 9097 SDLoc dl = getCurSDLoc(); 9098 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9099 SDValue Res; 9100 SDNodeFlags SDFlags; 9101 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9102 SDFlags.copyFMF(*FPMO); 9103 9104 switch (Intrinsic) { 9105 case Intrinsic::vector_reduce_fadd: 9106 if (SDFlags.hasAllowReassociation()) 9107 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9108 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9109 SDFlags); 9110 else 9111 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9112 break; 9113 case Intrinsic::vector_reduce_fmul: 9114 if (SDFlags.hasAllowReassociation()) 9115 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9116 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9117 SDFlags); 9118 else 9119 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9120 break; 9121 case Intrinsic::vector_reduce_add: 9122 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9123 break; 9124 case Intrinsic::vector_reduce_mul: 9125 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9126 break; 9127 case Intrinsic::vector_reduce_and: 9128 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9129 break; 9130 case Intrinsic::vector_reduce_or: 9131 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9132 break; 9133 case Intrinsic::vector_reduce_xor: 9134 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9135 break; 9136 case Intrinsic::vector_reduce_smax: 9137 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9138 break; 9139 case Intrinsic::vector_reduce_smin: 9140 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9141 break; 9142 case Intrinsic::vector_reduce_umax: 9143 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9144 break; 9145 case Intrinsic::vector_reduce_umin: 9146 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9147 break; 9148 case Intrinsic::vector_reduce_fmax: 9149 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9150 break; 9151 case Intrinsic::vector_reduce_fmin: 9152 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9153 break; 9154 default: 9155 llvm_unreachable("Unhandled vector reduce intrinsic"); 9156 } 9157 setValue(&I, Res); 9158 } 9159 9160 /// Returns an AttributeList representing the attributes applied to the return 9161 /// value of the given call. 9162 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9163 SmallVector<Attribute::AttrKind, 2> Attrs; 9164 if (CLI.RetSExt) 9165 Attrs.push_back(Attribute::SExt); 9166 if (CLI.RetZExt) 9167 Attrs.push_back(Attribute::ZExt); 9168 if (CLI.IsInReg) 9169 Attrs.push_back(Attribute::InReg); 9170 9171 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9172 Attrs); 9173 } 9174 9175 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9176 /// implementation, which just calls LowerCall. 9177 /// FIXME: When all targets are 9178 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9179 std::pair<SDValue, SDValue> 9180 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9181 // Handle the incoming return values from the call. 9182 CLI.Ins.clear(); 9183 Type *OrigRetTy = CLI.RetTy; 9184 SmallVector<EVT, 4> RetTys; 9185 SmallVector<uint64_t, 4> Offsets; 9186 auto &DL = CLI.DAG.getDataLayout(); 9187 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9188 9189 if (CLI.IsPostTypeLegalization) { 9190 // If we are lowering a libcall after legalization, split the return type. 9191 SmallVector<EVT, 4> OldRetTys; 9192 SmallVector<uint64_t, 4> OldOffsets; 9193 RetTys.swap(OldRetTys); 9194 Offsets.swap(OldOffsets); 9195 9196 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9197 EVT RetVT = OldRetTys[i]; 9198 uint64_t Offset = OldOffsets[i]; 9199 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9200 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9201 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9202 RetTys.append(NumRegs, RegisterVT); 9203 for (unsigned j = 0; j != NumRegs; ++j) 9204 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9205 } 9206 } 9207 9208 SmallVector<ISD::OutputArg, 4> Outs; 9209 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9210 9211 bool CanLowerReturn = 9212 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9213 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9214 9215 SDValue DemoteStackSlot; 9216 int DemoteStackIdx = -100; 9217 if (!CanLowerReturn) { 9218 // FIXME: equivalent assert? 9219 // assert(!CS.hasInAllocaArgument() && 9220 // "sret demotion is incompatible with inalloca"); 9221 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9222 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9223 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9224 DemoteStackIdx = 9225 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9226 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9227 DL.getAllocaAddrSpace()); 9228 9229 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9230 ArgListEntry Entry; 9231 Entry.Node = DemoteStackSlot; 9232 Entry.Ty = StackSlotPtrType; 9233 Entry.IsSExt = false; 9234 Entry.IsZExt = false; 9235 Entry.IsInReg = false; 9236 Entry.IsSRet = true; 9237 Entry.IsNest = false; 9238 Entry.IsByVal = false; 9239 Entry.IsByRef = false; 9240 Entry.IsReturned = false; 9241 Entry.IsSwiftSelf = false; 9242 Entry.IsSwiftError = false; 9243 Entry.IsCFGuardTarget = false; 9244 Entry.Alignment = Alignment; 9245 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9246 CLI.NumFixedArgs += 1; 9247 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9248 9249 // sret demotion isn't compatible with tail-calls, since the sret argument 9250 // points into the callers stack frame. 9251 CLI.IsTailCall = false; 9252 } else { 9253 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9254 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9255 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9256 ISD::ArgFlagsTy Flags; 9257 if (NeedsRegBlock) { 9258 Flags.setInConsecutiveRegs(); 9259 if (I == RetTys.size() - 1) 9260 Flags.setInConsecutiveRegsLast(); 9261 } 9262 EVT VT = RetTys[I]; 9263 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9264 CLI.CallConv, VT); 9265 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9266 CLI.CallConv, VT); 9267 for (unsigned i = 0; i != NumRegs; ++i) { 9268 ISD::InputArg MyFlags; 9269 MyFlags.Flags = Flags; 9270 MyFlags.VT = RegisterVT; 9271 MyFlags.ArgVT = VT; 9272 MyFlags.Used = CLI.IsReturnValueUsed; 9273 if (CLI.RetTy->isPointerTy()) { 9274 MyFlags.Flags.setPointer(); 9275 MyFlags.Flags.setPointerAddrSpace( 9276 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9277 } 9278 if (CLI.RetSExt) 9279 MyFlags.Flags.setSExt(); 9280 if (CLI.RetZExt) 9281 MyFlags.Flags.setZExt(); 9282 if (CLI.IsInReg) 9283 MyFlags.Flags.setInReg(); 9284 CLI.Ins.push_back(MyFlags); 9285 } 9286 } 9287 } 9288 9289 // We push in swifterror return as the last element of CLI.Ins. 9290 ArgListTy &Args = CLI.getArgs(); 9291 if (supportSwiftError()) { 9292 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9293 if (Args[i].IsSwiftError) { 9294 ISD::InputArg MyFlags; 9295 MyFlags.VT = getPointerTy(DL); 9296 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9297 MyFlags.Flags.setSwiftError(); 9298 CLI.Ins.push_back(MyFlags); 9299 } 9300 } 9301 } 9302 9303 // Handle all of the outgoing arguments. 9304 CLI.Outs.clear(); 9305 CLI.OutVals.clear(); 9306 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9307 SmallVector<EVT, 4> ValueVTs; 9308 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9309 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9310 Type *FinalType = Args[i].Ty; 9311 if (Args[i].IsByVal) 9312 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9313 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9314 FinalType, CLI.CallConv, CLI.IsVarArg); 9315 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9316 ++Value) { 9317 EVT VT = ValueVTs[Value]; 9318 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9319 SDValue Op = SDValue(Args[i].Node.getNode(), 9320 Args[i].Node.getResNo() + Value); 9321 ISD::ArgFlagsTy Flags; 9322 9323 // Certain targets (such as MIPS), may have a different ABI alignment 9324 // for a type depending on the context. Give the target a chance to 9325 // specify the alignment it wants. 