xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision dc5f805d31f62e094bd3eb105b47620633f65e5b)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstddef>
116 #include <cstdint>
117 #include <cstring>
118 #include <iterator>
119 #include <limits>
120 #include <numeric>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace PatternMatch;
127 using namespace SwitchCG;
128 
129 #define DEBUG_TYPE "isel"
130 
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision;
134 
135 static cl::opt<unsigned, true>
136     LimitFPPrecision("limit-float-precision",
137                      cl::desc("Generate low-precision inline sequences "
138                               "for some float libcalls"),
139                      cl::location(LimitFloatPrecision), cl::Hidden,
140                      cl::init(0));
141 
142 static cl::opt<unsigned> SwitchPeelThreshold(
143     "switch-peel-threshold", cl::Hidden, cl::init(66),
144     cl::desc("Set the case probability threshold for peeling the case from a "
145              "switch statement. A value greater than 100 will void this "
146              "optimization"));
147 
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
154 //
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains = 64;
163 
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
166 // an intrinsic.
167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
168   if (auto *R = dyn_cast<ReturnInst>(V))
169     return R->getParent()->getParent()->getCallingConv();
170 
171   if (auto *CI = dyn_cast<CallInst>(V)) {
172     const bool IsInlineAsm = CI->isInlineAsm();
173     const bool IsIndirectFunctionCall =
174         !IsInlineAsm && !CI->getCalledFunction();
175 
176     // It is possible that the call instruction is an inline asm statement or an
177     // indirect function call in which case the return value of
178     // getCalledFunction() would be nullptr.
179     const bool IsInstrinsicCall =
180         !IsInlineAsm && !IsIndirectFunctionCall &&
181         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
182 
183     if (!IsInlineAsm && !IsInstrinsicCall)
184       return CI->getCallingConv();
185   }
186 
187   return None;
188 }
189 
190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
191                                       const SDValue *Parts, unsigned NumParts,
192                                       MVT PartVT, EVT ValueVT, const Value *V,
193                                       Optional<CallingConv::ID> CC);
194 
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent.  If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
201                                 const SDValue *Parts, unsigned NumParts,
202                                 MVT PartVT, EVT ValueVT, const Value *V,
203                                 Optional<CallingConv::ID> CC = None,
204                                 Optional<ISD::NodeType> AssertOp = None) {
205   if (ValueVT.isVector())
206     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
207                                   CC);
208 
209   assert(NumParts > 0 && "No parts to assemble!");
210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
211   SDValue Val = Parts[0];
212 
213   if (NumParts > 1) {
214     // Assemble the value from multiple parts.
215     if (ValueVT.isInteger()) {
216       unsigned PartBits = PartVT.getSizeInBits();
217       unsigned ValueBits = ValueVT.getSizeInBits();
218 
219       // Assemble the power of 2 part.
220       unsigned RoundParts =
221           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
222       unsigned RoundBits = PartBits * RoundParts;
223       EVT RoundVT = RoundBits == ValueBits ?
224         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
225       SDValue Lo, Hi;
226 
227       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
228 
229       if (RoundParts > 2) {
230         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
231                               PartVT, HalfVT, V);
232         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
233                               RoundParts / 2, PartVT, HalfVT, V);
234       } else {
235         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
236         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
237       }
238 
239       if (DAG.getDataLayout().isBigEndian())
240         std::swap(Lo, Hi);
241 
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
243 
244       if (RoundParts < NumParts) {
245         // Assemble the trailing non-power-of-2 part.
246         unsigned OddParts = NumParts - RoundParts;
247         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
248         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
249                               OddVT, V, CC);
250 
251         // Combine the round and odd parts.
252         Lo = Val;
253         if (DAG.getDataLayout().isBigEndian())
254           std::swap(Lo, Hi);
255         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
256         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
257         Hi =
258             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
259                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
260                                         TLI.getPointerTy(DAG.getDataLayout())));
261         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
262         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
263       }
264     } else if (PartVT.isFloatingPoint()) {
265       // FP split into multiple FP parts (for ppcf128)
266       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
267              "Unexpected split");
268       SDValue Lo, Hi;
269       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
270       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
271       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
272         std::swap(Lo, Hi);
273       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
274     } else {
275       // FP split into integer parts (soft fp)
276       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
277              !PartVT.isVector() && "Unexpected split");
278       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
279       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
280     }
281   }
282 
283   // There is now one part, held in Val.  Correct it to match ValueVT.
284   // PartEVT is the type of the register class that holds the value.
285   // ValueVT is the type of the inline asm operation.
286   EVT PartEVT = Val.getValueType();
287 
288   if (PartEVT == ValueVT)
289     return Val;
290 
291   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
292       ValueVT.bitsLT(PartEVT)) {
293     // For an FP value in an integer part, we need to truncate to the right
294     // width first.
295     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
296     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
297   }
298 
299   // Handle types that have the same size.
300   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
301     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
302 
303   // Handle types with different sizes.
304   if (PartEVT.isInteger() && ValueVT.isInteger()) {
305     if (ValueVT.bitsLT(PartEVT)) {
306       // For a truncate, see if we have any information to
307       // indicate whether the truncated bits will always be
308       // zero or sign-extension.
309       if (AssertOp.hasValue())
310         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
311                           DAG.getValueType(ValueVT));
312       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313     }
314     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
315   }
316 
317   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
318     // FP_ROUND's are always exact here.
319     if (ValueVT.bitsLT(Val.getValueType()))
320       return DAG.getNode(
321           ISD::FP_ROUND, DL, ValueVT, Val,
322           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
323 
324     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
325   }
326 
327   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
328   // then truncating.
329   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
330       ValueVT.bitsLT(PartEVT)) {
331     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
332     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333   }
334 
335   report_fatal_error("Unknown mismatch in getCopyFromParts!");
336 }
337 
338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
339                                               const Twine &ErrMsg) {
340   const Instruction *I = dyn_cast_or_null<Instruction>(V);
341   if (!V)
342     return Ctx.emitError(ErrMsg);
343 
344   const char *AsmError = ", possible invalid constraint for vector type";
345   if (const CallInst *CI = dyn_cast<CallInst>(I))
346     if (isa<InlineAsm>(CI->getCalledValue()))
347       return Ctx.emitError(I, ErrMsg + AsmError);
348 
349   return Ctx.emitError(I, ErrMsg);
350 }
351 
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent.  If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
358                                       const SDValue *Parts, unsigned NumParts,
359                                       MVT PartVT, EVT ValueVT, const Value *V,
360                                       Optional<CallingConv::ID> CallConv) {
361   assert(ValueVT.isVector() && "Not a vector value");
362   assert(NumParts > 0 && "No parts to assemble!");
363   const bool IsABIRegCopy = CallConv.hasValue();
364 
365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
366   SDValue Val = Parts[0];
367 
368   // Handle a multi-element vector.
369   if (NumParts > 1) {
370     EVT IntermediateVT;
371     MVT RegisterVT;
372     unsigned NumIntermediates;
373     unsigned NumRegs;
374 
375     if (IsABIRegCopy) {
376       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
377           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
378           NumIntermediates, RegisterVT);
379     } else {
380       NumRegs =
381           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
382                                      NumIntermediates, RegisterVT);
383     }
384 
385     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
386     NumParts = NumRegs; // Silence a compiler warning.
387     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
388     assert(RegisterVT.getSizeInBits() ==
389            Parts[0].getSimpleValueType().getSizeInBits() &&
390            "Part type sizes don't match!");
391 
392     // Assemble the parts into intermediate operands.
393     SmallVector<SDValue, 8> Ops(NumIntermediates);
394     if (NumIntermediates == NumParts) {
395       // If the register was not expanded, truncate or copy the value,
396       // as appropriate.
397       for (unsigned i = 0; i != NumParts; ++i)
398         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
399                                   PartVT, IntermediateVT, V);
400     } else if (NumParts > 0) {
401       // If the intermediate type was expanded, build the intermediate
402       // operands from the parts.
403       assert(NumParts % NumIntermediates == 0 &&
404              "Must expand into a divisible number of parts!");
405       unsigned Factor = NumParts / NumIntermediates;
406       for (unsigned i = 0; i != NumIntermediates; ++i)
407         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
408                                   PartVT, IntermediateVT, V);
409     }
410 
411     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412     // intermediate operands.
413     EVT BuiltVectorTy =
414         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
415                          (IntermediateVT.isVector()
416                               ? IntermediateVT.getVectorNumElements() * NumParts
417                               : NumIntermediates));
418     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
419                                                 : ISD::BUILD_VECTOR,
420                       DL, BuiltVectorTy, Ops);
421   }
422 
423   // There is now one part, held in Val.  Correct it to match ValueVT.
424   EVT PartEVT = Val.getValueType();
425 
426   if (PartEVT == ValueVT)
427     return Val;
428 
429   if (PartEVT.isVector()) {
430     // If the element type of the source/dest vectors are the same, but the
431     // parts vector has more elements than the value vector, then we have a
432     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
433     // elements we want.
434     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
435       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
436              "Cannot narrow, it would be a lossy transformation");
437       return DAG.getNode(
438           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
439           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
440     }
441 
442     // Vector/Vector bitcast.
443     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
444       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445 
446     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
447       "Cannot handle this kind of promotion");
448     // Promoted vector extract
449     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
450 
451   }
452 
453   // Trivial bitcast if the types are the same size and the destination
454   // vector type is legal.
455   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
456       TLI.isTypeLegal(ValueVT))
457     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 
459   if (ValueVT.getVectorNumElements() != 1) {
460      // Certain ABIs require that vectors are passed as integers. For vectors
461      // are the same size, this is an obvious bitcast.
462      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
463        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
465        // Bitcast Val back the original type and extract the corresponding
466        // vector we want.
467        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
468        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
469                                            ValueVT.getVectorElementType(), Elts);
470        Val = DAG.getBitcast(WiderVecType, Val);
471        return DAG.getNode(
472            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
473            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
474      }
475 
476      diagnosePossiblyInvalidConstraint(
477          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
478      return DAG.getUNDEF(ValueVT);
479   }
480 
481   // Handle cases such as i8 -> <1 x i1>
482   EVT ValueSVT = ValueVT.getVectorElementType();
483   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
484     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
485                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
486 
487   return DAG.getBuildVector(ValueVT, DL, Val);
488 }
489 
490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
491                                  SDValue Val, SDValue *Parts, unsigned NumParts,
492                                  MVT PartVT, const Value *V,
493                                  Optional<CallingConv::ID> CallConv);
494 
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts.  If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
499                            SDValue *Parts, unsigned NumParts, MVT PartVT,
500                            const Value *V,
501                            Optional<CallingConv::ID> CallConv = None,
502                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
503   EVT ValueVT = Val.getValueType();
504 
505   // Handle the vector case separately.
506   if (ValueVT.isVector())
507     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
508                                 CallConv);
509 
510   unsigned PartBits = PartVT.getSizeInBits();
511   unsigned OrigNumParts = NumParts;
512   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
513          "Copying to an illegal type!");
514 
515   if (NumParts == 0)
516     return;
517 
518   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
519   EVT PartEVT = PartVT;
520   if (PartEVT == ValueVT) {
521     assert(NumParts == 1 && "No-op copy with multiple parts!");
522     Parts[0] = Val;
523     return;
524   }
525 
526   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
527     // If the parts cover more bits than the value has, promote the value.
528     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
529       assert(NumParts == 1 && "Do not know what to promote to!");
530       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
531     } else {
532       if (ValueVT.isFloatingPoint()) {
533         // FP values need to be bitcast, then extended if they are being put
534         // into a larger container.
535         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
536         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
537       }
538       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
539              ValueVT.isInteger() &&
540              "Unknown mismatch!");
541       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
542       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
543       if (PartVT == MVT::x86mmx)
544         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
545     }
546   } else if (PartBits == ValueVT.getSizeInBits()) {
547     // Different types of the same size.
548     assert(NumParts == 1 && PartEVT != ValueVT);
549     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
550   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
551     // If the parts cover less bits than value has, truncate the value.
552     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
553            ValueVT.isInteger() &&
554            "Unknown mismatch!");
555     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
556     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
557     if (PartVT == MVT::x86mmx)
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   }
560 
561   // The value may have changed - recompute ValueVT.
562   ValueVT = Val.getValueType();
563   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
564          "Failed to tile the value with PartVT!");
565 
566   if (NumParts == 1) {
567     if (PartEVT != ValueVT) {
568       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
569                                         "scalar-to-vector conversion failed");
570       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571     }
572 
573     Parts[0] = Val;
574     return;
575   }
576 
577   // Expand the value into multiple parts.
578   if (NumParts & (NumParts - 1)) {
579     // The number of parts is not a power of 2.  Split off and copy the tail.
580     assert(PartVT.isInteger() && ValueVT.isInteger() &&
581            "Do not know what to expand to!");
582     unsigned RoundParts = 1 << Log2_32(NumParts);
583     unsigned RoundBits = RoundParts * PartBits;
584     unsigned OddParts = NumParts - RoundParts;
585     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
586       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
587 
588     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
589                    CallConv);
590 
591     if (DAG.getDataLayout().isBigEndian())
592       // The odd parts were reversed by getCopyToParts - unreverse them.
593       std::reverse(Parts + RoundParts, Parts + NumParts);
594 
595     NumParts = RoundParts;
596     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
597     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
598   }
599 
600   // The number of parts is a power of 2.  Repeatedly bisect the value using
601   // EXTRACT_ELEMENT.
602   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
603                          EVT::getIntegerVT(*DAG.getContext(),
604                                            ValueVT.getSizeInBits()),
605                          Val);
606 
607   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
608     for (unsigned i = 0; i < NumParts; i += StepSize) {
609       unsigned ThisBits = StepSize * PartBits / 2;
610       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
611       SDValue &Part0 = Parts[i];
612       SDValue &Part1 = Parts[i+StepSize/2];
613 
614       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
616       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
617                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
618 
619       if (ThisBits == PartBits && ThisVT != PartVT) {
620         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
621         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
622       }
623     }
624   }
625 
626   if (DAG.getDataLayout().isBigEndian())
627     std::reverse(Parts, Parts + OrigNumParts);
628 }
629 
630 static SDValue widenVectorToPartType(SelectionDAG &DAG,
631                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
632   if (!PartVT.isVector())
633     return SDValue();
634 
635   EVT ValueVT = Val.getValueType();
636   unsigned PartNumElts = PartVT.getVectorNumElements();
637   unsigned ValueNumElts = ValueVT.getVectorNumElements();
638   if (PartNumElts > ValueNumElts &&
639       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
640     EVT ElementVT = PartVT.getVectorElementType();
641     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
642     // undef elements.
643     SmallVector<SDValue, 16> Ops;
644     DAG.ExtractVectorElements(Val, Ops);
645     SDValue EltUndef = DAG.getUNDEF(ElementVT);
646     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
647       Ops.push_back(EltUndef);
648 
649     // FIXME: Use CONCAT for 2x -> 4x.
650     return DAG.getBuildVector(PartVT, DL, Ops);
651   }
652 
653   return SDValue();
654 }
655 
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
659                                  SDValue Val, SDValue *Parts, unsigned NumParts,
660                                  MVT PartVT, const Value *V,
661                                  Optional<CallingConv::ID> CallConv) {
662   EVT ValueVT = Val.getValueType();
663   assert(ValueVT.isVector() && "Not a vector");
664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
665   const bool IsABIRegCopy = CallConv.hasValue();
666 
667   if (NumParts == 1) {
668     EVT PartEVT = PartVT;
669     if (PartEVT == ValueVT) {
670       // Nothing to do.
671     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
672       // Bitconvert vector->vector case.
673       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
674     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
675       Val = Widened;
676     } else if (PartVT.isVector() &&
677                PartEVT.getVectorElementType().bitsGE(
678                  ValueVT.getVectorElementType()) &&
679                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
680 
681       // Promoted vector extract
682       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683     } else {
684       if (ValueVT.getVectorNumElements() == 1) {
685         Val = DAG.getNode(
686             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
687             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
688       } else {
689         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
690                "lossy conversion of vector to scalar type");
691         EVT IntermediateType =
692             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
693         Val = DAG.getBitcast(IntermediateType, Val);
694         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
695       }
696     }
697 
698     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
699     Parts[0] = Val;
700     return;
701   }
702 
703   // Handle a multi-element vector.
704   EVT IntermediateVT;
705   MVT RegisterVT;
706   unsigned NumIntermediates;
707   unsigned NumRegs;
708   if (IsABIRegCopy) {
709     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
710         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
711         NumIntermediates, RegisterVT);
712   } else {
713     NumRegs =
714         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
715                                    NumIntermediates, RegisterVT);
716   }
717 
718   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
719   NumParts = NumRegs; // Silence a compiler warning.
720   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
721 
722   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
723     IntermediateVT.getVectorNumElements() : 1;
724 
725   // Convert the vector to the appropiate type if necessary.
726   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
730   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
731   if (ValueVT != BuiltVectorTy) {
732     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
733       Val = Widened;
734 
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   }
737 
738   // Split the vector into intermediate operands.
739   SmallVector<SDValue, 8> Ops(NumIntermediates);
740   for (unsigned i = 0; i != NumIntermediates; ++i) {
741     if (IntermediateVT.isVector()) {
742       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
743                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
744     } else {
745       Ops[i] = DAG.getNode(
746           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
747           DAG.getConstant(i, DL, IdxVT));
748     }
749   }
750 
751   // Split the intermediate operands into legal parts.
752   if (NumParts == NumIntermediates) {
753     // If the register was not expanded, promote or copy the value,
754     // as appropriate.
755     for (unsigned i = 0; i != NumParts; ++i)
756       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
757   } else if (NumParts > 0) {
758     // If the intermediate type was expanded, split each the value into
759     // legal parts.
760     assert(NumIntermediates != 0 && "division by zero");
761     assert(NumParts % NumIntermediates == 0 &&
762            "Must expand into a divisible number of parts!");
763     unsigned Factor = NumParts / NumIntermediates;
764     for (unsigned i = 0; i != NumIntermediates; ++i)
765       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
766                      CallConv);
767   }
768 }
769 
770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
771                            EVT valuevt, Optional<CallingConv::ID> CC)
772     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
773       RegCount(1, regs.size()), CallConv(CC) {}
774 
775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
776                            const DataLayout &DL, unsigned Reg, Type *Ty,
777                            Optional<CallingConv::ID> CC) {
778   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
779 
780   CallConv = CC;
781 
782   for (EVT ValueVT : ValueVTs) {
783     unsigned NumRegs =
784         isABIMangled()
785             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
786             : TLI.getNumRegisters(Context, ValueVT);
787     MVT RegisterVT =
788         isABIMangled()
789             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
790             : TLI.getRegisterType(Context, ValueVT);
791     for (unsigned i = 0; i != NumRegs; ++i)
792       Regs.push_back(Reg + i);
793     RegVTs.push_back(RegisterVT);
794     RegCount.push_back(NumRegs);
795     Reg += NumRegs;
796   }
797 }
798 
799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
800                                       FunctionLoweringInfo &FuncInfo,
801                                       const SDLoc &dl, SDValue &Chain,
802                                       SDValue *Flag, const Value *V) const {
803   // A Value with type {} or [0 x %t] needs no registers.
804   if (ValueVTs.empty())
805     return SDValue();
806 
807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
808 
809   // Assemble the legal parts into the final values.
810   SmallVector<SDValue, 4> Values(ValueVTs.size());
811   SmallVector<SDValue, 8> Parts;
812   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
813     // Copy the legal parts from the registers.
814     EVT ValueVT = ValueVTs[Value];
815     unsigned NumRegs = RegCount[Value];
816     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
817                                           *DAG.getContext(),
818                                           CallConv.getValue(), RegVTs[Value])
819                                     : RegVTs[Value];
820 
821     Parts.resize(NumRegs);
822     for (unsigned i = 0; i != NumRegs; ++i) {
823       SDValue P;
824       if (!Flag) {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
826       } else {
827         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
828         *Flag = P.getValue(2);
829       }
830 
831       Chain = P.getValue(1);
832       Parts[i] = P;
833 
834       // If the source register was virtual and if we know something about it,
835       // add an assert node.
836       if (!Register::isVirtualRegister(Regs[Part + i]) ||
837           !RegisterVT.isInteger())
838         continue;
839 
840       const FunctionLoweringInfo::LiveOutInfo *LOI =
841         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
842       if (!LOI)
843         continue;
844 
845       unsigned RegSize = RegisterVT.getScalarSizeInBits();
846       unsigned NumSignBits = LOI->NumSignBits;
847       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
848 
849       if (NumZeroBits == RegSize) {
850         // The current value is a zero.
851         // Explicitly express that as it would be easier for
852         // optimizations to kick in.
853         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
854         continue;
855       }
856 
857       // FIXME: We capture more information than the dag can represent.  For
858       // now, just use the tightest assertzext/assertsext possible.
859       bool isSExt;
860       EVT FromVT(MVT::Other);
861       if (NumZeroBits) {
862         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
863         isSExt = false;
864       } else if (NumSignBits > 1) {
865         FromVT =
866             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
867         isSExt = true;
868       } else {
869         continue;
870       }
871       // Add an assertion node.
872       assert(FromVT != MVT::Other);
873       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
874                              RegisterVT, P, DAG.getValueType(FromVT));
875     }
876 
877     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
878                                      RegisterVT, ValueVT, V, CallConv);
879     Part += NumRegs;
880     Parts.clear();
881   }
882 
883   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
884 }
885 
886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
887                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
888                                  const Value *V,
889                                  ISD::NodeType PreferredExtendType) const {
890   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
891   ISD::NodeType ExtendKind = PreferredExtendType;
892 
893   // Get the list of the values's legal parts.
894   unsigned NumRegs = Regs.size();
895   SmallVector<SDValue, 8> Parts(NumRegs);
896   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
897     unsigned NumParts = RegCount[Value];
898 
899     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
900                                           *DAG.getContext(),
901                                           CallConv.getValue(), RegVTs[Value])
902                                     : RegVTs[Value];
903 
904     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
905       ExtendKind = ISD::ZERO_EXTEND;
906 
907     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
908                    NumParts, RegisterVT, V, CallConv, ExtendKind);
909     Part += NumParts;
910   }
911 
912   // Copy the parts into the registers.
913   SmallVector<SDValue, 8> Chains(NumRegs);
914   for (unsigned i = 0; i != NumRegs; ++i) {
915     SDValue Part;
916     if (!Flag) {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
918     } else {
919       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
920       *Flag = Part.getValue(1);
921     }
922 
923     Chains[i] = Part.getValue(0);
924   }
925 
926   if (NumRegs == 1 || Flag)
927     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928     // flagged to it. That is the CopyToReg nodes and the user are considered
929     // a single scheduling unit. If we create a TokenFactor and return it as
930     // chain, then the TokenFactor is both a predecessor (operand) of the
931     // user as well as a successor (the TF operands are flagged to the user).
932     // c1, f1 = CopyToReg
933     // c2, f2 = CopyToReg
934     // c3     = TokenFactor c1, c2
935     // ...
936     //        = op c3, ..., f2
937     Chain = Chains[NumRegs-1];
938   else
939     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
940 }
941 
942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
943                                         unsigned MatchingIdx, const SDLoc &dl,
944                                         SelectionDAG &DAG,
945                                         std::vector<SDValue> &Ops) const {
946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
947 
948   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
949   if (HasMatching)
950     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
951   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
952     // Put the register class of the virtual registers in the flag word.  That
953     // way, later passes can recompute register class constraints for inline
954     // assembly as well as normal instructions.
955     // Don't do this for tied operands that can use the regclass information
956     // from the def.
957     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
958     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
959     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
960   }
961 
962   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
963   Ops.push_back(Res);
964 
965   if (Code == InlineAsm::Kind_Clobber) {
966     // Clobbers should always have a 1:1 mapping with registers, and may
967     // reference registers that have illegal (e.g. vector) types. Hence, we
968     // shouldn't try to apply any sort of splitting logic to them.
969     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
970            "No 1:1 mapping from clobbers to regs?");
971     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
972     (void)SP;
973     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
974       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
975       assert(
976           (Regs[I] != SP ||
977            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978           "If we clobbered the stack pointer, MFI should know about it.");
979     }
980     return;
981   }
982 
983   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
984     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
985     MVT RegisterVT = RegVTs[Value];
986     for (unsigned i = 0; i != NumRegs; ++i) {
987       assert(Reg < Regs.size() && "Mismatch in # registers expected");
988       unsigned TheReg = Regs[Reg++];
989       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
990     }
991   }
992 }
993 
994 SmallVector<std::pair<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
997   unsigned I = 0;
998   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
999     unsigned RegCount = std::get<0>(CountAndVT);
1000     MVT RegisterVT = std::get<1>(CountAndVT);
1001     unsigned RegisterSize = RegisterVT.getSizeInBits();
1002     for (unsigned E = I + RegCount; I != E; ++I)
1003       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1004   }
1005   return OutVec;
1006 }
1007 
1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1009                                const TargetLibraryInfo *li) {
1010   AA = aa;
1011   GFI = gfi;
1012   LibInfo = li;
1013   DL = &DAG.getDataLayout();
1014   Context = DAG.getContext();
1015   LPadToCallSiteMap.clear();
1016   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1017 }
1018 
1019 void SelectionDAGBuilder::clear() {
1020   NodeMap.clear();
1021   UnusedArgNodeMap.clear();
1022   PendingLoads.clear();
1023   PendingExports.clear();
1024   CurInst = nullptr;
1025   HasTailCall = false;
1026   SDNodeOrder = LowestSDNodeOrder;
1027   StatepointLowering.clear();
1028 }
1029 
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031   DanglingDebugInfoMap.clear();
1032 }
1033 
1034 SDValue SelectionDAGBuilder::getRoot() {
1035   if (PendingLoads.empty())
1036     return DAG.getRoot();
1037 
1038   if (PendingLoads.size() == 1) {
1039     SDValue Root = PendingLoads[0];
1040     DAG.setRoot(Root);
1041     PendingLoads.clear();
1042     return Root;
1043   }
1044 
1045   // Otherwise, we have to make a token factor node.
1046   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1047   PendingLoads.clear();
1048   DAG.setRoot(Root);
1049   return Root;
1050 }
1051 
1052 SDValue SelectionDAGBuilder::getControlRoot() {
1053   SDValue Root = DAG.getRoot();
1054 
1055   if (PendingExports.empty())
1056     return Root;
1057 
1058   // Turn all of the CopyToReg chains into one factored node.
1059   if (Root.getOpcode() != ISD::EntryToken) {
1060     unsigned i = 0, e = PendingExports.size();
1061     for (; i != e; ++i) {
1062       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1063       if (PendingExports[i].getNode()->getOperand(0) == Root)
1064         break;  // Don't add the root if we already indirectly depend on it.
1065     }
1066 
1067     if (i == e)
1068       PendingExports.push_back(Root);
1069   }
1070 
1071   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1072                      PendingExports);
1073   PendingExports.clear();
1074   DAG.setRoot(Root);
1075   return Root;
1076 }
1077 
1078 void SelectionDAGBuilder::visit(const Instruction &I) {
1079   // Set up outgoing PHI node register values before emitting the terminator.
1080   if (I.isTerminator()) {
1081     HandlePHINodesInSuccessorBlocks(I.getParent());
1082   }
1083 
1084   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1085   if (!isa<DbgInfoIntrinsic>(I))
1086     ++SDNodeOrder;
1087 
1088   CurInst = &I;
1089 
1090   visit(I.getOpcode(), I);
1091 
1092   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1093     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1094     // maps to this instruction.
1095     // TODO: We could handle all flags (nsw, etc) here.
1096     // TODO: If an IR instruction maps to >1 node, only the final node will have
1097     //       flags set.
1098     if (SDNode *Node = getNodeForIRValue(&I)) {
1099       SDNodeFlags IncomingFlags;
1100       IncomingFlags.copyFMF(*FPMO);
1101       if (!Node->getFlags().isDefined())
1102         Node->setFlags(IncomingFlags);
1103       else
1104         Node->intersectFlagsWith(IncomingFlags);
1105     }
1106   }
1107 
1108   if (!I.isTerminator() && !HasTailCall &&
1109       !isStatepoint(&I)) // statepoints handle their exports internally
1110     CopyToExportRegsIfNeeded(&I);
1111 
1112   CurInst = nullptr;
1113 }
1114 
1115 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1116   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1117 }
1118 
1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1120   // Note: this doesn't use InstVisitor, because it has to work with
1121   // ConstantExpr's in addition to instructions.
1122   switch (Opcode) {
1123   default: llvm_unreachable("Unknown instruction type encountered!");
1124     // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1128   }
1129 }
1130 
1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1132                                                 const DIExpression *Expr) {
1133   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1134     const DbgValueInst *DI = DDI.getDI();
1135     DIVariable *DanglingVariable = DI->getVariable();
1136     DIExpression *DanglingExpr = DI->getExpression();
1137     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1138       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1139       return true;
1140     }
1141     return false;
1142   };
1143 
1144   for (auto &DDIMI : DanglingDebugInfoMap) {
1145     DanglingDebugInfoVector &DDIV = DDIMI.second;
1146 
1147     // If debug info is to be dropped, run it through final checks to see
1148     // whether it can be salvaged.
1149     for (auto &DDI : DDIV)
1150       if (isMatchingDbgValue(DDI))
1151         salvageUnresolvedDbgValue(DDI);
1152 
1153     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1154   }
1155 }
1156 
1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1158 // generate the debug data structures now that we've seen its definition.
1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1160                                                    SDValue Val) {
1161   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1162   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1163     return;
1164 
1165   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1166   for (auto &DDI : DDIV) {
1167     const DbgValueInst *DI = DDI.getDI();
1168     assert(DI && "Ill-formed DanglingDebugInfo");
1169     DebugLoc dl = DDI.getdl();
1170     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1171     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1172     DILocalVariable *Variable = DI->getVariable();
1173     DIExpression *Expr = DI->getExpression();
1174     assert(Variable->isValidLocationForIntrinsic(dl) &&
1175            "Expected inlined-at fields to agree");
1176     SDDbgValue *SDV;
1177     if (Val.getNode()) {
1178       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1179       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1180       // we couldn't resolve it directly when examining the DbgValue intrinsic
1181       // in the first place we should not be more successful here). Unless we
1182       // have some test case that prove this to be correct we should avoid
1183       // calling EmitFuncArgumentDbgValue here.
1184       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1185         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1186                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1187         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1188         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1189         // inserted after the definition of Val when emitting the instructions
1190         // after ISel. An alternative could be to teach
1191         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1192         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1193                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1194                    << ValSDNodeOrder << "\n");
1195         SDV = getDbgValue(Val, Variable, Expr, dl,
1196                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1197         DAG.AddDbgValue(SDV, Val.getNode(), false);
1198       } else
1199         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1200                           << "in EmitFuncArgumentDbgValue\n");
1201     } else {
1202       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1203       auto Undef =
1204           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1205       auto SDV =
1206           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1207       DAG.AddDbgValue(SDV, nullptr, false);
1208     }
1209   }
1210   DDIV.clear();
1211 }
1212 
1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1214   Value *V = DDI.getDI()->getValue();
1215   DILocalVariable *Var = DDI.getDI()->getVariable();
1216   DIExpression *Expr = DDI.getDI()->getExpression();
1217   DebugLoc DL = DDI.getdl();
1218   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1219   unsigned SDOrder = DDI.getSDNodeOrder();
1220 
1221   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1222   // that DW_OP_stack_value is desired.
1223   assert(isa<DbgValueInst>(DDI.getDI()));
1224   bool StackValue = true;
1225 
1226   // Can this Value can be encoded without any further work?
1227   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1228     return;
1229 
1230   // Attempt to salvage back through as many instructions as possible. Bail if
1231   // a non-instruction is seen, such as a constant expression or global
1232   // variable. FIXME: Further work could recover those too.
1233   while (isa<Instruction>(V)) {
1234     Instruction &VAsInst = *cast<Instruction>(V);
1235     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1236 
1237     // If we cannot salvage any further, and haven't yet found a suitable debug
1238     // expression, bail out.
1239     if (!NewExpr)
1240       break;
1241 
1242     // New value and expr now represent this debuginfo.
1243     V = VAsInst.getOperand(0);
1244     Expr = NewExpr;
1245 
1246     // Some kind of simplification occurred: check whether the operand of the
1247     // salvaged debug expression can be encoded in this DAG.
1248     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1249       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1250                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1251       return;
1252     }
1253   }
1254 
1255   // This was the final opportunity to salvage this debug information, and it
1256   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1257   // any earlier variable location.
1258   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1259   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1260   DAG.AddDbgValue(SDV, nullptr, false);
1261 
1262   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1263                     << "\n");
1264   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1265                     << "\n");
1266 }
1267 
1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1269                                            DIExpression *Expr, DebugLoc dl,
1270                                            DebugLoc InstDL, unsigned Order) {
1271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1272   SDDbgValue *SDV;
1273   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1274       isa<ConstantPointerNull>(V)) {
1275     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1276     DAG.AddDbgValue(SDV, nullptr, false);
1277     return true;
1278   }
1279 
1280   // If the Value is a frame index, we can create a FrameIndex debug value
1281   // without relying on the DAG at all.
1282   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1283     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1284     if (SI != FuncInfo.StaticAllocaMap.end()) {
1285       auto SDV =
1286           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1287                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1288       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1289       // is still available even if the SDNode gets optimized out.
1290       DAG.AddDbgValue(SDV, nullptr, false);
1291       return true;
1292     }
1293   }
1294 
1295   // Do not use getValue() in here; we don't want to generate code at
1296   // this point if it hasn't been done yet.
1297   SDValue N = NodeMap[V];
1298   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1299     N = UnusedArgNodeMap[V];
1300   if (N.getNode()) {
1301     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1302       return true;
1303     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1304     DAG.AddDbgValue(SDV, N.getNode(), false);
1305     return true;
1306   }
1307 
1308   // Special rules apply for the first dbg.values of parameter variables in a
1309   // function. Identify them by the fact they reference Argument Values, that
1310   // they're parameters, and they are parameters of the current function. We
1311   // need to let them dangle until they get an SDNode.
1312   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1313                        !InstDL.getInlinedAt();
1314   if (!IsParamOfFunc) {
1315     // The value is not used in this block yet (or it would have an SDNode).
1316     // We still want the value to appear for the user if possible -- if it has
1317     // an associated VReg, we can refer to that instead.
1318     auto VMI = FuncInfo.ValueMap.find(V);
1319     if (VMI != FuncInfo.ValueMap.end()) {
1320       unsigned Reg = VMI->second;
1321       // If this is a PHI node, it may be split up into several MI PHI nodes
1322       // (in FunctionLoweringInfo::set).
1323       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1324                        V->getType(), None);
1325       if (RFV.occupiesMultipleRegs()) {
1326         unsigned Offset = 0;
1327         unsigned BitsToDescribe = 0;
1328         if (auto VarSize = Var->getSizeInBits())
1329           BitsToDescribe = *VarSize;
1330         if (auto Fragment = Expr->getFragmentInfo())
1331           BitsToDescribe = Fragment->SizeInBits;
1332         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1333           unsigned RegisterSize = RegAndSize.second;
1334           // Bail out if all bits are described already.
1335           if (Offset >= BitsToDescribe)
1336             break;
1337           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1338               ? BitsToDescribe - Offset
1339               : RegisterSize;
1340           auto FragmentExpr = DIExpression::createFragmentExpression(
1341               Expr, Offset, FragmentSize);
1342           if (!FragmentExpr)
1343               continue;
1344           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1345                                     false, dl, SDNodeOrder);
1346           DAG.AddDbgValue(SDV, nullptr, false);
1347           Offset += RegisterSize;
1348         }
1349       } else {
1350         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1351         DAG.AddDbgValue(SDV, nullptr, false);
1352       }
1353       return true;
1354     }
1355   }
1356 
1357   return false;
1358 }
1359 
1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1361   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1362   for (auto &Pair : DanglingDebugInfoMap)
1363     for (auto &DDI : Pair.second)
1364       salvageUnresolvedDbgValue(DDI);
1365   clearDanglingDebugInfo();
1366 }
1367 
1368 /// getCopyFromRegs - If there was virtual register allocated for the value V
1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1371   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1372   SDValue Result;
1373 
1374   if (It != FuncInfo.ValueMap.end()) {
1375     unsigned InReg = It->second;
1376 
1377     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1378                      DAG.getDataLayout(), InReg, Ty,
1379                      None); // This is not an ABI copy.
1380     SDValue Chain = DAG.getEntryNode();
1381     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1382                                  V);
1383     resolveDanglingDebugInfo(V, Result);
1384   }
1385 
1386   return Result;
1387 }
1388 
1389 /// getValue - Return an SDValue for the given Value.
1390 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1391   // If we already have an SDValue for this value, use it. It's important
1392   // to do this first, so that we don't create a CopyFromReg if we already
1393   // have a regular SDValue.
1394   SDValue &N = NodeMap[V];
1395   if (N.getNode()) return N;
1396 
1397   // If there's a virtual register allocated and initialized for this
1398   // value, use it.
1399   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1400     return copyFromReg;
1401 
1402   // Otherwise create a new SDValue and remember it.
1403   SDValue Val = getValueImpl(V);
1404   NodeMap[V] = Val;
1405   resolveDanglingDebugInfo(V, Val);
1406   return Val;
1407 }
1408 
1409 // Return true if SDValue exists for the given Value
1410 bool SelectionDAGBuilder::findValue(const Value *V) const {
1411   return (NodeMap.find(V) != NodeMap.end()) ||
1412     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1413 }
1414 
1415 /// getNonRegisterValue - Return an SDValue for the given Value, but
1416 /// don't look in FuncInfo.ValueMap for a virtual register.
1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1418   // If we already have an SDValue for this value, use it.
1419   SDValue &N = NodeMap[V];
1420   if (N.getNode()) {
1421     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1422       // Remove the debug location from the node as the node is about to be used
1423       // in a location which may differ from the original debug location.  This
1424       // is relevant to Constant and ConstantFP nodes because they can appear
1425       // as constant expressions inside PHI nodes.
1426       N->setDebugLoc(DebugLoc());
1427     }
1428     return N;
1429   }
1430 
1431   // Otherwise create a new SDValue and remember it.
1432   SDValue Val = getValueImpl(V);
1433   NodeMap[V] = Val;
1434   resolveDanglingDebugInfo(V, Val);
1435   return Val;
1436 }
1437 
1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1439 /// Create an SDValue for the given value.
1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1442 
1443   if (const Constant *C = dyn_cast<Constant>(V)) {
1444     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1445 
1446     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1447       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1448 
1449     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1450       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1451 
1452     if (isa<ConstantPointerNull>(C)) {
1453       unsigned AS = V->getType()->getPointerAddressSpace();
1454       return DAG.getConstant(0, getCurSDLoc(),
1455                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1456     }
1457 
1458     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1459       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1460 
1461     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1462       return DAG.getUNDEF(VT);
1463 
1464     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1465       visit(CE->getOpcode(), *CE);
1466       SDValue N1 = NodeMap[V];
1467       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1468       return N1;
1469     }
1470 
1471     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1472       SmallVector<SDValue, 4> Constants;
1473       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1474            OI != OE; ++OI) {
1475         SDNode *Val = getValue(*OI).getNode();
1476         // If the operand is an empty aggregate, there are no values.
1477         if (!Val) continue;
1478         // Add each leaf value from the operand to the Constants list
1479         // to form a flattened list of all the values.
1480         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1481           Constants.push_back(SDValue(Val, i));
1482       }
1483 
1484       return DAG.getMergeValues(Constants, getCurSDLoc());
1485     }
1486 
1487     if (const ConstantDataSequential *CDS =
1488           dyn_cast<ConstantDataSequential>(C)) {
1489       SmallVector<SDValue, 4> Ops;
1490       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1491         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1492         // Add each leaf value from the operand to the Constants list
1493         // to form a flattened list of all the values.
1494         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1495           Ops.push_back(SDValue(Val, i));
1496       }
1497 
1498       if (isa<ArrayType>(CDS->getType()))
1499         return DAG.getMergeValues(Ops, getCurSDLoc());
1500       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1501     }
1502 
1503     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1504       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1505              "Unknown struct or array constant!");
1506 
1507       SmallVector<EVT, 4> ValueVTs;
1508       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1509       unsigned NumElts = ValueVTs.size();
1510       if (NumElts == 0)
1511         return SDValue(); // empty struct
1512       SmallVector<SDValue, 4> Constants(NumElts);
1513       for (unsigned i = 0; i != NumElts; ++i) {
1514         EVT EltVT = ValueVTs[i];
1515         if (isa<UndefValue>(C))
1516           Constants[i] = DAG.getUNDEF(EltVT);
1517         else if (EltVT.isFloatingPoint())
1518           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1519         else
1520           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1521       }
1522 
1523       return DAG.getMergeValues(Constants, getCurSDLoc());
1524     }
1525 
1526     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1527       return DAG.getBlockAddress(BA, VT);
1528 
1529     VectorType *VecTy = cast<VectorType>(V->getType());
1530     unsigned NumElements = VecTy->getNumElements();
1531 
1532     // Now that we know the number and type of the elements, get that number of
1533     // elements into the Ops array based on what kind of constant it is.
