1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DebugInfo.h" 25 #include "llvm/DerivedTypes.h" 26 #include "llvm/Function.h" 27 #include "llvm/GlobalVariable.h" 28 #include "llvm/InlineAsm.h" 29 #include "llvm/Instructions.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/IntrinsicInst.h" 32 #include "llvm/LLVMContext.h" 33 #include "llvm/Module.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/FastISel.h" 36 #include "llvm/CodeGen/FunctionLoweringInfo.h" 37 #include "llvm/CodeGen/GCStrategy.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineJumpTableInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLibraryInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/IntegersSubsetMapping.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 // Limit the width of DAG chains. This is important in general to prevent 74 // prevent DAG-based analysis from blowing up. For example, alias analysis and 75 // load clustering may not complete in reasonable time. It is difficult to 76 // recognize and avoid this situation within each individual analysis, and 77 // future analyses are likely to have the same behavior. Limiting DAG width is 78 // the safe approach, and will be especially important with global DAGs. 79 // 80 // MaxParallelChains default is arbitrarily high to avoid affecting 81 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 82 // sequence over this should have been converted to llvm.memcpy by the 83 // frontend. It easy to induce this behavior with .ll code such as: 84 // %buffer = alloca [4096 x i8] 85 // %data = load [4096 x i8]* %argPtr 86 // store [4096 x i8] %data, [4096 x i8]* %buffer 87 static const unsigned MaxParallelChains = 64; 88 89 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 90 const SDValue *Parts, unsigned NumParts, 91 EVT PartVT, EVT ValueVT); 92 93 /// getCopyFromParts - Create a value that contains the specified legal parts 94 /// combined into the value they represent. If the parts combine to a type 95 /// larger then ValueVT then AssertOp can be used to specify whether the extra 96 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 97 /// (ISD::AssertSext). 98 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 99 const SDValue *Parts, 100 unsigned NumParts, EVT PartVT, EVT ValueVT, 101 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 102 if (ValueVT.isVector()) 103 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 104 105 assert(NumParts > 0 && "No parts to assemble!"); 106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 107 SDValue Val = Parts[0]; 108 109 if (NumParts > 1) { 110 // Assemble the value from multiple parts. 111 if (ValueVT.isInteger()) { 112 unsigned PartBits = PartVT.getSizeInBits(); 113 unsigned ValueBits = ValueVT.getSizeInBits(); 114 115 // Assemble the power of 2 part. 116 unsigned RoundParts = NumParts & (NumParts - 1) ? 117 1 << Log2_32(NumParts) : NumParts; 118 unsigned RoundBits = PartBits * RoundParts; 119 EVT RoundVT = RoundBits == ValueBits ? 120 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 121 SDValue Lo, Hi; 122 123 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 124 125 if (RoundParts > 2) { 126 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 127 PartVT, HalfVT); 128 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 129 RoundParts / 2, PartVT, HalfVT); 130 } else { 131 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 132 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 133 } 134 135 if (TLI.isBigEndian()) 136 std::swap(Lo, Hi); 137 138 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 139 140 if (RoundParts < NumParts) { 141 // Assemble the trailing non-power-of-2 part. 142 unsigned OddParts = NumParts - RoundParts; 143 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 144 Hi = getCopyFromParts(DAG, DL, 145 Parts + RoundParts, OddParts, PartVT, OddVT); 146 147 // Combine the round and odd parts. 148 Lo = Val; 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 152 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 153 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 154 DAG.getConstant(Lo.getValueType().getSizeInBits(), 155 TLI.getPointerTy())); 156 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 157 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 158 } 159 } else if (PartVT.isFloatingPoint()) { 160 // FP split into multiple FP parts (for ppcf128) 161 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 162 "Unexpected split"); 163 SDValue Lo, Hi; 164 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 165 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 166 if (TLI.isBigEndian()) 167 std::swap(Lo, Hi); 168 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 169 } else { 170 // FP split into integer parts (soft fp) 171 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 172 !PartVT.isVector() && "Unexpected split"); 173 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 174 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 175 } 176 } 177 178 // There is now one part, held in Val. Correct it to match ValueVT. 179 PartVT = Val.getValueType(); 180 181 if (PartVT == ValueVT) 182 return Val; 183 184 if (PartVT.isInteger() && ValueVT.isInteger()) { 185 if (ValueVT.bitsLT(PartVT)) { 186 // For a truncate, see if we have any information to 187 // indicate whether the truncated bits will always be 188 // zero or sign-extension. 189 if (AssertOp != ISD::DELETED_NODE) 190 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 191 DAG.getValueType(ValueVT)); 192 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 193 } 194 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 195 } 196 197 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 198 // FP_ROUND's are always exact here. 199 if (ValueVT.bitsLT(Val.getValueType())) 200 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 201 DAG.getTargetConstant(1, TLI.getPointerTy())); 202 203 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 204 } 205 206 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 207 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 208 209 llvm_unreachable("Unknown mismatch!"); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 357 ValueVT.isInteger() && 358 "Unknown mismatch!"); 359 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 360 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 361 if (PartVT == MVT::x86mmx) 362 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 363 } 364 } else if (PartBits == ValueVT.getSizeInBits()) { 365 // Different types of the same size. 366 assert(NumParts == 1 && PartVT != ValueVT); 367 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 368 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 369 // If the parts cover less bits than value has, truncate the value. 370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 371 ValueVT.isInteger() && 372 "Unknown mismatch!"); 373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 374 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 375 if (PartVT == MVT::x86mmx) 376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 377 } 378 379 // The value may have changed - recompute ValueVT. 380 ValueVT = Val.getValueType(); 381 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 382 "Failed to tile the value with PartVT!"); 383 384 if (NumParts == 1) { 385 assert(PartVT == ValueVT && "Type conversion failed!"); 386 Parts[0] = Val; 387 return; 388 } 389 390 // Expand the value into multiple parts. 391 if (NumParts & (NumParts - 1)) { 392 // The number of parts is not a power of 2. Split off and copy the tail. 393 assert(PartVT.isInteger() && ValueVT.isInteger() && 394 "Do not know what to expand to!"); 395 unsigned RoundParts = 1 << Log2_32(NumParts); 396 unsigned RoundBits = RoundParts * PartBits; 397 unsigned OddParts = NumParts - RoundParts; 398 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 399 DAG.getIntPtrConstant(RoundBits)); 400 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 401 402 if (TLI.isBigEndian()) 403 // The odd parts were reversed by getCopyToParts - unreverse them. 404 std::reverse(Parts + RoundParts, Parts + NumParts); 405 406 NumParts = RoundParts; 407 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 408 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 409 } 410 411 // The number of parts is a power of 2. Repeatedly bisect the value using 412 // EXTRACT_ELEMENT. 413 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 414 EVT::getIntegerVT(*DAG.getContext(), 415 ValueVT.getSizeInBits()), 416 Val); 417 418 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 419 for (unsigned i = 0; i < NumParts; i += StepSize) { 420 unsigned ThisBits = StepSize * PartBits / 2; 421 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 422 SDValue &Part0 = Parts[i]; 423 SDValue &Part1 = Parts[i+StepSize/2]; 424 425 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 426 ThisVT, Part0, DAG.getIntPtrConstant(1)); 427 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 428 ThisVT, Part0, DAG.getIntPtrConstant(0)); 429 430 if (ThisBits == PartBits && ThisVT != PartVT) { 431 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 432 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 433 } 434 } 435 } 436 437 if (TLI.isBigEndian()) 438 std::reverse(Parts, Parts + OrigNumParts); 439 } 440 441 442 /// getCopyToPartsVector - Create a series of nodes that contain the specified 443 /// value split into legal parts. 444 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 445 SDValue Val, SDValue *Parts, unsigned NumParts, 446 EVT PartVT) { 447 EVT ValueVT = Val.getValueType(); 448 assert(ValueVT.isVector() && "Not a vector"); 449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 450 451 if (NumParts == 1) { 452 if (PartVT == ValueVT) { 453 // Nothing to do. 454 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 455 // Bitconvert vector->vector case. 456 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 457 } else if (PartVT.isVector() && 458 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 459 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 460 EVT ElementVT = PartVT.getVectorElementType(); 461 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 462 // undef elements. 463 SmallVector<SDValue, 16> Ops; 464 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 465 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 466 ElementVT, Val, DAG.getIntPtrConstant(i))); 467 468 for (unsigned i = ValueVT.getVectorNumElements(), 469 e = PartVT.getVectorNumElements(); i != e; ++i) 470 Ops.push_back(DAG.getUNDEF(ElementVT)); 471 472 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 473 474 // FIXME: Use CONCAT for 2x -> 4x. 475 476 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 477 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 478 } else if (PartVT.isVector() && 479 PartVT.getVectorElementType().bitsGE( 480 ValueVT.getVectorElementType()) && 481 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 482 483 // Promoted vector extract 484 bool Smaller = PartVT.bitsLE(ValueVT); 485 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 486 DL, PartVT, Val); 487 } else{ 488 // Vector -> scalar conversion. 489 assert(ValueVT.getVectorNumElements() == 1 && 490 "Only trivial vector-to-scalar conversions should get here!"); 491 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 PartVT, Val, DAG.getIntPtrConstant(0)); 493 494 bool Smaller = ValueVT.bitsLE(PartVT); 495 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 496 DL, PartVT, Val); 497 } 498 499 Parts[0] = Val; 500 return; 501 } 502 503 // Handle a multi-element vector. 504 EVT IntermediateVT, RegisterVT; 505 unsigned NumIntermediates; 506 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 507 IntermediateVT, 508 NumIntermediates, RegisterVT); 509 unsigned NumElements = ValueVT.getVectorNumElements(); 510 511 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 512 NumParts = NumRegs; // Silence a compiler warning. 513 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 514 515 // Split the vector into intermediate operands. 516 SmallVector<SDValue, 8> Ops(NumIntermediates); 517 for (unsigned i = 0; i != NumIntermediates; ++i) { 518 if (IntermediateVT.isVector()) 519 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 520 IntermediateVT, Val, 521 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 522 else 523 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 525 } 526 527 // Split the intermediate operands into legal parts. 528 if (NumParts == NumIntermediates) { 529 // If the register was not expanded, promote or copy the value, 530 // as appropriate. 531 for (unsigned i = 0; i != NumParts; ++i) 532 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 533 } else if (NumParts > 0) { 534 // If the intermediate type was expanded, split each the value into 535 // legal parts. 536 assert(NumParts % NumIntermediates == 0 && 537 "Must expand into a divisible number of parts!"); 538 unsigned Factor = NumParts / NumIntermediates; 539 for (unsigned i = 0; i != NumIntermediates; ++i) 540 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 541 } 542 } 543 544 545 546 547 namespace { 548 /// RegsForValue - This struct represents the registers (physical or virtual) 549 /// that a particular set of values is assigned, and the type information 550 /// about the value. The most common situation is to represent one value at a 551 /// time, but struct or array values are handled element-wise as multiple 552 /// values. The splitting of aggregates is performed recursively, so that we 553 /// never have aggregate-typed registers. The values at this point do not 554 /// necessarily have legal types, so each value may require one or more 555 /// registers of some legal type. 556 /// 557 struct RegsForValue { 558 /// ValueVTs - The value types of the values, which may not be legal, and 559 /// may need be promoted or synthesized from one or more registers. 560 /// 561 SmallVector<EVT, 4> ValueVTs; 562 563 /// RegVTs - The value types of the registers. This is the same size as 564 /// ValueVTs and it records, for each value, what the type of the assigned 565 /// register or registers are. (Individual values are never synthesized 566 /// from more than one type of register.) 567 /// 568 /// With virtual registers, the contents of RegVTs is redundant with TLI's 569 /// getRegisterType member function, however when with physical registers 570 /// it is necessary to have a separate record of the types. 571 /// 572 SmallVector<EVT, 4> RegVTs; 573 574 /// Regs - This list holds the registers assigned to the values. 575 /// Each legal or promoted value requires one register, and each 576 /// expanded value requires multiple registers. 577 /// 578 SmallVector<unsigned, 4> Regs; 579 580 RegsForValue() {} 581 582 RegsForValue(const SmallVector<unsigned, 4> ®s, 583 EVT regvt, EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// areValueTypesLegal - Return true if types of all the values are legal. 602 bool areValueTypesLegal(const TargetLowering &TLI) { 603 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 604 EVT RegisterVT = RegVTs[Value]; 605 if (!TLI.isTypeLegal(RegisterVT)) 606 return false; 607 } 608 return true; 609 } 610 611 /// append - Add the specified values to this one. 612 void append(const RegsForValue &RHS) { 613 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 614 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 615 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 616 } 617 618 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 619 /// this value and returns the result as a ValueVTs value. This uses 620 /// Chain/Flag as the input and updates them for the output Chain/Flag. 621 /// If the Flag pointer is NULL, no flag is used. 622 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 623 DebugLoc dl, 624 SDValue &Chain, SDValue *Flag) const; 625 626 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 627 /// specified value into the registers specified by this object. This uses 628 /// Chain/Flag as the input and updates them for the output Chain/Flag. 629 /// If the Flag pointer is NULL, no flag is used. 630 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 631 SDValue &Chain, SDValue *Flag) const; 632 633 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 634 /// operand list. This adds the code marker, matching input operand index 635 /// (if applicable), and includes the number of values added into it. 636 void AddInlineAsmOperands(unsigned Kind, 637 bool HasMatching, unsigned MatchingIdx, 638 SelectionDAG &DAG, 639 std::vector<SDValue> &Ops) const; 640 }; 641 } 642 643 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 644 /// this value and returns the result as a ValueVT value. This uses 645 /// Chain/Flag as the input and updates them for the output Chain/Flag. 646 /// If the Flag pointer is NULL, no flag is used. 647 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 648 FunctionLoweringInfo &FuncInfo, 649 DebugLoc dl, 650 SDValue &Chain, SDValue *Flag) const { 651 // A Value with type {} or [0 x %t] needs no registers. 652 if (ValueVTs.empty()) 653 return SDValue(); 654 655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 656 657 // Assemble the legal parts into the final values. 658 SmallVector<SDValue, 4> Values(ValueVTs.size()); 659 SmallVector<SDValue, 8> Parts; 660 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 661 // Copy the legal parts from the registers. 662 EVT ValueVT = ValueVTs[Value]; 663 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 664 EVT RegisterVT = RegVTs[Value]; 665 666 Parts.resize(NumRegs); 667 for (unsigned i = 0; i != NumRegs; ++i) { 668 SDValue P; 669 if (Flag == 0) { 670 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 671 } else { 672 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 673 *Flag = P.getValue(2); 674 } 675 676 Chain = P.getValue(1); 677 Parts[i] = P; 678 679 // If the source register was virtual and if we know something about it, 680 // add an assert node. 681 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 682 !RegisterVT.isInteger() || RegisterVT.isVector()) 683 continue; 684 685 const FunctionLoweringInfo::LiveOutInfo *LOI = 686 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 687 if (!LOI) 688 continue; 689 690 unsigned RegSize = RegisterVT.getSizeInBits(); 691 unsigned NumSignBits = LOI->NumSignBits; 692 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) 699 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 700 else if (NumZeroBits >= RegSize-1) 701 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 702 else if (NumSignBits > RegSize-8) 703 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 704 else if (NumZeroBits >= RegSize-8) 705 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 706 else if (NumSignBits > RegSize-16) 707 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 708 else if (NumZeroBits >= RegSize-16) 709 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 710 else if (NumSignBits > RegSize-32) 711 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 712 else if (NumZeroBits >= RegSize-32) 713 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 714 else 715 continue; 716 717 // Add an assertion node. 718 assert(FromVT != MVT::Other); 719 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 720 RegisterVT, P, DAG.getValueType(FromVT)); 721 } 722 723 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 724 NumRegs, RegisterVT, ValueVT); 725 Part += NumRegs; 726 Parts.clear(); 727 } 728 729 return DAG.getNode(ISD::MERGE_VALUES, dl, 730 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 731 &Values[0], ValueVTs.size()); 732 } 733 734 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 735 /// specified value into the registers specified by this object. This uses 736 /// Chain/Flag as the input and updates them for the output Chain/Flag. 737 /// If the Flag pointer is NULL, no flag is used. 738 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 739 SDValue &Chain, SDValue *Flag) const { 740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 741 742 // Get the list of the values's legal parts. 743 unsigned NumRegs = Regs.size(); 744 SmallVector<SDValue, 8> Parts(NumRegs); 745 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 746 EVT ValueVT = ValueVTs[Value]; 747 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 748 EVT RegisterVT = RegVTs[Value]; 749 750 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 751 &Parts[Part], NumParts, RegisterVT); 752 Part += NumParts; 753 } 754 755 // Copy the parts into the registers. 756 SmallVector<SDValue, 8> Chains(NumRegs); 757 for (unsigned i = 0; i != NumRegs; ++i) { 758 SDValue Part; 759 if (Flag == 0) { 760 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 761 } else { 762 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 763 *Flag = Part.getValue(1); 764 } 765 766 Chains[i] = Part.getValue(0); 767 } 768 769 if (NumRegs == 1 || Flag) 770 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 771 // flagged to it. That is the CopyToReg nodes and the user are considered 772 // a single scheduling unit. If we create a TokenFactor and return it as 773 // chain, then the TokenFactor is both a predecessor (operand) of the 774 // user as well as a successor (the TF operands are flagged to the user). 775 // c1, f1 = CopyToReg 776 // c2, f2 = CopyToReg 777 // c3 = TokenFactor c1, c2 778 // ... 779 // = op c3, ..., f2 780 Chain = Chains[NumRegs-1]; 781 else 782 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 783 } 784 785 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 786 /// operand list. This adds the code marker and includes the number of 787 /// values added into it. 788 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 789 unsigned MatchingIdx, 790 SelectionDAG &DAG, 791 std::vector<SDValue> &Ops) const { 792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 793 794 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 795 if (HasMatching) 796 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 797 else if (!Regs.empty() && 798 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 799 // Put the register class of the virtual registers in the flag word. That 800 // way, later passes can recompute register class constraints for inline 801 // assembly as well as normal instructions. 802 // Don't do this for tied operands that can use the regclass information 803 // from the def. 804 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 805 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 806 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 807 } 808 809 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 810 Ops.push_back(Res); 811 812 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 814 EVT RegisterVT = RegVTs[Value]; 815 for (unsigned i = 0; i != NumRegs; ++i) { 816 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 817 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 818 } 819 } 820 } 821 822 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 823 const TargetLibraryInfo *li) { 824 AA = &aa; 825 GFI = gfi; 826 LibInfo = li; 827 TD = DAG.getTarget().getTargetData(); 828 LPadToCallSiteMap.clear(); 829 } 830 831 /// clear - Clear out the current SelectionDAG and the associated 832 /// state and prepare this SelectionDAGBuilder object to be used 833 /// for a new block. This doesn't clear out information about 834 /// additional blocks that are needed to complete switch lowering 835 /// or PHI node updating; that information is cleared out as it is 836 /// consumed. 837 void SelectionDAGBuilder::clear() { 838 NodeMap.clear(); 839 UnusedArgNodeMap.clear(); 840 PendingLoads.clear(); 841 PendingExports.clear(); 842 CurDebugLoc = DebugLoc(); 843 HasTailCall = false; 844 } 845 846 /// clearDanglingDebugInfo - Clear the dangling debug information 847 /// map. This function is separated from the clear so that debug 848 /// information that is dangling in a basic block can be properly 849 /// resolved in a different basic block. This allows the 850 /// SelectionDAG to resolve dangling debug information attached 851 /// to PHI nodes. 852 void SelectionDAGBuilder::clearDanglingDebugInfo() { 853 DanglingDebugInfoMap.clear(); 854 } 855 856 /// getRoot - Return the current virtual root of the Selection DAG, 857 /// flushing any PendingLoad items. This must be done before emitting 858 /// a store or any other node that may need to be ordered after any 859 /// prior load instructions. 860 /// 861 SDValue SelectionDAGBuilder::getRoot() { 862 if (PendingLoads.empty()) 863 return DAG.getRoot(); 864 865 if (PendingLoads.size() == 1) { 866 SDValue Root = PendingLoads[0]; 867 DAG.setRoot(Root); 868 PendingLoads.clear(); 869 return Root; 870 } 871 872 // Otherwise, we have to make a token factor node. 873 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 874 &PendingLoads[0], PendingLoads.size()); 875 PendingLoads.clear(); 876 DAG.setRoot(Root); 877 return Root; 878 } 879 880 /// getControlRoot - Similar to getRoot, but instead of flushing all the 881 /// PendingLoad items, flush all the PendingExports items. It is necessary 882 /// to do this before emitting a terminator instruction. 883 /// 884 SDValue SelectionDAGBuilder::getControlRoot() { 885 SDValue Root = DAG.getRoot(); 886 887 if (PendingExports.empty()) 888 return Root; 889 890 // Turn all of the CopyToReg chains into one factored node. 891 if (Root.getOpcode() != ISD::EntryToken) { 892 unsigned i = 0, e = PendingExports.size(); 893 for (; i != e; ++i) { 894 assert(PendingExports[i].getNode()->getNumOperands() > 1); 895 if (PendingExports[i].getNode()->getOperand(0) == Root) 896 break; // Don't add the root if we already indirectly depend on it. 897 } 898 899 if (i == e) 900 PendingExports.push_back(Root); 901 } 902 903 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 904 &PendingExports[0], 905 PendingExports.size()); 906 PendingExports.clear(); 907 DAG.setRoot(Root); 908 return Root; 909 } 910 911 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 912 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 913 DAG.AssignOrdering(Node, SDNodeOrder); 914 915 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 916 AssignOrderingToNode(Node->getOperand(I).getNode()); 917 } 918 919 void SelectionDAGBuilder::visit(const Instruction &I) { 920 // Set up outgoing PHI node register values before emitting the terminator. 921 if (isa<TerminatorInst>(&I)) 922 HandlePHINodesInSuccessorBlocks(I.getParent()); 923 924 CurDebugLoc = I.getDebugLoc(); 925 926 visit(I.getOpcode(), I); 927 928 if (!isa<TerminatorInst>(&I) && !HasTailCall) 929 CopyToExportRegsIfNeeded(&I); 930 931 CurDebugLoc = DebugLoc(); 932 } 933 934 void SelectionDAGBuilder::visitPHI(const PHINode &) { 935 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 936 } 937 938 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 939 // Note: this doesn't use InstVisitor, because it has to work with 940 // ConstantExpr's in addition to instructions. 941 switch (Opcode) { 942 default: llvm_unreachable("Unknown instruction type encountered!"); 943 // Build the switch statement using the Instruction.def file. 944 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 945 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 946 #include "llvm/Instruction.def" 947 } 948 949 // Assign the ordering to the freshly created DAG nodes. 950 if (NodeMap.count(&I)) { 951 ++SDNodeOrder; 952 AssignOrderingToNode(getValue(&I).getNode()); 953 } 954 } 955 956 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 957 // generate the debug data structures now that we've seen its definition. 958 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 959 SDValue Val) { 960 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 961 if (DDI.getDI()) { 962 const DbgValueInst *DI = DDI.getDI(); 963 DebugLoc dl = DDI.getdl(); 964 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 965 MDNode *Variable = DI->getVariable(); 966 uint64_t Offset = DI->getOffset(); 967 SDDbgValue *SDV; 968 if (Val.getNode()) { 969 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 970 SDV = DAG.getDbgValue(Variable, Val.getNode(), 971 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 972 DAG.AddDbgValue(SDV, Val.getNode(), false); 973 } 974 } else 975 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 976 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 977 } 978 } 979 980 /// getValue - Return an SDValue for the given Value. 981 SDValue SelectionDAGBuilder::getValue(const Value *V) { 982 // If we already have an SDValue for this value, use it. It's important 983 // to do this first, so that we don't create a CopyFromReg if we already 984 // have a regular SDValue. 985 SDValue &N = NodeMap[V]; 986 if (N.getNode()) return N; 987 988 // If there's a virtual register allocated and initialized for this 989 // value, use it. 990 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 991 if (It != FuncInfo.ValueMap.end()) { 992 unsigned InReg = It->second; 993 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 994 SDValue Chain = DAG.getEntryNode(); 995 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 996 resolveDanglingDebugInfo(V, N); 997 return N; 998 } 999 1000 // Otherwise create a new SDValue and remember it. 1001 SDValue Val = getValueImpl(V); 1002 NodeMap[V] = Val; 1003 resolveDanglingDebugInfo(V, Val); 1004 return Val; 1005 } 1006 1007 /// getNonRegisterValue - Return an SDValue for the given Value, but 1008 /// don't look in FuncInfo.ValueMap for a virtual register. 1009 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. 1011 SDValue &N = NodeMap[V]; 1012 if (N.getNode()) return N; 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 if (const Constant *C = dyn_cast<Constant>(V)) { 1025 EVT VT = TLI.getValueType(V->getType(), true); 1026 1027 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1028 return DAG.getConstant(*CI, VT); 1029 1030 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1031 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1032 1033 if (isa<ConstantPointerNull>(C)) 1034 return DAG.getConstant(0, TLI.getPointerTy()); 1035 1036 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1037 return DAG.getConstantFP(*CFP, VT); 1038 1039 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1040 return DAG.getUNDEF(VT); 1041 1042 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1043 visit(CE->getOpcode(), *CE); 1044 SDValue N1 = NodeMap[V]; 1045 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1046 return N1; 1047 } 1048 1049 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1050 SmallVector<SDValue, 4> Constants; 1051 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1052 OI != OE; ++OI) { 1053 SDNode *Val = getValue(*OI).getNode(); 1054 // If the operand is an empty aggregate, there are no values. 