9326 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9327 9328 if (Args[i].Ty->isPointerTy()) { 9329 Flags.setPointer(); 9330 Flags.setPointerAddrSpace( 9331 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9332 } 9333 if (Args[i].IsZExt) 9334 Flags.setZExt(); 9335 if (Args[i].IsSExt) 9336 Flags.setSExt(); 9337 if (Args[i].IsInReg) { 9338 // If we are using vectorcall calling convention, a structure that is 9339 // passed InReg - is surely an HVA 9340 if (CLI.CallConv == CallingConv::X86_VectorCall && 9341 isa<StructType>(FinalType)) { 9342 // The first value of a structure is marked 9343 if (0 == Value) 9344 Flags.setHvaStart(); 9345 Flags.setHva(); 9346 } 9347 // Set InReg Flag 9348 Flags.setInReg(); 9349 } 9350 if (Args[i].IsSRet) 9351 Flags.setSRet(); 9352 if (Args[i].IsSwiftSelf) 9353 Flags.setSwiftSelf(); 9354 if (Args[i].IsSwiftError) 9355 Flags.setSwiftError(); 9356 if (Args[i].IsCFGuardTarget) 9357 Flags.setCFGuardTarget(); 9358 if (Args[i].IsByVal) 9359 Flags.setByVal(); 9360 if (Args[i].IsByRef) 9361 Flags.setByRef(); 9362 if (Args[i].IsPreallocated) { 9363 Flags.setPreallocated(); 9364 // Set the byval flag for CCAssignFn callbacks that don't know about 9365 // preallocated. This way we can know how many bytes we should've 9366 // allocated and how many bytes a callee cleanup function will pop. If 9367 // we port preallocated to more targets, we'll have to add custom 9368 // preallocated handling in the various CC lowering callbacks. 9369 Flags.setByVal(); 9370 } 9371 if (Args[i].IsInAlloca) { 9372 Flags.setInAlloca(); 9373 // Set the byval flag for CCAssignFn callbacks that don't know about 9374 // inalloca. This way we can know how many bytes we should've allocated 9375 // and how many bytes a callee cleanup function will pop. If we port 9376 // inalloca to more targets, we'll have to add custom inalloca handling 9377 // in the various CC lowering callbacks. 9378 Flags.setByVal(); 9379 } 9380 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9381 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9382 Type *ElementTy = Ty->getElementType(); 9383 9384 unsigned FrameSize = DL.getTypeAllocSize( 9385 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9386 Flags.setByValSize(FrameSize); 9387 9388 // info is not there but there are cases it cannot get right. 9389 Align FrameAlign; 9390 if (auto MA = Args[i].Alignment) 9391 FrameAlign = *MA; 9392 else 9393 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9394 Flags.setByValAlign(FrameAlign); 9395 } 9396 if (Args[i].IsNest) 9397 Flags.setNest(); 9398 if (NeedsRegBlock) 9399 Flags.setInConsecutiveRegs(); 9400 Flags.setOrigAlign(OriginalAlignment); 9401 9402 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9403 CLI.CallConv, VT); 9404 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9405 CLI.CallConv, VT); 9406 SmallVector<SDValue, 4> Parts(NumParts); 9407 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9408 9409 if (Args[i].IsSExt) 9410 ExtendKind = ISD::SIGN_EXTEND; 9411 else if (Args[i].IsZExt) 9412 ExtendKind = ISD::ZERO_EXTEND; 9413 9414 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9415 // for now. 9416 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9417 CanLowerReturn) { 9418 assert((CLI.RetTy == Args[i].Ty || 9419 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9420 CLI.RetTy->getPointerAddressSpace() == 9421 Args[i].Ty->getPointerAddressSpace())) && 9422 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9423 // Before passing 'returned' to the target lowering code, ensure that 9424 // either the register MVT and the actual EVT are the same size or that 9425 // the return value and argument are extended in the same way; in these 9426 // cases it's safe to pass the argument register value unchanged as the 9427 // return register value (although it's at the target's option whether 9428 // to do so) 9429 // TODO: allow code generation to take advantage of partially preserved 9430 // registers rather than clobbering the entire register when the 9431 // parameter extension method is not compatible with the return 9432 // extension method 9433 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9434 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9435 CLI.RetZExt == Args[i].IsZExt)) 9436 Flags.setReturned(); 9437 } 9438 9439 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9440 CLI.CallConv, ExtendKind); 9441 9442 for (unsigned j = 0; j != NumParts; ++j) { 9443 // if it isn't first piece, alignment must be 1 9444 // For scalable vectors the scalable part is currently handled 9445 // by individual targets, so we just use the known minimum size here. 9446 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9447 i < CLI.NumFixedArgs, i, 9448 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9449 if (NumParts > 1 && j == 0) 9450 MyFlags.Flags.setSplit(); 9451 else if (j != 0) { 9452 MyFlags.Flags.setOrigAlign(Align(1)); 9453 if (j == NumParts - 1) 9454 MyFlags.Flags.setSplitEnd(); 9455 } 9456 9457 CLI.Outs.push_back(MyFlags); 9458 CLI.OutVals.push_back(Parts[j]); 9459 } 9460 9461 if (NeedsRegBlock && Value == NumValues - 1) 9462 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9463 } 9464 } 9465 9466 SmallVector<SDValue, 4> InVals; 9467 CLI.Chain = LowerCall(CLI, InVals); 9468 9469 // Update CLI.InVals to use outside of this function. 9470 CLI.InVals = InVals; 9471 9472 // Verify that the target's LowerCall behaved as expected. 9473 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9474 "LowerCall didn't return a valid chain!"); 9475 assert((!CLI.IsTailCall || InVals.empty()) && 9476 "LowerCall emitted a return value for a tail call!"); 9477 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9478 "LowerCall didn't emit the correct number of values!"); 9479 9480 // For a tail call, the return value is merely live-out and there aren't 9481 // any nodes in the DAG representing it. Return a special value to 9482 // indicate that a tail call has been emitted and no more Instructions 9483 // should be processed in the current block. 9484 if (CLI.IsTailCall) { 9485 CLI.DAG.setRoot(CLI.Chain); 9486 return std::make_pair(SDValue(), SDValue()); 9487 } 9488 9489 #ifndef NDEBUG 9490 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9491 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9492 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9493 "LowerCall emitted a value with the wrong type!"); 9494 } 9495 #endif 9496 9497 SmallVector<SDValue, 4> ReturnValues; 9498 if (!CanLowerReturn) { 9499 // The instruction result is the result of loading from the 9500 // hidden sret parameter. 9501 SmallVector<EVT, 1> PVTs; 9502 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9503 9504 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9505 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9506 EVT PtrVT = PVTs[0]; 9507 9508 unsigned NumValues = RetTys.size(); 9509 ReturnValues.resize(NumValues); 9510 SmallVector<SDValue, 4> Chains(NumValues); 9511 9512 // An aggregate return value cannot wrap around the address space, so 9513 // offsets to its parts don't wrap either. 9514 SDNodeFlags Flags; 9515 Flags.setNoUnsignedWrap(true); 9516 9517 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9518 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9519 for (unsigned i = 0; i < NumValues; ++i) { 9520 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9521 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9522 PtrVT), Flags); 9523 SDValue L = CLI.DAG.getLoad( 9524 RetTys[i], CLI.DL, CLI.Chain, Add, 9525 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9526 DemoteStackIdx, Offsets[i]), 9527 HiddenSRetAlign); 9528 ReturnValues[i] = L; 9529 Chains[i] = L.getValue(1); 9530 } 9531 9532 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9533 } else { 9534 // Collect the legal value parts into potentially illegal values 9535 // that correspond to the original function's return values. 9536 Optional<ISD::NodeType> AssertOp; 9537 if (CLI.RetSExt) 9538 AssertOp = ISD::AssertSext; 9539 else if (CLI.RetZExt) 9540 AssertOp = ISD::AssertZext; 9541 unsigned CurReg = 0; 9542 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9543 EVT VT = RetTys[I]; 9544 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9545 CLI.CallConv, VT); 9546 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9547 CLI.CallConv, VT); 9548 9549 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9550 NumRegs, RegisterVT, VT, nullptr, 9551 CLI.CallConv, AssertOp)); 9552 CurReg += NumRegs; 9553 } 9554 9555 // For a function returning void, there is no return value. We can't create 9556 // such a node, so we just return a null return value in that case. In 9557 // that case, nothing will actually look at the value. 