1534     SmallVector<SDValue, 16> Ops;
1535     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1536       for (unsigned i = 0; i != NumElements; ++i)
1537         Ops.push_back(getValue(CV->getOperand(i)));
1538     } else {
1539       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1540       EVT EltVT =
1541           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1542 
1543       SDValue Op;
1544       if (EltVT.isFloatingPoint())
1545         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1546       else
1547         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1548       Ops.assign(NumElements, Op);
1549     }
1550 
1551     // Create a BUILD_VECTOR node.
1552     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1553   }
1554 
1555   // If this is a static alloca, generate it as the frameindex instead of
1556   // computation.
1557   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1558     DenseMap<const AllocaInst*, int>::iterator SI =
1559       FuncInfo.StaticAllocaMap.find(AI);
1560     if (SI != FuncInfo.StaticAllocaMap.end())
1561       return DAG.getFrameIndex(SI->second,
1562                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1563   }
1564 
1565   // If this is an instruction which fast-isel has deferred, select it now.
1566   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1567     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1568 
1569     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1570                      Inst->getType(), getABIRegCopyCC(V));
1571     SDValue Chain = DAG.getEntryNode();
1572     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1573   }
1574 
1575   llvm_unreachable("Can't get register for value!");
1576 }
1577 
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582   bool IsSEH = isAsynchronousEHPersonality(Pers);
1583   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1584   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1585   if (!IsSEH)
1586     CatchPadMBB->setIsEHScopeEntry();
1587   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588   if (IsMSVCCXX || IsCoreCLR)
1589     CatchPadMBB->setIsEHFuncletEntry();
1590   // Wasm does not need catchpads anymore
1591   if (!IsWasmCXX)
1592     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1593                             getControlRoot()));
1594 }
1595 
1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1597   // Update machine-CFG edge.
1598   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1599   FuncInfo.MBB->addSuccessor(TargetMBB);
1600 
1601   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1602   bool IsSEH = isAsynchronousEHPersonality(Pers);
1603   if (IsSEH) {
1604     // If this is not a fall-through branch or optimizations are switched off,
1605     // emit the branch.
1606     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1607         TM.getOptLevel() == CodeGenOpt::None)
1608       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1609                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1610     return;
1611   }
1612 
1613   // Figure out the funclet membership for the catchret's successor.
1614   // This will be used by the FuncletLayout pass to determine how to order the
1615   // BB's.
1616   // A 'catchret' returns to the outer scope's color.
1617   Value *ParentPad = I.getCatchSwitchParentPad();
1618   const BasicBlock *SuccessorColor;
1619   if (isa<ConstantTokenNone>(ParentPad))
1620     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1621   else
1622     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1623   assert(SuccessorColor && "No parent funclet for catchret!");
1624   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1625   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1626 
1627   // Create the terminator node.
1628   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1629                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1630                             DAG.getBasicBlock(SuccessorColorMBB));
1631   DAG.setRoot(Ret);
1632 }
1633 
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1635   // Don't emit any special code for the cleanuppad instruction. It just marks
1636   // the start of an EH scope/funclet.
1637   FuncInfo.MBB->setIsEHScopeEntry();
1638   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1639   if (Pers != EHPersonality::Wasm_CXX) {
1640     FuncInfo.MBB->setIsEHFuncletEntry();
1641     FuncInfo.MBB->setIsCleanupFuncletEntry();
1642   }
1643 }
1644 
1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1646 // the control flow always stops at the single catch pad, as it does for a
1647 // cleanup pad. In case the exception caught is not of the types the catch pad
1648 // catches, it will be rethrown by a rethrow.
1649 static void findWasmUnwindDestinations(
1650     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1651     BranchProbability Prob,
1652     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1653         &UnwindDests) {
1654   while (EHPadBB) {
1655     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1656     if (isa<CleanupPadInst>(Pad)) {
1657       // Stop on cleanup pads.
1658       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1659       UnwindDests.back().first->setIsEHScopeEntry();
1660       break;
1661     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1662       // Add the catchpad handlers to the possible destinations. We don't
1663       // continue to the unwind destination of the catchswitch for wasm.
1664       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1665         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1666         UnwindDests.back().first->setIsEHScopeEntry();
1667       }
1668       break;
1669     } else {
1670       continue;
1671     }
1672   }
1673 }
1674 
1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1676 /// many places it could ultimately go. In the IR, we have a single unwind
1677 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1678 /// This function skips over imaginary basic blocks that hold catchswitch
1679 /// instructions, and finds all the "real" machine
1680 /// basic block destinations. As those destinations may not be successors of
1681 /// EHPadBB, here we also calculate the edge probability to those destinations.
1682 /// The passed-in Prob is the edge probability to EHPadBB.
1683 static void findUnwindDestinations(
1684     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1685     BranchProbability Prob,
1686     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1687         &UnwindDests) {
1688   EHPersonality Personality =
1689     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1690   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1691   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1692   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1693   bool IsSEH = isAsynchronousEHPersonality(Personality);
1694 
1695   if (IsWasmCXX) {
1696     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1697     assert(UnwindDests.size() <= 1 &&
1698            "There should be at most one unwind destination for wasm");
1699     return;
1700   }
1701 
1702   while (EHPadBB) {
1703     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1704     BasicBlock *NewEHPadBB = nullptr;
1705     if (isa<LandingPadInst>(Pad)) {
1706       // Stop on landingpads. They are not funclets.
1707       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708       break;
1709     } else if (isa<CleanupPadInst>(Pad)) {
1710       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1711       // personalities.
1712       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1713       UnwindDests.back().first->setIsEHScopeEntry();
1714       UnwindDests.back().first->setIsEHFuncletEntry();
1715       break;
1716     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1717       // Add the catchpad handlers to the possible destinations.
1718       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1719         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1720         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1721         if (IsMSVCCXX || IsCoreCLR)
1722           UnwindDests.back().first->setIsEHFuncletEntry();
1723         if (!IsSEH)
1724           UnwindDests.back().first->setIsEHScopeEntry();
1725       }
1726       NewEHPadBB = CatchSwitch->getUnwindDest();
1727     } else {
1728       continue;
1729     }
1730 
1731     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1732     if (BPI && NewEHPadBB)
1733       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1734     EHPadBB = NewEHPadBB;
1735   }
1736 }
1737 
1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1739   // Update successor info.
1740   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1741   auto UnwindDest = I.getUnwindDest();
1742   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1743   BranchProbability UnwindDestProb =
1744       (BPI && UnwindDest)
1745           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1746           : BranchProbability::getZero();
1747   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1748   for (auto &UnwindDest : UnwindDests) {
1749     UnwindDest.first->setIsEHPad();
1750     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1751   }
1752   FuncInfo.MBB->normalizeSuccProbs();
1753 
1754   // Create the terminator node.
1755   SDValue Ret =
1756       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1757   DAG.setRoot(Ret);
1758 }
1759 
1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1761   report_fatal_error("visitCatchSwitch not yet implemented!");
1762 }
1763 
1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1766   auto &DL = DAG.getDataLayout();
1767   SDValue Chain = getControlRoot();
1768   SmallVector<ISD::OutputArg, 8> Outs;
1769   SmallVector<SDValue, 8> OutVals;
1770 
1771   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1772   // lower
1773   //
1774   //   %val = call <ty> @llvm.experimental.deoptimize()
1775   //   ret <ty> %val
1776   //
1777   // differently.
1778   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1779     LowerDeoptimizingReturn();
1780     return;
1781   }
1782 
1783   if (!FuncInfo.CanLowerReturn) {
1784     unsigned DemoteReg = FuncInfo.DemoteRegister;
1785     const Function *F = I.getParent()->getParent();
1786 
1787     // Emit a store of the return value through the virtual register.
1788     // Leave Outs empty so that LowerReturn won't try to load return
1789     // registers the usual way.
1790     SmallVector<EVT, 1> PtrValueVTs;
1791     ComputeValueVTs(TLI, DL,
1792                     F->getReturnType()->getPointerTo(
1793                         DAG.getDataLayout().getAllocaAddrSpace()),
1794                     PtrValueVTs);
1795 
1796     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1797                                         DemoteReg, PtrValueVTs[0]);
1798     SDValue RetOp = getValue(I.getOperand(0));
1799 
1800     SmallVector<EVT, 4> ValueVTs, MemVTs;
1801     SmallVector<uint64_t, 4> Offsets;
1802     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1803                     &Offsets);
1804     unsigned NumValues = ValueVTs.size();
1805 
1806     SmallVector<SDValue, 4> Chains(NumValues);
1807     for (unsigned i = 0; i != NumValues; ++i) {
1808       // An aggregate return value cannot wrap around the address space, so
1809       // offsets to its parts don't wrap either.
1810       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1811 
1812       SDValue Val = RetOp.getValue(i);
1813       if (MemVTs[i] != ValueVTs[i])
1814         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1815       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1816           // FIXME: better loc info would be nice.
1817           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1818     }
1819 
1820     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1821                         MVT::Other, Chains);
1822   } else if (I.getNumOperands() != 0) {
1823     SmallVector<EVT, 4> ValueVTs;
1824     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1825     unsigned NumValues = ValueVTs.size();
1826     if (NumValues) {
1827       SDValue RetOp = getValue(I.getOperand(0));
1828 
1829       const Function *F = I.getParent()->getParent();
1830 
1831       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1832           I.getOperand(0)->getType(), F->getCallingConv(),
1833           /*IsVarArg*/ false);
1834 
1835       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1836       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1837                                           Attribute::SExt))
1838         ExtendKind = ISD::SIGN_EXTEND;
1839       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1840                                                Attribute::ZExt))
1841         ExtendKind = ISD::ZERO_EXTEND;
1842 
1843       LLVMContext &Context = F->getContext();
1844       bool RetInReg = F->getAttributes().hasAttribute(
1845           AttributeList::ReturnIndex, Attribute::InReg);
1846 
1847       for (unsigned j = 0; j != NumValues; ++j) {
1848         EVT VT = ValueVTs[j];
1849 
1850         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1851           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1852 
1853         CallingConv::ID CC = F->getCallingConv();
1854 
1855         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1856         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1857         SmallVector<SDValue, 4> Parts(NumParts);
1858         getCopyToParts(DAG, getCurSDLoc(),
1859                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1860                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1861 
1862         // 'inreg' on function refers to return value
1863         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1864         if (RetInReg)
1865           Flags.setInReg();
1866 
1867         if (I.getOperand(0)->getType()->isPointerTy()) {
1868           Flags.setPointer();
1869           Flags.setPointerAddrSpace(
1870               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1871         }
1872 
1873         if (NeedsRegBlock) {
1874           Flags.setInConsecutiveRegs();
1875           if (j == NumValues - 1)
1876             Flags.setInConsecutiveRegsLast();
1877         }
1878 
1879         // Propagate extension type if any
1880         if (ExtendKind == ISD::SIGN_EXTEND)
1881           Flags.setSExt();
1882         else if (ExtendKind == ISD::ZERO_EXTEND)
1883           Flags.setZExt();
1884 
1885         for (unsigned i = 0; i < NumParts; ++i) {
1886           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1887                                         VT, /*isfixed=*/true, 0, 0));
1888           OutVals.push_back(Parts[i]);
1889         }
1890       }
1891     }
1892   }
1893 
1894   // Push in swifterror virtual register as the last element of Outs. This makes
1895   // sure swifterror virtual register will be returned in the swifterror
1896   // physical register.
1897   const Function *F = I.getParent()->getParent();
1898   if (TLI.supportSwiftError() &&
1899       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1900     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1901     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1902     Flags.setSwiftError();
1903     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1904                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1905                                   true /*isfixed*/, 1 /*origidx*/,
1906                                   0 /*partOffs*/));
1907     // Create SDNode for the swifterror virtual register.
1908     OutVals.push_back(
1909         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1910                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1911                         EVT(TLI.getPointerTy(DL))));
1912   }
1913 
1914   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1915   CallingConv::ID CallConv =
1916     DAG.getMachineFunction().getFunction().getCallingConv();
1917   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1918       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1919 
1920   // Verify that the target's LowerReturn behaved as expected.
1921   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1922          "LowerReturn didn't return a valid chain!");
1923 
1924   // Update the DAG with the new chain value resulting from return lowering.
1925   DAG.setRoot(Chain);
1926 }
1927 
1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1929 /// created for it, emit nodes to copy the value into the virtual
1930 /// registers.
1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1932   // Skip empty types
1933   if (V->getType()->isEmptyTy())
1934     return;
1935 
1936   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1937   if (VMI != FuncInfo.ValueMap.end()) {
1938     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1939     CopyValueToVirtualRegister(V, VMI->second);
1940   }
1941 }
1942 
1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1944 /// the current basic block, add it to ValueMap now so that we'll get a
1945 /// CopyTo/FromReg.
1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1947   // No need to export constants.
1948   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1949 
1950   // Already exported?
1951   if (FuncInfo.isExportedInst(V)) return;
1952 
1953   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1954   CopyValueToVirtualRegister(V, Reg);
1955 }
1956 
1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1958                                                      const BasicBlock *FromBB) {
1959   // The operands of the setcc have to be in this block.  We don't know
1960   // how to export them from some other block.
1961   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1962     // Can export from current BB.
1963     if (VI->getParent() == FromBB)
1964       return true;
1965 
1966     // Is already exported, noop.
1967     return FuncInfo.isExportedInst(V);
1968   }
1969 
1970   // If this is an argument, we can export it if the BB is the entry block or
1971   // if it is already exported.
1972   if (isa<Argument>(V)) {
1973     if (FromBB == &FromBB->getParent()->getEntryBlock())
1974       return true;
1975 
1976     // Otherwise, can only export this if it is already exported.
1977     return FuncInfo.isExportedInst(V);
1978   }
1979 
1980   // Otherwise, constants can always be exported.
1981   return true;
1982 }
1983 
1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1985 BranchProbability
1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1987                                         const MachineBasicBlock *Dst) const {
1988   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1989   const BasicBlock *SrcBB = Src->getBasicBlock();
1990   const BasicBlock *DstBB = Dst->getBasicBlock();
1991   if (!BPI) {
1992     // If BPI is not available, set the default probability as 1 / N, where N is
1993     // the number of successors.
1994     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1995     return BranchProbability(1, SuccSize);
1996   }
1997   return BPI->getEdgeProbability(SrcBB, DstBB);
1998 }
1999 
2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2001                                                MachineBasicBlock *Dst,
2002                                                BranchProbability Prob) {
2003   if (!FuncInfo.BPI)
2004     Src->addSuccessorWithoutProb(Dst);
2005   else {
2006     if (Prob.isUnknown())
2007       Prob = getEdgeProbability(Src, Dst);
2008     Src->addSuccessor(Dst, Prob);
2009   }
2010 }
2011 
2012 static bool InBlock(const Value *V, const BasicBlock *BB) {
2013   if (const Instruction *I = dyn_cast<Instruction>(V))
2014     return I->getParent() == BB;
2015   return true;
2016 }
2017 
2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2019 /// This function emits a branch and is used at the leaves of an OR or an
2020 /// AND operator tree.
2021 void
2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2023                                                   MachineBasicBlock *TBB,
2024                                                   MachineBasicBlock *FBB,
2025                                                   MachineBasicBlock *CurBB,
2026                                                   MachineBasicBlock *SwitchBB,
2027                                                   BranchProbability TProb,
2028                                                   BranchProbability FProb,
2029                                                   bool InvertCond) {
2030   const BasicBlock *BB = CurBB->getBasicBlock();
2031 
2032   // If the leaf of the tree is a comparison, merge the condition into
2033   // the caseblock.
2034   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2035     // The operands of the cmp have to be in this block.  We don't know
2036     // how to export them from some other block.  If this is the first block
2037     // of the sequence, no exporting is needed.
2038     if (CurBB == SwitchBB ||
2039         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2040          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2041       ISD::CondCode Condition;
2042       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2043         ICmpInst::Predicate Pred =
2044             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2045         Condition = getICmpCondCode(Pred);
2046       } else {
2047         const FCmpInst *FC = cast<FCmpInst>(Cond);
2048         FCmpInst::Predicate Pred =
2049             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2050         Condition = getFCmpCondCode(Pred);
2051         if (TM.Options.NoNaNsFPMath)
2052           Condition = getFCmpCodeWithoutNaN(Condition);
2053       }
2054 
2055       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2056                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2057       SL->SwitchCases.push_back(CB);
2058       return;
2059     }
2060   }
2061 
2062   // Create a CaseBlock record representing this branch.
2063   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2064   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2065                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2066   SL->SwitchCases.push_back(CB);
2067 }
2068 
2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2070                                                MachineBasicBlock *TBB,
2071                                                MachineBasicBlock *FBB,
2072                                                MachineBasicBlock *CurBB,
2073                                                MachineBasicBlock *SwitchBB,
2074                                                Instruction::BinaryOps Opc,
2075                                                BranchProbability TProb,
2076                                                BranchProbability FProb,
2077                                                bool InvertCond) {
2078   // Skip over not part of the tree and remember to invert op and operands at
2079   // next level.
2080   Value *NotCond;
2081   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2082       InBlock(NotCond, CurBB->getBasicBlock())) {
2083     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2084                          !InvertCond);
2085     return;
2086   }
2087 
2088   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2089   // Compute the effective opcode for Cond, taking into account whether it needs
2090   // to be inverted, e.g.
2091   //   and (not (or A, B)), C
2092   // gets lowered as
2093   //   and (and (not A, not B), C)
2094   unsigned BOpc = 0;
2095   if (BOp) {
2096     BOpc = BOp->getOpcode();
2097     if (InvertCond) {
2098       if (BOpc == Instruction::And)
2099         BOpc = Instruction::Or;
2100       else if (BOpc == Instruction::Or)
2101         BOpc = Instruction::And;
2102     }
2103   }
2104 
2105   // If this node is not part of the or/and tree, emit it as a branch.
2106   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2107       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2108       BOp->getParent() != CurBB->getBasicBlock() ||
2109       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2110       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2111     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2112                                  TProb, FProb, InvertCond);
2113     return;
2114   }
2115 
2116   //  Create TmpBB after CurBB.
2117   MachineFunction::iterator BBI(CurBB);
2118   MachineFunction &MF = DAG.getMachineFunction();
2119   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2120   CurBB->getParent()->insert(++BBI, TmpBB);
2121 
2122   if (Opc == Instruction::Or) {
2123     // Codegen X | Y as:
2124     // BB1:
2125     //   jmp_if_X TBB
2126     //   jmp TmpBB
2127     // TmpBB:
2128     //   jmp_if_Y TBB
2129     //   jmp FBB
2130     //
2131 
2132     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2133     // The requirement is that
2134     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2135     //     = TrueProb for original BB.
2136     // Assuming the original probabilities are A and B, one choice is to set
2137     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2138     // A/(1+B) and 2B/(1+B). This choice assumes that
2139     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2140     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2141     // TmpBB, but the math is more complicated.
2142 
2143     auto NewTrueProb = TProb / 2;
2144     auto NewFalseProb = TProb / 2 + FProb;
2145     // Emit the LHS condition.
2146     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2147                          NewTrueProb, NewFalseProb, InvertCond);
2148 
2149     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2150     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2151     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2152     // Emit the RHS condition into TmpBB.
2153     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2154                          Probs[0], Probs[1], InvertCond);
2155   } else {
2156     assert(Opc == Instruction::And && "Unknown merge op!");
2157     // Codegen X & Y as:
2158     // BB1:
2159     //   jmp_if_X TmpBB
2160     //   jmp FBB
2161     // TmpBB:
2162     //   jmp_if_Y TBB
2163     //   jmp FBB
2164     //
2165     //  This requires creation of TmpBB after CurBB.
2166 
2167     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2168     // The requirement is that
2169     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2170     //     = FalseProb for original BB.
2171     // Assuming the original probabilities are A and B, one choice is to set
2172     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2173     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2174     // TrueProb for BB1 * FalseProb for TmpBB.
2175 
2176     auto NewTrueProb = TProb + FProb / 2;
2177     auto NewFalseProb = FProb / 2;
2178     // Emit the LHS condition.
2179     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2180                          NewTrueProb, NewFalseProb, InvertCond);
2181 
2182     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2183     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2184     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2185     // Emit the RHS condition into TmpBB.
2186     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2187                          Probs[0], Probs[1], InvertCond);
2188   }
2189 }
2190 
2191 /// If the set of cases should be emitted as a series of branches, return true.
2192 /// If we should emit this as a bunch of and/or'd together conditions, return
2193 /// false.
2194 bool
2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2196   if (Cases.size() != 2) return true;
2197 
2198   // If this is two comparisons of the same values or'd or and'd together, they
2199   // will get folded into a single comparison, so don't emit two blocks.
2200   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2201        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2202       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2203        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2204     return false;
2205   }
2206 
2207   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2208   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2209   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2210       Cases[0].CC == Cases[1].CC &&
2211       isa<Constant>(Cases[0].CmpRHS) &&
2212       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2213     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2214       return false;
2215     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2216       return false;
2217   }
2218 
2219   return true;
2220 }
2221 
2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2223   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2224 
2225   // Update machine-CFG edges.
2226   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2227 
2228   if (I.isUnconditional()) {
2229     // Update machine-CFG edges.
2230     BrMBB->addSuccessor(Succ0MBB);
2231 
2232     // If this is not a fall-through branch or optimizations are switched off,
2233     // emit the branch.
2234     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2235       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2236                               MVT::Other, getControlRoot(),
2237                               DAG.getBasicBlock(Succ0MBB)));
2238 
2239     return;
2240   }
2241 
2242   // If this condition is one of the special cases we handle, do special stuff
2243   // now.
2244   const Value *CondVal = I.getCondition();
2245   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2246 
2247   // If this is a series of conditions that are or'd or and'd together, emit
2248   // this as a sequence of branches instead of setcc's with and/or operations.
2249   // As long as jumps are not expensive, this should improve performance.
2250   // For example, instead of something like:
2251   //     cmp A, B
2252   //     C = seteq
2253   //     cmp D, E
2254   //     F = setle
2255   //     or C, F
2256   //     jnz foo
2257   // Emit:
2258   //     cmp A, B
2259   //     je foo
2260   //     cmp D, E
2261   //     jle foo
2262   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2263     Instruction::BinaryOps Opcode = BOp->getOpcode();
2264     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2265         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2266         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2267       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2268                            Opcode,
2269                            getEdgeProbability(BrMBB, Succ0MBB),
2270                            getEdgeProbability(BrMBB, Succ1MBB),
2271                            /*InvertCond=*/false);
2272       // If the compares in later blocks need to use values not currently
2273       // exported from this block, export them now.  This block should always
2274       // be the first entry.
2275       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2276 
2277       // Allow some cases to be rejected.
2278       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2279         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2280           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2281           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2282         }
2283 
2284         // Emit the branch for this block.
2285         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2286         SL->SwitchCases.erase(SL->SwitchCases.begin());
2287         return;
2288       }
2289 
2290       // Okay, we decided not to do this, remove any inserted MBB's and clear
2291       // SwitchCases.
2292       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2293         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2294 
2295       SL->SwitchCases.clear();
2296     }
2297   }
2298 
2299   // Create a CaseBlock record representing this branch.
2300   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2301                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2302 
2303   // Use visitSwitchCase to actually insert the fast branch sequence for this
2304   // cond branch.
2305   visitSwitchCase(CB, BrMBB);
2306 }
2307 
2308 /// visitSwitchCase - Emits the necessary code to represent a single node in
2309 /// the binary search tree resulting from lowering a switch instruction.
2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2311                                           MachineBasicBlock *SwitchBB) {
2312   SDValue Cond;
2313   SDValue CondLHS = getValue(CB.CmpLHS);
2314   SDLoc dl = CB.DL;
2315 
2316   if (CB.CC == ISD::SETTRUE) {
2317     // Branch or fall through to TrueBB.
2318     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2319     SwitchBB->normalizeSuccProbs();
2320     if (CB.TrueBB != NextBlock(SwitchBB)) {
2321       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2322                               DAG.getBasicBlock(CB.TrueBB)));
2323     }
2324     return;
2325   }
2326 
2327   auto &TLI = DAG.getTargetLoweringInfo();
2328   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2329 
2330   // Build the setcc now.
2331   if (!CB.CmpMHS) {
2332     // Fold "(X == true)" to X and "(X == false)" to !X to
2333     // handle common cases produced by branch lowering.
2334     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2335         CB.CC == ISD::SETEQ)
2336       Cond = CondLHS;
2337     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2338              CB.CC == ISD::SETEQ) {
2339       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2340       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2341     } else {
2342       SDValue CondRHS = getValue(CB.CmpRHS);
2343 
2344       // If a pointer's DAG type is larger than its memory type then the DAG
2345       // values are zero-extended. This breaks signed comparisons so truncate
2346       // back to the underlying type before doing the compare.
2347       if (CondLHS.getValueType() != MemVT) {
2348         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2349         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2350       }
2351       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2352     }
2353   } else {
2354     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2355 
2356     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2357     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2358 
2359     SDValue CmpOp = getValue(CB.CmpMHS);
2360     EVT VT = CmpOp.getValueType();
2361 
2362     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2363       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2364                           ISD::SETLE);
2365     } else {
2366       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2367                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2368       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2369                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2370     }
2371   }
2372 
2373   // Update successor info
2374   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2375   // TrueBB and FalseBB are always different unless the incoming IR is
2376   // degenerate. This only happens when running llc on weird IR.
2377   if (CB.TrueBB != CB.FalseBB)
2378     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2379   SwitchBB->normalizeSuccProbs();
2380 
2381   // If the lhs block is the next block, invert the condition so that we can
2382   // fall through to the lhs instead of the rhs block.
2383   if (CB.TrueBB == NextBlock(SwitchBB)) {
2384     std::swap(CB.TrueBB, CB.FalseBB);
2385     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2386     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2387   }
2388 
2389   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2390                                MVT::Other, getControlRoot(), Cond,
2391                                DAG.getBasicBlock(CB.TrueBB));
2392 
2393   // Insert the false branch. Do this even if it's a fall through branch,
2394   // this makes it easier to do DAG optimizations which require inverting
2395   // the branch condition.
2396   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2397                        DAG.getBasicBlock(CB.FalseBB));
2398 
2399   DAG.setRoot(BrCond);
2400 }
2401 
2402 /// visitJumpTable - Emit JumpTable node in the current MBB
2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2404   // Emit the code for the jump table
2405   assert(JT.Reg != -1U && "Should lower JT Header first!");
2406   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2407   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2408                                      JT.Reg, PTy);
2409   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2410   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2411                                     MVT::Other, Index.getValue(1),
2412                                     Table, Index);
2413   DAG.setRoot(BrJumpTable);
2414 }
2415 
2416 /// visitJumpTableHeader - This function emits necessary code to produce index
2417 /// in the JumpTable from switch case.
2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2419                                                JumpTableHeader &JTH,
2420                                                MachineBasicBlock *SwitchBB) {
2421   SDLoc dl = getCurSDLoc();
2422 
2423   // Subtract the lowest switch case value from the value being switched on.
2424   SDValue SwitchOp = getValue(JTH.SValue);
2425   EVT VT = SwitchOp.getValueType();
2426   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2427                             DAG.getConstant(JTH.First, dl, VT));
2428 
2429   // The SDNode we just created, which holds the value being switched on minus
2430   // the smallest case value, needs to be copied to a virtual register so it
2431   // can be used as an index into the jump table in a subsequent basic block.
2432   // This value may be smaller or larger than the target's pointer type, and
2433   // therefore require extension or truncating.
2434   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2435   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2436 
2437   unsigned JumpTableReg =
2438       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2439   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2440                                     JumpTableReg, SwitchOp);
2441   JT.Reg = JumpTableReg;
2442 
2443   if (!JTH.OmitRangeCheck) {
2444     // Emit the range check for the jump table, and branch to the default block
2445     // for the switch statement if the value being switched on exceeds the
2446     // largest case in the switch.
2447     SDValue CMP = DAG.getSetCC(
2448         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2449                                    Sub.getValueType()),
2450         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2451 
2452     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2453                                  MVT::Other, CopyTo, CMP,
2454                                  DAG.getBasicBlock(JT.Default));
2455 
2456     // Avoid emitting unnecessary branches to the next block.
2457     if (JT.MBB != NextBlock(SwitchBB))
2458       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2459                            DAG.getBasicBlock(JT.MBB));
2460 
2461     DAG.setRoot(BrCond);
2462   } else {
2463     // Avoid emitting unnecessary branches to the next block.
2464     if (JT.MBB != NextBlock(SwitchBB))
2465       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2466                               DAG.getBasicBlock(JT.MBB)));
2467     else
2468       DAG.setRoot(CopyTo);
2469   }
2470 }
2471 
2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2473 /// variable if there exists one.
2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2475                                  SDValue &Chain) {
2476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2477   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2478   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2479   MachineFunction &MF = DAG.getMachineFunction();
2480   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2481   MachineSDNode *Node =
2482       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2483   if (Global) {
2484     MachinePointerInfo MPInfo(Global);
2485     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2486                  MachineMemOperand::MODereferenceable;
2487     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2488         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2489     DAG.setNodeMemRefs(Node, {MemRef});
2490   }
2491   if (PtrTy != PtrMemTy)
2492     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2493   return SDValue(Node, 0);
2494 }
2495 
2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2497 /// tail spliced into a stack protector check success bb.
2498 ///
2499 /// For a high level explanation of how this fits into the stack protector
2500 /// generation see the comment on the declaration of class
2501 /// StackProtectorDescriptor.
2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2503                                                   MachineBasicBlock *ParentBB) {
2504 
2505   // First create the loads to the guard/stack slot for the comparison.
2506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2507   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2508   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2509 
2510   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2511   int FI = MFI.getStackProtectorIndex();
2512 
2513   SDValue Guard;
2514   SDLoc dl = getCurSDLoc();
2515   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2516   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2517   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2518 
2519   // Generate code to load the content of the guard slot.
2520   SDValue GuardVal = DAG.getLoad(
2521       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2522       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2523       MachineMemOperand::MOVolatile);
2524 
2525   if (TLI.useStackGuardXorFP())
2526     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2527 
2528   // Retrieve guard check function, nullptr if instrumentation is inlined.
2529   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2530     // The target provides a guard check function to validate the guard value.
2531     // Generate a call to that function with the content of the guard slot as
2532     // argument.
2533     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2534     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2535 
2536     TargetLowering::ArgListTy Args;
2537     TargetLowering::ArgListEntry Entry;
2538     Entry.Node = GuardVal;
2539     Entry.Ty = FnTy->getParamType(0);
2540     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2541       Entry.IsInReg = true;
2542     Args.push_back(Entry);
2543 
2544     TargetLowering::CallLoweringInfo CLI(DAG);
2545     CLI.setDebugLoc(getCurSDLoc())
2546         .setChain(DAG.getEntryNode())
2547         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2548                    getValue(GuardCheckFn), std::move(Args));
2549 
2550     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2551     DAG.setRoot(Result.second);
2552     return;
2553   }
2554 
2555   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2556   // Otherwise, emit a volatile load to retrieve the stack guard value.
2557   SDValue Chain = DAG.getEntryNode();
2558   if (TLI.useLoadStackGuardNode()) {
2559     Guard = getLoadStackGuard(DAG, dl, Chain);
2560   } else {
2561     const Value *IRGuard = TLI.getSDagStackGuard(M);
2562     SDValue GuardPtr = getValue(IRGuard);
2563 
2564     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2565                         MachinePointerInfo(IRGuard, 0), Align,
2566                         MachineMemOperand::MOVolatile);
2567   }
2568 
2569   // Perform the comparison via a subtract/getsetcc.
2570   EVT VT = Guard.getValueType();
2571   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2572 
2573   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2574                                                         *DAG.getContext(),
2575                                                         Sub.getValueType()),
2576                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2577 
2578   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2579   // branch to failure MBB.
2580   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2581                                MVT::Other, GuardVal.getOperand(0),
2582                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2583   // Otherwise branch to success MBB.
2584   SDValue Br = DAG.getNode(ISD::BR, dl,
2585                            MVT::Other, BrCond,
2586                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2587 
2588   DAG.setRoot(Br);
2589 }
2590 
2591 /// Codegen the failure basic block for a stack protector check.
2592 ///
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2595 ///
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2599 void
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602   TargetLowering::MakeLibCallOptions CallOptions;
2603   CallOptions.setDiscardResult(true);
2604   SDValue Chain =
2605       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2606                       None, CallOptions, getCurSDLoc()).second;
2607   // On PS4, the "return address" must still be within the calling function,
2608   // even if it's at the very end, so emit an explicit TRAP here.
2609   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610   if (TM.getTargetTriple().isPS4CPU())
2611     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2612 
2613   DAG.setRoot(Chain);
2614 }
2615 
2616 /// visitBitTestHeader - This function emits necessary code to produce value
2617 /// suitable for "bit tests"
2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2619                                              MachineBasicBlock *SwitchBB) {
2620   SDLoc dl = getCurSDLoc();
2621 
2622   // Subtract the minimum value
2623   SDValue SwitchOp = getValue(B.SValue);
2624   EVT VT = SwitchOp.getValueType();
2625   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2626                             DAG.getConstant(B.First, dl, VT));
2627 
2628   // Check range
2629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2630   SDValue RangeCmp = DAG.getSetCC(
2631       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2632                                  Sub.getValueType()),
2633       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2634 
2635   // Determine the type of the test operands.
2636   bool UsePtrType = false;
2637   if (!TLI.isTypeLegal(VT))
2638     UsePtrType = true;
2639   else {
2640     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2641       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2642         // Switch table case range are encoded into series of masks.
2643         // Just use pointer type, it's guaranteed to fit.
2644         UsePtrType = true;
2645         break;
2646       }
2647   }
2648   if (UsePtrType) {
2649     VT = TLI.getPointerTy(DAG.getDataLayout());
2650     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2651   }
2652 
2653   B.RegVT = VT.getSimpleVT();
2654   B.Reg = FuncInfo.CreateReg(B.RegVT);
2655   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2656 
2657   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2658 
2659   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2660   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2661   SwitchBB->normalizeSuccProbs();
2662 
2663   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2664                                 MVT::Other, CopyTo, RangeCmp,
2665                                 DAG.getBasicBlock(B.Default));
2666 
2667   // Avoid emitting unnecessary branches to the next block.
2668   if (MBB != NextBlock(SwitchBB))
2669     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2670                           DAG.getBasicBlock(MBB));
2671 
2672   DAG.setRoot(BrRange);
2673 }
2674 
2675 /// visitBitTestCase - this function produces one "bit test"
2676 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2677                                            MachineBasicBlock* NextMBB,
2678                                            BranchProbability BranchProbToNext,
2679                                            unsigned Reg,
2680                                            BitTestCase &B,
2681                                            MachineBasicBlock *SwitchBB) {
2682   SDLoc dl = getCurSDLoc();
2683   MVT VT = BB.RegVT;
2684   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2685   SDValue Cmp;
2686   unsigned PopCount = countPopulation(B.Mask);
2687   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2688   if (PopCount == 1) {
2689     // Testing for a single bit; just compare the shift count with what it
2690     // would need to be to shift a 1 bit in that position.
2691     Cmp = DAG.getSetCC(
2692         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2693         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2694         ISD::SETEQ);
2695   } else if (PopCount == BB.Range) {
2696     // There is only one zero bit in the range, test for it directly.
2697     Cmp = DAG.getSetCC(
2698         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2699         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2700         ISD::SETNE);
2701   } else {
2702     // Make desired shift
2703     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2704                                     DAG.getConstant(1, dl, VT), ShiftOp);
2705 
2706     // Emit bit tests and jumps
2707     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2708                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2709     Cmp = DAG.getSetCC(
2710         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2711         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2712   }
2713 
2714   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2715   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2716   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2717   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2718   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2719   // one as they are relative probabilities (and thus work more like weights),
2720   // and hence we need to normalize them to let the sum of them become one.
2721   SwitchBB->normalizeSuccProbs();
2722 
2723   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2724                               MVT::Other, getControlRoot(),
2725                               Cmp, DAG.getBasicBlock(B.TargetBB));
2726 
2727   // Avoid emitting unnecessary branches to the next block.
2728   if (NextMBB != NextBlock(SwitchBB))
2729     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2730                         DAG.getBasicBlock(NextMBB));
2731 
2732   DAG.setRoot(BrAnd);
2733 }
2734 
2735 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2736   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2737 
2738   // Retrieve successors. Look through artificial IR level blocks like
2739   // catchswitch for successors.
2740   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2741   const BasicBlock *EHPadBB = I.getSuccessor(1);
2742 
2743   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2744   // have to do anything here to lower funclet bundles.
2745   assert(!I.hasOperandBundlesOtherThan(
2746              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2747          "Cannot lower invokes with arbitrary operand bundles yet!");
2748 
2749   const Value *Callee(I.getCalledValue());
2750   const Function *Fn = dyn_cast<Function>(Callee);
2751   if (isa<InlineAsm>(Callee))
2752     visitInlineAsm(&I);
2753   else if (Fn && Fn->isIntrinsic()) {
2754     switch (Fn->getIntrinsicID()) {
2755     default:
2756       llvm_unreachable("Cannot invoke this intrinsic");
2757     case Intrinsic::donothing:
2758       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2759       break;
2760     case Intrinsic::experimental_patchpoint_void:
2761     case Intrinsic::experimental_patchpoint_i64:
2762       visitPatchpoint(&I, EHPadBB);
2763       break;
2764     case Intrinsic::experimental_gc_statepoint:
2765       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2766       break;
2767     case Intrinsic::wasm_rethrow_in_catch: {
2768       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2769       // special because it can be invoked, so we manually lower it to a DAG
2770       // node here.
2771       SmallVector<SDValue, 8> Ops;
2772       Ops.push_back(getRoot()); // inchain
2773       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2774       Ops.push_back(
2775           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2776                                 TLI.getPointerTy(DAG.getDataLayout())));
2777       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2778       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2779       break;
2780     }
2781     }
2782   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2783     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2784     // Eventually we will support lowering the @llvm.experimental.deoptimize
2785     // intrinsic, and right now there are no plans to support other intrinsics
2786     // with deopt state.
2787     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2788   } else {
2789     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2790   }
2791 
2792   // If the value of the invoke is used outside of its defining block, make it
2793   // available as a virtual register.
2794   // We already took care of the exported value for the statepoint instruction
2795   // during call to the LowerStatepoint.
2796   if (!isStatepoint(I)) {
2797     CopyToExportRegsIfNeeded(&I);
2798   }
2799 
2800   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2801   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2802   BranchProbability EHPadBBProb =
2803       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2804           : BranchProbability::getZero();
2805   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2806 
2807   // Update successor info.
2808   addSuccessorWithProb(InvokeMBB, Return);
2809   for (auto &UnwindDest : UnwindDests) {
2810     UnwindDest.first->setIsEHPad();
2811     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2812   }
2813   InvokeMBB->normalizeSuccProbs();
2814 
2815   // Drop into normal successor.
2816   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2817                           DAG.getBasicBlock(Return)));
2818 }
2819 
2820 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2821   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2822 
2823   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2824   // have to do anything here to lower funclet bundles.
2825   assert(!I.hasOperandBundlesOtherThan(
2826              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2827          "Cannot lower callbrs with arbitrary operand bundles yet!");
2828 
2829   assert(isa<InlineAsm>(I.getCalledValue()) &&
2830          "Only know how to handle inlineasm callbr");
2831   visitInlineAsm(&I);
2832 
2833   // Retrieve successors.
2834   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2835 
2836   // Update successor info.
2837   addSuccessorWithProb(CallBrMBB, Return);
2838   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2839     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2840     addSuccessorWithProb(CallBrMBB, Target);
2841   }
2842   CallBrMBB->normalizeSuccProbs();
2843 
2844   // Drop into default successor.
2845   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2846                           MVT::Other, getControlRoot(),
2847                           DAG.getBasicBlock(Return)));
2848 }
2849 
2850 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2851   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2852 }
2853 
2854 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2855   assert(FuncInfo.MBB->isEHPad() &&
2856          "Call to landingpad not in landing pad!");
2857 
2858   // If there aren't registers to copy the values into (e.g., during SjLj
2859   // exceptions), then don't bother to create these DAG nodes.
2860   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2861   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2862   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2863       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2864     return;
2865 
2866   // If landingpad's return type is token type, we don't create DAG nodes
2867   // for its exception pointer and selector value. The extraction of exception
2868   // pointer or selector value from token type landingpads is not currently
2869   // supported.