1055 if (!Val) continue; 1056 // Add each leaf value from the operand to the Constants list 1057 // to form a flattened list of all the values. 1058 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1059 Constants.push_back(SDValue(Val, i)); 1060 } 1061 1062 return DAG.getMergeValues(&Constants[0], Constants.size(), 1063 getCurDebugLoc()); 1064 } 1065 1066 if (const ConstantDataSequential *CDS = 1067 dyn_cast<ConstantDataSequential>(C)) { 1068 SmallVector<SDValue, 4> Ops; 1069 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1070 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1071 // Add each leaf value from the operand to the Constants list 1072 // to form a flattened list of all the values. 1073 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1074 Ops.push_back(SDValue(Val, i)); 1075 } 1076 1077 if (isa<ArrayType>(CDS->getType())) 1078 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1079 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1080 VT, &Ops[0], Ops.size()); 1081 } 1082 1083 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1084 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1085 "Unknown struct or array constant!"); 1086 1087 SmallVector<EVT, 4> ValueVTs; 1088 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1089 unsigned NumElts = ValueVTs.size(); 1090 if (NumElts == 0) 1091 return SDValue(); // empty struct 1092 SmallVector<SDValue, 4> Constants(NumElts); 1093 for (unsigned i = 0; i != NumElts; ++i) { 1094 EVT EltVT = ValueVTs[i]; 1095 if (isa<UndefValue>(C)) 1096 Constants[i] = DAG.getUNDEF(EltVT); 1097 else if (EltVT.isFloatingPoint()) 1098 Constants[i] = DAG.getConstantFP(0, EltVT); 1099 else 1100 Constants[i] = DAG.getConstant(0, EltVT); 1101 } 1102 1103 return DAG.getMergeValues(&Constants[0], NumElts, 1104 getCurDebugLoc()); 1105 } 1106 1107 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1108 return DAG.getBlockAddress(BA, VT); 1109 1110 VectorType *VecTy = cast<VectorType>(V->getType()); 1111 unsigned NumElements = VecTy->getNumElements(); 1112 1113 // Now that we know the number and type of the elements, get that number of 1114 // elements into the Ops array based on what kind of constant it is. 1115 SmallVector<SDValue, 16> Ops; 1116 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1117 for (unsigned i = 0; i != NumElements; ++i) 1118 Ops.push_back(getValue(CV->getOperand(i))); 1119 } else { 1120 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1121 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1122 1123 SDValue Op; 1124 if (EltVT.isFloatingPoint()) 1125 Op = DAG.getConstantFP(0, EltVT); 1126 else 1127 Op = DAG.getConstant(0, EltVT); 1128 Ops.assign(NumElements, Op); 1129 } 1130 1131 // Create a BUILD_VECTOR node. 1132 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1133 VT, &Ops[0], Ops.size()); 1134 } 1135 1136 // If this is a static alloca, generate it as the frameindex instead of 1137 // computation. 1138 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1139 DenseMap<const AllocaInst*, int>::iterator SI = 1140 FuncInfo.StaticAllocaMap.find(AI); 1141 if (SI != FuncInfo.StaticAllocaMap.end()) 1142 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1143 } 1144 1145 // If this is an instruction which fast-isel has deferred, select it now. 1146 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1147 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1148 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1149 SDValue Chain = DAG.getEntryNode(); 1150 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1151 } 1152 1153 llvm_unreachable("Can't get register for value!"); 1154 } 1155 1156 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1157 SDValue Chain = getControlRoot(); 1158 SmallVector<ISD::OutputArg, 8> Outs; 1159 SmallVector<SDValue, 8> OutVals; 1160 1161 if (!FuncInfo.CanLowerReturn) { 1162 unsigned DemoteReg = FuncInfo.DemoteRegister; 1163 const Function *F = I.getParent()->getParent(); 1164 1165 // Emit a store of the return value through the virtual register. 1166 // Leave Outs empty so that LowerReturn won't try to load return 1167 // registers the usual way. 1168 SmallVector<EVT, 1> PtrValueVTs; 1169 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1170 PtrValueVTs); 1171 1172 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1173 SDValue RetOp = getValue(I.getOperand(0)); 1174 1175 SmallVector<EVT, 4> ValueVTs; 1176 SmallVector<uint64_t, 4> Offsets; 1177 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1178 unsigned NumValues = ValueVTs.size(); 1179 1180 SmallVector<SDValue, 4> Chains(NumValues); 1181 for (unsigned i = 0; i != NumValues; ++i) { 1182 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1183 RetPtr.getValueType(), RetPtr, 1184 DAG.getIntPtrConstant(Offsets[i])); 1185 Chains[i] = 1186 DAG.getStore(Chain, getCurDebugLoc(), 1187 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1188 // FIXME: better loc info would be nice. 1189 Add, MachinePointerInfo(), false, false, 0); 1190 } 1191 1192 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1193 MVT::Other, &Chains[0], NumValues); 1194 } else if (I.getNumOperands() != 0) { 1195 SmallVector<EVT, 4> ValueVTs; 1196 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1197 unsigned NumValues = ValueVTs.size(); 1198 if (NumValues) { 1199 SDValue RetOp = getValue(I.getOperand(0)); 1200 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1201 EVT VT = ValueVTs[j]; 1202 1203 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1204 1205 const Function *F = I.getParent()->getParent(); 1206 if (F->paramHasAttr(0, Attribute::SExt)) 1207 ExtendKind = ISD::SIGN_EXTEND; 1208 else if (F->paramHasAttr(0, Attribute::ZExt)) 1209 ExtendKind = ISD::ZERO_EXTEND; 1210 1211 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1212 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1213 1214 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1215 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1216 SmallVector<SDValue, 4> Parts(NumParts); 1217 getCopyToParts(DAG, getCurDebugLoc(), 1218 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1219 &Parts[0], NumParts, PartVT, ExtendKind); 1220 1221 // 'inreg' on function refers to return value 1222 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1223 if (F->paramHasAttr(0, Attribute::InReg)) 1224 Flags.setInReg(); 1225 1226 // Propagate extension type if any 1227 if (ExtendKind == ISD::SIGN_EXTEND) 1228 Flags.setSExt(); 1229 else if (ExtendKind == ISD::ZERO_EXTEND) 1230 Flags.setZExt(); 1231 1232 for (unsigned i = 0; i < NumParts; ++i) { 1233 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1234 /*isfixed=*/true)); 1235 OutVals.push_back(Parts[i]); 1236 } 1237 } 1238 } 1239 } 1240 1241 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1242 CallingConv::ID CallConv = 1243 DAG.getMachineFunction().getFunction()->getCallingConv(); 1244 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1245 Outs, OutVals, getCurDebugLoc(), DAG); 1246 1247 // Verify that the target's LowerReturn behaved as expected. 1248 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1249 "LowerReturn didn't return a valid chain!"); 1250 1251 // Update the DAG with the new chain value resulting from return lowering. 1252 DAG.setRoot(Chain); 1253 } 1254 1255 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1256 /// created for it, emit nodes to copy the value into the virtual 1257 /// registers. 1258 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1259 // Skip empty types 1260 if (V->getType()->isEmptyTy()) 1261 return; 1262 1263 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1264 if (VMI != FuncInfo.ValueMap.end()) { 1265 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1266 CopyValueToVirtualRegister(V, VMI->second); 1267 } 1268 } 1269 1270 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1271 /// the current basic block, add it to ValueMap now so that we'll get a 1272 /// CopyTo/FromReg. 1273 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1274 // No need to export constants. 1275 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1276 1277 // Already exported? 1278 if (FuncInfo.isExportedInst(V)) return; 1279 1280 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1281 CopyValueToVirtualRegister(V, Reg); 1282 } 1283 1284 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1285 const BasicBlock *FromBB) { 1286 // The operands of the setcc have to be in this block. We don't know 1287 // how to export them from some other block. 1288 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1289 // Can export from current BB. 1290 if (VI->getParent() == FromBB) 1291 return true; 1292 1293 // Is already exported, noop. 1294 return FuncInfo.isExportedInst(V); 1295 } 1296 1297 // If this is an argument, we can export it if the BB is the entry block or 1298 // if it is already exported. 1299 if (isa<Argument>(V)) { 1300 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1301 return true; 1302 1303 // Otherwise, can only export this if it is already exported. 1304 return FuncInfo.isExportedInst(V); 1305 } 1306 1307 // Otherwise, constants can always be exported. 1308 return true; 1309 } 1310 1311 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1312 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1313 const MachineBasicBlock *Dst) const { 1314 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1315 if (!BPI) 1316 return 0; 1317 const BasicBlock *SrcBB = Src->getBasicBlock(); 1318 const BasicBlock *DstBB = Dst->getBasicBlock(); 1319 return BPI->getEdgeWeight(SrcBB, DstBB); 1320 } 1321 1322 void SelectionDAGBuilder:: 1323 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1324 uint32_t Weight /* = 0 */) { 1325 if (!Weight) 1326 Weight = getEdgeWeight(Src, Dst); 1327 Src->addSuccessor(Dst, Weight); 1328 } 1329 1330 1331 static bool InBlock(const Value *V, const BasicBlock *BB) { 1332 if (const Instruction *I = dyn_cast<Instruction>(V)) 1333 return I->getParent() == BB; 1334 return true; 1335 } 1336 1337 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1338 /// This function emits a branch and is used at the leaves of an OR or an 1339 /// AND operator tree. 1340 /// 1341 void 1342 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1343 MachineBasicBlock *TBB, 1344 MachineBasicBlock *FBB, 1345 MachineBasicBlock *CurBB, 1346 MachineBasicBlock *SwitchBB) { 1347 const BasicBlock *BB = CurBB->getBasicBlock(); 1348 1349 // If the leaf of the tree is a comparison, merge the condition into 1350 // the caseblock. 1351 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1352 // The operands of the cmp have to be in this block. We don't know 1353 // how to export them from some other block. If this is the first block 1354 // of the sequence, no exporting is needed. 1355 if (CurBB == SwitchBB || 1356 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1357 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1358 ISD::CondCode Condition; 1359 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1360 Condition = getICmpCondCode(IC->getPredicate()); 1361 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1362 Condition = getFCmpCondCode(FC->getPredicate()); 1363 if (TM.Options.NoNaNsFPMath) 1364 Condition = getFCmpCodeWithoutNaN(Condition); 1365 } else { 1366 Condition = ISD::SETEQ; // silence warning. 1367 llvm_unreachable("Unknown compare instruction"); 1368 } 1369 1370 CaseBlock CB(Condition, BOp->getOperand(0), 1371 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1372 SwitchCases.push_back(CB); 1373 return; 1374 } 1375 } 1376 1377 // Create a CaseBlock record representing this branch. 1378 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1379 NULL, TBB, FBB, CurBB); 1380 SwitchCases.push_back(CB); 1381 } 1382 1383 /// FindMergedConditions - If Cond is an expression like 1384 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1385 MachineBasicBlock *TBB, 1386 MachineBasicBlock *FBB, 1387 MachineBasicBlock *CurBB, 1388 MachineBasicBlock *SwitchBB, 1389 unsigned Opc) { 1390 // If this node is not part of the or/and tree, emit it as a branch. 1391 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1392 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1393 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1394 BOp->getParent() != CurBB->getBasicBlock() || 1395 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1396 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1397 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1398 return; 1399 } 1400 1401 // Create TmpBB after CurBB. 1402 MachineFunction::iterator BBI = CurBB; 1403 MachineFunction &MF = DAG.getMachineFunction(); 1404 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1405 CurBB->getParent()->insert(++BBI, TmpBB); 1406 1407 if (Opc == Instruction::Or) { 1408 // Codegen X | Y as: 1409 // jmp_if_X TBB 1410 // jmp TmpBB 1411 // TmpBB: 1412 // jmp_if_Y TBB 1413 // jmp FBB 1414 // 1415 1416 // Emit the LHS condition. 1417 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1418 1419 // Emit the RHS condition into TmpBB. 1420 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1421 } else { 1422 assert(Opc == Instruction::And && "Unknown merge op!"); 1423 // Codegen X & Y as: 1424 // jmp_if_X TmpBB 1425 // jmp FBB 1426 // TmpBB: 1427 // jmp_if_Y TBB 1428 // jmp FBB 1429 // 1430 // This requires creation of TmpBB after CurBB. 1431 1432 // Emit the LHS condition. 1433 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1434 1435 // Emit the RHS condition into TmpBB. 1436 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1437 } 1438 } 1439 1440 /// If the set of cases should be emitted as a series of branches, return true. 1441 /// If we should emit this as a bunch of and/or'd together conditions, return 1442 /// false. 1443 bool 1444 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1445 if (Cases.size() != 2) return true; 1446 1447 // If this is two comparisons of the same values or'd or and'd together, they 1448 // will get folded into a single comparison, so don't emit two blocks. 1449 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1450 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1451 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1452 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1453 return false; 1454 } 1455 1456 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1457 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1458 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1459 Cases[0].CC == Cases[1].CC && 1460 isa<Constant>(Cases[0].CmpRHS) && 1461 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1462 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1463 return false; 1464 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1465 return false; 1466 } 1467 1468 return true; 1469 } 1470 1471 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1472 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1473 1474 // Update machine-CFG edges. 1475 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1476 1477 // Figure out which block is immediately after the current one. 1478 MachineBasicBlock *NextBlock = 0; 1479 MachineFunction::iterator BBI = BrMBB; 1480 if (++BBI != FuncInfo.MF->end()) 1481 NextBlock = BBI; 1482 1483 if (I.isUnconditional()) { 1484 // Update machine-CFG edges. 1485 BrMBB->addSuccessor(Succ0MBB); 1486 1487 // If this is not a fall-through branch, emit the branch. 1488 if (Succ0MBB != NextBlock) 1489 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1490 MVT::Other, getControlRoot(), 1491 DAG.getBasicBlock(Succ0MBB))); 1492 1493 return; 1494 } 1495 1496 // If this condition is one of the special cases we handle, do special stuff 1497 // now. 1498 const Value *CondVal = I.getCondition(); 1499 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1500 1501 // If this is a series of conditions that are or'd or and'd together, emit 1502 // this as a sequence of branches instead of setcc's with and/or operations. 1503 // As long as jumps are not expensive, this should improve performance. 1504 // For example, instead of something like: 1505 // cmp A, B 1506 // C = seteq 1507 // cmp D, E 1508 // F = setle 1509 // or C, F 1510 // jnz foo 1511 // Emit: 1512 // cmp A, B 1513 // je foo 1514 // cmp D, E 1515 // jle foo 1516 // 1517 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1518 if (!TLI.isJumpExpensive() && 1519 BOp->hasOneUse() && 1520 (BOp->getOpcode() == Instruction::And || 1521 BOp->getOpcode() == Instruction::Or)) { 1522 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1523 BOp->getOpcode()); 1524 // If the compares in later blocks need to use values not currently 1525 // exported from this block, export them now. This block should always 1526 // be the first entry. 1527 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1528 1529 // Allow some cases to be rejected. 1530 if (ShouldEmitAsBranches(SwitchCases)) { 1531 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1532 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1533 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1534 } 1535 1536 // Emit the branch for this block. 1537 visitSwitchCase(SwitchCases[0], BrMBB); 1538 SwitchCases.erase(SwitchCases.begin()); 1539 return; 1540 } 1541 1542 // Okay, we decided not to do this, remove any inserted MBB's and clear 1543 // SwitchCases. 1544 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1545 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1546 1547 SwitchCases.clear(); 1548 } 1549 } 1550 1551 // Create a CaseBlock record representing this branch. 1552 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1553 NULL, Succ0MBB, Succ1MBB, BrMBB); 1554 1555 // Use visitSwitchCase to actually insert the fast branch sequence for this 1556 // cond branch. 1557 visitSwitchCase(CB, BrMBB); 1558 } 1559 1560 /// visitSwitchCase - Emits the necessary code to represent a single node in 1561 /// the binary search tree resulting from lowering a switch instruction. 1562 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1563 MachineBasicBlock *SwitchBB) { 1564 SDValue Cond; 1565 SDValue CondLHS = getValue(CB.CmpLHS); 1566 DebugLoc dl = getCurDebugLoc(); 1567 1568 // Build the setcc now. 1569 if (CB.CmpMHS == NULL) { 1570 // Fold "(X == true)" to X and "(X == false)" to !X to 1571 // handle common cases produced by branch lowering. 1572 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1573 CB.CC == ISD::SETEQ) 1574 Cond = CondLHS; 1575 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1576 CB.CC == ISD::SETEQ) { 1577 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1578 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1579 } else 1580 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1581 } else { 1582 assert(CB.CC == ISD::SETCC_INVALID && 1583 "Condition is undefined for to-the-range belonging check."); 1584 1585 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1586 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1587 1588 SDValue CmpOp = getValue(CB.CmpMHS); 1589 EVT VT = CmpOp.getValueType(); 1590 1591 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1592 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1593 ISD::SETULE); 1594 } else { 1595 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1596 VT, CmpOp, DAG.getConstant(Low, VT)); 1597 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1598 DAG.getConstant(High-Low, VT), ISD::SETULE); 1599 } 1600 } 1601 1602 // Update successor info 1603 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1604 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1605 1606 // Set NextBlock to be the MBB immediately after the current one, if any. 1607 // This is used to avoid emitting unnecessary branches to the next block. 1608 MachineBasicBlock *NextBlock = 0; 1609 MachineFunction::iterator BBI = SwitchBB; 1610 if (++BBI != FuncInfo.MF->end()) 1611 NextBlock = BBI; 1612 1613 // If the lhs block is the next block, invert the condition so that we can 1614 // fall through to the lhs instead of the rhs block. 1615 if (CB.TrueBB == NextBlock) { 1616 std::swap(CB.TrueBB, CB.FalseBB); 1617 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1618 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1619 } 1620 1621 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1622 MVT::Other, getControlRoot(), Cond, 1623 DAG.getBasicBlock(CB.TrueBB)); 1624 1625 // Insert the false branch. Do this even if it's a fall through branch, 1626 // this makes it easier to do DAG optimizations which require inverting 1627 // the branch condition. 1628 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1629 DAG.getBasicBlock(CB.FalseBB)); 1630 1631 DAG.setRoot(BrCond); 1632 } 1633 1634 /// visitJumpTable - Emit JumpTable node in the current MBB 1635 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1636 // Emit the code for the jump table 1637 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1638 EVT PTy = TLI.getPointerTy(); 1639 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1640 JT.Reg, PTy); 1641 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1642 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1643 MVT::Other, Index.getValue(1), 1644 Table, Index); 1645 DAG.setRoot(BrJumpTable); 1646 } 1647 1648 /// visitJumpTableHeader - This function emits necessary code to produce index 1649 /// in the JumpTable from switch case. 1650 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1651 JumpTableHeader &JTH, 1652 MachineBasicBlock *SwitchBB) { 1653 // Subtract the lowest switch case value from the value being switched on and 1654 // conditional branch to default mbb if the result is greater than the 1655 // difference between smallest and largest cases. 1656 SDValue SwitchOp = getValue(JTH.SValue); 1657 EVT VT = SwitchOp.getValueType(); 1658 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1659 DAG.getConstant(JTH.First, VT)); 1660 1661 // The SDNode we just created, which holds the value being switched on minus 1662 // the smallest case value, needs to be copied to a virtual register so it 1663 // can be used as an index into the jump table in a subsequent basic block. 1664 // This value may be smaller or larger than the target's pointer type, and 1665 // therefore require extension or truncating. 1666 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1667 1668 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1669 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1670 JumpTableReg, SwitchOp); 1671 JT.Reg = JumpTableReg; 1672 1673 // Emit the range check for the jump table, and branch to the default block 1674 // for the switch statement if the value being switched on exceeds the largest 1675 // case in the switch. 1676 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1677 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1678 DAG.getConstant(JTH.Last-JTH.First,VT), 1679 ISD::SETUGT); 1680 1681 // Set NextBlock to be the MBB immediately after the current one, if any. 1682 // This is used to avoid emitting unnecessary branches to the next block. 1683 MachineBasicBlock *NextBlock = 0; 1684 MachineFunction::iterator BBI = SwitchBB; 1685 1686 if (++BBI != FuncInfo.MF->end()) 1687 NextBlock = BBI; 1688 1689 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1690 MVT::Other, CopyTo, CMP, 1691 DAG.getBasicBlock(JT.Default)); 1692 1693 if (JT.MBB != NextBlock) 1694 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1695 DAG.getBasicBlock(JT.MBB)); 1696 1697 DAG.setRoot(BrCond); 1698 } 1699 1700 /// visitBitTestHeader - This function emits necessary code to produce value 1701 /// suitable for "bit tests" 1702 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1703 MachineBasicBlock *SwitchBB) { 1704 // Subtract the minimum value 1705 SDValue SwitchOp = getValue(B.SValue); 1706 EVT VT = SwitchOp.getValueType(); 1707 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1708 DAG.getConstant(B.First, VT)); 1709 1710 // Check range 1711 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1712 TLI.getSetCCResultType(Sub.getValueType()), 1713 Sub, DAG.getConstant(B.Range, VT), 1714 ISD::SETUGT); 1715 1716 // Determine the type of the test operands. 1717 bool UsePtrType = false; 1718 if (!TLI.isTypeLegal(VT)) 1719 UsePtrType = true; 1720 else { 1721 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1722 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1723 // Switch table case range are encoded into series of masks. 1724 // Just use pointer type, it's guaranteed to fit. 1725 UsePtrType = true; 1726 break; 1727 } 1728 } 1729 if (UsePtrType) { 1730 VT = TLI.getPointerTy(); 1731 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1732 } 1733 1734 B.RegVT = VT; 1735 B.Reg = FuncInfo.CreateReg(VT); 1736 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1737 B.Reg, Sub); 1738 1739 // Set NextBlock to be the MBB immediately after the current one, if any. 1740 // This is used to avoid emitting unnecessary branches to the next block. 1741 MachineBasicBlock *NextBlock = 0; 1742 MachineFunction::iterator BBI = SwitchBB; 1743 if (++BBI != FuncInfo.MF->end()) 1744 NextBlock = BBI; 1745 1746 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1747 1748 addSuccessorWithWeight(SwitchBB, B.Default); 1749 addSuccessorWithWeight(SwitchBB, MBB); 1750 1751 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1752 MVT::Other, CopyTo, RangeCmp, 1753 DAG.getBasicBlock(B.Default)); 1754 1755 if (MBB != NextBlock) 1756 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1757 DAG.getBasicBlock(MBB)); 1758 1759 DAG.setRoot(BrRange); 1760 } 1761 1762 /// visitBitTestCase - this function produces one "bit test" 1763 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1764 MachineBasicBlock* NextMBB, 1765 unsigned Reg, 1766 BitTestCase &B, 1767 MachineBasicBlock *SwitchBB) { 1768 EVT VT = BB.RegVT; 1769 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1770 Reg, VT); 1771 SDValue Cmp; 1772 unsigned PopCount = CountPopulation_64(B.Mask); 1773 if (PopCount == 1) { 1774 // Testing for a single bit; just compare the shift count with what it 1775 // would need to be to shift a 1 bit in that position. 1776 Cmp = DAG.getSetCC(getCurDebugLoc(), 1777 TLI.getSetCCResultType(VT), 1778 ShiftOp, 1779 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1780 ISD::SETEQ); 1781 } else if (PopCount == BB.Range) { 1782 // There is only one zero bit in the range, test for it directly. 1783 Cmp = DAG.getSetCC(getCurDebugLoc(), 1784 TLI.getSetCCResultType(VT), 1785 ShiftOp, 1786 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1787 ISD::SETNE); 1788 } else { 1789 // Make desired shift 1790 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1791 DAG.getConstant(1, VT), ShiftOp); 1792 1793 // Emit bit tests and jumps 1794 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1795 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1796 Cmp = DAG.getSetCC(getCurDebugLoc(), 1797 TLI.getSetCCResultType(VT), 1798 AndOp, DAG.getConstant(0, VT), 1799 ISD::SETNE); 1800 } 1801 1802 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1803 addSuccessorWithWeight(SwitchBB, NextMBB); 1804 1805 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1806 MVT::Other, getControlRoot(), 1807 Cmp, DAG.getBasicBlock(B.TargetBB)); 1808 1809 // Set NextBlock to be the MBB immediately after the current one, if any. 1810 // This is used to avoid emitting unnecessary branches to the next block. 1811 MachineBasicBlock *NextBlock = 0; 1812 MachineFunction::iterator BBI = SwitchBB; 1813 if (++BBI != FuncInfo.MF->end()) 1814 NextBlock = BBI; 1815 1816 if (NextMBB != NextBlock) 1817 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1818 DAG.getBasicBlock(NextMBB)); 1819 1820 DAG.setRoot(BrAnd); 1821 } 1822 1823 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1824 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1825 1826 // Retrieve successors. 1827 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1828 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1829 1830 const Value *Callee(I.getCalledValue()); 1831 const Function *Fn = dyn_cast<Function>(Callee); 1832 if (isa<InlineAsm>(Callee)) 1833 visitInlineAsm(&I); 1834 else if (Fn && Fn->isIntrinsic()) { 1835 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1836 return; // ignore invokes to @llvm.donothing 1837 } else 1838 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1839 1840 // If the value of the invoke is used outside of its defining block, make it 1841 // available as a virtual register. 1842 CopyToExportRegsIfNeeded(&I); 1843 1844 // Update successor info 1845 addSuccessorWithWeight(InvokeMBB, Return); 1846 addSuccessorWithWeight(InvokeMBB, LandingPad); 1847 1848 // Drop into normal successor. 1849 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1850 MVT::Other, getControlRoot(), 1851 DAG.getBasicBlock(Return))); 1852 } 1853 1854 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1855 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1856 } 1857 1858 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1859 assert(FuncInfo.MBB->isLandingPad() && 1860 "Call to landingpad not in landing pad!"); 1861 1862 MachineBasicBlock *MBB = FuncInfo.MBB; 1863 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1864 AddLandingPadInfo(LP, MMI, MBB); 1865 1866 // If there aren't registers to copy the values into (e.g., during SjLj 1867 // exceptions), then don't bother to create these DAG nodes. 1868 if (TLI.getExceptionPointerRegister() == 0 && 1869 TLI.getExceptionSelectorRegister() == 0) 1870 return; 1871 1872 SmallVector<EVT, 2> ValueVTs; 1873 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1874 1875 // Insert the EXCEPTIONADDR instruction. 1876 assert(FuncInfo.MBB->isLandingPad() && 1877 "Call to eh.exception not in landing pad!"); 1878 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1879 SDValue Ops[2]; 1880 Ops[0] = DAG.getRoot(); 1881 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1882 SDValue Chain = Op1.getValue(1); 1883 1884 // Insert the EHSELECTION instruction. 