9558 if (ReturnValues.empty()) 9559 return std::make_pair(SDValue(), CLI.Chain); 9560 } 9561 9562 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9563 CLI.DAG.getVTList(RetTys), ReturnValues); 9564 return std::make_pair(Res, CLI.Chain); 9565 } 9566 9567 /// Places new result values for the node in Results (their number 9568 /// and types must exactly match those of the original return values of 9569 /// the node), or leaves Results empty, which indicates that the node is not 9570 /// to be custom lowered after all. 9571 void TargetLowering::LowerOperationWrapper(SDNode *N, 9572 SmallVectorImpl<SDValue> &Results, 9573 SelectionDAG &DAG) const { 9574 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9575 9576 if (!Res.getNode()) 9577 return; 9578 9579 // If the original node has one result, take the return value from 9580 // LowerOperation as is. It might not be result number 0. 9581 if (N->getNumValues() == 1) { 9582 Results.push_back(Res); 9583 return; 9584 } 9585 9586 // If the original node has multiple results, then the return node should 9587 // have the same number of results. 9588 assert((N->getNumValues() == Res->getNumValues()) && 9589 "Lowering returned the wrong number of results!"); 9590 9591 // Places new result values base on N result number. 9592 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9593 Results.push_back(Res.getValue(I)); 9594 } 9595 9596 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9597 llvm_unreachable("LowerOperation not implemented for this target!"); 9598 } 9599 9600 void 9601 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9602 SDValue Op = getNonRegisterValue(V); 9603 assert((Op.getOpcode() != ISD::CopyFromReg || 9604 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9605 "Copy from a reg to the same reg!"); 9606 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9607 9608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9609 // If this is an InlineAsm we have to match the registers required, not the 9610 // notional registers required by the type. 9611 9612 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9613 None); // This is not an ABI copy. 9614 SDValue Chain = DAG.getEntryNode(); 9615 9616 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9617 FuncInfo.PreferredExtendType.end()) 9618 ? ISD::ANY_EXTEND 9619 : FuncInfo.PreferredExtendType[V]; 9620 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9621 PendingExports.push_back(Chain); 9622 } 9623 9624 #include "llvm/CodeGen/SelectionDAGISel.h" 9625 9626 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9627 /// entry block, return true. This includes arguments used by switches, since 9628 /// the switch may expand into multiple basic blocks. 9629 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9630 // With FastISel active, we may be splitting blocks, so force creation 9631 // of virtual registers for all non-dead arguments. 9632 if (FastISel) 9633 return A->use_empty(); 9634 9635 const BasicBlock &Entry = A->getParent()->front(); 9636 for (const User *U : A->users()) 9637 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9638 return false; // Use not in entry block. 9639 9640 return true; 9641 } 9642 9643 using ArgCopyElisionMapTy = 9644 DenseMap<const Argument *, 9645 std::pair<const AllocaInst *, const StoreInst *>>; 9646 9647 /// Scan the entry block of the function in FuncInfo for arguments that look 9648 /// like copies into a local alloca. Record any copied arguments in 9649 /// ArgCopyElisionCandidates. 9650 static void 9651 findArgumentCopyElisionCandidates(const DataLayout &DL, 9652 FunctionLoweringInfo *FuncInfo, 9653 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9654 // Record the state of every static alloca used in the entry block. Argument 9655 // allocas are all used in the entry block, so we need approximately as many 9656 // entries as we have arguments. 9657 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9658 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9659 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9660 StaticAllocas.reserve(NumArgs * 2); 9661 9662 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9663 if (!V) 9664 return nullptr; 9665 V = V->stripPointerCasts(); 9666 const auto *AI = dyn_cast<AllocaInst>(V); 9667 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9668 return nullptr; 9669 auto Iter = StaticAllocas.insert({AI, Unknown}); 9670 return &Iter.first->second; 9671 }; 9672 9673 // Look for stores of arguments to static allocas. Look through bitcasts and 9674 // GEPs to handle type coercions, as long as the alloca is fully initialized 9675 // by the store. Any non-store use of an alloca escapes it and any subsequent 9676 // unanalyzed store might write it. 9677 // FIXME: Handle structs initialized with multiple stores. 9678 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9679 // Look for stores, and handle non-store uses conservatively. 9680 const auto *SI = dyn_cast<StoreInst>(&I); 9681 if (!SI) { 9682 // We will look through cast uses, so ignore them completely. 9683 if (I.isCast()) 9684 continue; 9685 // Ignore debug info intrinsics, they don't escape or store to allocas. 9686 if (isa<DbgInfoIntrinsic>(I)) 9687 continue; 9688 // This is an unknown instruction. Assume it escapes or writes to all 9689 // static alloca operands. 9690 for (const Use &U : I.operands()) { 9691 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9692 *Info = StaticAllocaInfo::Clobbered; 9693 } 9694 continue; 9695 } 9696 9697 // If the stored value is a static alloca, mark it as escaped. 9698 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9699 *Info = StaticAllocaInfo::Clobbered; 9700 9701 // Check if the destination is a static alloca. 9702 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9703 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9704 if (!Info) 9705 continue; 9706 const AllocaInst *AI = cast<AllocaInst>(Dst); 9707 9708 // Skip allocas that have been initialized or clobbered. 9709 if (*Info != StaticAllocaInfo::Unknown) 9710 continue; 9711 9712 // Check if the stored value is an argument, and that this store fully 9713 // initializes the alloca. Don't elide copies from the same argument twice. 9714 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9715 const auto *Arg = dyn_cast<Argument>(Val); 9716 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9717 Arg->getType()->isEmptyTy() || 9718 DL.getTypeStoreSize(Arg->getType()) != 9719 DL.getTypeAllocSize(AI->getAllocatedType()) || 9720 ArgCopyElisionCandidates.count(Arg)) { 9721 *Info = StaticAllocaInfo::Clobbered; 9722 continue; 9723 } 9724 9725 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9726 << '\n'); 9727 9728 // Mark this alloca and store for argument copy elision. 9729 *Info = StaticAllocaInfo::Elidable; 9730 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9731 9732 // Stop scanning if we've seen all arguments. This will happen early in -O0 9733 // builds, which is useful, because -O0 builds have large entry blocks and 9734 // many allocas. 9735 if (ArgCopyElisionCandidates.size() == NumArgs) 9736 break; 9737 } 9738 } 9739 9740 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9741 /// ArgVal is a load from a suitable fixed stack object. 9742 static void tryToElideArgumentCopy( 9743 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9744 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9745 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9746 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9747 SDValue ArgVal, bool &ArgHasUses) { 9748 // Check if this is a load from a fixed stack object. 9749 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9750 if (!LNode) 9751 return; 9752 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9753 if (!FINode) 9754 return; 9755 9756 // Check that the fixed stack object is the right size and alignment. 