2870   if (LP.getType()->isTokenTy())
2871     return;
2872 
2873   SmallVector<EVT, 2> ValueVTs;
2874   SDLoc dl = getCurSDLoc();
2875   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2876   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2877 
2878   // Get the two live-in registers as SDValues. The physregs have already been
2879   // copied into virtual registers.
2880   SDValue Ops[2];
2881   if (FuncInfo.ExceptionPointerVirtReg) {
2882     Ops[0] = DAG.getZExtOrTrunc(
2883         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2884                            FuncInfo.ExceptionPointerVirtReg,
2885                            TLI.getPointerTy(DAG.getDataLayout())),
2886         dl, ValueVTs[0]);
2887   } else {
2888     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2889   }
2890   Ops[1] = DAG.getZExtOrTrunc(
2891       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2892                          FuncInfo.ExceptionSelectorVirtReg,
2893                          TLI.getPointerTy(DAG.getDataLayout())),
2894       dl, ValueVTs[1]);
2895 
2896   // Merge into one.
2897   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2898                             DAG.getVTList(ValueVTs), Ops);
2899   setValue(&LP, Res);
2900 }
2901 
2902 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2903                                            MachineBasicBlock *Last) {
2904   // Update JTCases.
2905   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2906     if (SL->JTCases[i].first.HeaderBB == First)
2907       SL->JTCases[i].first.HeaderBB = Last;
2908 
2909   // Update BitTestCases.
2910   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2911     if (SL->BitTestCases[i].Parent == First)
2912       SL->BitTestCases[i].Parent = Last;
2913 }
2914 
2915 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2916   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2917 
2918   // Update machine-CFG edges with unique successors.
2919   SmallSet<BasicBlock*, 32> Done;
2920   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2921     BasicBlock *BB = I.getSuccessor(i);
2922     bool Inserted = Done.insert(BB).second;
2923     if (!Inserted)
2924         continue;
2925 
2926     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2927     addSuccessorWithProb(IndirectBrMBB, Succ);
2928   }
2929   IndirectBrMBB->normalizeSuccProbs();
2930 
2931   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2932                           MVT::Other, getControlRoot(),
2933                           getValue(I.getAddress())));
2934 }
2935 
2936 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2937   if (!DAG.getTarget().Options.TrapUnreachable)
2938     return;
2939 
2940   // We may be able to ignore unreachable behind a noreturn call.
2941   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2942     const BasicBlock &BB = *I.getParent();
2943     if (&I != &BB.front()) {
2944       BasicBlock::const_iterator PredI =
2945         std::prev(BasicBlock::const_iterator(&I));
2946       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2947         if (Call->doesNotReturn())
2948           return;
2949       }
2950     }
2951   }
2952 
2953   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2954 }
2955 
2956 void SelectionDAGBuilder::visitFSub(const User &I) {
2957   // -0.0 - X --> fneg
2958   Type *Ty = I.getType();
2959   if (isa<Constant>(I.getOperand(0)) &&
2960       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2961     SDValue Op2 = getValue(I.getOperand(1));
2962     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2963                              Op2.getValueType(), Op2));
2964     return;
2965   }
2966 
2967   visitBinary(I, ISD::FSUB);
2968 }
2969 
2970 /// Checks if the given instruction performs a vector reduction, in which case
2971 /// we have the freedom to alter the elements in the result as long as the
2972 /// reduction of them stays unchanged.
2973 static bool isVectorReductionOp(const User *I) {
2974   const Instruction *Inst = dyn_cast<Instruction>(I);
2975   if (!Inst || !Inst->getType()->isVectorTy())
2976     return false;
2977 
2978   auto OpCode = Inst->getOpcode();
2979   switch (OpCode) {
2980   case Instruction::Add:
2981   case Instruction::Mul:
2982   case Instruction::And:
2983   case Instruction::Or:
2984   case Instruction::Xor:
2985     break;
2986   case Instruction::FAdd:
2987   case Instruction::FMul:
2988     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2989       if (FPOp->getFastMathFlags().isFast())
2990         break;
2991     LLVM_FALLTHROUGH;
2992   default:
2993     return false;
2994   }
2995 
2996   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2997   // Ensure the reduction size is a power of 2.
2998   if (!isPowerOf2_32(ElemNum))
2999     return false;
3000 
3001   unsigned ElemNumToReduce = ElemNum;
3002 
3003   // Do DFS search on the def-use chain from the given instruction. We only
3004   // allow four kinds of operations during the search until we reach the
3005   // instruction that extracts the first element from the vector:
3006   //
3007   //   1. The reduction operation of the same opcode as the given instruction.
3008   //
3009   //   2. PHI node.
3010   //
3011   //   3. ShuffleVector instruction together with a reduction operation that
3012   //      does a partial reduction.
3013   //
3014   //   4. ExtractElement that extracts the first element from the vector, and we
3015   //      stop searching the def-use chain here.
3016   //
3017   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3018   // from 1-3 to the stack to continue the DFS. The given instruction is not
3019   // a reduction operation if we meet any other instructions other than those
3020   // listed above.
3021 
3022   SmallVector<const User *, 16> UsersToVisit{Inst};
3023   SmallPtrSet<const User *, 16> Visited;
3024   bool ReduxExtracted = false;
3025 
3026   while (!UsersToVisit.empty()) {
3027     auto User = UsersToVisit.back();
3028     UsersToVisit.pop_back();
3029     if (!Visited.insert(User).second)
3030       continue;
3031 
3032     for (const auto &U : User->users()) {
3033       auto Inst = dyn_cast<Instruction>(U);
3034       if (!Inst)
3035         return false;
3036 
3037       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3038         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3039           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3040             return false;
3041         UsersToVisit.push_back(U);
3042       } else if (const ShuffleVectorInst *ShufInst =
3043                      dyn_cast<ShuffleVectorInst>(U)) {
3044         // Detect the following pattern: A ShuffleVector instruction together
3045         // with a reduction that do partial reduction on the first and second
3046         // ElemNumToReduce / 2 elements, and store the result in
3047         // ElemNumToReduce / 2 elements in another vector.
3048 
3049         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3050         if (ResultElements < ElemNum)
3051           return false;
3052 
3053         if (ElemNumToReduce == 1)
3054           return false;
3055         if (!isa<UndefValue>(U->getOperand(1)))
3056           return false;
3057         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3058           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3059             return false;
3060         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3061           if (ShufInst->getMaskValue(i) != -1)
3062             return false;
3063 
3064         // There is only one user of this ShuffleVector instruction, which
3065         // must be a reduction operation.
3066         if (!U->hasOneUse())
3067           return false;
3068 
3069         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3070         if (!U2 || U2->getOpcode() != OpCode)
3071           return false;
3072 
3073         // Check operands of the reduction operation.
3074         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3075             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3076           UsersToVisit.push_back(U2);
3077           ElemNumToReduce /= 2;
3078         } else
3079           return false;
3080       } else if (isa<ExtractElementInst>(U)) {
3081         // At this moment we should have reduced all elements in the vector.
3082         if (ElemNumToReduce != 1)
3083           return false;
3084 
3085         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3086         if (!Val || !Val->isZero())
3087           return false;
3088 
3089         ReduxExtracted = true;
3090       } else
3091         return false;
3092     }
3093   }
3094   return ReduxExtracted;
3095 }
3096 
3097 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3098   SDNodeFlags Flags;
3099 
3100   SDValue Op = getValue(I.getOperand(0));
3101   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3102                                     Op, Flags);
3103   setValue(&I, UnNodeValue);
3104 }
3105 
3106 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3107   SDNodeFlags Flags;
3108   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3109     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3110     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3111   }
3112   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3113     Flags.setExact(ExactOp->isExact());
3114   }
3115   if (isVectorReductionOp(&I)) {
3116     Flags.setVectorReduction(true);
3117     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3118   }
3119 
3120   SDValue Op1 = getValue(I.getOperand(0));
3121   SDValue Op2 = getValue(I.getOperand(1));
3122   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3123                                      Op1, Op2, Flags);
3124   setValue(&I, BinNodeValue);
3125 }
3126 
3127 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3128   SDValue Op1 = getValue(I.getOperand(0));
3129   SDValue Op2 = getValue(I.getOperand(1));
3130 
3131   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3132       Op1.getValueType(), DAG.getDataLayout());
3133 
3134   // Coerce the shift amount to the right type if we can.
3135   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3136     unsigned ShiftSize = ShiftTy.getSizeInBits();
3137     unsigned Op2Size = Op2.getValueSizeInBits();
3138     SDLoc DL = getCurSDLoc();
3139 
3140     // If the operand is smaller than the shift count type, promote it.
3141     if (ShiftSize > Op2Size)
3142       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3143 
3144     // If the operand is larger than the shift count type but the shift
3145     // count type has enough bits to represent any shift value, truncate
3146     // it now. This is a common case and it exposes the truncate to
3147     // optimization early.
3148     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3149       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3150     // Otherwise we'll need to temporarily settle for some other convenient
3151     // type.  Type legalization will make adjustments once the shiftee is split.
3152     else
3153       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3154   }
3155 
3156   bool nuw = false;
3157   bool nsw = false;
3158   bool exact = false;
3159 
3160   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3161 
3162     if (const OverflowingBinaryOperator *OFBinOp =
3163             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3164       nuw = OFBinOp->hasNoUnsignedWrap();
3165       nsw = OFBinOp->hasNoSignedWrap();
3166     }
3167     if (const PossiblyExactOperator *ExactOp =
3168             dyn_cast<const PossiblyExactOperator>(&I))
3169       exact = ExactOp->isExact();
3170   }
3171   SDNodeFlags Flags;
3172   Flags.setExact(exact);
3173   Flags.setNoSignedWrap(nsw);
3174   Flags.setNoUnsignedWrap(nuw);
3175   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3176                             Flags);
3177   setValue(&I, Res);
3178 }
3179 
3180 void SelectionDAGBuilder::visitSDiv(const User &I) {
3181   SDValue Op1 = getValue(I.getOperand(0));
3182   SDValue Op2 = getValue(I.getOperand(1));
3183 
3184   SDNodeFlags Flags;
3185   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3186                  cast<PossiblyExactOperator>(&I)->isExact());
3187   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3188                            Op2, Flags));
3189 }
3190 
3191 void SelectionDAGBuilder::visitICmp(const User &I) {
3192   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3193   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3194     predicate = IC->getPredicate();
3195   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3196     predicate = ICmpInst::Predicate(IC->getPredicate());
3197   SDValue Op1 = getValue(I.getOperand(0));
3198   SDValue Op2 = getValue(I.getOperand(1));
3199   ISD::CondCode Opcode = getICmpCondCode(predicate);
3200 
3201   auto &TLI = DAG.getTargetLoweringInfo();
3202   EVT MemVT =
3203       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3204 
3205   // If a pointer's DAG type is larger than its memory type then the DAG values
3206   // are zero-extended. This breaks signed comparisons so truncate back to the
3207   // underlying type before doing the compare.
3208   if (Op1.getValueType() != MemVT) {
3209     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3210     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3211   }
3212 
3213   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3214                                                         I.getType());
3215   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3216 }
3217 
3218 void SelectionDAGBuilder::visitFCmp(const User &I) {
3219   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3220   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3221     predicate = FC->getPredicate();
3222   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3223     predicate = FCmpInst::Predicate(FC->getPredicate());
3224   SDValue Op1 = getValue(I.getOperand(0));
3225   SDValue Op2 = getValue(I.getOperand(1));
3226 
3227   ISD::CondCode Condition = getFCmpCondCode(predicate);
3228   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3229   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3230     Condition = getFCmpCodeWithoutNaN(Condition);
3231 
3232   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3233                                                         I.getType());
3234   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3235 }
3236 
3237 // Check if the condition of the select has one use or two users that are both
3238 // selects with the same condition.
3239 static bool hasOnlySelectUsers(const Value *Cond) {
3240   return llvm::all_of(Cond->users(), [](const Value *V) {
3241     return isa<SelectInst>(V);
3242   });
3243 }
3244 
3245 void SelectionDAGBuilder::visitSelect(const User &I) {
3246   SmallVector<EVT, 4> ValueVTs;
3247   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3248                   ValueVTs);
3249   unsigned NumValues = ValueVTs.size();
3250   if (NumValues == 0) return;
3251 
3252   SmallVector<SDValue, 4> Values(NumValues);
3253   SDValue Cond     = getValue(I.getOperand(0));
3254   SDValue LHSVal   = getValue(I.getOperand(1));
3255   SDValue RHSVal   = getValue(I.getOperand(2));
3256   auto BaseOps = {Cond};
3257   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3258     ISD::VSELECT : ISD::SELECT;
3259 
3260   bool IsUnaryAbs = false;
3261 
3262   // Min/max matching is only viable if all output VTs are the same.
3263   if (is_splat(ValueVTs)) {
3264     EVT VT = ValueVTs[0];
3265     LLVMContext &Ctx = *DAG.getContext();
3266     auto &TLI = DAG.getTargetLoweringInfo();
3267 
3268     // We care about the legality of the operation after it has been type
3269     // legalized.
3270     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3271            VT != TLI.getTypeToTransformTo(Ctx, VT))
3272       VT = TLI.getTypeToTransformTo(Ctx, VT);
3273 
3274     // If the vselect is legal, assume we want to leave this as a vector setcc +
3275     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3276     // min/max is legal on the scalar type.
3277     bool UseScalarMinMax = VT.isVector() &&
3278       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3279 
3280     Value *LHS, *RHS;
3281     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3282     ISD::NodeType Opc = ISD::DELETED_NODE;
3283     switch (SPR.Flavor) {
3284     case SPF_UMAX:    Opc = ISD::UMAX; break;
3285     case SPF_UMIN:    Opc = ISD::UMIN; break;
3286     case SPF_SMAX:    Opc = ISD::SMAX; break;
3287     case SPF_SMIN:    Opc = ISD::SMIN; break;
3288     case SPF_FMINNUM:
3289       switch (SPR.NaNBehavior) {
3290       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3291       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3292       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3293       case SPNB_RETURNS_ANY: {
3294         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3295           Opc = ISD::FMINNUM;
3296         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3297           Opc = ISD::FMINIMUM;
3298         else if (UseScalarMinMax)
3299           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3300             ISD::FMINNUM : ISD::FMINIMUM;
3301         break;
3302       }
3303       }
3304       break;
3305     case SPF_FMAXNUM:
3306       switch (SPR.NaNBehavior) {
3307       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3308       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3309       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3310       case SPNB_RETURNS_ANY:
3311 
3312         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3313           Opc = ISD::FMAXNUM;
3314         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3315           Opc = ISD::FMAXIMUM;
3316         else if (UseScalarMinMax)
3317           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3318             ISD::FMAXNUM : ISD::FMAXIMUM;
3319         break;
3320       }
3321       break;
3322     case SPF_ABS:
3323       IsUnaryAbs = true;
3324       Opc = ISD::ABS;
3325       break;
3326     case SPF_NABS:
3327       // TODO: we need to produce sub(0, abs(X)).
3328     default: break;
3329     }
3330 
3331     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3332         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3333          (UseScalarMinMax &&
3334           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3335         // If the underlying comparison instruction is used by any other
3336         // instruction, the consumed instructions won't be destroyed, so it is
3337         // not profitable to convert to a min/max.
3338         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3339       OpCode = Opc;
3340       LHSVal = getValue(LHS);
3341       RHSVal = getValue(RHS);
3342       BaseOps = {};
3343     }
3344 
3345     if (IsUnaryAbs) {
3346       OpCode = Opc;
3347       LHSVal = getValue(LHS);
3348       BaseOps = {};
3349     }
3350   }
3351 
3352   if (IsUnaryAbs) {
3353     for (unsigned i = 0; i != NumValues; ++i) {
3354       Values[i] =
3355           DAG.getNode(OpCode, getCurSDLoc(),
3356                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3357                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3358     }
3359   } else {
3360     for (unsigned i = 0; i != NumValues; ++i) {
3361       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3362       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3363       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3364       Values[i] = DAG.getNode(
3365           OpCode, getCurSDLoc(),
3366           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3367     }
3368   }
3369 
3370   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3371                            DAG.getVTList(ValueVTs), Values));
3372 }
3373 
3374 void SelectionDAGBuilder::visitTrunc(const User &I) {
3375   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3376   SDValue N = getValue(I.getOperand(0));
3377   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3378                                                         I.getType());
3379   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3380 }
3381 
3382 void SelectionDAGBuilder::visitZExt(const User &I) {
3383   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3384   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3385   SDValue N = getValue(I.getOperand(0));
3386   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3387                                                         I.getType());
3388   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3389 }
3390 
3391 void SelectionDAGBuilder::visitSExt(const User &I) {
3392   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3393   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3394   SDValue N = getValue(I.getOperand(0));
3395   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3396                                                         I.getType());
3397   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3398 }
3399 
3400 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3401   // FPTrunc is never a no-op cast, no need to check
3402   SDValue N = getValue(I.getOperand(0));
3403   SDLoc dl = getCurSDLoc();
3404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3405   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3406   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3407                            DAG.getTargetConstant(
3408                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3409 }
3410 
3411 void SelectionDAGBuilder::visitFPExt(const User &I) {
3412   // FPExt is never a no-op cast, no need to check
3413   SDValue N = getValue(I.getOperand(0));
3414   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3415                                                         I.getType());
3416   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3417 }
3418 
3419 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3420   // FPToUI is never a no-op cast, no need to check
3421   SDValue N = getValue(I.getOperand(0));
3422   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3423                                                         I.getType());
3424   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3425 }
3426 
3427 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3428   // FPToSI is never a no-op cast, no need to check
3429   SDValue N = getValue(I.getOperand(0));
3430   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3431                                                         I.getType());
3432   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3433 }
3434 
3435 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3436   // UIToFP is never a no-op cast, no need to check
3437   SDValue N = getValue(I.getOperand(0));
3438   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3439                                                         I.getType());
3440   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3441 }
3442 
3443 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3444   // SIToFP is never a no-op cast, no need to check
3445   SDValue N = getValue(I.getOperand(0));
3446   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3447                                                         I.getType());
3448   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3449 }
3450 
3451 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3452   // What to do depends on the size of the integer and the size of the pointer.
3453   // We can either truncate, zero extend, or no-op, accordingly.
3454   SDValue N = getValue(I.getOperand(0));
3455   auto &TLI = DAG.getTargetLoweringInfo();
3456   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3457                                                         I.getType());
3458   EVT PtrMemVT =
3459       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3460   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3461   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3462   setValue(&I, N);
3463 }
3464 
3465 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3466   // What to do depends on the size of the integer and the size of the pointer.
3467   // We can either truncate, zero extend, or no-op, accordingly.
3468   SDValue N = getValue(I.getOperand(0));
3469   auto &TLI = DAG.getTargetLoweringInfo();
3470   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3471   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3472   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3473   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3474   setValue(&I, N);
3475 }
3476 
3477 void SelectionDAGBuilder::visitBitCast(const User &I) {
3478   SDValue N = getValue(I.getOperand(0));
3479   SDLoc dl = getCurSDLoc();
3480   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3481                                                         I.getType());
3482 
3483   // BitCast assures us that source and destination are the same size so this is
3484   // either a BITCAST or a no-op.
3485   if (DestVT != N.getValueType())
3486     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3487                              DestVT, N)); // convert types.
3488   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3489   // might fold any kind of constant expression to an integer constant and that
3490   // is not what we are looking for. Only recognize a bitcast of a genuine
3491   // constant integer as an opaque constant.
3492   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3493     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3494                                  /*isOpaque*/true));
3495   else
3496     setValue(&I, N);            // noop cast.
3497 }
3498 
3499 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3500   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3501   const Value *SV = I.getOperand(0);
3502   SDValue N = getValue(SV);
3503   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3504 
3505   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3506   unsigned DestAS = I.getType()->getPointerAddressSpace();
3507 
3508   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3509     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3510 
3511   setValue(&I, N);
3512 }
3513 
3514 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3515   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516   SDValue InVec = getValue(I.getOperand(0));
3517   SDValue InVal = getValue(I.getOperand(1));
3518   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3519                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3520   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3521                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3522                            InVec, InVal, InIdx));
3523 }
3524 
3525 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3527   SDValue InVec = getValue(I.getOperand(0));
3528   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3529                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3530   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3531                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3532                            InVec, InIdx));
3533 }
3534 
3535 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3536   SDValue Src1 = getValue(I.getOperand(0));
3537   SDValue Src2 = getValue(I.getOperand(1));
3538   SDLoc DL = getCurSDLoc();
3539 
3540   SmallVector<int, 8> Mask;
3541   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3542   unsigned MaskNumElts = Mask.size();
3543 
3544   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3545   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3546   EVT SrcVT = Src1.getValueType();
3547   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3548 
3549   if (SrcNumElts == MaskNumElts) {
3550     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3551     return;
3552   }
3553 
3554   // Normalize the shuffle vector since mask and vector length don't match.
3555   if (SrcNumElts < MaskNumElts) {
3556     // Mask is longer than the source vectors. We can use concatenate vector to
3557     // make the mask and vectors lengths match.
3558 
3559     if (MaskNumElts % SrcNumElts == 0) {
3560       // Mask length is a multiple of the source vector length.
3561       // Check if the shuffle is some kind of concatenation of the input
3562       // vectors.
3563       unsigned NumConcat = MaskNumElts / SrcNumElts;
3564       bool IsConcat = true;
3565       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3566       for (unsigned i = 0; i != MaskNumElts; ++i) {
3567         int Idx = Mask[i];
3568         if (Idx < 0)
3569           continue;
3570         // Ensure the indices in each SrcVT sized piece are sequential and that
3571         // the same source is used for the whole piece.
3572         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3573             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3574              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3575           IsConcat = false;
3576           break;
3577         }
3578         // Remember which source this index came from.
3579         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3580       }
3581 
3582       // The shuffle is concatenating multiple vectors together. Just emit
3583       // a CONCAT_VECTORS operation.
3584       if (IsConcat) {
3585         SmallVector<SDValue, 8> ConcatOps;
3586         for (auto Src : ConcatSrcs) {
3587           if (Src < 0)
3588             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3589           else if (Src == 0)
3590             ConcatOps.push_back(Src1);
3591           else
3592             ConcatOps.push_back(Src2);
3593         }
3594         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3595         return;
3596       }
3597     }
3598 
3599     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3600     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3601     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3602                                     PaddedMaskNumElts);
3603 
3604     // Pad both vectors with undefs to make them the same length as the mask.
3605     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3606 
3607     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3608     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3609     MOps1[0] = Src1;
3610     MOps2[0] = Src2;
3611 
3612     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3613     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3614 
3615     // Readjust mask for new input vector length.
3616     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3617     for (unsigned i = 0; i != MaskNumElts; ++i) {
3618       int Idx = Mask[i];
3619       if (Idx >= (int)SrcNumElts)
3620         Idx -= SrcNumElts - PaddedMaskNumElts;
3621       MappedOps[i] = Idx;
3622     }
3623 
3624     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3625 
3626     // If the concatenated vector was padded, extract a subvector with the
3627     // correct number of elements.
3628     if (MaskNumElts != PaddedMaskNumElts)
3629       Result = DAG.getNode(
3630           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3631           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3632 
3633     setValue(&I, Result);
3634     return;
3635   }
3636 
3637   if (SrcNumElts > MaskNumElts) {
3638     // Analyze the access pattern of the vector to see if we can extract
3639     // two subvectors and do the shuffle.
3640     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3641     bool CanExtract = true;
3642     for (int Idx : Mask) {
3643       unsigned Input = 0;
3644       if (Idx < 0)
3645         continue;
3646 
3647       if (Idx >= (int)SrcNumElts) {
3648         Input = 1;
3649         Idx -= SrcNumElts;
3650       }
3651 
3652       // If all the indices come from the same MaskNumElts sized portion of
3653       // the sources we can use extract. Also make sure the extract wouldn't
3654       // extract past the end of the source.
3655       int NewStartIdx = alignDown(Idx, MaskNumElts);
3656       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3657           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3658         CanExtract = false;
3659       // Make sure we always update StartIdx as we use it to track if all
3660       // elements are undef.
3661       StartIdx[Input] = NewStartIdx;
3662     }
3663 
3664     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3665       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3666       return;
3667     }
3668     if (CanExtract) {
3669       // Extract appropriate subvector and generate a vector shuffle
3670       for (unsigned Input = 0; Input < 2; ++Input) {
3671         SDValue &Src = Input == 0 ? Src1 : Src2;
3672         if (StartIdx[Input] < 0)
3673           Src = DAG.getUNDEF(VT);
3674         else {
3675           Src = DAG.getNode(
3676               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3677               DAG.getConstant(StartIdx[Input], DL,
3678                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3679         }
3680       }
3681 
3682       // Calculate new mask.
3683       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3684       for (int &Idx : MappedOps) {
3685         if (Idx >= (int)SrcNumElts)
3686           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3687         else if (Idx >= 0)
3688           Idx -= StartIdx[0];
3689       }
3690 
3691       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3692       return;
3693     }
3694   }
3695 
3696   // We can't use either concat vectors or extract subvectors so fall back to
3697   // replacing the shuffle with extract and build vector.
3698   // to insert and build vector.
3699   EVT EltVT = VT.getVectorElementType();
3700   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3701   SmallVector<SDValue,8> Ops;
3702   for (int Idx : Mask) {
3703     SDValue Res;
3704 
3705     if (Idx < 0) {
3706       Res = DAG.getUNDEF(EltVT);
3707     } else {
3708       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3709       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3710 
3711       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3712                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3713     }
3714 
3715     Ops.push_back(Res);
3716   }
3717 
3718   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3719 }
3720 
3721 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3722   ArrayRef<unsigned> Indices;
3723   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3724     Indices = IV->getIndices();
3725   else
3726     Indices = cast<ConstantExpr>(&I)->getIndices();
3727 
3728   const Value *Op0 = I.getOperand(0);
3729   const Value *Op1 = I.getOperand(1);
3730   Type *AggTy = I.getType();
3731   Type *ValTy = Op1->getType();
3732   bool IntoUndef = isa<UndefValue>(Op0);
3733   bool FromUndef = isa<UndefValue>(Op1);
3734 
3735   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3736 
3737   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3738   SmallVector<EVT, 4> AggValueVTs;
3739   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3740   SmallVector<EVT, 4> ValValueVTs;
3741   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3742 
3743   unsigned NumAggValues = AggValueVTs.size();
3744   unsigned NumValValues = ValValueVTs.size();
3745   SmallVector<SDValue, 4> Values(NumAggValues);
3746 
3747   // Ignore an insertvalue that produces an empty object
3748   if (!NumAggValues) {
3749     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3750     return;
3751   }
3752 
3753   SDValue Agg = getValue(Op0);
3754   unsigned i = 0;
3755   // Copy the beginning value(s) from the original aggregate.
3756   for (; i != LinearIndex; ++i)
3757     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3758                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3759   // Copy values from the inserted value(s).
3760   if (NumValValues) {
3761     SDValue Val = getValue(Op1);
3762     for (; i != LinearIndex + NumValValues; ++i)
3763       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3764                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3765   }
3766   // Copy remaining value(s) from the original aggregate.
3767   for (; i != NumAggValues; ++i)
3768     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3769                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3770 
3771   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3772                            DAG.getVTList(AggValueVTs), Values));
3773 }
3774 
3775 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3776   ArrayRef<unsigned> Indices;
3777   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3778     Indices = EV->getIndices();
3779   else
3780     Indices = cast<ConstantExpr>(&I)->getIndices();
3781 
3782   const Value *Op0 = I.getOperand(0);
3783   Type *AggTy = Op0->getType();
3784   Type *ValTy = I.getType();
3785   bool OutOfUndef = isa<UndefValue>(Op0);
3786 
3787   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3788 
3789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3790   SmallVector<EVT, 4> ValValueVTs;
3791   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3792 
3793   unsigned NumValValues = ValValueVTs.size();
3794 
3795   // Ignore a extractvalue that produces an empty object
3796   if (!NumValValues) {
3797     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3798     return;
3799   }
3800 
3801   SmallVector<SDValue, 4> Values(NumValValues);
3802 
3803   SDValue Agg = getValue(Op0);
3804   // Copy out the selected value(s).
3805   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3806     Values[i - LinearIndex] =
3807       OutOfUndef ?
3808         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3809         SDValue(Agg.getNode(), Agg.getResNo() + i);
3810 
3811   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3812                            DAG.getVTList(ValValueVTs), Values));
3813 }
3814 
3815 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3816   Value *Op0 = I.getOperand(0);
3817   // Note that the pointer operand may be a vector of pointers. Take the scalar
3818   // element which holds a pointer.
3819   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3820   SDValue N = getValue(Op0);
3821   SDLoc dl = getCurSDLoc();
3822   auto &TLI = DAG.getTargetLoweringInfo();
3823   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3824   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3825 
3826   // Normalize Vector GEP - all scalar operands should be converted to the
3827   // splat vector.
3828   unsigned VectorWidth = I.getType()->isVectorTy() ?
3829     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3830 
3831   if (VectorWidth && !N.getValueType().isVector()) {
3832     LLVMContext &Context = *DAG.getContext();
3833     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3834     N = DAG.getSplatBuildVector(VT, dl, N);
3835   }
3836 
3837   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3838        GTI != E; ++GTI) {
3839     const Value *Idx = GTI.getOperand();
3840     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3841       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3842       if (Field) {
3843         // N = N + Offset
3844         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3845 
3846         // In an inbounds GEP with an offset that is nonnegative even when
3847         // interpreted as signed, assume there is no unsigned overflow.
3848         SDNodeFlags Flags;
3849         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3850           Flags.setNoUnsignedWrap(true);
3851 
3852         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3853                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3854       }
3855     } else {
3856       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3857       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3858       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3859 
3860       // If this is a scalar constant or a splat vector of constants,
3861       // handle it quickly.
3862       const auto *CI = dyn_cast<ConstantInt>(Idx);
3863       if (!CI && isa<ConstantDataVector>(Idx) &&
3864           cast<ConstantDataVector>(Idx)->getSplatValue())
3865         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3866 
3867       if (CI) {
3868         if (CI->isZero())
3869           continue;
3870         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3871         LLVMContext &Context = *DAG.getContext();
3872         SDValue OffsVal = VectorWidth ?
3873           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3874           DAG.getConstant(Offs, dl, IdxTy);
3875 
3876         // In an inbouds GEP with an offset that is nonnegative even when
3877         // interpreted as signed, assume there is no unsigned overflow.
3878         SDNodeFlags Flags;
3879         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3880           Flags.setNoUnsignedWrap(true);
3881 
3882         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3883 
3884         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3885         continue;
3886       }
3887 
3888       // N = N + Idx * ElementSize;
3889       SDValue IdxN = getValue(Idx);
3890 
3891       if (!IdxN.getValueType().isVector() && VectorWidth) {
3892         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3893         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3894       }
3895 
3896       // If the index is smaller or larger than intptr_t, truncate or extend
3897       // it.
3898       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3899 
3900       // If this is a multiply by a power of two, turn it into a shl
3901       // immediately.  This is a very common case.
3902       if (ElementSize != 1) {
3903         if (ElementSize.isPowerOf2()) {
3904           unsigned Amt = ElementSize.logBase2();
3905           IdxN = DAG.getNode(ISD::SHL, dl,
3906                              N.getValueType(), IdxN,
3907                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3908         } else {
3909           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3910                                           IdxN.getValueType());
3911           IdxN = DAG.getNode(ISD::MUL, dl,
3912                              N.getValueType(), IdxN, Scale);
3913         }
3914       }
3915 
3916       N = DAG.getNode(ISD::ADD, dl,
3917                       N.getValueType(), N, IdxN);
3918     }
3919   }
3920 
3921   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3922     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3923 
3924   setValue(&I, N);
3925 }
3926 
3927 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3928   // If this is a fixed sized alloca in the entry block of the function,
3929   // allocate it statically on the stack.
3930   if (FuncInfo.StaticAllocaMap.count(&I))
3931     return;   // getValue will auto-populate this.
3932 
3933   SDLoc dl = getCurSDLoc();
3934   Type *Ty = I.getAllocatedType();
3935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3936   auto &DL = DAG.getDataLayout();
3937   uint64_t TySize = DL.getTypeAllocSize(Ty);
3938   unsigned Align =
3939       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3940 
3941   SDValue AllocSize = getValue(I.getArraySize());
3942 
3943   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3944   if (AllocSize.getValueType() != IntPtr)
3945     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3946 
3947   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3948                           AllocSize,
3949                           DAG.getConstant(TySize, dl, IntPtr));
3950 
3951   // Handle alignment.  If the requested alignment is less than or equal to
3952   // the stack alignment, ignore it.  If the size is greater than or equal to
3953   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3954   unsigned StackAlign =
3955       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3956   if (Align <= StackAlign)
3957     Align = 0;
3958 
3959   // Round the size of the allocation up to the stack alignment size
3960   // by add SA-1 to the size. This doesn't overflow because we're computing
3961   // an address inside an alloca.
3962   SDNodeFlags Flags;
3963   Flags.setNoUnsignedWrap(true);
3964   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3965                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3966 
3967   // Mask out the low bits for alignment purposes.
3968   AllocSize =
3969       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3970                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3971 
3972   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3973   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3974   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3975   setValue(&I, DSA);
3976   DAG.setRoot(DSA.getValue(1));
3977 
3978   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3979 }
3980 
3981 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3982   if (I.isAtomic())
3983     return visitAtomicLoad(I);
3984 
3985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3986   const Value *SV = I.getOperand(0);
3987   if (TLI.supportSwiftError()) {
3988     // Swifterror values can come from either a function parameter with
3989     // swifterror attribute or an alloca with swifterror attribute.
3990     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3991       if (Arg->hasSwiftErrorAttr())
3992         return visitLoadFromSwiftError(I);
3993     }
3994 
3995     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3996       if (Alloca->isSwiftError())
3997         return visitLoadFromSwiftError(I);
3998     }
3999   }
4000 
4001   SDValue Ptr = getValue(SV);
4002 
4003   Type *Ty = I.getType();
4004 
4005   bool isVolatile = I.isVolatile();
4006   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
4007   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
4008   bool isDereferenceable =
4009       isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4010   unsigned Alignment = I.getAlignment();
4011 
4012   AAMDNodes AAInfo;
4013   I.getAAMetadata(AAInfo);
4014   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4015 
4016   SmallVector<EVT, 4> ValueVTs, MemVTs;
4017   SmallVector<uint64_t, 4> Offsets;
4018   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4019   unsigned NumValues = ValueVTs.size();
4020   if (NumValues == 0)
4021     return;
4022 
4023   SDValue Root;
4024   bool ConstantMemory = false;
4025   if (isVolatile || NumValues > MaxParallelChains)
4026     // Serialize volatile loads with other side effects.
4027     Root = getRoot();
4028   else if (AA &&
4029            AA->pointsToConstantMemory(MemoryLocation(
4030                SV,
4031                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4032                AAInfo))) {
4033     // Do not serialize (non-volatile) loads of constant memory with anything.
4034     Root = DAG.getEntryNode();
4035     ConstantMemory = true;
4036   } else {
4037     // Do not serialize non-volatile loads against each other.
4038     Root = DAG.getRoot();
4039   }
4040 
4041   SDLoc dl = getCurSDLoc();
4042 
4043   if (isVolatile)
4044     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4045 
4046   // An aggregate load cannot wrap around the address space, so offsets to its
4047   // parts don't wrap either.
4048   SDNodeFlags Flags;
4049   Flags.setNoUnsignedWrap(true);
4050 
4051   SmallVector<SDValue, 4> Values(NumValues);
4052   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4053   EVT PtrVT = Ptr.getValueType();
4054   unsigned ChainI = 0;
4055   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4056     // Serializing loads here may result in excessive register pressure, and
4057     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4058     // could recover a bit by hoisting nodes upward in the chain by recognizing
4059     // they are side-effect free or do not alias. The optimizer should really
4060     // avoid this case by converting large object/array copies to llvm.memcpy
4061     // (MaxParallelChains should always remain as failsafe).
4062     if (ChainI == MaxParallelChains) {
4063       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4064       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4065                                   makeArrayRef(Chains.data(), ChainI));
4066       Root = Chain;
4067       ChainI = 0;
4068     }
4069     SDValue A = DAG.getNode(ISD::ADD, dl,
4070                             PtrVT, Ptr,
4071                             DAG.getConstant(Offsets[i], dl, PtrVT),
4072                             Flags);
4073     auto MMOFlags = MachineMemOperand::MONone;
4074     if (isVolatile)
4075       MMOFlags |= MachineMemOperand::MOVolatile;
4076     if (isNonTemporal)
4077       MMOFlags |= MachineMemOperand::MONonTemporal;
4078     if (isInvariant)
4079       MMOFlags |= MachineMemOperand::MOInvariant;
4080     if (isDereferenceable)
4081       MMOFlags |= MachineMemOperand::MODereferenceable;
4082     MMOFlags |= TLI.getMMOFlags(I);
4083 
4084     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4085                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4086                             MMOFlags, AAInfo, Ranges);
4087     Chains[ChainI] = L.getValue(1);
4088 
4089     if (MemVTs[i] != ValueVTs[i])
4090       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4091 
4092     Values[i] = L;
4093   }
4094 
4095   if (!ConstantMemory) {
4096     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4097                                 makeArrayRef(Chains.data(), ChainI));
4098     if (isVolatile)
4099       DAG.setRoot(Chain);
4100     else
4101       PendingLoads.push_back(Chain);
4102   }
4103 
4104   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4105                            DAG.getVTList(ValueVTs), Values));
4106 }
4107 
4108 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4109   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4110          "call visitStoreToSwiftError when backend supports swifterror");
4111 
4112   SmallVector<EVT, 4> ValueVTs;
4113   SmallVector<uint64_t, 4> Offsets;
4114   const Value *SrcV = I.getOperand(0);
4115   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4116                   SrcV->getType(), ValueVTs, &Offsets);
4117   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4118          "expect a single EVT for swifterror");
4119 
4120   SDValue Src = getValue(SrcV);
4121   // Create a virtual register, then update the virtual register.
4122   Register VReg =
4123       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4124   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4125   // Chain can be getRoot or getControlRoot.
4126   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4127                                       SDValue(Src.getNode(), Src.getResNo()));
4128   DAG.setRoot(CopyNode);
4129 }
4130 
4131 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4132   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4133          "call visitLoadFromSwiftError when backend supports swifterror");
4134 
4135   assert(!I.isVolatile() &&
4136          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4137          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4138          "Support volatile, non temporal, invariant for load_from_swift_error");
4139 
4140   const Value *SV = I.getOperand(0);
4141   Type *Ty = I.getType();
4142   AAMDNodes AAInfo;
4143   I.getAAMetadata(AAInfo);
4144   assert(
4145       (!AA ||
4146        !AA->pointsToConstantMemory(MemoryLocation(
4147            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4148            AAInfo))) &&
4149       "load_from_swift_error should not be constant memory");
4150 
4151   SmallVector<EVT, 4> ValueVTs;
4152   SmallVector<uint64_t, 4> Offsets;
4153   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4154                   ValueVTs, &Offsets);
4155   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4156          "expect a single EVT for swifterror");
4157 
4158   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4159   SDValue L = DAG.getCopyFromReg(
4160       getRoot(), getCurSDLoc(),
4161       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4162 
4163   setValue(&I, L);
4164 }
4165 
4166 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4167   if (I.isAtomic())
4168     return visitAtomicStore(I);
4169 
4170   const Value *SrcV = I.getOperand(0);
4171   const Value *PtrV = I.getOperand(1);
4172 
4173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4174   if (TLI.supportSwiftError()) {
4175     // Swifterror values can come from either a function parameter with
4176     // swifterror attribute or an alloca with swifterror attribute.
4177     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4178       if (Arg->hasSwiftErrorAttr())
4179         return visitStoreToSwiftError(I);
4180     }
4181 
4182     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4183       if (Alloca->isSwiftError())
4184         return visitStoreToSwiftError(I);
4185     }
4186   }
4187 
4188   SmallVector<EVT, 4> ValueVTs, MemVTs;
4189   SmallVector<uint64_t, 4> Offsets;
4190   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4191                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4192   unsigned NumValues = ValueVTs.size();
4193   if (NumValues == 0)
4194     return;
4195 
4196   // Get the lowered operands. Note that we do this after
4197   // checking if NumResults is zero, because with zero results
4198   // the operands won't have values in the map.
4199   SDValue Src = getValue(SrcV);
4200   SDValue Ptr = getValue(PtrV);
4201 
4202   SDValue Root = getRoot();
4203   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4204   SDLoc dl = getCurSDLoc();
4205   EVT PtrVT = Ptr.getValueType();
4206   unsigned Alignment = I.getAlignment();
4207   AAMDNodes AAInfo;
4208   I.getAAMetadata(AAInfo);
4209 
4210   auto MMOFlags = MachineMemOperand::MONone;
4211   if (I.isVolatile())
4212     MMOFlags |= MachineMemOperand::MOVolatile;
4213   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4214     MMOFlags |= MachineMemOperand::MONonTemporal;
4215   MMOFlags |= TLI.getMMOFlags(I);
4216 
4217   // An aggregate load cannot wrap around the address space, so offsets to its
4218   // parts don't wrap either.