1885 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1886 Ops[0] = Op1; 1887 Ops[1] = Chain; 1888 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1889 Chain = Op2.getValue(1); 1890 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1891 1892 Ops[0] = Op1; 1893 Ops[1] = Op2; 1894 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1895 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1896 &Ops[0], 2); 1897 1898 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1899 setValue(&LP, RetPair.first); 1900 DAG.setRoot(RetPair.second); 1901 } 1902 1903 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1904 /// small case ranges). 1905 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1906 CaseRecVector& WorkList, 1907 const Value* SV, 1908 MachineBasicBlock *Default, 1909 MachineBasicBlock *SwitchBB) { 1910 // Size is the number of Cases represented by this range. 1911 size_t Size = CR.Range.second - CR.Range.first; 1912 if (Size > 3) 1913 return false; 1914 1915 // Get the MachineFunction which holds the current MBB. This is used when 1916 // inserting any additional MBBs necessary to represent the switch. 1917 MachineFunction *CurMF = FuncInfo.MF; 1918 1919 // Figure out which block is immediately after the current one. 1920 MachineBasicBlock *NextBlock = 0; 1921 MachineFunction::iterator BBI = CR.CaseBB; 1922 1923 if (++BBI != FuncInfo.MF->end()) 1924 NextBlock = BBI; 1925 1926 // If any two of the cases has the same destination, and if one value 1927 // is the same as the other, but has one bit unset that the other has set, 1928 // use bit manipulation to do two compares at once. For example: 1929 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1930 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1931 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1932 if (Size == 2 && CR.CaseBB == SwitchBB) { 1933 Case &Small = *CR.Range.first; 1934 Case &Big = *(CR.Range.second-1); 1935 1936 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1937 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1938 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1939 1940 // Check that there is only one bit different. 1941 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1942 (SmallValue | BigValue) == BigValue) { 1943 // Isolate the common bit. 1944 APInt CommonBit = BigValue & ~SmallValue; 1945 assert((SmallValue | CommonBit) == BigValue && 1946 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1947 1948 SDValue CondLHS = getValue(SV); 1949 EVT VT = CondLHS.getValueType(); 1950 DebugLoc DL = getCurDebugLoc(); 1951 1952 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1953 DAG.getConstant(CommonBit, VT)); 1954 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1955 Or, DAG.getConstant(BigValue, VT), 1956 ISD::SETEQ); 1957 1958 // Update successor info. 1959 addSuccessorWithWeight(SwitchBB, Small.BB); 1960 addSuccessorWithWeight(SwitchBB, Default); 1961 1962 // Insert the true branch. 1963 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1964 getControlRoot(), Cond, 1965 DAG.getBasicBlock(Small.BB)); 1966 1967 // Insert the false branch. 1968 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1969 DAG.getBasicBlock(Default)); 1970 1971 DAG.setRoot(BrCond); 1972 return true; 1973 } 1974 } 1975 } 1976 1977 // Order cases by weight so the most likely case will be checked first. 1978 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1979 if (BPI) { 1980 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 1981 uint32_t IWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(), 1982 I->BB->getBasicBlock()); 1983 for (CaseItr J = CR.Range.first; J < I; ++J) { 1984 uint32_t JWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(), 1985 J->BB->getBasicBlock()); 1986 if (IWeight > JWeight) 1987 std::swap(*I, *J); 1988 } 1989 } 1990 } 1991 // Rearrange the case blocks so that the last one falls through if possible. 1992 Case &BackCase = *(CR.Range.second-1); 1993 if (Size > 1 && 1994 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1995 // The last case block won't fall through into 'NextBlock' if we emit the 1996 // branches in this order. See if rearranging a case value would help. 1997 // We start at the bottom as it's the case with the least weight. 1998 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 1999 if (I->BB == NextBlock) { 2000 std::swap(*I, BackCase); 2001 break; 2002 } 2003 } 2004 } 2005 2006 // Create a CaseBlock record representing a conditional branch to 2007 // the Case's target mbb if the value being switched on SV is equal 2008 // to C. 2009 MachineBasicBlock *CurBlock = CR.CaseBB; 2010 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2011 MachineBasicBlock *FallThrough; 2012 if (I != E-1) { 2013 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2014 CurMF->insert(BBI, FallThrough); 2015 2016 // Put SV in a virtual register to make it available from the new blocks. 2017 ExportFromCurrentBlock(SV); 2018 } else { 2019 // If the last case doesn't match, go to the default block. 2020 FallThrough = Default; 2021 } 2022 2023 const Value *RHS, *LHS, *MHS; 2024 ISD::CondCode CC; 2025 if (I->High == I->Low) { 2026 // This is just small small case range :) containing exactly 1 case 2027 CC = ISD::SETEQ; 2028 LHS = SV; RHS = I->High; MHS = NULL; 2029 } else { 2030 CC = ISD::SETCC_INVALID; 2031 LHS = I->Low; MHS = SV; RHS = I->High; 2032 } 2033 2034 uint32_t ExtraWeight = I->ExtraWeight; 2035 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2036 /* me */ CurBlock, 2037 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 2038 2039 // If emitting the first comparison, just call visitSwitchCase to emit the 2040 // code into the current block. Otherwise, push the CaseBlock onto the 2041 // vector to be later processed by SDISel, and insert the node's MBB 2042 // before the next MBB. 2043 if (CurBlock == SwitchBB) 2044 visitSwitchCase(CB, SwitchBB); 2045 else 2046 SwitchCases.push_back(CB); 2047 2048 CurBlock = FallThrough; 2049 } 2050 2051 return true; 2052 } 2053 2054 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2055 return !TLI.getTargetMachine().Options.DisableJumpTables && 2056 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2057 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2058 } 2059 2060 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2061 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2062 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2063 return (LastExt - FirstExt + 1ULL); 2064 } 2065 2066 /// handleJTSwitchCase - Emit jumptable for current switch case range 2067 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2068 CaseRecVector &WorkList, 2069 const Value *SV, 2070 MachineBasicBlock *Default, 2071 MachineBasicBlock *SwitchBB) { 2072 Case& FrontCase = *CR.Range.first; 2073 Case& BackCase = *(CR.Range.second-1); 2074 2075 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2076 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2077 2078 APInt TSize(First.getBitWidth(), 0); 2079 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2080 TSize += I->size(); 2081 2082 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2083 return false; 2084 2085 APInt Range = ComputeRange(First, Last); 2086 // The density is TSize / Range. Require at least 40%. 2087 // It should not be possible for IntTSize to saturate for sane code, but make 2088 // sure we handle Range saturation correctly. 2089 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2090 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2091 if (IntTSize * 10 < IntRange * 4) 2092 return false; 2093 2094 DEBUG(dbgs() << "Lowering jump table\n" 2095 << "First entry: " << First << ". Last entry: " << Last << '\n' 2096 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2097 2098 // Get the MachineFunction which holds the current MBB. This is used when 2099 // inserting any additional MBBs necessary to represent the switch. 2100 MachineFunction *CurMF = FuncInfo.MF; 2101 2102 // Figure out which block is immediately after the current one. 2103 MachineFunction::iterator BBI = CR.CaseBB; 2104 ++BBI; 2105 2106 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2107 2108 // Create a new basic block to hold the code for loading the address 2109 // of the jump table, and jumping to it. Update successor information; 2110 // we will either branch to the default case for the switch, or the jump 2111 // table. 2112 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2113 CurMF->insert(BBI, JumpTableBB); 2114 2115 addSuccessorWithWeight(CR.CaseBB, Default); 2116 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2117 2118 // Build a vector of destination BBs, corresponding to each target 2119 // of the jump table. If the value of the jump table slot corresponds to 2120 // a case statement, push the case's BB onto the vector, otherwise, push 2121 // the default BB. 2122 std::vector<MachineBasicBlock*> DestBBs; 2123 APInt TEI = First; 2124 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2125 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2126 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2127 2128 if (Low.ule(TEI) && TEI.ule(High)) { 2129 DestBBs.push_back(I->BB); 2130 if (TEI==High) 2131 ++I; 2132 } else { 2133 DestBBs.push_back(Default); 2134 } 2135 } 2136 2137 // Update successor info. Add one edge to each unique successor. 2138 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2139 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2140 E = DestBBs.end(); I != E; ++I) { 2141 if (!SuccsHandled[(*I)->getNumber()]) { 2142 SuccsHandled[(*I)->getNumber()] = true; 2143 addSuccessorWithWeight(JumpTableBB, *I); 2144 } 2145 } 2146 2147 // Create a jump table index for this jump table. 2148 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2149 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2150 ->createJumpTableIndex(DestBBs); 2151 2152 // Set the jump table information so that we can codegen it as a second 2153 // MachineBasicBlock 2154 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2155 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2156 if (CR.CaseBB == SwitchBB) 2157 visitJumpTableHeader(JT, JTH, SwitchBB); 2158 2159 JTCases.push_back(JumpTableBlock(JTH, JT)); 2160 return true; 2161 } 2162 2163 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2164 /// 2 subtrees. 2165 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2166 CaseRecVector& WorkList, 2167 const Value* SV, 2168 MachineBasicBlock *Default, 2169 MachineBasicBlock *SwitchBB) { 2170 // Get the MachineFunction which holds the current MBB. This is used when 2171 // inserting any additional MBBs necessary to represent the switch. 2172 MachineFunction *CurMF = FuncInfo.MF; 2173 2174 // Figure out which block is immediately after the current one. 2175 MachineFunction::iterator BBI = CR.CaseBB; 2176 ++BBI; 2177 2178 Case& FrontCase = *CR.Range.first; 2179 Case& BackCase = *(CR.Range.second-1); 2180 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2181 2182 // Size is the number of Cases represented by this range. 2183 unsigned Size = CR.Range.second - CR.Range.first; 2184 2185 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2186 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2187 double FMetric = 0; 2188 CaseItr Pivot = CR.Range.first + Size/2; 2189 2190 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2191 // (heuristically) allow us to emit JumpTable's later. 2192 APInt TSize(First.getBitWidth(), 0); 2193 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2194 I!=E; ++I) 2195 TSize += I->size(); 2196 2197 APInt LSize = FrontCase.size(); 2198 APInt RSize = TSize-LSize; 2199 DEBUG(dbgs() << "Selecting best pivot: \n" 2200 << "First: " << First << ", Last: " << Last <<'\n' 2201 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2202 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2203 J!=E; ++I, ++J) { 2204 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2205 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2206 APInt Range = ComputeRange(LEnd, RBegin); 2207 assert((Range - 2ULL).isNonNegative() && 2208 "Invalid case distance"); 2209 // Use volatile double here to avoid excess precision issues on some hosts, 2210 // e.g. that use 80-bit X87 registers. 2211 volatile double LDensity = 2212 (double)LSize.roundToDouble() / 2213 (LEnd - First + 1ULL).roundToDouble(); 2214 volatile double RDensity = 2215 (double)RSize.roundToDouble() / 2216 (Last - RBegin + 1ULL).roundToDouble(); 2217 double Metric = Range.logBase2()*(LDensity+RDensity); 2218 // Should always split in some non-trivial place 2219 DEBUG(dbgs() <<"=>Step\n" 2220 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2221 << "LDensity: " << LDensity 2222 << ", RDensity: " << RDensity << '\n' 2223 << "Metric: " << Metric << '\n'); 2224 if (FMetric < Metric) { 2225 Pivot = J; 2226 FMetric = Metric; 2227 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2228 } 2229 2230 LSize += J->size(); 2231 RSize -= J->size(); 2232 } 2233 if (areJTsAllowed(TLI)) { 2234 // If our case is dense we *really* should handle it earlier! 2235 assert((FMetric > 0) && "Should handle dense range earlier!"); 2236 } else { 2237 Pivot = CR.Range.first + Size/2; 2238 } 2239 2240 CaseRange LHSR(CR.Range.first, Pivot); 2241 CaseRange RHSR(Pivot, CR.Range.second); 2242 const Constant *C = Pivot->Low; 2243 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2244 2245 // We know that we branch to the LHS if the Value being switched on is 2246 // less than the Pivot value, C. We use this to optimize our binary 2247 // tree a bit, by recognizing that if SV is greater than or equal to the 2248 // LHS's Case Value, and that Case Value is exactly one less than the 2249 // Pivot's Value, then we can branch directly to the LHS's Target, 2250 // rather than creating a leaf node for it. 2251 if ((LHSR.second - LHSR.first) == 1 && 2252 LHSR.first->High == CR.GE && 2253 cast<ConstantInt>(C)->getValue() == 2254 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2255 TrueBB = LHSR.first->BB; 2256 } else { 2257 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2258 CurMF->insert(BBI, TrueBB); 2259 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2260 2261 // Put SV in a virtual register to make it available from the new blocks. 2262 ExportFromCurrentBlock(SV); 2263 } 2264 2265 // Similar to the optimization above, if the Value being switched on is 2266 // known to be less than the Constant CR.LT, and the current Case Value 2267 // is CR.LT - 1, then we can branch directly to the target block for 2268 // the current Case Value, rather than emitting a RHS leaf node for it. 2269 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2270 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2271 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2272 FalseBB = RHSR.first->BB; 2273 } else { 2274 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2275 CurMF->insert(BBI, FalseBB); 2276 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2277 2278 // Put SV in a virtual register to make it available from the new blocks. 2279 ExportFromCurrentBlock(SV); 2280 } 2281 2282 // Create a CaseBlock record representing a conditional branch to 2283 // the LHS node if the value being switched on SV is less than C. 2284 // Otherwise, branch to LHS. 2285 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2286 2287 if (CR.CaseBB == SwitchBB) 2288 visitSwitchCase(CB, SwitchBB); 2289 else 2290 SwitchCases.push_back(CB); 2291 2292 return true; 2293 } 2294 2295 /// handleBitTestsSwitchCase - if current case range has few destination and 2296 /// range span less, than machine word bitwidth, encode case range into series 2297 /// of masks and emit bit tests with these masks. 2298 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2299 CaseRecVector& WorkList, 2300 const Value* SV, 2301 MachineBasicBlock* Default, 2302 MachineBasicBlock *SwitchBB){ 2303 EVT PTy = TLI.getPointerTy(); 2304 unsigned IntPtrBits = PTy.getSizeInBits(); 2305 2306 Case& FrontCase = *CR.Range.first; 2307 Case& BackCase = *(CR.Range.second-1); 2308 2309 // Get the MachineFunction which holds the current MBB. This is used when 2310 // inserting any additional MBBs necessary to represent the switch. 2311 MachineFunction *CurMF = FuncInfo.MF; 2312 2313 // If target does not have legal shift left, do not emit bit tests at all. 2314 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2315 return false; 2316 2317 size_t numCmps = 0; 2318 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2319 I!=E; ++I) { 2320 // Single case counts one, case range - two. 2321 numCmps += (I->Low == I->High ? 1 : 2); 2322 } 2323 2324 // Count unique destinations 2325 SmallSet<MachineBasicBlock*, 4> Dests; 2326 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2327 Dests.insert(I->BB); 2328 if (Dests.size() > 3) 2329 // Don't bother the code below, if there are too much unique destinations 2330 return false; 2331 } 2332 DEBUG(dbgs() << "Total number of unique destinations: " 2333 << Dests.size() << '\n' 2334 << "Total number of comparisons: " << numCmps << '\n'); 2335 2336 // Compute span of values. 2337 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2338 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2339 APInt cmpRange = maxValue - minValue; 2340 2341 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2342 << "Low bound: " << minValue << '\n' 2343 << "High bound: " << maxValue << '\n'); 2344 2345 if (cmpRange.uge(IntPtrBits) || 2346 (!(Dests.size() == 1 && numCmps >= 3) && 2347 !(Dests.size() == 2 && numCmps >= 5) && 2348 !(Dests.size() >= 3 && numCmps >= 6))) 2349 return false; 2350 2351 DEBUG(dbgs() << "Emitting bit tests\n"); 2352 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2353 2354 // Optimize the case where all the case values fit in a 2355 // word without having to subtract minValue. In this case, 2356 // we can optimize away the subtraction. 2357 if (maxValue.ult(IntPtrBits)) { 2358 cmpRange = maxValue; 2359 } else { 2360 lowBound = minValue; 2361 } 2362 2363 CaseBitsVector CasesBits; 2364 unsigned i, count = 0; 2365 2366 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2367 MachineBasicBlock* Dest = I->BB; 2368 for (i = 0; i < count; ++i) 2369 if (Dest == CasesBits[i].BB) 2370 break; 2371 2372 if (i == count) { 2373 assert((count < 3) && "Too much destinations to test!"); 2374 CasesBits.push_back(CaseBits(0, Dest, 0)); 2375 count++; 2376 } 2377 2378 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2379 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2380 2381 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2382 uint64_t hi = (highValue - lowBound).getZExtValue(); 2383 2384 for (uint64_t j = lo; j <= hi; j++) { 2385 CasesBits[i].Mask |= 1ULL << j; 2386 CasesBits[i].Bits++; 2387 } 2388 2389 } 2390 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2391 2392 BitTestInfo BTC; 2393 2394 // Figure out which block is immediately after the current one. 2395 MachineFunction::iterator BBI = CR.CaseBB; 2396 ++BBI; 2397 2398 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2399 2400 DEBUG(dbgs() << "Cases:\n"); 2401 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2402 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2403 << ", Bits: " << CasesBits[i].Bits 2404 << ", BB: " << CasesBits[i].BB << '\n'); 2405 2406 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2407 CurMF->insert(BBI, CaseBB); 2408 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2409 CaseBB, 2410 CasesBits[i].BB)); 2411 2412 // Put SV in a virtual register to make it available from the new blocks. 2413 ExportFromCurrentBlock(SV); 2414 } 2415 2416 BitTestBlock BTB(lowBound, cmpRange, SV, 2417 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2418 CR.CaseBB, Default, BTC); 2419 2420 if (CR.CaseBB == SwitchBB) 2421 visitBitTestHeader(BTB, SwitchBB); 2422 2423 BitTestCases.push_back(BTB); 2424 2425 return true; 2426 } 2427 2428 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2429 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2430 const SwitchInst& SI) { 2431 2432 /// Use a shorter form of declaration, and also 2433 /// show the we want to use CRSBuilder as Clusterifier. 2434 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2435 2436 Clusterifier TheClusterifier; 2437 2438 // Start with "simple" cases 2439 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2440 i != e; ++i) { 2441 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2442 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2443 2444 TheClusterifier.add(i.getCaseValueEx(), SMBB); 2445 } 2446 2447 TheClusterifier.optimize(); 2448 2449 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2450 size_t numCmps = 0; 2451 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2452 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2453 const Clusterifier::RangeEx &R = i->first; 2454 MachineBasicBlock *MBB = i->second; 2455 unsigned W = 0; 2456 if (BPI) { 2457 W = BPI->getEdgeWeight(SI.getParent(), MBB->getBasicBlock()); 2458 if (!W) 2459 W = 16; 2460 W *= R.Weight; 2461 BPI->setEdgeWeight(SI.getParent(), MBB->getBasicBlock(), W); 2462 } 2463 2464 // FIXME: Currently work with ConstantInt based numbers. 2465 // Changing it to APInt based is a pretty heavy for this commit. 2466 Cases.push_back(Case(R.getLow().toConstantInt(), 2467 R.getHigh().toConstantInt(), MBB, W)); 2468 2469 if (R.getLow() != R.getHigh()) 2470 // A range counts double, since it requires two compares. 2471 ++numCmps; 2472 } 2473 2474 return numCmps; 2475 } 2476 2477 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2478 MachineBasicBlock *Last) { 2479 // Update JTCases. 2480 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2481 if (JTCases[i].first.HeaderBB == First) 2482 JTCases[i].first.HeaderBB = Last; 2483 2484 // Update BitTestCases. 2485 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2486 if (BitTestCases[i].Parent == First) 2487 BitTestCases[i].Parent = Last; 2488 } 2489 2490 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2491 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2492 2493 // Figure out which block is immediately after the current one. 2494 MachineBasicBlock *NextBlock = 0; 2495 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2496 2497 // If there is only the default destination, branch to it if it is not the 2498 // next basic block. Otherwise, just fall through. 2499 if (!SI.getNumCases()) { 2500 // Update machine-CFG edges. 2501 2502 // If this is not a fall-through branch, emit the branch. 2503 SwitchMBB->addSuccessor(Default); 2504 if (Default != NextBlock) 2505 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2506 MVT::Other, getControlRoot(), 2507 DAG.getBasicBlock(Default))); 2508 2509 return; 2510 } 2511 2512 // If there are any non-default case statements, create a vector of Cases 2513 // representing each one, and sort the vector so that we can efficiently 2514 // create a binary search tree from them. 2515 CaseVector Cases; 2516 size_t numCmps = Clusterify(Cases, SI); 2517 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2518 << ". Total compares: " << numCmps << '\n'); 2519 (void)numCmps; 2520 2521 // Get the Value to be switched on and default basic blocks, which will be 2522 // inserted into CaseBlock records, representing basic blocks in the binary 2523 // search tree. 2524 const Value *SV = SI.getCondition(); 2525 2526 // Push the initial CaseRec onto the worklist 2527 CaseRecVector WorkList; 2528 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2529 CaseRange(Cases.begin(),Cases.end()))); 2530 2531 while (!WorkList.empty()) { 2532 // Grab a record representing a case range to process off the worklist 2533 CaseRec CR = WorkList.back(); 2534 WorkList.pop_back(); 2535 2536 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2537 continue; 2538 2539 // If the range has few cases (two or less) emit a series of specific 2540 // tests. 2541 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2542 continue; 2543 2544 // If the switch has more than 5 blocks, and at least 40% dense, and the 2545 // target supports indirect branches, then emit a jump table rather than 2546 // lowering the switch to a binary tree of conditional branches. 2547 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2548 continue; 2549 2550 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2551 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2552 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2553 } 2554 } 2555 2556 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2557 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2558 2559 // Update machine-CFG edges with unique successors. 2560 SmallVector<BasicBlock*, 32> succs; 2561 succs.reserve(I.getNumSuccessors()); 2562 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2563 succs.push_back(I.getSuccessor(i)); 2564 array_pod_sort(succs.begin(), succs.end()); 2565 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2566 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2567 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2568 addSuccessorWithWeight(IndirectBrMBB, Succ); 2569 } 2570 2571 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2572 MVT::Other, getControlRoot(), 2573 getValue(I.getAddress()))); 2574 } 2575 2576 void SelectionDAGBuilder::visitFSub(const User &I) { 2577 // -0.0 - X --> fneg 2578 Type *Ty = I.getType(); 2579 if (isa<Constant>(I.getOperand(0)) && 2580 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2581 SDValue Op2 = getValue(I.getOperand(1)); 2582 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2583 Op2.getValueType(), Op2)); 2584 return; 2585 } 2586 2587 visitBinary(I, ISD::FSUB); 2588 } 2589 2590 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2591 SDValue Op1 = getValue(I.getOperand(0)); 2592 SDValue Op2 = getValue(I.getOperand(1)); 2593 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2594 Op1.getValueType(), Op1, Op2)); 2595 } 2596 2597 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2598 SDValue Op1 = getValue(I.getOperand(0)); 2599 SDValue Op2 = getValue(I.getOperand(1)); 2600 2601 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2602 2603 // Coerce the shift amount to the right type if we can. 2604 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2605 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2606 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2607 DebugLoc DL = getCurDebugLoc(); 2608 2609 // If the operand is smaller than the shift count type, promote it. 2610 if (ShiftSize > Op2Size) 2611 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2612 2613 // If the operand is larger than the shift count type but the shift 2614 // count type has enough bits to represent any shift value, truncate 2615 // it now. This is a common case and it exposes the truncate to 2616 // optimization early. 2617 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2618 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2619 // Otherwise we'll need to temporarily settle for some other convenient 2620 // type. Type legalization will make adjustments once the shiftee is split. 2621 else 2622 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2623 } 2624 2625 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2626 Op1.getValueType(), Op1, Op2)); 2627 } 2628 2629 void SelectionDAGBuilder::visitSDiv(const User &I) { 2630 SDValue Op1 = getValue(I.getOperand(0)); 2631 SDValue Op2 = getValue(I.getOperand(1)); 2632 2633 // Turn exact SDivs into multiplications. 2634 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2635 // exact bit. 2636 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2637 !isa<ConstantSDNode>(Op1) && 2638 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2639 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2640 else 2641 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2642 Op1, Op2)); 2643 } 2644 2645 void SelectionDAGBuilder::visitICmp(const User &I) { 2646 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2647 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2648 predicate = IC->getPredicate(); 2649 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2650 predicate = ICmpInst::Predicate(IC->getPredicate()); 2651 SDValue Op1 = getValue(I.getOperand(0)); 2652 SDValue Op2 = getValue(I.getOperand(1)); 2653 ISD::CondCode Opcode = getICmpCondCode(predicate); 2654 2655 EVT DestVT = TLI.getValueType(I.getType()); 2656 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2657 } 2658 2659 void SelectionDAGBuilder::visitFCmp(const User &I) { 2660 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2661 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2662 predicate = FC->getPredicate(); 2663 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2664 predicate = FCmpInst::Predicate(FC->getPredicate()); 2665 SDValue Op1 = getValue(I.getOperand(0)); 2666 SDValue Op2 = getValue(I.getOperand(1)); 2667 ISD::CondCode Condition = getFCmpCondCode(predicate); 2668 if (TM.Options.NoNaNsFPMath) 2669 Condition = getFCmpCodeWithoutNaN(Condition); 2670 EVT DestVT = TLI.getValueType(I.getType()); 2671 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2672 } 2673 2674 void SelectionDAGBuilder::visitSelect(const User &I) { 2675 SmallVector<EVT, 4> ValueVTs; 2676 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2677 unsigned NumValues = ValueVTs.size(); 2678 if (NumValues == 0) return; 2679 2680 SmallVector<SDValue, 4> Values(NumValues); 2681 SDValue Cond = getValue(I.getOperand(0)); 2682 SDValue TrueVal = getValue(I.getOperand(1)); 2683 SDValue FalseVal = getValue(I.getOperand(2)); 2684 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2685 ISD::VSELECT : ISD::SELECT; 2686 2687 for (unsigned i = 0; i != NumValues; ++i) 2688 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2689 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2690 Cond, 2691 SDValue(TrueVal.getNode(), 2692 TrueVal.getResNo() + i), 2693 SDValue(FalseVal.getNode(), 2694 FalseVal.getResNo() + i)); 2695 2696 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2697 DAG.getVTList(&ValueVTs[0], NumValues), 2698 &Values[0], NumValues)); 2699 } 2700 2701 void SelectionDAGBuilder::visitTrunc(const User &I) { 2702 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2703 SDValue N = getValue(I.getOperand(0)); 2704 EVT DestVT = TLI.getValueType(I.getType()); 2705 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2706 } 2707 2708 void SelectionDAGBuilder::visitZExt(const User &I) { 2709 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2710 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2711 SDValue N = getValue(I.getOperand(0)); 2712 EVT DestVT = TLI.getValueType(I.getType()); 2713 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2714 } 2715 2716 void SelectionDAGBuilder::visitSExt(const User &I) { 2717 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2718 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2719 SDValue N = getValue(I.getOperand(0)); 2720 EVT DestVT = TLI.getValueType(I.getType()); 2721 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2722 } 2723 2724 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2725 // FPTrunc is never a no-op cast, no need to check 2726 SDValue N = getValue(I.getOperand(0)); 2727 EVT DestVT = TLI.getValueType(I.getType()); 2728 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2729 DestVT, N, 2730 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2731 } 2732 2733 void SelectionDAGBuilder::visitFPExt(const User &I){ 2734 // FPExt is never a no-op cast, no need to check 2735 SDValue N = getValue(I.getOperand(0)); 2736 EVT DestVT = TLI.getValueType(I.getType()); 2737 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2738 } 2739 2740 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2741 // FPToUI is never a no-op cast, no need to check 2742 SDValue N = getValue(I.getOperand(0)); 2743 EVT DestVT = TLI.getValueType(I.getType()); 2744 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2745 } 2746 2747 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2748 // FPToSI is never a no-op cast, no need to check 2749 SDValue N = getValue(I.getOperand(0)); 2750 EVT DestVT = TLI.getValueType(I.getType()); 2751 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2752 } 2753 2754 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2755 // UIToFP is never a no-op cast, no need to check 2756 SDValue N = getValue(I.getOperand(0)); 2757 EVT DestVT = TLI.getValueType(I.getType()); 2758 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2759 } 2760 2761 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2762 // SIToFP is never a no-op cast, no need to check 2763 SDValue N = getValue(I.getOperand(0)); 2764 EVT DestVT = TLI.getValueType(I.getType()); 2765 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2766 } 2767 2768 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2769 // What to do depends on the size of the integer and the size of the pointer. 