1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include "llvm/Transforms/Utils/Local.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstddef> 116 #include <cstdint> 117 #include <cstring> 118 #include <iterator> 119 #include <limits> 120 #include <numeric> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace PatternMatch; 127 using namespace SwitchCG; 128 129 #define DEBUG_TYPE "isel" 130 131 /// LimitFloatPrecision - Generate low-precision inline sequences for 132 /// some float libcalls (6, 8 or 12 bits). 133 static unsigned LimitFloatPrecision; 134 135 static cl::opt<unsigned, true> 136 LimitFPPrecision("limit-float-precision", 137 cl::desc("Generate low-precision inline sequences " 138 "for some float libcalls"), 139 cl::location(LimitFloatPrecision), cl::Hidden, 140 cl::init(0)); 141 142 static cl::opt<unsigned> SwitchPeelThreshold( 143 "switch-peel-threshold", cl::Hidden, cl::init(66), 144 cl::desc("Set the case probability threshold for peeling the case from a " 145 "switch statement. A value greater than 100 will void this " 146 "optimization")); 147 148 // Limit the width of DAG chains. This is important in general to prevent 149 // DAG-based analysis from blowing up. For example, alias analysis and 150 // load clustering may not complete in reasonable time. It is difficult to 151 // recognize and avoid this situation within each individual analysis, and 152 // future analyses are likely to have the same behavior. Limiting DAG width is 153 // the safe approach and will be especially important with global DAGs. 154 // 155 // MaxParallelChains default is arbitrarily high to avoid affecting 156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 157 // sequence over this should have been converted to llvm.memcpy by the 158 // frontend. It is easy to induce this behavior with .ll code such as: 159 // %buffer = alloca [4096 x i8] 160 // %data = load [4096 x i8]* %argPtr 161 // store [4096 x i8] %data, [4096 x i8]* %buffer 162 static const unsigned MaxParallelChains = 64; 163 164 // Return the calling convention if the Value passed requires ABI mangling as it 165 // is a parameter to a function or a return value from a function which is not 166 // an intrinsic. 167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 168 if (auto *R = dyn_cast<ReturnInst>(V)) 169 return R->getParent()->getParent()->getCallingConv(); 170 171 if (auto *CI = dyn_cast<CallInst>(V)) { 172 const bool IsInlineAsm = CI->isInlineAsm(); 173 const bool IsIndirectFunctionCall = 174 !IsInlineAsm && !CI->getCalledFunction(); 175 176 // It is possible that the call instruction is an inline asm statement or an 177 // indirect function call in which case the return value of 178 // getCalledFunction() would be nullptr. 179 const bool IsInstrinsicCall = 180 !IsInlineAsm && !IsIndirectFunctionCall && 181 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 182 183 if (!IsInlineAsm && !IsInstrinsicCall) 184 return CI->getCallingConv(); 185 } 186 187 return None; 188 } 189 190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<CallingConv::ID> CC); 194 195 /// getCopyFromParts - Create a value that contains the specified legal parts 196 /// combined into the value they represent. If the parts combine to a type 197 /// larger than ValueVT then AssertOp can be used to specify whether the extra 198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 199 /// (ISD::AssertSext). 200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 201 const SDValue *Parts, unsigned NumParts, 202 MVT PartVT, EVT ValueVT, const Value *V, 203 Optional<CallingConv::ID> CC = None, 204 Optional<ISD::NodeType> AssertOp = None) { 205 if (ValueVT.isVector()) 206 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 207 CC); 208 209 assert(NumParts > 0 && "No parts to assemble!"); 210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 211 SDValue Val = Parts[0]; 212 213 if (NumParts > 1) { 214 // Assemble the value from multiple parts. 215 if (ValueVT.isInteger()) { 216 unsigned PartBits = PartVT.getSizeInBits(); 217 unsigned ValueBits = ValueVT.getSizeInBits(); 218 219 // Assemble the power of 2 part. 220 unsigned RoundParts = 221 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 222 unsigned RoundBits = PartBits * RoundParts; 223 EVT RoundVT = RoundBits == ValueBits ? 224 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 225 SDValue Lo, Hi; 226 227 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 228 229 if (RoundParts > 2) { 230 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 231 PartVT, HalfVT, V); 232 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 233 RoundParts / 2, PartVT, HalfVT, V); 234 } else { 235 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 237 } 238 239 if (DAG.getDataLayout().isBigEndian()) 240 std::swap(Lo, Hi); 241 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 243 244 if (RoundParts < NumParts) { 245 // Assemble the trailing non-power-of-2 part. 246 unsigned OddParts = NumParts - RoundParts; 247 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 248 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 249 OddVT, V, CC); 250 251 // Combine the round and odd parts. 252 Lo = Val; 253 if (DAG.getDataLayout().isBigEndian()) 254 std::swap(Lo, Hi); 255 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 256 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 257 Hi = 258 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 259 DAG.getConstant(Lo.getValueSizeInBits(), DL, 260 TLI.getPointerTy(DAG.getDataLayout()))); 261 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 262 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 263 } 264 } else if (PartVT.isFloatingPoint()) { 265 // FP split into multiple FP parts (for ppcf128) 266 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 267 "Unexpected split"); 268 SDValue Lo, Hi; 269 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 270 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 271 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 272 std::swap(Lo, Hi); 273 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 274 } else { 275 // FP split into integer parts (soft fp) 276 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 277 !PartVT.isVector() && "Unexpected split"); 278 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 279 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 280 } 281 } 282 283 // There is now one part, held in Val. Correct it to match ValueVT. 284 // PartEVT is the type of the register class that holds the value. 285 // ValueVT is the type of the inline asm operation. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 292 ValueVT.bitsLT(PartEVT)) { 293 // For an FP value in an integer part, we need to truncate to the right 294 // width first. 295 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 297 } 298 299 // Handle types that have the same size. 300 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 301 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 302 303 // Handle types with different sizes. 304 if (PartEVT.isInteger() && ValueVT.isInteger()) { 305 if (ValueVT.bitsLT(PartEVT)) { 306 // For a truncate, see if we have any information to 307 // indicate whether the truncated bits will always be 308 // zero or sign-extension. 309 if (AssertOp.hasValue()) 310 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 311 DAG.getValueType(ValueVT)); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 315 } 316 317 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 318 // FP_ROUND's are always exact here. 319 if (ValueVT.bitsLT(Val.getValueType())) 320 return DAG.getNode( 321 ISD::FP_ROUND, DL, ValueVT, Val, 322 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 323 324 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 325 } 326 327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 328 // then truncating. 329 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 330 ValueVT.bitsLT(PartEVT)) { 331 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 332 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 336 } 337 338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 339 const Twine &ErrMsg) { 340 const Instruction *I = dyn_cast_or_null<Instruction>(V); 341 if (!V) 342 return Ctx.emitError(ErrMsg); 343 344 const char *AsmError = ", possible invalid constraint for vector type"; 345 if (const CallInst *CI = dyn_cast<CallInst>(I)) 346 if (isa<InlineAsm>(CI->getCalledValue())) 347 return Ctx.emitError(I, ErrMsg + AsmError); 348 349 return Ctx.emitError(I, ErrMsg); 350 } 351 352 /// getCopyFromPartsVector - Create a value that contains the specified legal 353 /// parts combined into the value they represent. If the parts combine to a 354 /// type larger than ValueVT then AssertOp can be used to specify whether the 355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 356 /// ValueVT (ISD::AssertSext). 357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 358 const SDValue *Parts, unsigned NumParts, 359 MVT PartVT, EVT ValueVT, const Value *V, 360 Optional<CallingConv::ID> CallConv) { 361 assert(ValueVT.isVector() && "Not a vector value"); 362 assert(NumParts > 0 && "No parts to assemble!"); 363 const bool IsABIRegCopy = CallConv.hasValue(); 364 365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 366 SDValue Val = Parts[0]; 367 368 // Handle a multi-element vector. 369 if (NumParts > 1) { 370 EVT IntermediateVT; 371 MVT RegisterVT; 372 unsigned NumIntermediates; 373 unsigned NumRegs; 374 375 if (IsABIRegCopy) { 376 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 377 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 378 NumIntermediates, RegisterVT); 379 } else { 380 NumRegs = 381 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } 384 385 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 386 NumParts = NumRegs; // Silence a compiler warning. 387 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 388 assert(RegisterVT.getSizeInBits() == 389 Parts[0].getSimpleValueType().getSizeInBits() && 390 "Part type sizes don't match!"); 391 392 // Assemble the parts into intermediate operands. 393 SmallVector<SDValue, 8> Ops(NumIntermediates); 394 if (NumIntermediates == NumParts) { 395 // If the register was not expanded, truncate or copy the value, 396 // as appropriate. 397 for (unsigned i = 0; i != NumParts; ++i) 398 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 399 PartVT, IntermediateVT, V); 400 } else if (NumParts > 0) { 401 // If the intermediate type was expanded, build the intermediate 402 // operands from the parts. 403 assert(NumParts % NumIntermediates == 0 && 404 "Must expand into a divisible number of parts!"); 405 unsigned Factor = NumParts / NumIntermediates; 406 for (unsigned i = 0; i != NumIntermediates; ++i) 407 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 408 PartVT, IntermediateVT, V); 409 } 410 411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 412 // intermediate operands. 413 EVT BuiltVectorTy = 414 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 415 (IntermediateVT.isVector() 416 ? IntermediateVT.getVectorNumElements() * NumParts 417 : NumIntermediates)); 418 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 419 : ISD::BUILD_VECTOR, 420 DL, BuiltVectorTy, Ops); 421 } 422 423 // There is now one part, held in Val. Correct it to match ValueVT. 424 EVT PartEVT = Val.getValueType(); 425 426 if (PartEVT == ValueVT) 427 return Val; 428 429 if (PartEVT.isVector()) { 430 // If the element type of the source/dest vectors are the same, but the 431 // parts vector has more elements than the value vector, then we have a 432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 433 // elements we want. 434 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 435 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 436 "Cannot narrow, it would be a lossy transformation"); 437 return DAG.getNode( 438 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 439 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 440 } 441 442 // Vector/Vector bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 446 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 447 "Cannot handle this kind of promotion"); 448 // Promoted vector extract 449 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 450 451 } 452 453 // Trivial bitcast if the types are the same size and the destination 454 // vector type is legal. 455 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 456 TLI.isTypeLegal(ValueVT)) 457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 458 459 if (ValueVT.getVectorNumElements() != 1) { 460 // Certain ABIs require that vectors are passed as integers. For vectors 461 // are the same size, this is an obvious bitcast. 462 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 465 // Bitcast Val back the original type and extract the corresponding 466 // vector we want. 467 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 468 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 469 ValueVT.getVectorElementType(), Elts); 470 Val = DAG.getBitcast(WiderVecType, Val); 471 return DAG.getNode( 472 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 473 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 474 } 475 476 diagnosePossiblyInvalidConstraint( 477 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 478 return DAG.getUNDEF(ValueVT); 479 } 480 481 // Handle cases such as i8 -> <1 x i1> 482 EVT ValueSVT = ValueVT.getVectorElementType(); 483 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 484 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 485 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 486 487 return DAG.getBuildVector(ValueVT, DL, Val); 488 } 489 490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 491 SDValue Val, SDValue *Parts, unsigned NumParts, 492 MVT PartVT, const Value *V, 493 Optional<CallingConv::ID> CallConv); 494 495 /// getCopyToParts - Create a series of nodes that contain the specified value 496 /// split into legal parts. If the parts contain more bits than Val, then, for 497 /// integers, ExtendKind can be used to specify how to generate the extra bits. 498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 499 SDValue *Parts, unsigned NumParts, MVT PartVT, 500 const Value *V, 501 Optional<CallingConv::ID> CallConv = None, 502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 503 EVT ValueVT = Val.getValueType(); 504 505 // Handle the vector case separately. 506 if (ValueVT.isVector()) 507 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 508 CallConv); 509 510 unsigned PartBits = PartVT.getSizeInBits(); 511 unsigned OrigNumParts = NumParts; 512 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 513 "Copying to an illegal type!"); 514 515 if (NumParts == 0) 516 return; 517 518 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 assert(NumParts == 1 && "No-op copy with multiple parts!"); 522 Parts[0] = Val; 523 return; 524 } 525 526 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 527 // If the parts cover more bits than the value has, promote the value. 528 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 529 assert(NumParts == 1 && "Do not know what to promote to!"); 530 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 531 } else { 532 if (ValueVT.isFloatingPoint()) { 533 // FP values need to be bitcast, then extended if they are being put 534 // into a larger container. 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 536 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 537 } 538 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 539 ValueVT.isInteger() && 540 "Unknown mismatch!"); 541 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 542 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 543 if (PartVT == MVT::x86mmx) 544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 545 } 546 } else if (PartBits == ValueVT.getSizeInBits()) { 547 // Different types of the same size. 548 assert(NumParts == 1 && PartEVT != ValueVT); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 551 // If the parts cover less bits than value has, truncate the value. 552 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 553 ValueVT.isInteger() && 554 "Unknown mismatch!"); 555 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 556 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 557 if (PartVT == MVT::x86mmx) 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 // The value may have changed - recompute ValueVT. 562 ValueVT = Val.getValueType(); 563 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 564 "Failed to tile the value with PartVT!"); 565 566 if (NumParts == 1) { 567 if (PartEVT != ValueVT) { 568 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 569 "scalar-to-vector conversion failed"); 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 Parts[0] = Val; 574 return; 575 } 576 577 // Expand the value into multiple parts. 578 if (NumParts & (NumParts - 1)) { 579 // The number of parts is not a power of 2. Split off and copy the tail. 580 assert(PartVT.isInteger() && ValueVT.isInteger() && 581 "Do not know what to expand to!"); 582 unsigned RoundParts = 1 << Log2_32(NumParts); 583 unsigned RoundBits = RoundParts * PartBits; 584 unsigned OddParts = NumParts - RoundParts; 585 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 586 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 587 588 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 589 CallConv); 590 591 if (DAG.getDataLayout().isBigEndian()) 592 // The odd parts were reversed by getCopyToParts - unreverse them. 593 std::reverse(Parts + RoundParts, Parts + NumParts); 594 595 NumParts = RoundParts; 596 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 598 } 599 600 // The number of parts is a power of 2. Repeatedly bisect the value using 601 // EXTRACT_ELEMENT. 602 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 603 EVT::getIntegerVT(*DAG.getContext(), 604 ValueVT.getSizeInBits()), 605 Val); 606 607 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 608 for (unsigned i = 0; i < NumParts; i += StepSize) { 609 unsigned ThisBits = StepSize * PartBits / 2; 610 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 611 SDValue &Part0 = Parts[i]; 612 SDValue &Part1 = Parts[i+StepSize/2]; 613 614 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 615 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 616 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 617 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 618 619 if (ThisBits == PartBits && ThisVT != PartVT) { 620 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 621 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 622 } 623 } 624 } 625 626 if (DAG.getDataLayout().isBigEndian()) 627 std::reverse(Parts, Parts + OrigNumParts); 628 } 629 630 static SDValue widenVectorToPartType(SelectionDAG &DAG, 631 SDValue Val, const SDLoc &DL, EVT PartVT) { 632 if (!PartVT.isVector()) 633 return SDValue(); 634 635 EVT ValueVT = Val.getValueType(); 636 unsigned PartNumElts = PartVT.getVectorNumElements(); 637 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 638 if (PartNumElts > ValueNumElts && 639 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 640 EVT ElementVT = PartVT.getVectorElementType(); 641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 642 // undef elements. 643 SmallVector<SDValue, 16> Ops; 644 DAG.ExtractVectorElements(Val, Ops); 645 SDValue EltUndef = DAG.getUNDEF(ElementVT); 646 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 647 Ops.push_back(EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 return SDValue(); 654 } 655 656 /// getCopyToPartsVector - Create a series of nodes that contain the specified 657 /// value split into legal parts. 