4219   SDNodeFlags Flags;
4220   Flags.setNoUnsignedWrap(true);
4221 
4222   unsigned ChainI = 0;
4223   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4224     // See visitLoad comments.
4225     if (ChainI == MaxParallelChains) {
4226       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4227                                   makeArrayRef(Chains.data(), ChainI));
4228       Root = Chain;
4229       ChainI = 0;
4230     }
4231     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4232                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4233     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4234     if (MemVTs[i] != ValueVTs[i])
4235       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4236     SDValue St =
4237         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4238                      Alignment, MMOFlags, AAInfo);
4239     Chains[ChainI] = St;
4240   }
4241 
4242   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4243                                   makeArrayRef(Chains.data(), ChainI));
4244   DAG.setRoot(StoreNode);
4245 }
4246 
4247 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4248                                            bool IsCompressing) {
4249   SDLoc sdl = getCurSDLoc();
4250 
4251   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4252                            unsigned& Alignment) {
4253     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4254     Src0 = I.getArgOperand(0);
4255     Ptr = I.getArgOperand(1);
4256     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4257     Mask = I.getArgOperand(3);
4258   };
4259   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4260                            unsigned& Alignment) {
4261     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4262     Src0 = I.getArgOperand(0);
4263     Ptr = I.getArgOperand(1);
4264     Mask = I.getArgOperand(2);
4265     Alignment = 0;
4266   };
4267 
4268   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4269   unsigned Alignment;
4270   if (IsCompressing)
4271     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4272   else
4273     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4274 
4275   SDValue Ptr = getValue(PtrOperand);
4276   SDValue Src0 = getValue(Src0Operand);
4277   SDValue Mask = getValue(MaskOperand);
4278 
4279   EVT VT = Src0.getValueType();
4280   if (!Alignment)
4281     Alignment = DAG.getEVTAlignment(VT);
4282 
4283   AAMDNodes AAInfo;
4284   I.getAAMetadata(AAInfo);
4285 
4286   MachineMemOperand *MMO =
4287     DAG.getMachineFunction().
4288     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4289                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4290                           Alignment, AAInfo);
4291   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4292                                          MMO, false /* Truncating */,
4293                                          IsCompressing);
4294   DAG.setRoot(StoreNode);
4295   setValue(&I, StoreNode);
4296 }
4297 
4298 // Get a uniform base for the Gather/Scatter intrinsic.
4299 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4300 // We try to represent it as a base pointer + vector of indices.
4301 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4302 // The first operand of the GEP may be a single pointer or a vector of pointers
4303 // Example:
4304 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4305 //  or
4306 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4307 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4308 //
4309 // When the first GEP operand is a single pointer - it is the uniform base we
4310 // are looking for. If first operand of the GEP is a splat vector - we
4311 // extract the splat value and use it as a uniform base.
4312 // In all other cases the function returns 'false'.
4313 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4314                            ISD::MemIndexType &IndexType, SDValue &Scale,
4315                            SelectionDAGBuilder *SDB) {
4316   SelectionDAG& DAG = SDB->DAG;
4317   LLVMContext &Context = *DAG.getContext();
4318 
4319   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4320   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4321   if (!GEP)
4322     return false;
4323 
4324   const Value *GEPPtr = GEP->getPointerOperand();
4325   if (!GEPPtr->getType()->isVectorTy())
4326     Ptr = GEPPtr;
4327   else if (!(Ptr = getSplatValue(GEPPtr)))
4328     return false;
4329 
4330   unsigned FinalIndex = GEP->getNumOperands() - 1;
4331   Value *IndexVal = GEP->getOperand(FinalIndex);
4332 
4333   // Ensure all the other indices are 0.
4334   for (unsigned i = 1; i < FinalIndex; ++i) {
4335     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4336     if (!C)
4337       return false;
4338     if (isa<VectorType>(C->getType()))
4339       C = C->getSplatValue();
4340     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4341     if (!CI || !CI->isZero())
4342       return false;
4343   }
4344 
4345   // The operands of the GEP may be defined in another basic block.
4346   // In this case we'll not find nodes for the operands.
4347   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4348     return false;
4349 
4350   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4351   const DataLayout &DL = DAG.getDataLayout();
4352   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4353                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4354   Base = SDB->getValue(Ptr);
4355   Index = SDB->getValue(IndexVal);
4356   IndexType = ISD::SIGNED_SCALED;
4357 
4358   if (!Index.getValueType().isVector()) {
4359     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4360     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4361     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4362   }
4363   return true;
4364 }
4365 
4366 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4367   SDLoc sdl = getCurSDLoc();
4368 
4369   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4370   const Value *Ptr = I.getArgOperand(1);
4371   SDValue Src0 = getValue(I.getArgOperand(0));
4372   SDValue Mask = getValue(I.getArgOperand(3));
4373   EVT VT = Src0.getValueType();
4374   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4375   if (!Alignment)
4376     Alignment = DAG.getEVTAlignment(VT);
4377   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4378 
4379   AAMDNodes AAInfo;
4380   I.getAAMetadata(AAInfo);
4381 
4382   SDValue Base;
4383   SDValue Index;
4384   ISD::MemIndexType IndexType;
4385   SDValue Scale;
4386   const Value *BasePtr = Ptr;
4387   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4388                                     this);
4389 
4390   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4391   MachineMemOperand *MMO = DAG.getMachineFunction().
4392     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4393                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4394                          Alignment, AAInfo);
4395   if (!UniformBase) {
4396     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4397     Index = getValue(Ptr);
4398     IndexType = ISD::SIGNED_SCALED;
4399     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4400   }
4401   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4402   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4403                                          Ops, MMO, IndexType);
4404   DAG.setRoot(Scatter);
4405   setValue(&I, Scatter);
4406 }
4407 
4408 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4409   SDLoc sdl = getCurSDLoc();
4410 
4411   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4412                            unsigned& Alignment) {
4413     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4414     Ptr = I.getArgOperand(0);
4415     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4416     Mask = I.getArgOperand(2);
4417     Src0 = I.getArgOperand(3);
4418   };
4419   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4420                            unsigned& Alignment) {
4421     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4422     Ptr = I.getArgOperand(0);
4423     Alignment = 0;
4424     Mask = I.getArgOperand(1);
4425     Src0 = I.getArgOperand(2);
4426   };
4427 
4428   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4429   unsigned Alignment;
4430   if (IsExpanding)
4431     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4432   else
4433     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4434 
4435   SDValue Ptr = getValue(PtrOperand);
4436   SDValue Src0 = getValue(Src0Operand);
4437   SDValue Mask = getValue(MaskOperand);
4438 
4439   EVT VT = Src0.getValueType();
4440   if (!Alignment)
4441     Alignment = DAG.getEVTAlignment(VT);
4442 
4443   AAMDNodes AAInfo;
4444   I.getAAMetadata(AAInfo);
4445   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4446 
4447   // Do not serialize masked loads of constant memory with anything.
4448   bool AddToChain =
4449       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4450                  PtrOperand,
4451                  LocationSize::precise(
4452                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4453                  AAInfo));
4454   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4455 
4456   MachineMemOperand *MMO =
4457     DAG.getMachineFunction().
4458     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4459                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4460                           Alignment, AAInfo, Ranges);
4461 
4462   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4463                                    ISD::NON_EXTLOAD, IsExpanding);
4464   if (AddToChain)
4465     PendingLoads.push_back(Load.getValue(1));
4466   setValue(&I, Load);
4467 }
4468 
4469 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4470   SDLoc sdl = getCurSDLoc();
4471 
4472   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4473   const Value *Ptr = I.getArgOperand(0);
4474   SDValue Src0 = getValue(I.getArgOperand(3));
4475   SDValue Mask = getValue(I.getArgOperand(2));
4476 
4477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4478   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4479   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4480   if (!Alignment)
4481     Alignment = DAG.getEVTAlignment(VT);
4482 
4483   AAMDNodes AAInfo;
4484   I.getAAMetadata(AAInfo);
4485   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4486 
4487   SDValue Root = DAG.getRoot();
4488   SDValue Base;
4489   SDValue Index;
4490   ISD::MemIndexType IndexType;
4491   SDValue Scale;
4492   const Value *BasePtr = Ptr;
4493   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4494                                     this);
4495   bool ConstantMemory = false;
4496   if (UniformBase && AA &&
4497       AA->pointsToConstantMemory(
4498           MemoryLocation(BasePtr,
4499                          LocationSize::precise(
4500                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4501                          AAInfo))) {
4502     // Do not serialize (non-volatile) loads of constant memory with anything.
4503     Root = DAG.getEntryNode();
4504     ConstantMemory = true;
4505   }
4506 
4507   MachineMemOperand *MMO =
4508     DAG.getMachineFunction().
4509     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4510                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4511                          Alignment, AAInfo, Ranges);
4512 
4513   if (!UniformBase) {
4514     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4515     Index = getValue(Ptr);
4516     IndexType = ISD::SIGNED_SCALED;
4517     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4518   }
4519   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4520   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4521                                        Ops, MMO, IndexType);
4522 
4523   SDValue OutChain = Gather.getValue(1);
4524   if (!ConstantMemory)
4525     PendingLoads.push_back(OutChain);
4526   setValue(&I, Gather);
4527 }
4528 
4529 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4530   SDLoc dl = getCurSDLoc();
4531   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4532   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4533   SyncScope::ID SSID = I.getSyncScopeID();
4534 
4535   SDValue InChain = getRoot();
4536 
4537   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4538   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4539 
4540   auto Alignment = DAG.getEVTAlignment(MemVT);
4541 
4542   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4543   if (I.isVolatile())
4544     Flags |= MachineMemOperand::MOVolatile;
4545   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4546 
4547   MachineFunction &MF = DAG.getMachineFunction();
4548   MachineMemOperand *MMO =
4549     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4550                             Flags, MemVT.getStoreSize(), Alignment,
4551                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4552                             FailureOrdering);
4553 
4554   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4555                                    dl, MemVT, VTs, InChain,
4556                                    getValue(I.getPointerOperand()),
4557                                    getValue(I.getCompareOperand()),
4558                                    getValue(I.getNewValOperand()), MMO);
4559 
4560   SDValue OutChain = L.getValue(2);
4561 
4562   setValue(&I, L);
4563   DAG.setRoot(OutChain);
4564 }
4565 
4566 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4567   SDLoc dl = getCurSDLoc();
4568   ISD::NodeType NT;
4569   switch (I.getOperation()) {
4570   default: llvm_unreachable("Unknown atomicrmw operation");
4571   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4572   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4573   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4574   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4575   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4576   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4577   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4578   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4579   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4580   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4581   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4582   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4583   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4584   }
4585   AtomicOrdering Ordering = I.getOrdering();
4586   SyncScope::ID SSID = I.getSyncScopeID();
4587 
4588   SDValue InChain = getRoot();
4589 
4590   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4591   auto Alignment = DAG.getEVTAlignment(MemVT);
4592 
4593   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4594   if (I.isVolatile())
4595     Flags |= MachineMemOperand::MOVolatile;
4596   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4597 
4598   MachineFunction &MF = DAG.getMachineFunction();
4599   MachineMemOperand *MMO =
4600     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4601                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4602                             nullptr, SSID, Ordering);
4603 
4604   SDValue L =
4605     DAG.getAtomic(NT, dl, MemVT, InChain,
4606                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4607                   MMO);
4608 
4609   SDValue OutChain = L.getValue(1);
4610 
4611   setValue(&I, L);
4612   DAG.setRoot(OutChain);
4613 }
4614 
4615 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4616   SDLoc dl = getCurSDLoc();
4617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4618   SDValue Ops[3];
4619   Ops[0] = getRoot();
4620   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4621                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4622   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4623                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4624   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4625 }
4626 
4627 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4628   SDLoc dl = getCurSDLoc();
4629   AtomicOrdering Order = I.getOrdering();
4630   SyncScope::ID SSID = I.getSyncScopeID();
4631 
4632   SDValue InChain = getRoot();
4633 
4634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4635   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4636   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4637 
4638   if (!TLI.supportsUnalignedAtomics() &&
4639       I.getAlignment() < MemVT.getSizeInBits() / 8)
4640     report_fatal_error("Cannot generate unaligned atomic load");
4641 
4642   auto Flags = MachineMemOperand::MOLoad;
4643   if (I.isVolatile())
4644     Flags |= MachineMemOperand::MOVolatile;
4645   if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr)
4646     Flags |= MachineMemOperand::MOInvariant;
4647   if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4648                                DAG.getDataLayout()))
4649     Flags |= MachineMemOperand::MODereferenceable;
4650 
4651   Flags |= TLI.getMMOFlags(I);
4652 
4653   MachineMemOperand *MMO =
4654       DAG.getMachineFunction().
4655       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4656                            Flags, MemVT.getStoreSize(),
4657                            I.getAlignment() ? I.getAlignment() :
4658                                               DAG.getEVTAlignment(MemVT),
4659                            AAMDNodes(), nullptr, SSID, Order);
4660 
4661   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4662   SDValue L =
4663       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4664                     getValue(I.getPointerOperand()), MMO);
4665 
4666   SDValue OutChain = L.getValue(1);
4667   if (MemVT != VT)
4668     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4669 
4670   setValue(&I, L);
4671   DAG.setRoot(OutChain);
4672 }
4673 
4674 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4675   SDLoc dl = getCurSDLoc();
4676 
4677   AtomicOrdering Ordering = I.getOrdering();
4678   SyncScope::ID SSID = I.getSyncScopeID();
4679 
4680   SDValue InChain = getRoot();
4681 
4682   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4683   EVT MemVT =
4684       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4685 
4686   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4687     report_fatal_error("Cannot generate unaligned atomic store");
4688 
4689   auto Flags = MachineMemOperand::MOStore;
4690   if (I.isVolatile())
4691     Flags |= MachineMemOperand::MOVolatile;
4692   Flags |= TLI.getMMOFlags(I);
4693 
4694   MachineFunction &MF = DAG.getMachineFunction();
4695   MachineMemOperand *MMO =
4696     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4697                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4698                             nullptr, SSID, Ordering);
4699 
4700   SDValue Val = getValue(I.getValueOperand());
4701   if (Val.getValueType() != MemVT)
4702     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4703 
4704   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4705                                    getValue(I.getPointerOperand()), Val, MMO);
4706 
4707 
4708   DAG.setRoot(OutChain);
4709 }
4710 
4711 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4712 /// node.
4713 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4714                                                unsigned Intrinsic) {
4715   // Ignore the callsite's attributes. A specific call site may be marked with
4716   // readnone, but the lowering code will expect the chain based on the
4717   // definition.
4718   const Function *F = I.getCalledFunction();
4719   bool HasChain = !F->doesNotAccessMemory();
4720   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4721 
4722   // Build the operand list.
4723   SmallVector<SDValue, 8> Ops;
4724   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4725     if (OnlyLoad) {
4726       // We don't need to serialize loads against other loads.
4727       Ops.push_back(DAG.getRoot());
4728     } else {
4729       Ops.push_back(getRoot());
4730     }
4731   }
4732 
4733   // Info is set by getTgtMemInstrinsic
4734   TargetLowering::IntrinsicInfo Info;
4735   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4736   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4737                                                DAG.getMachineFunction(),
4738                                                Intrinsic);
4739 
4740   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4741   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4742       Info.opc == ISD::INTRINSIC_W_CHAIN)
4743     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4744                                         TLI.getPointerTy(DAG.getDataLayout())));
4745 
4746   // Add all operands of the call to the operand list.
4747   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4748     SDValue Op = getValue(I.getArgOperand(i));
4749     Ops.push_back(Op);
4750   }
4751 
4752   SmallVector<EVT, 4> ValueVTs;
4753   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4754 
4755   if (HasChain)
4756     ValueVTs.push_back(MVT::Other);
4757 
4758   SDVTList VTs = DAG.getVTList(ValueVTs);
4759 
4760   // Create the node.
4761   SDValue Result;
4762   if (IsTgtIntrinsic) {
4763     // This is target intrinsic that touches memory
4764     AAMDNodes AAInfo;
4765     I.getAAMetadata(AAInfo);
4766     Result = DAG.getMemIntrinsicNode(
4767         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4768         MachinePointerInfo(Info.ptrVal, Info.offset),
4769         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4770   } else if (!HasChain) {
4771     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4772   } else if (!I.getType()->isVoidTy()) {
4773     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4774   } else {
4775     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4776   }
4777 
4778   if (HasChain) {
4779     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4780     if (OnlyLoad)
4781       PendingLoads.push_back(Chain);
4782     else
4783       DAG.setRoot(Chain);
4784   }
4785 
4786   if (!I.getType()->isVoidTy()) {
4787     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4788       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4789       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4790     } else
4791       Result = lowerRangeToAssertZExt(DAG, I, Result);
4792 
4793     setValue(&I, Result);
4794   }
4795 }
4796 
4797 /// GetSignificand - Get the significand and build it into a floating-point
4798 /// number with exponent of 1:
4799 ///
4800 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4801 ///
4802 /// where Op is the hexadecimal representation of floating point value.
4803 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4804   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4805                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4806   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4807                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4808   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4809 }
4810 
4811 /// GetExponent - Get the exponent:
4812 ///
4813 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4814 ///
4815 /// where Op is the hexadecimal representation of floating point value.
4816 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4817                            const TargetLowering &TLI, const SDLoc &dl) {
4818   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4819                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4820   SDValue t1 = DAG.getNode(
4821       ISD::SRL, dl, MVT::i32, t0,
4822       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4823   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4824                            DAG.getConstant(127, dl, MVT::i32));
4825   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4826 }
4827 
4828 /// getF32Constant - Get 32-bit floating point constant.
4829 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4830                               const SDLoc &dl) {
4831   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4832                            MVT::f32);
4833 }
4834 
4835 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4836                                        SelectionDAG &DAG) {
4837   // TODO: What fast-math-flags should be set on the floating-point nodes?
4838 
4839   //   IntegerPartOfX = ((int32_t)(t0);
4840   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4841 
4842   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4843   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4844   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4845 
4846   //   IntegerPartOfX <<= 23;
4847   IntegerPartOfX = DAG.getNode(
4848       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4849       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4850                                   DAG.getDataLayout())));
4851 
4852   SDValue TwoToFractionalPartOfX;
4853   if (LimitFloatPrecision <= 6) {
4854     // For floating-point precision of 6:
4855     //
4856     //   TwoToFractionalPartOfX =
4857     //     0.997535578f +
4858     //       (0.735607626f + 0.252464424f * x) * x;
4859     //
4860     // error 0.0144103317, which is 6 bits
4861     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4862                              getF32Constant(DAG, 0x3e814304, dl));
4863     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4864                              getF32Constant(DAG, 0x3f3c50c8, dl));
4865     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4866     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4867                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4868   } else if (LimitFloatPrecision <= 12) {
4869     // For floating-point precision of 12:
4870     //
4871     //   TwoToFractionalPartOfX =
4872     //     0.999892986f +
4873     //       (0.696457318f +
4874     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4875     //
4876     // error 0.000107046256, which is 13 to 14 bits
4877     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4878                              getF32Constant(DAG, 0x3da235e3, dl));
4879     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4880                              getF32Constant(DAG, 0x3e65b8f3, dl));
4881     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4882     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4883                              getF32Constant(DAG, 0x3f324b07, dl));
4884     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4885     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4886                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4887   } else { // LimitFloatPrecision <= 18
4888     // For floating-point precision of 18:
4889     //
4890     //   TwoToFractionalPartOfX =
4891     //     0.999999982f +
4892     //       (0.693148872f +
4893     //         (0.240227044f +
4894     //           (0.554906021e-1f +
4895     //             (0.961591928e-2f +
4896     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4897     // error 2.47208000*10^(-7), which is better than 18 bits
4898     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4899                              getF32Constant(DAG, 0x3924b03e, dl));
4900     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4901                              getF32Constant(DAG, 0x3ab24b87, dl));
4902     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4903     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4904                              getF32Constant(DAG, 0x3c1d8c17, dl));
4905     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4906     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4907                              getF32Constant(DAG, 0x3d634a1d, dl));
4908     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4909     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4910                              getF32Constant(DAG, 0x3e75fe14, dl));
4911     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4912     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4913                               getF32Constant(DAG, 0x3f317234, dl));
4914     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4915     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4916                                          getF32Constant(DAG, 0x3f800000, dl));
4917   }
4918 
4919   // Add the exponent into the result in integer domain.
4920   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4921   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4922                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4923 }
4924 
4925 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4926 /// limited-precision mode.
4927 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4928                          const TargetLowering &TLI) {
4929   if (Op.getValueType() == MVT::f32 &&
4930       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4931 
4932     // Put the exponent in the right bit position for later addition to the
4933     // final result:
4934     //
4935     //   #define LOG2OFe 1.4426950f
4936     //   t0 = Op * LOG2OFe
4937 
4938     // TODO: What fast-math-flags should be set here?
4939     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4940                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4941     return getLimitedPrecisionExp2(t0, dl, DAG);
4942   }
4943 
4944   // No special expansion.
4945   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4946 }
4947 
4948 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4949 /// limited-precision mode.
4950 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4951                          const TargetLowering &TLI) {
4952   // TODO: What fast-math-flags should be set on the floating-point nodes?
4953 
4954   if (Op.getValueType() == MVT::f32 &&
4955       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4956     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4957 
4958     // Scale the exponent by log(2) [0.69314718f].
4959     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4960     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4961                                         getF32Constant(DAG, 0x3f317218, dl));
4962 
4963     // Get the significand and build it into a floating-point number with
4964     // exponent of 1.
4965     SDValue X = GetSignificand(DAG, Op1, dl);
4966 
4967     SDValue LogOfMantissa;
4968     if (LimitFloatPrecision <= 6) {
4969       // For floating-point precision of 6:
4970       //
4971       //   LogofMantissa =
4972       //     -1.1609546f +
4973       //       (1.4034025f - 0.23903021f * x) * x;
4974       //
4975       // error 0.0034276066, which is better than 8 bits
4976       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4977                                getF32Constant(DAG, 0xbe74c456, dl));
4978       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4979                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4980       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4981       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4982                                   getF32Constant(DAG, 0x3f949a29, dl));
4983     } else if (LimitFloatPrecision <= 12) {
4984       // For floating-point precision of 12:
4985       //
4986       //   LogOfMantissa =
4987       //     -1.7417939f +
4988       //       (2.8212026f +
4989       //         (-1.4699568f +
4990       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4991       //
4992       // error 0.000061011436, which is 14 bits
4993       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4994                                getF32Constant(DAG, 0xbd67b6d6, dl));
4995       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4996                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4997       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4998       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4999                                getF32Constant(DAG, 0x3fbc278b, dl));
5000       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5001       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5002                                getF32Constant(DAG, 0x40348e95, dl));
5003       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5004       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5005                                   getF32Constant(DAG, 0x3fdef31a, dl));
5006     } else { // LimitFloatPrecision <= 18
5007       // For floating-point precision of 18:
5008       //
5009       //   LogOfMantissa =
5010       //     -2.1072184f +
5011       //       (4.2372794f +
5012       //         (-3.7029485f +
5013       //           (2.2781945f +
5014       //             (-0.87823314f +
5015       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5016       //
5017       // error 0.0000023660568, which is better than 18 bits
5018       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5019                                getF32Constant(DAG, 0xbc91e5ac, dl));
5020       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5021                                getF32Constant(DAG, 0x3e4350aa, dl));
5022       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5023       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5024                                getF32Constant(DAG, 0x3f60d3e3, dl));
5025       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5026       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5027                                getF32Constant(DAG, 0x4011cdf0, dl));
5028       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5029       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5030                                getF32Constant(DAG, 0x406cfd1c, dl));
5031       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5032       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5033                                getF32Constant(DAG, 0x408797cb, dl));
5034       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5035       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5036                                   getF32Constant(DAG, 0x4006dcab, dl));
5037     }
5038 
5039     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5040   }
5041 
5042   // No special expansion.
5043   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5044 }
5045 
5046 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5047 /// limited-precision mode.
5048 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5049                           const TargetLowering &TLI) {
5050   // TODO: What fast-math-flags should be set on the floating-point nodes?
5051 
5052   if (Op.getValueType() == MVT::f32 &&
5053       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5054     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5055 
5056     // Get the exponent.
5057     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5058 
5059     // Get the significand and build it into a floating-point number with
5060     // exponent of 1.
5061     SDValue X = GetSignificand(DAG, Op1, dl);
5062 
5063     // Different possible minimax approximations of significand in
5064     // floating-point for various degrees of accuracy over [1,2].
5065     SDValue Log2ofMantissa;
5066     if (LimitFloatPrecision <= 6) {
5067       // For floating-point precision of 6:
5068       //
5069       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5070       //
5071       // error 0.0049451742, which is more than 7 bits
5072       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5073                                getF32Constant(DAG, 0xbeb08fe0, dl));
5074       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5075                                getF32Constant(DAG, 0x40019463, dl));
5076       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5077       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5078                                    getF32Constant(DAG, 0x3fd6633d, dl));
5079     } else if (LimitFloatPrecision <= 12) {
5080       // For floating-point precision of 12:
5081       //
5082       //   Log2ofMantissa =
5083       //     -2.51285454f +
5084       //       (4.07009056f +
5085       //         (-2.12067489f +
5086       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5087       //
5088       // error 0.0000876136000, which is better than 13 bits
5089       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5090                                getF32Constant(DAG, 0xbda7262e, dl));
5091       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5092                                getF32Constant(DAG, 0x3f25280b, dl));
5093       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5094       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5095                                getF32Constant(DAG, 0x4007b923, dl));
5096       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5097       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5098                                getF32Constant(DAG, 0x40823e2f, dl));
5099       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5100       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5101                                    getF32Constant(DAG, 0x4020d29c, dl));
5102     } else { // LimitFloatPrecision <= 18
5103       // For floating-point precision of 18:
5104       //
5105       //   Log2ofMantissa =
5106       //     -3.0400495f +
5107       //       (6.1129976f +
5108       //         (-5.3420409f +
5109       //           (3.2865683f +
5110       //             (-1.2669343f +
5111       //               (0.27515199f -
5112       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5113       //
5114       // error 0.0000018516, which is better than 18 bits
5115       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5116                                getF32Constant(DAG, 0xbcd2769e, dl));
5117       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5118                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5119       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5120       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5121                                getF32Constant(DAG, 0x3fa22ae7, dl));
5122       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5123       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5124                                getF32Constant(DAG, 0x40525723, dl));
5125       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5126       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5127                                getF32Constant(DAG, 0x40aaf200, dl));
5128       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5129       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5130                                getF32Constant(DAG, 0x40c39dad, dl));
5131       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5132       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5133                                    getF32Constant(DAG, 0x4042902c, dl));
5134     }
5135 
5136     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5137   }
5138 
5139   // No special expansion.
5140   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5141 }
5142 
5143 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5144 /// limited-precision mode.
5145 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5146                            const TargetLowering &TLI) {
5147   // TODO: What fast-math-flags should be set on the floating-point nodes?
5148 
5149   if (Op.getValueType() == MVT::f32 &&
5150       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5151     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5152 
5153     // Scale the exponent by log10(2) [0.30102999f].
5154     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5155     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5156                                         getF32Constant(DAG, 0x3e9a209a, dl));
5157 
5158     // Get the significand and build it into a floating-point number with
5159     // exponent of 1.
5160     SDValue X = GetSignificand(DAG, Op1, dl);
5161 
5162     SDValue Log10ofMantissa;
5163     if (LimitFloatPrecision <= 6) {
5164       // For floating-point precision of 6:
5165       //
5166       //   Log10ofMantissa =
5167       //     -0.50419619f +
5168       //       (0.60948995f - 0.10380950f * x) * x;
5169       //
5170       // error 0.0014886165, which is 6 bits
5171       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5172                                getF32Constant(DAG, 0xbdd49a13, dl));
5173       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5174                                getF32Constant(DAG, 0x3f1c0789, dl));
5175       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5176       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5177                                     getF32Constant(DAG, 0x3f011300, dl));
5178     } else if (LimitFloatPrecision <= 12) {
5179       // For floating-point precision of 12:
5180       //
5181       //   Log10ofMantissa =
5182       //     -0.64831180f +
5183       //       (0.91751397f +
5184       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5185       //
5186       // error 0.00019228036, which is better than 12 bits
5187       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5188                                getF32Constant(DAG, 0x3d431f31, dl));
5189       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5190                                getF32Constant(DAG, 0x3ea21fb2, dl));
5191       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5192       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5193                                getF32Constant(DAG, 0x3f6ae232, dl));
5194       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5195       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5196                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5197     } else { // LimitFloatPrecision <= 18
5198       // For floating-point precision of 18:
5199       //
5200       //   Log10ofMantissa =
5201       //     -0.84299375f +
5202       //       (1.5327582f +
5203       //         (-1.0688956f +
5204       //           (0.49102474f +
5205       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5206       //
5207       // error 0.0000037995730, which is better than 18 bits
5208       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5209                                getF32Constant(DAG, 0x3c5d51ce, dl));
5210       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5211                                getF32Constant(DAG, 0x3e00685a, dl));
5212       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5213       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5214                                getF32Constant(DAG, 0x3efb6798, dl));
5215       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5216       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5217                                getF32Constant(DAG, 0x3f88d192, dl));
5218       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5219       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5220                                getF32Constant(DAG, 0x3fc4316c, dl));
5221       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5222       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5223                                     getF32Constant(DAG, 0x3f57ce70, dl));
5224     }
5225 
5226     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5227   }
5228 
5229   // No special expansion.
5230   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5231 }
5232 
5233 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5234 /// limited-precision mode.
5235 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5236                           const TargetLowering &TLI) {
5237   if (Op.getValueType() == MVT::f32 &&
5238       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5239     return getLimitedPrecisionExp2(Op, dl, DAG);
5240 
5241   // No special expansion.
5242   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5243 }
5244 
5245 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5246 /// limited-precision mode with x == 10.0f.
5247 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5248                          SelectionDAG &DAG, const TargetLowering &TLI) {
5249   bool IsExp10 = false;
5250   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5251       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5252     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5253       APFloat Ten(10.0f);
5254       IsExp10 = LHSC->isExactlyValue(Ten);
5255     }
5256   }
5257 
5258   // TODO: What fast-math-flags should be set on the FMUL node?
5259   if (IsExp10) {
5260     // Put the exponent in the right bit position for later addition to the
5261     // final result:
5262     //
5263     //   #define LOG2OF10 3.3219281f
5264     //   t0 = Op * LOG2OF10;
5265     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5266                              getF32Constant(DAG, 0x40549a78, dl));
5267     return getLimitedPrecisionExp2(t0, dl, DAG);
5268   }
5269 
5270   // No special expansion.
5271   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5272 }
5273 
5274 /// ExpandPowI - Expand a llvm.powi intrinsic.
5275 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5276                           SelectionDAG &DAG) {
5277   // If RHS is a constant, we can expand this out to a multiplication tree,
5278   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5279   // optimizing for size, we only want to do this if the expansion would produce
5280   // a small number of multiplies, otherwise we do the full expansion.
5281   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5282     // Get the exponent as a positive value.
5283     unsigned Val = RHSC->getSExtValue();
5284     if ((int)Val < 0) Val = -Val;
5285 
5286     // powi(x, 0) -> 1.0
5287     if (Val == 0)
5288       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5289 
5290     const Function &F = DAG.getMachineFunction().getFunction();
5291     if (!F.hasOptSize() ||
5292         // If optimizing for size, don't insert too many multiplies.
5293         // This inserts up to 5 multiplies.
5294         countPopulation(Val) + Log2_32(Val) < 7) {
5295       // We use the simple binary decomposition method to generate the multiply
5296       // sequence.  There are more optimal ways to do this (for example,
5297       // powi(x,15) generates one more multiply than it should), but this has
5298       // the benefit of being both really simple and much better than a libcall.
5299       SDValue Res;  // Logically starts equal to 1.0
5300       SDValue CurSquare = LHS;
5301       // TODO: Intrinsics should have fast-math-flags that propagate to these
5302       // nodes.
5303       while (Val) {
5304         if (Val & 1) {
5305           if (Res.getNode())
5306             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5307           else
5308             Res = CurSquare;  // 1.0*CurSquare.
5309         }
5310 
5311         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5312                                 CurSquare, CurSquare);
5313         Val >>= 1;
5314       }
5315 
5316       // If the original was negative, invert the result, producing 1/(x*x*x).
5317       if (RHSC->getSExtValue() < 0)
5318         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5319                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5320       return Res;
5321     }
5322   }
5323 
5324   // Otherwise, expand to a libcall.
5325   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5326 }
5327 
5328 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5329 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5330 static void
5331 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5332                      const SDValue &N) {
5333   switch (N.getOpcode()) {
5334   case ISD::CopyFromReg: {
5335     SDValue Op = N.getOperand(1);
5336     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5337                       Op.getValueType().getSizeInBits());
5338     return;
5339   }
5340   case ISD::BITCAST:
5341   case ISD::AssertZext:
5342   case ISD::AssertSext:
5343   case ISD::TRUNCATE:
5344     getUnderlyingArgRegs(Regs, N.getOperand(0));
5345     return;
5346   case ISD::BUILD_PAIR:
5347   case ISD::BUILD_VECTOR:
5348   case ISD::CONCAT_VECTORS:
5349     for (SDValue Op : N->op_values())
5350       getUnderlyingArgRegs(Regs, Op);
5351     return;
5352   default:
5353     return;
5354   }
5355 }
5356 
5357 /// If the DbgValueInst is a dbg_value of a function argument, create the
5358 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5359 /// instruction selection, they will be inserted to the entry BB.
5360 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5361     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5362     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5363   const Argument *Arg = dyn_cast<Argument>(V);
5364   if (!Arg)
5365     return false;
5366 
5367   if (!IsDbgDeclare) {
5368     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5369     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5370     // the entry block.
5371     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5372     if (!IsInEntryBlock)
5373       return false;
5374 
5375     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5376     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5377     // variable that also is a param.
5378     //
5379     // Although, if we are at the top of the entry block already, we can still
5380     // emit using ArgDbgValue. This might catch some situations when the
5381     // dbg.value refers to an argument that isn't used in the entry block, so
5382     // any CopyToReg node would be optimized out and the only way to express
5383     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5384     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5385     // we should only emit as ArgDbgValue if the Variable is an argument to the
5386     // current function, and the dbg.value intrinsic is found in the entry
5387     // block.
5388     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5389         !DL->getInlinedAt();
5390     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5391     if (!IsInPrologue && !VariableIsFunctionInputArg)
5392       return false;
5393 
5394     // Here we assume that a function argument on IR level only can be used to
5395     // describe one input parameter on source level. If we for example have
5396     // source code like this
5397     //
5398     //    struct A { long x, y; };
5399     //    void foo(struct A a, long b) {
5400     //      ...
5401     //      b = a.x;
5402     //      ...
5403     //    }
5404     //
5405     // and IR like this
5406     //
5407     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5408     //  entry:
5409     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5410     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5411     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5412     //    ...
5413     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5414     //    ...
5415     //
5416     // then the last dbg.value is describing a parameter "b" using a value that
5417     // is an argument. But since we already has used %a1 to describe a parameter
5418     // we should not handle that last dbg.value here (that would result in an
5419     // incorrect hoisting of the DBG_VALUE to the function entry).
5420     // Notice that we allow one dbg.value per IR level argument, to accomodate
5421     // for the situation with fragments above.
5422     if (VariableIsFunctionInputArg) {
5423       unsigned ArgNo = Arg->getArgNo();
5424       if (ArgNo >= FuncInfo.DescribedArgs.size())
5425         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5426       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5427         return false;
5428       FuncInfo.DescribedArgs.set(ArgNo);
5429     }
5430   }
5431 
5432   MachineFunction &MF = DAG.getMachineFunction();
5433   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5434 
5435   bool IsIndirect = false;
5436   Optional<MachineOperand> Op;
5437   // Some arguments' frame index is recorded during argument lowering.
5438   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5439   if (FI != std::numeric_limits<int>::max())
5440     Op = MachineOperand::CreateFI(FI);
5441 
5442   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5443   if (!Op && N.getNode()) {
5444     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5445     Register Reg;
5446     if (ArgRegsAndSizes.size() == 1)
5447       Reg = ArgRegsAndSizes.front().first;
5448 
5449     if (Reg && Reg.isVirtual()) {
5450       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5451       Register PR = RegInfo.getLiveInPhysReg(Reg);
5452       if (PR)
5453         Reg = PR;
5454     }
5455     if (Reg) {
5456       Op = MachineOperand::CreateReg(Reg, false);
5457       IsIndirect = IsDbgDeclare;
5458     }
5459   }
5460 
5461   if (!Op && N.getNode()) {
5462     // Check if frame index is available.
5463     SDValue LCandidate = peekThroughBitcasts(N);
5464     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5465       if (FrameIndexSDNode *FINode =
5466           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5467         Op = MachineOperand::CreateFI(FINode->getIndex());
5468   }
5469 
5470   if (!Op) {
5471     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5472     auto splitMultiRegDbgValue
5473       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5474       unsigned Offset = 0;
5475       for (auto RegAndSize : SplitRegs) {
5476         auto FragmentExpr = DIExpression::createFragmentExpression(
5477           Expr, Offset, RegAndSize.second);
5478         if (!FragmentExpr)
5479           continue;
5480         FuncInfo.ArgDbgValues.push_back(
5481           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5482                   RegAndSize.first, Variable, *FragmentExpr));
5483         Offset += RegAndSize.second;
5484       }
5485     };
5486 
5487     // Check if ValueMap has reg number.
5488     DenseMap<const Value *, unsigned>::const_iterator
5489       VMI = FuncInfo.ValueMap.find(V);
5490     if (VMI != FuncInfo.ValueMap.end()) {
5491       const auto &TLI = DAG.getTargetLoweringInfo();
5492       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5493                        V->getType(), getABIRegCopyCC(V));
5494       if (RFV.occupiesMultipleRegs()) {
5495         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5496         return true;
5497       }
5498 
5499       Op = MachineOperand::CreateReg(VMI->second, false);
5500       IsIndirect = IsDbgDeclare;
5501     } else if (ArgRegsAndSizes.size() > 1) {
5502       // This was split due to the calling convention, and no virtual register
5503       // mapping exists for the value.
5504       splitMultiRegDbgValue(ArgRegsAndSizes);
5505       return true;
5506     }
5507   }
5508 
5509   if (!Op)
5510     return false;
5511 
5512   assert(Variable->isValidLocationForIntrinsic(DL) &&
5513          "Expected inlined-at fields to agree");
5514   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5515   FuncInfo.ArgDbgValues.push_back(
5516       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5517               *Op, Variable, Expr));
5518 
5519   return true;
5520 }
5521 
5522 /// Return the appropriate SDDbgValue based on N.
5523 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5524                                              DILocalVariable *Variable,
5525                                              DIExpression *Expr,
5526                                              const DebugLoc &dl,
5527                                              unsigned DbgSDNodeOrder) {
5528   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5529     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5530     // stack slot locations.
5531     //
5532     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5533     // debug values here after optimization:
5534     //
5535     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5536     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5537     //
5538     // Both describe the direct values of their associated variables.
5539     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5540                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5541   }
5542   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5543                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5544 }
5545 
5546 // VisualStudio defines setjmp as _setjmp
5547 #if defined(_MSC_VER) && defined(setjmp) && \
5548                          !defined(setjmp_undefined_for_msvc)
5549 #  pragma push_macro("setjmp")
5550 #  undef setjmp
5551 #  define setjmp_undefined_for_msvc
5552 #endif
5553 
5554 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5555   switch (Intrinsic) {
5556   case Intrinsic::smul_fix:
5557     return ISD::SMULFIX;
5558   case Intrinsic::umul_fix:
5559     return ISD::UMULFIX;
5560   default:
5561     llvm_unreachable("Unhandled fixed point intrinsic");
5562   }
5563 }
5564 
5565 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5566                                            const char *FunctionName) {
5567   assert(FunctionName && "FunctionName must not be nullptr");
5568   SDValue Callee = DAG.getExternalSymbol(
5569       FunctionName,
5570       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5571   LowerCallTo(&I, Callee, I.isTailCall());
5572 }
5573 
5574 /// Lower the call to the specified intrinsic function.
5575 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5576                                              unsigned Intrinsic) {
5577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5578   SDLoc sdl = getCurSDLoc();
5579   DebugLoc dl = getCurDebugLoc();
5580   SDValue Res;
5581 
5582   switch (Intrinsic) {
5583   default:
5584     // By default, turn this into a target intrinsic node.