2770 // We can either truncate, zero extend, or no-op, accordingly. 2771 SDValue N = getValue(I.getOperand(0)); 2772 EVT DestVT = TLI.getValueType(I.getType()); 2773 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2774 } 2775 2776 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2777 // What to do depends on the size of the integer and the size of the pointer. 2778 // We can either truncate, zero extend, or no-op, accordingly. 2779 SDValue N = getValue(I.getOperand(0)); 2780 EVT DestVT = TLI.getValueType(I.getType()); 2781 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2782 } 2783 2784 void SelectionDAGBuilder::visitBitCast(const User &I) { 2785 SDValue N = getValue(I.getOperand(0)); 2786 EVT DestVT = TLI.getValueType(I.getType()); 2787 2788 // BitCast assures us that source and destination are the same size so this is 2789 // either a BITCAST or a no-op. 2790 if (DestVT != N.getValueType()) 2791 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2792 DestVT, N)); // convert types. 2793 else 2794 setValue(&I, N); // noop cast. 2795 } 2796 2797 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2798 SDValue InVec = getValue(I.getOperand(0)); 2799 SDValue InVal = getValue(I.getOperand(1)); 2800 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2801 TLI.getPointerTy(), 2802 getValue(I.getOperand(2))); 2803 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2804 TLI.getValueType(I.getType()), 2805 InVec, InVal, InIdx)); 2806 } 2807 2808 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2809 SDValue InVec = getValue(I.getOperand(0)); 2810 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2811 TLI.getPointerTy(), 2812 getValue(I.getOperand(1))); 2813 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2814 TLI.getValueType(I.getType()), InVec, InIdx)); 2815 } 2816 2817 // Utility for visitShuffleVector - Return true if every element in Mask, 2818 // beginning from position Pos and ending in Pos+Size, falls within the 2819 // specified sequential range [L, L+Pos). or is undef. 2820 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2821 unsigned Pos, unsigned Size, int Low) { 2822 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2823 if (Mask[i] >= 0 && Mask[i] != Low) 2824 return false; 2825 return true; 2826 } 2827 2828 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2829 SDValue Src1 = getValue(I.getOperand(0)); 2830 SDValue Src2 = getValue(I.getOperand(1)); 2831 2832 SmallVector<int, 8> Mask; 2833 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2834 unsigned MaskNumElts = Mask.size(); 2835 2836 EVT VT = TLI.getValueType(I.getType()); 2837 EVT SrcVT = Src1.getValueType(); 2838 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2839 2840 if (SrcNumElts == MaskNumElts) { 2841 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2842 &Mask[0])); 2843 return; 2844 } 2845 2846 // Normalize the shuffle vector since mask and vector length don't match. 2847 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2848 // Mask is longer than the source vectors and is a multiple of the source 2849 // vectors. We can use concatenate vector to make the mask and vectors 2850 // lengths match. 2851 if (SrcNumElts*2 == MaskNumElts) { 2852 // First check for Src1 in low and Src2 in high 2853 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2854 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2855 // The shuffle is concatenating two vectors together. 2856 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2857 VT, Src1, Src2)); 2858 return; 2859 } 2860 // Then check for Src2 in low and Src1 in high 2861 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2862 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2863 // The shuffle is concatenating two vectors together. 2864 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2865 VT, Src2, Src1)); 2866 return; 2867 } 2868 } 2869 2870 // Pad both vectors with undefs to make them the same length as the mask. 2871 unsigned NumConcat = MaskNumElts / SrcNumElts; 2872 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2873 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2874 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2875 2876 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2877 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2878 MOps1[0] = Src1; 2879 MOps2[0] = Src2; 2880 2881 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2882 getCurDebugLoc(), VT, 2883 &MOps1[0], NumConcat); 2884 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2885 getCurDebugLoc(), VT, 2886 &MOps2[0], NumConcat); 2887 2888 // Readjust mask for new input vector length. 2889 SmallVector<int, 8> MappedOps; 2890 for (unsigned i = 0; i != MaskNumElts; ++i) { 2891 int Idx = Mask[i]; 2892 if (Idx >= (int)SrcNumElts) 2893 Idx -= SrcNumElts - MaskNumElts; 2894 MappedOps.push_back(Idx); 2895 } 2896 2897 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2898 &MappedOps[0])); 2899 return; 2900 } 2901 2902 if (SrcNumElts > MaskNumElts) { 2903 // Analyze the access pattern of the vector to see if we can extract 2904 // two subvectors and do the shuffle. The analysis is done by calculating 2905 // the range of elements the mask access on both vectors. 2906 int MinRange[2] = { static_cast<int>(SrcNumElts), 2907 static_cast<int>(SrcNumElts)}; 2908 int MaxRange[2] = {-1, -1}; 2909 2910 for (unsigned i = 0; i != MaskNumElts; ++i) { 2911 int Idx = Mask[i]; 2912 unsigned Input = 0; 2913 if (Idx < 0) 2914 continue; 2915 2916 if (Idx >= (int)SrcNumElts) { 2917 Input = 1; 2918 Idx -= SrcNumElts; 2919 } 2920 if (Idx > MaxRange[Input]) 2921 MaxRange[Input] = Idx; 2922 if (Idx < MinRange[Input]) 2923 MinRange[Input] = Idx; 2924 } 2925 2926 // Check if the access is smaller than the vector size and can we find 2927 // a reasonable extract index. 2928 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2929 // Extract. 2930 int StartIdx[2]; // StartIdx to extract from 2931 for (unsigned Input = 0; Input < 2; ++Input) { 2932 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2933 RangeUse[Input] = 0; // Unused 2934 StartIdx[Input] = 0; 2935 continue; 2936 } 2937 2938 // Find a good start index that is a multiple of the mask length. Then 2939 // see if the rest of the elements are in range. 2940 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2941 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2942 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2943 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2944 } 2945 2946 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2947 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2948 return; 2949 } 2950 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2951 // Extract appropriate subvector and generate a vector shuffle 2952 for (unsigned Input = 0; Input < 2; ++Input) { 2953 SDValue &Src = Input == 0 ? Src1 : Src2; 2954 if (RangeUse[Input] == 0) 2955 Src = DAG.getUNDEF(VT); 2956 else 2957 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2958 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2959 } 2960 2961 // Calculate new mask. 2962 SmallVector<int, 8> MappedOps; 2963 for (unsigned i = 0; i != MaskNumElts; ++i) { 2964 int Idx = Mask[i]; 2965 if (Idx >= 0) { 2966 if (Idx < (int)SrcNumElts) 2967 Idx -= StartIdx[0]; 2968 else 2969 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2970 } 2971 MappedOps.push_back(Idx); 2972 } 2973 2974 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2975 &MappedOps[0])); 2976 return; 2977 } 2978 } 2979 2980 // We can't use either concat vectors or extract subvectors so fall back to 2981 // replacing the shuffle with extract and build vector. 2982 // to insert and build vector. 2983 EVT EltVT = VT.getVectorElementType(); 2984 EVT PtrVT = TLI.getPointerTy(); 2985 SmallVector<SDValue,8> Ops; 2986 for (unsigned i = 0; i != MaskNumElts; ++i) { 2987 int Idx = Mask[i]; 2988 SDValue Res; 2989 2990 if (Idx < 0) { 2991 Res = DAG.getUNDEF(EltVT); 2992 } else { 2993 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2994 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2995 2996 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2997 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 2998 } 2999 3000 Ops.push_back(Res); 3001 } 3002 3003 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 3004 VT, &Ops[0], Ops.size())); 3005 } 3006 3007 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3008 const Value *Op0 = I.getOperand(0); 3009 const Value *Op1 = I.getOperand(1); 3010 Type *AggTy = I.getType(); 3011 Type *ValTy = Op1->getType(); 3012 bool IntoUndef = isa<UndefValue>(Op0); 3013 bool FromUndef = isa<UndefValue>(Op1); 3014 3015 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3016 3017 SmallVector<EVT, 4> AggValueVTs; 3018 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3019 SmallVector<EVT, 4> ValValueVTs; 3020 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3021 3022 unsigned NumAggValues = AggValueVTs.size(); 3023 unsigned NumValValues = ValValueVTs.size(); 3024 SmallVector<SDValue, 4> Values(NumAggValues); 3025 3026 SDValue Agg = getValue(Op0); 3027 unsigned i = 0; 3028 // Copy the beginning value(s) from the original aggregate. 3029 for (; i != LinearIndex; ++i) 3030 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3031 SDValue(Agg.getNode(), Agg.getResNo() + i); 3032 // Copy values from the inserted value(s). 3033 if (NumValValues) { 3034 SDValue Val = getValue(Op1); 3035 for (; i != LinearIndex + NumValValues; ++i) 3036 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3037 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3038 } 3039 // Copy remaining value(s) from the original aggregate. 3040 for (; i != NumAggValues; ++i) 3041 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3042 SDValue(Agg.getNode(), Agg.getResNo() + i); 3043 3044 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3045 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3046 &Values[0], NumAggValues)); 3047 } 3048 3049 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3050 const Value *Op0 = I.getOperand(0); 3051 Type *AggTy = Op0->getType(); 3052 Type *ValTy = I.getType(); 3053 bool OutOfUndef = isa<UndefValue>(Op0); 3054 3055 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3056 3057 SmallVector<EVT, 4> ValValueVTs; 3058 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3059 3060 unsigned NumValValues = ValValueVTs.size(); 3061 3062 // Ignore a extractvalue that produces an empty object 3063 if (!NumValValues) { 3064 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3065 return; 3066 } 3067 3068 SmallVector<SDValue, 4> Values(NumValValues); 3069 3070 SDValue Agg = getValue(Op0); 3071 // Copy out the selected value(s). 3072 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3073 Values[i - LinearIndex] = 3074 OutOfUndef ? 3075 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3076 SDValue(Agg.getNode(), Agg.getResNo() + i); 3077 3078 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3079 DAG.getVTList(&ValValueVTs[0], NumValValues), 3080 &Values[0], NumValValues)); 3081 } 3082 3083 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3084 SDValue N = getValue(I.getOperand(0)); 3085 // Note that the pointer operand may be a vector of pointers. Take the scalar 3086 // element which holds a pointer. 3087 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3088 3089 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3090 OI != E; ++OI) { 3091 const Value *Idx = *OI; 3092 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3093 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3094 if (Field) { 3095 // N = N + Offset 3096 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3097 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3098 DAG.getIntPtrConstant(Offset)); 3099 } 3100 3101 Ty = StTy->getElementType(Field); 3102 } else { 3103 Ty = cast<SequentialType>(Ty)->getElementType(); 3104 3105 // If this is a constant subscript, handle it quickly. 3106 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3107 if (CI->isZero()) continue; 3108 uint64_t Offs = 3109 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3110 SDValue OffsVal; 3111 EVT PTy = TLI.getPointerTy(); 3112 unsigned PtrBits = PTy.getSizeInBits(); 3113 if (PtrBits < 64) 3114 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3115 TLI.getPointerTy(), 3116 DAG.getConstant(Offs, MVT::i64)); 3117 else 3118 OffsVal = DAG.getIntPtrConstant(Offs); 3119 3120 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3121 OffsVal); 3122 continue; 3123 } 3124 3125 // N = N + Idx * ElementSize; 3126 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3127 TD->getTypeAllocSize(Ty)); 3128 SDValue IdxN = getValue(Idx); 3129 3130 // If the index is smaller or larger than intptr_t, truncate or extend 3131 // it. 3132 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3133 3134 // If this is a multiply by a power of two, turn it into a shl 3135 // immediately. This is a very common case. 3136 if (ElementSize != 1) { 3137 if (ElementSize.isPowerOf2()) { 3138 unsigned Amt = ElementSize.logBase2(); 3139 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3140 N.getValueType(), IdxN, 3141 DAG.getConstant(Amt, IdxN.getValueType())); 3142 } else { 3143 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3144 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3145 N.getValueType(), IdxN, Scale); 3146 } 3147 } 3148 3149 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3150 N.getValueType(), N, IdxN); 3151 } 3152 } 3153 3154 setValue(&I, N); 3155 } 3156 3157 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3158 // If this is a fixed sized alloca in the entry block of the function, 3159 // allocate it statically on the stack. 3160 if (FuncInfo.StaticAllocaMap.count(&I)) 3161 return; // getValue will auto-populate this. 3162 3163 Type *Ty = I.getAllocatedType(); 3164 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3165 unsigned Align = 3166 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3167 I.getAlignment()); 3168 3169 SDValue AllocSize = getValue(I.getArraySize()); 3170 3171 EVT IntPtr = TLI.getPointerTy(); 3172 if (AllocSize.getValueType() != IntPtr) 3173 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3174 3175 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3176 AllocSize, 3177 DAG.getConstant(TySize, IntPtr)); 3178 3179 // Handle alignment. If the requested alignment is less than or equal to 3180 // the stack alignment, ignore it. If the size is greater than or equal to 3181 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3182 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3183 if (Align <= StackAlign) 3184 Align = 0; 3185 3186 // Round the size of the allocation up to the stack alignment size 3187 // by add SA-1 to the size. 3188 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3189 AllocSize.getValueType(), AllocSize, 3190 DAG.getIntPtrConstant(StackAlign-1)); 3191 3192 // Mask out the low bits for alignment purposes. 3193 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3194 AllocSize.getValueType(), AllocSize, 3195 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3196 3197 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3198 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3199 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3200 VTs, Ops, 3); 3201 setValue(&I, DSA); 3202 DAG.setRoot(DSA.getValue(1)); 3203 3204 // Inform the Frame Information that we have just allocated a variable-sized 3205 // object. 3206 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3207 } 3208 3209 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3210 if (I.isAtomic()) 3211 return visitAtomicLoad(I); 3212 3213 const Value *SV = I.getOperand(0); 3214 SDValue Ptr = getValue(SV); 3215 3216 Type *Ty = I.getType(); 3217 3218 bool isVolatile = I.isVolatile(); 3219 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3220 bool isInvariant = I.getMetadata("invariant.load") != 0; 3221 unsigned Alignment = I.getAlignment(); 3222 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3223 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3224 3225 SmallVector<EVT, 4> ValueVTs; 3226 SmallVector<uint64_t, 4> Offsets; 3227 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3228 unsigned NumValues = ValueVTs.size(); 3229 if (NumValues == 0) 3230 return; 3231 3232 SDValue Root; 3233 bool ConstantMemory = false; 3234 if (I.isVolatile() || NumValues > MaxParallelChains) 3235 // Serialize volatile loads with other side effects. 3236 Root = getRoot(); 3237 else if (AA->pointsToConstantMemory( 3238 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3239 // Do not serialize (non-volatile) loads of constant memory with anything. 3240 Root = DAG.getEntryNode(); 3241 ConstantMemory = true; 3242 } else { 3243 // Do not serialize non-volatile loads against each other. 3244 Root = DAG.getRoot(); 3245 } 3246 3247 SmallVector<SDValue, 4> Values(NumValues); 3248 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3249 NumValues)); 3250 EVT PtrVT = Ptr.getValueType(); 3251 unsigned ChainI = 0; 3252 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3253 // Serializing loads here may result in excessive register pressure, and 3254 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3255 // could recover a bit by hoisting nodes upward in the chain by recognizing 3256 // they are side-effect free or do not alias. The optimizer should really 3257 // avoid this case by converting large object/array copies to llvm.memcpy 3258 // (MaxParallelChains should always remain as failsafe). 3259 if (ChainI == MaxParallelChains) { 3260 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3261 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3262 MVT::Other, &Chains[0], ChainI); 3263 Root = Chain; 3264 ChainI = 0; 3265 } 3266 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3267 PtrVT, Ptr, 3268 DAG.getConstant(Offsets[i], PtrVT)); 3269 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3270 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3271 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3272 Ranges); 3273 3274 Values[i] = L; 3275 Chains[ChainI] = L.getValue(1); 3276 } 3277 3278 if (!ConstantMemory) { 3279 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3280 MVT::Other, &Chains[0], ChainI); 3281 if (isVolatile) 3282 DAG.setRoot(Chain); 3283 else 3284 PendingLoads.push_back(Chain); 3285 } 3286 3287 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3288 DAG.getVTList(&ValueVTs[0], NumValues), 3289 &Values[0], NumValues)); 3290 } 3291 3292 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3293 if (I.isAtomic()) 3294 return visitAtomicStore(I); 3295 3296 const Value *SrcV = I.getOperand(0); 3297 const Value *PtrV = I.getOperand(1); 3298 3299 SmallVector<EVT, 4> ValueVTs; 3300 SmallVector<uint64_t, 4> Offsets; 3301 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3302 unsigned NumValues = ValueVTs.size(); 3303 if (NumValues == 0) 3304 return; 3305 3306 // Get the lowered operands. Note that we do this after 3307 // checking if NumResults is zero, because with zero results 3308 // the operands won't have values in the map. 3309 SDValue Src = getValue(SrcV); 3310 SDValue Ptr = getValue(PtrV); 3311 3312 SDValue Root = getRoot(); 3313 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3314 NumValues)); 3315 EVT PtrVT = Ptr.getValueType(); 3316 bool isVolatile = I.isVolatile(); 3317 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3318 unsigned Alignment = I.getAlignment(); 3319 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3320 3321 unsigned ChainI = 0; 3322 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3323 // See visitLoad comments. 3324 if (ChainI == MaxParallelChains) { 3325 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3326 MVT::Other, &Chains[0], ChainI); 3327 Root = Chain; 3328 ChainI = 0; 3329 } 3330 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3331 DAG.getConstant(Offsets[i], PtrVT)); 3332 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3333 SDValue(Src.getNode(), Src.getResNo() + i), 3334 Add, MachinePointerInfo(PtrV, Offsets[i]), 3335 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3336 Chains[ChainI] = St; 3337 } 3338 3339 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3340 MVT::Other, &Chains[0], ChainI); 3341 ++SDNodeOrder; 3342 AssignOrderingToNode(StoreNode.getNode()); 3343 DAG.setRoot(StoreNode); 3344 } 3345 3346 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3347 SynchronizationScope Scope, 3348 bool Before, DebugLoc dl, 3349 SelectionDAG &DAG, 3350 const TargetLowering &TLI) { 3351 // Fence, if necessary 3352 if (Before) { 3353 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3354 Order = Release; 3355 else if (Order == Acquire || Order == Monotonic) 3356 return Chain; 3357 } else { 3358 if (Order == AcquireRelease) 3359 Order = Acquire; 3360 else if (Order == Release || Order == Monotonic) 3361 return Chain; 3362 } 3363 SDValue Ops[3]; 3364 Ops[0] = Chain; 3365 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3366 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3367 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3368 } 3369 3370 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3371 DebugLoc dl = getCurDebugLoc(); 3372 AtomicOrdering Order = I.getOrdering(); 3373 SynchronizationScope Scope = I.getSynchScope(); 3374 3375 SDValue InChain = getRoot(); 3376 3377 if (TLI.getInsertFencesForAtomic()) 3378 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3379 DAG, TLI); 3380 3381 SDValue L = 3382 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3383 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3384 InChain, 3385 getValue(I.getPointerOperand()), 3386 getValue(I.getCompareOperand()), 3387 getValue(I.getNewValOperand()), 3388 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3389 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3390 Scope); 3391 3392 SDValue OutChain = L.getValue(1); 3393 3394 if (TLI.getInsertFencesForAtomic()) 3395 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3396 DAG, TLI); 3397 3398 setValue(&I, L); 3399 DAG.setRoot(OutChain); 3400 } 3401 3402 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3403 DebugLoc dl = getCurDebugLoc(); 3404 ISD::NodeType NT; 3405 switch (I.getOperation()) { 3406 default: llvm_unreachable("Unknown atomicrmw operation"); 3407 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3408 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3409 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3410 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3411 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3412 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3413 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3414 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3415 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3416 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3417 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3418 } 3419 AtomicOrdering Order = I.getOrdering(); 3420 SynchronizationScope Scope = I.getSynchScope(); 3421 3422 SDValue InChain = getRoot(); 3423 3424 if (TLI.getInsertFencesForAtomic()) 3425 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3426 DAG, TLI); 3427 3428 SDValue L = 3429 DAG.getAtomic(NT, dl, 3430 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3431 InChain, 3432 getValue(I.getPointerOperand()), 3433 getValue(I.getValOperand()), 3434 I.getPointerOperand(), 0 /* Alignment */, 3435 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3436 Scope); 3437 3438 SDValue OutChain = L.getValue(1); 3439 3440 if (TLI.getInsertFencesForAtomic()) 3441 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3442 DAG, TLI); 3443 3444 setValue(&I, L); 3445 DAG.setRoot(OutChain); 3446 } 3447 3448 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3449 DebugLoc dl = getCurDebugLoc(); 3450 SDValue Ops[3]; 3451 Ops[0] = getRoot(); 3452 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3453 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3454 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3455 } 3456 3457 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3458 DebugLoc dl = getCurDebugLoc(); 3459 AtomicOrdering Order = I.getOrdering(); 3460 SynchronizationScope Scope = I.getSynchScope(); 3461 3462 SDValue InChain = getRoot(); 3463 3464 EVT VT = EVT::getEVT(I.getType()); 3465 3466 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3467 report_fatal_error("Cannot generate unaligned atomic load"); 3468 3469 SDValue L = 3470 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3471 getValue(I.getPointerOperand()), 3472 I.getPointerOperand(), I.getAlignment(), 3473 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3474 Scope); 3475 3476 SDValue OutChain = L.getValue(1); 3477 3478 if (TLI.getInsertFencesForAtomic()) 3479 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3480 DAG, TLI); 3481 3482 setValue(&I, L); 3483 DAG.setRoot(OutChain); 3484 } 3485 3486 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3487 DebugLoc dl = getCurDebugLoc(); 3488 3489 AtomicOrdering Order = I.getOrdering(); 3490 SynchronizationScope Scope = I.getSynchScope(); 3491 3492 SDValue InChain = getRoot(); 3493 3494 EVT VT = EVT::getEVT(I.getValueOperand()->getType()); 3495 3496 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3497 report_fatal_error("Cannot generate unaligned atomic store"); 3498 3499 if (TLI.getInsertFencesForAtomic()) 3500 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3501 DAG, TLI); 3502 3503 SDValue OutChain = 3504 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3505 InChain, 3506 getValue(I.getPointerOperand()), 3507 getValue(I.getValueOperand()), 3508 I.getPointerOperand(), I.getAlignment(), 3509 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3510 Scope); 3511 3512 if (TLI.getInsertFencesForAtomic()) 3513 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3514 DAG, TLI); 3515 3516 DAG.setRoot(OutChain); 3517 } 3518 3519 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3520 /// node. 3521 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3522 unsigned Intrinsic) { 3523 bool HasChain = !I.doesNotAccessMemory(); 3524 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3525 3526 // Build the operand list. 3527 SmallVector<SDValue, 8> Ops; 3528 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3529 if (OnlyLoad) { 3530 // We don't need to serialize loads against other loads. 3531 Ops.push_back(DAG.getRoot()); 3532 } else { 3533 Ops.push_back(getRoot()); 3534 } 3535 } 3536 3537 // Info is set by getTgtMemInstrinsic 3538 TargetLowering::IntrinsicInfo Info; 3539 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3540 3541 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3542 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3543 Info.opc == ISD::INTRINSIC_W_CHAIN) 3544 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3545 3546 // Add all operands of the call to the operand list. 3547 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3548 SDValue Op = getValue(I.getArgOperand(i)); 3549 Ops.push_back(Op); 3550 } 3551 3552 SmallVector<EVT, 4> ValueVTs; 3553 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3554 3555 if (HasChain) 3556 ValueVTs.push_back(MVT::Other); 3557 3558 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3559 3560 // Create the node. 3561 SDValue Result; 3562 if (IsTgtIntrinsic) { 3563 // This is target intrinsic that touches memory 3564 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3565 VTs, &Ops[0], Ops.size(), 3566 Info.memVT, 3567 MachinePointerInfo(Info.ptrVal, Info.offset), 3568 Info.align, Info.vol, 3569 Info.readMem, Info.writeMem); 3570 } else if (!HasChain) { 3571 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3572 VTs, &Ops[0], Ops.size()); 3573 } else if (!I.getType()->isVoidTy()) { 3574 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3575 VTs, &Ops[0], Ops.size()); 3576 } else { 3577 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3578 VTs, &Ops[0], Ops.size()); 3579 } 3580 3581 if (HasChain) { 3582 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3583 if (OnlyLoad) 3584 PendingLoads.push_back(Chain); 3585 else 3586 DAG.setRoot(Chain); 3587 } 3588 3589 if (!I.getType()->isVoidTy()) { 3590 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3591 EVT VT = TLI.getValueType(PTy); 3592 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3593 } 3594 3595 setValue(&I, Result); 3596 } else { 3597 // Assign order to result here. If the intrinsic does not produce a result, 3598 // it won't be mapped to a SDNode and visit() will not assign it an order 3599 // number. 