658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 659 SDValue Val, SDValue *Parts, unsigned NumParts, 660 MVT PartVT, const Value *V, 661 Optional<CallingConv::ID> CallConv) { 662 EVT ValueVT = Val.getValueType(); 663 assert(ValueVT.isVector() && "Not a vector"); 664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 665 const bool IsABIRegCopy = CallConv.hasValue(); 666 667 if (NumParts == 1) { 668 EVT PartEVT = PartVT; 669 if (PartEVT == ValueVT) { 670 // Nothing to do. 671 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 672 // Bitconvert vector->vector case. 673 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 674 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 675 Val = Widened; 676 } else if (PartVT.isVector() && 677 PartEVT.getVectorElementType().bitsGE( 678 ValueVT.getVectorElementType()) && 679 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 680 681 // Promoted vector extract 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } else { 684 if (ValueVT.getVectorNumElements() == 1) { 685 Val = DAG.getNode( 686 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 687 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 688 } else { 689 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 690 "lossy conversion of vector to scalar type"); 691 EVT IntermediateType = 692 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 693 Val = DAG.getBitcast(IntermediateType, Val); 694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 695 } 696 } 697 698 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 699 Parts[0] = Val; 700 return; 701 } 702 703 // Handle a multi-element vector. 704 EVT IntermediateVT; 705 MVT RegisterVT; 706 unsigned NumIntermediates; 707 unsigned NumRegs; 708 if (IsABIRegCopy) { 709 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 710 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } else { 713 NumRegs = 714 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } 717 718 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 719 NumParts = NumRegs; // Silence a compiler warning. 720 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 721 722 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 723 IntermediateVT.getVectorNumElements() : 1; 724 725 // Convert the vector to the appropiate type if necessary. 726 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 730 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 731 if (ValueVT != BuiltVectorTy) { 732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 733 Val = Widened; 734 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } 737 738 // Split the vector into intermediate operands. 739 SmallVector<SDValue, 8> Ops(NumIntermediates); 740 for (unsigned i = 0; i != NumIntermediates; ++i) { 741 if (IntermediateVT.isVector()) { 742 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 743 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 744 } else { 745 Ops[i] = DAG.getNode( 746 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 747 DAG.getConstant(i, DL, IdxVT)); 748 } 749 } 750 751 // Split the intermediate operands into legal parts. 752 if (NumParts == NumIntermediates) { 753 // If the register was not expanded, promote or copy the value, 754 // as appropriate. 755 for (unsigned i = 0; i != NumParts; ++i) 756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 757 } else if (NumParts > 0) { 758 // If the intermediate type was expanded, split each the value into 759 // legal parts. 760 assert(NumIntermediates != 0 && "division by zero"); 761 assert(NumParts % NumIntermediates == 0 && 762 "Must expand into a divisible number of parts!"); 763 unsigned Factor = NumParts / NumIntermediates; 764 for (unsigned i = 0; i != NumIntermediates; ++i) 765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 766 CallConv); 767 } 768 } 769 770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 771 EVT valuevt, Optional<CallingConv::ID> CC) 772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 773 RegCount(1, regs.size()), CallConv(CC) {} 774 775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 776 const DataLayout &DL, unsigned Reg, Type *Ty, 777 Optional<CallingConv::ID> CC) { 778 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 779 780 CallConv = CC; 781 782 for (EVT ValueVT : ValueVTs) { 783 unsigned NumRegs = 784 isABIMangled() 785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 786 : TLI.getNumRegisters(Context, ValueVT); 787 MVT RegisterVT = 788 isABIMangled() 789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getRegisterType(Context, ValueVT); 791 for (unsigned i = 0; i != NumRegs; ++i) 792 Regs.push_back(Reg + i); 793 RegVTs.push_back(RegisterVT); 794 RegCount.push_back(NumRegs); 795 Reg += NumRegs; 796 } 797 } 798 799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 800 FunctionLoweringInfo &FuncInfo, 801 const SDLoc &dl, SDValue &Chain, 802 SDValue *Flag, const Value *V) const { 803 // A Value with type {} or [0 x %t] needs no registers. 804 if (ValueVTs.empty()) 805 return SDValue(); 806 807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 808 809 // Assemble the legal parts into the final values. 810 SmallVector<SDValue, 4> Values(ValueVTs.size()); 811 SmallVector<SDValue, 8> Parts; 812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 // Copy the legal parts from the registers. 814 EVT ValueVT = ValueVTs[Value]; 815 unsigned NumRegs = RegCount[Value]; 816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 817 *DAG.getContext(), 818 CallConv.getValue(), RegVTs[Value]) 819 : RegVTs[Value]; 820 821 Parts.resize(NumRegs); 822 for (unsigned i = 0; i != NumRegs; ++i) { 823 SDValue P; 824 if (!Flag) { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 826 } else { 827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 828 *Flag = P.getValue(2); 829 } 830 831 Chain = P.getValue(1); 832 Parts[i] = P; 833 834 // If the source register was virtual and if we know something about it, 835 // add an assert node. 836 if (!Register::isVirtualRegister(Regs[Part + i]) || 837 !RegisterVT.isInteger()) 838 continue; 839 840 const FunctionLoweringInfo::LiveOutInfo *LOI = 841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 842 if (!LOI) 843 continue; 844 845 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 846 unsigned NumSignBits = LOI->NumSignBits; 847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 848 849 if (NumZeroBits == RegSize) { 850 // The current value is a zero. 851 // Explicitly express that as it would be easier for 852 // optimizations to kick in. 853 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 854 continue; 855 } 856 857 // FIXME: We capture more information than the dag can represent. For 858 // now, just use the tightest assertzext/assertsext possible. 859 bool isSExt; 860 EVT FromVT(MVT::Other); 861 if (NumZeroBits) { 862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 863 isSExt = false; 864 } else if (NumSignBits > 1) { 865 FromVT = 866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 867 isSExt = true; 868 } else { 869 continue; 870 } 871 // Add an assertion node. 872 assert(FromVT != MVT::Other); 873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 874 RegisterVT, P, DAG.getValueType(FromVT)); 875 } 876 877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 878 RegisterVT, ValueVT, V, CallConv); 879 Part += NumRegs; 880 Parts.clear(); 881 } 882 883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 884 } 885 886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 887 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 888 const Value *V, 889 ISD::NodeType PreferredExtendType) const { 890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 891 ISD::NodeType ExtendKind = PreferredExtendType; 892 893 // Get the list of the values's legal parts. 894 unsigned NumRegs = Regs.size(); 895 SmallVector<SDValue, 8> Parts(NumRegs); 896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 897 unsigned NumParts = RegCount[Value]; 898 899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 900 *DAG.getContext(), 901 CallConv.getValue(), RegVTs[Value]) 902 : RegVTs[Value]; 903 904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 905 ExtendKind = ISD::ZERO_EXTEND; 906 907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 908 NumParts, RegisterVT, V, CallConv, ExtendKind); 909 Part += NumParts; 910 } 911 912 // Copy the parts into the registers. 913 SmallVector<SDValue, 8> Chains(NumRegs); 914 for (unsigned i = 0; i != NumRegs; ++i) { 915 SDValue Part; 916 if (!Flag) { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 918 } else { 919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 920 *Flag = Part.getValue(1); 921 } 922 923 Chains[i] = Part.getValue(0); 924 } 925 926 if (NumRegs == 1 || Flag) 927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 928 // flagged to it. That is the CopyToReg nodes and the user are considered 929 // a single scheduling unit. If we create a TokenFactor and return it as 930 // chain, then the TokenFactor is both a predecessor (operand) of the 931 // user as well as a successor (the TF operands are flagged to the user). 932 // c1, f1 = CopyToReg 933 // c2, f2 = CopyToReg 934 // c3 = TokenFactor c1, c2 935 // ... 936 // = op c3, ..., f2 937 Chain = Chains[NumRegs-1]; 938 else 939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 940 } 941 942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 943 unsigned MatchingIdx, const SDLoc &dl, 944 SelectionDAG &DAG, 945 std::vector<SDValue> &Ops) const { 946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 947 948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 949 if (HasMatching) 950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 951 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 952 // Put the register class of the virtual registers in the flag word. That 953 // way, later passes can recompute register class constraints for inline 954 // assembly as well as normal instructions. 955 // Don't do this for tied operands that can use the regclass information 956 // from the def. 957 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 958 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 959 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 960 } 961 962 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 963 Ops.push_back(Res); 964 965 if (Code == InlineAsm::Kind_Clobber) { 966 // Clobbers should always have a 1:1 mapping with registers, and may 967 // reference registers that have illegal (e.g. vector) types. Hence, we 968 // shouldn't try to apply any sort of splitting logic to them. 969 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 970 "No 1:1 mapping from clobbers to regs?"); 971 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 972 (void)SP; 973 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 974 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 975 assert( 976 (Regs[I] != SP || 977 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 978 "If we clobbered the stack pointer, MFI should know about it."); 979 } 980 return; 981 } 982 983 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 984 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 985 MVT RegisterVT = RegVTs[Value]; 986 for (unsigned i = 0; i != NumRegs; ++i) { 987 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 988 unsigned TheReg = Regs[Reg++]; 989 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 990 } 991 } 992 } 993 994 SmallVector<std::pair<unsigned, unsigned>, 4> 995 RegsForValue::getRegsAndSizes() const { 996 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 997 unsigned I = 0; 998 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 999 unsigned RegCount = std::get<0>(CountAndVT); 1000 MVT RegisterVT = std::get<1>(CountAndVT); 1001 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1002 for (unsigned E = I + RegCount; I != E; ++I) 1003 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1004 } 1005 return OutVec; 1006 } 1007 1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1009 const TargetLibraryInfo *li) { 1010 AA = aa; 1011 GFI = gfi; 1012 LibInfo = li; 1013 DL = &DAG.getDataLayout(); 1014 Context = DAG.getContext(); 1015 LPadToCallSiteMap.clear(); 1016 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1017 } 1018 1019 void SelectionDAGBuilder::clear() { 1020 NodeMap.clear(); 1021 UnusedArgNodeMap.clear(); 1022 PendingLoads.clear(); 1023 PendingExports.clear(); 1024 CurInst = nullptr; 1025 HasTailCall = false; 1026 SDNodeOrder = LowestSDNodeOrder; 1027 StatepointLowering.clear(); 1028 } 1029 1030 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1031 DanglingDebugInfoMap.clear(); 1032 } 1033 1034 SDValue SelectionDAGBuilder::getRoot() { 1035 if (PendingLoads.empty()) 1036 return DAG.getRoot(); 1037 1038 if (PendingLoads.size() == 1) { 1039 SDValue Root = PendingLoads[0]; 1040 DAG.setRoot(Root); 1041 PendingLoads.clear(); 1042 return Root; 1043 } 1044 1045 // Otherwise, we have to make a token factor node. 1046 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1047 PendingLoads.clear(); 1048 DAG.setRoot(Root); 1049 return Root; 1050 } 1051 1052 SDValue SelectionDAGBuilder::getControlRoot() { 1053 SDValue Root = DAG.getRoot(); 1054 1055 if (PendingExports.empty()) 1056 return Root; 1057 1058 // Turn all of the CopyToReg chains into one factored node. 1059 if (Root.getOpcode() != ISD::EntryToken) { 1060 unsigned i = 0, e = PendingExports.size(); 1061 for (; i != e; ++i) { 1062 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1063 if (PendingExports[i].getNode()->getOperand(0) == Root) 1064 break; // Don't add the root if we already indirectly depend on it. 1065 } 1066 1067 if (i == e) 1068 PendingExports.push_back(Root); 1069 } 1070 1071 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1072 PendingExports); 1073 PendingExports.clear(); 1074 DAG.setRoot(Root); 1075 return Root; 1076 } 1077 1078 void SelectionDAGBuilder::visit(const Instruction &I) { 1079 // Set up outgoing PHI node register values before emitting the terminator. 1080 if (I.isTerminator()) { 1081 HandlePHINodesInSuccessorBlocks(I.getParent()); 1082 } 1083 1084 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1085 if (!isa<DbgInfoIntrinsic>(I)) 1086 ++SDNodeOrder; 1087 1088 CurInst = &I; 1089 1090 visit(I.getOpcode(), I); 1091 1092 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1093 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1094 // maps to this instruction. 1095 // TODO: We could handle all flags (nsw, etc) here. 1096 // TODO: If an IR instruction maps to >1 node, only the final node will have 1097 // flags set. 1098 if (SDNode *Node = getNodeForIRValue(&I)) { 1099 SDNodeFlags IncomingFlags; 1100 IncomingFlags.copyFMF(*FPMO); 1101 if (!Node->getFlags().isDefined()) 1102 Node->setFlags(IncomingFlags); 1103 else 1104 Node->intersectFlagsWith(IncomingFlags); 1105 } 1106 } 1107 1108 if (!I.isTerminator() && !HasTailCall && 1109 !isStatepoint(&I)) // statepoints handle their exports internally 1110 CopyToExportRegsIfNeeded(&I); 1111 1112 CurInst = nullptr; 1113 } 1114 1115 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1116 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1117 } 1118 1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1120 // Note: this doesn't use InstVisitor, because it has to work with 1121 // ConstantExpr's in addition to instructions. 1122 switch (Opcode) { 1123 default: llvm_unreachable("Unknown instruction type encountered!"); 1124 // Build the switch statement using the Instruction.def file. 1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1126 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1127 #include "llvm/IR/Instruction.def" 1128 } 1129 } 1130 1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1132 const DIExpression *Expr) { 1133 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1134 const DbgValueInst *DI = DDI.getDI(); 1135 DIVariable *DanglingVariable = DI->getVariable(); 1136 DIExpression *DanglingExpr = DI->getExpression(); 1137 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1138 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1139 return true; 1140 } 1141 return false; 1142 }; 1143 1144 for (auto &DDIMI : DanglingDebugInfoMap) { 1145 DanglingDebugInfoVector &DDIV = DDIMI.second; 1146 1147 // If debug info is to be dropped, run it through final checks to see 1148 // whether it can be salvaged. 1149 for (auto &DDI : DDIV) 1150 if (isMatchingDbgValue(DDI)) 1151 salvageUnresolvedDbgValue(DDI); 1152 1153 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1154 } 1155 } 1156 1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1158 // generate the debug data structures now that we've seen its definition. 1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1160 SDValue Val) { 1161 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1162 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1163 return; 1164 1165 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1166 for (auto &DDI : DDIV) { 1167 const DbgValueInst *DI = DDI.getDI(); 1168 assert(DI && "Ill-formed DanglingDebugInfo"); 1169 DebugLoc dl = DDI.getdl(); 1170 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1171 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1172 DILocalVariable *Variable = DI->getVariable(); 1173 DIExpression *Expr = DI->getExpression(); 1174 assert(Variable->isValidLocationForIntrinsic(dl) && 1175 "Expected inlined-at fields to agree"); 1176 SDDbgValue *SDV; 1177 if (Val.getNode()) { 1178 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1179 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1180 // we couldn't resolve it directly when examining the DbgValue intrinsic 1181 // in the first place we should not be more successful here). Unless we 1182 // have some test case that prove this to be correct we should avoid 1183 // calling EmitFuncArgumentDbgValue here. 1184 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1185 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1186 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1187 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1188 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1189 // inserted after the definition of Val when emitting the instructions 1190 // after ISel. An alternative could be to teach 1191 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1192 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1193 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1194 << ValSDNodeOrder << "\n"); 1195 SDV = getDbgValue(Val, Variable, Expr, dl, 1196 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1197 DAG.AddDbgValue(SDV, Val.getNode(), false); 1198 } else 1199 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1200 << "in EmitFuncArgumentDbgValue\n"); 1201 } else { 1202 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1203 auto Undef = 1204 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1205 auto SDV = 1206 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1207 DAG.AddDbgValue(SDV, nullptr, false); 1208 } 1209 } 1210 DDIV.clear(); 1211 } 1212 1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1214 Value *V = DDI.getDI()->getValue(); 1215 DILocalVariable *Var = DDI.getDI()->getVariable(); 1216 DIExpression *Expr = DDI.getDI()->getExpression(); 1217 DebugLoc DL = DDI.getdl(); 1218 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1219 unsigned SDOrder = DDI.getSDNodeOrder(); 1220 1221 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1222 // that DW_OP_stack_value is desired. 