5585     visitTargetIntrinsic(I, Intrinsic);
5586     return;
5587   case Intrinsic::vastart:  visitVAStart(I); return;
5588   case Intrinsic::vaend:    visitVAEnd(I); return;
5589   case Intrinsic::vacopy:   visitVACopy(I); return;
5590   case Intrinsic::returnaddress:
5591     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5592                              TLI.getPointerTy(DAG.getDataLayout()),
5593                              getValue(I.getArgOperand(0))));
5594     return;
5595   case Intrinsic::addressofreturnaddress:
5596     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5597                              TLI.getPointerTy(DAG.getDataLayout())));
5598     return;
5599   case Intrinsic::sponentry:
5600     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5601                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5602     return;
5603   case Intrinsic::frameaddress:
5604     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5605                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5606                              getValue(I.getArgOperand(0))));
5607     return;
5608   case Intrinsic::read_register: {
5609     Value *Reg = I.getArgOperand(0);
5610     SDValue Chain = getRoot();
5611     SDValue RegName =
5612         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5613     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5614     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5615       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5616     setValue(&I, Res);
5617     DAG.setRoot(Res.getValue(1));
5618     return;
5619   }
5620   case Intrinsic::write_register: {
5621     Value *Reg = I.getArgOperand(0);
5622     Value *RegValue = I.getArgOperand(1);
5623     SDValue Chain = getRoot();
5624     SDValue RegName =
5625         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5626     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5627                             RegName, getValue(RegValue)));
5628     return;
5629   }
5630   case Intrinsic::setjmp:
5631     lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5632     return;
5633   case Intrinsic::longjmp:
5634     lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5635     return;
5636   case Intrinsic::memcpy: {
5637     const auto &MCI = cast<MemCpyInst>(I);
5638     SDValue Op1 = getValue(I.getArgOperand(0));
5639     SDValue Op2 = getValue(I.getArgOperand(1));
5640     SDValue Op3 = getValue(I.getArgOperand(2));
5641     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5642     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5643     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5644     unsigned Align = MinAlign(DstAlign, SrcAlign);
5645     bool isVol = MCI.isVolatile();
5646     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5647     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5648     // node.
5649     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5650                                false, isTC,
5651                                MachinePointerInfo(I.getArgOperand(0)),
5652                                MachinePointerInfo(I.getArgOperand(1)));
5653     updateDAGForMaybeTailCall(MC);
5654     return;
5655   }
5656   case Intrinsic::memset: {
5657     const auto &MSI = cast<MemSetInst>(I);
5658     SDValue Op1 = getValue(I.getArgOperand(0));
5659     SDValue Op2 = getValue(I.getArgOperand(1));
5660     SDValue Op3 = getValue(I.getArgOperand(2));
5661     // @llvm.memset defines 0 and 1 to both mean no alignment.
5662     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5663     bool isVol = MSI.isVolatile();
5664     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5665     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5666                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5667     updateDAGForMaybeTailCall(MS);
5668     return;
5669   }
5670   case Intrinsic::memmove: {
5671     const auto &MMI = cast<MemMoveInst>(I);
5672     SDValue Op1 = getValue(I.getArgOperand(0));
5673     SDValue Op2 = getValue(I.getArgOperand(1));
5674     SDValue Op3 = getValue(I.getArgOperand(2));
5675     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5676     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5677     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5678     unsigned Align = MinAlign(DstAlign, SrcAlign);
5679     bool isVol = MMI.isVolatile();
5680     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5681     // FIXME: Support passing different dest/src alignments to the memmove DAG
5682     // node.
5683     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5684                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5685                                 MachinePointerInfo(I.getArgOperand(1)));
5686     updateDAGForMaybeTailCall(MM);
5687     return;
5688   }
5689   case Intrinsic::memcpy_element_unordered_atomic: {
5690     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5691     SDValue Dst = getValue(MI.getRawDest());
5692     SDValue Src = getValue(MI.getRawSource());
5693     SDValue Length = getValue(MI.getLength());
5694 
5695     unsigned DstAlign = MI.getDestAlignment();
5696     unsigned SrcAlign = MI.getSourceAlignment();
5697     Type *LengthTy = MI.getLength()->getType();
5698     unsigned ElemSz = MI.getElementSizeInBytes();
5699     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5700     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5701                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5702                                      MachinePointerInfo(MI.getRawDest()),
5703                                      MachinePointerInfo(MI.getRawSource()));
5704     updateDAGForMaybeTailCall(MC);
5705     return;
5706   }
5707   case Intrinsic::memmove_element_unordered_atomic: {
5708     auto &MI = cast<AtomicMemMoveInst>(I);
5709     SDValue Dst = getValue(MI.getRawDest());
5710     SDValue Src = getValue(MI.getRawSource());
5711     SDValue Length = getValue(MI.getLength());
5712 
5713     unsigned DstAlign = MI.getDestAlignment();
5714     unsigned SrcAlign = MI.getSourceAlignment();
5715     Type *LengthTy = MI.getLength()->getType();
5716     unsigned ElemSz = MI.getElementSizeInBytes();
5717     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5718     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5719                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5720                                       MachinePointerInfo(MI.getRawDest()),
5721                                       MachinePointerInfo(MI.getRawSource()));
5722     updateDAGForMaybeTailCall(MC);
5723     return;
5724   }
5725   case Intrinsic::memset_element_unordered_atomic: {
5726     auto &MI = cast<AtomicMemSetInst>(I);
5727     SDValue Dst = getValue(MI.getRawDest());
5728     SDValue Val = getValue(MI.getValue());
5729     SDValue Length = getValue(MI.getLength());
5730 
5731     unsigned DstAlign = MI.getDestAlignment();
5732     Type *LengthTy = MI.getLength()->getType();
5733     unsigned ElemSz = MI.getElementSizeInBytes();
5734     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5735     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5736                                      LengthTy, ElemSz, isTC,
5737                                      MachinePointerInfo(MI.getRawDest()));
5738     updateDAGForMaybeTailCall(MC);
5739     return;
5740   }
5741   case Intrinsic::dbg_addr:
5742   case Intrinsic::dbg_declare: {
5743     const auto &DI = cast<DbgVariableIntrinsic>(I);
5744     DILocalVariable *Variable = DI.getVariable();
5745     DIExpression *Expression = DI.getExpression();
5746     dropDanglingDebugInfo(Variable, Expression);
5747     assert(Variable && "Missing variable");
5748 
5749     // Check if address has undef value.
5750     const Value *Address = DI.getVariableLocation();
5751     if (!Address || isa<UndefValue>(Address) ||
5752         (Address->use_empty() && !isa<Argument>(Address))) {
5753       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5754       return;
5755     }
5756 
5757     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5758 
5759     // Check if this variable can be described by a frame index, typically
5760     // either as a static alloca or a byval parameter.
5761     int FI = std::numeric_limits<int>::max();
5762     if (const auto *AI =
5763             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5764       if (AI->isStaticAlloca()) {
5765         auto I = FuncInfo.StaticAllocaMap.find(AI);
5766         if (I != FuncInfo.StaticAllocaMap.end())
5767           FI = I->second;
5768       }
5769     } else if (const auto *Arg = dyn_cast<Argument>(
5770                    Address->stripInBoundsConstantOffsets())) {
5771       FI = FuncInfo.getArgumentFrameIndex(Arg);
5772     }
5773 
5774     // llvm.dbg.addr is control dependent and always generates indirect
5775     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5776     // the MachineFunction variable table.
5777     if (FI != std::numeric_limits<int>::max()) {
5778       if (Intrinsic == Intrinsic::dbg_addr) {
5779         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5780             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5781         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5782       }
5783       return;
5784     }
5785 
5786     SDValue &N = NodeMap[Address];
5787     if (!N.getNode() && isa<Argument>(Address))
5788       // Check unused arguments map.
5789       N = UnusedArgNodeMap[Address];
5790     SDDbgValue *SDV;
5791     if (N.getNode()) {
5792       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5793         Address = BCI->getOperand(0);
5794       // Parameters are handled specially.
5795       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5796       if (isParameter && FINode) {
5797         // Byval parameter. We have a frame index at this point.
5798         SDV =
5799             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5800                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5801       } else if (isa<Argument>(Address)) {
5802         // Address is an argument, so try to emit its dbg value using
5803         // virtual register info from the FuncInfo.ValueMap.
5804         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5805         return;
5806       } else {
5807         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5808                               true, dl, SDNodeOrder);
5809       }
5810       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5811     } else {
5812       // If Address is an argument then try to emit its dbg value using
5813       // virtual register info from the FuncInfo.ValueMap.
5814       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5815                                     N)) {
5816         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5817       }
5818     }
5819     return;
5820   }
5821   case Intrinsic::dbg_label: {
5822     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5823     DILabel *Label = DI.getLabel();
5824     assert(Label && "Missing label");
5825 
5826     SDDbgLabel *SDV;
5827     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5828     DAG.AddDbgLabel(SDV);
5829     return;
5830   }
5831   case Intrinsic::dbg_value: {
5832     const DbgValueInst &DI = cast<DbgValueInst>(I);
5833     assert(DI.getVariable() && "Missing variable");
5834 
5835     DILocalVariable *Variable = DI.getVariable();
5836     DIExpression *Expression = DI.getExpression();
5837     dropDanglingDebugInfo(Variable, Expression);
5838     const Value *V = DI.getValue();
5839     if (!V)
5840       return;
5841 
5842     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5843         SDNodeOrder))
5844       return;
5845 
5846     // TODO: Dangling debug info will eventually either be resolved or produce
5847     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5848     // between the original dbg.value location and its resolved DBG_VALUE, which
5849     // we should ideally fill with an extra Undef DBG_VALUE.
5850 
5851     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5852     return;
5853   }
5854 
5855   case Intrinsic::eh_typeid_for: {
5856     // Find the type id for the given typeinfo.
5857     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5858     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5859     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5860     setValue(&I, Res);
5861     return;
5862   }
5863 
5864   case Intrinsic::eh_return_i32:
5865   case Intrinsic::eh_return_i64:
5866     DAG.getMachineFunction().setCallsEHReturn(true);
5867     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5868                             MVT::Other,
5869                             getControlRoot(),
5870                             getValue(I.getArgOperand(0)),
5871                             getValue(I.getArgOperand(1))));
5872     return;
5873   case Intrinsic::eh_unwind_init:
5874     DAG.getMachineFunction().setCallsUnwindInit(true);
5875     return;
5876   case Intrinsic::eh_dwarf_cfa:
5877     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5878                              TLI.getPointerTy(DAG.getDataLayout()),
5879                              getValue(I.getArgOperand(0))));
5880     return;
5881   case Intrinsic::eh_sjlj_callsite: {
5882     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5883     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5884     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5885     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5886 
5887     MMI.setCurrentCallSite(CI->getZExtValue());
5888     return;
5889   }
5890   case Intrinsic::eh_sjlj_functioncontext: {
5891     // Get and store the index of the function context.
5892     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5893     AllocaInst *FnCtx =
5894       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5895     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5896     MFI.setFunctionContextIndex(FI);
5897     return;
5898   }
5899   case Intrinsic::eh_sjlj_setjmp: {
5900     SDValue Ops[2];
5901     Ops[0] = getRoot();
5902     Ops[1] = getValue(I.getArgOperand(0));
5903     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5904                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5905     setValue(&I, Op.getValue(0));
5906     DAG.setRoot(Op.getValue(1));
5907     return;
5908   }
5909   case Intrinsic::eh_sjlj_longjmp:
5910     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5911                             getRoot(), getValue(I.getArgOperand(0))));
5912     return;
5913   case Intrinsic::eh_sjlj_setup_dispatch:
5914     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5915                             getRoot()));
5916     return;
5917   case Intrinsic::masked_gather:
5918     visitMaskedGather(I);
5919     return;
5920   case Intrinsic::masked_load:
5921     visitMaskedLoad(I);
5922     return;
5923   case Intrinsic::masked_scatter:
5924     visitMaskedScatter(I);
5925     return;
5926   case Intrinsic::masked_store:
5927     visitMaskedStore(I);
5928     return;
5929   case Intrinsic::masked_expandload:
5930     visitMaskedLoad(I, true /* IsExpanding */);
5931     return;
5932   case Intrinsic::masked_compressstore:
5933     visitMaskedStore(I, true /* IsCompressing */);
5934     return;
5935   case Intrinsic::x86_mmx_pslli_w:
5936   case Intrinsic::x86_mmx_pslli_d:
5937   case Intrinsic::x86_mmx_pslli_q:
5938   case Intrinsic::x86_mmx_psrli_w:
5939   case Intrinsic::x86_mmx_psrli_d:
5940   case Intrinsic::x86_mmx_psrli_q:
5941   case Intrinsic::x86_mmx_psrai_w:
5942   case Intrinsic::x86_mmx_psrai_d: {
5943     SDValue ShAmt = getValue(I.getArgOperand(1));
5944     if (isa<ConstantSDNode>(ShAmt)) {
5945       visitTargetIntrinsic(I, Intrinsic);
5946       return;
5947     }
5948     unsigned NewIntrinsic = 0;
5949     EVT ShAmtVT = MVT::v2i32;
5950     switch (Intrinsic) {
5951     case Intrinsic::x86_mmx_pslli_w:
5952       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5953       break;
5954     case Intrinsic::x86_mmx_pslli_d:
5955       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5956       break;
5957     case Intrinsic::x86_mmx_pslli_q:
5958       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5959       break;
5960     case Intrinsic::x86_mmx_psrli_w:
5961       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5962       break;
5963     case Intrinsic::x86_mmx_psrli_d:
5964       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5965       break;
5966     case Intrinsic::x86_mmx_psrli_q:
5967       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5968       break;
5969     case Intrinsic::x86_mmx_psrai_w:
5970       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5971       break;
5972     case Intrinsic::x86_mmx_psrai_d:
5973       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5974       break;
5975     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5976     }
5977 
5978     // The vector shift intrinsics with scalars uses 32b shift amounts but
5979     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5980     // to be zero.
5981     // We must do this early because v2i32 is not a legal type.
5982     SDValue ShOps[2];
5983     ShOps[0] = ShAmt;
5984     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5985     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5986     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5987     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5988     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5989                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5990                        getValue(I.getArgOperand(0)), ShAmt);
5991     setValue(&I, Res);
5992     return;
5993   }
5994   case Intrinsic::powi:
5995     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5996                             getValue(I.getArgOperand(1)), DAG));
5997     return;
5998   case Intrinsic::log:
5999     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6000     return;
6001   case Intrinsic::log2:
6002     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6003     return;
6004   case Intrinsic::log10:
6005     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6006     return;
6007   case Intrinsic::exp:
6008     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6009     return;
6010   case Intrinsic::exp2:
6011     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6012     return;
6013   case Intrinsic::pow:
6014     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6015                            getValue(I.getArgOperand(1)), DAG, TLI));
6016     return;
6017   case Intrinsic::sqrt:
6018   case Intrinsic::fabs:
6019   case Intrinsic::sin:
6020   case Intrinsic::cos:
6021   case Intrinsic::floor:
6022   case Intrinsic::ceil:
6023   case Intrinsic::trunc:
6024   case Intrinsic::rint:
6025   case Intrinsic::nearbyint:
6026   case Intrinsic::round:
6027   case Intrinsic::canonicalize: {
6028     unsigned Opcode;
6029     switch (Intrinsic) {
6030     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6031     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6032     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6033     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6034     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6035     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6036     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6037     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6038     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6039     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6040     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6041     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6042     }
6043 
6044     setValue(&I, DAG.getNode(Opcode, sdl,
6045                              getValue(I.getArgOperand(0)).getValueType(),
6046                              getValue(I.getArgOperand(0))));
6047     return;
6048   }
6049   case Intrinsic::lround:
6050   case Intrinsic::llround:
6051   case Intrinsic::lrint:
6052   case Intrinsic::llrint: {
6053     unsigned Opcode;
6054     switch (Intrinsic) {
6055     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6056     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6057     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6058     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6059     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6060     }
6061 
6062     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6063     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6064                              getValue(I.getArgOperand(0))));
6065     return;
6066   }
6067   case Intrinsic::minnum:
6068     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6069                              getValue(I.getArgOperand(0)).getValueType(),
6070                              getValue(I.getArgOperand(0)),
6071                              getValue(I.getArgOperand(1))));
6072     return;
6073   case Intrinsic::maxnum:
6074     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6075                              getValue(I.getArgOperand(0)).getValueType(),
6076                              getValue(I.getArgOperand(0)),
6077                              getValue(I.getArgOperand(1))));
6078     return;
6079   case Intrinsic::minimum:
6080     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6081                              getValue(I.getArgOperand(0)).getValueType(),
6082                              getValue(I.getArgOperand(0)),
6083                              getValue(I.getArgOperand(1))));
6084     return;
6085   case Intrinsic::maximum:
6086     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6087                              getValue(I.getArgOperand(0)).getValueType(),
6088                              getValue(I.getArgOperand(0)),
6089                              getValue(I.getArgOperand(1))));
6090     return;
6091   case Intrinsic::copysign:
6092     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6093                              getValue(I.getArgOperand(0)).getValueType(),
6094                              getValue(I.getArgOperand(0)),
6095                              getValue(I.getArgOperand(1))));
6096     return;
6097   case Intrinsic::fma:
6098     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6099                              getValue(I.getArgOperand(0)).getValueType(),
6100                              getValue(I.getArgOperand(0)),
6101                              getValue(I.getArgOperand(1)),
6102                              getValue(I.getArgOperand(2))));
6103     return;
6104   case Intrinsic::experimental_constrained_fadd:
6105   case Intrinsic::experimental_constrained_fsub:
6106   case Intrinsic::experimental_constrained_fmul:
6107   case Intrinsic::experimental_constrained_fdiv:
6108   case Intrinsic::experimental_constrained_frem:
6109   case Intrinsic::experimental_constrained_fma:
6110   case Intrinsic::experimental_constrained_fptrunc:
6111   case Intrinsic::experimental_constrained_fpext:
6112   case Intrinsic::experimental_constrained_sqrt:
6113   case Intrinsic::experimental_constrained_pow:
6114   case Intrinsic::experimental_constrained_powi:
6115   case Intrinsic::experimental_constrained_sin:
6116   case Intrinsic::experimental_constrained_cos:
6117   case Intrinsic::experimental_constrained_exp:
6118   case Intrinsic::experimental_constrained_exp2:
6119   case Intrinsic::experimental_constrained_log:
6120   case Intrinsic::experimental_constrained_log10:
6121   case Intrinsic::experimental_constrained_log2:
6122   case Intrinsic::experimental_constrained_rint:
6123   case Intrinsic::experimental_constrained_nearbyint:
6124   case Intrinsic::experimental_constrained_maxnum:
6125   case Intrinsic::experimental_constrained_minnum:
6126   case Intrinsic::experimental_constrained_ceil:
6127   case Intrinsic::experimental_constrained_floor:
6128   case Intrinsic::experimental_constrained_round:
6129   case Intrinsic::experimental_constrained_trunc:
6130     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6131     return;
6132   case Intrinsic::fmuladd: {
6133     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6134     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6135         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6136       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6137                                getValue(I.getArgOperand(0)).getValueType(),
6138                                getValue(I.getArgOperand(0)),
6139                                getValue(I.getArgOperand(1)),
6140                                getValue(I.getArgOperand(2))));
6141     } else {
6142       // TODO: Intrinsic calls should have fast-math-flags.
6143       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6144                                 getValue(I.getArgOperand(0)).getValueType(),
6145                                 getValue(I.getArgOperand(0)),
6146                                 getValue(I.getArgOperand(1)));
6147       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6148                                 getValue(I.getArgOperand(0)).getValueType(),
6149                                 Mul,
6150                                 getValue(I.getArgOperand(2)));
6151       setValue(&I, Add);
6152     }
6153     return;
6154   }
6155   case Intrinsic::convert_to_fp16:
6156     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6157                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6158                                          getValue(I.getArgOperand(0)),
6159                                          DAG.getTargetConstant(0, sdl,
6160                                                                MVT::i32))));
6161     return;
6162   case Intrinsic::convert_from_fp16:
6163     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6164                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6165                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6166                                          getValue(I.getArgOperand(0)))));
6167     return;
6168   case Intrinsic::pcmarker: {
6169     SDValue Tmp = getValue(I.getArgOperand(0));
6170     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6171     return;
6172   }
6173   case Intrinsic::readcyclecounter: {
6174     SDValue Op = getRoot();
6175     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6176                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6177     setValue(&I, Res);
6178     DAG.setRoot(Res.getValue(1));
6179     return;
6180   }
6181   case Intrinsic::bitreverse:
6182     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6183                              getValue(I.getArgOperand(0)).getValueType(),
6184                              getValue(I.getArgOperand(0))));
6185     return;
6186   case Intrinsic::bswap:
6187     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6188                              getValue(I.getArgOperand(0)).getValueType(),
6189                              getValue(I.getArgOperand(0))));
6190     return;
6191   case Intrinsic::cttz: {
6192     SDValue Arg = getValue(I.getArgOperand(0));
6193     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6194     EVT Ty = Arg.getValueType();
6195     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6196                              sdl, Ty, Arg));
6197     return;
6198   }
6199   case Intrinsic::ctlz: {
6200     SDValue Arg = getValue(I.getArgOperand(0));
6201     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6202     EVT Ty = Arg.getValueType();
6203     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6204                              sdl, Ty, Arg));
6205     return;
6206   }
6207   case Intrinsic::ctpop: {
6208     SDValue Arg = getValue(I.getArgOperand(0));
6209     EVT Ty = Arg.getValueType();
6210     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6211     return;
6212   }
6213   case Intrinsic::fshl:
6214   case Intrinsic::fshr: {
6215     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6216     SDValue X = getValue(I.getArgOperand(0));
6217     SDValue Y = getValue(I.getArgOperand(1));
6218     SDValue Z = getValue(I.getArgOperand(2));
6219     EVT VT = X.getValueType();
6220     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6221     SDValue Zero = DAG.getConstant(0, sdl, VT);
6222     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6223 
6224     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6225     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6226       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6227       return;
6228     }
6229 
6230     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6231     // avoid the select that is necessary in the general case to filter out
6232     // the 0-shift possibility that leads to UB.
6233     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6234       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6235       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6236         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6237         return;
6238       }
6239 
6240       // Some targets only rotate one way. Try the opposite direction.
6241       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6242       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6243         // Negate the shift amount because it is safe to ignore the high bits.
6244         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6245         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6246         return;
6247       }
6248 
6249       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6250       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6251       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6252       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6253       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6254       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6255       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6256       return;
6257     }
6258 
6259     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6260     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6261     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6262     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6263     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6264     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6265 
6266     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6267     // and that is undefined. We must compare and select to avoid UB.
6268     EVT CCVT = MVT::i1;
6269     if (VT.isVector())
6270       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6271 
6272     // For fshl, 0-shift returns the 1st arg (X).
6273     // For fshr, 0-shift returns the 2nd arg (Y).
6274     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6275     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6276     return;
6277   }
6278   case Intrinsic::sadd_sat: {
6279     SDValue Op1 = getValue(I.getArgOperand(0));
6280     SDValue Op2 = getValue(I.getArgOperand(1));
6281     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6282     return;
6283   }
6284   case Intrinsic::uadd_sat: {
6285     SDValue Op1 = getValue(I.getArgOperand(0));
6286     SDValue Op2 = getValue(I.getArgOperand(1));
6287     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6288     return;
6289   }
6290   case Intrinsic::ssub_sat: {
6291     SDValue Op1 = getValue(I.getArgOperand(0));
6292     SDValue Op2 = getValue(I.getArgOperand(1));
6293     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6294     return;
6295   }
6296   case Intrinsic::usub_sat: {
6297     SDValue Op1 = getValue(I.getArgOperand(0));
6298     SDValue Op2 = getValue(I.getArgOperand(1));
6299     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6300     return;
6301   }
6302   case Intrinsic::smul_fix:
6303   case Intrinsic::umul_fix: {
6304     SDValue Op1 = getValue(I.getArgOperand(0));
6305     SDValue Op2 = getValue(I.getArgOperand(1));
6306     SDValue Op3 = getValue(I.getArgOperand(2));
6307     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6308                              Op1.getValueType(), Op1, Op2, Op3));
6309     return;
6310   }
6311   case Intrinsic::smul_fix_sat: {
6312     SDValue Op1 = getValue(I.getArgOperand(0));
6313     SDValue Op2 = getValue(I.getArgOperand(1));
6314     SDValue Op3 = getValue(I.getArgOperand(2));
6315     setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6316                              Op3));
6317     return;
6318   }
6319   case Intrinsic::stacksave: {
6320     SDValue Op = getRoot();
6321     Res = DAG.getNode(
6322         ISD::STACKSAVE, sdl,
6323         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6324     setValue(&I, Res);
6325     DAG.setRoot(Res.getValue(1));
6326     return;
6327   }
6328   case Intrinsic::stackrestore:
6329     Res = getValue(I.getArgOperand(0));
6330     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6331     return;
6332   case Intrinsic::get_dynamic_area_offset: {
6333     SDValue Op = getRoot();
6334     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6335     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6336     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6337     // target.
6338     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6339       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6340                          " intrinsic!");
6341     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6342                       Op);
6343     DAG.setRoot(Op);
6344     setValue(&I, Res);
6345     return;
6346   }
6347   case Intrinsic::stackguard: {
6348     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6349     MachineFunction &MF = DAG.getMachineFunction();
6350     const Module &M = *MF.getFunction().getParent();
6351     SDValue Chain = getRoot();
6352     if (TLI.useLoadStackGuardNode()) {
6353       Res = getLoadStackGuard(DAG, sdl, Chain);
6354     } else {
6355       const Value *Global = TLI.getSDagStackGuard(M);
6356       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6357       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6358                         MachinePointerInfo(Global, 0), Align,
6359                         MachineMemOperand::MOVolatile);
6360     }
6361     if (TLI.useStackGuardXorFP())
6362       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6363     DAG.setRoot(Chain);
6364     setValue(&I, Res);
6365     return;
6366   }
6367   case Intrinsic::stackprotector: {
6368     // Emit code into the DAG to store the stack guard onto the stack.
6369     MachineFunction &MF = DAG.getMachineFunction();
6370     MachineFrameInfo &MFI = MF.getFrameInfo();
6371     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6372     SDValue Src, Chain = getRoot();
6373 
6374     if (TLI.useLoadStackGuardNode())
6375       Src = getLoadStackGuard(DAG, sdl, Chain);
6376     else
6377       Src = getValue(I.getArgOperand(0));   // The guard's value.
6378 
6379     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6380 
6381     int FI = FuncInfo.StaticAllocaMap[Slot];
6382     MFI.setStackProtectorIndex(FI);
6383 
6384     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6385 
6386     // Store the stack protector onto the stack.
6387     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6388                                                  DAG.getMachineFunction(), FI),
6389                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6390     setValue(&I, Res);
6391     DAG.setRoot(Res);
6392     return;
6393   }
6394   case Intrinsic::objectsize: {
6395     // If we don't know by now, we're never going to know.
6396     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6397 
6398     assert(CI && "Non-constant type in __builtin_object_size?");
6399 
6400     SDValue Arg = getValue(I.getCalledValue());
6401     EVT Ty = Arg.getValueType();
6402 
6403     if (CI->isZero())
6404       Res = DAG.getConstant(-1ULL, sdl, Ty);
6405     else
6406       Res = DAG.getConstant(0, sdl, Ty);
6407 
6408     setValue(&I, Res);
6409     return;
6410   }
6411 
6412   case Intrinsic::is_constant:
6413     // If this wasn't constant-folded away by now, then it's not a
6414     // constant.
6415     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6416     return;
6417 
6418   case Intrinsic::annotation:
6419   case Intrinsic::ptr_annotation:
6420   case Intrinsic::launder_invariant_group:
6421   case Intrinsic::strip_invariant_group:
6422     // Drop the intrinsic, but forward the value
6423     setValue(&I, getValue(I.getOperand(0)));
6424     return;
6425   case Intrinsic::assume:
6426   case Intrinsic::var_annotation:
6427   case Intrinsic::sideeffect:
6428     // Discard annotate attributes, assumptions, and artificial side-effects.
6429     return;
6430 
6431   case Intrinsic::codeview_annotation: {
6432     // Emit a label associated with this metadata.
6433     MachineFunction &MF = DAG.getMachineFunction();
6434     MCSymbol *Label =
6435         MF.getMMI().getContext().createTempSymbol("annotation", true);
6436     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6437     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6438     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6439     DAG.setRoot(Res);
6440     return;
6441   }
6442 
6443   case Intrinsic::init_trampoline: {
6444     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6445 
6446     SDValue Ops[6];
6447     Ops[0] = getRoot();
6448     Ops[1] = getValue(I.getArgOperand(0));
6449     Ops[2] = getValue(I.getArgOperand(1));
6450     Ops[3] = getValue(I.getArgOperand(2));
6451     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6452     Ops[5] = DAG.getSrcValue(F);
6453 
6454     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6455 
6456     DAG.setRoot(Res);
6457     return;
6458   }
6459   case Intrinsic::adjust_trampoline:
6460     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6461                              TLI.getPointerTy(DAG.getDataLayout()),
6462                              getValue(I.getArgOperand(0))));
6463     return;
6464   case Intrinsic::gcroot: {
6465     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6466            "only valid in functions with gc specified, enforced by Verifier");
6467     assert(GFI && "implied by previous");
6468     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6469     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6470 
6471     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6472     GFI->addStackRoot(FI->getIndex(), TypeMap);
6473     return;
6474   }
6475   case Intrinsic::gcread:
6476   case Intrinsic::gcwrite:
6477     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6478   case Intrinsic::flt_rounds:
6479     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6480     return;
6481 
6482   case Intrinsic::expect:
6483     // Just replace __builtin_expect(exp, c) with EXP.
6484     setValue(&I, getValue(I.getArgOperand(0)));
6485     return;
6486 
6487   case Intrinsic::debugtrap:
6488   case Intrinsic::trap: {
6489     StringRef TrapFuncName =
6490         I.getAttributes()
6491             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6492             .getValueAsString();
6493     if (TrapFuncName.empty()) {
6494       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6495         ISD::TRAP : ISD::DEBUGTRAP;
6496       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6497       return;
6498     }
6499     TargetLowering::ArgListTy Args;
6500 
6501     TargetLowering::CallLoweringInfo CLI(DAG);
6502     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6503         CallingConv::C, I.getType(),
6504         DAG.getExternalSymbol(TrapFuncName.data(),
6505                               TLI.getPointerTy(DAG.getDataLayout())),
6506         std::move(Args));
6507 
6508     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6509     DAG.setRoot(Result.second);
6510     return;
6511   }
6512 
6513   case Intrinsic::uadd_with_overflow:
6514   case Intrinsic::sadd_with_overflow:
6515   case Intrinsic::usub_with_overflow:
6516   case Intrinsic::ssub_with_overflow:
6517   case Intrinsic::umul_with_overflow:
6518   case Intrinsic::smul_with_overflow: {
6519     ISD::NodeType Op;
6520     switch (Intrinsic) {
6521     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6522     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6523     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6524     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6525     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6526     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6527     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6528     }
6529     SDValue Op1 = getValue(I.getArgOperand(0));
6530     SDValue Op2 = getValue(I.getArgOperand(1));
6531 
6532     EVT ResultVT = Op1.getValueType();
6533     EVT OverflowVT = MVT::i1;
6534     if (ResultVT.isVector())
6535       OverflowVT = EVT::getVectorVT(
6536           *Context, OverflowVT, ResultVT.getVectorNumElements());
6537 
6538     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6539     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6540     return;
6541   }
6542   case Intrinsic::prefetch: {
6543     SDValue Ops[5];
6544     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6545     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6546     Ops[0] = DAG.getRoot();
6547     Ops[1] = getValue(I.getArgOperand(0));
6548     Ops[2] = getValue(I.getArgOperand(1));
6549     Ops[3] = getValue(I.getArgOperand(2));
6550     Ops[4] = getValue(I.getArgOperand(3));
6551     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6552                                              DAG.getVTList(MVT::Other), Ops,
6553                                              EVT::getIntegerVT(*Context, 8),
6554                                              MachinePointerInfo(I.getArgOperand(0)),
6555                                              0, /* align */
6556                                              Flags);
6557 
6558     // Chain the prefetch in parallell with any pending loads, to stay out of
6559     // the way of later optimizations.
6560     PendingLoads.push_back(Result);
6561     Result = getRoot();
6562     DAG.setRoot(Result);
6563     return;
6564   }
6565   case Intrinsic::lifetime_start:
6566   case Intrinsic::lifetime_end: {
6567     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6568     // Stack coloring is not enabled in O0, discard region information.
6569     if (TM.getOptLevel() == CodeGenOpt::None)
6570       return;
6571 
6572     const int64_t ObjectSize =
6573         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6574     Value *const ObjectPtr = I.getArgOperand(1);
6575     SmallVector<const Value *, 4> Allocas;
6576     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6577 
6578     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6579            E = Allocas.end(); Object != E; ++Object) {
6580       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6581 
6582       // Could not find an Alloca.
6583       if (!LifetimeObject)
6584         continue;
6585 
6586       // First check that the Alloca is static, otherwise it won't have a
6587       // valid frame index.
6588       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6589       if (SI == FuncInfo.StaticAllocaMap.end())
6590         return;
6591 
6592       const int FrameIndex = SI->second;
6593       int64_t Offset;
6594       if (GetPointerBaseWithConstantOffset(
6595               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6596         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6597       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6598                                 Offset);
6599       DAG.setRoot(Res);
6600     }
6601     return;
6602   }
6603   case Intrinsic::invariant_start:
6604     // Discard region information.
6605     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6606     return;
6607   case Intrinsic::invariant_end:
6608     // Discard region information.
6609     return;
6610   case Intrinsic::clear_cache:
6611     /// FunctionName may be null.
6612     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6613       lowerCallToExternalSymbol(I, FunctionName);
6614     return;
6615   case Intrinsic::donothing:
6616     // ignore
6617     return;
6618   case Intrinsic::experimental_stackmap:
6619     visitStackmap(I);
6620     return;
6621   case Intrinsic::experimental_patchpoint_void:
6622   case Intrinsic::experimental_patchpoint_i64:
6623     visitPatchpoint(&I);
6624     return;
6625   case Intrinsic::experimental_gc_statepoint:
6626     LowerStatepoint(ImmutableStatepoint(&I));
6627     return;
6628   case Intrinsic::experimental_gc_result:
6629     visitGCResult(cast<GCResultInst>(I));
6630     return;
6631   case Intrinsic::experimental_gc_relocate:
6632     visitGCRelocate(cast<GCRelocateInst>(I));
6633     return;
6634   case Intrinsic::instrprof_increment:
6635     llvm_unreachable("instrprof failed to lower an increment");
6636   case Intrinsic::instrprof_value_profile:
6637     llvm_unreachable("instrprof failed to lower a value profiling call");
6638   case Intrinsic::localescape: {
6639     MachineFunction &MF = DAG.getMachineFunction();
6640     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6641 
6642     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6643     // is the same on all targets.
6644     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6645       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6646       if (isa<ConstantPointerNull>(Arg))
6647         continue; // Skip null pointers. They represent a hole in index space.
6648       AllocaInst *Slot = cast<AllocaInst>(Arg);
6649       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6650              "can only escape static allocas");
6651       int FI = FuncInfo.StaticAllocaMap[Slot];
6652       MCSymbol *FrameAllocSym =
6653           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6654               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6655       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6656               TII->get(TargetOpcode::LOCAL_ESCAPE))
6657           .addSym(FrameAllocSym)
6658           .addFrameIndex(FI);
6659     }
6660 
6661     return;
6662   }
6663 
6664   case Intrinsic::localrecover: {
6665     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6666     MachineFunction &MF = DAG.getMachineFunction();
6667     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6668 
6669     // Get the symbol that defines the frame offset.
6670     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6671     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6672     unsigned IdxVal =
6673         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6674     MCSymbol *FrameAllocSym =
6675         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6676             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6677 
6678     // Create a MCSymbol for the label to avoid any target lowering
6679     // that would make this PC relative.
6680     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6681     SDValue OffsetVal =
6682         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6683 
6684     // Add the offset to the FP.
6685     Value *FP = I.getArgOperand(1);
6686     SDValue FPVal = getValue(FP);
6687     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6688     setValue(&I, Add);
6689 
6690     return;
6691   }
6692 
6693   case Intrinsic::eh_exceptionpointer:
6694   case Intrinsic::eh_exceptioncode: {
6695     // Get the exception pointer vreg, copy from it, and resize it to fit.
6696     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6697     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6698     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6699     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6700     SDValue N =
6701         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6702     if (Intrinsic == Intrinsic::eh_exceptioncode)
6703       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6704     setValue(&I, N);
6705     return;
6706   }
6707   case Intrinsic::xray_customevent: {
6708     // Here we want to make sure that the intrinsic behaves as if it has a
6709     // specific calling convention, and only for x86_64.
6710     // FIXME: Support other platforms later.
6711     const auto &Triple = DAG.getTarget().getTargetTriple();
6712     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6713       return;
6714 
6715     SDLoc DL = getCurSDLoc();
6716     SmallVector<SDValue, 8> Ops;
6717 
6718     // We want to say that we always want the arguments in registers.
6719     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6720     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6721     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6722     SDValue Chain = getRoot();
6723     Ops.push_back(LogEntryVal);
6724     Ops.push_back(StrSizeVal);
6725     Ops.push_back(Chain);
6726 
6727     // We need to enforce the calling convention for the callsite, so that
6728     // argument ordering is enforced correctly, and that register allocation can
6729     // see that some registers may be assumed clobbered and have to preserve
6730     // them across calls to the intrinsic.
6731     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6732                                            DL, NodeTys, Ops);
6733     SDValue patchableNode = SDValue(MN, 0);
6734     DAG.setRoot(patchableNode);
6735     setValue(&I, patchableNode);
6736     return;
6737   }
6738   case Intrinsic::xray_typedevent: {
6739     // Here we want to make sure that the intrinsic behaves as if it has a
6740     // specific calling convention, and only for x86_64.
6741     // FIXME: Support other platforms later.
6742     const auto &Triple = DAG.getTarget().getTargetTriple();
6743     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6744       return;
6745 
6746     SDLoc DL = getCurSDLoc();
6747     SmallVector<SDValue, 8> Ops;
6748 
6749     // We want to say that we always want the arguments in registers.
6750     // It's unclear to me how manipulating the selection DAG here forces callers
6751     // to provide arguments in registers instead of on the stack.
6752     SDValue LogTypeId = getValue(I.getArgOperand(0));
6753     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6754     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6755     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6756     SDValue Chain = getRoot();
6757     Ops.push_back(LogTypeId);
6758     Ops.push_back(LogEntryVal);
6759     Ops.push_back(StrSizeVal);
6760     Ops.push_back(Chain);
6761 
6762     // We need to enforce the calling convention for the callsite, so that
6763     // argument ordering is enforced correctly, and that register allocation can
6764     // see that some registers may be assumed clobbered and have to preserve
6765     // them across calls to the intrinsic.
6766     MachineSDNode *MN = DAG.getMachineNode(
6767         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6768     SDValue patchableNode = SDValue(MN, 0);
6769     DAG.setRoot(patchableNode);
6770     setValue(&I, patchableNode);
6771     return;
6772   }
6773   case Intrinsic::experimental_deoptimize:
6774     LowerDeoptimizeCall(&I);
6775     return;
6776 
6777   case Intrinsic::experimental_vector_reduce_v2_fadd:
6778   case Intrinsic::experimental_vector_reduce_v2_fmul:
6779   case Intrinsic::experimental_vector_reduce_add:
6780   case Intrinsic::experimental_vector_reduce_mul:
6781   case Intrinsic::experimental_vector_reduce_and:
6782   case Intrinsic::experimental_vector_reduce_or:
6783   case Intrinsic::experimental_vector_reduce_xor:
6784   case Intrinsic::experimental_vector_reduce_smax:
6785   case Intrinsic::experimental_vector_reduce_smin:
6786   case Intrinsic::experimental_vector_reduce_umax:
6787   case Intrinsic::experimental_vector_reduce_umin:
6788   case Intrinsic::experimental_vector_reduce_fmax:
6789   case Intrinsic::experimental_vector_reduce_fmin:
6790     visitVectorReduce(I, Intrinsic);
6791     return;
6792 
6793   case Intrinsic::icall_branch_funnel: {
6794     SmallVector<SDValue, 16> Ops;
6795     Ops.push_back(getValue(I.getArgOperand(0)));
6796 
6797     int64_t Offset;
6798     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6799         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6800     if (!Base)
6801       report_fatal_error(
6802           "llvm.icall.branch.funnel operand must be a GlobalValue");
6803     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6804 
6805     struct BranchFunnelTarget {
6806       int64_t Offset;
6807       SDValue Target;
6808     };
6809     SmallVector<BranchFunnelTarget, 8> Targets;
6810 
6811     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6812       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6813           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6814       if (ElemBase != Base)
6815         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6816                            "to the same GlobalValue");
6817 
6818       SDValue Val = getValue(I.getArgOperand(Op + 1));
6819       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6820       if (!GA)
6821         report_fatal_error(
6822             "llvm.icall.branch.funnel operand must be a GlobalValue");
6823       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6824                                      GA->getGlobal(), getCurSDLoc(),
6825                                      Val.getValueType(), GA->getOffset())});
6826     }
6827     llvm::sort(Targets,
6828                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6829                  return T1.Offset < T2.Offset;
6830                });
6831 
6832     for (auto &T : Targets) {
6833       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6834       Ops.push_back(T.Target);
6835     }
6836 
6837     Ops.push_back(DAG.getRoot()); // Chain
6838     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6839                                  getCurSDLoc(), MVT::Other, Ops),
6840               0);
6841     DAG.setRoot(N);
6842     setValue(&I, N);
6843     HasTailCall = true;
6844     return;
6845   }
6846 
6847   case Intrinsic::wasm_landingpad_index:
6848     // Information this intrinsic contained has been transferred to
6849     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6850     // delete it now.