3600 ++SDNodeOrder; 3601 AssignOrderingToNode(Result.getNode()); 3602 } 3603 } 3604 3605 /// GetSignificand - Get the significand and build it into a floating-point 3606 /// number with exponent of 1: 3607 /// 3608 /// Op = (Op & 0x007fffff) | 0x3f800000; 3609 /// 3610 /// where Op is the hexidecimal representation of floating point value. 3611 static SDValue 3612 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3613 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3614 DAG.getConstant(0x007fffff, MVT::i32)); 3615 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3616 DAG.getConstant(0x3f800000, MVT::i32)); 3617 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3618 } 3619 3620 /// GetExponent - Get the exponent: 3621 /// 3622 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3623 /// 3624 /// where Op is the hexidecimal representation of floating point value. 3625 static SDValue 3626 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3627 DebugLoc dl) { 3628 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3629 DAG.getConstant(0x7f800000, MVT::i32)); 3630 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3631 DAG.getConstant(23, TLI.getPointerTy())); 3632 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3633 DAG.getConstant(127, MVT::i32)); 3634 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3635 } 3636 3637 /// getF32Constant - Get 32-bit floating point constant. 3638 static SDValue 3639 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3640 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3641 } 3642 3643 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3644 /// limited-precision mode. 3645 void 3646 SelectionDAGBuilder::visitExp(const CallInst &I) { 3647 SDValue result; 3648 DebugLoc dl = getCurDebugLoc(); 3649 3650 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3651 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3652 SDValue Op = getValue(I.getArgOperand(0)); 3653 3654 // Put the exponent in the right bit position for later addition to the 3655 // final result: 3656 // 3657 // #define LOG2OFe 1.4426950f 3658 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3659 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3660 getF32Constant(DAG, 0x3fb8aa3b)); 3661 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3662 3663 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3664 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3665 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3666 3667 // IntegerPartOfX <<= 23; 3668 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3669 DAG.getConstant(23, TLI.getPointerTy())); 3670 3671 if (LimitFloatPrecision <= 6) { 3672 // For floating-point precision of 6: 3673 // 3674 // TwoToFractionalPartOfX = 3675 // 0.997535578f + 3676 // (0.735607626f + 0.252464424f * x) * x; 3677 // 3678 // error 0.0144103317, which is 6 bits 3679 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3680 getF32Constant(DAG, 0x3e814304)); 3681 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3682 getF32Constant(DAG, 0x3f3c50c8)); 3683 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3684 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3685 getF32Constant(DAG, 0x3f7f5e7e)); 3686 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3687 3688 // Add the exponent into the result in integer domain. 3689 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3690 TwoToFracPartOfX, IntegerPartOfX); 3691 3692 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3693 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3694 // For floating-point precision of 12: 3695 // 3696 // TwoToFractionalPartOfX = 3697 // 0.999892986f + 3698 // (0.696457318f + 3699 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3700 // 3701 // 0.000107046256 error, which is 13 to 14 bits 3702 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3703 getF32Constant(DAG, 0x3da235e3)); 3704 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3705 getF32Constant(DAG, 0x3e65b8f3)); 3706 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3707 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3708 getF32Constant(DAG, 0x3f324b07)); 3709 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3710 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3711 getF32Constant(DAG, 0x3f7ff8fd)); 3712 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3713 3714 // Add the exponent into the result in integer domain. 3715 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3716 TwoToFracPartOfX, IntegerPartOfX); 3717 3718 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3719 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3720 // For floating-point precision of 18: 3721 // 3722 // TwoToFractionalPartOfX = 3723 // 0.999999982f + 3724 // (0.693148872f + 3725 // (0.240227044f + 3726 // (0.554906021e-1f + 3727 // (0.961591928e-2f + 3728 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3729 // 3730 // error 2.47208000*10^(-7), which is better than 18 bits 3731 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3732 getF32Constant(DAG, 0x3924b03e)); 3733 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3734 getF32Constant(DAG, 0x3ab24b87)); 3735 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3736 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3737 getF32Constant(DAG, 0x3c1d8c17)); 3738 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3739 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3740 getF32Constant(DAG, 0x3d634a1d)); 3741 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3742 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3743 getF32Constant(DAG, 0x3e75fe14)); 3744 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3745 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3746 getF32Constant(DAG, 0x3f317234)); 3747 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3748 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3749 getF32Constant(DAG, 0x3f800000)); 3750 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3751 MVT::i32, t13); 3752 3753 // Add the exponent into the result in integer domain. 3754 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3755 TwoToFracPartOfX, IntegerPartOfX); 3756 3757 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3758 } 3759 } else { 3760 // No special expansion. 3761 result = DAG.getNode(ISD::FEXP, dl, 3762 getValue(I.getArgOperand(0)).getValueType(), 3763 getValue(I.getArgOperand(0))); 3764 } 3765 3766 setValue(&I, result); 3767 } 3768 3769 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3770 /// limited-precision mode. 3771 void 3772 SelectionDAGBuilder::visitLog(const CallInst &I) { 3773 SDValue result; 3774 DebugLoc dl = getCurDebugLoc(); 3775 3776 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3777 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3778 SDValue Op = getValue(I.getArgOperand(0)); 3779 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3780 3781 // Scale the exponent by log(2) [0.69314718f]. 3782 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3783 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3784 getF32Constant(DAG, 0x3f317218)); 3785 3786 // Get the significand and build it into a floating-point number with 3787 // exponent of 1. 3788 SDValue X = GetSignificand(DAG, Op1, dl); 3789 3790 if (LimitFloatPrecision <= 6) { 3791 // For floating-point precision of 6: 3792 // 3793 // LogofMantissa = 3794 // -1.1609546f + 3795 // (1.4034025f - 0.23903021f * x) * x; 3796 // 3797 // error 0.0034276066, which is better than 8 bits 3798 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3799 getF32Constant(DAG, 0xbe74c456)); 3800 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3801 getF32Constant(DAG, 0x3fb3a2b1)); 3802 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3803 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3804 getF32Constant(DAG, 0x3f949a29)); 3805 3806 result = DAG.getNode(ISD::FADD, dl, 3807 MVT::f32, LogOfExponent, LogOfMantissa); 3808 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3809 // For floating-point precision of 12: 3810 // 3811 // LogOfMantissa = 3812 // -1.7417939f + 3813 // (2.8212026f + 3814 // (-1.4699568f + 3815 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3816 // 3817 // error 0.000061011436, which is 14 bits 3818 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3819 getF32Constant(DAG, 0xbd67b6d6)); 3820 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3821 getF32Constant(DAG, 0x3ee4f4b8)); 3822 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3823 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3824 getF32Constant(DAG, 0x3fbc278b)); 3825 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3826 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3827 getF32Constant(DAG, 0x40348e95)); 3828 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3829 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3830 getF32Constant(DAG, 0x3fdef31a)); 3831 3832 result = DAG.getNode(ISD::FADD, dl, 3833 MVT::f32, LogOfExponent, LogOfMantissa); 3834 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3835 // For floating-point precision of 18: 3836 // 3837 // LogOfMantissa = 3838 // -2.1072184f + 3839 // (4.2372794f + 3840 // (-3.7029485f + 3841 // (2.2781945f + 3842 // (-0.87823314f + 3843 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3844 // 3845 // error 0.0000023660568, which is better than 18 bits 3846 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3847 getF32Constant(DAG, 0xbc91e5ac)); 3848 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3849 getF32Constant(DAG, 0x3e4350aa)); 3850 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3851 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3852 getF32Constant(DAG, 0x3f60d3e3)); 3853 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3854 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3855 getF32Constant(DAG, 0x4011cdf0)); 3856 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3857 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3858 getF32Constant(DAG, 0x406cfd1c)); 3859 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3860 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3861 getF32Constant(DAG, 0x408797cb)); 3862 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3863 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3864 getF32Constant(DAG, 0x4006dcab)); 3865 3866 result = DAG.getNode(ISD::FADD, dl, 3867 MVT::f32, LogOfExponent, LogOfMantissa); 3868 } 3869 } else { 3870 // No special expansion. 3871 result = DAG.getNode(ISD::FLOG, dl, 3872 getValue(I.getArgOperand(0)).getValueType(), 3873 getValue(I.getArgOperand(0))); 3874 } 3875 3876 setValue(&I, result); 3877 } 3878 3879 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3880 /// limited-precision mode. 3881 void 3882 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3883 SDValue result; 3884 DebugLoc dl = getCurDebugLoc(); 3885 3886 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3887 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3888 SDValue Op = getValue(I.getArgOperand(0)); 3889 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3890 3891 // Get the exponent. 3892 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3893 3894 // Get the significand and build it into a floating-point number with 3895 // exponent of 1. 3896 SDValue X = GetSignificand(DAG, Op1, dl); 3897 3898 // Different possible minimax approximations of significand in 3899 // floating-point for various degrees of accuracy over [1,2]. 3900 if (LimitFloatPrecision <= 6) { 3901 // For floating-point precision of 6: 3902 // 3903 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3904 // 3905 // error 0.0049451742, which is more than 7 bits 3906 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3907 getF32Constant(DAG, 0xbeb08fe0)); 3908 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3909 getF32Constant(DAG, 0x40019463)); 3910 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3911 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3912 getF32Constant(DAG, 0x3fd6633d)); 3913 3914 result = DAG.getNode(ISD::FADD, dl, 3915 MVT::f32, LogOfExponent, Log2ofMantissa); 3916 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3917 // For floating-point precision of 12: 3918 // 3919 // Log2ofMantissa = 3920 // -2.51285454f + 3921 // (4.07009056f + 3922 // (-2.12067489f + 3923 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3924 // 3925 // error 0.0000876136000, which is better than 13 bits 3926 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3927 getF32Constant(DAG, 0xbda7262e)); 3928 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3929 getF32Constant(DAG, 0x3f25280b)); 3930 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3931 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3932 getF32Constant(DAG, 0x4007b923)); 3933 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3934 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3935 getF32Constant(DAG, 0x40823e2f)); 3936 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3937 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3938 getF32Constant(DAG, 0x4020d29c)); 3939 3940 result = DAG.getNode(ISD::FADD, dl, 3941 MVT::f32, LogOfExponent, Log2ofMantissa); 3942 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3943 // For floating-point precision of 18: 3944 // 3945 // Log2ofMantissa = 3946 // -3.0400495f + 3947 // (6.1129976f + 3948 // (-5.3420409f + 3949 // (3.2865683f + 3950 // (-1.2669343f + 3951 // (0.27515199f - 3952 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3953 // 3954 // error 0.0000018516, which is better than 18 bits 3955 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3956 getF32Constant(DAG, 0xbcd2769e)); 3957 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3958 getF32Constant(DAG, 0x3e8ce0b9)); 3959 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3960 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3961 getF32Constant(DAG, 0x3fa22ae7)); 3962 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3963 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3964 getF32Constant(DAG, 0x40525723)); 3965 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3966 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3967 getF32Constant(DAG, 0x40aaf200)); 3968 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3969 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3970 getF32Constant(DAG, 0x40c39dad)); 3971 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3972 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3973 getF32Constant(DAG, 0x4042902c)); 3974 3975 result = DAG.getNode(ISD::FADD, dl, 3976 MVT::f32, LogOfExponent, Log2ofMantissa); 3977 } 3978 } else { 3979 // No special expansion. 3980 result = DAG.getNode(ISD::FLOG2, dl, 3981 getValue(I.getArgOperand(0)).getValueType(), 3982 getValue(I.getArgOperand(0))); 3983 } 3984 3985 setValue(&I, result); 3986 } 3987 3988 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3989 /// limited-precision mode. 3990 void 3991 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3992 SDValue result; 3993 DebugLoc dl = getCurDebugLoc(); 3994 3995 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3996 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3997 SDValue Op = getValue(I.getArgOperand(0)); 3998 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3999 4000 // Scale the exponent by log10(2) [0.30102999f]. 4001 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4002 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4003 getF32Constant(DAG, 0x3e9a209a)); 4004 4005 // Get the significand and build it into a floating-point number with 4006 // exponent of 1. 4007 SDValue X = GetSignificand(DAG, Op1, dl); 4008 4009 if (LimitFloatPrecision <= 6) { 4010 // For floating-point precision of 6: 4011 // 4012 // Log10ofMantissa = 4013 // -0.50419619f + 4014 // (0.60948995f - 0.10380950f * x) * x; 4015 // 4016 // error 0.0014886165, which is 6 bits 4017 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4018 getF32Constant(DAG, 0xbdd49a13)); 4019 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4020 getF32Constant(DAG, 0x3f1c0789)); 4021 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4022 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4023 getF32Constant(DAG, 0x3f011300)); 4024 4025 result = DAG.getNode(ISD::FADD, dl, 4026 MVT::f32, LogOfExponent, Log10ofMantissa); 4027 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4028 // For floating-point precision of 12: 4029 // 4030 // Log10ofMantissa = 4031 // -0.64831180f + 4032 // (0.91751397f + 4033 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4034 // 4035 // error 0.00019228036, which is better than 12 bits 4036 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4037 getF32Constant(DAG, 0x3d431f31)); 4038 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4039 getF32Constant(DAG, 0x3ea21fb2)); 4040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4041 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4042 getF32Constant(DAG, 0x3f6ae232)); 4043 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4044 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4045 getF32Constant(DAG, 0x3f25f7c3)); 4046 4047 result = DAG.getNode(ISD::FADD, dl, 4048 MVT::f32, LogOfExponent, Log10ofMantissa); 4049 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4050 // For floating-point precision of 18: 4051 // 4052 // Log10ofMantissa = 4053 // -0.84299375f + 4054 // (1.5327582f + 4055 // (-1.0688956f + 4056 // (0.49102474f + 4057 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4058 // 4059 // error 0.0000037995730, which is better than 18 bits 4060 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4061 getF32Constant(DAG, 0x3c5d51ce)); 4062 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4063 getF32Constant(DAG, 0x3e00685a)); 4064 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4065 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4066 getF32Constant(DAG, 0x3efb6798)); 4067 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4068 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4069 getF32Constant(DAG, 0x3f88d192)); 4070 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4071 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4072 getF32Constant(DAG, 0x3fc4316c)); 4073 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4074 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4075 getF32Constant(DAG, 0x3f57ce70)); 4076 4077 result = DAG.getNode(ISD::FADD, dl, 4078 MVT::f32, LogOfExponent, Log10ofMantissa); 4079 } 4080 } else { 4081 // No special expansion. 4082 result = DAG.getNode(ISD::FLOG10, dl, 4083 getValue(I.getArgOperand(0)).getValueType(), 4084 getValue(I.getArgOperand(0))); 4085 } 4086 4087 setValue(&I, result); 4088 } 4089 4090 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4091 /// limited-precision mode. 4092 void 4093 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4094 SDValue result; 4095 DebugLoc dl = getCurDebugLoc(); 4096 4097 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4098 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4099 SDValue Op = getValue(I.getArgOperand(0)); 4100 4101 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4102 4103 // FractionalPartOfX = x - (float)IntegerPartOfX; 4104 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4105 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4106 4107 // IntegerPartOfX <<= 23; 4108 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4109 DAG.getConstant(23, TLI.getPointerTy())); 4110 4111 if (LimitFloatPrecision <= 6) { 4112 // For floating-point precision of 6: 4113 // 4114 // TwoToFractionalPartOfX = 4115 // 0.997535578f + 4116 // (0.735607626f + 0.252464424f * x) * x; 4117 // 4118 // error 0.0144103317, which is 6 bits 4119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4120 getF32Constant(DAG, 0x3e814304)); 4121 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4122 getF32Constant(DAG, 0x3f3c50c8)); 4123 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4124 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4125 getF32Constant(DAG, 0x3f7f5e7e)); 4126 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4127 SDValue TwoToFractionalPartOfX = 4128 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4129 4130 result = DAG.getNode(ISD::BITCAST, dl, 4131 MVT::f32, TwoToFractionalPartOfX); 4132 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4133 // For floating-point precision of 12: 4134 // 4135 // TwoToFractionalPartOfX = 4136 // 0.999892986f + 4137 // (0.696457318f + 4138 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4139 // 4140 // error 0.000107046256, which is 13 to 14 bits 4141 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4142 getF32Constant(DAG, 0x3da235e3)); 4143 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4144 getF32Constant(DAG, 0x3e65b8f3)); 4145 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4146 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4147 getF32Constant(DAG, 0x3f324b07)); 4148 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4149 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4150 getF32Constant(DAG, 0x3f7ff8fd)); 4151 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4152 SDValue TwoToFractionalPartOfX = 4153 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4154 4155 result = DAG.getNode(ISD::BITCAST, dl, 4156 MVT::f32, TwoToFractionalPartOfX); 4157 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4158 // For floating-point precision of 18: 4159 // 4160 // TwoToFractionalPartOfX = 4161 // 0.999999982f + 4162 // (0.693148872f + 4163 // (0.240227044f + 4164 // (0.554906021e-1f + 4165 // (0.961591928e-2f + 4166 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4167 // error 2.47208000*10^(-7), which is better than 18 bits 4168 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4169 getF32Constant(DAG, 0x3924b03e)); 4170 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4171 getF32Constant(DAG, 0x3ab24b87)); 4172 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4173 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4174 getF32Constant(DAG, 0x3c1d8c17)); 4175 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4176 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4177 getF32Constant(DAG, 0x3d634a1d)); 4178 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4179 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4180 getF32Constant(DAG, 0x3e75fe14)); 4181 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4182 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4183 getF32Constant(DAG, 0x3f317234)); 4184 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4185 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4186 getF32Constant(DAG, 0x3f800000)); 4187 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4188 SDValue TwoToFractionalPartOfX = 4189 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4190 4191 result = DAG.getNode(ISD::BITCAST, dl, 4192 MVT::f32, TwoToFractionalPartOfX); 4193 } 4194 } else { 4195 // No special expansion. 4196 result = DAG.getNode(ISD::FEXP2, dl, 4197 getValue(I.getArgOperand(0)).getValueType(), 4198 getValue(I.getArgOperand(0))); 4199 } 4200 4201 setValue(&I, result); 4202 } 4203 4204 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4205 /// limited-precision mode with x == 10.0f. 4206 void 4207 SelectionDAGBuilder::visitPow(const CallInst &I) { 4208 SDValue result; 4209 const Value *Val = I.getArgOperand(0); 4210 DebugLoc dl = getCurDebugLoc(); 4211 bool IsExp10 = false; 4212 4213 if (getValue(Val).getValueType() == MVT::f32 && 4214 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4215 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4216 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4217 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4218 APFloat Ten(10.0f); 4219 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4220 } 4221 } 4222 } 4223 4224 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4225 SDValue Op = getValue(I.getArgOperand(1)); 4226 4227 // Put the exponent in the right bit position for later addition to the 4228 // final result: 4229 // 4230 // #define LOG2OF10 3.3219281f 4231 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4232 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4233 getF32Constant(DAG, 0x40549a78)); 4234 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4235 4236 // FractionalPartOfX = x - (float)IntegerPartOfX; 4237 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4238 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4239 4240 // IntegerPartOfX <<= 23; 4241 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4242 DAG.getConstant(23, TLI.getPointerTy())); 4243 4244 if (LimitFloatPrecision <= 6) { 4245 // For floating-point precision of 6: 4246 // 4247 // twoToFractionalPartOfX = 4248 // 0.997535578f + 4249 // (0.735607626f + 0.252464424f * x) * x; 4250 // 4251 // error 0.0144103317, which is 6 bits 4252 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4253 getF32Constant(DAG, 0x3e814304)); 4254 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4255 getF32Constant(DAG, 0x3f3c50c8)); 4256 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4257 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4258 getF32Constant(DAG, 0x3f7f5e7e)); 4259 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4260 SDValue TwoToFractionalPartOfX = 4261 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4262 4263 result = DAG.getNode(ISD::BITCAST, dl, 4264 MVT::f32, TwoToFractionalPartOfX); 4265 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4266 // For floating-point precision of 12: 4267 // 4268 // TwoToFractionalPartOfX = 4269 // 0.999892986f + 4270 // (0.696457318f + 4271 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4272 // 4273 // error 0.000107046256, which is 13 to 14 bits 4274 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4275 getF32Constant(DAG, 0x3da235e3)); 4276 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4277 getF32Constant(DAG, 0x3e65b8f3)); 4278 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4279 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4280 getF32Constant(DAG, 0x3f324b07)); 4281 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4282 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4283 getF32Constant(DAG, 0x3f7ff8fd)); 4284 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4285 SDValue TwoToFractionalPartOfX = 4286 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4287 4288 result = DAG.getNode(ISD::BITCAST, dl, 4289 MVT::f32, TwoToFractionalPartOfX); 4290 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4291 // For floating-point precision of 18: 4292 // 4293 // TwoToFractionalPartOfX = 4294 // 0.999999982f + 4295 // (0.693148872f + 4296 // (0.240227044f + 4297 // (0.554906021e-1f + 4298 // (0.961591928e-2f + 4299 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4300 // error 2.47208000*10^(-7), which is better than 18 bits 4301 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4302 getF32Constant(DAG, 0x3924b03e)); 4303 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4304 getF32Constant(DAG, 0x3ab24b87)); 4305 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4306 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4307 getF32Constant(DAG, 0x3c1d8c17)); 4308 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4309 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4310 getF32Constant(DAG, 0x3d634a1d)); 4311 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4312 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4313 getF32Constant(DAG, 0x3e75fe14)); 4314 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4315 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4316 getF32Constant(DAG, 0x3f317234)); 4317 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4318 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4319 getF32Constant(DAG, 0x3f800000)); 4320 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4321 SDValue TwoToFractionalPartOfX = 4322 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4323 4324 result = DAG.getNode(ISD::BITCAST, dl, 4325 MVT::f32, TwoToFractionalPartOfX); 4326 } 4327 } else { 4328 // No special expansion. 4329 result = DAG.getNode(ISD::FPOW, dl, 4330 getValue(I.getArgOperand(0)).getValueType(), 4331 getValue(I.getArgOperand(0)), 4332 getValue(I.getArgOperand(1))); 4333 } 4334 4335 setValue(&I, result); 4336 } 4337 4338 4339 /// ExpandPowI - Expand a llvm.powi intrinsic. 4340 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4341 SelectionDAG &DAG) { 4342 // If RHS is a constant, we can expand this out to a multiplication tree, 4343 // otherwise we end up lowering to a call to __powidf2 (for example). When 4344 // optimizing for size, we only want to do this if the expansion would produce 4345 // a small number of multiplies, otherwise we do the full expansion. 4346 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4347 // Get the exponent as a positive value. 4348 unsigned Val = RHSC->getSExtValue(); 4349 if ((int)Val < 0) Val = -Val; 4350 4351 // powi(x, 0) -> 1.0 4352 if (Val == 0) 4353 return DAG.getConstantFP(1.0, LHS.getValueType()); 4354 4355 const Function *F = DAG.getMachineFunction().getFunction(); 4356 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4357 // If optimizing for size, don't insert too many multiplies. This 4358 // inserts up to 5 multiplies. 4359 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4360 // We use the simple binary decomposition method to generate the multiply 4361 // sequence. There are more optimal ways to do this (for example, 4362 // powi(x,15) generates one more multiply than it should), but this has 4363 // the benefit of being both really simple and much better than a libcall. 4364 SDValue Res; // Logically starts equal to 1.0 4365 SDValue CurSquare = LHS; 4366 while (Val) { 4367 if (Val & 1) { 4368 if (Res.getNode()) 4369 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4370 else 4371 Res = CurSquare; // 1.0*CurSquare. 4372 } 4373 4374 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4375 CurSquare, CurSquare); 4376 Val >>= 1; 4377 } 4378 4379 // If the original was negative, invert the result, producing 1/(x*x*x). 