1223 assert(isa<DbgValueInst>(DDI.getDI())); 1224 bool StackValue = true; 1225 1226 // Can this Value can be encoded without any further work? 1227 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1228 return; 1229 1230 // Attempt to salvage back through as many instructions as possible. Bail if 1231 // a non-instruction is seen, such as a constant expression or global 1232 // variable. FIXME: Further work could recover those too. 1233 while (isa<Instruction>(V)) { 1234 Instruction &VAsInst = *cast<Instruction>(V); 1235 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1236 1237 // If we cannot salvage any further, and haven't yet found a suitable debug 1238 // expression, bail out. 1239 if (!NewExpr) 1240 break; 1241 1242 // New value and expr now represent this debuginfo. 1243 V = VAsInst.getOperand(0); 1244 Expr = NewExpr; 1245 1246 // Some kind of simplification occurred: check whether the operand of the 1247 // salvaged debug expression can be encoded in this DAG. 1248 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1249 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1250 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1251 return; 1252 } 1253 } 1254 1255 // This was the final opportunity to salvage this debug information, and it 1256 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1257 // any earlier variable location. 1258 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1259 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1260 DAG.AddDbgValue(SDV, nullptr, false); 1261 1262 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1263 << "\n"); 1264 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1265 << "\n"); 1266 } 1267 1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1269 DIExpression *Expr, DebugLoc dl, 1270 DebugLoc InstDL, unsigned Order) { 1271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1272 SDDbgValue *SDV; 1273 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1274 isa<ConstantPointerNull>(V)) { 1275 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1276 DAG.AddDbgValue(SDV, nullptr, false); 1277 return true; 1278 } 1279 1280 // If the Value is a frame index, we can create a FrameIndex debug value 1281 // without relying on the DAG at all. 1282 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1283 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1284 if (SI != FuncInfo.StaticAllocaMap.end()) { 1285 auto SDV = 1286 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1287 /*IsIndirect*/ false, dl, SDNodeOrder); 1288 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1289 // is still available even if the SDNode gets optimized out. 1290 DAG.AddDbgValue(SDV, nullptr, false); 1291 return true; 1292 } 1293 } 1294 1295 // Do not use getValue() in here; we don't want to generate code at 1296 // this point if it hasn't been done yet. 1297 SDValue N = NodeMap[V]; 1298 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1299 N = UnusedArgNodeMap[V]; 1300 if (N.getNode()) { 1301 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1302 return true; 1303 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1304 DAG.AddDbgValue(SDV, N.getNode(), false); 1305 return true; 1306 } 1307 1308 // Special rules apply for the first dbg.values of parameter variables in a 1309 // function. Identify them by the fact they reference Argument Values, that 1310 // they're parameters, and they are parameters of the current function. We 1311 // need to let them dangle until they get an SDNode. 1312 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1313 !InstDL.getInlinedAt(); 1314 if (!IsParamOfFunc) { 1315 // The value is not used in this block yet (or it would have an SDNode). 1316 // We still want the value to appear for the user if possible -- if it has 1317 // an associated VReg, we can refer to that instead. 1318 auto VMI = FuncInfo.ValueMap.find(V); 1319 if (VMI != FuncInfo.ValueMap.end()) { 1320 unsigned Reg = VMI->second; 1321 // If this is a PHI node, it may be split up into several MI PHI nodes 1322 // (in FunctionLoweringInfo::set). 1323 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1324 V->getType(), None); 1325 if (RFV.occupiesMultipleRegs()) { 1326 unsigned Offset = 0; 1327 unsigned BitsToDescribe = 0; 1328 if (auto VarSize = Var->getSizeInBits()) 1329 BitsToDescribe = *VarSize; 1330 if (auto Fragment = Expr->getFragmentInfo()) 1331 BitsToDescribe = Fragment->SizeInBits; 1332 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1333 unsigned RegisterSize = RegAndSize.second; 1334 // Bail out if all bits are described already. 1335 if (Offset >= BitsToDescribe) 1336 break; 1337 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1338 ? BitsToDescribe - Offset 1339 : RegisterSize; 1340 auto FragmentExpr = DIExpression::createFragmentExpression( 1341 Expr, Offset, FragmentSize); 1342 if (!FragmentExpr) 1343 continue; 1344 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1345 false, dl, SDNodeOrder); 1346 DAG.AddDbgValue(SDV, nullptr, false); 1347 Offset += RegisterSize; 1348 } 1349 } else { 1350 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1351 DAG.AddDbgValue(SDV, nullptr, false); 1352 } 1353 return true; 1354 } 1355 } 1356 1357 return false; 1358 } 1359 1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1361 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1362 for (auto &Pair : DanglingDebugInfoMap) 1363 for (auto &DDI : Pair.second) 1364 salvageUnresolvedDbgValue(DDI); 1365 clearDanglingDebugInfo(); 1366 } 1367 1368 /// getCopyFromRegs - If there was virtual register allocated for the value V 1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1371 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1372 SDValue Result; 1373 1374 if (It != FuncInfo.ValueMap.end()) { 1375 unsigned InReg = It->second; 1376 1377 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1378 DAG.getDataLayout(), InReg, Ty, 1379 None); // This is not an ABI copy. 1380 SDValue Chain = DAG.getEntryNode(); 1381 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1382 V); 1383 resolveDanglingDebugInfo(V, Result); 1384 } 1385 1386 return Result; 1387 } 1388 1389 /// getValue - Return an SDValue for the given Value. 1390 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1391 // If we already have an SDValue for this value, use it. It's important 1392 // to do this first, so that we don't create a CopyFromReg if we already 1393 // have a regular SDValue. 1394 SDValue &N = NodeMap[V]; 1395 if (N.getNode()) return N; 1396 1397 // If there's a virtual register allocated and initialized for this 1398 // value, use it. 1399 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1400 return copyFromReg; 1401 1402 // Otherwise create a new SDValue and remember it. 1403 SDValue Val = getValueImpl(V); 1404 NodeMap[V] = Val; 1405 resolveDanglingDebugInfo(V, Val); 1406 return Val; 1407 } 1408 1409 // Return true if SDValue exists for the given Value 1410 bool SelectionDAGBuilder::findValue(const Value *V) const { 1411 return (NodeMap.find(V) != NodeMap.end()) || 1412 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1413 } 1414 1415 /// getNonRegisterValue - Return an SDValue for the given Value, but 1416 /// don't look in FuncInfo.ValueMap for a virtual register. 1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1418 // If we already have an SDValue for this value, use it. 1419 SDValue &N = NodeMap[V]; 1420 if (N.getNode()) { 1421 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1422 // Remove the debug location from the node as the node is about to be used 1423 // in a location which may differ from the original debug location. This 1424 // is relevant to Constant and ConstantFP nodes because they can appear 1425 // as constant expressions inside PHI nodes. 1426 N->setDebugLoc(DebugLoc()); 1427 } 1428 return N; 1429 } 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1439 /// Create an SDValue for the given value. 1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1442 1443 if (const Constant *C = dyn_cast<Constant>(V)) { 1444 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1445 1446 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1447 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1448 1449 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1450 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1451 1452 if (isa<ConstantPointerNull>(C)) { 1453 unsigned AS = V->getType()->getPointerAddressSpace(); 1454 return DAG.getConstant(0, getCurSDLoc(), 1455 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1456 } 1457 1458 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1459 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1460 1461 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1462 return DAG.getUNDEF(VT); 1463 1464 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1465 visit(CE->getOpcode(), *CE); 1466 SDValue N1 = NodeMap[V]; 1467 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1468 return N1; 1469 } 1470 1471 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1472 SmallVector<SDValue, 4> Constants; 1473 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1474 OI != OE; ++OI) { 1475 SDNode *Val = getValue(*OI).getNode(); 1476 // If the operand is an empty aggregate, there are no values. 1477 if (!Val) continue; 1478 // Add each leaf value from the operand to the Constants list 1479 // to form a flattened list of all the values. 1480 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1481 Constants.push_back(SDValue(Val, i)); 1482 } 1483 1484 return DAG.getMergeValues(Constants, getCurSDLoc()); 1485 } 1486 1487 if (const ConstantDataSequential *CDS = 1488 dyn_cast<ConstantDataSequential>(C)) { 1489 SmallVector<SDValue, 4> Ops; 1490 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1491 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1492 // Add each leaf value from the operand to the Constants list 1493 // to form a flattened list of all the values. 1494 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1495 Ops.push_back(SDValue(Val, i)); 1496 } 1497 1498 if (isa<ArrayType>(CDS->getType())) 1499 return DAG.getMergeValues(Ops, getCurSDLoc()); 1500 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1501 } 1502 1503 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1504 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1505 "Unknown struct or array constant!"); 1506 1507 SmallVector<EVT, 4> ValueVTs; 1508 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1509 unsigned NumElts = ValueVTs.size(); 1510 if (NumElts == 0) 1511 return SDValue(); // empty struct 1512 SmallVector<SDValue, 4> Constants(NumElts); 1513 for (unsigned i = 0; i != NumElts; ++i) { 1514 EVT EltVT = ValueVTs[i]; 1515 if (isa<UndefValue>(C)) 1516 Constants[i] = DAG.getUNDEF(EltVT); 1517 else if (EltVT.isFloatingPoint()) 1518 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1519 else 1520 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1521 } 1522 1523 return DAG.getMergeValues(Constants, getCurSDLoc()); 1524 } 1525 1526 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1527 return DAG.getBlockAddress(BA, VT); 1528 1529 VectorType *VecTy = cast<VectorType>(V->getType()); 1530 unsigned NumElements = VecTy->getNumElements(); 1531 1532 // Now that we know the number and type of the elements, get that number of 1533 // elements into the Ops array based on what kind of constant it is. 1534 SmallVector<SDValue, 16> Ops; 1535 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1536 for (unsigned i = 0; i != NumElements; ++i) 1537 Ops.push_back(getValue(CV->getOperand(i))); 1538 } else { 1539 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1540 EVT EltVT = 1541 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1542 1543 SDValue Op; 1544 if (EltVT.isFloatingPoint()) 1545 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1546 else 1547 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1548 Ops.assign(NumElements, Op); 1549 } 1550 1551 // Create a BUILD_VECTOR node. 1552 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1553 } 1554 1555 // If this is a static alloca, generate it as the frameindex instead of 1556 // computation. 1557 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1558 DenseMap<const AllocaInst*, int>::iterator SI = 1559 FuncInfo.StaticAllocaMap.find(AI); 1560 if (SI != FuncInfo.StaticAllocaMap.end()) 1561 return DAG.getFrameIndex(SI->second, 1562 TLI.getFrameIndexTy(DAG.getDataLayout())); 1563 } 1564 1565 // If this is an instruction which fast-isel has deferred, select it now. 1566 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1567 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1568 1569 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1570 Inst->getType(), getABIRegCopyCC(V)); 1571 SDValue Chain = DAG.getEntryNode(); 1572 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1573 } 1574 1575 llvm_unreachable("Can't get register for value!"); 1576 } 1577 1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1582 bool IsSEH = isAsynchronousEHPersonality(Pers); 1583 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1584 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1585 if (!IsSEH) 1586 CatchPadMBB->setIsEHScopeEntry(); 1587 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1588 if (IsMSVCCXX || IsCoreCLR) 1589 CatchPadMBB->setIsEHFuncletEntry(); 1590 // Wasm does not need catchpads anymore 1591 if (!IsWasmCXX) 1592 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1593 getControlRoot())); 1594 } 1595 1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1597 // Update machine-CFG edge. 1598 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1599 FuncInfo.MBB->addSuccessor(TargetMBB); 1600 1601 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1602 bool IsSEH = isAsynchronousEHPersonality(Pers); 1603 if (IsSEH) { 1604 // If this is not a fall-through branch or optimizations are switched off, 1605 // emit the branch. 1606 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1607 TM.getOptLevel() == CodeGenOpt::None) 1608 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1609 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1610 return; 1611 } 1612 1613 // Figure out the funclet membership for the catchret's successor. 1614 // This will be used by the FuncletLayout pass to determine how to order the 1615 // BB's. 1616 // A 'catchret' returns to the outer scope's color. 1617 Value *ParentPad = I.getCatchSwitchParentPad(); 1618 const BasicBlock *SuccessorColor; 1619 if (isa<ConstantTokenNone>(ParentPad)) 1620 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1621 else 1622 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1623 assert(SuccessorColor && "No parent funclet for catchret!"); 1624 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1625 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1626 1627 // Create the terminator node. 1628 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1629 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1630 DAG.getBasicBlock(SuccessorColorMBB)); 1631 DAG.setRoot(Ret); 1632 } 1633 1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1635 // Don't emit any special code for the cleanuppad instruction. It just marks 1636 // the start of an EH scope/funclet. 1637 FuncInfo.MBB->setIsEHScopeEntry(); 1638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1639 if (Pers != EHPersonality::Wasm_CXX) { 1640 FuncInfo.MBB->setIsEHFuncletEntry(); 1641 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1642 } 1643 } 1644 1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1646 // the control flow always stops at the single catch pad, as it does for a 1647 // cleanup pad. In case the exception caught is not of the types the catch pad 1648 // catches, it will be rethrown by a rethrow. 1649 static void findWasmUnwindDestinations( 1650 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1651 BranchProbability Prob, 1652 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1653 &UnwindDests) { 1654 while (EHPadBB) { 1655 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1656 if (isa<CleanupPadInst>(Pad)) { 1657 // Stop on cleanup pads. 1658 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1659 UnwindDests.back().first->setIsEHScopeEntry(); 1660 break; 1661 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1662 // Add the catchpad handlers to the possible destinations. We don't 1663 // continue to the unwind destination of the catchswitch for wasm. 1664 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1665 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1666 UnwindDests.back().first->setIsEHScopeEntry(); 1667 } 1668 break; 1669 } else { 1670 continue; 1671 } 1672 } 1673 } 1674 1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1676 /// many places it could ultimately go. In the IR, we have a single unwind 1677 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1678 /// This function skips over imaginary basic blocks that hold catchswitch 1679 /// instructions, and finds all the "real" machine 1680 /// basic block destinations. As those destinations may not be successors of 1681 /// EHPadBB, here we also calculate the edge probability to those destinations. 1682 /// The passed-in Prob is the edge probability to EHPadBB. 1683 static void findUnwindDestinations( 1684 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1685 BranchProbability Prob, 1686 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1687 &UnwindDests) { 1688 EHPersonality Personality = 1689 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1690 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1691 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1692 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1693 bool IsSEH = isAsynchronousEHPersonality(Personality); 1694 1695 if (IsWasmCXX) { 1696 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1697 assert(UnwindDests.size() <= 1 && 1698 "There should be at most one unwind destination for wasm"); 1699 return; 1700 } 1701 1702 while (EHPadBB) { 1703 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1704 BasicBlock *NewEHPadBB = nullptr; 1705 if (isa<LandingPadInst>(Pad)) { 1706 // Stop on landingpads. They are not funclets. 1707 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1708 break; 1709 } else if (isa<CleanupPadInst>(Pad)) { 1710 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1711 // personalities. 1712 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1713 UnwindDests.back().first->setIsEHScopeEntry(); 1714 UnwindDests.back().first->setIsEHFuncletEntry(); 1715 break; 1716 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1717 // Add the catchpad handlers to the possible destinations. 1718 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1719 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1720 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1721 if (IsMSVCCXX || IsCoreCLR) 1722 UnwindDests.back().first->setIsEHFuncletEntry(); 1723 if (!IsSEH) 1724 UnwindDests.back().first->setIsEHScopeEntry(); 1725 } 1726 NewEHPadBB = CatchSwitch->getUnwindDest(); 1727 } else { 1728 continue; 1729 } 1730 1731 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1732 if (BPI && NewEHPadBB) 1733 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1734 EHPadBB = NewEHPadBB; 1735 } 1736 } 1737 1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1739 // Update successor info. 1740 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1741 auto UnwindDest = I.getUnwindDest(); 1742 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1743 BranchProbability UnwindDestProb = 1744 (BPI && UnwindDest) 1745 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1746 : BranchProbability::getZero(); 1747 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1748 for (auto &UnwindDest : UnwindDests) { 1749 UnwindDest.first->setIsEHPad(); 1750 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1751 } 1752 FuncInfo.MBB->normalizeSuccProbs(); 1753 1754 // Create the terminator node. 1755 SDValue Ret = 1756 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1757 DAG.setRoot(Ret); 1758 } 1759 1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1761 report_fatal_error("visitCatchSwitch not yet implemented!"); 1762 } 1763 1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1766 auto &DL = DAG.getDataLayout(); 1767 SDValue Chain = getControlRoot(); 1768 SmallVector<ISD::OutputArg, 8> Outs; 1769 SmallVector<SDValue, 8> OutVals; 1770 1771 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1772 // lower 1773 // 1774 // %val = call <ty> @llvm.experimental.deoptimize() 1775 // ret <ty> %val 1776 // 1777 // differently. 