9757 // Look at the alignment that the user wrote on the alloca instead of looking 9758 // at the stack object. 9759 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9760 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9761 const AllocaInst *AI = ArgCopyIter->second.first; 9762 int FixedIndex = FINode->getIndex(); 9763 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9764 int OldIndex = AllocaIndex; 9765 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9766 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9767 LLVM_DEBUG( 9768 dbgs() << " argument copy elision failed due to bad fixed stack " 9769 "object size\n"); 9770 return; 9771 } 9772 Align RequiredAlignment = AI->getAlign(); 9773 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9774 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9775 "greater than stack argument alignment (" 9776 << DebugStr(RequiredAlignment) << " vs " 9777 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9778 return; 9779 } 9780 9781 // Perform the elision. Delete the old stack object and replace its only use 9782 // in the variable info map. Mark the stack object as mutable. 9783 LLVM_DEBUG({ 9784 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9785 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9786 << '\n'; 9787 }); 9788 MFI.RemoveStackObject(OldIndex); 9789 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9790 AllocaIndex = FixedIndex; 9791 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9792 Chains.push_back(ArgVal.getValue(1)); 9793 9794 // Avoid emitting code for the store implementing the copy. 9795 const StoreInst *SI = ArgCopyIter->second.second; 9796 ElidedArgCopyInstrs.insert(SI); 9797 9798 // Check for uses of the argument again so that we can avoid exporting ArgVal 9799 // if it is't used by anything other than the store. 9800 for (const Value *U : Arg.users()) { 9801 if (U != SI) { 9802 ArgHasUses = true; 9803 break; 9804 } 9805 } 9806 } 9807 9808 void SelectionDAGISel::LowerArguments(const Function &F) { 9809 SelectionDAG &DAG = SDB->DAG; 9810 SDLoc dl = SDB->getCurSDLoc(); 9811 const DataLayout &DL = DAG.getDataLayout(); 9812 SmallVector<ISD::InputArg, 16> Ins; 9813 9814 // In Naked functions we aren't going to save any registers. 9815 if (F.hasFnAttribute(Attribute::Naked)) 9816 return; 9817 9818 if (!FuncInfo->CanLowerReturn) { 9819 // Put in an sret pointer parameter before all the other parameters. 9820 SmallVector<EVT, 1> ValueVTs; 9821 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9822 F.getReturnType()->getPointerTo( 9823 DAG.getDataLayout().getAllocaAddrSpace()), 9824 ValueVTs); 9825 9826 // NOTE: Assuming that a pointer will never break down to more than one VT 9827 // or one register. 9828 ISD::ArgFlagsTy Flags; 9829 Flags.setSRet(); 9830 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9831 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9832 ISD::InputArg::NoArgIndex, 0); 9833 Ins.push_back(RetArg); 9834 } 9835 9836 // Look for stores of arguments to static allocas. Mark such arguments with a 9837 // flag to ask the target to give us the memory location of that argument if 9838 // available. 9839 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9840 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9841 ArgCopyElisionCandidates); 9842 9843 // Set up the incoming argument description vector. 9844 for (const Argument &Arg : F.args()) { 9845 unsigned ArgNo = Arg.getArgNo(); 9846 SmallVector<EVT, 4> ValueVTs; 9847 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9848 bool isArgValueUsed = !Arg.use_empty(); 9849 unsigned PartBase = 0; 9850 Type *FinalType = Arg.getType(); 9851 if (Arg.hasAttribute(Attribute::ByVal)) 9852 FinalType = Arg.getParamByValType(); 9853 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9854 FinalType, F.getCallingConv(), F.isVarArg()); 9855 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9856 Value != NumValues; ++Value) { 9857 EVT VT = ValueVTs[Value]; 9858 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9859 ISD::ArgFlagsTy Flags; 9860 9861 // Certain targets (such as MIPS), may have a different ABI alignment 9862 // for a type depending on the context. Give the target a chance to 9863 // specify the alignment it wants. 9864 const Align OriginalAlignment( 9865 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9866 9867 if (Arg.getType()->isPointerTy()) { 9868 Flags.setPointer(); 9869 Flags.setPointerAddrSpace( 9870 cast<PointerType>(Arg.getType())->getAddressSpace()); 9871 } 9872 if (Arg.hasAttribute(Attribute::ZExt)) 9873 Flags.setZExt(); 9874 if (Arg.hasAttribute(Attribute::SExt)) 9875 Flags.setSExt(); 9876 if (Arg.hasAttribute(Attribute::InReg)) { 9877 // If we are using vectorcall calling convention, a structure that is 9878 // passed InReg - is surely an HVA 9879 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9880 isa<StructType>(Arg.getType())) { 9881 // The first value of a structure is marked 9882 if (0 == Value) 9883 Flags.setHvaStart(); 9884 Flags.setHva(); 9885 } 9886 // Set InReg Flag 9887 Flags.setInReg(); 9888 } 9889 if (Arg.hasAttribute(Attribute::StructRet)) 9890 Flags.setSRet(); 9891 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9892 Flags.setSwiftSelf(); 9893 if (Arg.hasAttribute(Attribute::SwiftError)) 9894 Flags.setSwiftError(); 9895 if (Arg.hasAttribute(Attribute::ByVal)) 9896 Flags.setByVal(); 9897 if (Arg.hasAttribute(Attribute::ByRef)) 9898 Flags.setByRef(); 9899 if (Arg.hasAttribute(Attribute::InAlloca)) { 9900 Flags.setInAlloca(); 9901 // Set the byval flag for CCAssignFn callbacks that don't know about 9902 // inalloca. This way we can know how many bytes we should've allocated 9903 // and how many bytes a callee cleanup function will pop. If we port 9904 // inalloca to more targets, we'll have to add custom inalloca handling 9905 // in the various CC lowering callbacks. 9906 Flags.setByVal(); 9907 } 9908 if (Arg.hasAttribute(Attribute::Preallocated)) { 9909 Flags.setPreallocated(); 9910 // Set the byval flag for CCAssignFn callbacks that don't know about 9911 // preallocated. This way we can know how many bytes we should've 9912 // allocated and how many bytes a callee cleanup function will pop. If 9913 // we port preallocated to more targets, we'll have to add custom 9914 // preallocated handling in the various CC lowering callbacks. 9915 Flags.setByVal(); 9916 } 9917 9918 Type *ArgMemTy = nullptr; 9919 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 9920 Flags.isByRef()) { 9921 if (!ArgMemTy) 9922 ArgMemTy = Arg.getPointeeInMemoryValueType(); 9923 9924 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 9925 9926 // For in-memory arguments, size and alignment should be passed from FE. 9927 // BE will guess if this info is not there but there are cases it cannot 9928 // get right. 9929 MaybeAlign MemAlign = Arg.getParamAlign(); 9930 if (!MemAlign) 9931 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 9932 9933 if (Flags.isByRef()) { 9934 Flags.setByRefSize(MemSize); 9935 Flags.setByRefAlign(*MemAlign); 9936 } else { 9937 Flags.setByValSize(MemSize); 9938 Flags.setByValAlign(*MemAlign); 9939 } 9940 } 9941 9942 if (Arg.hasAttribute(Attribute::Nest)) 9943 Flags.setNest(); 9944 if (NeedsRegBlock) 9945 Flags.setInConsecutiveRegs(); 9946 Flags.setOrigAlign(OriginalAlignment); 9947 if (ArgCopyElisionCandidates.count(&Arg)) 9948 Flags.setCopyElisionCandidate(); 9949 if (Arg.hasAttribute(Attribute::Returned)) 9950 Flags.setReturned(); 9951 9952 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9953 *CurDAG->getContext(), F.getCallingConv(), VT); 9954 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9955 *CurDAG->getContext(), F.getCallingConv(), VT); 9956 for (unsigned i = 0; i != NumRegs; ++i) { 9957 // For scalable vectors, use the minimum size; individual targets 9958 // are responsible for handling scalable vector arguments and 9959 // return values. 9960 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9961 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9962 if (NumRegs > 1 && i == 0) 9963 MyFlags.Flags.setSplit(); 9964 // if it isn't first piece, alignment must be 1 9965 else if (i > 0) { 9966 MyFlags.Flags.setOrigAlign(Align(1)); 9967 if (i == NumRegs - 1) 9968 MyFlags.Flags.setSplitEnd(); 9969 } 9970 Ins.push_back(MyFlags); 9971 } 9972 if (NeedsRegBlock && Value == NumValues - 1) 9973 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9974 PartBase += VT.getStoreSize().getKnownMinSize(); 9975 } 9976 } 9977 9978 // Call the target to set up the argument values. 