4380 if (RHSC->getSExtValue() < 0) 4381 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4382 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4383 return Res; 4384 } 4385 } 4386 4387 // Otherwise, expand to a libcall. 4388 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4389 } 4390 4391 // getTruncatedArgReg - Find underlying register used for an truncated 4392 // argument. 4393 static unsigned getTruncatedArgReg(const SDValue &N) { 4394 if (N.getOpcode() != ISD::TRUNCATE) 4395 return 0; 4396 4397 const SDValue &Ext = N.getOperand(0); 4398 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4399 const SDValue &CFR = Ext.getOperand(0); 4400 if (CFR.getOpcode() == ISD::CopyFromReg) 4401 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4402 if (CFR.getOpcode() == ISD::TRUNCATE) 4403 return getTruncatedArgReg(CFR); 4404 } 4405 return 0; 4406 } 4407 4408 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4409 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4410 /// At the end of instruction selection, they will be inserted to the entry BB. 4411 bool 4412 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4413 int64_t Offset, 4414 const SDValue &N) { 4415 const Argument *Arg = dyn_cast<Argument>(V); 4416 if (!Arg) 4417 return false; 4418 4419 MachineFunction &MF = DAG.getMachineFunction(); 4420 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4421 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4422 4423 // Ignore inlined function arguments here. 4424 DIVariable DV(Variable); 4425 if (DV.isInlinedFnArgument(MF.getFunction())) 4426 return false; 4427 4428 unsigned Reg = 0; 4429 // Some arguments' frame index is recorded during argument lowering. 4430 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4431 if (Offset) 4432 Reg = TRI->getFrameRegister(MF); 4433 4434 if (!Reg && N.getNode()) { 4435 if (N.getOpcode() == ISD::CopyFromReg) 4436 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4437 else 4438 Reg = getTruncatedArgReg(N); 4439 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4440 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4441 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4442 if (PR) 4443 Reg = PR; 4444 } 4445 } 4446 4447 if (!Reg) { 4448 // Check if ValueMap has reg number. 4449 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4450 if (VMI != FuncInfo.ValueMap.end()) 4451 Reg = VMI->second; 4452 } 4453 4454 if (!Reg && N.getNode()) { 4455 // Check if frame index is available. 4456 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4457 if (FrameIndexSDNode *FINode = 4458 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4459 Reg = TRI->getFrameRegister(MF); 4460 Offset = FINode->getIndex(); 4461 } 4462 } 4463 4464 if (!Reg) 4465 return false; 4466 4467 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4468 TII->get(TargetOpcode::DBG_VALUE)) 4469 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4470 FuncInfo.ArgDbgValues.push_back(&*MIB); 4471 return true; 4472 } 4473 4474 // VisualStudio defines setjmp as _setjmp 4475 #if defined(_MSC_VER) && defined(setjmp) && \ 4476 !defined(setjmp_undefined_for_msvc) 4477 # pragma push_macro("setjmp") 4478 # undef setjmp 4479 # define setjmp_undefined_for_msvc 4480 #endif 4481 4482 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4483 /// we want to emit this as a call to a named external function, return the name 4484 /// otherwise lower it and return null. 4485 const char * 4486 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4487 DebugLoc dl = getCurDebugLoc(); 4488 SDValue Res; 4489 4490 switch (Intrinsic) { 4491 default: 4492 // By default, turn this into a target intrinsic node. 4493 visitTargetIntrinsic(I, Intrinsic); 4494 return 0; 4495 case Intrinsic::vastart: visitVAStart(I); return 0; 4496 case Intrinsic::vaend: visitVAEnd(I); return 0; 4497 case Intrinsic::vacopy: visitVACopy(I); return 0; 4498 case Intrinsic::returnaddress: 4499 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4500 getValue(I.getArgOperand(0)))); 4501 return 0; 4502 case Intrinsic::frameaddress: 4503 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4504 getValue(I.getArgOperand(0)))); 4505 return 0; 4506 case Intrinsic::setjmp: 4507 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4508 case Intrinsic::longjmp: 4509 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4510 case Intrinsic::memcpy: { 4511 // Assert for address < 256 since we support only user defined address 4512 // spaces. 4513 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4514 < 256 && 4515 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4516 < 256 && 4517 "Unknown address space"); 4518 SDValue Op1 = getValue(I.getArgOperand(0)); 4519 SDValue Op2 = getValue(I.getArgOperand(1)); 4520 SDValue Op3 = getValue(I.getArgOperand(2)); 4521 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4522 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4523 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4524 MachinePointerInfo(I.getArgOperand(0)), 4525 MachinePointerInfo(I.getArgOperand(1)))); 4526 return 0; 4527 } 4528 case Intrinsic::memset: { 4529 // Assert for address < 256 since we support only user defined address 4530 // spaces. 4531 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4532 < 256 && 4533 "Unknown address space"); 4534 SDValue Op1 = getValue(I.getArgOperand(0)); 4535 SDValue Op2 = getValue(I.getArgOperand(1)); 4536 SDValue Op3 = getValue(I.getArgOperand(2)); 4537 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4538 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4539 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4540 MachinePointerInfo(I.getArgOperand(0)))); 4541 return 0; 4542 } 4543 case Intrinsic::memmove: { 4544 // Assert for address < 256 since we support only user defined address 4545 // spaces. 4546 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4547 < 256 && 4548 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4549 < 256 && 4550 "Unknown address space"); 4551 SDValue Op1 = getValue(I.getArgOperand(0)); 4552 SDValue Op2 = getValue(I.getArgOperand(1)); 4553 SDValue Op3 = getValue(I.getArgOperand(2)); 4554 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4555 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4556 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4557 MachinePointerInfo(I.getArgOperand(0)), 4558 MachinePointerInfo(I.getArgOperand(1)))); 4559 return 0; 4560 } 4561 case Intrinsic::dbg_declare: { 4562 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4563 MDNode *Variable = DI.getVariable(); 4564 const Value *Address = DI.getAddress(); 4565 if (!Address || !DIVariable(Variable).Verify()) { 4566 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4567 return 0; 4568 } 4569 4570 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4571 // but do not always have a corresponding SDNode built. The SDNodeOrder 4572 // absolute, but not relative, values are different depending on whether 4573 // debug info exists. 4574 ++SDNodeOrder; 4575 4576 // Check if address has undef value. 4577 if (isa<UndefValue>(Address) || 4578 (Address->use_empty() && !isa<Argument>(Address))) { 4579 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4580 return 0; 4581 } 4582 4583 SDValue &N = NodeMap[Address]; 4584 if (!N.getNode() && isa<Argument>(Address)) 4585 // Check unused arguments map. 4586 N = UnusedArgNodeMap[Address]; 4587 SDDbgValue *SDV; 4588 if (N.getNode()) { 4589 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4590 Address = BCI->getOperand(0); 4591 // Parameters are handled specially. 4592 bool isParameter = 4593 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4594 isa<Argument>(Address)); 4595 4596 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4597 4598 if (isParameter && !AI) { 4599 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4600 if (FINode) 4601 // Byval parameter. We have a frame index at this point. 4602 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4603 0, dl, SDNodeOrder); 4604 else { 4605 // Address is an argument, so try to emit its dbg value using 4606 // virtual register info from the FuncInfo.ValueMap. 4607 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4608 return 0; 4609 } 4610 } else if (AI) 4611 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4612 0, dl, SDNodeOrder); 4613 else { 4614 // Can't do anything with other non-AI cases yet. 4615 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4616 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4617 DEBUG(Address->dump()); 4618 return 0; 4619 } 4620 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4621 } else { 4622 // If Address is an argument then try to emit its dbg value using 4623 // virtual register info from the FuncInfo.ValueMap. 4624 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4625 // If variable is pinned by a alloca in dominating bb then 4626 // use StaticAllocaMap. 4627 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4628 if (AI->getParent() != DI.getParent()) { 4629 DenseMap<const AllocaInst*, int>::iterator SI = 4630 FuncInfo.StaticAllocaMap.find(AI); 4631 if (SI != FuncInfo.StaticAllocaMap.end()) { 4632 SDV = DAG.getDbgValue(Variable, SI->second, 4633 0, dl, SDNodeOrder); 4634 DAG.AddDbgValue(SDV, 0, false); 4635 return 0; 4636 } 4637 } 4638 } 4639 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4640 } 4641 } 4642 return 0; 4643 } 4644 case Intrinsic::dbg_value: { 4645 const DbgValueInst &DI = cast<DbgValueInst>(I); 4646 if (!DIVariable(DI.getVariable()).Verify()) 4647 return 0; 4648 4649 MDNode *Variable = DI.getVariable(); 4650 uint64_t Offset = DI.getOffset(); 4651 const Value *V = DI.getValue(); 4652 if (!V) 4653 return 0; 4654 4655 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4656 // but do not always have a corresponding SDNode built. The SDNodeOrder 4657 // absolute, but not relative, values are different depending on whether 4658 // debug info exists. 4659 ++SDNodeOrder; 4660 SDDbgValue *SDV; 4661 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4662 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4663 DAG.AddDbgValue(SDV, 0, false); 4664 } else { 4665 // Do not use getValue() in here; we don't want to generate code at 4666 // this point if it hasn't been done yet. 4667 SDValue N = NodeMap[V]; 4668 if (!N.getNode() && isa<Argument>(V)) 4669 // Check unused arguments map. 4670 N = UnusedArgNodeMap[V]; 4671 if (N.getNode()) { 4672 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4673 SDV = DAG.getDbgValue(Variable, N.getNode(), 4674 N.getResNo(), Offset, dl, SDNodeOrder); 4675 DAG.AddDbgValue(SDV, N.getNode(), false); 4676 } 4677 } else if (!V->use_empty() ) { 4678 // Do not call getValue(V) yet, as we don't want to generate code. 4679 // Remember it for later. 4680 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4681 DanglingDebugInfoMap[V] = DDI; 4682 } else { 4683 // We may expand this to cover more cases. One case where we have no 4684 // data available is an unreferenced parameter. 4685 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4686 } 4687 } 4688 4689 // Build a debug info table entry. 4690 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4691 V = BCI->getOperand(0); 4692 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4693 // Don't handle byval struct arguments or VLAs, for example. 4694 if (!AI) { 4695 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4696 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4697 return 0; 4698 } 4699 DenseMap<const AllocaInst*, int>::iterator SI = 4700 FuncInfo.StaticAllocaMap.find(AI); 4701 if (SI == FuncInfo.StaticAllocaMap.end()) 4702 return 0; // VLAs. 4703 int FI = SI->second; 4704 4705 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4706 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4707 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4708 return 0; 4709 } 4710 4711 case Intrinsic::eh_typeid_for: { 4712 // Find the type id for the given typeinfo. 4713 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4714 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4715 Res = DAG.getConstant(TypeID, MVT::i32); 4716 setValue(&I, Res); 4717 return 0; 4718 } 4719 4720 case Intrinsic::eh_return_i32: 4721 case Intrinsic::eh_return_i64: 4722 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4723 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4724 MVT::Other, 4725 getControlRoot(), 4726 getValue(I.getArgOperand(0)), 4727 getValue(I.getArgOperand(1)))); 4728 return 0; 4729 case Intrinsic::eh_unwind_init: 4730 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4731 return 0; 4732 case Intrinsic::eh_dwarf_cfa: { 4733 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4734 TLI.getPointerTy()); 4735 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4736 TLI.getPointerTy(), 4737 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4738 TLI.getPointerTy()), 4739 CfaArg); 4740 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4741 TLI.getPointerTy(), 4742 DAG.getConstant(0, TLI.getPointerTy())); 4743 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4744 FA, Offset)); 4745 return 0; 4746 } 4747 case Intrinsic::eh_sjlj_callsite: { 4748 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4749 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4750 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4751 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4752 4753 MMI.setCurrentCallSite(CI->getZExtValue()); 4754 return 0; 4755 } 4756 case Intrinsic::eh_sjlj_functioncontext: { 4757 // Get and store the index of the function context. 4758 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4759 AllocaInst *FnCtx = 4760 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4761 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4762 MFI->setFunctionContextIndex(FI); 4763 return 0; 4764 } 4765 case Intrinsic::eh_sjlj_setjmp: { 4766 SDValue Ops[2]; 4767 Ops[0] = getRoot(); 4768 Ops[1] = getValue(I.getArgOperand(0)); 4769 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4770 DAG.getVTList(MVT::i32, MVT::Other), 4771 Ops, 2); 4772 setValue(&I, Op.getValue(0)); 4773 DAG.setRoot(Op.getValue(1)); 4774 return 0; 4775 } 4776 case Intrinsic::eh_sjlj_longjmp: { 4777 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4778 getRoot(), getValue(I.getArgOperand(0)))); 4779 return 0; 4780 } 4781 4782 case Intrinsic::x86_mmx_pslli_w: 4783 case Intrinsic::x86_mmx_pslli_d: 4784 case Intrinsic::x86_mmx_pslli_q: 4785 case Intrinsic::x86_mmx_psrli_w: 4786 case Intrinsic::x86_mmx_psrli_d: 4787 case Intrinsic::x86_mmx_psrli_q: 4788 case Intrinsic::x86_mmx_psrai_w: 4789 case Intrinsic::x86_mmx_psrai_d: { 4790 SDValue ShAmt = getValue(I.getArgOperand(1)); 4791 if (isa<ConstantSDNode>(ShAmt)) { 4792 visitTargetIntrinsic(I, Intrinsic); 4793 return 0; 4794 } 4795 unsigned NewIntrinsic = 0; 4796 EVT ShAmtVT = MVT::v2i32; 4797 switch (Intrinsic) { 4798 case Intrinsic::x86_mmx_pslli_w: 4799 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4800 break; 4801 case Intrinsic::x86_mmx_pslli_d: 4802 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4803 break; 4804 case Intrinsic::x86_mmx_pslli_q: 4805 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4806 break; 4807 case Intrinsic::x86_mmx_psrli_w: 4808 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4809 break; 4810 case Intrinsic::x86_mmx_psrli_d: 4811 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4812 break; 4813 case Intrinsic::x86_mmx_psrli_q: 4814 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4815 break; 4816 case Intrinsic::x86_mmx_psrai_w: 4817 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4818 break; 4819 case Intrinsic::x86_mmx_psrai_d: 4820 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4821 break; 4822 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4823 } 4824 4825 // The vector shift intrinsics with scalars uses 32b shift amounts but 4826 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4827 // to be zero. 4828 // We must do this early because v2i32 is not a legal type. 4829 DebugLoc dl = getCurDebugLoc(); 4830 SDValue ShOps[2]; 4831 ShOps[0] = ShAmt; 4832 ShOps[1] = DAG.getConstant(0, MVT::i32); 4833 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4834 EVT DestVT = TLI.getValueType(I.getType()); 4835 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4836 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4837 DAG.getConstant(NewIntrinsic, MVT::i32), 4838 getValue(I.getArgOperand(0)), ShAmt); 4839 setValue(&I, Res); 4840 return 0; 4841 } 4842 case Intrinsic::x86_avx_vinsertf128_pd_256: 4843 case Intrinsic::x86_avx_vinsertf128_ps_256: 4844 case Intrinsic::x86_avx_vinsertf128_si_256: 4845 case Intrinsic::x86_avx2_vinserti128: { 4846 DebugLoc dl = getCurDebugLoc(); 4847 EVT DestVT = TLI.getValueType(I.getType()); 4848 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4849 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4850 ElVT.getVectorNumElements(); 4851 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4852 getValue(I.getArgOperand(0)), 4853 getValue(I.getArgOperand(1)), 4854 DAG.getConstant(Idx, MVT::i32)); 4855 setValue(&I, Res); 4856 return 0; 4857 } 4858 case Intrinsic::convertff: 4859 case Intrinsic::convertfsi: 4860 case Intrinsic::convertfui: 4861 case Intrinsic::convertsif: 4862 case Intrinsic::convertuif: 4863 case Intrinsic::convertss: 4864 case Intrinsic::convertsu: 4865 case Intrinsic::convertus: 4866 case Intrinsic::convertuu: { 4867 ISD::CvtCode Code = ISD::CVT_INVALID; 4868 switch (Intrinsic) { 4869 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4870 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4871 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4872 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4873 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4874 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4875 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4876 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4877 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4878 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4879 } 4880 EVT DestVT = TLI.getValueType(I.getType()); 4881 const Value *Op1 = I.getArgOperand(0); 4882 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4883 DAG.getValueType(DestVT), 4884 DAG.getValueType(getValue(Op1).getValueType()), 4885 getValue(I.getArgOperand(1)), 4886 getValue(I.getArgOperand(2)), 4887 Code); 4888 setValue(&I, Res); 4889 return 0; 4890 } 4891 case Intrinsic::sqrt: 4892 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4893 getValue(I.getArgOperand(0)).getValueType(), 4894 getValue(I.getArgOperand(0)))); 4895 return 0; 4896 case Intrinsic::powi: 4897 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4898 getValue(I.getArgOperand(1)), DAG)); 4899 return 0; 4900 case Intrinsic::sin: 4901 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4902 getValue(I.getArgOperand(0)).getValueType(), 4903 getValue(I.getArgOperand(0)))); 4904 return 0; 4905 case Intrinsic::cos: 4906 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4907 getValue(I.getArgOperand(0)).getValueType(), 4908 getValue(I.getArgOperand(0)))); 4909 return 0; 4910 case Intrinsic::log: 4911 visitLog(I); 4912 return 0; 4913 case Intrinsic::log2: 4914 visitLog2(I); 4915 return 0; 4916 case Intrinsic::log10: 4917 visitLog10(I); 4918 return 0; 4919 case Intrinsic::exp: 4920 visitExp(I); 4921 return 0; 4922 case Intrinsic::exp2: 4923 visitExp2(I); 4924 return 0; 4925 case Intrinsic::pow: 4926 visitPow(I); 4927 return 0; 4928 case Intrinsic::fabs: 4929 setValue(&I, DAG.getNode(ISD::FABS, dl, 4930 getValue(I.getArgOperand(0)).getValueType(), 4931 getValue(I.getArgOperand(0)))); 4932 return 0; 4933 case Intrinsic::fma: 4934 setValue(&I, DAG.getNode(ISD::FMA, dl, 4935 getValue(I.getArgOperand(0)).getValueType(), 4936 getValue(I.getArgOperand(0)), 4937 getValue(I.getArgOperand(1)), 4938 getValue(I.getArgOperand(2)))); 4939 return 0; 4940 case Intrinsic::fmuladd: { 4941 EVT VT = TLI.getValueType(I.getType()); 4942 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4943 TLI.isOperationLegal(ISD::FMA, VT) && 4944 TLI.isFMAFasterThanMulAndAdd(VT)){ 4945 setValue(&I, DAG.getNode(ISD::FMA, dl, 4946 getValue(I.getArgOperand(0)).getValueType(), 4947 getValue(I.getArgOperand(0)), 4948 getValue(I.getArgOperand(1)), 4949 getValue(I.getArgOperand(2)))); 4950 } else { 4951 SDValue Mul = DAG.getNode(ISD::FMUL, dl, 4952 getValue(I.getArgOperand(0)).getValueType(), 4953 getValue(I.getArgOperand(0)), 4954 getValue(I.getArgOperand(1))); 4955 SDValue Add = DAG.getNode(ISD::FADD, dl, 4956 getValue(I.getArgOperand(0)).getValueType(), 4957 Mul, 4958 getValue(I.getArgOperand(2))); 4959 setValue(&I, Add); 4960 } 4961 return 0; 4962 } 4963 case Intrinsic::convert_to_fp16: 4964 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4965 MVT::i16, getValue(I.getArgOperand(0)))); 4966 return 0; 4967 case Intrinsic::convert_from_fp16: 4968 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4969 MVT::f32, getValue(I.getArgOperand(0)))); 4970 return 0; 4971 case Intrinsic::pcmarker: { 4972 SDValue Tmp = getValue(I.getArgOperand(0)); 4973 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4974 return 0; 4975 } 4976 case Intrinsic::readcyclecounter: { 4977 SDValue Op = getRoot(); 4978 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4979 DAG.getVTList(MVT::i64, MVT::Other), 4980 &Op, 1); 4981 setValue(&I, Res); 4982 DAG.setRoot(Res.getValue(1)); 4983 return 0; 4984 } 4985 case Intrinsic::bswap: 4986 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4987 getValue(I.getArgOperand(0)).getValueType(), 4988 getValue(I.getArgOperand(0)))); 4989 return 0; 4990 case Intrinsic::cttz: { 4991 SDValue Arg = getValue(I.getArgOperand(0)); 4992 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4993 EVT Ty = Arg.getValueType(); 4994 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4995 dl, Ty, Arg)); 4996 return 0; 4997 } 4998 case Intrinsic::ctlz: { 4999 SDValue Arg = getValue(I.getArgOperand(0)); 5000 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5001 EVT Ty = Arg.getValueType(); 5002 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5003 dl, Ty, Arg)); 5004 return 0; 5005 } 5006 case Intrinsic::ctpop: { 5007 SDValue Arg = getValue(I.getArgOperand(0)); 5008 EVT Ty = Arg.getValueType(); 5009 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 5010 return 0; 5011 } 5012 case Intrinsic::stacksave: { 5013 SDValue Op = getRoot(); 5014 Res = DAG.getNode(ISD::STACKSAVE, dl, 5015 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 5016 setValue(&I, Res); 5017 DAG.setRoot(Res.getValue(1)); 5018 return 0; 5019 } 5020 case Intrinsic::stackrestore: { 5021 Res = getValue(I.getArgOperand(0)); 5022 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 5023 return 0; 5024 } 5025 case Intrinsic::stackprotector: { 5026 // Emit code into the DAG to store the stack guard onto the stack. 5027 MachineFunction &MF = DAG.getMachineFunction(); 5028 MachineFrameInfo *MFI = MF.getFrameInfo(); 5029 EVT PtrTy = TLI.getPointerTy(); 5030 5031 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5032 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5033 5034 int FI = FuncInfo.StaticAllocaMap[Slot]; 5035 MFI->setStackProtectorIndex(FI); 5036 5037 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5038 5039 // Store the stack protector onto the stack. 5040 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 5041 MachinePointerInfo::getFixedStack(FI), 5042 true, false, 0); 5043 setValue(&I, Res); 5044 DAG.setRoot(Res); 5045 return 0; 5046 } 5047 case Intrinsic::objectsize: { 5048 // If we don't know by now, we're never going to know. 5049 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5050 5051 assert(CI && "Non-constant type in __builtin_object_size?"); 5052 5053 SDValue Arg = getValue(I.getCalledValue()); 5054 EVT Ty = Arg.getValueType(); 5055 5056 if (CI->isZero()) 5057 Res = DAG.getConstant(-1ULL, Ty); 5058 else 5059 Res = DAG.getConstant(0, Ty); 5060 5061 setValue(&I, Res); 5062 return 0; 5063 } 5064 case Intrinsic::var_annotation: 5065 // Discard annotate attributes 5066 return 0; 5067 5068 case Intrinsic::init_trampoline: { 5069 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5070 5071 SDValue Ops[6]; 5072 Ops[0] = getRoot(); 5073 Ops[1] = getValue(I.getArgOperand(0)); 5074 Ops[2] = getValue(I.getArgOperand(1)); 5075 Ops[3] = getValue(I.getArgOperand(2)); 5076 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5077 Ops[5] = DAG.getSrcValue(F); 5078 5079 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5080 5081 DAG.setRoot(Res); 5082 return 0; 5083 } 5084 case Intrinsic::adjust_trampoline: { 5085 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5086 TLI.getPointerTy(), 5087 getValue(I.getArgOperand(0)))); 5088 return 0; 5089 } 5090 case Intrinsic::gcroot: 5091 if (GFI) { 5092 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5093 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5094 5095 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5096 GFI->addStackRoot(FI->getIndex(), TypeMap); 5097 } 5098 return 0; 5099 case Intrinsic::gcread: 5100 case Intrinsic::gcwrite: 5101 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5102 case Intrinsic::flt_rounds: 5103 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5104 return 0; 5105 5106 case Intrinsic::expect: { 5107 // Just replace __builtin_expect(exp, c) with EXP. 5108 setValue(&I, getValue(I.getArgOperand(0))); 5109 return 0; 5110 } 5111 5112 case Intrinsic::trap: { 5113 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5114 if (TrapFuncName.empty()) { 5115 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5116 return 0; 5117 } 5118 TargetLowering::ArgListTy Args; 5119 TargetLowering:: 5120 CallLoweringInfo CLI(getRoot(), I.getType(), 5121 false, false, false, false, 0, CallingConv::C, 5122 /*isTailCall=*/false, 5123 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5124 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5125 Args, DAG, getCurDebugLoc()); 5126 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5127 DAG.setRoot(Result.second); 5128 return 0; 5129 } 5130 case Intrinsic::debugtrap: { 5131 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot())); 5132 return 0; 5133 } 5134 case Intrinsic::uadd_with_overflow: 5135 case Intrinsic::sadd_with_overflow: 5136 case Intrinsic::usub_with_overflow: 5137 case Intrinsic::ssub_with_overflow: 5138 case Intrinsic::umul_with_overflow: 5139 case Intrinsic::smul_with_overflow: { 5140 ISD::NodeType Op; 5141 switch (Intrinsic) { 5142 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5143 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5144 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5145 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5146 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5147 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5148 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5149 } 5150 SDValue Op1 = getValue(I.getArgOperand(0)); 5151 SDValue Op2 = getValue(I.getArgOperand(1)); 5152 5153 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5154 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 5155 return 0; 5156 } 5157 case Intrinsic::prefetch: { 5158 SDValue Ops[5]; 5159 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5160 Ops[0] = getRoot(); 5161 Ops[1] = getValue(I.getArgOperand(0)); 5162 Ops[2] = getValue(I.getArgOperand(1)); 5163 Ops[3] = getValue(I.getArgOperand(2)); 5164 Ops[4] = getValue(I.getArgOperand(3)); 5165 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5166 DAG.getVTList(MVT::Other), 5167 &Ops[0], 5, 5168 EVT::getIntegerVT(*Context, 8), 5169 MachinePointerInfo(I.getArgOperand(0)), 5170 0, /* align */ 5171 false, /* volatile */ 5172 rw==0, /* read */ 5173 rw==1)); /* write */ 5174 return 0; 5175 } 5176 5177 case Intrinsic::invariant_start: 5178 case Intrinsic::lifetime_start: 5179 // Discard region information. 5180 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5181 return 0; 5182 case Intrinsic::invariant_end: 5183 case Intrinsic::lifetime_end: 5184 // Discard region information. 5185 return 0; 5186 case Intrinsic::donothing: 5187 // ignore 5188 return 0; 5189 } 5190 } 5191 5192 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5193 bool isTailCall, 5194 MachineBasicBlock *LandingPad) { 5195 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5196 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5197 Type *RetTy = FTy->getReturnType(); 5198 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5199 MCSymbol *BeginLabel = 0; 5200 5201 TargetLowering::ArgListTy Args; 5202 TargetLowering::ArgListEntry Entry; 5203 Args.reserve(CS.arg_size()); 5204 5205 // Check whether the function can return without sret-demotion. 5206 SmallVector<ISD::OutputArg, 4> Outs; 5207 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5208 Outs, TLI); 5209 5210 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5211 DAG.getMachineFunction(), 5212 FTy->isVarArg(), Outs, 5213 FTy->getContext()); 5214 5215 SDValue DemoteStackSlot; 5216 int DemoteStackIdx = -100; 5217 5218 if (!CanLowerReturn) { 5219 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5220 FTy->getReturnType()); 5221 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5222 FTy->getReturnType()); 5223 MachineFunction &MF = DAG.getMachineFunction(); 5224 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5225 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5226 5227 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5228 Entry.Node = DemoteStackSlot; 5229 Entry.Ty = StackSlotPtrType; 5230 Entry.isSExt = false; 5231 Entry.isZExt = false; 5232 Entry.isInReg = false; 5233 Entry.isSRet = true; 5234 Entry.isNest = false; 5235 Entry.isByVal = false; 5236 Entry.Alignment = Align; 5237 Args.push_back(Entry); 5238 RetTy = Type::getVoidTy(FTy->getContext()); 5239 } 5240 5241 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5242 i != e; ++i) { 5243 const Value *V = *i; 5244 5245 // Skip empty types 5246 if (V->getType()->isEmptyTy()) 5247 continue; 5248 5249 SDValue ArgNode = getValue(V); 5250 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5251 5252 unsigned attrInd = i - CS.arg_begin() + 1; 5253 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5254 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5255 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5256 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5257 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5258 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5259 Entry.Alignment = CS.getParamAlignment(attrInd); 5260 Args.push_back(Entry); 5261 } 5262 5263 if (LandingPad) { 5264 // Insert a label before the invoke call to mark the try range. This can be 5265 // used to detect deletion of the invoke via the MachineModuleInfo. 