6851     return;
6852 
6853   case Intrinsic::aarch64_settag:
6854   case Intrinsic::aarch64_settag_zero: {
6855     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6856     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6857     SDValue Val = TSI.EmitTargetCodeForSetTag(
6858         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6859         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6860         ZeroMemory);
6861     DAG.setRoot(Val);
6862     setValue(&I, Val);
6863     return;
6864   }
6865   case Intrinsic::ptrmask: {
6866     SDValue Ptr = getValue(I.getOperand(0));
6867     SDValue Const = getValue(I.getOperand(1));
6868 
6869     EVT DestVT =
6870         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6871 
6872     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6873                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6874     return;
6875   }
6876   }
6877 }
6878 
6879 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6880     const ConstrainedFPIntrinsic &FPI) {
6881   SDLoc sdl = getCurSDLoc();
6882   unsigned Opcode;
6883   switch (FPI.getIntrinsicID()) {
6884   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6885   case Intrinsic::experimental_constrained_fadd:
6886     Opcode = ISD::STRICT_FADD;
6887     break;
6888   case Intrinsic::experimental_constrained_fsub:
6889     Opcode = ISD::STRICT_FSUB;
6890     break;
6891   case Intrinsic::experimental_constrained_fmul:
6892     Opcode = ISD::STRICT_FMUL;
6893     break;
6894   case Intrinsic::experimental_constrained_fdiv:
6895     Opcode = ISD::STRICT_FDIV;
6896     break;
6897   case Intrinsic::experimental_constrained_frem:
6898     Opcode = ISD::STRICT_FREM;
6899     break;
6900   case Intrinsic::experimental_constrained_fma:
6901     Opcode = ISD::STRICT_FMA;
6902     break;
6903   case Intrinsic::experimental_constrained_fptrunc:
6904     Opcode = ISD::STRICT_FP_ROUND;
6905     break;
6906   case Intrinsic::experimental_constrained_fpext:
6907     Opcode = ISD::STRICT_FP_EXTEND;
6908     break;
6909   case Intrinsic::experimental_constrained_sqrt:
6910     Opcode = ISD::STRICT_FSQRT;
6911     break;
6912   case Intrinsic::experimental_constrained_pow:
6913     Opcode = ISD::STRICT_FPOW;
6914     break;
6915   case Intrinsic::experimental_constrained_powi:
6916     Opcode = ISD::STRICT_FPOWI;
6917     break;
6918   case Intrinsic::experimental_constrained_sin:
6919     Opcode = ISD::STRICT_FSIN;
6920     break;
6921   case Intrinsic::experimental_constrained_cos:
6922     Opcode = ISD::STRICT_FCOS;
6923     break;
6924   case Intrinsic::experimental_constrained_exp:
6925     Opcode = ISD::STRICT_FEXP;
6926     break;
6927   case Intrinsic::experimental_constrained_exp2:
6928     Opcode = ISD::STRICT_FEXP2;
6929     break;
6930   case Intrinsic::experimental_constrained_log:
6931     Opcode = ISD::STRICT_FLOG;
6932     break;
6933   case Intrinsic::experimental_constrained_log10:
6934     Opcode = ISD::STRICT_FLOG10;
6935     break;
6936   case Intrinsic::experimental_constrained_log2:
6937     Opcode = ISD::STRICT_FLOG2;
6938     break;
6939   case Intrinsic::experimental_constrained_rint:
6940     Opcode = ISD::STRICT_FRINT;
6941     break;
6942   case Intrinsic::experimental_constrained_nearbyint:
6943     Opcode = ISD::STRICT_FNEARBYINT;
6944     break;
6945   case Intrinsic::experimental_constrained_maxnum:
6946     Opcode = ISD::STRICT_FMAXNUM;
6947     break;
6948   case Intrinsic::experimental_constrained_minnum:
6949     Opcode = ISD::STRICT_FMINNUM;
6950     break;
6951   case Intrinsic::experimental_constrained_ceil:
6952     Opcode = ISD::STRICT_FCEIL;
6953     break;
6954   case Intrinsic::experimental_constrained_floor:
6955     Opcode = ISD::STRICT_FFLOOR;
6956     break;
6957   case Intrinsic::experimental_constrained_round:
6958     Opcode = ISD::STRICT_FROUND;
6959     break;
6960   case Intrinsic::experimental_constrained_trunc:
6961     Opcode = ISD::STRICT_FTRUNC;
6962     break;
6963   }
6964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6965   SDValue Chain = getRoot();
6966   SmallVector<EVT, 4> ValueVTs;
6967   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6968   ValueVTs.push_back(MVT::Other); // Out chain
6969 
6970   SDVTList VTs = DAG.getVTList(ValueVTs);
6971   SDValue Result;
6972   if (Opcode == ISD::STRICT_FP_ROUND)
6973     Result = DAG.getNode(Opcode, sdl, VTs,
6974                           { Chain, getValue(FPI.getArgOperand(0)),
6975                                DAG.getTargetConstant(0, sdl,
6976                                TLI.getPointerTy(DAG.getDataLayout())) });
6977   else if (FPI.isUnaryOp())
6978     Result = DAG.getNode(Opcode, sdl, VTs,
6979                          { Chain, getValue(FPI.getArgOperand(0)) });
6980   else if (FPI.isTernaryOp())
6981     Result = DAG.getNode(Opcode, sdl, VTs,
6982                          { Chain, getValue(FPI.getArgOperand(0)),
6983                                   getValue(FPI.getArgOperand(1)),
6984                                   getValue(FPI.getArgOperand(2)) });
6985   else
6986     Result = DAG.getNode(Opcode, sdl, VTs,
6987                          { Chain, getValue(FPI.getArgOperand(0)),
6988                            getValue(FPI.getArgOperand(1))  });
6989 
6990   if (FPI.getExceptionBehavior() !=
6991       ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) {
6992     SDNodeFlags Flags;
6993     Flags.setFPExcept(true);
6994     Result->setFlags(Flags);
6995   }
6996 
6997   assert(Result.getNode()->getNumValues() == 2);
6998   SDValue OutChain = Result.getValue(1);
6999   DAG.setRoot(OutChain);
7000   SDValue FPResult = Result.getValue(0);
7001   setValue(&FPI, FPResult);
7002 }
7003 
7004 std::pair<SDValue, SDValue>
7005 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7006                                     const BasicBlock *EHPadBB) {
7007   MachineFunction &MF = DAG.getMachineFunction();
7008   MachineModuleInfo &MMI = MF.getMMI();
7009   MCSymbol *BeginLabel = nullptr;
7010 
7011   if (EHPadBB) {
7012     // Insert a label before the invoke call to mark the try range.  This can be
7013     // used to detect deletion of the invoke via the MachineModuleInfo.
7014     BeginLabel = MMI.getContext().createTempSymbol();
7015 
7016     // For SjLj, keep track of which landing pads go with which invokes
7017     // so as to maintain the ordering of pads in the LSDA.
7018     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7019     if (CallSiteIndex) {
7020       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7021       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7022 
7023       // Now that the call site is handled, stop tracking it.
7024       MMI.setCurrentCallSite(0);
7025     }
7026 
7027     // Both PendingLoads and PendingExports must be flushed here;
7028     // this call might not return.
7029     (void)getRoot();
7030     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7031 
7032     CLI.setChain(getRoot());
7033   }
7034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7035   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7036 
7037   assert((CLI.IsTailCall || Result.second.getNode()) &&
7038          "Non-null chain expected with non-tail call!");
7039   assert((Result.second.getNode() || !Result.first.getNode()) &&
7040          "Null value expected with tail call!");
7041 
7042   if (!Result.second.getNode()) {
7043     // As a special case, a null chain means that a tail call has been emitted
7044     // and the DAG root is already updated.
7045     HasTailCall = true;
7046 
7047     // Since there's no actual continuation from this block, nothing can be
7048     // relying on us setting vregs for them.
7049     PendingExports.clear();
7050   } else {
7051     DAG.setRoot(Result.second);
7052   }
7053 
7054   if (EHPadBB) {
7055     // Insert a label at the end of the invoke call to mark the try range.  This
7056     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7057     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7058     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7059 
7060     // Inform MachineModuleInfo of range.
7061     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7062     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7063     // actually use outlined funclets and their LSDA info style.
7064     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7065       assert(CLI.CS);
7066       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7067       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7068                                 BeginLabel, EndLabel);
7069     } else if (!isScopedEHPersonality(Pers)) {
7070       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7071     }
7072   }
7073 
7074   return Result;
7075 }
7076 
7077 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7078                                       bool isTailCall,
7079                                       const BasicBlock *EHPadBB) {
7080   auto &DL = DAG.getDataLayout();
7081   FunctionType *FTy = CS.getFunctionType();
7082   Type *RetTy = CS.getType();
7083 
7084   TargetLowering::ArgListTy Args;
7085   Args.reserve(CS.arg_size());
7086 
7087   const Value *SwiftErrorVal = nullptr;
7088   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7089 
7090   // We can't tail call inside a function with a swifterror argument. Lowering
7091   // does not support this yet. It would have to move into the swifterror
7092   // register before the call.
7093   auto *Caller = CS.getInstruction()->getParent()->getParent();
7094   if (TLI.supportSwiftError() &&
7095       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7096     isTailCall = false;
7097 
7098   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7099        i != e; ++i) {
7100     TargetLowering::ArgListEntry Entry;
7101     const Value *V = *i;
7102 
7103     // Skip empty types
7104     if (V->getType()->isEmptyTy())
7105       continue;
7106 
7107     SDValue ArgNode = getValue(V);
7108     Entry.Node = ArgNode; Entry.Ty = V->getType();
7109 
7110     Entry.setAttributes(&CS, i - CS.arg_begin());
7111 
7112     // Use swifterror virtual register as input to the call.
7113     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7114       SwiftErrorVal = V;
7115       // We find the virtual register for the actual swifterror argument.
7116       // Instead of using the Value, we use the virtual register instead.
7117       Entry.Node = DAG.getRegister(
7118           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7119           EVT(TLI.getPointerTy(DL)));
7120     }
7121 
7122     Args.push_back(Entry);
7123 
7124     // If we have an explicit sret argument that is an Instruction, (i.e., it
7125     // might point to function-local memory), we can't meaningfully tail-call.
7126     if (Entry.IsSRet && isa<Instruction>(V))
7127       isTailCall = false;
7128   }
7129 
7130   // Check if target-independent constraints permit a tail call here.
7131   // Target-dependent constraints are checked within TLI->LowerCallTo.
7132   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7133     isTailCall = false;
7134 
7135   // Disable tail calls if there is an swifterror argument. Targets have not
7136   // been updated to support tail calls.
7137   if (TLI.supportSwiftError() && SwiftErrorVal)
7138     isTailCall = false;
7139 
7140   TargetLowering::CallLoweringInfo CLI(DAG);
7141   CLI.setDebugLoc(getCurSDLoc())
7142       .setChain(getRoot())
7143       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7144       .setTailCall(isTailCall)
7145       .setConvergent(CS.isConvergent());
7146   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7147 
7148   if (Result.first.getNode()) {
7149     const Instruction *Inst = CS.getInstruction();
7150     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7151     setValue(Inst, Result.first);
7152   }
7153 
7154   // The last element of CLI.InVals has the SDValue for swifterror return.
7155   // Here we copy it to a virtual register and update SwiftErrorMap for
7156   // book-keeping.
7157   if (SwiftErrorVal && TLI.supportSwiftError()) {
7158     // Get the last element of InVals.
7159     SDValue Src = CLI.InVals.back();
7160     Register VReg = SwiftError.getOrCreateVRegDefAt(
7161         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7162     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7163     DAG.setRoot(CopyNode);
7164   }
7165 }
7166 
7167 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7168                              SelectionDAGBuilder &Builder) {
7169   // Check to see if this load can be trivially constant folded, e.g. if the
7170   // input is from a string literal.
7171   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7172     // Cast pointer to the type we really want to load.
7173     Type *LoadTy =
7174         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7175     if (LoadVT.isVector())
7176       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7177 
7178     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7179                                          PointerType::getUnqual(LoadTy));
7180 
7181     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7182             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7183       return Builder.getValue(LoadCst);
7184   }
7185 
7186   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7187   // still constant memory, the input chain can be the entry node.
7188   SDValue Root;
7189   bool ConstantMemory = false;
7190 
7191   // Do not serialize (non-volatile) loads of constant memory with anything.
7192   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7193     Root = Builder.DAG.getEntryNode();
7194     ConstantMemory = true;
7195   } else {
7196     // Do not serialize non-volatile loads against each other.
7197     Root = Builder.DAG.getRoot();
7198   }
7199 
7200   SDValue Ptr = Builder.getValue(PtrVal);
7201   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7202                                         Ptr, MachinePointerInfo(PtrVal),
7203                                         /* Alignment = */ 1);
7204 
7205   if (!ConstantMemory)
7206     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7207   return LoadVal;
7208 }
7209 
7210 /// Record the value for an instruction that produces an integer result,
7211 /// converting the type where necessary.
7212 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7213                                                   SDValue Value,
7214                                                   bool IsSigned) {
7215   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7216                                                     I.getType(), true);
7217   if (IsSigned)
7218     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7219   else
7220     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7221   setValue(&I, Value);
7222 }
7223 
7224 /// See if we can lower a memcmp call into an optimized form. If so, return
7225 /// true and lower it. Otherwise return false, and it will be lowered like a
7226 /// normal call.
7227 /// The caller already checked that \p I calls the appropriate LibFunc with a
7228 /// correct prototype.
7229 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7230   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7231   const Value *Size = I.getArgOperand(2);
7232   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7233   if (CSize && CSize->getZExtValue() == 0) {
7234     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7235                                                           I.getType(), true);
7236     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7237     return true;
7238   }
7239 
7240   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7241   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7242       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7243       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7244   if (Res.first.getNode()) {
7245     processIntegerCallValue(I, Res.first, true);
7246     PendingLoads.push_back(Res.second);
7247     return true;
7248   }
7249 
7250   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7251   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7252   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7253     return false;
7254 
7255   // If the target has a fast compare for the given size, it will return a
7256   // preferred load type for that size. Require that the load VT is legal and
7257   // that the target supports unaligned loads of that type. Otherwise, return
7258   // INVALID.
7259   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7260     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7261     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7262     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7263       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7264       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7265       // TODO: Check alignment of src and dest ptrs.
7266       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7267       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7268       if (!TLI.isTypeLegal(LVT) ||
7269           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7270           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7271         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7272     }
7273 
7274     return LVT;
7275   };
7276 
7277   // This turns into unaligned loads. We only do this if the target natively
7278   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7279   // we'll only produce a small number of byte loads.
7280   MVT LoadVT;
7281   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7282   switch (NumBitsToCompare) {
7283   default:
7284     return false;
7285   case 16:
7286     LoadVT = MVT::i16;
7287     break;
7288   case 32:
7289     LoadVT = MVT::i32;
7290     break;
7291   case 64:
7292   case 128:
7293   case 256:
7294     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7295     break;
7296   }
7297 
7298   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7299     return false;
7300 
7301   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7302   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7303 
7304   // Bitcast to a wide integer type if the loads are vectors.
7305   if (LoadVT.isVector()) {
7306     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7307     LoadL = DAG.getBitcast(CmpVT, LoadL);
7308     LoadR = DAG.getBitcast(CmpVT, LoadR);
7309   }
7310 
7311   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7312   processIntegerCallValue(I, Cmp, false);
7313   return true;
7314 }
7315 
7316 /// See if we can lower a memchr call into an optimized form. If so, return
7317 /// true and lower it. Otherwise return false, and it will be lowered like a
7318 /// normal call.
7319 /// The caller already checked that \p I calls the appropriate LibFunc with a
7320 /// correct prototype.
7321 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7322   const Value *Src = I.getArgOperand(0);
7323   const Value *Char = I.getArgOperand(1);
7324   const Value *Length = I.getArgOperand(2);
7325 
7326   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7327   std::pair<SDValue, SDValue> Res =
7328     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7329                                 getValue(Src), getValue(Char), getValue(Length),
7330                                 MachinePointerInfo(Src));
7331   if (Res.first.getNode()) {
7332     setValue(&I, Res.first);
7333     PendingLoads.push_back(Res.second);
7334     return true;
7335   }
7336 
7337   return false;
7338 }
7339 
7340 /// See if we can lower a mempcpy call into an optimized form. If so, return
7341 /// true and lower it. Otherwise return false, and it will be lowered like a
7342 /// normal call.
7343 /// The caller already checked that \p I calls the appropriate LibFunc with a
7344 /// correct prototype.
7345 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7346   SDValue Dst = getValue(I.getArgOperand(0));
7347   SDValue Src = getValue(I.getArgOperand(1));
7348   SDValue Size = getValue(I.getArgOperand(2));
7349 
7350   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7351   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7352   unsigned Align = std::min(DstAlign, SrcAlign);
7353   if (Align == 0) // Alignment of one or both could not be inferred.
7354     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7355 
7356   bool isVol = false;
7357   SDLoc sdl = getCurSDLoc();
7358 
7359   // In the mempcpy context we need to pass in a false value for isTailCall
7360   // because the return pointer needs to be adjusted by the size of
7361   // the copied memory.
7362   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7363                              false, /*isTailCall=*/false,
7364                              MachinePointerInfo(I.getArgOperand(0)),
7365                              MachinePointerInfo(I.getArgOperand(1)));
7366   assert(MC.getNode() != nullptr &&
7367          "** memcpy should not be lowered as TailCall in mempcpy context **");
7368   DAG.setRoot(MC);
7369 
7370   // Check if Size needs to be truncated or extended.
7371   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7372 
7373   // Adjust return pointer to point just past the last dst byte.
7374   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7375                                     Dst, Size);
7376   setValue(&I, DstPlusSize);
7377   return true;
7378 }
7379 
7380 /// See if we can lower a strcpy call into an optimized form.  If so, return
7381 /// true and lower it, otherwise return false and it will be lowered like a
7382 /// normal call.
7383 /// The caller already checked that \p I calls the appropriate LibFunc with a
7384 /// correct prototype.
7385 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7386   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7387 
7388   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7389   std::pair<SDValue, SDValue> Res =
7390     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7391                                 getValue(Arg0), getValue(Arg1),
7392                                 MachinePointerInfo(Arg0),
7393                                 MachinePointerInfo(Arg1), isStpcpy);
7394   if (Res.first.getNode()) {
7395     setValue(&I, Res.first);
7396     DAG.setRoot(Res.second);
7397     return true;
7398   }
7399 
7400   return false;
7401 }
7402 
7403 /// See if we can lower a strcmp call into an optimized form.  If so, return
7404 /// true and lower it, otherwise return false and it will be lowered like a
7405 /// normal call.
7406 /// The caller already checked that \p I calls the appropriate LibFunc with a
7407 /// correct prototype.
7408 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7409   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7410 
7411   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7412   std::pair<SDValue, SDValue> Res =
7413     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7414                                 getValue(Arg0), getValue(Arg1),
7415                                 MachinePointerInfo(Arg0),
7416                                 MachinePointerInfo(Arg1));
7417   if (Res.first.getNode()) {
7418     processIntegerCallValue(I, Res.first, true);
7419     PendingLoads.push_back(Res.second);
7420     return true;
7421   }
7422 
7423   return false;
7424 }
7425 
7426 /// See if we can lower a strlen call into an optimized form.  If so, return
7427 /// true and lower it, otherwise return false and it will be lowered like a
7428 /// normal call.
7429 /// The caller already checked that \p I calls the appropriate LibFunc with a
7430 /// correct prototype.
7431 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7432   const Value *Arg0 = I.getArgOperand(0);
7433 
7434   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7435   std::pair<SDValue, SDValue> Res =
7436     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7437                                 getValue(Arg0), MachinePointerInfo(Arg0));
7438   if (Res.first.getNode()) {
7439     processIntegerCallValue(I, Res.first, false);
7440     PendingLoads.push_back(Res.second);
7441     return true;
7442   }
7443 
7444   return false;
7445 }
7446 
7447 /// See if we can lower a strnlen call into an optimized form.  If so, return
7448 /// true and lower it, otherwise return false and it will be lowered like a
7449 /// normal call.
7450 /// The caller already checked that \p I calls the appropriate LibFunc with a
7451 /// correct prototype.
7452 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7453   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7454 
7455   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7456   std::pair<SDValue, SDValue> Res =
7457     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7458                                  getValue(Arg0), getValue(Arg1),
7459                                  MachinePointerInfo(Arg0));
7460   if (Res.first.getNode()) {
7461     processIntegerCallValue(I, Res.first, false);
7462     PendingLoads.push_back(Res.second);
7463     return true;
7464   }
7465 
7466   return false;
7467 }
7468 
7469 /// See if we can lower a unary floating-point operation into an SDNode with
7470 /// the specified Opcode.  If so, return true and lower it, otherwise return
7471 /// false and it will be lowered like a normal call.
7472 /// The caller already checked that \p I calls the appropriate LibFunc with a
7473 /// correct prototype.
7474 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7475                                               unsigned Opcode) {
7476   // We already checked this call's prototype; verify it doesn't modify errno.
7477   if (!I.onlyReadsMemory())
7478     return false;
7479 
7480   SDValue Tmp = getValue(I.getArgOperand(0));
7481   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7482   return true;
7483 }
7484 
7485 /// See if we can lower a binary floating-point operation into an SDNode with
7486 /// the specified Opcode. If so, return true and lower it. Otherwise return
7487 /// false, and it will be lowered like a normal call.
7488 /// The caller already checked that \p I calls the appropriate LibFunc with a
7489 /// correct prototype.
7490 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7491                                                unsigned Opcode) {
7492   // We already checked this call's prototype; verify it doesn't modify errno.
7493   if (!I.onlyReadsMemory())
7494     return false;
7495 
7496   SDValue Tmp0 = getValue(I.getArgOperand(0));
7497   SDValue Tmp1 = getValue(I.getArgOperand(1));
7498   EVT VT = Tmp0.getValueType();
7499   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7500   return true;
7501 }
7502 
7503 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7504   // Handle inline assembly differently.
7505   if (isa<InlineAsm>(I.getCalledValue())) {
7506     visitInlineAsm(&I);
7507     return;
7508   }
7509 
7510   if (Function *F = I.getCalledFunction()) {
7511     if (F->isDeclaration()) {
7512       // Is this an LLVM intrinsic or a target-specific intrinsic?
7513       unsigned IID = F->getIntrinsicID();
7514       if (!IID)
7515         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7516           IID = II->getIntrinsicID(F);
7517 
7518       if (IID) {
7519         visitIntrinsicCall(I, IID);
7520         return;
7521       }
7522     }
7523 
7524     // Check for well-known libc/libm calls.  If the function is internal, it
7525     // can't be a library call.  Don't do the check if marked as nobuiltin for
7526     // some reason or the call site requires strict floating point semantics.
7527     LibFunc Func;
7528     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7529         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7530         LibInfo->hasOptimizedCodeGen(Func)) {
7531       switch (Func) {
7532       default: break;
7533       case LibFunc_copysign:
7534       case LibFunc_copysignf:
7535       case LibFunc_copysignl:
7536         // We already checked this call's prototype; verify it doesn't modify
7537         // errno.
7538         if (I.onlyReadsMemory()) {
7539           SDValue LHS = getValue(I.getArgOperand(0));
7540           SDValue RHS = getValue(I.getArgOperand(1));
7541           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7542                                    LHS.getValueType(), LHS, RHS));
7543           return;
7544         }
7545         break;
7546       case LibFunc_fabs:
7547       case LibFunc_fabsf:
7548       case LibFunc_fabsl:
7549         if (visitUnaryFloatCall(I, ISD::FABS))
7550           return;
7551         break;
7552       case LibFunc_fmin:
7553       case LibFunc_fminf:
7554       case LibFunc_fminl:
7555         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7556           return;
7557         break;
7558       case LibFunc_fmax:
7559       case LibFunc_fmaxf:
7560       case LibFunc_fmaxl:
7561         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7562           return;
7563         break;
7564       case LibFunc_sin:
7565       case LibFunc_sinf:
7566       case LibFunc_sinl:
7567         if (visitUnaryFloatCall(I, ISD::FSIN))
7568           return;
7569         break;
7570       case LibFunc_cos:
7571       case LibFunc_cosf:
7572       case LibFunc_cosl:
7573         if (visitUnaryFloatCall(I, ISD::FCOS))
7574           return;
7575         break;
7576       case LibFunc_sqrt:
7577       case LibFunc_sqrtf:
7578       case LibFunc_sqrtl:
7579       case LibFunc_sqrt_finite:
7580       case LibFunc_sqrtf_finite:
7581       case LibFunc_sqrtl_finite:
7582         if (visitUnaryFloatCall(I, ISD::FSQRT))
7583           return;
7584         break;
7585       case LibFunc_floor:
7586       case LibFunc_floorf:
7587       case LibFunc_floorl:
7588         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7589           return;
7590         break;
7591       case LibFunc_nearbyint:
7592       case LibFunc_nearbyintf:
7593       case LibFunc_nearbyintl:
7594         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7595           return;
7596         break;
7597       case LibFunc_ceil:
7598       case LibFunc_ceilf:
7599       case LibFunc_ceill:
7600         if (visitUnaryFloatCall(I, ISD::FCEIL))
7601           return;
7602         break;
7603       case LibFunc_rint:
7604       case LibFunc_rintf:
7605       case LibFunc_rintl:
7606         if (visitUnaryFloatCall(I, ISD::FRINT))
7607           return;
7608         break;
7609       case LibFunc_round:
7610       case LibFunc_roundf:
7611       case LibFunc_roundl:
7612         if (visitUnaryFloatCall(I, ISD::FROUND))
7613           return;
7614         break;
7615       case LibFunc_trunc:
7616       case LibFunc_truncf:
7617       case LibFunc_truncl:
7618         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7619           return;
7620         break;
7621       case LibFunc_log2:
7622       case LibFunc_log2f:
7623       case LibFunc_log2l:
7624         if (visitUnaryFloatCall(I, ISD::FLOG2))
7625           return;
7626         break;
7627       case LibFunc_exp2:
7628       case LibFunc_exp2f:
7629       case LibFunc_exp2l:
7630         if (visitUnaryFloatCall(I, ISD::FEXP2))
7631           return;
7632         break;
7633       case LibFunc_memcmp:
7634         if (visitMemCmpCall(I))
7635           return;
7636         break;
7637       case LibFunc_mempcpy:
7638         if (visitMemPCpyCall(I))
7639           return;
7640         break;
7641       case LibFunc_memchr:
7642         if (visitMemChrCall(I))
7643           return;
7644         break;
7645       case LibFunc_strcpy:
7646         if (visitStrCpyCall(I, false))
7647           return;
7648         break;
7649       case LibFunc_stpcpy:
7650         if (visitStrCpyCall(I, true))
7651           return;
7652         break;
7653       case LibFunc_strcmp:
7654         if (visitStrCmpCall(I))
7655           return;
7656         break;
7657       case LibFunc_strlen:
7658         if (visitStrLenCall(I))
7659           return;
7660         break;
7661       case LibFunc_strnlen:
7662         if (visitStrNLenCall(I))
7663           return;
7664         break;
7665       }
7666     }
7667   }
7668 
7669   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7670   // have to do anything here to lower funclet bundles.
7671   assert(!I.hasOperandBundlesOtherThan(
7672              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7673          "Cannot lower calls with arbitrary operand bundles!");
7674 
7675   SDValue Callee = getValue(I.getCalledValue());
7676 
7677   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7678     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7679   else
7680     // Check if we can potentially perform a tail call. More detailed checking
7681     // is be done within LowerCallTo, after more information about the call is
7682     // known.
7683     LowerCallTo(&I, Callee, I.isTailCall());
7684 }
7685 
7686 namespace {
7687 
7688 /// AsmOperandInfo - This contains information for each constraint that we are
7689 /// lowering.
7690 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7691 public:
7692   /// CallOperand - If this is the result output operand or a clobber
7693   /// this is null, otherwise it is the incoming operand to the CallInst.
7694   /// This gets modified as the asm is processed.
7695   SDValue CallOperand;
7696 
7697   /// AssignedRegs - If this is a register or register class operand, this
7698   /// contains the set of register corresponding to the operand.
7699   RegsForValue AssignedRegs;
7700 
7701   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7702     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7703   }
7704 
7705   /// Whether or not this operand accesses memory
7706   bool hasMemory(const TargetLowering &TLI) const {
7707     // Indirect operand accesses access memory.
7708     if (isIndirect)
7709       return true;
7710 
7711     for (const auto &Code : Codes)
7712       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7713         return true;
7714 
7715     return false;
7716   }
7717 
7718   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7719   /// corresponds to.  If there is no Value* for this operand, it returns
7720   /// MVT::Other.
7721   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7722                            const DataLayout &DL) const {
7723     if (!CallOperandVal) return MVT::Other;
7724 
7725     if (isa<BasicBlock>(CallOperandVal))
7726       return TLI.getPointerTy(DL);
7727 
7728     llvm::Type *OpTy = CallOperandVal->getType();
7729 
7730     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7731     // If this is an indirect operand, the operand is a pointer to the
7732     // accessed type.
7733     if (isIndirect) {
7734       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7735       if (!PtrTy)
7736         report_fatal_error("Indirect operand for inline asm not a pointer!");
7737       OpTy = PtrTy->getElementType();
7738     }
7739 
7740     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7741     if (StructType *STy = dyn_cast<StructType>(OpTy))
7742       if (STy->getNumElements() == 1)
7743         OpTy = STy->getElementType(0);
7744 
7745     // If OpTy is not a single value, it may be a struct/union that we
7746     // can tile with integers.
7747     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7748       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7749       switch (BitSize) {
7750       default: break;
7751       case 1:
7752       case 8:
7753       case 16:
7754       case 32:
7755       case 64:
7756       case 128:
7757         OpTy = IntegerType::get(Context, BitSize);
7758         break;
7759       }
7760     }
7761 
7762     return TLI.getValueType(DL, OpTy, true);
7763   }
7764 };
7765 
7766 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7767 
7768 } // end anonymous namespace
7769 
7770 /// Make sure that the output operand \p OpInfo and its corresponding input
7771 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7772 /// out).
7773 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7774                                SDISelAsmOperandInfo &MatchingOpInfo,
7775                                SelectionDAG &DAG) {
7776   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7777     return;
7778 
7779   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7780   const auto &TLI = DAG.getTargetLoweringInfo();
7781 
7782   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7783       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7784                                        OpInfo.ConstraintVT);
7785   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7786       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7787                                        MatchingOpInfo.ConstraintVT);
7788   if ((OpInfo.ConstraintVT.isInteger() !=
7789        MatchingOpInfo.ConstraintVT.isInteger()) ||
7790       (MatchRC.second != InputRC.second)) {
7791     // FIXME: error out in a more elegant fashion
7792     report_fatal_error("Unsupported asm: input constraint"
7793                        " with a matching output constraint of"
7794                        " incompatible type!");
7795   }
7796   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7797 }
7798 
7799 /// Get a direct memory input to behave well as an indirect operand.
7800 /// This may introduce stores, hence the need for a \p Chain.
7801 /// \return The (possibly updated) chain.
7802 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7803                                         SDISelAsmOperandInfo &OpInfo,
7804                                         SelectionDAG &DAG) {
7805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7806 
7807   // If we don't have an indirect input, put it in the constpool if we can,
7808   // otherwise spill it to a stack slot.
7809   // TODO: This isn't quite right. We need to handle these according to
7810   // the addressing mode that the constraint wants. Also, this may take
7811   // an additional register for the computation and we don't want that
7812   // either.
7813 
7814   // If the operand is a float, integer, or vector constant, spill to a
7815   // constant pool entry to get its address.
7816   const Value *OpVal = OpInfo.CallOperandVal;
7817   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7818       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7819     OpInfo.CallOperand = DAG.getConstantPool(
7820         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7821     return Chain;
7822   }
7823 
7824   // Otherwise, create a stack slot and emit a store to it before the asm.
7825   Type *Ty = OpVal->getType();
7826   auto &DL = DAG.getDataLayout();
7827   uint64_t TySize = DL.getTypeAllocSize(Ty);
7828   unsigned Align = DL.getPrefTypeAlignment(Ty);
7829   MachineFunction &MF = DAG.getMachineFunction();
7830   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7831   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7832   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7833                             MachinePointerInfo::getFixedStack(MF, SSFI),
7834                             TLI.getMemValueType(DL, Ty));
7835   OpInfo.CallOperand = StackSlot;
7836 
7837   return Chain;
7838 }
7839 
7840 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7841 /// specified operand.  We prefer to assign virtual registers, to allow the
7842 /// register allocator to handle the assignment process.  However, if the asm
7843 /// uses features that we can't model on machineinstrs, we have SDISel do the
7844 /// allocation.  This produces generally horrible, but correct, code.
7845 ///
7846 ///   OpInfo describes the operand
7847 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7848 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7849                                  SDISelAsmOperandInfo &OpInfo,
7850                                  SDISelAsmOperandInfo &RefOpInfo) {
7851   LLVMContext &Context = *DAG.getContext();
7852   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7853 
7854   MachineFunction &MF = DAG.getMachineFunction();
7855   SmallVector<unsigned, 4> Regs;
7856   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7857 
7858   // No work to do for memory operations.
7859   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7860     return;
7861 
7862   // If this is a constraint for a single physreg, or a constraint for a
7863   // register class, find it.
7864   unsigned AssignedReg;
7865   const TargetRegisterClass *RC;
7866   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7867       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7868   // RC is unset only on failure. Return immediately.
7869   if (!RC)
7870     return;
7871 
7872   // Get the actual register value type.  This is important, because the user
7873   // may have asked for (e.g.) the AX register in i32 type.  We need to
7874   // remember that AX is actually i16 to get the right extension.
7875   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7876 
7877   if (OpInfo.ConstraintVT != MVT::Other) {
7878     // If this is an FP operand in an integer register (or visa versa), or more
7879     // generally if the operand value disagrees with the register class we plan
7880     // to stick it in, fix the operand type.
7881     //
7882     // If this is an input value, the bitcast to the new type is done now.
7883     // Bitcast for output value is done at the end of visitInlineAsm().
7884     if ((OpInfo.Type == InlineAsm::isOutput ||
7885          OpInfo.Type == InlineAsm::isInput) &&
7886         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7887       // Try to convert to the first EVT that the reg class contains.  If the
7888       // types are identical size, use a bitcast to convert (e.g. two differing
7889       // vector types).  Note: output bitcast is done at the end of
7890       // visitInlineAsm().
7891       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7892         // Exclude indirect inputs while they are unsupported because the code
7893         // to perform the load is missing and thus OpInfo.CallOperand still
7894         // refers to the input address rather than the pointed-to value.
7895         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7896           OpInfo.CallOperand =
7897               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7898         OpInfo.ConstraintVT = RegVT;
7899         // If the operand is an FP value and we want it in integer registers,
7900         // use the corresponding integer type. This turns an f64 value into
7901         // i64, which can be passed with two i32 values on a 32-bit machine.
7902       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7903         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7904         if (OpInfo.Type == InlineAsm::isInput)
7905           OpInfo.CallOperand =
7906               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7907         OpInfo.ConstraintVT = VT;
7908       }
7909     }
7910   }
7911 
7912   // No need to allocate a matching input constraint since the constraint it's
7913   // matching to has already been allocated.
7914   if (OpInfo.isMatchingInputConstraint())
7915     return;
7916 
7917   EVT ValueVT = OpInfo.ConstraintVT;
7918   if (OpInfo.ConstraintVT == MVT::Other)
7919     ValueVT = RegVT;
7920 
7921   // Initialize NumRegs.
7922   unsigned NumRegs = 1;
7923   if (OpInfo.ConstraintVT != MVT::Other)
7924     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7925 
7926   // If this is a constraint for a specific physical register, like {r17},
7927   // assign it now.
7928 
7929   // If this associated to a specific register, initialize iterator to correct
7930   // place. If virtual, make sure we have enough registers
7931 
7932   // Initialize iterator if necessary
7933   TargetRegisterClass::iterator I = RC->begin();
7934   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7935 
7936   // Do not check for single registers.
7937   if (AssignedReg) {
7938       for (; *I != AssignedReg; ++I)
7939         assert(I != RC->end() && "AssignedReg should be member of RC");
7940   }
7941 
7942   for (; NumRegs; --NumRegs, ++I) {
7943     assert(I != RC->end() && "Ran out of registers to allocate!");
7944     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7945     Regs.push_back(R);
7946   }
7947 
7948   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7949 }
7950 
7951 static unsigned
7952 findMatchingInlineAsmOperand(unsigned OperandNo,
7953                              const std::vector<SDValue> &AsmNodeOperands) {
7954   // Scan until we find the definition we already emitted of this operand.
7955   unsigned CurOp = InlineAsm::Op_FirstOperand;
7956   for (; OperandNo; --OperandNo) {
7957     // Advance to the next operand.
7958     unsigned OpFlag =
7959         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7960     assert((InlineAsm::isRegDefKind(OpFlag) ||
7961             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7962             InlineAsm::isMemKind(OpFlag)) &&
7963            "Skipped past definitions?");
7964     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7965   }
7966   return CurOp;
7967 }
7968 
7969 namespace {
7970 
7971 class ExtraFlags {
7972   unsigned Flags = 0;
7973 
7974 public:
7975   explicit ExtraFlags(ImmutableCallSite CS) {
7976     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7977     if (IA->hasSideEffects())
7978       Flags |= InlineAsm::Extra_HasSideEffects;
7979     if (IA->isAlignStack())
7980       Flags |= InlineAsm::Extra_IsAlignStack;
7981     if (CS.isConvergent())
7982       Flags |= InlineAsm::Extra_IsConvergent;
7983     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7984   }
7985 
7986   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7987     // Ideally, we would only check against memory constraints.  However, the
7988     // meaning of an Other constraint can be target-specific and we can't easily
7989     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7990     // for Other constraints as well.
7991     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7992         OpInfo.ConstraintType == TargetLowering::C_Other) {
7993       if (OpInfo.Type == InlineAsm::isInput)
7994         Flags |= InlineAsm::Extra_MayLoad;
7995       else if (OpInfo.Type == InlineAsm::isOutput)
7996         Flags |= InlineAsm::Extra_MayStore;
7997       else if (OpInfo.Type == InlineAsm::isClobber)
7998         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7999     }
8000   }
8001 
8002   unsigned get() const { return Flags; }
8003 };
8004 
8005 } // end anonymous namespace
8006 
8007 /// visitInlineAsm - Handle a call to an InlineAsm object.
8008 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8009   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8010 
8011   /// ConstraintOperands - Information about all of the constraints.
8012   SDISelAsmOperandInfoVector ConstraintOperands;
8013 
8014   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8015   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8016       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8017 
8018   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8019   // AsmDialect, MayLoad, MayStore).
8020   bool HasSideEffect = IA->hasSideEffects();
8021   ExtraFlags ExtraInfo(CS);
8022 
8023   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8024   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8025   for (auto &T : TargetConstraints) {
8026     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8027     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8028 
8029     // Compute the value type for each operand.
8030     if (OpInfo.Type == InlineAsm::isInput ||
8031         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8032       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8033 
8034       // Process the call argument. BasicBlocks are labels, currently appearing
8035       // only in asm's.
8036       const Instruction *I = CS.getInstruction();
8037       if (isa<CallBrInst>(I) &&
8038           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8039                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8040         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8041         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8042         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8043       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8044         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8045       } else {
8046         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8047       }
8048 
8049       OpInfo.ConstraintVT =
8050           OpInfo
8051               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8052               .getSimpleVT();
8053     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8054       // The return value of the call is this value.  As such, there is no
8055       // corresponding argument.