1778 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1779 LowerDeoptimizingReturn(); 1780 return; 1781 } 1782 1783 if (!FuncInfo.CanLowerReturn) { 1784 unsigned DemoteReg = FuncInfo.DemoteRegister; 1785 const Function *F = I.getParent()->getParent(); 1786 1787 // Emit a store of the return value through the virtual register. 1788 // Leave Outs empty so that LowerReturn won't try to load return 1789 // registers the usual way. 1790 SmallVector<EVT, 1> PtrValueVTs; 1791 ComputeValueVTs(TLI, DL, 1792 F->getReturnType()->getPointerTo( 1793 DAG.getDataLayout().getAllocaAddrSpace()), 1794 PtrValueVTs); 1795 1796 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1797 DemoteReg, PtrValueVTs[0]); 1798 SDValue RetOp = getValue(I.getOperand(0)); 1799 1800 SmallVector<EVT, 4> ValueVTs, MemVTs; 1801 SmallVector<uint64_t, 4> Offsets; 1802 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1803 &Offsets); 1804 unsigned NumValues = ValueVTs.size(); 1805 1806 SmallVector<SDValue, 4> Chains(NumValues); 1807 for (unsigned i = 0; i != NumValues; ++i) { 1808 // An aggregate return value cannot wrap around the address space, so 1809 // offsets to its parts don't wrap either. 1810 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1811 1812 SDValue Val = RetOp.getValue(i); 1813 if (MemVTs[i] != ValueVTs[i]) 1814 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1815 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1816 // FIXME: better loc info would be nice. 1817 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1818 } 1819 1820 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1821 MVT::Other, Chains); 1822 } else if (I.getNumOperands() != 0) { 1823 SmallVector<EVT, 4> ValueVTs; 1824 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1825 unsigned NumValues = ValueVTs.size(); 1826 if (NumValues) { 1827 SDValue RetOp = getValue(I.getOperand(0)); 1828 1829 const Function *F = I.getParent()->getParent(); 1830 1831 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1832 I.getOperand(0)->getType(), F->getCallingConv(), 1833 /*IsVarArg*/ false); 1834 1835 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1836 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1837 Attribute::SExt)) 1838 ExtendKind = ISD::SIGN_EXTEND; 1839 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1840 Attribute::ZExt)) 1841 ExtendKind = ISD::ZERO_EXTEND; 1842 1843 LLVMContext &Context = F->getContext(); 1844 bool RetInReg = F->getAttributes().hasAttribute( 1845 AttributeList::ReturnIndex, Attribute::InReg); 1846 1847 for (unsigned j = 0; j != NumValues; ++j) { 1848 EVT VT = ValueVTs[j]; 1849 1850 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1851 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1852 1853 CallingConv::ID CC = F->getCallingConv(); 1854 1855 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1856 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1857 SmallVector<SDValue, 4> Parts(NumParts); 1858 getCopyToParts(DAG, getCurSDLoc(), 1859 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1860 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1861 1862 // 'inreg' on function refers to return value 1863 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1864 if (RetInReg) 1865 Flags.setInReg(); 1866 1867 if (I.getOperand(0)->getType()->isPointerTy()) { 1868 Flags.setPointer(); 1869 Flags.setPointerAddrSpace( 1870 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1871 } 1872 1873 if (NeedsRegBlock) { 1874 Flags.setInConsecutiveRegs(); 1875 if (j == NumValues - 1) 1876 Flags.setInConsecutiveRegsLast(); 1877 } 1878 1879 // Propagate extension type if any 1880 if (ExtendKind == ISD::SIGN_EXTEND) 1881 Flags.setSExt(); 1882 else if (ExtendKind == ISD::ZERO_EXTEND) 1883 Flags.setZExt(); 1884 1885 for (unsigned i = 0; i < NumParts; ++i) { 1886 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1887 VT, /*isfixed=*/true, 0, 0)); 1888 OutVals.push_back(Parts[i]); 1889 } 1890 } 1891 } 1892 } 1893 1894 // Push in swifterror virtual register as the last element of Outs. This makes 1895 // sure swifterror virtual register will be returned in the swifterror 1896 // physical register. 1897 const Function *F = I.getParent()->getParent(); 1898 if (TLI.supportSwiftError() && 1899 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1900 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1901 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1902 Flags.setSwiftError(); 1903 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1904 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1905 true /*isfixed*/, 1 /*origidx*/, 1906 0 /*partOffs*/)); 1907 // Create SDNode for the swifterror virtual register. 1908 OutVals.push_back( 1909 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1910 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1911 EVT(TLI.getPointerTy(DL)))); 1912 } 1913 1914 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1915 CallingConv::ID CallConv = 1916 DAG.getMachineFunction().getFunction().getCallingConv(); 1917 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1918 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1919 1920 // Verify that the target's LowerReturn behaved as expected. 1921 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1922 "LowerReturn didn't return a valid chain!"); 1923 1924 // Update the DAG with the new chain value resulting from return lowering. 1925 DAG.setRoot(Chain); 1926 } 1927 1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1929 /// created for it, emit nodes to copy the value into the virtual 1930 /// registers. 1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1932 // Skip empty types 1933 if (V->getType()->isEmptyTy()) 1934 return; 1935 1936 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1937 if (VMI != FuncInfo.ValueMap.end()) { 1938 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1939 CopyValueToVirtualRegister(V, VMI->second); 1940 } 1941 } 1942 1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1944 /// the current basic block, add it to ValueMap now so that we'll get a 1945 /// CopyTo/FromReg. 1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1947 // No need to export constants. 1948 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1949 1950 // Already exported? 1951 if (FuncInfo.isExportedInst(V)) return; 1952 1953 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1954 CopyValueToVirtualRegister(V, Reg); 1955 } 1956 1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1958 const BasicBlock *FromBB) { 1959 // The operands of the setcc have to be in this block. We don't know 1960 // how to export them from some other block. 1961 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1962 // Can export from current BB. 1963 if (VI->getParent() == FromBB) 1964 return true; 1965 1966 // Is already exported, noop. 1967 return FuncInfo.isExportedInst(V); 1968 } 1969 1970 // If this is an argument, we can export it if the BB is the entry block or 1971 // if it is already exported. 1972 if (isa<Argument>(V)) { 1973 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1974 return true; 1975 1976 // Otherwise, can only export this if it is already exported. 1977 return FuncInfo.isExportedInst(V); 1978 } 1979 1980 // Otherwise, constants can always be exported. 1981 return true; 1982 } 1983 1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1985 BranchProbability 1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1987 const MachineBasicBlock *Dst) const { 1988 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1989 const BasicBlock *SrcBB = Src->getBasicBlock(); 1990 const BasicBlock *DstBB = Dst->getBasicBlock(); 1991 if (!BPI) { 1992 // If BPI is not available, set the default probability as 1 / N, where N is 1993 // the number of successors. 1994 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1995 return BranchProbability(1, SuccSize); 1996 } 1997 return BPI->getEdgeProbability(SrcBB, DstBB); 1998 } 1999 2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2001 MachineBasicBlock *Dst, 2002 BranchProbability Prob) { 2003 if (!FuncInfo.BPI) 2004 Src->addSuccessorWithoutProb(Dst); 2005 else { 2006 if (Prob.isUnknown()) 2007 Prob = getEdgeProbability(Src, Dst); 2008 Src->addSuccessor(Dst, Prob); 2009 } 2010 } 2011 2012 static bool InBlock(const Value *V, const BasicBlock *BB) { 2013 if (const Instruction *I = dyn_cast<Instruction>(V)) 2014 return I->getParent() == BB; 2015 return true; 2016 } 2017 2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2019 /// This function emits a branch and is used at the leaves of an OR or an 2020 /// AND operator tree. 2021 void 2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2023 MachineBasicBlock *TBB, 2024 MachineBasicBlock *FBB, 2025 MachineBasicBlock *CurBB, 2026 MachineBasicBlock *SwitchBB, 2027 BranchProbability TProb, 2028 BranchProbability FProb, 2029 bool InvertCond) { 2030 const BasicBlock *BB = CurBB->getBasicBlock(); 2031 2032 // If the leaf of the tree is a comparison, merge the condition into 2033 // the caseblock. 2034 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2035 // The operands of the cmp have to be in this block. We don't know 2036 // how to export them from some other block. If this is the first block 2037 // of the sequence, no exporting is needed. 2038 if (CurBB == SwitchBB || 2039 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2040 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2041 ISD::CondCode Condition; 2042 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2043 ICmpInst::Predicate Pred = 2044 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2045 Condition = getICmpCondCode(Pred); 2046 } else { 2047 const FCmpInst *FC = cast<FCmpInst>(Cond); 2048 FCmpInst::Predicate Pred = 2049 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2050 Condition = getFCmpCondCode(Pred); 2051 if (TM.Options.NoNaNsFPMath) 2052 Condition = getFCmpCodeWithoutNaN(Condition); 2053 } 2054 2055 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2056 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2057 SL->SwitchCases.push_back(CB); 2058 return; 2059 } 2060 } 2061 2062 // Create a CaseBlock record representing this branch. 2063 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2064 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2065 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2066 SL->SwitchCases.push_back(CB); 2067 } 2068 2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2070 MachineBasicBlock *TBB, 2071 MachineBasicBlock *FBB, 2072 MachineBasicBlock *CurBB, 2073 MachineBasicBlock *SwitchBB, 2074 Instruction::BinaryOps Opc, 2075 BranchProbability TProb, 2076 BranchProbability FProb, 2077 bool InvertCond) { 2078 // Skip over not part of the tree and remember to invert op and operands at 2079 // next level. 2080 Value *NotCond; 2081 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2082 InBlock(NotCond, CurBB->getBasicBlock())) { 2083 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2084 !InvertCond); 2085 return; 2086 } 2087 2088 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2089 // Compute the effective opcode for Cond, taking into account whether it needs 2090 // to be inverted, e.g. 2091 // and (not (or A, B)), C 2092 // gets lowered as 2093 // and (and (not A, not B), C) 2094 unsigned BOpc = 0; 2095 if (BOp) { 2096 BOpc = BOp->getOpcode(); 2097 if (InvertCond) { 2098 if (BOpc == Instruction::And) 2099 BOpc = Instruction::Or; 2100 else if (BOpc == Instruction::Or) 2101 BOpc = Instruction::And; 2102 } 2103 } 2104 2105 // If this node is not part of the or/and tree, emit it as a branch. 2106 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2107 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2108 BOp->getParent() != CurBB->getBasicBlock() || 2109 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2110 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2111 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2112 TProb, FProb, InvertCond); 2113 return; 2114 } 2115 2116 // Create TmpBB after CurBB. 2117 MachineFunction::iterator BBI(CurBB); 2118 MachineFunction &MF = DAG.getMachineFunction(); 2119 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2120 CurBB->getParent()->insert(++BBI, TmpBB); 2121 2122 if (Opc == Instruction::Or) { 2123 // Codegen X | Y as: 2124 // BB1: 2125 // jmp_if_X TBB 2126 // jmp TmpBB 2127 // TmpBB: 2128 // jmp_if_Y TBB 2129 // jmp FBB 2130 // 2131 2132 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2133 // The requirement is that 2134 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2135 // = TrueProb for original BB. 2136 // Assuming the original probabilities are A and B, one choice is to set 2137 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2138 // A/(1+B) and 2B/(1+B). This choice assumes that 2139 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2140 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2141 // TmpBB, but the math is more complicated. 2142 2143 auto NewTrueProb = TProb / 2; 2144 auto NewFalseProb = TProb / 2 + FProb; 2145 // Emit the LHS condition. 2146 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2147 NewTrueProb, NewFalseProb, InvertCond); 2148 2149 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2150 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2151 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2152 // Emit the RHS condition into TmpBB. 2153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2154 Probs[0], Probs[1], InvertCond); 2155 } else { 2156 assert(Opc == Instruction::And && "Unknown merge op!"); 2157 // Codegen X & Y as: 2158 // BB1: 2159 // jmp_if_X TmpBB 2160 // jmp FBB 2161 // TmpBB: 2162 // jmp_if_Y TBB 2163 // jmp FBB 2164 // 2165 // This requires creation of TmpBB after CurBB. 2166 2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2168 // The requirement is that 2169 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2170 // = FalseProb for original BB. 2171 // Assuming the original probabilities are A and B, one choice is to set 2172 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2173 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2174 // TrueProb for BB1 * FalseProb for TmpBB. 2175 2176 auto NewTrueProb = TProb + FProb / 2; 2177 auto NewFalseProb = FProb / 2; 2178 // Emit the LHS condition. 2179 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2180 NewTrueProb, NewFalseProb, InvertCond); 2181 2182 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2183 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2184 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2185 // Emit the RHS condition into TmpBB. 2186 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2187 Probs[0], Probs[1], InvertCond); 2188 } 2189 } 2190 2191 /// If the set of cases should be emitted as a series of branches, return true. 2192 /// If we should emit this as a bunch of and/or'd together conditions, return 2193 /// false. 2194 bool 2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2196 if (Cases.size() != 2) return true; 2197 2198 // If this is two comparisons of the same values or'd or and'd together, they 2199 // will get folded into a single comparison, so don't emit two blocks. 2200 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2201 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2202 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2203 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2204 return false; 2205 } 2206 2207 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2208 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2209 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2210 Cases[0].CC == Cases[1].CC && 2211 isa<Constant>(Cases[0].CmpRHS) && 2212 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2213 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2214 return false; 2215 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2216 return false; 2217 } 2218 2219 return true; 2220 } 2221 2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2223 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2224 2225 // Update machine-CFG edges. 2226 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2227 2228 if (I.isUnconditional()) { 2229 // Update machine-CFG edges. 2230 BrMBB->addSuccessor(Succ0MBB); 2231 2232 // If this is not a fall-through branch or optimizations are switched off, 2233 // emit the branch. 2234 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2235 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2236 MVT::Other, getControlRoot(), 2237 DAG.getBasicBlock(Succ0MBB))); 2238 2239 return; 2240 } 2241 2242 // If this condition is one of the special cases we handle, do special stuff 2243 // now. 2244 const Value *CondVal = I.getCondition(); 2245 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2246 2247 // If this is a series of conditions that are or'd or and'd together, emit 2248 // this as a sequence of branches instead of setcc's with and/or operations. 2249 // As long as jumps are not expensive, this should improve performance. 2250 // For example, instead of something like: 2251 // cmp A, B 2252 // C = seteq 2253 // cmp D, E 2254 // F = setle 2255 // or C, F 2256 // jnz foo 2257 // Emit: 2258 // cmp A, B 2259 // je foo 2260 // cmp D, E 2261 // jle foo 2262 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2263 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2264 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2265 !I.getMetadata(LLVMContext::MD_unpredictable) && 2266 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2267 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2268 Opcode, 2269 getEdgeProbability(BrMBB, Succ0MBB), 2270 getEdgeProbability(BrMBB, Succ1MBB), 2271 /*InvertCond=*/false); 2272 // If the compares in later blocks need to use values not currently 2273 // exported from this block, export them now. This block should always 2274 // be the first entry. 2275 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2276 2277 // Allow some cases to be rejected. 2278 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2279 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2280 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2282 } 2283 2284 // Emit the branch for this block. 2285 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2286 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2287 return; 2288 } 2289 2290 // Okay, we decided not to do this, remove any inserted MBB's and clear 2291 // SwitchCases. 2292 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2293 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2294 2295 SL->SwitchCases.clear(); 2296 } 2297 } 2298 2299 // Create a CaseBlock record representing this branch. 2300 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2301 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2302 2303 // Use visitSwitchCase to actually insert the fast branch sequence for this 2304 // cond branch. 