9979 SmallVector<SDValue, 8> InVals; 9980 SDValue NewRoot = TLI->LowerFormalArguments( 9981 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9982 9983 // Verify that the target's LowerFormalArguments behaved as expected. 9984 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9985 "LowerFormalArguments didn't return a valid chain!"); 9986 assert(InVals.size() == Ins.size() && 9987 "LowerFormalArguments didn't emit the correct number of values!"); 9988 LLVM_DEBUG({ 9989 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9990 assert(InVals[i].getNode() && 9991 "LowerFormalArguments emitted a null value!"); 9992 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9993 "LowerFormalArguments emitted a value with the wrong type!"); 9994 } 9995 }); 9996 9997 // Update the DAG with the new chain value resulting from argument lowering. 9998 DAG.setRoot(NewRoot); 9999 10000 // Set up the argument values. 10001 unsigned i = 0; 10002 if (!FuncInfo->CanLowerReturn) { 10003 // Create a virtual register for the sret pointer, and put in a copy 10004 // from the sret argument into it. 10005 SmallVector<EVT, 1> ValueVTs; 10006 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10007 F.getReturnType()->getPointerTo( 10008 DAG.getDataLayout().getAllocaAddrSpace()), 10009 ValueVTs); 10010 MVT VT = ValueVTs[0].getSimpleVT(); 10011 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10012 Optional<ISD::NodeType> AssertOp = None; 10013 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10014 nullptr, F.getCallingConv(), AssertOp); 10015 10016 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10017 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10018 Register SRetReg = 10019 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10020 FuncInfo->DemoteRegister = SRetReg; 10021 NewRoot = 10022 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10023 DAG.setRoot(NewRoot); 10024 10025 // i indexes lowered arguments. Bump it past the hidden sret argument. 10026 ++i; 10027 } 10028 10029 SmallVector<SDValue, 4> Chains; 10030 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10031 for (const Argument &Arg : F.args()) { 10032 SmallVector<SDValue, 4> ArgValues; 10033 SmallVector<EVT, 4> ValueVTs; 10034 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10035 unsigned NumValues = ValueVTs.size(); 10036 if (NumValues == 0) 10037 continue; 10038 10039 bool ArgHasUses = !Arg.use_empty(); 10040 10041 // Elide the copying store if the target loaded this argument from a 10042 // suitable fixed stack object. 10043 if (Ins[i].Flags.isCopyElisionCandidate()) { 10044 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10045 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10046 InVals[i], ArgHasUses); 10047 } 10048 10049 // If this argument is unused then remember its value. It is used to generate 10050 // debugging information. 10051 bool isSwiftErrorArg = 10052 TLI->supportSwiftError() && 10053 Arg.hasAttribute(Attribute::SwiftError); 10054 if (!ArgHasUses && !isSwiftErrorArg) { 10055 SDB->setUnusedArgValue(&Arg, InVals[i]); 10056 10057 // Also remember any frame index for use in FastISel. 10058 if (FrameIndexSDNode *FI = 10059 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10060 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10061 } 10062 10063 for (unsigned Val = 0; Val != NumValues; ++Val) { 10064 EVT VT = ValueVTs[Val]; 10065 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10066 F.getCallingConv(), VT); 10067 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10068 *CurDAG->getContext(), F.getCallingConv(), VT); 10069 10070 // Even an apparent 'unused' swifterror argument needs to be returned. So 10071 // we do generate a copy for it that can be used on return from the 10072 // function. 10073 if (ArgHasUses || isSwiftErrorArg) { 10074 Optional<ISD::NodeType> AssertOp; 10075 if (Arg.hasAttribute(Attribute::SExt)) 10076 AssertOp = ISD::AssertSext; 10077 else if (Arg.hasAttribute(Attribute::ZExt)) 10078 AssertOp = ISD::AssertZext; 10079 10080 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10081 PartVT, VT, nullptr, 10082 F.getCallingConv(), AssertOp)); 10083 } 10084 10085 i += NumParts; 10086 } 10087 10088 // We don't need to do anything else for unused arguments. 10089 if (ArgValues.empty()) 10090 continue; 10091 10092 // Note down frame index. 10093 if (FrameIndexSDNode *FI = 10094 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10095 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10096 10097 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10098 SDB->getCurSDLoc()); 10099 10100 SDB->setValue(&Arg, Res); 10101 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10102 // We want to associate the argument with the frame index, among 10103 // involved operands, that correspond to the lowest address. The 10104 // getCopyFromParts function, called earlier, is swapping the order of 10105 // the operands to BUILD_PAIR depending on endianness. The result of 10106 // that swapping is that the least significant bits of the argument will 10107 // be in the first operand of the BUILD_PAIR node, and the most 10108 // significant bits will be in the second operand. 10109 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10110 if (LoadSDNode *LNode = 10111 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10112 if (FrameIndexSDNode *FI = 10113 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10114 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10115 } 10116 10117 // Analyses past this point are naive and don't expect an assertion. 10118 if (Res.getOpcode() == ISD::AssertZext) 10119 Res = Res.getOperand(0); 10120 10121 // Update the SwiftErrorVRegDefMap. 10122 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10123 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10124 if (Register::isVirtualRegister(Reg)) 10125 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10126 Reg); 10127 } 10128 10129 // If this argument is live outside of the entry block, insert a copy from 10130 // wherever we got it to the vreg that other BB's will reference it as. 10131 if (Res.getOpcode() == ISD::CopyFromReg) { 10132 // If we can, though, try to skip creating an unnecessary vreg. 10133 // FIXME: This isn't very clean... it would be nice to make this more 10134 // general. 10135 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10136 if (Register::isVirtualRegister(Reg)) { 10137 FuncInfo->ValueMap[&Arg] = Reg; 10138 continue; 10139 } 10140 } 10141 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10142 FuncInfo->InitializeRegForValue(&Arg); 10143 SDB->CopyToExportRegsIfNeeded(&Arg); 10144 } 10145 } 10146 10147 if (!Chains.empty()) { 10148 Chains.push_back(NewRoot); 10149 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10150 } 10151 10152 DAG.setRoot(NewRoot); 10153 10154 assert(i == InVals.size() && "Argument register count mismatch!"); 10155 10156 // If any argument copy elisions occurred and we have debug info, update the 10157 // stale frame indices used in the dbg.declare variable info table. 10158 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10159 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10160 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10161 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10162 if (I != ArgCopyElisionFrameIndexMap.end()) 10163 VI.Slot = I->second; 10164 } 10165 } 10166 10167 // Finally, if the target has anything special to do, allow it to do so. 10168 emitFunctionEntryCode(); 10169 } 10170 10171 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10172 /// ensure constants are generated when needed. Remember the virtual registers 10173 /// that need to be added to the Machine PHI nodes as input. We cannot just 10174 /// directly add them, because expansion might result in multiple MBB's for one 10175 /// BB. As such, the start of the BB might correspond to a different MBB than 10176 /// the end. 10177 void 10178 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10179 const Instruction *TI = LLVMBB->getTerminator(); 10180 10181 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10182 10183 // Check PHI nodes in successors that expect a value to be available from this 10184 // block. 