5266 BeginLabel = MMI.getContext().CreateTempSymbol(); 5267 5268 // For SjLj, keep track of which landing pads go with which invokes 5269 // so as to maintain the ordering of pads in the LSDA. 5270 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5271 if (CallSiteIndex) { 5272 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5273 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5274 5275 // Now that the call site is handled, stop tracking it. 5276 MMI.setCurrentCallSite(0); 5277 } 5278 5279 // Both PendingLoads and PendingExports must be flushed here; 5280 // this call might not return. 5281 (void)getRoot(); 5282 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5283 } 5284 5285 // Check if target-independent constraints permit a tail call here. 5286 // Target-dependent constraints are checked within TLI.LowerCallTo. 5287 if (isTailCall && 5288 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5289 isTailCall = false; 5290 5291 // If there's a possibility that fast-isel has already selected some amount 5292 // of the current basic block, don't emit a tail call. 5293 if (isTailCall && TM.Options.EnableFastISel) 5294 isTailCall = false; 5295 5296 TargetLowering:: 5297 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5298 getCurDebugLoc(), CS); 5299 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5300 assert((isTailCall || Result.second.getNode()) && 5301 "Non-null chain expected with non-tail call!"); 5302 assert((Result.second.getNode() || !Result.first.getNode()) && 5303 "Null value expected with tail call!"); 5304 if (Result.first.getNode()) { 5305 setValue(CS.getInstruction(), Result.first); 5306 } else if (!CanLowerReturn && Result.second.getNode()) { 5307 // The instruction result is the result of loading from the 5308 // hidden sret parameter. 5309 SmallVector<EVT, 1> PVTs; 5310 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5311 5312 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5313 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5314 EVT PtrVT = PVTs[0]; 5315 5316 SmallVector<EVT, 4> RetTys; 5317 SmallVector<uint64_t, 4> Offsets; 5318 RetTy = FTy->getReturnType(); 5319 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5320 5321 unsigned NumValues = RetTys.size(); 5322 SmallVector<SDValue, 4> Values(NumValues); 5323 SmallVector<SDValue, 4> Chains(NumValues); 5324 5325 for (unsigned i = 0; i < NumValues; ++i) { 5326 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5327 DemoteStackSlot, 5328 DAG.getConstant(Offsets[i], PtrVT)); 5329 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, 5330 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5331 false, false, false, 1); 5332 Values[i] = L; 5333 Chains[i] = L.getValue(1); 5334 } 5335 5336 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5337 MVT::Other, &Chains[0], NumValues); 5338 PendingLoads.push_back(Chain); 5339 5340 setValue(CS.getInstruction(), 5341 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5342 DAG.getVTList(&RetTys[0], RetTys.size()), 5343 &Values[0], Values.size())); 5344 } 5345 5346 // Assign order to nodes here. If the call does not produce a result, it won't 5347 // be mapped to a SDNode and visit() will not assign it an order number. 5348 if (!Result.second.getNode()) { 5349 // As a special case, a null chain means that a tail call has been emitted and 5350 // the DAG root is already updated. 5351 HasTailCall = true; 5352 ++SDNodeOrder; 5353 AssignOrderingToNode(DAG.getRoot().getNode()); 5354 } else { 5355 DAG.setRoot(Result.second); 5356 ++SDNodeOrder; 5357 AssignOrderingToNode(Result.second.getNode()); 5358 } 5359 5360 if (LandingPad) { 5361 // Insert a label at the end of the invoke call to mark the try range. This 5362 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5363 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5364 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5365 5366 // Inform MachineModuleInfo of range. 5367 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5368 } 5369 } 5370 5371 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5372 /// value is equal or not-equal to zero. 5373 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5374 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5375 UI != E; ++UI) { 5376 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5377 if (IC->isEquality()) 5378 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5379 if (C->isNullValue()) 5380 continue; 5381 // Unknown instruction. 5382 return false; 5383 } 5384 return true; 5385 } 5386 5387 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5388 Type *LoadTy, 5389 SelectionDAGBuilder &Builder) { 5390 5391 // Check to see if this load can be trivially constant folded, e.g. if the 5392 // input is from a string literal. 5393 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5394 // Cast pointer to the type we really want to load. 5395 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5396 PointerType::getUnqual(LoadTy)); 5397 5398 if (const Constant *LoadCst = 5399 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5400 Builder.TD)) 5401 return Builder.getValue(LoadCst); 5402 } 5403 5404 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5405 // still constant memory, the input chain can be the entry node. 5406 SDValue Root; 5407 bool ConstantMemory = false; 5408 5409 // Do not serialize (non-volatile) loads of constant memory with anything. 5410 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5411 Root = Builder.DAG.getEntryNode(); 5412 ConstantMemory = true; 5413 } else { 5414 // Do not serialize non-volatile loads against each other. 5415 Root = Builder.DAG.getRoot(); 5416 } 5417 5418 SDValue Ptr = Builder.getValue(PtrVal); 5419 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5420 Ptr, MachinePointerInfo(PtrVal), 5421 false /*volatile*/, 5422 false /*nontemporal*/, 5423 false /*isinvariant*/, 1 /* align=1 */); 5424 5425 if (!ConstantMemory) 5426 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5427 return LoadVal; 5428 } 5429 5430 5431 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5432 /// If so, return true and lower it, otherwise return false and it will be 5433 /// lowered like a normal call. 5434 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5435 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5436 if (I.getNumArgOperands() != 3) 5437 return false; 5438 5439 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5440 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5441 !I.getArgOperand(2)->getType()->isIntegerTy() || 5442 !I.getType()->isIntegerTy()) 5443 return false; 5444 5445 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5446 5447 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5448 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5449 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5450 bool ActuallyDoIt = true; 5451 MVT LoadVT; 5452 Type *LoadTy; 5453 switch (Size->getZExtValue()) { 5454 default: 5455 LoadVT = MVT::Other; 5456 LoadTy = 0; 5457 ActuallyDoIt = false; 5458 break; 5459 case 2: 5460 LoadVT = MVT::i16; 5461 LoadTy = Type::getInt16Ty(Size->getContext()); 5462 break; 5463 case 4: 5464 LoadVT = MVT::i32; 5465 LoadTy = Type::getInt32Ty(Size->getContext()); 5466 break; 5467 case 8: 5468 LoadVT = MVT::i64; 5469 LoadTy = Type::getInt64Ty(Size->getContext()); 5470 break; 5471 /* 5472 case 16: 5473 LoadVT = MVT::v4i32; 5474 LoadTy = Type::getInt32Ty(Size->getContext()); 5475 LoadTy = VectorType::get(LoadTy, 4); 5476 break; 5477 */ 5478 } 5479 5480 // This turns into unaligned loads. We only do this if the target natively 5481 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5482 // we'll only produce a small number of byte loads. 5483 5484 // Require that we can find a legal MVT, and only do this if the target 5485 // supports unaligned loads of that type. Expanding into byte loads would 5486 // bloat the code. 5487 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5488 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5489 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5490 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5491 ActuallyDoIt = false; 5492 } 5493 5494 if (ActuallyDoIt) { 5495 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5496 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5497 5498 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5499 ISD::SETNE); 5500 EVT CallVT = TLI.getValueType(I.getType(), true); 5501 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5502 return true; 5503 } 5504 } 5505 5506 5507 return false; 5508 } 5509 5510 5511 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5512 // Handle inline assembly differently. 5513 if (isa<InlineAsm>(I.getCalledValue())) { 5514 visitInlineAsm(&I); 5515 return; 5516 } 5517 5518 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5519 ComputeUsesVAFloatArgument(I, &MMI); 5520 5521 const char *RenameFn = 0; 5522 if (Function *F = I.getCalledFunction()) { 5523 if (F->isDeclaration()) { 5524 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5525 if (unsigned IID = II->getIntrinsicID(F)) { 5526 RenameFn = visitIntrinsicCall(I, IID); 5527 if (!RenameFn) 5528 return; 5529 } 5530 } 5531 if (unsigned IID = F->getIntrinsicID()) { 5532 RenameFn = visitIntrinsicCall(I, IID); 5533 if (!RenameFn) 5534 return; 5535 } 5536 } 5537 5538 // Check for well-known libc/libm calls. If the function is internal, it 5539 // can't be a library call. 5540 if (!F->hasLocalLinkage() && F->hasName()) { 5541 StringRef Name = F->getName(); 5542 if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") || 5543 (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") || 5544 (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) { 5545 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5546 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5547 I.getType() == I.getArgOperand(0)->getType() && 5548 I.getType() == I.getArgOperand(1)->getType()) { 5549 SDValue LHS = getValue(I.getArgOperand(0)); 5550 SDValue RHS = getValue(I.getArgOperand(1)); 5551 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5552 LHS.getValueType(), LHS, RHS)); 5553 return; 5554 } 5555 } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") || 5556 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") || 5557 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) { 5558 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5559 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5560 I.getType() == I.getArgOperand(0)->getType()) { 5561 SDValue Tmp = getValue(I.getArgOperand(0)); 5562 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5563 Tmp.getValueType(), Tmp)); 5564 return; 5565 } 5566 } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") || 5567 (LibInfo->has(LibFunc::sinf) && Name == "sinf") || 5568 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) { 5569 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5570 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5571 I.getType() == I.getArgOperand(0)->getType() && 5572 I.onlyReadsMemory()) { 5573 SDValue Tmp = getValue(I.getArgOperand(0)); 5574 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5575 Tmp.getValueType(), Tmp)); 5576 return; 5577 } 5578 } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") || 5579 (LibInfo->has(LibFunc::cosf) && Name == "cosf") || 5580 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) { 5581 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5582 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5583 I.getType() == I.getArgOperand(0)->getType() && 5584 I.onlyReadsMemory()) { 5585 SDValue Tmp = getValue(I.getArgOperand(0)); 5586 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5587 Tmp.getValueType(), Tmp)); 5588 return; 5589 } 5590 } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") || 5591 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") || 5592 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) { 5593 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5594 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5595 I.getType() == I.getArgOperand(0)->getType() && 5596 I.onlyReadsMemory()) { 5597 SDValue Tmp = getValue(I.getArgOperand(0)); 5598 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5599 Tmp.getValueType(), Tmp)); 5600 return; 5601 } 5602 } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") || 5603 (LibInfo->has(LibFunc::floorf) && Name == "floorf") || 5604 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) { 5605 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5606 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5607 I.getType() == I.getArgOperand(0)->getType()) { 5608 SDValue Tmp = getValue(I.getArgOperand(0)); 5609 setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(), 5610 Tmp.getValueType(), Tmp)); 5611 return; 5612 } 5613 } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") || 5614 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") || 5615 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) { 5616 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5617 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5618 I.getType() == I.getArgOperand(0)->getType()) { 5619 SDValue Tmp = getValue(I.getArgOperand(0)); 5620 setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(), 5621 Tmp.getValueType(), Tmp)); 5622 return; 5623 } 5624 } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") || 5625 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") || 5626 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) { 5627 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5628 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5629 I.getType() == I.getArgOperand(0)->getType()) { 5630 SDValue Tmp = getValue(I.getArgOperand(0)); 5631 setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(), 5632 Tmp.getValueType(), Tmp)); 5633 return; 5634 } 5635 } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") || 5636 (LibInfo->has(LibFunc::rintf) && Name == "rintf") || 5637 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) { 5638 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5639 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5640 I.getType() == I.getArgOperand(0)->getType()) { 5641 SDValue Tmp = getValue(I.getArgOperand(0)); 5642 setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(), 5643 Tmp.getValueType(), Tmp)); 5644 return; 5645 } 5646 } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") || 5647 (LibInfo->has(LibFunc::truncf) && Name == "truncf") || 5648 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) { 5649 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5650 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5651 I.getType() == I.getArgOperand(0)->getType()) { 5652 SDValue Tmp = getValue(I.getArgOperand(0)); 5653 setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(), 5654 Tmp.getValueType(), Tmp)); 5655 return; 5656 } 5657 } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") || 5658 (LibInfo->has(LibFunc::log2f) && Name == "log2f") || 5659 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) { 5660 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5661 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5662 I.getType() == I.getArgOperand(0)->getType() && 5663 I.onlyReadsMemory()) { 5664 SDValue Tmp = getValue(I.getArgOperand(0)); 5665 setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(), 5666 Tmp.getValueType(), Tmp)); 5667 return; 5668 } 5669 } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") || 5670 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") || 5671 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) { 5672 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5673 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5674 I.getType() == I.getArgOperand(0)->getType() && 5675 I.onlyReadsMemory()) { 5676 SDValue Tmp = getValue(I.getArgOperand(0)); 5677 setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(), 5678 Tmp.getValueType(), Tmp)); 5679 return; 5680 } 5681 } else if (Name == "memcmp") { 5682 if (visitMemCmpCall(I)) 5683 return; 5684 } 5685 } 5686 } 5687 5688 SDValue Callee; 5689 if (!RenameFn) 5690 Callee = getValue(I.getCalledValue()); 5691 else 5692 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5693 5694 // Check if we can potentially perform a tail call. More detailed checking is 5695 // be done within LowerCallTo, after more information about the call is known. 5696 LowerCallTo(&I, Callee, I.isTailCall()); 5697 } 5698 5699 namespace { 5700 5701 /// AsmOperandInfo - This contains information for each constraint that we are 5702 /// lowering. 5703 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5704 public: 5705 /// CallOperand - If this is the result output operand or a clobber 5706 /// this is null, otherwise it is the incoming operand to the CallInst. 5707 /// This gets modified as the asm is processed. 5708 SDValue CallOperand; 5709 5710 /// AssignedRegs - If this is a register or register class operand, this 5711 /// contains the set of register corresponding to the operand. 5712 RegsForValue AssignedRegs; 5713 5714 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5715 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5716 } 5717 5718 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5719 /// corresponds to. If there is no Value* for this operand, it returns 5720 /// MVT::Other. 5721 EVT getCallOperandValEVT(LLVMContext &Context, 5722 const TargetLowering &TLI, 5723 const TargetData *TD) const { 5724 if (CallOperandVal == 0) return MVT::Other; 5725 5726 if (isa<BasicBlock>(CallOperandVal)) 5727 return TLI.getPointerTy(); 5728 5729 llvm::Type *OpTy = CallOperandVal->getType(); 5730 5731 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5732 // If this is an indirect operand, the operand is a pointer to the 5733 // accessed type. 5734 if (isIndirect) { 5735 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5736 if (!PtrTy) 5737 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5738 OpTy = PtrTy->getElementType(); 5739 } 5740 5741 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5742 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5743 if (STy->getNumElements() == 1) 5744 OpTy = STy->getElementType(0); 5745 5746 // If OpTy is not a single value, it may be a struct/union that we 5747 // can tile with integers. 5748 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5749 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5750 switch (BitSize) { 5751 default: break; 5752 case 1: 5753 case 8: 5754 case 16: 5755 case 32: 5756 case 64: 5757 case 128: 5758 OpTy = IntegerType::get(Context, BitSize); 5759 break; 5760 } 5761 } 5762 5763 return TLI.getValueType(OpTy, true); 5764 } 5765 }; 5766 5767 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5768 5769 } // end anonymous namespace 5770 5771 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5772 /// specified operand. We prefer to assign virtual registers, to allow the 5773 /// register allocator to handle the assignment process. However, if the asm 5774 /// uses features that we can't model on machineinstrs, we have SDISel do the 5775 /// allocation. This produces generally horrible, but correct, code. 5776 /// 5777 /// OpInfo describes the operand. 5778 /// 5779 static void GetRegistersForValue(SelectionDAG &DAG, 5780 const TargetLowering &TLI, 5781 DebugLoc DL, 5782 SDISelAsmOperandInfo &OpInfo) { 5783 LLVMContext &Context = *DAG.getContext(); 5784 5785 MachineFunction &MF = DAG.getMachineFunction(); 5786 SmallVector<unsigned, 4> Regs; 5787 5788 // If this is a constraint for a single physreg, or a constraint for a 5789 // register class, find it. 5790 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5791 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5792 OpInfo.ConstraintVT); 5793 5794 unsigned NumRegs = 1; 5795 if (OpInfo.ConstraintVT != MVT::Other) { 5796 // If this is a FP input in an integer register (or visa versa) insert a bit 5797 // cast of the input value. More generally, handle any case where the input 5798 // value disagrees with the register class we plan to stick this in. 5799 if (OpInfo.Type == InlineAsm::isInput && 5800 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5801 // Try to convert to the first EVT that the reg class contains. If the 5802 // types are identical size, use a bitcast to convert (e.g. two differing 5803 // vector types). 5804 EVT RegVT = *PhysReg.second->vt_begin(); 5805 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5806 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5807 RegVT, OpInfo.CallOperand); 5808 OpInfo.ConstraintVT = RegVT; 5809 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5810 // If the input is a FP value and we want it in FP registers, do a 5811 // bitcast to the corresponding integer type. This turns an f64 value 5812 // into i64, which can be passed with two i32 values on a 32-bit 5813 // machine. 5814 RegVT = EVT::getIntegerVT(Context, 5815 OpInfo.ConstraintVT.getSizeInBits()); 5816 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5817 RegVT, OpInfo.CallOperand); 5818 OpInfo.ConstraintVT = RegVT; 5819 } 5820 } 5821 5822 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5823 } 5824 5825 EVT RegVT; 5826 EVT ValueVT = OpInfo.ConstraintVT; 5827 5828 // If this is a constraint for a specific physical register, like {r17}, 5829 // assign it now. 5830 if (unsigned AssignedReg = PhysReg.first) { 5831 const TargetRegisterClass *RC = PhysReg.second; 5832 if (OpInfo.ConstraintVT == MVT::Other) 5833 ValueVT = *RC->vt_begin(); 5834 5835 // Get the actual register value type. This is important, because the user 5836 // may have asked for (e.g.) the AX register in i32 type. We need to 5837 // remember that AX is actually i16 to get the right extension. 5838 RegVT = *RC->vt_begin(); 5839 5840 // This is a explicit reference to a physical register. 5841 Regs.push_back(AssignedReg); 5842 5843 // If this is an expanded reference, add the rest of the regs to Regs. 5844 if (NumRegs != 1) { 5845 TargetRegisterClass::iterator I = RC->begin(); 5846 for (; *I != AssignedReg; ++I) 5847 assert(I != RC->end() && "Didn't find reg!"); 5848 5849 // Already added the first reg. 5850 --NumRegs; ++I; 5851 for (; NumRegs; --NumRegs, ++I) { 5852 assert(I != RC->end() && "Ran out of registers to allocate!"); 5853 Regs.push_back(*I); 5854 } 5855 } 5856 5857 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5858 return; 5859 } 5860 5861 // Otherwise, if this was a reference to an LLVM register class, create vregs 5862 // for this reference. 5863 if (const TargetRegisterClass *RC = PhysReg.second) { 5864 RegVT = *RC->vt_begin(); 5865 if (OpInfo.ConstraintVT == MVT::Other) 5866 ValueVT = RegVT; 5867 5868 // Create the appropriate number of virtual registers. 5869 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5870 for (; NumRegs; --NumRegs) 5871 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5872 5873 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5874 return; 5875 } 5876 5877 // Otherwise, we couldn't allocate enough registers for this. 5878 } 5879 5880 /// visitInlineAsm - Handle a call to an InlineAsm object. 5881 /// 5882 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5883 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5884 5885 /// ConstraintOperands - Information about all of the constraints. 5886 SDISelAsmOperandInfoVector ConstraintOperands; 5887 5888 TargetLowering::AsmOperandInfoVector 5889 TargetConstraints = TLI.ParseConstraints(CS); 5890 5891 bool hasMemory = false; 5892 5893 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5894 unsigned ResNo = 0; // ResNo - The result number of the next output. 5895 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5896 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5897 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5898 5899 EVT OpVT = MVT::Other; 5900 5901 // Compute the value type for each operand. 5902 switch (OpInfo.Type) { 5903 case InlineAsm::isOutput: 5904 // Indirect outputs just consume an argument. 5905 if (OpInfo.isIndirect) { 5906 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5907 break; 5908 } 5909 5910 // The return value of the call is this value. As such, there is no 5911 // corresponding argument. 5912 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5913 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5914 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5915 } else { 5916 assert(ResNo == 0 && "Asm only has one result!"); 5917 OpVT = TLI.getValueType(CS.getType()); 5918 } 5919 ++ResNo; 5920 break; 5921 case InlineAsm::isInput: 5922 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5923 break; 5924 case InlineAsm::isClobber: 5925 // Nothing to do. 5926 break; 5927 } 5928 5929 // If this is an input or an indirect output, process the call argument. 5930 // BasicBlocks are labels, currently appearing only in asm's. 5931 if (OpInfo.CallOperandVal) { 5932 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5933 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5934 } else { 5935 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5936 } 5937 5938 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5939 } 5940 5941 OpInfo.ConstraintVT = OpVT; 5942 5943 // Indirect operand accesses access memory. 5944 if (OpInfo.isIndirect) 5945 hasMemory = true; 5946 else { 5947 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5948 TargetLowering::ConstraintType 5949 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5950 if (CType == TargetLowering::C_Memory) { 5951 hasMemory = true; 5952 break; 5953 } 5954 } 5955 } 5956 } 5957 5958 SDValue Chain, Flag; 5959 5960 // We won't need to flush pending loads if this asm doesn't touch 5961 // memory and is nonvolatile. 5962 if (hasMemory || IA->hasSideEffects()) 5963 Chain = getRoot(); 5964 else 5965 Chain = DAG.getRoot(); 5966 5967 // Second pass over the constraints: compute which constraint option to use 5968 // and assign registers to constraints that want a specific physreg. 5969 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5970 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5971 5972 // If this is an output operand with a matching input operand, look up the 5973 // matching input. If their types mismatch, e.g. one is an integer, the 5974 // other is floating point, or their sizes are different, flag it as an 5975 // error. 5976 if (OpInfo.hasMatchingInput()) { 5977 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5978 5979 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5980 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5981 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5982 OpInfo.ConstraintVT); 5983 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5984 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5985 Input.ConstraintVT); 5986 if ((OpInfo.ConstraintVT.isInteger() != 5987 Input.ConstraintVT.isInteger()) || 5988 (MatchRC.second != InputRC.second)) { 5989 report_fatal_error("Unsupported asm: input constraint" 5990 " with a matching output constraint of" 5991 " incompatible type!"); 5992 } 5993 Input.ConstraintVT = OpInfo.ConstraintVT; 5994 } 5995 } 5996 5997 // Compute the constraint code and ConstraintType to use. 5998 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5999 6000 // If this is a memory input, and if the operand is not indirect, do what we 6001 // need to to provide an address for the memory input. 6002 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6003 !OpInfo.isIndirect) { 6004 assert((OpInfo.isMultipleAlternative || 6005 (OpInfo.Type == InlineAsm::isInput)) && 6006 "Can only indirectify direct input operands!"); 6007 6008 // Memory operands really want the address of the value. If we don't have 6009 // an indirect input, put it in the constpool if we can, otherwise spill 6010 // it to a stack slot. 6011 // TODO: This isn't quite right. We need to handle these according to 6012 // the addressing mode that the constraint wants. Also, this may take 6013 // an additional register for the computation and we don't want that 6014 // either. 6015 6016 // If the operand is a float, integer, or vector constant, spill to a 6017 // constant pool entry to get its address. 6018 const Value *OpVal = OpInfo.CallOperandVal; 6019 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6020 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6021 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6022 TLI.getPointerTy()); 6023 } else { 6024 // Otherwise, create a stack slot and emit a store to it before the 6025 // asm. 6026 Type *Ty = OpVal->getType(); 6027 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 6028 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 6029 MachineFunction &MF = DAG.getMachineFunction(); 6030 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6031 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6032 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6033 OpInfo.CallOperand, StackSlot, 6034 MachinePointerInfo::getFixedStack(SSFI), 6035 false, false, 0); 6036 OpInfo.CallOperand = StackSlot; 6037 } 6038 6039 // There is no longer a Value* corresponding to this operand. 6040 OpInfo.CallOperandVal = 0; 6041 6042 // It is now an indirect operand. 6043 OpInfo.isIndirect = true; 6044 } 6045 6046 // If this constraint is for a specific register, allocate it before 6047 // anything else. 6048 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6049 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6050 } 6051 6052 // Second pass - Loop over all of the operands, assigning virtual or physregs 6053 // to register class operands. 6054 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6055 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6056 6057 // C_Register operands have already been allocated, Other/Memory don't need 6058 // to be. 6059 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6060 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6061 } 6062 6063 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6064 std::vector<SDValue> AsmNodeOperands; 6065 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6066 AsmNodeOperands.push_back( 6067 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6068 TLI.getPointerTy())); 6069 6070 // If we have a !srcloc metadata node associated with it, we want to attach 6071 // this to the ultimately generated inline asm machineinstr. To do this, we 6072 // pass in the third operand as this (potentially null) inline asm MDNode. 