2305 visitSwitchCase(CB, BrMBB); 2306 } 2307 2308 /// visitSwitchCase - Emits the necessary code to represent a single node in 2309 /// the binary search tree resulting from lowering a switch instruction. 2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2311 MachineBasicBlock *SwitchBB) { 2312 SDValue Cond; 2313 SDValue CondLHS = getValue(CB.CmpLHS); 2314 SDLoc dl = CB.DL; 2315 2316 if (CB.CC == ISD::SETTRUE) { 2317 // Branch or fall through to TrueBB. 2318 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2319 SwitchBB->normalizeSuccProbs(); 2320 if (CB.TrueBB != NextBlock(SwitchBB)) { 2321 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2322 DAG.getBasicBlock(CB.TrueBB))); 2323 } 2324 return; 2325 } 2326 2327 auto &TLI = DAG.getTargetLoweringInfo(); 2328 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2329 2330 // Build the setcc now. 2331 if (!CB.CmpMHS) { 2332 // Fold "(X == true)" to X and "(X == false)" to !X to 2333 // handle common cases produced by branch lowering. 2334 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2335 CB.CC == ISD::SETEQ) 2336 Cond = CondLHS; 2337 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2338 CB.CC == ISD::SETEQ) { 2339 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2340 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2341 } else { 2342 SDValue CondRHS = getValue(CB.CmpRHS); 2343 2344 // If a pointer's DAG type is larger than its memory type then the DAG 2345 // values are zero-extended. This breaks signed comparisons so truncate 2346 // back to the underlying type before doing the compare. 2347 if (CondLHS.getValueType() != MemVT) { 2348 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2349 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2350 } 2351 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2352 } 2353 } else { 2354 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2355 2356 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2357 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2358 2359 SDValue CmpOp = getValue(CB.CmpMHS); 2360 EVT VT = CmpOp.getValueType(); 2361 2362 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2363 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2364 ISD::SETLE); 2365 } else { 2366 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2367 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2368 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2369 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2370 } 2371 } 2372 2373 // Update successor info 2374 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2375 // TrueBB and FalseBB are always different unless the incoming IR is 2376 // degenerate. This only happens when running llc on weird IR. 2377 if (CB.TrueBB != CB.FalseBB) 2378 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2379 SwitchBB->normalizeSuccProbs(); 2380 2381 // If the lhs block is the next block, invert the condition so that we can 2382 // fall through to the lhs instead of the rhs block. 2383 if (CB.TrueBB == NextBlock(SwitchBB)) { 2384 std::swap(CB.TrueBB, CB.FalseBB); 2385 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2386 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2387 } 2388 2389 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2390 MVT::Other, getControlRoot(), Cond, 2391 DAG.getBasicBlock(CB.TrueBB)); 2392 2393 // Insert the false branch. Do this even if it's a fall through branch, 2394 // this makes it easier to do DAG optimizations which require inverting 2395 // the branch condition. 2396 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2397 DAG.getBasicBlock(CB.FalseBB)); 2398 2399 DAG.setRoot(BrCond); 2400 } 2401 2402 /// visitJumpTable - Emit JumpTable node in the current MBB 2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2404 // Emit the code for the jump table 2405 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2406 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2407 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2408 JT.Reg, PTy); 2409 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2410 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2411 MVT::Other, Index.getValue(1), 2412 Table, Index); 2413 DAG.setRoot(BrJumpTable); 2414 } 2415 2416 /// visitJumpTableHeader - This function emits necessary code to produce index 2417 /// in the JumpTable from switch case. 2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2419 JumpTableHeader &JTH, 2420 MachineBasicBlock *SwitchBB) { 2421 SDLoc dl = getCurSDLoc(); 2422 2423 // Subtract the lowest switch case value from the value being switched on. 2424 SDValue SwitchOp = getValue(JTH.SValue); 2425 EVT VT = SwitchOp.getValueType(); 2426 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2427 DAG.getConstant(JTH.First, dl, VT)); 2428 2429 // The SDNode we just created, which holds the value being switched on minus 2430 // the smallest case value, needs to be copied to a virtual register so it 2431 // can be used as an index into the jump table in a subsequent basic block. 2432 // This value may be smaller or larger than the target's pointer type, and 2433 // therefore require extension or truncating. 2434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2435 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2436 2437 unsigned JumpTableReg = 2438 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2439 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2440 JumpTableReg, SwitchOp); 2441 JT.Reg = JumpTableReg; 2442 2443 if (!JTH.OmitRangeCheck) { 2444 // Emit the range check for the jump table, and branch to the default block 2445 // for the switch statement if the value being switched on exceeds the 2446 // largest case in the switch. 2447 SDValue CMP = DAG.getSetCC( 2448 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2449 Sub.getValueType()), 2450 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2451 2452 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2453 MVT::Other, CopyTo, CMP, 2454 DAG.getBasicBlock(JT.Default)); 2455 2456 // Avoid emitting unnecessary branches to the next block. 2457 if (JT.MBB != NextBlock(SwitchBB)) 2458 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2459 DAG.getBasicBlock(JT.MBB)); 2460 2461 DAG.setRoot(BrCond); 2462 } else { 2463 // Avoid emitting unnecessary branches to the next block. 2464 if (JT.MBB != NextBlock(SwitchBB)) 2465 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2466 DAG.getBasicBlock(JT.MBB))); 2467 else 2468 DAG.setRoot(CopyTo); 2469 } 2470 } 2471 2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2473 /// variable if there exists one. 2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2475 SDValue &Chain) { 2476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2477 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2478 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2479 MachineFunction &MF = DAG.getMachineFunction(); 2480 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2481 MachineSDNode *Node = 2482 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2483 if (Global) { 2484 MachinePointerInfo MPInfo(Global); 2485 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2486 MachineMemOperand::MODereferenceable; 2487 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2488 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2489 DAG.setNodeMemRefs(Node, {MemRef}); 2490 } 2491 if (PtrTy != PtrMemTy) 2492 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2493 return SDValue(Node, 0); 2494 } 2495 2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2497 /// tail spliced into a stack protector check success bb. 2498 /// 2499 /// For a high level explanation of how this fits into the stack protector 2500 /// generation see the comment on the declaration of class 2501 /// StackProtectorDescriptor. 2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2503 MachineBasicBlock *ParentBB) { 2504 2505 // First create the loads to the guard/stack slot for the comparison. 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 2510 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2511 int FI = MFI.getStackProtectorIndex(); 2512 2513 SDValue Guard; 2514 SDLoc dl = getCurSDLoc(); 2515 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2516 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2517 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2518 2519 // Generate code to load the content of the guard slot. 2520 SDValue GuardVal = DAG.getLoad( 2521 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2522 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2523 MachineMemOperand::MOVolatile); 2524 2525 if (TLI.useStackGuardXorFP()) 2526 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2527 2528 // Retrieve guard check function, nullptr if instrumentation is inlined. 2529 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2530 // The target provides a guard check function to validate the guard value. 2531 // Generate a call to that function with the content of the guard slot as 2532 // argument. 2533 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2534 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2535 2536 TargetLowering::ArgListTy Args; 2537 TargetLowering::ArgListEntry Entry; 2538 Entry.Node = GuardVal; 2539 Entry.Ty = FnTy->getParamType(0); 2540 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2541 Entry.IsInReg = true; 2542 Args.push_back(Entry); 2543 2544 TargetLowering::CallLoweringInfo CLI(DAG); 2545 CLI.setDebugLoc(getCurSDLoc()) 2546 .setChain(DAG.getEntryNode()) 2547 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2548 getValue(GuardCheckFn), std::move(Args)); 2549 2550 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2551 DAG.setRoot(Result.second); 2552 return; 2553 } 2554 2555 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2556 // Otherwise, emit a volatile load to retrieve the stack guard value. 2557 SDValue Chain = DAG.getEntryNode(); 2558 if (TLI.useLoadStackGuardNode()) { 2559 Guard = getLoadStackGuard(DAG, dl, Chain); 2560 } else { 2561 const Value *IRGuard = TLI.getSDagStackGuard(M); 2562 SDValue GuardPtr = getValue(IRGuard); 2563 2564 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2565 MachinePointerInfo(IRGuard, 0), Align, 2566 MachineMemOperand::MOVolatile); 2567 } 2568 2569 // Perform the comparison via a subtract/getsetcc. 2570 EVT VT = Guard.getValueType(); 2571 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2572 2573 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2574 *DAG.getContext(), 2575 Sub.getValueType()), 2576 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2577 2578 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2579 // branch to failure MBB. 2580 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2581 MVT::Other, GuardVal.getOperand(0), 2582 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2583 // Otherwise branch to success MBB. 2584 SDValue Br = DAG.getNode(ISD::BR, dl, 2585 MVT::Other, BrCond, 2586 DAG.getBasicBlock(SPD.getSuccessMBB())); 2587 2588 DAG.setRoot(Br); 2589 } 2590 2591 /// Codegen the failure basic block for a stack protector check. 2592 /// 2593 /// A failure stack protector machine basic block consists simply of a call to 2594 /// __stack_chk_fail(). 2595 /// 2596 /// For a high level explanation of how this fits into the stack protector 2597 /// generation see the comment on the declaration of class 2598 /// StackProtectorDescriptor. 2599 void 2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2602 TargetLowering::MakeLibCallOptions CallOptions; 2603 CallOptions.setDiscardResult(true); 2604 SDValue Chain = 2605 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2606 None, CallOptions, getCurSDLoc()).second; 2607 // On PS4, the "return address" must still be within the calling function, 2608 // even if it's at the very end, so emit an explicit TRAP here. 2609 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2610 if (TM.getTargetTriple().isPS4CPU()) 2611 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2612 2613 DAG.setRoot(Chain); 2614 } 2615 2616 /// visitBitTestHeader - This function emits necessary code to produce value 2617 /// suitable for "bit tests" 2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2619 MachineBasicBlock *SwitchBB) { 2620 SDLoc dl = getCurSDLoc(); 2621 2622 // Subtract the minimum value 2623 SDValue SwitchOp = getValue(B.SValue); 2624 EVT VT = SwitchOp.getValueType(); 2625 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2626 DAG.getConstant(B.First, dl, VT)); 2627 2628 // Check range 2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2630 SDValue RangeCmp = DAG.getSetCC( 2631 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2632 Sub.getValueType()), 2633 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2634 2635 // Determine the type of the test operands. 2636 bool UsePtrType = false; 2637 if (!TLI.isTypeLegal(VT)) 2638 UsePtrType = true; 2639 else { 2640 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2641 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2642 // Switch table case range are encoded into series of masks. 2643 // Just use pointer type, it's guaranteed to fit. 2644 UsePtrType = true; 2645 break; 2646 } 2647 } 2648 if (UsePtrType) { 2649 VT = TLI.getPointerTy(DAG.getDataLayout()); 2650 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2651 } 2652 2653 B.RegVT = VT.getSimpleVT(); 2654 B.Reg = FuncInfo.CreateReg(B.RegVT); 2655 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2656 2657 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2658 2659 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2660 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2661 SwitchBB->normalizeSuccProbs(); 2662 2663 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2664 MVT::Other, CopyTo, RangeCmp, 2665 DAG.getBasicBlock(B.Default)); 2666 2667 // Avoid emitting unnecessary branches to the next block. 2668 if (MBB != NextBlock(SwitchBB)) 2669 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2670 DAG.getBasicBlock(MBB)); 2671 2672 DAG.setRoot(BrRange); 2673 } 2674 2675 /// visitBitTestCase - this function produces one "bit test" 2676 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2677 MachineBasicBlock* NextMBB, 2678 BranchProbability BranchProbToNext, 2679 unsigned Reg, 2680 BitTestCase &B, 2681 MachineBasicBlock *SwitchBB) { 2682 SDLoc dl = getCurSDLoc(); 2683 MVT VT = BB.RegVT; 2684 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2685 SDValue Cmp; 2686 unsigned PopCount = countPopulation(B.Mask); 2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2688 if (PopCount == 1) { 2689 // Testing for a single bit; just compare the shift count with what it 2690 // would need to be to shift a 1 bit in that position. 2691 Cmp = DAG.getSetCC( 2692 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2693 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2694 ISD::SETEQ); 2695 } else if (PopCount == BB.Range) { 2696 // There is only one zero bit in the range, test for it directly. 2697 Cmp = DAG.getSetCC( 2698 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2699 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2700 ISD::SETNE); 2701 } else { 2702 // Make desired shift 2703 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2704 DAG.getConstant(1, dl, VT), ShiftOp); 2705 2706 // Emit bit tests and jumps 2707 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2708 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2709 Cmp = DAG.getSetCC( 2710 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2711 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2712 } 2713 2714 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2715 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2716 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2717 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2718 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2719 // one as they are relative probabilities (and thus work more like weights), 2720 // and hence we need to normalize them to let the sum of them become one. 2721 SwitchBB->normalizeSuccProbs(); 2722 2723 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2724 MVT::Other, getControlRoot(), 2725 Cmp, DAG.getBasicBlock(B.TargetBB)); 2726 2727 // Avoid emitting unnecessary branches to the next block. 2728 if (NextMBB != NextBlock(SwitchBB)) 2729 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2730 DAG.getBasicBlock(NextMBB)); 2731 2732 DAG.setRoot(BrAnd); 2733 } 2734 2735 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2736 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2737 2738 // Retrieve successors. Look through artificial IR level blocks like 2739 // catchswitch for successors. 2740 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2741 const BasicBlock *EHPadBB = I.getSuccessor(1); 2742 2743 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2744 // have to do anything here to lower funclet bundles. 2745 assert(!I.hasOperandBundlesOtherThan( 2746 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2747 "Cannot lower invokes with arbitrary operand bundles yet!"); 2748 2749 const Value *Callee(I.getCalledValue()); 2750 const Function *Fn = dyn_cast<Function>(Callee); 2751 if (isa<InlineAsm>(Callee)) 2752 visitInlineAsm(&I); 2753 else if (Fn && Fn->isIntrinsic()) { 2754 switch (Fn->getIntrinsicID()) { 2755 default: 2756 llvm_unreachable("Cannot invoke this intrinsic"); 2757 case Intrinsic::donothing: 2758 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2759 break; 2760 case Intrinsic::experimental_patchpoint_void: 2761 case Intrinsic::experimental_patchpoint_i64: 2762 visitPatchpoint(&I, EHPadBB); 2763 break; 2764 case Intrinsic::experimental_gc_statepoint: 2765 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2766 break; 2767 case Intrinsic::wasm_rethrow_in_catch: { 2768 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2769 // special because it can be invoked, so we manually lower it to a DAG 2770 // node here. 2771 SmallVector<SDValue, 8> Ops; 2772 Ops.push_back(getRoot()); // inchain 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 Ops.push_back( 2775 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2776 TLI.getPointerTy(DAG.getDataLayout()))); 2777 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2778 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2779 break; 2780 } 2781 } 2782 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2783 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2784 // Eventually we will support lowering the @llvm.experimental.deoptimize 2785 // intrinsic, and right now there are no plans to support other intrinsics 2786 // with deopt state. 2787 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2788 } else { 2789 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2790 } 2791 2792 // If the value of the invoke is used outside of its defining block, make it 2793 // available as a virtual register. 2794 // We already took care of the exported value for the statepoint instruction 2795 // during call to the LowerStatepoint. 2796 if (!isStatepoint(I)) { 2797 CopyToExportRegsIfNeeded(&I); 2798 } 2799 2800 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2801 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2802 BranchProbability EHPadBBProb = 2803 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2804 : BranchProbability::getZero(); 2805 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2806 2807 // Update successor info. 2808 addSuccessorWithProb(InvokeMBB, Return); 2809 for (auto &UnwindDest : UnwindDests) { 2810 UnwindDest.first->setIsEHPad(); 2811 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2812 } 2813 InvokeMBB->normalizeSuccProbs(); 2814 2815 // Drop into normal successor. 