10185 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10186 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10187 if (!isa<PHINode>(SuccBB->begin())) continue; 10188 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10189 10190 // If this terminator has multiple identical successors (common for 10191 // switches), only handle each succ once. 10192 if (!SuccsHandled.insert(SuccMBB).second) 10193 continue; 10194 10195 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10196 10197 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10198 // nodes and Machine PHI nodes, but the incoming operands have not been 10199 // emitted yet. 10200 for (const PHINode &PN : SuccBB->phis()) { 10201 // Ignore dead phi's. 10202 if (PN.use_empty()) 10203 continue; 10204 10205 // Skip empty types 10206 if (PN.getType()->isEmptyTy()) 10207 continue; 10208 10209 unsigned Reg; 10210 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10211 10212 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10213 unsigned &RegOut = ConstantsOut[C]; 10214 if (RegOut == 0) { 10215 RegOut = FuncInfo.CreateRegs(C); 10216 CopyValueToVirtualRegister(C, RegOut); 10217 } 10218 Reg = RegOut; 10219 } else { 10220 DenseMap<const Value *, Register>::iterator I = 10221 FuncInfo.ValueMap.find(PHIOp); 10222 if (I != FuncInfo.ValueMap.end()) 10223 Reg = I->second; 10224 else { 10225 assert(isa<AllocaInst>(PHIOp) && 10226 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10227 "Didn't codegen value into a register!??"); 10228 Reg = FuncInfo.CreateRegs(PHIOp); 10229 CopyValueToVirtualRegister(PHIOp, Reg); 10230 } 10231 } 10232 10233 // Remember that this register needs to added to the machine PHI node as 10234 // the input for this MBB. 10235 SmallVector<EVT, 4> ValueVTs; 10236 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10237 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10238 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10239 EVT VT = ValueVTs[vti]; 10240 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10241 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10242 FuncInfo.PHINodesToUpdate.push_back( 10243 std::make_pair(&*MBBI++, Reg + i)); 10244 Reg += NumRegisters; 10245 } 10246 } 10247 } 10248 10249 ConstantsOut.clear(); 10250 } 10251 10252 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10253 /// is 0. 10254 MachineBasicBlock * 10255 SelectionDAGBuilder::StackProtectorDescriptor:: 10256 AddSuccessorMBB(const BasicBlock *BB, 10257 MachineBasicBlock *ParentMBB, 10258 bool IsLikely, 10259 MachineBasicBlock *SuccMBB) { 10260 // If SuccBB has not been created yet, create it. 10261 if (!SuccMBB) { 10262 MachineFunction *MF = ParentMBB->getParent(); 10263 MachineFunction::iterator BBI(ParentMBB); 10264 SuccMBB = MF->CreateMachineBasicBlock(BB); 10265 MF->insert(++BBI, SuccMBB); 10266 } 10267 // Add it as a successor of ParentMBB. 10268 ParentMBB->addSuccessor( 10269 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10270 return SuccMBB; 10271 } 10272 10273 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10274 MachineFunction::iterator I(MBB); 10275 if (++I == FuncInfo.MF->end()) 10276 return nullptr; 10277 return &*I; 10278 } 10279 10280 /// During lowering new call nodes can be created (such as memset, etc.). 10281 /// Those will become new roots of the current DAG, but complications arise 10282 /// when they are tail calls. In such cases, the call lowering will update 10283 /// the root, but the builder still needs to know that a tail call has been 10284 /// lowered in order to avoid generating an additional return. 10285 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10286 // If the node is null, we do have a tail call. 10287 if (MaybeTC.getNode() != nullptr) 10288 DAG.setRoot(MaybeTC); 10289 else 10290 HasTailCall = true; 10291 } 10292 10293 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10294 MachineBasicBlock *SwitchMBB, 10295 MachineBasicBlock *DefaultMBB) { 10296 MachineFunction *CurMF = FuncInfo.MF; 10297 MachineBasicBlock *NextMBB = nullptr; 10298 MachineFunction::iterator BBI(W.MBB); 10299 if (++BBI != FuncInfo.MF->end()) 10300 NextMBB = &*BBI; 10301 10302 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10303 10304 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10305 10306 if (Size == 2 && W.MBB == SwitchMBB) { 10307 // If any two of the cases has the same destination, and if one value 10308 // is the same as the other, but has one bit unset that the other has set, 10309 // use bit manipulation to do two compares at once. For example: 10310 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10311 // TODO: This could be extended to merge any 2 cases in switches with 3 10312 // cases. 10313 // TODO: Handle cases where W.CaseBB != SwitchBB. 10314 CaseCluster &Small = *W.FirstCluster; 10315 CaseCluster &Big = *W.LastCluster; 10316 10317 if (Small.Low == Small.High && Big.Low == Big.High && 10318 Small.MBB == Big.MBB) { 10319 const APInt &SmallValue = Small.Low->getValue(); 10320 const APInt &BigValue = Big.Low->getValue(); 10321 10322 // Check that there is only one bit different. 10323 APInt CommonBit = BigValue ^ SmallValue; 10324 if (CommonBit.isPowerOf2()) { 10325 SDValue CondLHS = getValue(Cond); 10326 EVT VT = CondLHS.getValueType(); 10327 SDLoc DL = getCurSDLoc(); 10328 10329 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10330 DAG.getConstant(CommonBit, DL, VT)); 10331 SDValue Cond = DAG.getSetCC( 10332 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10333 ISD::SETEQ); 10334 10335 // Update successor info. 10336 // Both Small and Big will jump to Small.BB, so we sum up the 10337 // probabilities. 10338 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10339 if (BPI) 10340 addSuccessorWithProb( 10341 SwitchMBB, DefaultMBB, 10342 // The default destination is the first successor in IR. 10343 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10344 else 10345 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10346 10347 // Insert the true branch. 10348 SDValue BrCond = 10349 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10350 DAG.getBasicBlock(Small.MBB)); 10351 // Insert the false branch. 10352 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10353 DAG.getBasicBlock(DefaultMBB)); 10354 10355 DAG.setRoot(BrCond); 10356 return; 10357 } 10358 } 10359 } 10360 10361 if (TM.getOptLevel() != CodeGenOpt::None) { 10362 // Here, we order cases by probability so the most likely case will be 10363 // checked first. However, two clusters can have the same probability in 10364 // which case their relative ordering is non-deterministic. So we use Low 10365 // as a tie-breaker as clusters are guaranteed to never overlap. 10366 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10367 [](const CaseCluster &a, const CaseCluster &b) { 10368 return a.Prob != b.Prob ? 10369 a.Prob > b.Prob : 10370 a.Low->getValue().slt(b.Low->getValue()); 10371 }); 10372 10373 // Rearrange the case blocks so that the last one falls through if possible 10374 // without changing the order of probabilities. 10375 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10376 --I; 10377 if (I->Prob > W.LastCluster->Prob) 10378 break; 10379 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10380 std::swap(*I, *W.LastCluster); 10381 break; 10382 } 10383 } 10384 } 10385 10386 // Compute total probability. 10387 BranchProbability DefaultProb = W.DefaultProb; 10388 BranchProbability UnhandledProbs = DefaultProb; 10389 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10390 UnhandledProbs += I->Prob; 10391 10392 MachineBasicBlock *CurMBB = W.MBB; 10393 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10394 bool FallthroughUnreachable = false; 10395 MachineBasicBlock *Fallthrough; 10396 if (I == W.LastCluster) { 10397 // For the last cluster, fall through to the default destination. 10398 Fallthrough = DefaultMBB; 10399 FallthroughUnreachable = isa<UnreachableInst>( 10400 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10401 } else { 10402 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10403 CurMF->insert(BBI, Fallthrough); 10404 // Put Cond in a virtual register to make it available from the new blocks. 