8056       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8057       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8058         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8059             DAG.getDataLayout(), STy->getElementType(ResNo));
8060       } else {
8061         assert(ResNo == 0 && "Asm only has one result!");
8062         OpInfo.ConstraintVT =
8063             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8064       }
8065       ++ResNo;
8066     } else {
8067       OpInfo.ConstraintVT = MVT::Other;
8068     }
8069 
8070     if (!HasSideEffect)
8071       HasSideEffect = OpInfo.hasMemory(TLI);
8072 
8073     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8074     // FIXME: Could we compute this on OpInfo rather than T?
8075 
8076     // Compute the constraint code and ConstraintType to use.
8077     TLI.ComputeConstraintToUse(T, SDValue());
8078 
8079     if (T.ConstraintType == TargetLowering::C_Immediate &&
8080         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8081       // We've delayed emitting a diagnostic like the "n" constraint because
8082       // inlining could cause an integer showing up.
8083       return emitInlineAsmError(
8084           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8085                   "integer constant expression");
8086 
8087     ExtraInfo.update(T);
8088   }
8089 
8090 
8091   // We won't need to flush pending loads if this asm doesn't touch
8092   // memory and is nonvolatile.
8093   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8094 
8095   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8096   if (IsCallBr) {
8097     // If this is a callbr we need to flush pending exports since inlineasm_br
8098     // is a terminator. We need to do this before nodes are glued to
8099     // the inlineasm_br node.
8100     Chain = getControlRoot();
8101   }
8102 
8103   // Second pass over the constraints: compute which constraint option to use.
8104   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8105     // If this is an output operand with a matching input operand, look up the
8106     // matching input. If their types mismatch, e.g. one is an integer, the
8107     // other is floating point, or their sizes are different, flag it as an
8108     // error.
8109     if (OpInfo.hasMatchingInput()) {
8110       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8111       patchMatchingInput(OpInfo, Input, DAG);
8112     }
8113 
8114     // Compute the constraint code and ConstraintType to use.
8115     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8116 
8117     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8118         OpInfo.Type == InlineAsm::isClobber)
8119       continue;
8120 
8121     // If this is a memory input, and if the operand is not indirect, do what we
8122     // need to provide an address for the memory input.
8123     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8124         !OpInfo.isIndirect) {
8125       assert((OpInfo.isMultipleAlternative ||
8126               (OpInfo.Type == InlineAsm::isInput)) &&
8127              "Can only indirectify direct input operands!");
8128 
8129       // Memory operands really want the address of the value.
8130       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8131 
8132       // There is no longer a Value* corresponding to this operand.
8133       OpInfo.CallOperandVal = nullptr;
8134 
8135       // It is now an indirect operand.
8136       OpInfo.isIndirect = true;
8137     }
8138 
8139   }
8140 
8141   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8142   std::vector<SDValue> AsmNodeOperands;
8143   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8144   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8145       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8146 
8147   // If we have a !srcloc metadata node associated with it, we want to attach
8148   // this to the ultimately generated inline asm machineinstr.  To do this, we
8149   // pass in the third operand as this (potentially null) inline asm MDNode.
8150   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8151   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8152 
8153   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8154   // bits as operand 3.
8155   AsmNodeOperands.push_back(DAG.getTargetConstant(
8156       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8157 
8158   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8159   // this, assign virtual and physical registers for inputs and otput.
8160   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8161     // Assign Registers.
8162     SDISelAsmOperandInfo &RefOpInfo =
8163         OpInfo.isMatchingInputConstraint()
8164             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8165             : OpInfo;
8166     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8167 
8168     switch (OpInfo.Type) {
8169     case InlineAsm::isOutput:
8170       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8171           ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8172             OpInfo.ConstraintType == TargetLowering::C_Other) &&
8173            OpInfo.isIndirect)) {
8174         unsigned ConstraintID =
8175             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8176         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8177                "Failed to convert memory constraint code to constraint id.");
8178 
8179         // Add information to the INLINEASM node to know about this output.
8180         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8181         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8182         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8183                                                         MVT::i32));
8184         AsmNodeOperands.push_back(OpInfo.CallOperand);
8185         break;
8186       } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8187                    OpInfo.ConstraintType == TargetLowering::C_Other) &&
8188                   !OpInfo.isIndirect) ||
8189                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8190                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8191         // Otherwise, this outputs to a register (directly for C_Register /
8192         // C_RegisterClass, and a target-defined fashion for
8193         // C_Immediate/C_Other). Find a register that we can use.
8194         if (OpInfo.AssignedRegs.Regs.empty()) {
8195           emitInlineAsmError(
8196               CS, "couldn't allocate output register for constraint '" +
8197                       Twine(OpInfo.ConstraintCode) + "'");
8198           return;
8199         }
8200 
8201         // Add information to the INLINEASM node to know that this register is
8202         // set.
8203         OpInfo.AssignedRegs.AddInlineAsmOperands(
8204             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8205                                   : InlineAsm::Kind_RegDef,
8206             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8207       }
8208       break;
8209 
8210     case InlineAsm::isInput: {
8211       SDValue InOperandVal = OpInfo.CallOperand;
8212 
8213       if (OpInfo.isMatchingInputConstraint()) {
8214         // If this is required to match an output register we have already set,
8215         // just use its register.
8216         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8217                                                   AsmNodeOperands);
8218         unsigned OpFlag =
8219           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8220         if (InlineAsm::isRegDefKind(OpFlag) ||
8221             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8222           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8223           if (OpInfo.isIndirect) {
8224             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8225             emitInlineAsmError(CS, "inline asm not supported yet:"
8226                                    " don't know how to handle tied "
8227                                    "indirect register inputs");
8228             return;
8229           }
8230 
8231           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8232           SmallVector<unsigned, 4> Regs;
8233 
8234           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8235             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8236             MachineRegisterInfo &RegInfo =
8237                 DAG.getMachineFunction().getRegInfo();
8238             for (unsigned i = 0; i != NumRegs; ++i)
8239               Regs.push_back(RegInfo.createVirtualRegister(RC));
8240           } else {
8241             emitInlineAsmError(CS, "inline asm error: This value type register "
8242                                    "class is not natively supported!");
8243             return;
8244           }
8245 
8246           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8247 
8248           SDLoc dl = getCurSDLoc();
8249           // Use the produced MatchedRegs object to
8250           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8251                                     CS.getInstruction());
8252           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8253                                            true, OpInfo.getMatchedOperand(), dl,
8254                                            DAG, AsmNodeOperands);
8255           break;
8256         }
8257 
8258         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8259         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8260                "Unexpected number of operands");
8261         // Add information to the INLINEASM node to know about this input.
8262         // See InlineAsm.h isUseOperandTiedToDef.
8263         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8264         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8265                                                     OpInfo.getMatchedOperand());
8266         AsmNodeOperands.push_back(DAG.getTargetConstant(
8267             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8268         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8269         break;
8270       }
8271 
8272       // Treat indirect 'X' constraint as memory.
8273       if ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8274            OpInfo.ConstraintType == TargetLowering::C_Other) &&
8275           OpInfo.isIndirect)
8276         OpInfo.ConstraintType = TargetLowering::C_Memory;
8277 
8278       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8279           OpInfo.ConstraintType == TargetLowering::C_Other) {
8280         std::vector<SDValue> Ops;
8281         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8282                                           Ops, DAG);
8283         if (Ops.empty()) {
8284           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8285             if (isa<ConstantSDNode>(InOperandVal)) {
8286               emitInlineAsmError(CS, "value out of range for constraint '" +
8287                                  Twine(OpInfo.ConstraintCode) + "'");
8288               return;
8289             }
8290 
8291           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8292                                      Twine(OpInfo.ConstraintCode) + "'");
8293           return;
8294         }
8295 
8296         // Add information to the INLINEASM node to know about this input.
8297         unsigned ResOpType =
8298           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8299         AsmNodeOperands.push_back(DAG.getTargetConstant(
8300             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8301         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8302         break;
8303       }
8304 
8305       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8306         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8307         assert(InOperandVal.getValueType() ==
8308                    TLI.getPointerTy(DAG.getDataLayout()) &&
8309                "Memory operands expect pointer values");
8310 
8311         unsigned ConstraintID =
8312             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8313         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8314                "Failed to convert memory constraint code to constraint id.");
8315 
8316         // Add information to the INLINEASM node to know about this input.
8317         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8318         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8319         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8320                                                         getCurSDLoc(),
8321                                                         MVT::i32));
8322         AsmNodeOperands.push_back(InOperandVal);
8323         break;
8324       }
8325 
8326       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8327               OpInfo.ConstraintType == TargetLowering::C_Register ||
8328               OpInfo.ConstraintType == TargetLowering::C_Immediate) &&
8329              "Unknown constraint type!");
8330 
8331       // TODO: Support this.
8332       if (OpInfo.isIndirect) {
8333         emitInlineAsmError(
8334             CS, "Don't know how to handle indirect register inputs yet "
8335                 "for constraint '" +
8336                     Twine(OpInfo.ConstraintCode) + "'");
8337         return;
8338       }
8339 
8340       // Copy the input into the appropriate registers.
8341       if (OpInfo.AssignedRegs.Regs.empty()) {
8342         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8343                                    Twine(OpInfo.ConstraintCode) + "'");
8344         return;
8345       }
8346 
8347       SDLoc dl = getCurSDLoc();
8348 
8349       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8350                                         Chain, &Flag, CS.getInstruction());
8351 
8352       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8353                                                dl, DAG, AsmNodeOperands);
8354       break;
8355     }
8356     case InlineAsm::isClobber:
8357       // Add the clobbered value to the operand list, so that the register
8358       // allocator is aware that the physreg got clobbered.
8359       if (!OpInfo.AssignedRegs.Regs.empty())
8360         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8361                                                  false, 0, getCurSDLoc(), DAG,
8362                                                  AsmNodeOperands);
8363       break;
8364     }
8365   }
8366 
8367   // Finish up input operands.  Set the input chain and add the flag last.
8368   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8369   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8370 
8371   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8372   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8373                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8374   Flag = Chain.getValue(1);
8375 
8376   // Do additional work to generate outputs.
8377 
8378   SmallVector<EVT, 1> ResultVTs;
8379   SmallVector<SDValue, 1> ResultValues;
8380   SmallVector<SDValue, 8> OutChains;
8381 
8382   llvm::Type *CSResultType = CS.getType();
8383   ArrayRef<Type *> ResultTypes;
8384   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8385     ResultTypes = StructResult->elements();
8386   else if (!CSResultType->isVoidTy())
8387     ResultTypes = makeArrayRef(CSResultType);
8388 
8389   auto CurResultType = ResultTypes.begin();
8390   auto handleRegAssign = [&](SDValue V) {
8391     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8392     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8393     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8394     ++CurResultType;
8395     // If the type of the inline asm call site return value is different but has
8396     // same size as the type of the asm output bitcast it.  One example of this
8397     // is for vectors with different width / number of elements.  This can
8398     // happen for register classes that can contain multiple different value
8399     // types.  The preg or vreg allocated may not have the same VT as was
8400     // expected.
8401     //
8402     // This can also happen for a return value that disagrees with the register
8403     // class it is put in, eg. a double in a general-purpose register on a
8404     // 32-bit machine.
8405     if (ResultVT != V.getValueType() &&
8406         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8407       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8408     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8409              V.getValueType().isInteger()) {
8410       // If a result value was tied to an input value, the computed result
8411       // may have a wider width than the expected result.  Extract the
8412       // relevant portion.
8413       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8414     }
8415     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8416     ResultVTs.push_back(ResultVT);
8417     ResultValues.push_back(V);
8418   };
8419 
8420   // Deal with output operands.
8421   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8422     if (OpInfo.Type == InlineAsm::isOutput) {
8423       SDValue Val;
8424       // Skip trivial output operands.
8425       if (OpInfo.AssignedRegs.Regs.empty())
8426         continue;
8427 
8428       switch (OpInfo.ConstraintType) {
8429       case TargetLowering::C_Register:
8430       case TargetLowering::C_RegisterClass:
8431         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8432             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8433         break;
8434       case TargetLowering::C_Immediate:
8435       case TargetLowering::C_Other:
8436         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8437                                               OpInfo, DAG);
8438         break;
8439       case TargetLowering::C_Memory:
8440         break; // Already handled.
8441       case TargetLowering::C_Unknown:
8442         assert(false && "Unexpected unknown constraint");
8443       }
8444 
8445       // Indirect output manifest as stores. Record output chains.
8446       if (OpInfo.isIndirect) {
8447         const Value *Ptr = OpInfo.CallOperandVal;
8448         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8449         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8450                                      MachinePointerInfo(Ptr));
8451         OutChains.push_back(Store);
8452       } else {
8453         // generate CopyFromRegs to associated registers.
8454         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8455         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8456           for (const SDValue &V : Val->op_values())
8457             handleRegAssign(V);
8458         } else
8459           handleRegAssign(Val);
8460       }
8461     }
8462   }
8463 
8464   // Set results.
8465   if (!ResultValues.empty()) {
8466     assert(CurResultType == ResultTypes.end() &&
8467            "Mismatch in number of ResultTypes");
8468     assert(ResultValues.size() == ResultTypes.size() &&
8469            "Mismatch in number of output operands in asm result");
8470 
8471     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8472                             DAG.getVTList(ResultVTs), ResultValues);
8473     setValue(CS.getInstruction(), V);
8474   }
8475 
8476   // Collect store chains.
8477   if (!OutChains.empty())
8478     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8479 
8480   // Only Update Root if inline assembly has a memory effect.
8481   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8482     DAG.setRoot(Chain);
8483 }
8484 
8485 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8486                                              const Twine &Message) {
8487   LLVMContext &Ctx = *DAG.getContext();
8488   Ctx.emitError(CS.getInstruction(), Message);
8489 
8490   // Make sure we leave the DAG in a valid state
8491   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8492   SmallVector<EVT, 1> ValueVTs;
8493   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8494 
8495   if (ValueVTs.empty())
8496     return;
8497 
8498   SmallVector<SDValue, 1> Ops;
8499   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8500     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8501 
8502   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8503 }
8504 
8505 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8506   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8507                           MVT::Other, getRoot(),
8508                           getValue(I.getArgOperand(0)),
8509                           DAG.getSrcValue(I.getArgOperand(0))));
8510 }
8511 
8512 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8514   const DataLayout &DL = DAG.getDataLayout();
8515   SDValue V = DAG.getVAArg(
8516       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8517       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8518       DL.getABITypeAlignment(I.getType()));
8519   DAG.setRoot(V.getValue(1));
8520 
8521   if (I.getType()->isPointerTy())
8522     V = DAG.getPtrExtOrTrunc(
8523         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8524   setValue(&I, V);
8525 }
8526 
8527 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8528   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8529                           MVT::Other, getRoot(),
8530                           getValue(I.getArgOperand(0)),
8531                           DAG.getSrcValue(I.getArgOperand(0))));
8532 }
8533 
8534 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8535   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8536                           MVT::Other, getRoot(),
8537                           getValue(I.getArgOperand(0)),
8538                           getValue(I.getArgOperand(1)),
8539                           DAG.getSrcValue(I.getArgOperand(0)),
8540                           DAG.getSrcValue(I.getArgOperand(1))));
8541 }
8542 
8543 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8544                                                     const Instruction &I,
8545                                                     SDValue Op) {
8546   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8547   if (!Range)
8548     return Op;
8549 
8550   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8551   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8552     return Op;
8553 
8554   APInt Lo = CR.getUnsignedMin();
8555   if (!Lo.isMinValue())
8556     return Op;
8557 
8558   APInt Hi = CR.getUnsignedMax();
8559   unsigned Bits = std::max(Hi.getActiveBits(),
8560                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8561 
8562   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8563 
8564   SDLoc SL = getCurSDLoc();
8565 
8566   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8567                              DAG.getValueType(SmallVT));
8568   unsigned NumVals = Op.getNode()->getNumValues();
8569   if (NumVals == 1)
8570     return ZExt;
8571 
8572   SmallVector<SDValue, 4> Ops;
8573 
8574   Ops.push_back(ZExt);
8575   for (unsigned I = 1; I != NumVals; ++I)
8576     Ops.push_back(Op.getValue(I));
8577 
8578   return DAG.getMergeValues(Ops, SL);
8579 }
8580 
8581 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8582 /// the call being lowered.
8583 ///
8584 /// This is a helper for lowering intrinsics that follow a target calling
8585 /// convention or require stack pointer adjustment. Only a subset of the
8586 /// intrinsic's operands need to participate in the calling convention.
8587 void SelectionDAGBuilder::populateCallLoweringInfo(
8588     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8589     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8590     bool IsPatchPoint) {
8591   TargetLowering::ArgListTy Args;
8592   Args.reserve(NumArgs);
8593 
8594   // Populate the argument list.
8595   // Attributes for args start at offset 1, after the return attribute.
8596   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8597        ArgI != ArgE; ++ArgI) {
8598     const Value *V = Call->getOperand(ArgI);
8599 
8600     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8601 
8602     TargetLowering::ArgListEntry Entry;
8603     Entry.Node = getValue(V);
8604     Entry.Ty = V->getType();
8605     Entry.setAttributes(Call, ArgI);
8606     Args.push_back(Entry);
8607   }
8608 
8609   CLI.setDebugLoc(getCurSDLoc())
8610       .setChain(getRoot())
8611       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8612       .setDiscardResult(Call->use_empty())
8613       .setIsPatchPoint(IsPatchPoint);
8614 }
8615 
8616 /// Add a stack map intrinsic call's live variable operands to a stackmap
8617 /// or patchpoint target node's operand list.
8618 ///
8619 /// Constants are converted to TargetConstants purely as an optimization to
8620 /// avoid constant materialization and register allocation.
8621 ///
8622 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8623 /// generate addess computation nodes, and so FinalizeISel can convert the
8624 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8625 /// address materialization and register allocation, but may also be required
8626 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8627 /// alloca in the entry block, then the runtime may assume that the alloca's
8628 /// StackMap location can be read immediately after compilation and that the
8629 /// location is valid at any point during execution (this is similar to the
8630 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8631 /// only available in a register, then the runtime would need to trap when
8632 /// execution reaches the StackMap in order to read the alloca's location.
8633 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8634                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8635                                 SelectionDAGBuilder &Builder) {
8636   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8637     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8638     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8639       Ops.push_back(
8640         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8641       Ops.push_back(
8642         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8643     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8644       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8645       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8646           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8647     } else
8648       Ops.push_back(OpVal);
8649   }
8650 }
8651 
8652 /// Lower llvm.experimental.stackmap directly to its target opcode.
8653 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8654   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8655   //                                  [live variables...])
8656 
8657   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8658 
8659   SDValue Chain, InFlag, Callee, NullPtr;
8660   SmallVector<SDValue, 32> Ops;
8661 
8662   SDLoc DL = getCurSDLoc();
8663   Callee = getValue(CI.getCalledValue());
8664   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8665 
8666   // The stackmap intrinsic only records the live variables (the arguemnts
8667   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8668   // intrinsic, this won't be lowered to a function call. This means we don't
8669   // have to worry about calling conventions and target specific lowering code.
8670   // Instead we perform the call lowering right here.
8671   //
8672   // chain, flag = CALLSEQ_START(chain, 0, 0)
8673   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8674   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8675   //
8676   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8677   InFlag = Chain.getValue(1);
8678 
8679   // Add the <id> and <numBytes> constants.
8680   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8681   Ops.push_back(DAG.getTargetConstant(
8682                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8683   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8684   Ops.push_back(DAG.getTargetConstant(
8685                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8686                   MVT::i32));
8687 
8688   // Push live variables for the stack map.
8689   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8690 
8691   // We are not pushing any register mask info here on the operands list,
8692   // because the stackmap doesn't clobber anything.
8693 
8694   // Push the chain and the glue flag.
8695   Ops.push_back(Chain);
8696   Ops.push_back(InFlag);
8697 
8698   // Create the STACKMAP node.
8699   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8700   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8701   Chain = SDValue(SM, 0);
8702   InFlag = Chain.getValue(1);
8703 
8704   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8705 
8706   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8707 
8708   // Set the root to the target-lowered call chain.
8709   DAG.setRoot(Chain);
8710 
8711   // Inform the Frame Information that we have a stackmap in this function.
8712   FuncInfo.MF->getFrameInfo().setHasStackMap();
8713 }
8714 
8715 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8716 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8717                                           const BasicBlock *EHPadBB) {
8718   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8719   //                                                 i32 <numBytes>,
8720   //                                                 i8* <target>,
8721   //                                                 i32 <numArgs>,
8722   //                                                 [Args...],
8723   //                                                 [live variables...])
8724 
8725   CallingConv::ID CC = CS.getCallingConv();
8726   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8727   bool HasDef = !CS->getType()->isVoidTy();
8728   SDLoc dl = getCurSDLoc();
8729   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8730 
8731   // Handle immediate and symbolic callees.
8732   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8733     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8734                                    /*isTarget=*/true);
8735   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8736     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8737                                          SDLoc(SymbolicCallee),
8738                                          SymbolicCallee->getValueType(0));
8739 
8740   // Get the real number of arguments participating in the call <numArgs>
8741   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8742   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8743 
8744   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8745   // Intrinsics include all meta-operands up to but not including CC.
8746   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8747   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8748          "Not enough arguments provided to the patchpoint intrinsic");
8749 
8750   // For AnyRegCC the arguments are lowered later on manually.
8751   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8752   Type *ReturnTy =
8753     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8754 
8755   TargetLowering::CallLoweringInfo CLI(DAG);
8756   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8757                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8758   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8759 
8760   SDNode *CallEnd = Result.second.getNode();
8761   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8762     CallEnd = CallEnd->getOperand(0).getNode();
8763 
8764   /// Get a call instruction from the call sequence chain.
8765   /// Tail calls are not allowed.
8766   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8767          "Expected a callseq node.");
8768   SDNode *Call = CallEnd->getOperand(0).getNode();
8769   bool HasGlue = Call->getGluedNode();
8770 
8771   // Replace the target specific call node with the patchable intrinsic.
8772   SmallVector<SDValue, 8> Ops;
8773 
8774   // Add the <id> and <numBytes> constants.
8775   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8776   Ops.push_back(DAG.getTargetConstant(
8777                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8778   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8779   Ops.push_back(DAG.getTargetConstant(
8780                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8781                   MVT::i32));
8782 
8783   // Add the callee.
8784   Ops.push_back(Callee);
8785 
8786   // Adjust <numArgs> to account for any arguments that have been passed on the
8787   // stack instead.
8788   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8789   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8790   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8791   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8792 
8793   // Add the calling convention
8794   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8795 
8796   // Add the arguments we omitted previously. The register allocator should
8797   // place these in any free register.
8798   if (IsAnyRegCC)
8799     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8800       Ops.push_back(getValue(CS.getArgument(i)));
8801 
8802   // Push the arguments from the call instruction up to the register mask.
8803   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8804   Ops.append(Call->op_begin() + 2, e);
8805 
8806   // Push live variables for the stack map.
8807   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8808 
8809   // Push the register mask info.
8810   if (HasGlue)
8811     Ops.push_back(*(Call->op_end()-2));
8812   else
8813     Ops.push_back(*(Call->op_end()-1));
8814 
8815   // Push the chain (this is originally the first operand of the call, but
8816   // becomes now the last or second to last operand).
8817   Ops.push_back(*(Call->op_begin()));
8818 
8819   // Push the glue flag (last operand).
8820   if (HasGlue)
8821     Ops.push_back(*(Call->op_end()-1));
8822 
8823   SDVTList NodeTys;
8824   if (IsAnyRegCC && HasDef) {
8825     // Create the return types based on the intrinsic definition
8826     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8827     SmallVector<EVT, 3> ValueVTs;
8828     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8829     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8830 
8831     // There is always a chain and a glue type at the end
8832     ValueVTs.push_back(MVT::Other);
8833     ValueVTs.push_back(MVT::Glue);
8834     NodeTys = DAG.getVTList(ValueVTs);
8835   } else
8836     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8837 
8838   // Replace the target specific call node with a PATCHPOINT node.
8839   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8840                                          dl, NodeTys, Ops);
8841 
8842   // Update the NodeMap.
8843   if (HasDef) {
8844     if (IsAnyRegCC)
8845       setValue(CS.getInstruction(), SDValue(MN, 0));
8846     else
8847       setValue(CS.getInstruction(), Result.first);
8848   }
8849 
8850   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8851   // call sequence. Furthermore the location of the chain and glue can change
8852   // when the AnyReg calling convention is used and the intrinsic returns a
8853   // value.
8854   if (IsAnyRegCC && HasDef) {
8855     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8856     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8857     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8858   } else
8859     DAG.ReplaceAllUsesWith(Call, MN);
8860   DAG.DeleteNode(Call);
8861 
8862   // Inform the Frame Information that we have a patchpoint in this function.
8863   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8864 }
8865 
8866 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8867                                             unsigned Intrinsic) {
8868   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8869   SDValue Op1 = getValue(I.getArgOperand(0));
8870   SDValue Op2;
8871   if (I.getNumArgOperands() > 1)
8872     Op2 = getValue(I.getArgOperand(1));
8873   SDLoc dl = getCurSDLoc();
8874   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8875   SDValue Res;
8876   FastMathFlags FMF;
8877   if (isa<FPMathOperator>(I))
8878     FMF = I.getFastMathFlags();
8879 
8880   switch (Intrinsic) {
8881   case Intrinsic::experimental_vector_reduce_v2_fadd:
8882     if (FMF.allowReassoc())
8883       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8884                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8885     else
8886       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8887     break;
8888   case Intrinsic::experimental_vector_reduce_v2_fmul:
8889     if (FMF.allowReassoc())
8890       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8891                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8892     else
8893       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8894     break;
8895   case Intrinsic::experimental_vector_reduce_add:
8896     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8897     break;
8898   case Intrinsic::experimental_vector_reduce_mul:
8899     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8900     break;
8901   case Intrinsic::experimental_vector_reduce_and:
8902     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8903     break;
8904   case Intrinsic::experimental_vector_reduce_or:
8905     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8906     break;
8907   case Intrinsic::experimental_vector_reduce_xor:
8908     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8909     break;
8910   case Intrinsic::experimental_vector_reduce_smax:
8911     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8912     break;
8913   case Intrinsic::experimental_vector_reduce_smin:
8914     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8915     break;
8916   case Intrinsic::experimental_vector_reduce_umax:
8917     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8918     break;
8919   case Intrinsic::experimental_vector_reduce_umin:
8920     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8921     break;
8922   case Intrinsic::experimental_vector_reduce_fmax:
8923     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8924     break;
8925   case Intrinsic::experimental_vector_reduce_fmin:
8926     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8927     break;
8928   default:
8929     llvm_unreachable("Unhandled vector reduce intrinsic");
8930   }
8931   setValue(&I, Res);
8932 }
8933 
8934 /// Returns an AttributeList representing the attributes applied to the return
8935 /// value of the given call.
8936 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8937   SmallVector<Attribute::AttrKind, 2> Attrs;
8938   if (CLI.RetSExt)
8939     Attrs.push_back(Attribute::SExt);
8940   if (CLI.RetZExt)
8941     Attrs.push_back(Attribute::ZExt);
8942   if (CLI.IsInReg)
8943     Attrs.push_back(Attribute::InReg);
8944 
8945   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8946                             Attrs);
8947 }
8948 
8949 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8950 /// implementation, which just calls LowerCall.
8951 /// FIXME: When all targets are
8952 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8953 std::pair<SDValue, SDValue>
8954 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8955   // Handle the incoming return values from the call.
8956   CLI.Ins.clear();
8957   Type *OrigRetTy = CLI.RetTy;
8958   SmallVector<EVT, 4> RetTys;
8959   SmallVector<uint64_t, 4> Offsets;
8960   auto &DL = CLI.DAG.getDataLayout();
8961   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8962 
8963   if (CLI.IsPostTypeLegalization) {
8964     // If we are lowering a libcall after legalization, split the return type.
8965     SmallVector<EVT, 4> OldRetTys;
8966     SmallVector<uint64_t, 4> OldOffsets;
8967     RetTys.swap(OldRetTys);
8968     Offsets.swap(OldOffsets);
8969 
8970     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8971       EVT RetVT = OldRetTys[i];
8972       uint64_t Offset = OldOffsets[i];
8973       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8974       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8975       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8976       RetTys.append(NumRegs, RegisterVT);
8977       for (unsigned j = 0; j != NumRegs; ++j)
8978         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8979     }
8980   }
8981 
8982   SmallVector<ISD::OutputArg, 4> Outs;
8983   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8984 
8985   bool CanLowerReturn =
8986       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8987                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8988 
8989   SDValue DemoteStackSlot;
8990   int DemoteStackIdx = -100;
8991   if (!CanLowerReturn) {
8992     // FIXME: equivalent assert?
8993     // assert(!CS.hasInAllocaArgument() &&
8994     //        "sret demotion is incompatible with inalloca");
8995     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8996     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8997     MachineFunction &MF = CLI.DAG.getMachineFunction();
8998     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8999     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9000                                               DL.getAllocaAddrSpace());
9001 
9002     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9003     ArgListEntry Entry;
9004     Entry.Node = DemoteStackSlot;
9005     Entry.Ty = StackSlotPtrType;
9006     Entry.IsSExt = false;
9007     Entry.IsZExt = false;
9008     Entry.IsInReg = false;
9009     Entry.IsSRet = true;
9010     Entry.IsNest = false;
9011     Entry.IsByVal = false;
9012     Entry.IsReturned = false;
9013     Entry.IsSwiftSelf = false;
9014     Entry.IsSwiftError = false;
9015     Entry.Alignment = Align;
9016     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9017     CLI.NumFixedArgs += 1;
9018     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9019 
9020     // sret demotion isn't compatible with tail-calls, since the sret argument
9021     // points into the callers stack frame.
9022     CLI.IsTailCall = false;
9023   } else {
9024     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9025         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9026     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9027       ISD::ArgFlagsTy Flags;
9028       if (NeedsRegBlock) {
9029         Flags.setInConsecutiveRegs();
9030         if (I == RetTys.size() - 1)
9031           Flags.setInConsecutiveRegsLast();
9032       }
9033       EVT VT = RetTys[I];
9034       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9035                                                      CLI.CallConv, VT);
9036       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9037                                                        CLI.CallConv, VT);
9038       for (unsigned i = 0; i != NumRegs; ++i) {
9039         ISD::InputArg MyFlags;
9040         MyFlags.Flags = Flags;
9041         MyFlags.VT = RegisterVT;
9042         MyFlags.ArgVT = VT;
9043         MyFlags.Used = CLI.IsReturnValueUsed;
9044         if (CLI.RetTy->isPointerTy()) {
9045           MyFlags.Flags.setPointer();
9046           MyFlags.Flags.setPointerAddrSpace(
9047               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9048         }
9049         if (CLI.RetSExt)
9050           MyFlags.Flags.setSExt();
9051         if (CLI.RetZExt)
9052           MyFlags.Flags.setZExt();
9053         if (CLI.IsInReg)
9054           MyFlags.Flags.setInReg();
9055         CLI.Ins.push_back(MyFlags);
9056       }
9057     }
9058   }
9059 
9060   // We push in swifterror return as the last element of CLI.Ins.
9061   ArgListTy &Args = CLI.getArgs();
9062   if (supportSwiftError()) {
9063     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9064       if (Args[i].IsSwiftError) {
9065         ISD::InputArg MyFlags;
9066         MyFlags.VT = getPointerTy(DL);
9067         MyFlags.ArgVT = EVT(getPointerTy(DL));
9068         MyFlags.Flags.setSwiftError();
9069         CLI.Ins.push_back(MyFlags);
9070       }
9071     }
9072   }
9073 
9074   // Handle all of the outgoing arguments.
9075   CLI.Outs.clear();
9076   CLI.OutVals.clear();
9077   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9078     SmallVector<EVT, 4> ValueVTs;
9079     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9080     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9081     Type *FinalType = Args[i].Ty;
9082     if (Args[i].IsByVal)
9083       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9084     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9085         FinalType, CLI.CallConv, CLI.IsVarArg);
9086     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9087          ++Value) {
9088       EVT VT = ValueVTs[Value];
9089       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9090       SDValue Op = SDValue(Args[i].Node.getNode(),
9091                            Args[i].Node.getResNo() + Value);
9092       ISD::ArgFlagsTy Flags;
9093 
9094       // Certain targets (such as MIPS), may have a different ABI alignment
9095       // for a type depending on the context. Give the target a chance to
9096       // specify the alignment it wants.
9097       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
9098 
9099       if (Args[i].Ty->isPointerTy()) {
9100         Flags.setPointer();
9101         Flags.setPointerAddrSpace(
9102             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9103       }
9104       if (Args[i].IsZExt)
9105         Flags.setZExt();
9106       if (Args[i].IsSExt)
9107         Flags.setSExt();
9108       if (Args[i].IsInReg) {
9109         // If we are using vectorcall calling convention, a structure that is
9110         // passed InReg - is surely an HVA
9111         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9112             isa<StructType>(FinalType)) {
9113           // The first value of a structure is marked
9114           if (0 == Value)
9115             Flags.setHvaStart();
9116           Flags.setHva();
9117         }
9118         // Set InReg Flag
9119         Flags.setInReg();
9120       }
9121       if (Args[i].IsSRet)
9122         Flags.setSRet();
9123       if (Args[i].IsSwiftSelf)
9124         Flags.setSwiftSelf();
9125       if (Args[i].IsSwiftError)
9126         Flags.setSwiftError();
9127       if (Args[i].IsByVal)
9128         Flags.setByVal();
9129       if (Args[i].IsInAlloca) {
9130         Flags.setInAlloca();
9131         // Set the byval flag for CCAssignFn callbacks that don't know about
9132         // inalloca.  This way we can know how many bytes we should've allocated
9133         // and how many bytes a callee cleanup function will pop.  If we port
9134         // inalloca to more targets, we'll have to add custom inalloca handling
9135         // in the various CC lowering callbacks.
9136         Flags.setByVal();
9137       }
9138       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9139         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9140         Type *ElementTy = Ty->getElementType();
9141 
9142         unsigned FrameSize = DL.getTypeAllocSize(
9143             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9144         Flags.setByValSize(FrameSize);
9145 
9146         // info is not there but there are cases it cannot get right.
9147         unsigned FrameAlign;
9148         if (Args[i].Alignment)
9149           FrameAlign = Args[i].Alignment;
9150         else
9151           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9152         Flags.setByValAlign(FrameAlign);
9153       }
9154       if (Args[i].IsNest)
9155         Flags.setNest();
9156       if (NeedsRegBlock)
9157         Flags.setInConsecutiveRegs();
9158       Flags.setOrigAlign(OriginalAlignment);
9159 
9160       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9161                                                  CLI.CallConv, VT);
9162       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9163                                                         CLI.CallConv, VT);
9164       SmallVector<SDValue, 4> Parts(NumParts);
9165       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9166 
9167       if (Args[i].IsSExt)
9168         ExtendKind = ISD::SIGN_EXTEND;
9169       else if (Args[i].IsZExt)
9170         ExtendKind = ISD::ZERO_EXTEND;
9171 
9172       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9173       // for now.
9174       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9175           CanLowerReturn) {
9176         assert((CLI.RetTy == Args[i].Ty ||
9177                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9178                  CLI.RetTy->getPointerAddressSpace() ==
9179                      Args[i].Ty->getPointerAddressSpace())) &&
9180                RetTys.size() == NumValues && "unexpected use of 'returned'");
9181         // Before passing 'returned' to the target lowering code, ensure that
9182         // either the register MVT and the actual EVT are the same size or that
9183         // the return value and argument are extended in the same way; in these
9184         // cases it's safe to pass the argument register value unchanged as the
9185         // return register value (although it's at the target's option whether
9186         // to do so)
9187         // TODO: allow code generation to take advantage of partially preserved
9188         // registers rather than clobbering the entire register when the
9189         // parameter extension method is not compatible with the return
9190         // extension method
9191         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9192             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9193              CLI.RetZExt == Args[i].IsZExt))
9194           Flags.setReturned();
9195       }
9196 
9197       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9198                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9199 
9200       for (unsigned j = 0; j != NumParts; ++j) {
9201         // if it isn't first piece, alignment must be 1
9202         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9203                                i < CLI.NumFixedArgs,
9204                                i, j*Parts[j].getValueType().getStoreSize());
9205         if (NumParts > 1 && j == 0)
9206           MyFlags.Flags.setSplit();
9207         else if (j != 0) {
9208           MyFlags.Flags.setOrigAlign(1);
9209           if (j == NumParts - 1)
9210             MyFlags.Flags.setSplitEnd();
9211         }
9212 
9213         CLI.Outs.push_back(MyFlags);
9214         CLI.OutVals.push_back(Parts[j]);
9215       }
9216 
9217       if (NeedsRegBlock && Value == NumValues - 1)
9218         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9219     }
9220   }
9221 
9222   SmallVector<SDValue, 4> InVals;
9223   CLI.Chain = LowerCall(CLI, InVals);
9224 
9225   // Update CLI.InVals to use outside of this function.
9226   CLI.InVals = InVals;
9227 
9228   // Verify that the target's LowerCall behaved as expected.
9229   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9230          "LowerCall didn't return a valid chain!");
9231   assert((!CLI.IsTailCall || InVals.empty()) &&
9232          "LowerCall emitted a return value for a tail call!");
9233   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9234          "LowerCall didn't emit the correct number of values!");
9235 
9236   // For a tail call, the return value is merely live-out and there aren't
9237   // any nodes in the DAG representing it. Return a special value to
9238   // indicate that a tail call has been emitted and no more Instructions
9239   // should be processed in the current block.
9240   if (CLI.IsTailCall) {
9241     CLI.DAG.setRoot(CLI.Chain);
9242     return std::make_pair(SDValue(), SDValue());
9243   }
9244 
9245 #ifndef NDEBUG
9246   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9247     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9248     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9249            "LowerCall emitted a value with the wrong type!");
9250   }
9251 #endif
9252 
9253   SmallVector<SDValue, 4> ReturnValues;
9254   if (!CanLowerReturn) {
9255     // The instruction result is the result of loading from the
9256     // hidden sret parameter.
9257     SmallVector<EVT, 1> PVTs;
9258     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9259 
9260     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9261     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9262     EVT PtrVT = PVTs[0];
9263 
9264     unsigned NumValues = RetTys.size();
9265     ReturnValues.resize(NumValues);
9266     SmallVector<SDValue, 4> Chains(NumValues);
9267 
9268     // An aggregate return value cannot wrap around the address space, so
9269     // offsets to its parts don't wrap either.
9270     SDNodeFlags Flags;
9271     Flags.setNoUnsignedWrap(true);
9272 
9273     for (unsigned i = 0; i < NumValues; ++i) {
9274       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9275                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9276                                                         PtrVT), Flags);
9277       SDValue L = CLI.DAG.getLoad(
9278           RetTys[i], CLI.DL, CLI.Chain, Add,
9279           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9280                                             DemoteStackIdx, Offsets[i]),
9281           /* Alignment = */ 1);
9282       ReturnValues[i] = L;
9283       Chains[i] = L.getValue(1);
9284     }
9285 
9286     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9287   } else {
9288     // Collect the legal value parts into potentially illegal values
9289     // that correspond to the original function's return values.
9290     Optional<ISD::NodeType> AssertOp;
9291     if (CLI.RetSExt)
9292       AssertOp = ISD::AssertSext;
9293     else if (CLI.RetZExt)
9294       AssertOp = ISD::AssertZext;
9295     unsigned CurReg = 0;
9296     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9297       EVT VT = RetTys[I];
9298       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9299                                                      CLI.CallConv, VT);
9300       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9301                                                        CLI.CallConv, VT);
9302 
9303       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9304                                               NumRegs, RegisterVT, VT, nullptr,
9305                                               CLI.CallConv, AssertOp));
9306       CurReg += NumRegs;
9307     }
9308 
9309     // For a function returning void, there is no return value. We can't create
9310     // such a node, so we just return a null return value in that case. In
9311     // that case, nothing will actually look at the value.
9312     if (ReturnValues.empty())
9313       return std::make_pair(SDValue(), CLI.Chain);
9314   }
9315 
9316   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9317                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9318   return std::make_pair(Res, CLI.Chain);
9319 }
9320 
9321 void TargetLowering::LowerOperationWrapper(SDNode *N,
9322                                            SmallVectorImpl<SDValue> &Results,
9323                                            SelectionDAG &DAG) const {
9324   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9325     Results.push_back(Res);
9326 }
9327 
9328 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9329   llvm_unreachable("LowerOperation not implemented for this target!");
9330 }
9331 
9332 void
9333 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9334   SDValue Op = getNonRegisterValue(V);
9335   assert((Op.getOpcode() != ISD::CopyFromReg ||
9336           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9337          "Copy from a reg to the same reg!");
9338   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9339 
9340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9341   // If this is an InlineAsm we have to match the registers required, not the
9342   // notional registers required by the type.
9343 
9344   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9345                    None); // This is not an ABI copy.