2816 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2817 DAG.getBasicBlock(Return))); 2818 } 2819 2820 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2821 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2822 2823 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2824 // have to do anything here to lower funclet bundles. 2825 assert(!I.hasOperandBundlesOtherThan( 2826 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2827 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2828 2829 assert(isa<InlineAsm>(I.getCalledValue()) && 2830 "Only know how to handle inlineasm callbr"); 2831 visitInlineAsm(&I); 2832 2833 // Retrieve successors. 2834 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2835 2836 // Update successor info. 2837 addSuccessorWithProb(CallBrMBB, Return); 2838 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2839 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2840 addSuccessorWithProb(CallBrMBB, Target); 2841 } 2842 CallBrMBB->normalizeSuccProbs(); 2843 2844 // Drop into default successor. 2845 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2846 MVT::Other, getControlRoot(), 2847 DAG.getBasicBlock(Return))); 2848 } 2849 2850 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2851 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2852 } 2853 2854 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2855 assert(FuncInfo.MBB->isEHPad() && 2856 "Call to landingpad not in landing pad!"); 2857 2858 // If there aren't registers to copy the values into (e.g., during SjLj 2859 // exceptions), then don't bother to create these DAG nodes. 2860 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2861 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2862 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2863 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2864 return; 2865 2866 // If landingpad's return type is token type, we don't create DAG nodes 2867 // for its exception pointer and selector value. The extraction of exception 2868 // pointer or selector value from token type landingpads is not currently 2869 // supported. 2870 if (LP.getType()->isTokenTy()) 2871 return; 2872 2873 SmallVector<EVT, 2> ValueVTs; 2874 SDLoc dl = getCurSDLoc(); 2875 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2876 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2877 2878 // Get the two live-in registers as SDValues. The physregs have already been 2879 // copied into virtual registers. 2880 SDValue Ops[2]; 2881 if (FuncInfo.ExceptionPointerVirtReg) { 2882 Ops[0] = DAG.getZExtOrTrunc( 2883 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2884 FuncInfo.ExceptionPointerVirtReg, 2885 TLI.getPointerTy(DAG.getDataLayout())), 2886 dl, ValueVTs[0]); 2887 } else { 2888 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2889 } 2890 Ops[1] = DAG.getZExtOrTrunc( 2891 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2892 FuncInfo.ExceptionSelectorVirtReg, 2893 TLI.getPointerTy(DAG.getDataLayout())), 2894 dl, ValueVTs[1]); 2895 2896 // Merge into one. 2897 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2898 DAG.getVTList(ValueVTs), Ops); 2899 setValue(&LP, Res); 2900 } 2901 2902 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2903 MachineBasicBlock *Last) { 2904 // Update JTCases. 2905 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2906 if (SL->JTCases[i].first.HeaderBB == First) 2907 SL->JTCases[i].first.HeaderBB = Last; 2908 2909 // Update BitTestCases. 2910 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2911 if (SL->BitTestCases[i].Parent == First) 2912 SL->BitTestCases[i].Parent = Last; 2913 } 2914 2915 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2916 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2917 2918 // Update machine-CFG edges with unique successors. 2919 SmallSet<BasicBlock*, 32> Done; 2920 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2921 BasicBlock *BB = I.getSuccessor(i); 2922 bool Inserted = Done.insert(BB).second; 2923 if (!Inserted) 2924 continue; 2925 2926 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2927 addSuccessorWithProb(IndirectBrMBB, Succ); 2928 } 2929 IndirectBrMBB->normalizeSuccProbs(); 2930 2931 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2932 MVT::Other, getControlRoot(), 2933 getValue(I.getAddress()))); 2934 } 2935 2936 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2937 if (!DAG.getTarget().Options.TrapUnreachable) 2938 return; 2939 2940 // We may be able to ignore unreachable behind a noreturn call. 2941 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2942 const BasicBlock &BB = *I.getParent(); 2943 if (&I != &BB.front()) { 2944 BasicBlock::const_iterator PredI = 2945 std::prev(BasicBlock::const_iterator(&I)); 2946 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2947 if (Call->doesNotReturn()) 2948 return; 2949 } 2950 } 2951 } 2952 2953 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2954 } 2955 2956 void SelectionDAGBuilder::visitFSub(const User &I) { 2957 // -0.0 - X --> fneg 2958 Type *Ty = I.getType(); 2959 if (isa<Constant>(I.getOperand(0)) && 2960 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2961 SDValue Op2 = getValue(I.getOperand(1)); 2962 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2963 Op2.getValueType(), Op2)); 2964 return; 2965 } 2966 2967 visitBinary(I, ISD::FSUB); 2968 } 2969 2970 /// Checks if the given instruction performs a vector reduction, in which case 2971 /// we have the freedom to alter the elements in the result as long as the 2972 /// reduction of them stays unchanged. 2973 static bool isVectorReductionOp(const User *I) { 2974 const Instruction *Inst = dyn_cast<Instruction>(I); 2975 if (!Inst || !Inst->getType()->isVectorTy()) 2976 return false; 2977 2978 auto OpCode = Inst->getOpcode(); 2979 switch (OpCode) { 2980 case Instruction::Add: 2981 case Instruction::Mul: 2982 case Instruction::And: 2983 case Instruction::Or: 2984 case Instruction::Xor: 2985 break; 2986 case Instruction::FAdd: 2987 case Instruction::FMul: 2988 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2989 if (FPOp->getFastMathFlags().isFast()) 2990 break; 2991 LLVM_FALLTHROUGH; 2992 default: 2993 return false; 2994 } 2995 2996 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2997 // Ensure the reduction size is a power of 2. 2998 if (!isPowerOf2_32(ElemNum)) 2999 return false; 3000 3001 unsigned ElemNumToReduce = ElemNum; 3002 3003 // Do DFS search on the def-use chain from the given instruction. We only 3004 // allow four kinds of operations during the search until we reach the 3005 // instruction that extracts the first element from the vector: 3006 // 3007 // 1. The reduction operation of the same opcode as the given instruction. 3008 // 3009 // 2. PHI node. 3010 // 3011 // 3. ShuffleVector instruction together with a reduction operation that 3012 // does a partial reduction. 3013 // 3014 // 4. ExtractElement that extracts the first element from the vector, and we 3015 // stop searching the def-use chain here. 3016 // 3017 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3018 // from 1-3 to the stack to continue the DFS. The given instruction is not 3019 // a reduction operation if we meet any other instructions other than those 3020 // listed above. 3021 3022 SmallVector<const User *, 16> UsersToVisit{Inst}; 3023 SmallPtrSet<const User *, 16> Visited; 3024 bool ReduxExtracted = false; 3025 3026 while (!UsersToVisit.empty()) { 3027 auto User = UsersToVisit.back(); 3028 UsersToVisit.pop_back(); 3029 if (!Visited.insert(User).second) 3030 continue; 3031 3032 for (const auto &U : User->users()) { 3033 auto Inst = dyn_cast<Instruction>(U); 3034 if (!Inst) 3035 return false; 3036 3037 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3038 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3039 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3040 return false; 3041 UsersToVisit.push_back(U); 3042 } else if (const ShuffleVectorInst *ShufInst = 3043 dyn_cast<ShuffleVectorInst>(U)) { 3044 // Detect the following pattern: A ShuffleVector instruction together 3045 // with a reduction that do partial reduction on the first and second 3046 // ElemNumToReduce / 2 elements, and store the result in 3047 // ElemNumToReduce / 2 elements in another vector. 3048 3049 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3050 if (ResultElements < ElemNum) 3051 return false; 3052 3053 if (ElemNumToReduce == 1) 3054 return false; 3055 if (!isa<UndefValue>(U->getOperand(1))) 3056 return false; 3057 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3058 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3059 return false; 3060 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3061 if (ShufInst->getMaskValue(i) != -1) 3062 return false; 3063 3064 // There is only one user of this ShuffleVector instruction, which 3065 // must be a reduction operation. 3066 if (!U->hasOneUse()) 3067 return false; 3068 3069 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3070 if (!U2 || U2->getOpcode() != OpCode) 3071 return false; 3072 3073 // Check operands of the reduction operation. 3074 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3075 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3076 UsersToVisit.push_back(U2); 3077 ElemNumToReduce /= 2; 3078 } else 3079 return false; 3080 } else if (isa<ExtractElementInst>(U)) { 3081 // At this moment we should have reduced all elements in the vector. 3082 if (ElemNumToReduce != 1) 3083 return false; 3084 3085 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3086 if (!Val || !Val->isZero()) 3087 return false; 3088 3089 ReduxExtracted = true; 3090 } else 3091 return false; 3092 } 3093 } 3094 return ReduxExtracted; 3095 } 3096 3097 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3098 SDNodeFlags Flags; 3099 3100 SDValue Op = getValue(I.getOperand(0)); 3101 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3102 Op, Flags); 3103 setValue(&I, UnNodeValue); 3104 } 3105 3106 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3107 SDNodeFlags Flags; 3108 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3109 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3110 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3111 } 3112 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3113 Flags.setExact(ExactOp->isExact()); 3114 } 3115 if (isVectorReductionOp(&I)) { 3116 Flags.setVectorReduction(true); 3117 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3118 } 3119 3120 SDValue Op1 = getValue(I.getOperand(0)); 3121 SDValue Op2 = getValue(I.getOperand(1)); 3122 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3123 Op1, Op2, Flags); 3124 setValue(&I, BinNodeValue); 3125 } 3126 3127 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3128 SDValue Op1 = getValue(I.getOperand(0)); 3129 SDValue Op2 = getValue(I.getOperand(1)); 3130 3131 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3132 Op1.getValueType(), DAG.getDataLayout()); 3133 3134 // Coerce the shift amount to the right type if we can. 3135 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3136 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3137 unsigned Op2Size = Op2.getValueSizeInBits(); 3138 SDLoc DL = getCurSDLoc(); 3139 3140 // If the operand is smaller than the shift count type, promote it. 3141 if (ShiftSize > Op2Size) 3142 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3143 3144 // If the operand is larger than the shift count type but the shift 3145 // count type has enough bits to represent any shift value, truncate 3146 // it now. This is a common case and it exposes the truncate to 3147 // optimization early. 3148 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3149 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3150 // Otherwise we'll need to temporarily settle for some other convenient 3151 // type. Type legalization will make adjustments once the shiftee is split. 3152 else 3153 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3154 } 3155 3156 bool nuw = false; 3157 bool nsw = false; 3158 bool exact = false; 3159 3160 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3161 3162 if (const OverflowingBinaryOperator *OFBinOp = 3163 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3164 nuw = OFBinOp->hasNoUnsignedWrap(); 3165 nsw = OFBinOp->hasNoSignedWrap(); 3166 } 3167 if (const PossiblyExactOperator *ExactOp = 3168 dyn_cast<const PossiblyExactOperator>(&I)) 3169 exact = ExactOp->isExact(); 3170 } 3171 SDNodeFlags Flags; 3172 Flags.setExact(exact); 3173 Flags.setNoSignedWrap(nsw); 3174 Flags.setNoUnsignedWrap(nuw); 3175 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3176 Flags); 3177 setValue(&I, Res); 3178 } 3179 3180 void SelectionDAGBuilder::visitSDiv(const User &I) { 3181 SDValue Op1 = getValue(I.getOperand(0)); 3182 SDValue Op2 = getValue(I.getOperand(1)); 3183 3184 SDNodeFlags Flags; 3185 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3186 cast<PossiblyExactOperator>(&I)->isExact()); 3187 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3188 Op2, Flags)); 3189 } 3190 3191 void SelectionDAGBuilder::visitICmp(const User &I) { 3192 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3193 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3194 predicate = IC->getPredicate(); 3195 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3196 predicate = ICmpInst::Predicate(IC->getPredicate()); 3197 SDValue Op1 = getValue(I.getOperand(0)); 3198 SDValue Op2 = getValue(I.getOperand(1)); 3199 ISD::CondCode Opcode = getICmpCondCode(predicate); 3200 3201 auto &TLI = DAG.getTargetLoweringInfo(); 3202 EVT MemVT = 3203 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3204 3205 // If a pointer's DAG type is larger than its memory type then the DAG values 3206 // are zero-extended. This breaks signed comparisons so truncate back to the 3207 // underlying type before doing the compare. 3208 if (Op1.getValueType() != MemVT) { 3209 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3210 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3211 } 3212 3213 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3214 I.getType()); 3215 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3216 } 3217 3218 void SelectionDAGBuilder::visitFCmp(const User &I) { 3219 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3220 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3221 predicate = FC->getPredicate(); 3222 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3223 predicate = FCmpInst::Predicate(FC->getPredicate()); 3224 SDValue Op1 = getValue(I.getOperand(0)); 3225 SDValue Op2 = getValue(I.getOperand(1)); 3226 3227 ISD::CondCode Condition = getFCmpCondCode(predicate); 3228 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3229 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3230 Condition = getFCmpCodeWithoutNaN(Condition); 3231 3232 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3233 I.getType()); 3234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3235 } 3236 3237 // Check if the condition of the select has one use or two users that are both 3238 // selects with the same condition. 3239 static bool hasOnlySelectUsers(const Value *Cond) { 3240 return llvm::all_of(Cond->users(), [](const Value *V) { 3241 return isa<SelectInst>(V); 3242 }); 3243 } 3244 3245 void SelectionDAGBuilder::visitSelect(const User &I) { 3246 SmallVector<EVT, 4> ValueVTs; 3247 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3248 ValueVTs); 3249 unsigned NumValues = ValueVTs.size(); 3250 if (NumValues == 0) return; 3251 3252 SmallVector<SDValue, 4> Values(NumValues); 3253 SDValue Cond = getValue(I.getOperand(0)); 3254 SDValue LHSVal = getValue(I.getOperand(1)); 3255 SDValue RHSVal = getValue(I.getOperand(2)); 3256 auto BaseOps = {Cond}; 3257 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3258 ISD::VSELECT : ISD::SELECT; 3259 3260 bool IsUnaryAbs = false; 3261 3262 // Min/max matching is only viable if all output VTs are the same. 3263 if (is_splat(ValueVTs)) { 3264 EVT VT = ValueVTs[0]; 3265 LLVMContext &Ctx = *DAG.getContext(); 3266 auto &TLI = DAG.getTargetLoweringInfo(); 3267 3268 // We care about the legality of the operation after it has been type 3269 // legalized. 3270 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3271 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3272 VT = TLI.getTypeToTransformTo(Ctx, VT); 3273 3274 // If the vselect is legal, assume we want to leave this as a vector setcc + 3275 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3276 // min/max is legal on the scalar type. 3277 bool UseScalarMinMax = VT.isVector() && 3278 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3279 3280 Value *LHS, *RHS; 3281 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3282 ISD::NodeType Opc = ISD::DELETED_NODE; 3283 switch (SPR.Flavor) { 3284 case SPF_UMAX: Opc = ISD::UMAX; break; 3285 case SPF_UMIN: Opc = ISD::UMIN; break; 3286 case SPF_SMAX: Opc = ISD::SMAX; break; 3287 case SPF_SMIN: Opc = ISD::SMIN; break; 3288 case SPF_FMINNUM: 3289 switch (SPR.NaNBehavior) { 3290 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3291 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3292 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3293 case SPNB_RETURNS_ANY: { 3294 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3295 Opc = ISD::FMINNUM; 3296 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3297 Opc = ISD::FMINIMUM; 3298 else if (UseScalarMinMax) 3299 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3300 ISD::FMINNUM : ISD::FMINIMUM; 3301 break; 3302 } 3303 } 3304 break; 3305 case SPF_FMAXNUM: 3306 switch (SPR.NaNBehavior) { 3307 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3308 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3309 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3310 case SPNB_RETURNS_ANY: 3311 3312 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3313 Opc = ISD::FMAXNUM; 3314 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3315 Opc = ISD::FMAXIMUM; 3316 else if (UseScalarMinMax) 3317 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3318 ISD::FMAXNUM : ISD::FMAXIMUM; 3319 break; 3320 } 3321 break; 3322 case SPF_ABS: 3323 IsUnaryAbs = true; 3324 Opc = ISD::ABS; 3325 break; 3326 case SPF_NABS: 3327 // TODO: we need to produce sub(0, abs(X)). 