6073 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6074 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6075 6076 // Remember the HasSideEffect and AlignStack bits as operand 3. 6077 unsigned ExtraInfo = 0; 6078 if (IA->hasSideEffects()) 6079 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6080 if (IA->isAlignStack()) 6081 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6082 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6083 TLI.getPointerTy())); 6084 6085 // Loop over all of the inputs, copying the operand values into the 6086 // appropriate registers and processing the output regs. 6087 RegsForValue RetValRegs; 6088 6089 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6090 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6091 6092 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6093 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6094 6095 switch (OpInfo.Type) { 6096 case InlineAsm::isOutput: { 6097 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6098 OpInfo.ConstraintType != TargetLowering::C_Register) { 6099 // Memory output, or 'other' output (e.g. 'X' constraint). 6100 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6101 6102 // Add information to the INLINEASM node to know about this output. 6103 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6104 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6105 TLI.getPointerTy())); 6106 AsmNodeOperands.push_back(OpInfo.CallOperand); 6107 break; 6108 } 6109 6110 // Otherwise, this is a register or register class output. 6111 6112 // Copy the output from the appropriate register. Find a register that 6113 // we can use. 6114 if (OpInfo.AssignedRegs.Regs.empty()) { 6115 LLVMContext &Ctx = *DAG.getContext(); 6116 Ctx.emitError(CS.getInstruction(), 6117 "couldn't allocate output register for constraint '" + 6118 Twine(OpInfo.ConstraintCode) + "'"); 6119 break; 6120 } 6121 6122 // If this is an indirect operand, store through the pointer after the 6123 // asm. 6124 if (OpInfo.isIndirect) { 6125 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6126 OpInfo.CallOperandVal)); 6127 } else { 6128 // This is the result value of the call. 6129 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6130 // Concatenate this output onto the outputs list. 6131 RetValRegs.append(OpInfo.AssignedRegs); 6132 } 6133 6134 // Add information to the INLINEASM node to know that this register is 6135 // set. 6136 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6137 InlineAsm::Kind_RegDefEarlyClobber : 6138 InlineAsm::Kind_RegDef, 6139 false, 6140 0, 6141 DAG, 6142 AsmNodeOperands); 6143 break; 6144 } 6145 case InlineAsm::isInput: { 6146 SDValue InOperandVal = OpInfo.CallOperand; 6147 6148 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6149 // If this is required to match an output register we have already set, 6150 // just use its register. 6151 unsigned OperandNo = OpInfo.getMatchedOperand(); 6152 6153 // Scan until we find the definition we already emitted of this operand. 6154 // When we find it, create a RegsForValue operand. 6155 unsigned CurOp = InlineAsm::Op_FirstOperand; 6156 for (; OperandNo; --OperandNo) { 6157 // Advance to the next operand. 6158 unsigned OpFlag = 6159 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6160 assert((InlineAsm::isRegDefKind(OpFlag) || 6161 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6162 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6163 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6164 } 6165 6166 unsigned OpFlag = 6167 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6168 if (InlineAsm::isRegDefKind(OpFlag) || 6169 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6170 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6171 if (OpInfo.isIndirect) { 6172 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6173 LLVMContext &Ctx = *DAG.getContext(); 6174 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6175 " don't know how to handle tied " 6176 "indirect register inputs"); 6177 } 6178 6179 RegsForValue MatchedRegs; 6180 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6181 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6182 MatchedRegs.RegVTs.push_back(RegVT); 6183 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6184 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6185 i != e; ++i) 6186 MatchedRegs.Regs.push_back 6187 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6188 6189 // Use the produced MatchedRegs object to 6190 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6191 Chain, &Flag); 6192 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6193 true, OpInfo.getMatchedOperand(), 6194 DAG, AsmNodeOperands); 6195 break; 6196 } 6197 6198 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6199 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6200 "Unexpected number of operands"); 6201 // Add information to the INLINEASM node to know about this input. 6202 // See InlineAsm.h isUseOperandTiedToDef. 6203 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6204 OpInfo.getMatchedOperand()); 6205 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6206 TLI.getPointerTy())); 6207 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6208 break; 6209 } 6210 6211 // Treat indirect 'X' constraint as memory. 6212 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6213 OpInfo.isIndirect) 6214 OpInfo.ConstraintType = TargetLowering::C_Memory; 6215 6216 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6217 std::vector<SDValue> Ops; 6218 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6219 Ops, DAG); 6220 if (Ops.empty()) { 6221 LLVMContext &Ctx = *DAG.getContext(); 6222 Ctx.emitError(CS.getInstruction(), 6223 "invalid operand for inline asm constraint '" + 6224 Twine(OpInfo.ConstraintCode) + "'"); 6225 break; 6226 } 6227 6228 // Add information to the INLINEASM node to know about this input. 6229 unsigned ResOpType = 6230 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6231 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6232 TLI.getPointerTy())); 6233 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6234 break; 6235 } 6236 6237 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6238 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6239 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6240 "Memory operands expect pointer values"); 6241 6242 // Add information to the INLINEASM node to know about this input. 6243 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6244 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6245 TLI.getPointerTy())); 6246 AsmNodeOperands.push_back(InOperandVal); 6247 break; 6248 } 6249 6250 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6251 OpInfo.ConstraintType == TargetLowering::C_Register) && 6252 "Unknown constraint type!"); 6253 6254 // TODO: Support this. 6255 if (OpInfo.isIndirect) { 6256 LLVMContext &Ctx = *DAG.getContext(); 6257 Ctx.emitError(CS.getInstruction(), 6258 "Don't know how to handle indirect register inputs yet " 6259 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6260 break; 6261 } 6262 6263 // Copy the input into the appropriate registers. 6264 if (OpInfo.AssignedRegs.Regs.empty()) { 6265 LLVMContext &Ctx = *DAG.getContext(); 6266 Ctx.emitError(CS.getInstruction(), 6267 "couldn't allocate input reg for constraint '" + 6268 Twine(OpInfo.ConstraintCode) + "'"); 6269 break; 6270 } 6271 6272 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6273 Chain, &Flag); 6274 6275 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6276 DAG, AsmNodeOperands); 6277 break; 6278 } 6279 case InlineAsm::isClobber: { 6280 // Add the clobbered value to the operand list, so that the register 6281 // allocator is aware that the physreg got clobbered. 6282 if (!OpInfo.AssignedRegs.Regs.empty()) 6283 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6284 false, 0, DAG, 6285 AsmNodeOperands); 6286 break; 6287 } 6288 } 6289 } 6290 6291 // Finish up input operands. Set the input chain and add the flag last. 6292 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6293 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6294 6295 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6296 DAG.getVTList(MVT::Other, MVT::Glue), 6297 &AsmNodeOperands[0], AsmNodeOperands.size()); 6298 Flag = Chain.getValue(1); 6299 6300 // If this asm returns a register value, copy the result from that register 6301 // and set it as the value of the call. 6302 if (!RetValRegs.Regs.empty()) { 6303 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6304 Chain, &Flag); 6305 6306 // FIXME: Why don't we do this for inline asms with MRVs? 6307 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6308 EVT ResultType = TLI.getValueType(CS.getType()); 6309 6310 // If any of the results of the inline asm is a vector, it may have the 6311 // wrong width/num elts. This can happen for register classes that can 6312 // contain multiple different value types. The preg or vreg allocated may 6313 // not have the same VT as was expected. Convert it to the right type 6314 // with bit_convert. 6315 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6316 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6317 ResultType, Val); 6318 6319 } else if (ResultType != Val.getValueType() && 6320 ResultType.isInteger() && Val.getValueType().isInteger()) { 6321 // If a result value was tied to an input value, the computed result may 6322 // have a wider width than the expected result. Extract the relevant 6323 // portion. 6324 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6325 } 6326 6327 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6328 } 6329 6330 setValue(CS.getInstruction(), Val); 6331 // Don't need to use this as a chain in this case. 6332 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6333 return; 6334 } 6335 6336 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6337 6338 // Process indirect outputs, first output all of the flagged copies out of 6339 // physregs. 6340 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6341 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6342 const Value *Ptr = IndirectStoresToEmit[i].second; 6343 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6344 Chain, &Flag); 6345 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6346 } 6347 6348 // Emit the non-flagged stores from the physregs. 6349 SmallVector<SDValue, 8> OutChains; 6350 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6351 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6352 StoresToEmit[i].first, 6353 getValue(StoresToEmit[i].second), 6354 MachinePointerInfo(StoresToEmit[i].second), 6355 false, false, 0); 6356 OutChains.push_back(Val); 6357 } 6358 6359 if (!OutChains.empty()) 6360 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6361 &OutChains[0], OutChains.size()); 6362 6363 DAG.setRoot(Chain); 6364 } 6365 6366 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6367 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6368 MVT::Other, getRoot(), 6369 getValue(I.getArgOperand(0)), 6370 DAG.getSrcValue(I.getArgOperand(0)))); 6371 } 6372 6373 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6374 const TargetData &TD = *TLI.getTargetData(); 6375 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6376 getRoot(), getValue(I.getOperand(0)), 6377 DAG.getSrcValue(I.getOperand(0)), 6378 TD.getABITypeAlignment(I.getType())); 6379 setValue(&I, V); 6380 DAG.setRoot(V.getValue(1)); 6381 } 6382 6383 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6384 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6385 MVT::Other, getRoot(), 6386 getValue(I.getArgOperand(0)), 6387 DAG.getSrcValue(I.getArgOperand(0)))); 6388 } 6389 6390 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6391 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6392 MVT::Other, getRoot(), 6393 getValue(I.getArgOperand(0)), 6394 getValue(I.getArgOperand(1)), 6395 DAG.getSrcValue(I.getArgOperand(0)), 6396 DAG.getSrcValue(I.getArgOperand(1)))); 6397 } 6398 6399 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6400 /// implementation, which just calls LowerCall. 6401 /// FIXME: When all targets are 6402 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6403 std::pair<SDValue, SDValue> 6404 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6405 // Handle all of the outgoing arguments. 6406 CLI.Outs.clear(); 6407 CLI.OutVals.clear(); 6408 ArgListTy &Args = CLI.Args; 6409 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6410 SmallVector<EVT, 4> ValueVTs; 6411 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6412 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6413 Value != NumValues; ++Value) { 6414 EVT VT = ValueVTs[Value]; 6415 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6416 SDValue Op = SDValue(Args[i].Node.getNode(), 6417 Args[i].Node.getResNo() + Value); 6418 ISD::ArgFlagsTy Flags; 6419 unsigned OriginalAlignment = 6420 getTargetData()->getABITypeAlignment(ArgTy); 6421 6422 if (Args[i].isZExt) 6423 Flags.setZExt(); 6424 if (Args[i].isSExt) 6425 Flags.setSExt(); 6426 if (Args[i].isInReg) 6427 Flags.setInReg(); 6428 if (Args[i].isSRet) 6429 Flags.setSRet(); 6430 if (Args[i].isByVal) { 6431 Flags.setByVal(); 6432 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6433 Type *ElementTy = Ty->getElementType(); 6434 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6435 // For ByVal, alignment should come from FE. BE will guess if this 6436 // info is not there but there are cases it cannot get right. 6437 unsigned FrameAlign; 6438 if (Args[i].Alignment) 6439 FrameAlign = Args[i].Alignment; 6440 else 6441 FrameAlign = getByValTypeAlignment(ElementTy); 6442 Flags.setByValAlign(FrameAlign); 6443 } 6444 if (Args[i].isNest) 6445 Flags.setNest(); 6446 Flags.setOrigAlign(OriginalAlignment); 6447 6448 EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6449 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6450 SmallVector<SDValue, 4> Parts(NumParts); 6451 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6452 6453 if (Args[i].isSExt) 6454 ExtendKind = ISD::SIGN_EXTEND; 6455 else if (Args[i].isZExt) 6456 ExtendKind = ISD::ZERO_EXTEND; 6457 6458 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6459 PartVT, ExtendKind); 6460 6461 for (unsigned j = 0; j != NumParts; ++j) { 6462 // if it isn't first piece, alignment must be 1 6463 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6464 i < CLI.NumFixedArgs); 6465 if (NumParts > 1 && j == 0) 6466 MyFlags.Flags.setSplit(); 6467 else if (j != 0) 6468 MyFlags.Flags.setOrigAlign(1); 6469 6470 CLI.Outs.push_back(MyFlags); 6471 CLI.OutVals.push_back(Parts[j]); 6472 } 6473 } 6474 } 6475 6476 // Handle the incoming return values from the call. 6477 CLI.Ins.clear(); 6478 SmallVector<EVT, 4> RetTys; 6479 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6480 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6481 EVT VT = RetTys[I]; 6482 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6483 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6484 for (unsigned i = 0; i != NumRegs; ++i) { 6485 ISD::InputArg MyFlags; 6486 MyFlags.VT = RegisterVT.getSimpleVT(); 6487 MyFlags.Used = CLI.IsReturnValueUsed; 6488 if (CLI.RetSExt) 6489 MyFlags.Flags.setSExt(); 6490 if (CLI.RetZExt) 6491 MyFlags.Flags.setZExt(); 6492 if (CLI.IsInReg) 6493 MyFlags.Flags.setInReg(); 6494 CLI.Ins.push_back(MyFlags); 6495 } 6496 } 6497 6498 SmallVector<SDValue, 4> InVals; 6499 CLI.Chain = LowerCall(CLI, InVals); 6500 6501 // Verify that the target's LowerCall behaved as expected. 6502 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6503 "LowerCall didn't return a valid chain!"); 6504 assert((!CLI.IsTailCall || InVals.empty()) && 6505 "LowerCall emitted a return value for a tail call!"); 6506 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6507 "LowerCall didn't emit the correct number of values!"); 6508 6509 // For a tail call, the return value is merely live-out and there aren't 6510 // any nodes in the DAG representing it. Return a special value to 6511 // indicate that a tail call has been emitted and no more Instructions 6512 // should be processed in the current block. 6513 if (CLI.IsTailCall) { 6514 CLI.DAG.setRoot(CLI.Chain); 6515 return std::make_pair(SDValue(), SDValue()); 6516 } 6517 6518 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6519 assert(InVals[i].getNode() && 6520 "LowerCall emitted a null value!"); 6521 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6522 "LowerCall emitted a value with the wrong type!"); 6523 }); 6524 6525 // Collect the legal value parts into potentially illegal values 6526 // that correspond to the original function's return values. 6527 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6528 if (CLI.RetSExt) 6529 AssertOp = ISD::AssertSext; 6530 else if (CLI.RetZExt) 6531 AssertOp = ISD::AssertZext; 6532 SmallVector<SDValue, 4> ReturnValues; 6533 unsigned CurReg = 0; 6534 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6535 EVT VT = RetTys[I]; 6536 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6537 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6538 6539 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6540 NumRegs, RegisterVT, VT, 6541 AssertOp)); 6542 CurReg += NumRegs; 6543 } 6544 6545 // For a function returning void, there is no return value. We can't create 6546 // such a node, so we just return a null return value in that case. In 6547 // that case, nothing will actually look at the value. 6548 if (ReturnValues.empty()) 6549 return std::make_pair(SDValue(), CLI.Chain); 6550 6551 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6552 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6553 &ReturnValues[0], ReturnValues.size()); 6554 return std::make_pair(Res, CLI.Chain); 6555 } 6556 6557 void TargetLowering::LowerOperationWrapper(SDNode *N, 6558 SmallVectorImpl<SDValue> &Results, 6559 SelectionDAG &DAG) const { 6560 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6561 if (Res.getNode()) 6562 Results.push_back(Res); 6563 } 6564 6565 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6566 llvm_unreachable("LowerOperation not implemented for this target!"); 6567 } 6568 6569 void 6570 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6571 SDValue Op = getNonRegisterValue(V); 6572 assert((Op.getOpcode() != ISD::CopyFromReg || 6573 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6574 "Copy from a reg to the same reg!"); 6575 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6576 6577 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6578 SDValue Chain = DAG.getEntryNode(); 6579 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6580 PendingExports.push_back(Chain); 6581 } 6582 6583 #include "llvm/CodeGen/SelectionDAGISel.h" 6584 6585 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6586 /// entry block, return true. This includes arguments used by switches, since 6587 /// the switch may expand into multiple basic blocks. 6588 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6589 // With FastISel active, we may be splitting blocks, so force creation 6590 // of virtual registers for all non-dead arguments. 6591 if (FastISel) 6592 return A->use_empty(); 6593 6594 const BasicBlock *Entry = A->getParent()->begin(); 6595 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6596 UI != E; ++UI) { 6597 const User *U = *UI; 6598 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6599 return false; // Use not in entry block. 6600 } 6601 return true; 6602 } 6603 6604 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6605 // If this is the entry block, emit arguments. 6606 const Function &F = *LLVMBB->getParent(); 6607 SelectionDAG &DAG = SDB->DAG; 6608 DebugLoc dl = SDB->getCurDebugLoc(); 6609 const TargetData *TD = TLI.getTargetData(); 6610 SmallVector<ISD::InputArg, 16> Ins; 6611 6612 // Check whether the function can return without sret-demotion. 6613 SmallVector<ISD::OutputArg, 4> Outs; 6614 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6615 Outs, TLI); 6616 6617 if (!FuncInfo->CanLowerReturn) { 6618 // Put in an sret pointer parameter before all the other parameters. 6619 SmallVector<EVT, 1> ValueVTs; 6620 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6621 6622 // NOTE: Assuming that a pointer will never break down to more than one VT 6623 // or one register. 6624 ISD::ArgFlagsTy Flags; 6625 Flags.setSRet(); 6626 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6627 ISD::InputArg RetArg(Flags, RegisterVT, true); 6628 Ins.push_back(RetArg); 6629 } 6630 6631 // Set up the incoming argument description vector. 6632 unsigned Idx = 1; 6633 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6634 I != E; ++I, ++Idx) { 6635 SmallVector<EVT, 4> ValueVTs; 6636 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6637 bool isArgValueUsed = !I->use_empty(); 6638 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6639 Value != NumValues; ++Value) { 6640 EVT VT = ValueVTs[Value]; 6641 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6642 ISD::ArgFlagsTy Flags; 6643 unsigned OriginalAlignment = 6644 TD->getABITypeAlignment(ArgTy); 6645 6646 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6647 Flags.setZExt(); 6648 if (F.paramHasAttr(Idx, Attribute::SExt)) 6649 Flags.setSExt(); 6650 if (F.paramHasAttr(Idx, Attribute::InReg)) 6651 Flags.setInReg(); 6652 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6653 Flags.setSRet(); 6654 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6655 Flags.setByVal(); 6656 PointerType *Ty = cast<PointerType>(I->getType()); 6657 Type *ElementTy = Ty->getElementType(); 6658 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6659 // For ByVal, alignment should be passed from FE. BE will guess if 6660 // this info is not there but there are cases it cannot get right. 6661 unsigned FrameAlign; 6662 if (F.getParamAlignment(Idx)) 6663 FrameAlign = F.getParamAlignment(Idx); 6664 else 6665 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6666 Flags.setByValAlign(FrameAlign); 6667 } 6668 if (F.paramHasAttr(Idx, Attribute::Nest)) 6669 Flags.setNest(); 6670 Flags.setOrigAlign(OriginalAlignment); 6671 6672 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6673 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6674 for (unsigned i = 0; i != NumRegs; ++i) { 6675 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6676 if (NumRegs > 1 && i == 0) 6677 MyFlags.Flags.setSplit(); 6678 // if it isn't first piece, alignment must be 1 6679 else if (i > 0) 6680 MyFlags.Flags.setOrigAlign(1); 6681 Ins.push_back(MyFlags); 6682 } 6683 } 6684 } 6685 6686 // Call the target to set up the argument values. 6687 SmallVector<SDValue, 8> InVals; 6688 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6689 F.isVarArg(), Ins, 6690 dl, DAG, InVals); 6691 6692 // Verify that the target's LowerFormalArguments behaved as expected. 6693 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6694 "LowerFormalArguments didn't return a valid chain!"); 6695 assert(InVals.size() == Ins.size() && 6696 "LowerFormalArguments didn't emit the correct number of values!"); 6697 DEBUG({ 6698 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6699 assert(InVals[i].getNode() && 6700 "LowerFormalArguments emitted a null value!"); 6701 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6702 "LowerFormalArguments emitted a value with the wrong type!"); 6703 } 6704 }); 6705 6706 // Update the DAG with the new chain value resulting from argument lowering. 6707 DAG.setRoot(NewRoot); 6708 6709 // Set up the argument values. 6710 unsigned i = 0; 6711 Idx = 1; 6712 if (!FuncInfo->CanLowerReturn) { 6713 // Create a virtual register for the sret pointer, and put in a copy 6714 // from the sret argument into it. 6715 SmallVector<EVT, 1> ValueVTs; 6716 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6717 EVT VT = ValueVTs[0]; 6718 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6719 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6720 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6721 RegVT, VT, AssertOp); 6722 6723 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6724 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6725 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6726 FuncInfo->DemoteRegister = SRetReg; 6727 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6728 SRetReg, ArgValue); 6729 DAG.setRoot(NewRoot); 6730 6731 // i indexes lowered arguments. Bump it past the hidden sret argument. 6732 // Idx indexes LLVM arguments. Don't touch it. 6733 ++i; 6734 } 6735 6736 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6737 ++I, ++Idx) { 6738 SmallVector<SDValue, 4> ArgValues; 6739 SmallVector<EVT, 4> ValueVTs; 6740 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6741 unsigned NumValues = ValueVTs.size(); 6742 6743 // If this argument is unused then remember its value. It is used to generate 6744 // debugging information. 6745 if (I->use_empty() && NumValues) 6746 SDB->setUnusedArgValue(I, InVals[i]); 6747 6748 for (unsigned Val = 0; Val != NumValues; ++Val) { 6749 EVT VT = ValueVTs[Val]; 6750 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6751 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6752 6753 if (!I->use_empty()) { 6754 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6755 if (F.paramHasAttr(Idx, Attribute::SExt)) 6756 AssertOp = ISD::AssertSext; 6757 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6758 AssertOp = ISD::AssertZext; 6759 6760 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6761 NumParts, PartVT, VT, 6762 AssertOp)); 6763 } 6764 6765 i += NumParts; 6766 } 6767 6768 // We don't need to do anything else for unused arguments. 6769 if (ArgValues.empty()) 6770 continue; 6771 6772 // Note down frame index. 6773 if (FrameIndexSDNode *FI = 6774 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6775 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6776 6777 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6778 SDB->getCurDebugLoc()); 6779 6780 SDB->setValue(I, Res); 6781 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6782 if (LoadSDNode *LNode = 6783 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6784 if (FrameIndexSDNode *FI = 6785 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6786 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6787 } 6788 6789 // If this argument is live outside of the entry block, insert a copy from 6790 // wherever we got it to the vreg that other BB's will reference it as. 6791 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6792 // If we can, though, try to skip creating an unnecessary vreg. 6793 // FIXME: This isn't very clean... it would be nice to make this more 6794 // general. It's also subtly incompatible with the hacks FastISel 6795 // uses with vregs. 6796 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6797 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6798 FuncInfo->ValueMap[I] = Reg; 6799 continue; 6800 } 6801 } 6802 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6803 FuncInfo->InitializeRegForValue(I); 6804 SDB->CopyToExportRegsIfNeeded(I); 6805 } 6806 } 6807 6808 assert(i == InVals.size() && "Argument register count mismatch!"); 6809 6810 // Finally, if the target has anything special to do, allow it to do so. 6811 // FIXME: this should insert code into the DAG! 6812 EmitFunctionEntryCode(); 6813 } 6814 6815 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6816 /// ensure constants are generated when needed. Remember the virtual registers 6817 /// that need to be added to the Machine PHI nodes as input. We cannot just 6818 /// directly add them, because expansion might result in multiple MBB's for one 6819 /// BB. As such, the start of the BB might correspond to a different MBB than 6820 /// the end. 6821 /// 6822 void 6823 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6824 const TerminatorInst *TI = LLVMBB->getTerminator(); 6825 6826 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6827 6828 // Check successor nodes' PHI nodes that expect a constant to be available 6829 // from this block. 6830 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6831 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6832 if (!isa<PHINode>(SuccBB->begin())) continue; 6833 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6834 6835 // If this terminator has multiple identical successors (common for 6836 // switches), only handle each succ once. 6837 if (!SuccsHandled.insert(SuccMBB)) continue; 6838 6839 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6840 6841 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6842 // nodes and Machine PHI nodes, but the incoming operands have not been 6843 // emitted yet. 6844 for (BasicBlock::const_iterator I = SuccBB->begin(); 6845 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6846 // Ignore dead phi's. 6847 if (PN->use_empty()) continue; 6848 6849 // Skip empty types 6850 if (PN->getType()->isEmptyTy()) 6851 continue; 6852 6853 unsigned Reg; 6854 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6855 6856 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6857 unsigned &RegOut = ConstantsOut[C]; 6858 if (RegOut == 0) { 6859 RegOut = FuncInfo.CreateRegs(C->getType()); 6860 CopyValueToVirtualRegister(C, RegOut); 6861 } 6862 Reg = RegOut; 6863 } else { 6864 DenseMap<const Value *, unsigned>::iterator I = 6865 FuncInfo.ValueMap.find(PHIOp); 6866 if (I != FuncInfo.ValueMap.end()) 6867 Reg = I->second; 6868 else { 6869 assert(isa<AllocaInst>(PHIOp) && 6870 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6871 "Didn't codegen value into a register!??"); 6872 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6873 CopyValueToVirtualRegister(PHIOp, Reg); 6874 } 6875 } 6876 6877 // Remember that this register needs to added to the machine PHI node as 6878 // the input for this MBB. 6879 SmallVector<EVT, 4> ValueVTs; 6880 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6881 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6882 EVT VT = ValueVTs[vti]; 6883 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6884 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6885 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6886 Reg += NumRegisters; 6887 } 6888 } 6889 } 6890 ConstantsOut.clear(); 6891 } 6892