9346   SDValue Chain = DAG.getEntryNode();
9347 
9348   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9349                               FuncInfo.PreferredExtendType.end())
9350                                  ? ISD::ANY_EXTEND
9351                                  : FuncInfo.PreferredExtendType[V];
9352   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9353   PendingExports.push_back(Chain);
9354 }
9355 
9356 #include "llvm/CodeGen/SelectionDAGISel.h"
9357 
9358 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9359 /// entry block, return true.  This includes arguments used by switches, since
9360 /// the switch may expand into multiple basic blocks.
9361 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9362   // With FastISel active, we may be splitting blocks, so force creation
9363   // of virtual registers for all non-dead arguments.
9364   if (FastISel)
9365     return A->use_empty();
9366 
9367   const BasicBlock &Entry = A->getParent()->front();
9368   for (const User *U : A->users())
9369     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9370       return false;  // Use not in entry block.
9371 
9372   return true;
9373 }
9374 
9375 using ArgCopyElisionMapTy =
9376     DenseMap<const Argument *,
9377              std::pair<const AllocaInst *, const StoreInst *>>;
9378 
9379 /// Scan the entry block of the function in FuncInfo for arguments that look
9380 /// like copies into a local alloca. Record any copied arguments in
9381 /// ArgCopyElisionCandidates.
9382 static void
9383 findArgumentCopyElisionCandidates(const DataLayout &DL,
9384                                   FunctionLoweringInfo *FuncInfo,
9385                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9386   // Record the state of every static alloca used in the entry block. Argument
9387   // allocas are all used in the entry block, so we need approximately as many
9388   // entries as we have arguments.
9389   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9390   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9391   unsigned NumArgs = FuncInfo->Fn->arg_size();
9392   StaticAllocas.reserve(NumArgs * 2);
9393 
9394   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9395     if (!V)
9396       return nullptr;
9397     V = V->stripPointerCasts();
9398     const auto *AI = dyn_cast<AllocaInst>(V);
9399     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9400       return nullptr;
9401     auto Iter = StaticAllocas.insert({AI, Unknown});
9402     return &Iter.first->second;
9403   };
9404 
9405   // Look for stores of arguments to static allocas. Look through bitcasts and
9406   // GEPs to handle type coercions, as long as the alloca is fully initialized
9407   // by the store. Any non-store use of an alloca escapes it and any subsequent
9408   // unanalyzed store might write it.
9409   // FIXME: Handle structs initialized with multiple stores.
9410   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9411     // Look for stores, and handle non-store uses conservatively.
9412     const auto *SI = dyn_cast<StoreInst>(&I);
9413     if (!SI) {
9414       // We will look through cast uses, so ignore them completely.
9415       if (I.isCast())
9416         continue;
9417       // Ignore debug info intrinsics, they don't escape or store to allocas.
9418       if (isa<DbgInfoIntrinsic>(I))
9419         continue;
9420       // This is an unknown instruction. Assume it escapes or writes to all
9421       // static alloca operands.
9422       for (const Use &U : I.operands()) {
9423         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9424           *Info = StaticAllocaInfo::Clobbered;
9425       }
9426       continue;
9427     }
9428 
9429     // If the stored value is a static alloca, mark it as escaped.
9430     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9431       *Info = StaticAllocaInfo::Clobbered;
9432 
9433     // Check if the destination is a static alloca.
9434     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9435     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9436     if (!Info)
9437       continue;
9438     const AllocaInst *AI = cast<AllocaInst>(Dst);
9439 
9440     // Skip allocas that have been initialized or clobbered.
9441     if (*Info != StaticAllocaInfo::Unknown)
9442       continue;
9443 
9444     // Check if the stored value is an argument, and that this store fully
9445     // initializes the alloca. Don't elide copies from the same argument twice.
9446     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9447     const auto *Arg = dyn_cast<Argument>(Val);
9448     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9449         Arg->getType()->isEmptyTy() ||
9450         DL.getTypeStoreSize(Arg->getType()) !=
9451             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9452         ArgCopyElisionCandidates.count(Arg)) {
9453       *Info = StaticAllocaInfo::Clobbered;
9454       continue;
9455     }
9456 
9457     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9458                       << '\n');
9459 
9460     // Mark this alloca and store for argument copy elision.
9461     *Info = StaticAllocaInfo::Elidable;
9462     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9463 
9464     // Stop scanning if we've seen all arguments. This will happen early in -O0
9465     // builds, which is useful, because -O0 builds have large entry blocks and
9466     // many allocas.
9467     if (ArgCopyElisionCandidates.size() == NumArgs)
9468       break;
9469   }
9470 }
9471 
9472 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9473 /// ArgVal is a load from a suitable fixed stack object.
9474 static void tryToElideArgumentCopy(
9475     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9476     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9477     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9478     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9479     SDValue ArgVal, bool &ArgHasUses) {
9480   // Check if this is a load from a fixed stack object.
9481   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9482   if (!LNode)
9483     return;
9484   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9485   if (!FINode)
9486     return;
9487 
9488   // Check that the fixed stack object is the right size and alignment.
9489   // Look at the alignment that the user wrote on the alloca instead of looking
9490   // at the stack object.
9491   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9492   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9493   const AllocaInst *AI = ArgCopyIter->second.first;
9494   int FixedIndex = FINode->getIndex();
9495   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9496   int OldIndex = AllocaIndex;
9497   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9498   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9499     LLVM_DEBUG(
9500         dbgs() << "  argument copy elision failed due to bad fixed stack "
9501                   "object size\n");
9502     return;
9503   }
9504   unsigned RequiredAlignment = AI->getAlignment();
9505   if (!RequiredAlignment) {
9506     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9507         AI->getAllocatedType());
9508   }
9509   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9510     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9511                          "greater than stack argument alignment ("
9512                       << RequiredAlignment << " vs "
9513                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9514     return;
9515   }
9516 
9517   // Perform the elision. Delete the old stack object and replace its only use
9518   // in the variable info map. Mark the stack object as mutable.
9519   LLVM_DEBUG({
9520     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9521            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9522            << '\n';
9523   });
9524   MFI.RemoveStackObject(OldIndex);
9525   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9526   AllocaIndex = FixedIndex;
9527   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9528   Chains.push_back(ArgVal.getValue(1));
9529 
9530   // Avoid emitting code for the store implementing the copy.
9531   const StoreInst *SI = ArgCopyIter->second.second;
9532   ElidedArgCopyInstrs.insert(SI);
9533 
9534   // Check for uses of the argument again so that we can avoid exporting ArgVal
9535   // if it is't used by anything other than the store.
9536   for (const Value *U : Arg.users()) {
9537     if (U != SI) {
9538       ArgHasUses = true;
9539       break;
9540     }
9541   }
9542 }
9543 
9544 void SelectionDAGISel::LowerArguments(const Function &F) {
9545   SelectionDAG &DAG = SDB->DAG;
9546   SDLoc dl = SDB->getCurSDLoc();
9547   const DataLayout &DL = DAG.getDataLayout();
9548   SmallVector<ISD::InputArg, 16> Ins;
9549 
9550   if (!FuncInfo->CanLowerReturn) {
9551     // Put in an sret pointer parameter before all the other parameters.
9552     SmallVector<EVT, 1> ValueVTs;
9553     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9554                     F.getReturnType()->getPointerTo(
9555                         DAG.getDataLayout().getAllocaAddrSpace()),
9556                     ValueVTs);
9557 
9558     // NOTE: Assuming that a pointer will never break down to more than one VT
9559     // or one register.
9560     ISD::ArgFlagsTy Flags;
9561     Flags.setSRet();
9562     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9563     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9564                          ISD::InputArg::NoArgIndex, 0);
9565     Ins.push_back(RetArg);
9566   }
9567 
9568   // Look for stores of arguments to static allocas. Mark such arguments with a
9569   // flag to ask the target to give us the memory location of that argument if
9570   // available.
9571   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9572   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9573 
9574   // Set up the incoming argument description vector.
9575   for (const Argument &Arg : F.args()) {
9576     unsigned ArgNo = Arg.getArgNo();
9577     SmallVector<EVT, 4> ValueVTs;
9578     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9579     bool isArgValueUsed = !Arg.use_empty();
9580     unsigned PartBase = 0;
9581     Type *FinalType = Arg.getType();
9582     if (Arg.hasAttribute(Attribute::ByVal))
9583       FinalType = Arg.getParamByValType();
9584     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9585         FinalType, F.getCallingConv(), F.isVarArg());
9586     for (unsigned Value = 0, NumValues = ValueVTs.size();
9587          Value != NumValues; ++Value) {
9588       EVT VT = ValueVTs[Value];
9589       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9590       ISD::ArgFlagsTy Flags;
9591 
9592       // Certain targets (such as MIPS), may have a different ABI alignment
9593       // for a type depending on the context. Give the target a chance to
9594       // specify the alignment it wants.
9595       unsigned OriginalAlignment =
9596           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9597 
9598       if (Arg.getType()->isPointerTy()) {
9599         Flags.setPointer();
9600         Flags.setPointerAddrSpace(
9601             cast<PointerType>(Arg.getType())->getAddressSpace());
9602       }
9603       if (Arg.hasAttribute(Attribute::ZExt))
9604         Flags.setZExt();
9605       if (Arg.hasAttribute(Attribute::SExt))
9606         Flags.setSExt();
9607       if (Arg.hasAttribute(Attribute::InReg)) {
9608         // If we are using vectorcall calling convention, a structure that is
9609         // passed InReg - is surely an HVA
9610         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9611             isa<StructType>(Arg.getType())) {
9612           // The first value of a structure is marked
9613           if (0 == Value)
9614             Flags.setHvaStart();
9615           Flags.setHva();
9616         }
9617         // Set InReg Flag
9618         Flags.setInReg();
9619       }
9620       if (Arg.hasAttribute(Attribute::StructRet))
9621         Flags.setSRet();
9622       if (Arg.hasAttribute(Attribute::SwiftSelf))
9623         Flags.setSwiftSelf();
9624       if (Arg.hasAttribute(Attribute::SwiftError))
9625         Flags.setSwiftError();
9626       if (Arg.hasAttribute(Attribute::ByVal))
9627         Flags.setByVal();
9628       if (Arg.hasAttribute(Attribute::InAlloca)) {
9629         Flags.setInAlloca();
9630         // Set the byval flag for CCAssignFn callbacks that don't know about
9631         // inalloca.  This way we can know how many bytes we should've allocated
9632         // and how many bytes a callee cleanup function will pop.  If we port
9633         // inalloca to more targets, we'll have to add custom inalloca handling
9634         // in the various CC lowering callbacks.
9635         Flags.setByVal();
9636       }
9637       if (F.getCallingConv() == CallingConv::X86_INTR) {
9638         // IA Interrupt passes frame (1st parameter) by value in the stack.
9639         if (ArgNo == 0)
9640           Flags.setByVal();
9641       }
9642       if (Flags.isByVal() || Flags.isInAlloca()) {
9643         Type *ElementTy = Arg.getParamByValType();
9644 
9645         // For ByVal, size and alignment should be passed from FE.  BE will
9646         // guess if this info is not there but there are cases it cannot get
9647         // right.
9648         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9649         Flags.setByValSize(FrameSize);
9650 
9651         unsigned FrameAlign;
9652         if (Arg.getParamAlignment())
9653           FrameAlign = Arg.getParamAlignment();
9654         else
9655           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9656         Flags.setByValAlign(FrameAlign);
9657       }
9658       if (Arg.hasAttribute(Attribute::Nest))
9659         Flags.setNest();
9660       if (NeedsRegBlock)
9661         Flags.setInConsecutiveRegs();
9662       Flags.setOrigAlign(OriginalAlignment);
9663       if (ArgCopyElisionCandidates.count(&Arg))
9664         Flags.setCopyElisionCandidate();
9665       if (Arg.hasAttribute(Attribute::Returned))
9666         Flags.setReturned();
9667 
9668       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9669           *CurDAG->getContext(), F.getCallingConv(), VT);
9670       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9671           *CurDAG->getContext(), F.getCallingConv(), VT);
9672       for (unsigned i = 0; i != NumRegs; ++i) {
9673         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9674                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9675         if (NumRegs > 1 && i == 0)
9676           MyFlags.Flags.setSplit();
9677         // if it isn't first piece, alignment must be 1
9678         else if (i > 0) {
9679           MyFlags.Flags.setOrigAlign(1);
9680           if (i == NumRegs - 1)
9681             MyFlags.Flags.setSplitEnd();
9682         }
9683         Ins.push_back(MyFlags);
9684       }
9685       if (NeedsRegBlock && Value == NumValues - 1)
9686         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9687       PartBase += VT.getStoreSize();
9688     }
9689   }
9690 
9691   // Call the target to set up the argument values.
9692   SmallVector<SDValue, 8> InVals;
9693   SDValue NewRoot = TLI->LowerFormalArguments(
9694       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9695 
9696   // Verify that the target's LowerFormalArguments behaved as expected.
9697   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9698          "LowerFormalArguments didn't return a valid chain!");
9699   assert(InVals.size() == Ins.size() &&
9700          "LowerFormalArguments didn't emit the correct number of values!");
9701   LLVM_DEBUG({
9702     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9703       assert(InVals[i].getNode() &&
9704              "LowerFormalArguments emitted a null value!");
9705       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9706              "LowerFormalArguments emitted a value with the wrong type!");
9707     }
9708   });
9709 
9710   // Update the DAG with the new chain value resulting from argument lowering.
9711   DAG.setRoot(NewRoot);
9712 
9713   // Set up the argument values.
9714   unsigned i = 0;
9715   if (!FuncInfo->CanLowerReturn) {
9716     // Create a virtual register for the sret pointer, and put in a copy
9717     // from the sret argument into it.
9718     SmallVector<EVT, 1> ValueVTs;
9719     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9720                     F.getReturnType()->getPointerTo(
9721                         DAG.getDataLayout().getAllocaAddrSpace()),
9722                     ValueVTs);
9723     MVT VT = ValueVTs[0].getSimpleVT();
9724     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9725     Optional<ISD::NodeType> AssertOp = None;
9726     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9727                                         nullptr, F.getCallingConv(), AssertOp);
9728 
9729     MachineFunction& MF = SDB->DAG.getMachineFunction();
9730     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9731     Register SRetReg =
9732         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9733     FuncInfo->DemoteRegister = SRetReg;
9734     NewRoot =
9735         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9736     DAG.setRoot(NewRoot);
9737 
9738     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9739     ++i;
9740   }
9741 
9742   SmallVector<SDValue, 4> Chains;
9743   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9744   for (const Argument &Arg : F.args()) {
9745     SmallVector<SDValue, 4> ArgValues;
9746     SmallVector<EVT, 4> ValueVTs;
9747     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9748     unsigned NumValues = ValueVTs.size();
9749     if (NumValues == 0)
9750       continue;
9751 
9752     bool ArgHasUses = !Arg.use_empty();
9753 
9754     // Elide the copying store if the target loaded this argument from a
9755     // suitable fixed stack object.
9756     if (Ins[i].Flags.isCopyElisionCandidate()) {
9757       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9758                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9759                              InVals[i], ArgHasUses);
9760     }
9761 
9762     // If this argument is unused then remember its value. It is used to generate
9763     // debugging information.
9764     bool isSwiftErrorArg =
9765         TLI->supportSwiftError() &&
9766         Arg.hasAttribute(Attribute::SwiftError);
9767     if (!ArgHasUses && !isSwiftErrorArg) {
9768       SDB->setUnusedArgValue(&Arg, InVals[i]);
9769 
9770       // Also remember any frame index for use in FastISel.
9771       if (FrameIndexSDNode *FI =
9772           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9773         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9774     }
9775 
9776     for (unsigned Val = 0; Val != NumValues; ++Val) {
9777       EVT VT = ValueVTs[Val];
9778       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9779                                                       F.getCallingConv(), VT);
9780       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9781           *CurDAG->getContext(), F.getCallingConv(), VT);
9782 
9783       // Even an apparant 'unused' swifterror argument needs to be returned. So
9784       // we do generate a copy for it that can be used on return from the
9785       // function.
9786       if (ArgHasUses || isSwiftErrorArg) {
9787         Optional<ISD::NodeType> AssertOp;
9788         if (Arg.hasAttribute(Attribute::SExt))
9789           AssertOp = ISD::AssertSext;
9790         else if (Arg.hasAttribute(Attribute::ZExt))
9791           AssertOp = ISD::AssertZext;
9792 
9793         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9794                                              PartVT, VT, nullptr,
9795                                              F.getCallingConv(), AssertOp));
9796       }
9797 
9798       i += NumParts;
9799     }
9800 
9801     // We don't need to do anything else for unused arguments.
9802     if (ArgValues.empty())
9803       continue;
9804 
9805     // Note down frame index.
9806     if (FrameIndexSDNode *FI =
9807         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9808       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9809 
9810     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9811                                      SDB->getCurSDLoc());
9812 
9813     SDB->setValue(&Arg, Res);
9814     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9815       // We want to associate the argument with the frame index, among
9816       // involved operands, that correspond to the lowest address. The
9817       // getCopyFromParts function, called earlier, is swapping the order of
9818       // the operands to BUILD_PAIR depending on endianness. The result of
9819       // that swapping is that the least significant bits of the argument will
9820       // be in the first operand of the BUILD_PAIR node, and the most
9821       // significant bits will be in the second operand.
9822       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9823       if (LoadSDNode *LNode =
9824           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9825         if (FrameIndexSDNode *FI =
9826             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9827           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9828     }
9829 
9830     // Update the SwiftErrorVRegDefMap.
9831     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9832       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9833       if (Register::isVirtualRegister(Reg))
9834         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9835                                    Reg);
9836     }
9837 
9838     // If this argument is live outside of the entry block, insert a copy from
9839     // wherever we got it to the vreg that other BB's will reference it as.
9840     if (Res.getOpcode() == ISD::CopyFromReg) {
9841       // If we can, though, try to skip creating an unnecessary vreg.
9842       // FIXME: This isn't very clean... it would be nice to make this more
9843       // general.
9844       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9845       if (Register::isVirtualRegister(Reg)) {
9846         FuncInfo->ValueMap[&Arg] = Reg;
9847         continue;
9848       }
9849     }
9850     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9851       FuncInfo->InitializeRegForValue(&Arg);
9852       SDB->CopyToExportRegsIfNeeded(&Arg);
9853     }
9854   }
9855 
9856   if (!Chains.empty()) {
9857     Chains.push_back(NewRoot);
9858     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9859   }
9860 
9861   DAG.setRoot(NewRoot);
9862 
9863   assert(i == InVals.size() && "Argument register count mismatch!");
9864 
9865   // If any argument copy elisions occurred and we have debug info, update the
9866   // stale frame indices used in the dbg.declare variable info table.
9867   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9868   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9869     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9870       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9871       if (I != ArgCopyElisionFrameIndexMap.end())
9872         VI.Slot = I->second;
9873     }
9874   }
9875 
9876   // Finally, if the target has anything special to do, allow it to do so.
9877   EmitFunctionEntryCode();
9878 }
9879 
9880 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9881 /// ensure constants are generated when needed.  Remember the virtual registers
9882 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9883 /// directly add them, because expansion might result in multiple MBB's for one
9884 /// BB.  As such, the start of the BB might correspond to a different MBB than
9885 /// the end.
9886 void
9887 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9888   const Instruction *TI = LLVMBB->getTerminator();
9889 
9890   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9891 
9892   // Check PHI nodes in successors that expect a value to be available from this
9893   // block.
9894   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9895     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9896     if (!isa<PHINode>(SuccBB->begin())) continue;
9897     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9898 
9899     // If this terminator has multiple identical successors (common for
9900     // switches), only handle each succ once.
9901     if (!SuccsHandled.insert(SuccMBB).second)
9902       continue;
9903 
9904     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9905 
9906     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9907     // nodes and Machine PHI nodes, but the incoming operands have not been
9908     // emitted yet.
9909     for (const PHINode &PN : SuccBB->phis()) {
9910       // Ignore dead phi's.
9911       if (PN.use_empty())
9912         continue;
9913 
9914       // Skip empty types
9915       if (PN.getType()->isEmptyTy())
9916         continue;
9917 
9918       unsigned Reg;
9919       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9920 
9921       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9922         unsigned &RegOut = ConstantsOut[C];
9923         if (RegOut == 0) {
9924           RegOut = FuncInfo.CreateRegs(C);
9925           CopyValueToVirtualRegister(C, RegOut);
9926         }
9927         Reg = RegOut;
9928       } else {
9929         DenseMap<const Value *, unsigned>::iterator I =
9930           FuncInfo.ValueMap.find(PHIOp);
9931         if (I != FuncInfo.ValueMap.end())
9932           Reg = I->second;
9933         else {
9934           assert(isa<AllocaInst>(PHIOp) &&
9935                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9936                  "Didn't codegen value into a register!??");
9937           Reg = FuncInfo.CreateRegs(PHIOp);
9938           CopyValueToVirtualRegister(PHIOp, Reg);
9939         }
9940       }
9941 
9942       // Remember that this register needs to added to the machine PHI node as
9943       // the input for this MBB.
9944       SmallVector<EVT, 4> ValueVTs;
9945       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9946       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9947       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9948         EVT VT = ValueVTs[vti];
9949         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9950         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9951           FuncInfo.PHINodesToUpdate.push_back(
9952               std::make_pair(&*MBBI++, Reg + i));
9953         Reg += NumRegisters;
9954       }
9955     }
9956   }
9957 
9958   ConstantsOut.clear();
9959 }
9960 
9961 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9962 /// is 0.
9963 MachineBasicBlock *
9964 SelectionDAGBuilder::StackProtectorDescriptor::
9965 AddSuccessorMBB(const BasicBlock *BB,
9966                 MachineBasicBlock *ParentMBB,
9967                 bool IsLikely,
9968                 MachineBasicBlock *SuccMBB) {
9969   // If SuccBB has not been created yet, create it.
9970   if (!SuccMBB) {
9971     MachineFunction *MF = ParentMBB->getParent();
9972     MachineFunction::iterator BBI(ParentMBB);
9973     SuccMBB = MF->CreateMachineBasicBlock(BB);
9974     MF->insert(++BBI, SuccMBB);
9975   }
9976   // Add it as a successor of ParentMBB.
9977   ParentMBB->addSuccessor(
9978       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9979   return SuccMBB;
9980 }
9981 
9982 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9983   MachineFunction::iterator I(MBB);
9984   if (++I == FuncInfo.MF->end())
9985     return nullptr;
9986   return &*I;
9987 }
9988 
9989 /// During lowering new call nodes can be created (such as memset, etc.).
9990 /// Those will become new roots of the current DAG, but complications arise
9991 /// when they are tail calls. In such cases, the call lowering will update
9992 /// the root, but the builder still needs to know that a tail call has been
9993 /// lowered in order to avoid generating an additional return.
9994 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9995   // If the node is null, we do have a tail call.
9996   if (MaybeTC.getNode() != nullptr)
9997     DAG.setRoot(MaybeTC);
9998   else
9999     HasTailCall = true;
10000 }
10001 
10002 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10003                                         MachineBasicBlock *SwitchMBB,
10004                                         MachineBasicBlock *DefaultMBB) {
10005   MachineFunction *CurMF = FuncInfo.MF;
10006   MachineBasicBlock *NextMBB = nullptr;
10007   MachineFunction::iterator BBI(W.MBB);
10008   if (++BBI != FuncInfo.MF->end())
10009     NextMBB = &*BBI;
10010 
10011   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10012 
10013   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10014 
10015   if (Size == 2 && W.MBB == SwitchMBB) {
10016     // If any two of the cases has the same destination, and if one value
10017     // is the same as the other, but has one bit unset that the other has set,
10018     // use bit manipulation to do two compares at once.  For example:
10019     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10020     // TODO: This could be extended to merge any 2 cases in switches with 3
10021     // cases.
10022     // TODO: Handle cases where W.CaseBB != SwitchBB.
10023     CaseCluster &Small = *W.FirstCluster;
10024     CaseCluster &Big = *W.LastCluster;
10025 
10026     if (Small.Low == Small.High && Big.Low == Big.High &&
10027         Small.MBB == Big.MBB) {
10028       const APInt &SmallValue = Small.Low->getValue();
10029       const APInt &BigValue = Big.Low->getValue();
10030 
10031       // Check that there is only one bit different.
10032       APInt CommonBit = BigValue ^ SmallValue;
10033       if (CommonBit.isPowerOf2()) {
10034         SDValue CondLHS = getValue(Cond);
10035         EVT VT = CondLHS.getValueType();
10036         SDLoc DL = getCurSDLoc();
10037 
10038         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10039                                  DAG.getConstant(CommonBit, DL, VT));
10040         SDValue Cond = DAG.getSetCC(
10041             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10042             ISD::SETEQ);
10043 
10044         // Update successor info.
10045         // Both Small and Big will jump to Small.BB, so we sum up the
10046         // probabilities.
10047         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10048         if (BPI)
10049           addSuccessorWithProb(
10050               SwitchMBB, DefaultMBB,
10051               // The default destination is the first successor in IR.
10052               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10053         else
10054           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10055 
10056         // Insert the true branch.
10057         SDValue BrCond =
10058             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10059                         DAG.getBasicBlock(Small.MBB));
10060         // Insert the false branch.
10061         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10062                              DAG.getBasicBlock(DefaultMBB));
10063 
10064         DAG.setRoot(BrCond);
10065         return;
10066       }
10067     }
10068   }
10069 
10070   if (TM.getOptLevel() != CodeGenOpt::None) {
10071     // Here, we order cases by probability so the most likely case will be
10072     // checked first. However, two clusters can have the same probability in
10073     // which case their relative ordering is non-deterministic. So we use Low
10074     // as a tie-breaker as clusters are guaranteed to never overlap.
10075     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10076                [](const CaseCluster &a, const CaseCluster &b) {
10077       return a.Prob != b.Prob ?
10078              a.Prob > b.Prob :
10079              a.Low->getValue().slt(b.Low->getValue());
10080     });
10081 
10082     // Rearrange the case blocks so that the last one falls through if possible
10083     // without changing the order of probabilities.
10084     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10085       --I;
10086       if (I->Prob > W.LastCluster->Prob)
10087         break;
10088       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10089         std::swap(*I, *W.LastCluster);
10090         break;
10091       }
10092     }
10093   }
10094 
10095   // Compute total probability.
10096   BranchProbability DefaultProb = W.DefaultProb;
10097   BranchProbability UnhandledProbs = DefaultProb;
10098   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10099     UnhandledProbs += I->Prob;
10100 
10101   MachineBasicBlock *CurMBB = W.MBB;
10102   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10103     bool FallthroughUnreachable = false;
10104     MachineBasicBlock *Fallthrough;
10105     if (I == W.LastCluster) {
10106       // For the last cluster, fall through to the default destination.
10107       Fallthrough = DefaultMBB;
10108       FallthroughUnreachable = isa<UnreachableInst>(
10109           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10110     } else {
10111       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10112       CurMF->insert(BBI, Fallthrough);
10113       // Put Cond in a virtual register to make it available from the new blocks.
10114       ExportFromCurrentBlock(Cond);
10115     }
10116     UnhandledProbs -= I->Prob;
10117 
10118     switch (I->Kind) {
10119       case CC_JumpTable: {
10120         // FIXME: Optimize away range check based on pivot comparisons.
10121         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10122         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10123 
10124         // The jump block hasn't been inserted yet; insert it here.
10125         MachineBasicBlock *JumpMBB = JT->MBB;
10126         CurMF->insert(BBI, JumpMBB);
10127 
10128         auto JumpProb = I->Prob;
10129         auto FallthroughProb = UnhandledProbs;
10130 
10131         // If the default statement is a target of the jump table, we evenly
10132         // distribute the default probability to successors of CurMBB. Also
10133         // update the probability on the edge from JumpMBB to Fallthrough.
10134         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10135                                               SE = JumpMBB->succ_end();
10136              SI != SE; ++SI) {
10137           if (*SI == DefaultMBB) {
10138             JumpProb += DefaultProb / 2;
10139             FallthroughProb -= DefaultProb / 2;
10140             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10141             JumpMBB->normalizeSuccProbs();
10142             break;
10143           }
10144         }
10145 
10146         if (FallthroughUnreachable) {
10147           // Skip the range check if the fallthrough block is unreachable.
10148           JTH->OmitRangeCheck = true;
10149         }
10150 
10151         if (!JTH->OmitRangeCheck)
10152           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10153         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10154         CurMBB->normalizeSuccProbs();
10155 
10156         // The jump table header will be inserted in our current block, do the
10157         // range check, and fall through to our fallthrough block.
10158         JTH->HeaderBB = CurMBB;
10159         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10160 
10161         // If we're in the right place, emit the jump table header right now.
10162         if (CurMBB == SwitchMBB) {
10163           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10164           JTH->Emitted = true;
10165         }
10166         break;
10167       }
10168       case CC_BitTests: {
10169         // FIXME: If Fallthrough is unreachable, skip the range check.
10170 
10171         // FIXME: Optimize away range check based on pivot comparisons.
10172         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10173 
10174         // The bit test blocks haven't been inserted yet; insert them here.
10175         for (BitTestCase &BTC : BTB->Cases)
10176           CurMF->insert(BBI, BTC.ThisBB);
10177 
10178         // Fill in fields of the BitTestBlock.
10179         BTB->Parent = CurMBB;
10180         BTB->Default = Fallthrough;
10181 
10182         BTB->DefaultProb = UnhandledProbs;
10183         // If the cases in bit test don't form a contiguous range, we evenly
10184         // distribute the probability on the edge to Fallthrough to two
10185         // successors of CurMBB.
10186         if (!BTB->ContiguousRange) {
10187           BTB->Prob += DefaultProb / 2;
10188           BTB->DefaultProb -= DefaultProb / 2;
10189         }
10190 
10191         // If we're in the right place, emit the bit test header right now.
10192         if (CurMBB == SwitchMBB) {
10193           visitBitTestHeader(*BTB, SwitchMBB);
10194           BTB->Emitted = true;
10195         }
10196         break;
10197       }
10198       case CC_Range: {
10199         const Value *RHS, *LHS, *MHS;
10200         ISD::CondCode CC;
10201         if (I->Low == I->High) {
10202           // Check Cond == I->Low.
10203           CC = ISD::SETEQ;
10204           LHS = Cond;
10205           RHS=I->Low;
10206           MHS = nullptr;
10207         } else {
10208           // Check I->Low <= Cond <= I->High.
10209           CC = ISD::SETLE;
10210           LHS = I->Low;
10211           MHS = Cond;
10212           RHS = I->High;
10213         }
10214 
10215         // If Fallthrough is unreachable, fold away the comparison.
10216         if (FallthroughUnreachable)
10217           CC = ISD::SETTRUE;
10218 
10219         // The false probability is the sum of all unhandled cases.
10220         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10221                      getCurSDLoc(), I->Prob, UnhandledProbs);
10222 
10223         if (CurMBB == SwitchMBB)
10224           visitSwitchCase(CB, SwitchMBB);
10225         else
10226           SL->SwitchCases.push_back(CB);
10227 
10228         break;
10229       }
10230     }
10231     CurMBB = Fallthrough;
10232   }
10233 }
10234 
10235 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10236                                               CaseClusterIt First,
10237                                               CaseClusterIt Last) {
10238   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10239     if (X.Prob != CC.Prob)
10240       return X.Prob > CC.Prob;
10241 
10242     // Ties are broken by comparing the case value.
10243     return X.Low->getValue().slt(CC.Low->getValue());
10244   });
10245 }
10246 
10247 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10248                                         const SwitchWorkListItem &W,
10249                                         Value *Cond,
10250                                         MachineBasicBlock *SwitchMBB) {
10251   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10252          "Clusters not sorted?");
10253 
10254   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10255 
10256   // Balance the tree based on branch probabilities to create a near-optimal (in
10257   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10258   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10259   CaseClusterIt LastLeft = W.FirstCluster;
10260   CaseClusterIt FirstRight = W.LastCluster;
10261   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10262   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10263 
10264   // Move LastLeft and FirstRight towards each other from opposite directions to
10265   // find a partitioning of the clusters which balances the probability on both
10266   // sides. If LeftProb and RightProb are equal, alternate which side is
10267   // taken to ensure 0-probability nodes are distributed evenly.
10268   unsigned I = 0;
10269   while (LastLeft + 1 < FirstRight) {
10270     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10271       LeftProb += (++LastLeft)->Prob;
10272     else
10273       RightProb += (--FirstRight)->Prob;
10274     I++;
10275   }
10276 
10277   while (true) {
10278     // Our binary search tree differs from a typical BST in that ours can have up
10279     // to three values in each leaf. The pivot selection above doesn't take that
10280     // into account, which means the tree might require more nodes and be less
10281     // efficient. We compensate for this here.
10282 
10283     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10284     unsigned NumRight = W.LastCluster - FirstRight + 1;
10285 
10286     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10287       // If one side has less than 3 clusters, and the other has more than 3,
10288       // consider taking a cluster from the other side.
10289 
10290       if (NumLeft < NumRight) {
10291         // Consider moving the first cluster on the right to the left side.
10292         CaseCluster &CC = *FirstRight;
10293         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10294         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10295         if (LeftSideRank <= RightSideRank) {
10296           // Moving the cluster to the left does not demote it.
10297           ++LastLeft;
10298           ++FirstRight;
10299           continue;
10300         }
10301       } else {
10302         assert(NumRight < NumLeft);
10303         // Consider moving the last element on the left to the right side.
10304         CaseCluster &CC = *LastLeft;
10305         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10306         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10307         if (RightSideRank <= LeftSideRank) {
10308           // Moving the cluster to the right does not demot it.
10309           --LastLeft;
10310           --FirstRight;
10311           continue;
10312         }
10313       }
10314     }
10315     break;
10316   }
10317 
10318   assert(LastLeft + 1 == FirstRight);
10319   assert(LastLeft >= W.FirstCluster);
10320   assert(FirstRight <= W.LastCluster);
10321 
10322   // Use the first element on the right as pivot since we will make less-than
10323   // comparisons against it.
10324   CaseClusterIt PivotCluster = FirstRight;
10325   assert(PivotCluster > W.FirstCluster);
10326   assert(PivotCluster <= W.LastCluster);
10327 
10328   CaseClusterIt FirstLeft = W.FirstCluster;
10329   CaseClusterIt LastRight = W.LastCluster;
10330 
10331   const ConstantInt *Pivot = PivotCluster->Low;
10332 
10333   // New blocks will be inserted immediately after the current one.
10334   MachineFunction::iterator BBI(W.MBB);
10335   ++BBI;
10336 
10337   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10338   // we can branch to its destination directly if it's squeezed exactly in
10339   // between the known lower bound and Pivot - 1.
10340   MachineBasicBlock *LeftMBB;
10341   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10342       FirstLeft->Low == W.GE &&
10343       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10344     LeftMBB = FirstLeft->MBB;
10345   } else {
10346     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10347     FuncInfo.MF->insert(BBI, LeftMBB);
10348     WorkList.push_back(
10349         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10350     // Put Cond in a virtual register to make it available from the new blocks.
10351     ExportFromCurrentBlock(Cond);
10352   }
10353 
10354   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10355   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10356   // directly if RHS.High equals the current upper bound.
10357   MachineBasicBlock *RightMBB;
10358   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10359       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10360     RightMBB = FirstRight->MBB;
10361   } else {
10362     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10363     FuncInfo.MF->insert(BBI, RightMBB);
10364     WorkList.push_back(
10365         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10366     // Put Cond in a virtual register to make it available from the new blocks.
10367     ExportFromCurrentBlock(Cond);
10368   }
10369 
10370   // Create the CaseBlock record that will be used to lower the branch.
10371   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10372                getCurSDLoc(), LeftProb, RightProb);
10373 
10374   if (W.MBB == SwitchMBB)
10375     visitSwitchCase(CB, SwitchMBB);
10376   else
10377     SL->SwitchCases.push_back(CB);
10378 }
10379 
10380 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10381 // from the swith statement.
10382 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10383                                             BranchProbability PeeledCaseProb) {
10384   if (PeeledCaseProb == BranchProbability::getOne())
10385     return BranchProbability::getZero();
10386   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10387 
10388   uint32_t Numerator = CaseProb.getNumerator();
10389   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10390   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10391 }
10392 
10393 // Try to peel the top probability case if it exceeds the threshold.
10394 // Return current MachineBasicBlock for the switch statement if the peeling
10395 // does not occur.
10396 // If the peeling is performed, return the newly created MachineBasicBlock
10397 // for the peeled switch statement. Also update Clusters to remove the peeled
10398 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10399 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10400     const SwitchInst &SI, CaseClusterVector &Clusters,
10401     BranchProbability &PeeledCaseProb) {
10402   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10403   // Don't perform if there is only one cluster or optimizing for size.
10404   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10405       TM.getOptLevel() == CodeGenOpt::None ||
10406       SwitchMBB->getParent()->getFunction().hasMinSize())
10407     return SwitchMBB;
10408 
10409   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10410   unsigned PeeledCaseIndex = 0;
10411   bool SwitchPeeled = false;
10412   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10413     CaseCluster &CC = Clusters[Index];
10414     if (CC.Prob < TopCaseProb)
10415       continue;
10416     TopCaseProb = CC.Prob;
10417     PeeledCaseIndex = Index;
10418     SwitchPeeled = true;
10419   }
10420   if (!SwitchPeeled)
10421     return SwitchMBB;
10422 
10423   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10424                     << TopCaseProb << "\n");
10425 
10426   // Record the MBB for the peeled switch statement.
10427   MachineFunction::iterator BBI(SwitchMBB);
10428   ++BBI;
10429   MachineBasicBlock *PeeledSwitchMBB =
10430       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10431   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10432 
10433   ExportFromCurrentBlock(SI.getCondition());
10434   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10435   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10436                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10437   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10438 
10439   Clusters.erase(PeeledCaseIt);
10440   for (CaseCluster &CC : Clusters) {
10441     LLVM_DEBUG(
10442         dbgs() << "Scale the probablity for one cluster, before scaling: "
10443                << CC.Prob << "\n");
10444     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10445     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10446   }
10447   PeeledCaseProb = TopCaseProb;
10448   return PeeledSwitchMBB;
10449 }
10450 
10451 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10452   // Extract cases from the switch.
10453   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10454   CaseClusterVector Clusters;
10455   Clusters.reserve(SI.getNumCases());
10456   for (auto I : SI.cases()) {
10457     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10458     const ConstantInt *CaseVal = I.getCaseValue();
10459     BranchProbability Prob =
10460         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10461             : BranchProbability(1, SI.getNumCases() + 1);
10462     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10463   }
10464 
10465   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10466 
10467   // Cluster adjacent cases with the same destination. We do this at all
10468   // optimization levels because it's cheap to do and will make codegen faster
10469   // if there are many clusters.
10470   sortAndRangeify(Clusters);
10471 
10472   // The branch probablity of the peeled case.
10473   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10474   MachineBasicBlock *PeeledSwitchMBB =
10475       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10476 
10477   // If there is only the default destination, jump there directly.
10478   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10479   if (Clusters.empty()) {
10480     assert(PeeledSwitchMBB == SwitchMBB);
10481     SwitchMBB->addSuccessor(DefaultMBB);
10482     if (DefaultMBB != NextBlock(SwitchMBB)) {
10483       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10484                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10485     }
10486     return;
10487   }
10488 
10489   SL->findJumpTables(Clusters, &SI, DefaultMBB);
10490   SL->findBitTestClusters(Clusters, &SI);
10491 
10492   LLVM_DEBUG({
10493     dbgs() << "Case clusters: ";
10494     for (const CaseCluster &C : Clusters) {
10495       if (C.Kind == CC_JumpTable)
10496         dbgs() << "JT:";
10497       if (C.Kind == CC_BitTests)
10498         dbgs() << "BT:";
10499 
10500       C.Low->getValue().print(dbgs(), true);
10501       if (C.Low != C.High) {
10502         dbgs() << '-';
10503         C.High->getValue().print(dbgs(), true);
10504       }
10505       dbgs() << ' ';
10506     }
10507     dbgs() << '\n';
10508   });
10509 
10510   assert(!Clusters.empty());
10511   SwitchWorkList WorkList;
10512   CaseClusterIt First = Clusters.begin();
10513   CaseClusterIt Last = Clusters.end() - 1;
10514   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10515   // Scale the branchprobability for DefaultMBB if the peel occurs and
10516   // DefaultMBB is not replaced.
10517   if (PeeledCaseProb != BranchProbability::getZero() &&
10518       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10519     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10520   WorkList.push_back(
10521       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10522 
10523   while (!WorkList.empty()) {
10524     SwitchWorkListItem W = WorkList.back();
10525     WorkList.pop_back();
10526     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10527 
10528     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10529         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10530       // For optimized builds, lower large range as a balanced binary tree.
10531       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10532       continue;
10533     }
10534 
10535     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10536   }
10537 }
10538