3328 default: break; 3329 } 3330 3331 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3332 (TLI.isOperationLegalOrCustom(Opc, VT) || 3333 (UseScalarMinMax && 3334 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3335 // If the underlying comparison instruction is used by any other 3336 // instruction, the consumed instructions won't be destroyed, so it is 3337 // not profitable to convert to a min/max. 3338 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3339 OpCode = Opc; 3340 LHSVal = getValue(LHS); 3341 RHSVal = getValue(RHS); 3342 BaseOps = {}; 3343 } 3344 3345 if (IsUnaryAbs) { 3346 OpCode = Opc; 3347 LHSVal = getValue(LHS); 3348 BaseOps = {}; 3349 } 3350 } 3351 3352 if (IsUnaryAbs) { 3353 for (unsigned i = 0; i != NumValues; ++i) { 3354 Values[i] = 3355 DAG.getNode(OpCode, getCurSDLoc(), 3356 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3357 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3358 } 3359 } else { 3360 for (unsigned i = 0; i != NumValues; ++i) { 3361 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3362 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3363 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3364 Values[i] = DAG.getNode( 3365 OpCode, getCurSDLoc(), 3366 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3367 } 3368 } 3369 3370 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3371 DAG.getVTList(ValueVTs), Values)); 3372 } 3373 3374 void SelectionDAGBuilder::visitTrunc(const User &I) { 3375 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3376 SDValue N = getValue(I.getOperand(0)); 3377 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3378 I.getType()); 3379 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3380 } 3381 3382 void SelectionDAGBuilder::visitZExt(const User &I) { 3383 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3384 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3385 SDValue N = getValue(I.getOperand(0)); 3386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3387 I.getType()); 3388 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3389 } 3390 3391 void SelectionDAGBuilder::visitSExt(const User &I) { 3392 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3393 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3394 SDValue N = getValue(I.getOperand(0)); 3395 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3396 I.getType()); 3397 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3398 } 3399 3400 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3401 // FPTrunc is never a no-op cast, no need to check 3402 SDValue N = getValue(I.getOperand(0)); 3403 SDLoc dl = getCurSDLoc(); 3404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3405 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3406 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3407 DAG.getTargetConstant( 3408 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3409 } 3410 3411 void SelectionDAGBuilder::visitFPExt(const User &I) { 3412 // FPExt is never a no-op cast, no need to check 3413 SDValue N = getValue(I.getOperand(0)); 3414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3415 I.getType()); 3416 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3417 } 3418 3419 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3420 // FPToUI is never a no-op cast, no need to check 3421 SDValue N = getValue(I.getOperand(0)); 3422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3423 I.getType()); 3424 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3425 } 3426 3427 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3428 // FPToSI is never a no-op cast, no need to check 3429 SDValue N = getValue(I.getOperand(0)); 3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3431 I.getType()); 3432 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3433 } 3434 3435 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3436 // UIToFP is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3444 // SIToFP is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3452 // What to do depends on the size of the integer and the size of the pointer. 3453 // We can either truncate, zero extend, or no-op, accordingly. 3454 SDValue N = getValue(I.getOperand(0)); 3455 auto &TLI = DAG.getTargetLoweringInfo(); 3456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3457 I.getType()); 3458 EVT PtrMemVT = 3459 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3460 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3461 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3462 setValue(&I, N); 3463 } 3464 3465 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3466 // What to do depends on the size of the integer and the size of the pointer. 3467 // We can either truncate, zero extend, or no-op, accordingly. 3468 SDValue N = getValue(I.getOperand(0)); 3469 auto &TLI = DAG.getTargetLoweringInfo(); 3470 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3471 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3472 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3473 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3474 setValue(&I, N); 3475 } 3476 3477 void SelectionDAGBuilder::visitBitCast(const User &I) { 3478 SDValue N = getValue(I.getOperand(0)); 3479 SDLoc dl = getCurSDLoc(); 3480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3481 I.getType()); 3482 3483 // BitCast assures us that source and destination are the same size so this is 3484 // either a BITCAST or a no-op. 3485 if (DestVT != N.getValueType()) 3486 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3487 DestVT, N)); // convert types. 3488 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3489 // might fold any kind of constant expression to an integer constant and that 3490 // is not what we are looking for. Only recognize a bitcast of a genuine 3491 // constant integer as an opaque constant. 3492 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3493 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3494 /*isOpaque*/true)); 3495 else 3496 setValue(&I, N); // noop cast. 3497 } 3498 3499 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3501 const Value *SV = I.getOperand(0); 3502 SDValue N = getValue(SV); 3503 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3504 3505 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3506 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3507 3508 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3509 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3510 3511 setValue(&I, N); 3512 } 3513 3514 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3516 SDValue InVec = getValue(I.getOperand(0)); 3517 SDValue InVal = getValue(I.getOperand(1)); 3518 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3519 TLI.getVectorIdxTy(DAG.getDataLayout())); 3520 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3521 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3522 InVec, InVal, InIdx)); 3523 } 3524 3525 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3527 SDValue InVec = getValue(I.getOperand(0)); 3528 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3529 TLI.getVectorIdxTy(DAG.getDataLayout())); 3530 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3531 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3532 InVec, InIdx)); 3533 } 3534 3535 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3536 SDValue Src1 = getValue(I.getOperand(0)); 3537 SDValue Src2 = getValue(I.getOperand(1)); 3538 SDLoc DL = getCurSDLoc(); 3539 3540 SmallVector<int, 8> Mask; 3541 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3542 unsigned MaskNumElts = Mask.size(); 3543 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3546 EVT SrcVT = Src1.getValueType(); 3547 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3548 3549 if (SrcNumElts == MaskNumElts) { 3550 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3551 return; 3552 } 3553 3554 // Normalize the shuffle vector since mask and vector length don't match. 3555 if (SrcNumElts < MaskNumElts) { 3556 // Mask is longer than the source vectors. We can use concatenate vector to 3557 // make the mask and vectors lengths match. 3558 3559 if (MaskNumElts % SrcNumElts == 0) { 3560 // Mask length is a multiple of the source vector length. 3561 // Check if the shuffle is some kind of concatenation of the input 3562 // vectors. 3563 unsigned NumConcat = MaskNumElts / SrcNumElts; 3564 bool IsConcat = true; 3565 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3566 for (unsigned i = 0; i != MaskNumElts; ++i) { 3567 int Idx = Mask[i]; 3568 if (Idx < 0) 3569 continue; 3570 // Ensure the indices in each SrcVT sized piece are sequential and that 3571 // the same source is used for the whole piece. 3572 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3573 (ConcatSrcs[i / SrcNumElts] >= 0 && 3574 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3575 IsConcat = false; 3576 break; 3577 } 3578 // Remember which source this index came from. 3579 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3580 } 3581 3582 // The shuffle is concatenating multiple vectors together. Just emit 3583 // a CONCAT_VECTORS operation. 3584 if (IsConcat) { 3585 SmallVector<SDValue, 8> ConcatOps; 3586 for (auto Src : ConcatSrcs) { 3587 if (Src < 0) 3588 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3589 else if (Src == 0) 3590 ConcatOps.push_back(Src1); 3591 else 3592 ConcatOps.push_back(Src2); 3593 } 3594 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3595 return; 3596 } 3597 } 3598 3599 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3600 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3601 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3602 PaddedMaskNumElts); 3603 3604 // Pad both vectors with undefs to make them the same length as the mask. 3605 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3606 3607 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3608 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3609 MOps1[0] = Src1; 3610 MOps2[0] = Src2; 3611 3612 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3613 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3614 3615 // Readjust mask for new input vector length. 3616 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3617 for (unsigned i = 0; i != MaskNumElts; ++i) { 3618 int Idx = Mask[i]; 3619 if (Idx >= (int)SrcNumElts) 3620 Idx -= SrcNumElts - PaddedMaskNumElts; 3621 MappedOps[i] = Idx; 3622 } 3623 3624 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3625 3626 // If the concatenated vector was padded, extract a subvector with the 3627 // correct number of elements. 3628 if (MaskNumElts != PaddedMaskNumElts) 3629 Result = DAG.getNode( 3630 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3631 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3632 3633 setValue(&I, Result); 3634 return; 3635 } 3636 3637 if (SrcNumElts > MaskNumElts) { 3638 // Analyze the access pattern of the vector to see if we can extract 3639 // two subvectors and do the shuffle. 3640 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3641 bool CanExtract = true; 3642 for (int Idx : Mask) { 3643 unsigned Input = 0; 3644 if (Idx < 0) 3645 continue; 3646 3647 if (Idx >= (int)SrcNumElts) { 3648 Input = 1; 3649 Idx -= SrcNumElts; 3650 } 3651 3652 // If all the indices come from the same MaskNumElts sized portion of 3653 // the sources we can use extract. Also make sure the extract wouldn't 3654 // extract past the end of the source. 3655 int NewStartIdx = alignDown(Idx, MaskNumElts); 3656 if (NewStartIdx + MaskNumElts > SrcNumElts || 3657 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3658 CanExtract = false; 3659 // Make sure we always update StartIdx as we use it to track if all 3660 // elements are undef. 3661 StartIdx[Input] = NewStartIdx; 3662 } 3663 3664 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3665 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3666 return; 3667 } 3668 if (CanExtract) { 3669 // Extract appropriate subvector and generate a vector shuffle 3670 for (unsigned Input = 0; Input < 2; ++Input) { 3671 SDValue &Src = Input == 0 ? Src1 : Src2; 3672 if (StartIdx[Input] < 0) 3673 Src = DAG.getUNDEF(VT); 3674 else { 3675 Src = DAG.getNode( 3676 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3677 DAG.getConstant(StartIdx[Input], DL, 3678 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3679 } 3680 } 3681 3682 // Calculate new mask. 3683 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3684 for (int &Idx : MappedOps) { 3685 if (Idx >= (int)SrcNumElts) 3686 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3687 else if (Idx >= 0) 3688 Idx -= StartIdx[0]; 3689 } 3690 3691 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3692 return; 3693 } 3694 } 3695 3696 // We can't use either concat vectors or extract subvectors so fall back to 3697 // replacing the shuffle with extract and build vector. 3698 // to insert and build vector. 3699 EVT EltVT = VT.getVectorElementType(); 3700 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3701 SmallVector<SDValue,8> Ops; 3702 for (int Idx : Mask) { 3703 SDValue Res; 3704 3705 if (Idx < 0) { 3706 Res = DAG.getUNDEF(EltVT); 3707 } else { 3708 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3709 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3710 3711 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3712 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3713 } 3714 3715 Ops.push_back(Res); 3716 } 3717 3718 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3719 } 3720 3721 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3722 ArrayRef<unsigned> Indices; 3723 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3724 Indices = IV->getIndices(); 3725 else 3726 Indices = cast<ConstantExpr>(&I)->getIndices(); 3727 3728 const Value *Op0 = I.getOperand(0); 3729 const Value *Op1 = I.getOperand(1); 3730 Type *AggTy = I.getType(); 3731 Type *ValTy = Op1->getType(); 3732 bool IntoUndef = isa<UndefValue>(Op0); 3733 bool FromUndef = isa<UndefValue>(Op1); 3734 3735 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3736 3737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3738 SmallVector<EVT, 4> AggValueVTs; 3739 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3740 SmallVector<EVT, 4> ValValueVTs; 3741 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3742 3743 unsigned NumAggValues = AggValueVTs.size(); 3744 unsigned NumValValues = ValValueVTs.size(); 3745 SmallVector<SDValue, 4> Values(NumAggValues); 3746 3747 // Ignore an insertvalue that produces an empty object 3748 if (!NumAggValues) { 3749 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3750 return; 3751 } 3752 3753 SDValue Agg = getValue(Op0); 3754 unsigned i = 0; 3755 // Copy the beginning value(s) from the original aggregate. 3756 for (; i != LinearIndex; ++i) 3757 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3758 SDValue(Agg.getNode(), Agg.getResNo() + i); 3759 // Copy values from the inserted value(s). 3760 if (NumValValues) { 3761 SDValue Val = getValue(Op1); 3762 for (; i != LinearIndex + NumValValues; ++i) 3763 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3764 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3765 } 3766 // Copy remaining value(s) from the original aggregate. 3767 for (; i != NumAggValues; ++i) 3768 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3769 SDValue(Agg.getNode(), Agg.getResNo() + i); 3770 3771 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3772 DAG.getVTList(AggValueVTs), Values)); 3773 } 3774 3775 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3776 ArrayRef<unsigned> Indices; 3777 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3778 Indices = EV->getIndices(); 3779 else 3780 Indices = cast<ConstantExpr>(&I)->getIndices(); 3781 3782 const Value *Op0 = I.getOperand(0); 3783 Type *AggTy = Op0->getType(); 3784 Type *ValTy = I.getType(); 3785 bool OutOfUndef = isa<UndefValue>(Op0); 3786 3787 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3788 3789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3790 SmallVector<EVT, 4> ValValueVTs; 3791 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3792 3793 unsigned NumValValues = ValValueVTs.size(); 3794 3795 // Ignore a extractvalue that produces an empty object 3796 if (!NumValValues) { 3797 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3798 return; 3799 } 3800 3801 SmallVector<SDValue, 4> Values(NumValValues); 3802 3803 SDValue Agg = getValue(Op0); 3804 // Copy out the selected value(s). 3805 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3806 Values[i - LinearIndex] = 3807 OutOfUndef ? 3808 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3809 SDValue(Agg.getNode(), Agg.getResNo() + i); 3810 3811 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3812 DAG.getVTList(ValValueVTs), Values)); 3813 } 3814 3815 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3816 Value *Op0 = I.getOperand(0); 3817 // Note that the pointer operand may be a vector of pointers. Take the scalar 3818 // element which holds a pointer. 3819 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3820 SDValue N = getValue(Op0); 3821 SDLoc dl = getCurSDLoc(); 3822 auto &TLI = DAG.getTargetLoweringInfo(); 3823 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3824 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3825 3826 // Normalize Vector GEP - all scalar operands should be converted to the 3827 // splat vector. 3828 unsigned VectorWidth = I.getType()->isVectorTy() ? 3829 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3830 3831 if (VectorWidth && !N.getValueType().isVector()) { 3832 LLVMContext &Context = *DAG.getContext(); 3833 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3834 N = DAG.getSplatBuildVector(VT, dl, N); 3835 } 3836 3837 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3838 GTI != E; ++GTI) { 3839 const Value *Idx = GTI.getOperand(); 3840 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3841 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3842 if (Field) { 3843 // N = N + Offset 3844 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3845 3846 // In an inbounds GEP with an offset that is nonnegative even when 3847 // interpreted as signed, assume there is no unsigned overflow. 3848 SDNodeFlags Flags; 3849 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3850 Flags.setNoUnsignedWrap(true); 3851 3852 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3853 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3854 } 3855 } else { 3856 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3857 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3858 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3859 3860 // If this is a scalar constant or a splat vector of constants, 3861 // handle it quickly. 3862 const auto *CI = dyn_cast<ConstantInt>(Idx); 3863 if (!CI && isa<ConstantDataVector>(Idx) && 3864 cast<ConstantDataVector>(Idx)->getSplatValue()) 3865 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3866 3867 if (CI) { 3868 if (CI->isZero()) 3869 continue; 3870 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3871 LLVMContext &Context = *DAG.getContext(); 3872 SDValue OffsVal = VectorWidth ? 3873 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3874 DAG.getConstant(Offs, dl, IdxTy); 3875 3876 // In an inbouds GEP with an offset that is nonnegative even when 3877 // interpreted as signed, assume there is no unsigned overflow. 3878 SDNodeFlags Flags; 3879 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3880 Flags.setNoUnsignedWrap(true); 3881 3882 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3883 3884 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3885 continue; 3886 } 3887 3888 // N = N + Idx * ElementSize; 3889 SDValue IdxN = getValue(Idx); 3890 3891 if (!IdxN.getValueType().isVector() && VectorWidth) { 3892 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3893 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3894 } 3895 3896 // If the index is smaller or larger than intptr_t, truncate or extend 3897 // it. 3898 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3899 3900 // If this is a multiply by a power of two, turn it into a shl 3901 // immediately. This is a very common case. 3902 if (ElementSize != 1) { 3903 if (ElementSize.isPowerOf2()) { 3904 unsigned Amt = ElementSize.logBase2(); 3905 IdxN = DAG.getNode(ISD::SHL, dl, 3906 N.getValueType(), IdxN, 3907 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3908 } else { 3909 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3910 IdxN.getValueType()); 3911 IdxN = DAG.getNode(ISD::MUL, dl, 3912 N.getValueType(), IdxN, Scale); 3913 } 3914 } 3915 3916 N = DAG.getNode(ISD::ADD, dl, 3917 N.getValueType(), N, IdxN); 3918 } 3919 } 3920 3921 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3922 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3923 3924 setValue(&I, N); 3925 } 3926 3927 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3928 // If this is a fixed sized alloca in the entry block of the function, 3929 // allocate it statically on the stack. 