10405 ExportFromCurrentBlock(Cond); 10406 } 10407 UnhandledProbs -= I->Prob; 10408 10409 switch (I->Kind) { 10410 case CC_JumpTable: { 10411 // FIXME: Optimize away range check based on pivot comparisons. 10412 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10413 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10414 10415 // The jump block hasn't been inserted yet; insert it here. 10416 MachineBasicBlock *JumpMBB = JT->MBB; 10417 CurMF->insert(BBI, JumpMBB); 10418 10419 auto JumpProb = I->Prob; 10420 auto FallthroughProb = UnhandledProbs; 10421 10422 // If the default statement is a target of the jump table, we evenly 10423 // distribute the default probability to successors of CurMBB. Also 10424 // update the probability on the edge from JumpMBB to Fallthrough. 10425 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10426 SE = JumpMBB->succ_end(); 10427 SI != SE; ++SI) { 10428 if (*SI == DefaultMBB) { 10429 JumpProb += DefaultProb / 2; 10430 FallthroughProb -= DefaultProb / 2; 10431 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10432 JumpMBB->normalizeSuccProbs(); 10433 break; 10434 } 10435 } 10436 10437 if (FallthroughUnreachable) { 10438 // Skip the range check if the fallthrough block is unreachable. 10439 JTH->OmitRangeCheck = true; 10440 } 10441 10442 if (!JTH->OmitRangeCheck) 10443 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10444 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10445 CurMBB->normalizeSuccProbs(); 10446 10447 // The jump table header will be inserted in our current block, do the 10448 // range check, and fall through to our fallthrough block. 10449 JTH->HeaderBB = CurMBB; 10450 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10451 10452 // If we're in the right place, emit the jump table header right now. 10453 if (CurMBB == SwitchMBB) { 10454 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10455 JTH->Emitted = true; 10456 } 10457 break; 10458 } 10459 case CC_BitTests: { 10460 // FIXME: Optimize away range check based on pivot comparisons. 10461 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10462 10463 // The bit test blocks haven't been inserted yet; insert them here. 10464 for (BitTestCase &BTC : BTB->Cases) 10465 CurMF->insert(BBI, BTC.ThisBB); 10466 10467 // Fill in fields of the BitTestBlock. 10468 BTB->Parent = CurMBB; 10469 BTB->Default = Fallthrough; 10470 10471 BTB->DefaultProb = UnhandledProbs; 10472 // If the cases in bit test don't form a contiguous range, we evenly 10473 // distribute the probability on the edge to Fallthrough to two 10474 // successors of CurMBB. 10475 if (!BTB->ContiguousRange) { 10476 BTB->Prob += DefaultProb / 2; 10477 BTB->DefaultProb -= DefaultProb / 2; 10478 } 10479 10480 if (FallthroughUnreachable) { 10481 // Skip the range check if the fallthrough block is unreachable. 10482 BTB->OmitRangeCheck = true; 10483 } 10484 10485 // If we're in the right place, emit the bit test header right now. 10486 if (CurMBB == SwitchMBB) { 10487 visitBitTestHeader(*BTB, SwitchMBB); 10488 BTB->Emitted = true; 10489 } 10490 break; 10491 } 10492 case CC_Range: { 10493 const Value *RHS, *LHS, *MHS; 10494 ISD::CondCode CC; 10495 if (I->Low == I->High) { 10496 // Check Cond == I->Low. 10497 CC = ISD::SETEQ; 10498 LHS = Cond; 10499 RHS=I->Low; 10500 MHS = nullptr; 10501 } else { 10502 // Check I->Low <= Cond <= I->High. 10503 CC = ISD::SETLE; 10504 LHS = I->Low; 10505 MHS = Cond; 10506 RHS = I->High; 10507 } 10508 10509 // If Fallthrough is unreachable, fold away the comparison. 10510 if (FallthroughUnreachable) 10511 CC = ISD::SETTRUE; 10512 10513 // The false probability is the sum of all unhandled cases. 10514 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10515 getCurSDLoc(), I->Prob, UnhandledProbs); 10516 10517 if (CurMBB == SwitchMBB) 10518 visitSwitchCase(CB, SwitchMBB); 10519 else 10520 SL->SwitchCases.push_back(CB); 10521 10522 break; 10523 } 10524 } 10525 CurMBB = Fallthrough; 10526 } 10527 } 10528 10529 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10530 CaseClusterIt First, 10531 CaseClusterIt Last) { 10532 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10533 if (X.Prob != CC.Prob) 10534 return X.Prob > CC.Prob; 10535 10536 // Ties are broken by comparing the case value. 10537 return X.Low->getValue().slt(CC.Low->getValue()); 10538 }); 10539 } 10540 10541 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10542 const SwitchWorkListItem &W, 10543 Value *Cond, 10544 MachineBasicBlock *SwitchMBB) { 10545 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10546 "Clusters not sorted?"); 10547 10548 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10549 10550 // Balance the tree based on branch probabilities to create a near-optimal (in 10551 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10552 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10553 CaseClusterIt LastLeft = W.FirstCluster; 10554 CaseClusterIt FirstRight = W.LastCluster; 10555 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10556 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10557 10558 // Move LastLeft and FirstRight towards each other from opposite directions to 10559 // find a partitioning of the clusters which balances the probability on both 10560 // sides. If LeftProb and RightProb are equal, alternate which side is 10561 // taken to ensure 0-probability nodes are distributed evenly. 10562 unsigned I = 0; 10563 while (LastLeft + 1 < FirstRight) { 10564 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10565 LeftProb += (++LastLeft)->Prob; 10566 else 10567 RightProb += (--FirstRight)->Prob; 10568 I++; 10569 } 10570 10571 while (true) { 10572 // Our binary search tree differs from a typical BST in that ours can have up 10573 // to three values in each leaf. The pivot selection above doesn't take that 10574 // into account, which means the tree might require more nodes and be less 10575 // efficient. We compensate for this here. 10576 10577 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10578 unsigned NumRight = W.LastCluster - FirstRight + 1; 10579 10580 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10581 // If one side has less than 3 clusters, and the other has more than 3, 10582 // consider taking a cluster from the other side. 10583 10584 if (NumLeft < NumRight) { 10585 // Consider moving the first cluster on the right to the left side. 10586 CaseCluster &CC = *FirstRight; 10587 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10588 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10589 if (LeftSideRank <= RightSideRank) { 10590 // Moving the cluster to the left does not demote it. 10591 ++LastLeft; 10592 ++FirstRight; 10593 continue; 10594 } 10595 } else { 10596 assert(NumRight < NumLeft); 10597 // Consider moving the last element on the left to the right side. 10598 CaseCluster &CC = *LastLeft; 10599 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10600 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10601 if (RightSideRank <= LeftSideRank) { 10602 // Moving the cluster to the right does not demot it. 10603 --LastLeft; 10604 --FirstRight; 10605 continue; 10606 } 10607 } 10608 } 10609 break; 10610 } 10611 10612 assert(LastLeft + 1 == FirstRight); 10613 assert(LastLeft >= W.FirstCluster); 10614 assert(FirstRight <= W.LastCluster); 10615 10616 // Use the first element on the right as pivot since we will make less-than 10617 // comparisons against it. 10618 CaseClusterIt PivotCluster = FirstRight; 10619 assert(PivotCluster > W.FirstCluster); 10620 assert(PivotCluster <= W.LastCluster); 10621 10622 CaseClusterIt FirstLeft = W.FirstCluster; 10623 CaseClusterIt LastRight = W.LastCluster; 10624 10625 const ConstantInt *Pivot = PivotCluster->Low; 10626 10627 // New blocks will be inserted immediately after the current one. 10628 MachineFunction::iterator BBI(W.MBB); 10629 ++BBI; 10630 10631 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10632 // we can branch to its destination directly if it's squeezed exactly in 10633 // between the known lower bound and Pivot - 1. 10634 MachineBasicBlock *LeftMBB; 10635 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10636 FirstLeft->Low == W.GE && 10637 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10638 LeftMBB = FirstLeft->MBB; 10639 } else { 10640 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10641 FuncInfo.MF->insert(BBI, LeftMBB); 10642 WorkList.push_back( 10643 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10644 // Put Cond in a virtual register to make it available from the new blocks. 10645 ExportFromCurrentBlock(Cond); 10646 } 10647 10648 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10649 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10650 // directly if RHS.High equals the current upper bound. 10651 MachineBasicBlock *RightMBB; 10652 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10653 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10654 RightMBB = FirstRight->MBB; 10655 } else { 10656 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10657 FuncInfo.MF->insert(BBI, RightMBB); 10658 WorkList.push_back( 10659 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10660 // Put Cond in a virtual register to make it available from the new blocks. 10661 ExportFromCurrentBlock(Cond); 10662 } 10663 10664 // Create the CaseBlock record that will be used to lower the branch. 10665 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10666 getCurSDLoc(), LeftProb, RightProb); 10667 10668 if (W.MBB == SwitchMBB) 10669 visitSwitchCase(CB, SwitchMBB); 10670 else 10671 SL->SwitchCases.push_back(CB); 10672 } 10673 10674 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10675 // from the swith statement. 10676 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10677 BranchProbability PeeledCaseProb) { 10678 if (PeeledCaseProb == BranchProbability::getOne()) 10679 return BranchProbability::getZero(); 10680 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10681 10682 uint32_t Numerator = CaseProb.getNumerator(); 10683 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10684 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10685 } 10686 10687 // Try to peel the top probability case if it exceeds the threshold. 10688 // Return current MachineBasicBlock for the switch statement if the peeling 10689 // does not occur. 10690 // If the peeling is performed, return the newly created MachineBasicBlock 10691 // for the peeled switch statement. Also update Clusters to remove the peeled 10692 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10693 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10694 const SwitchInst &SI, CaseClusterVector &Clusters, 10695 BranchProbability &PeeledCaseProb) { 10696 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10697 // Don't perform if there is only one cluster or optimizing for size. 10698 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10699 TM.getOptLevel() == CodeGenOpt::None || 10700 SwitchMBB->getParent()->getFunction().hasMinSize()) 10701 return SwitchMBB; 10702 10703 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10704 unsigned PeeledCaseIndex = 0; 10705 bool SwitchPeeled = false; 10706 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10707 CaseCluster &CC = Clusters[Index]; 10708 if (CC.Prob < TopCaseProb) 10709 continue; 10710 TopCaseProb = CC.Prob; 10711 PeeledCaseIndex = Index; 10712 SwitchPeeled = true; 10713 } 10714 if (!SwitchPeeled) 10715 return SwitchMBB; 10716 10717 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10718 << TopCaseProb << "\n"); 10719 10720 // Record the MBB for the peeled switch statement. 10721 MachineFunction::iterator BBI(SwitchMBB); 10722 ++BBI; 10723 MachineBasicBlock *PeeledSwitchMBB = 10724 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10725 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10726 10727 ExportFromCurrentBlock(SI.getCondition()); 10728 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10729 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10730 nullptr, nullptr, TopCaseProb.getCompl()}; 10731 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10732 10733 Clusters.erase(PeeledCaseIt); 10734 for (CaseCluster &CC : Clusters) { 10735 LLVM_DEBUG( 10736 dbgs() << "Scale the probablity for one cluster, before scaling: " 10737 << CC.Prob << "\n"); 10738 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10739 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10740 } 10741 PeeledCaseProb = TopCaseProb; 10742 return PeeledSwitchMBB; 10743 } 10744 10745 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10746 // Extract cases from the switch. 10747 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10748 CaseClusterVector Clusters; 10749 Clusters.reserve(SI.getNumCases()); 10750 for (auto I : SI.cases()) { 10751 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10752 const ConstantInt *CaseVal = I.getCaseValue(); 10753 BranchProbability Prob = 10754 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10755 : BranchProbability(1, SI.getNumCases() + 1); 10756 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10757 } 10758 10759 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10760 10761 // Cluster adjacent cases with the same destination. We do this at all 10762 // optimization levels because it's cheap to do and will make codegen faster 10763 // if there are many clusters. 10764 sortAndRangeify(Clusters); 10765 10766 // The branch probablity of the peeled case. 10767 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10768 MachineBasicBlock *PeeledSwitchMBB = 10769 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10770 10771 // If there is only the default destination, jump there directly. 10772 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10773 if (Clusters.empty()) { 10774 assert(PeeledSwitchMBB == SwitchMBB); 10775 SwitchMBB->addSuccessor(DefaultMBB); 10776 if (DefaultMBB != NextBlock(SwitchMBB)) { 10777 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10778 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10779 } 10780 return; 10781 } 10782 10783 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10784 SL->findBitTestClusters(Clusters, &SI); 10785 10786 LLVM_DEBUG({ 10787 dbgs() << "Case clusters: "; 10788 for (const CaseCluster &C : Clusters) { 10789 if (C.Kind == CC_JumpTable) 10790 dbgs() << "JT:"; 10791 if (C.Kind == CC_BitTests) 10792 dbgs() << "BT:"; 10793 10794 C.Low->getValue().print(dbgs(), true); 10795 if (C.Low != C.High) { 10796 dbgs() << '-'; 10797 C.High->getValue().print(dbgs(), true); 10798 } 10799 dbgs() << ' '; 10800 } 10801 dbgs() << '\n'; 10802 }); 10803 10804 assert(!Clusters.empty()); 10805 SwitchWorkList WorkList; 10806 CaseClusterIt First = Clusters.begin(); 10807 CaseClusterIt Last = Clusters.end() - 1; 10808 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10809 // Scale the branchprobability for DefaultMBB if the peel occurs and 10810 // DefaultMBB is not replaced. 10811 if (PeeledCaseProb != BranchProbability::getZero() && 10812 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10813 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10814 WorkList.push_back( 10815 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10816 10817 while (!WorkList.empty()) { 10818 SwitchWorkListItem W = WorkList.pop_back_val(); 10819 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10820 10821 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10822 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10823 // For optimized builds, lower large range as a balanced binary tree. 10824 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10825 continue; 10826 } 10827 10828 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10829 } 10830 } 10831 10832 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10833 SmallVector<EVT, 4> ValueVTs; 10834 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10835 ValueVTs); 10836 unsigned NumValues = ValueVTs.size(); 10837 if (NumValues == 0) return; 10838 10839 SmallVector<SDValue, 4> Values(NumValues); 10840 SDValue Op = getValue(I.getOperand(0)); 10841 10842 for (unsigned i = 0; i != NumValues; ++i) 10843 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10844 SDValue(Op.getNode(), Op.getResNo() + i)); 10845 10846 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10847 DAG.getVTList(ValueVTs), Values)); 10848 } 10849