3930 if (FuncInfo.StaticAllocaMap.count(&I)) 3931 return; // getValue will auto-populate this. 3932 3933 SDLoc dl = getCurSDLoc(); 3934 Type *Ty = I.getAllocatedType(); 3935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3936 auto &DL = DAG.getDataLayout(); 3937 uint64_t TySize = DL.getTypeAllocSize(Ty); 3938 unsigned Align = 3939 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3940 3941 SDValue AllocSize = getValue(I.getArraySize()); 3942 3943 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3944 if (AllocSize.getValueType() != IntPtr) 3945 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3946 3947 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3948 AllocSize, 3949 DAG.getConstant(TySize, dl, IntPtr)); 3950 3951 // Handle alignment. If the requested alignment is less than or equal to 3952 // the stack alignment, ignore it. If the size is greater than or equal to 3953 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3954 unsigned StackAlign = 3955 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3956 if (Align <= StackAlign) 3957 Align = 0; 3958 3959 // Round the size of the allocation up to the stack alignment size 3960 // by add SA-1 to the size. This doesn't overflow because we're computing 3961 // an address inside an alloca. 3962 SDNodeFlags Flags; 3963 Flags.setNoUnsignedWrap(true); 3964 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3965 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3966 3967 // Mask out the low bits for alignment purposes. 3968 AllocSize = 3969 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3970 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3971 3972 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3973 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3974 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3975 setValue(&I, DSA); 3976 DAG.setRoot(DSA.getValue(1)); 3977 3978 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3979 } 3980 3981 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3982 if (I.isAtomic()) 3983 return visitAtomicLoad(I); 3984 3985 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3986 const Value *SV = I.getOperand(0); 3987 if (TLI.supportSwiftError()) { 3988 // Swifterror values can come from either a function parameter with 3989 // swifterror attribute or an alloca with swifterror attribute. 3990 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3991 if (Arg->hasSwiftErrorAttr()) 3992 return visitLoadFromSwiftError(I); 3993 } 3994 3995 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3996 if (Alloca->isSwiftError()) 3997 return visitLoadFromSwiftError(I); 3998 } 3999 } 4000 4001 SDValue Ptr = getValue(SV); 4002 4003 Type *Ty = I.getType(); 4004 4005 bool isVolatile = I.isVolatile(); 4006 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 4007 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 4008 bool isDereferenceable = 4009 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4010 unsigned Alignment = I.getAlignment(); 4011 4012 AAMDNodes AAInfo; 4013 I.getAAMetadata(AAInfo); 4014 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4015 4016 SmallVector<EVT, 4> ValueVTs, MemVTs; 4017 SmallVector<uint64_t, 4> Offsets; 4018 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4019 unsigned NumValues = ValueVTs.size(); 4020 if (NumValues == 0) 4021 return; 4022 4023 SDValue Root; 4024 bool ConstantMemory = false; 4025 if (isVolatile || NumValues > MaxParallelChains) 4026 // Serialize volatile loads with other side effects. 4027 Root = getRoot(); 4028 else if (AA && 4029 AA->pointsToConstantMemory(MemoryLocation( 4030 SV, 4031 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4032 AAInfo))) { 4033 // Do not serialize (non-volatile) loads of constant memory with anything. 4034 Root = DAG.getEntryNode(); 4035 ConstantMemory = true; 4036 } else { 4037 // Do not serialize non-volatile loads against each other. 4038 Root = DAG.getRoot(); 4039 } 4040 4041 SDLoc dl = getCurSDLoc(); 4042 4043 if (isVolatile) 4044 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4045 4046 // An aggregate load cannot wrap around the address space, so offsets to its 4047 // parts don't wrap either. 4048 SDNodeFlags Flags; 4049 Flags.setNoUnsignedWrap(true); 4050 4051 SmallVector<SDValue, 4> Values(NumValues); 4052 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4053 EVT PtrVT = Ptr.getValueType(); 4054 unsigned ChainI = 0; 4055 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4056 // Serializing loads here may result in excessive register pressure, and 4057 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4058 // could recover a bit by hoisting nodes upward in the chain by recognizing 4059 // they are side-effect free or do not alias. The optimizer should really 4060 // avoid this case by converting large object/array copies to llvm.memcpy 4061 // (MaxParallelChains should always remain as failsafe). 4062 if (ChainI == MaxParallelChains) { 4063 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4064 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4065 makeArrayRef(Chains.data(), ChainI)); 4066 Root = Chain; 4067 ChainI = 0; 4068 } 4069 SDValue A = DAG.getNode(ISD::ADD, dl, 4070 PtrVT, Ptr, 4071 DAG.getConstant(Offsets[i], dl, PtrVT), 4072 Flags); 4073 auto MMOFlags = MachineMemOperand::MONone; 4074 if (isVolatile) 4075 MMOFlags |= MachineMemOperand::MOVolatile; 4076 if (isNonTemporal) 4077 MMOFlags |= MachineMemOperand::MONonTemporal; 4078 if (isInvariant) 4079 MMOFlags |= MachineMemOperand::MOInvariant; 4080 if (isDereferenceable) 4081 MMOFlags |= MachineMemOperand::MODereferenceable; 4082 MMOFlags |= TLI.getMMOFlags(I); 4083 4084 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4085 MachinePointerInfo(SV, Offsets[i]), Alignment, 4086 MMOFlags, AAInfo, Ranges); 4087 Chains[ChainI] = L.getValue(1); 4088 4089 if (MemVTs[i] != ValueVTs[i]) 4090 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4091 4092 Values[i] = L; 4093 } 4094 4095 if (!ConstantMemory) { 4096 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4097 makeArrayRef(Chains.data(), ChainI)); 4098 if (isVolatile) 4099 DAG.setRoot(Chain); 4100 else 4101 PendingLoads.push_back(Chain); 4102 } 4103 4104 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4105 DAG.getVTList(ValueVTs), Values)); 4106 } 4107 4108 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4109 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4110 "call visitStoreToSwiftError when backend supports swifterror"); 4111 4112 SmallVector<EVT, 4> ValueVTs; 4113 SmallVector<uint64_t, 4> Offsets; 4114 const Value *SrcV = I.getOperand(0); 4115 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4116 SrcV->getType(), ValueVTs, &Offsets); 4117 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4118 "expect a single EVT for swifterror"); 4119 4120 SDValue Src = getValue(SrcV); 4121 // Create a virtual register, then update the virtual register. 4122 Register VReg = 4123 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4124 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4125 // Chain can be getRoot or getControlRoot. 4126 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4127 SDValue(Src.getNode(), Src.getResNo())); 4128 DAG.setRoot(CopyNode); 4129 } 4130 4131 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4132 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4133 "call visitLoadFromSwiftError when backend supports swifterror"); 4134 4135 assert(!I.isVolatile() && 4136 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4137 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4138 "Support volatile, non temporal, invariant for load_from_swift_error"); 4139 4140 const Value *SV = I.getOperand(0); 4141 Type *Ty = I.getType(); 4142 AAMDNodes AAInfo; 4143 I.getAAMetadata(AAInfo); 4144 assert( 4145 (!AA || 4146 !AA->pointsToConstantMemory(MemoryLocation( 4147 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4148 AAInfo))) && 4149 "load_from_swift_error should not be constant memory"); 4150 4151 SmallVector<EVT, 4> ValueVTs; 4152 SmallVector<uint64_t, 4> Offsets; 4153 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4154 ValueVTs, &Offsets); 4155 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4156 "expect a single EVT for swifterror"); 4157 4158 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4159 SDValue L = DAG.getCopyFromReg( 4160 getRoot(), getCurSDLoc(), 4161 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4162 4163 setValue(&I, L); 4164 } 4165 4166 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4167 if (I.isAtomic()) 4168 return visitAtomicStore(I); 4169 4170 const Value *SrcV = I.getOperand(0); 4171 const Value *PtrV = I.getOperand(1); 4172 4173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4174 if (TLI.supportSwiftError()) { 4175 // Swifterror values can come from either a function parameter with 4176 // swifterror attribute or an alloca with swifterror attribute. 4177 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4178 if (Arg->hasSwiftErrorAttr()) 4179 return visitStoreToSwiftError(I); 4180 } 4181 4182 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4183 if (Alloca->isSwiftError()) 4184 return visitStoreToSwiftError(I); 4185 } 4186 } 4187 4188 SmallVector<EVT, 4> ValueVTs, MemVTs; 4189 SmallVector<uint64_t, 4> Offsets; 4190 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4191 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4192 unsigned NumValues = ValueVTs.size(); 4193 if (NumValues == 0) 4194 return; 4195 4196 // Get the lowered operands. Note that we do this after 4197 // checking if NumResults is zero, because with zero results 4198 // the operands won't have values in the map. 4199 SDValue Src = getValue(SrcV); 4200 SDValue Ptr = getValue(PtrV); 4201 4202 SDValue Root = getRoot(); 4203 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4204 SDLoc dl = getCurSDLoc(); 4205 EVT PtrVT = Ptr.getValueType(); 4206 unsigned Alignment = I.getAlignment(); 4207 AAMDNodes AAInfo; 4208 I.getAAMetadata(AAInfo); 4209 4210 auto MMOFlags = MachineMemOperand::MONone; 4211 if (I.isVolatile()) 4212 MMOFlags |= MachineMemOperand::MOVolatile; 4213 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4214 MMOFlags |= MachineMemOperand::MONonTemporal; 4215 MMOFlags |= TLI.getMMOFlags(I); 4216 4217 // An aggregate load cannot wrap around the address space, so offsets to its 4218 // parts don't wrap either. 4219 SDNodeFlags Flags; 4220 Flags.setNoUnsignedWrap(true); 4221 4222 unsigned ChainI = 0; 4223 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4224 // See visitLoad comments. 4225 if (ChainI == MaxParallelChains) { 4226 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4227 makeArrayRef(Chains.data(), ChainI)); 4228 Root = Chain; 4229 ChainI = 0; 4230 } 4231 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4232 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4233 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4234 if (MemVTs[i] != ValueVTs[i]) 4235 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4236 SDValue St = 4237 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4238 Alignment, MMOFlags, AAInfo); 4239 Chains[ChainI] = St; 4240 } 4241 4242 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4243 makeArrayRef(Chains.data(), ChainI)); 4244 DAG.setRoot(StoreNode); 4245 } 4246 4247 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4248 bool IsCompressing) { 4249 SDLoc sdl = getCurSDLoc(); 4250 4251 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4252 unsigned& Alignment) { 4253 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4254 Src0 = I.getArgOperand(0); 4255 Ptr = I.getArgOperand(1); 4256 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4257 Mask = I.getArgOperand(3); 4258 }; 4259 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4260 unsigned& Alignment) { 4261 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4262 Src0 = I.getArgOperand(0); 4263 Ptr = I.getArgOperand(1); 4264 Mask = I.getArgOperand(2); 4265 Alignment = 0; 4266 }; 4267 4268 Value *PtrOperand, *MaskOperand, *Src0Operand; 4269 unsigned Alignment; 4270 if (IsCompressing) 4271 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4272 else 4273 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4274 4275 SDValue Ptr = getValue(PtrOperand); 4276 SDValue Src0 = getValue(Src0Operand); 4277 SDValue Mask = getValue(MaskOperand); 4278 4279 EVT VT = Src0.getValueType(); 4280 if (!Alignment) 4281 Alignment = DAG.getEVTAlignment(VT); 4282 4283 AAMDNodes AAInfo; 4284 I.getAAMetadata(AAInfo); 4285 4286 MachineMemOperand *MMO = 4287 DAG.getMachineFunction(). 4288 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4289 MachineMemOperand::MOStore, VT.getStoreSize(), 4290 Alignment, AAInfo); 4291 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4292 MMO, false /* Truncating */, 4293 IsCompressing); 4294 DAG.setRoot(StoreNode); 4295 setValue(&I, StoreNode); 4296 } 4297 4298 // Get a uniform base for the Gather/Scatter intrinsic. 4299 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4300 // We try to represent it as a base pointer + vector of indices. 4301 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4302 // The first operand of the GEP may be a single pointer or a vector of pointers 4303 // Example: 4304 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4305 // or 4306 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4307 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4308 // 4309 // When the first GEP operand is a single pointer - it is the uniform base we 4310 // are looking for. If first operand of the GEP is a splat vector - we 4311 // extract the splat value and use it as a uniform base. 4312 // In all other cases the function returns 'false'. 4313 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4314 ISD::MemIndexType &IndexType, SDValue &Scale, 4315 SelectionDAGBuilder *SDB) { 4316 SelectionDAG& DAG = SDB->DAG; 4317 LLVMContext &Context = *DAG.getContext(); 4318 4319 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4320 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4321 if (!GEP) 4322 return false; 4323 4324 const Value *GEPPtr = GEP->getPointerOperand(); 4325 if (!GEPPtr->getType()->isVectorTy()) 4326 Ptr = GEPPtr; 4327 else if (!(Ptr = getSplatValue(GEPPtr))) 4328 return false; 4329 4330 unsigned FinalIndex = GEP->getNumOperands() - 1; 4331 Value *IndexVal = GEP->getOperand(FinalIndex); 4332 4333 // Ensure all the other indices are 0. 4334 for (unsigned i = 1; i < FinalIndex; ++i) { 4335 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4336 if (!C) 4337 return false; 4338 if (isa<VectorType>(C->getType())) 4339 C = C->getSplatValue(); 4340 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4341 if (!CI || !CI->isZero()) 4342 return false; 4343 } 4344 4345 // The operands of the GEP may be defined in another basic block. 4346 // In this case we'll not find nodes for the operands. 4347 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4348 return false; 4349 4350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4351 const DataLayout &DL = DAG.getDataLayout(); 4352 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4353 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4354 Base = SDB->getValue(Ptr); 4355 Index = SDB->getValue(IndexVal); 4356 IndexType = ISD::SIGNED_SCALED; 4357 4358 if (!Index.getValueType().isVector()) { 4359 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4360 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4361 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4362 } 4363 return true; 4364 } 4365 4366 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4367 SDLoc sdl = getCurSDLoc(); 4368 4369 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4370 const Value *Ptr = I.getArgOperand(1); 4371 SDValue Src0 = getValue(I.getArgOperand(0)); 4372 SDValue Mask = getValue(I.getArgOperand(3)); 4373 EVT VT = Src0.getValueType(); 4374 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4375 if (!Alignment) 4376 Alignment = DAG.getEVTAlignment(VT); 4377 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4378 4379 AAMDNodes AAInfo; 4380 I.getAAMetadata(AAInfo); 4381 4382 SDValue Base; 4383 SDValue Index; 4384 ISD::MemIndexType IndexType; 4385 SDValue Scale; 4386 const Value *BasePtr = Ptr; 4387 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4388 this); 4389 4390 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4391 MachineMemOperand *MMO = DAG.getMachineFunction(). 4392 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4393 MachineMemOperand::MOStore, VT.getStoreSize(), 4394 Alignment, AAInfo); 4395 if (!UniformBase) { 4396 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4397 Index = getValue(Ptr); 4398 IndexType = ISD::SIGNED_SCALED; 4399 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4400 } 4401 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4402 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4403 Ops, MMO, IndexType); 4404 DAG.setRoot(Scatter); 4405 setValue(&I, Scatter); 4406 } 4407 4408 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4409 SDLoc sdl = getCurSDLoc(); 4410 4411 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4412 unsigned& Alignment) { 4413 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4414 Ptr = I.getArgOperand(0); 4415 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4416 Mask = I.getArgOperand(2); 4417 Src0 = I.getArgOperand(3); 4418 }; 4419 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4420 unsigned& Alignment) { 4421 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4422 Ptr = I.getArgOperand(0); 4423 Alignment = 0; 4424 Mask = I.getArgOperand(1); 4425 Src0 = I.getArgOperand(2); 4426 }; 4427 4428 Value *PtrOperand, *MaskOperand, *Src0Operand; 4429 unsigned Alignment; 4430 if (IsExpanding) 4431 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4432 else 4433 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4434 4435 SDValue Ptr = getValue(PtrOperand); 4436 SDValue Src0 = getValue(Src0Operand); 4437 SDValue Mask = getValue(MaskOperand); 4438 4439 EVT VT = Src0.getValueType(); 4440 if (!Alignment) 4441 Alignment = DAG.getEVTAlignment(VT); 4442 4443 AAMDNodes AAInfo; 4444 I.getAAMetadata(AAInfo); 4445 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4446 4447 // Do not serialize masked loads of constant memory with anything. 4448 bool AddToChain = 4449 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4450 PtrOperand, 4451 LocationSize::precise( 4452 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4453 AAInfo)); 4454 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4455 4456 MachineMemOperand *MMO = 4457 DAG.getMachineFunction(). 4458 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4459 MachineMemOperand::MOLoad, VT.getStoreSize(), 4460 Alignment, AAInfo, Ranges); 4461 4462 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4463 ISD::NON_EXTLOAD, IsExpanding); 4464 if (AddToChain) 4465 PendingLoads.push_back(Load.getValue(1)); 4466 setValue(&I, Load); 4467 } 4468 4469 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4470 SDLoc sdl = getCurSDLoc(); 4471 4472 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4473 const Value *Ptr = I.getArgOperand(0); 4474 SDValue Src0 = getValue(I.getArgOperand(3)); 4475 SDValue Mask = getValue(I.getArgOperand(2)); 4476 4477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4478 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4479 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4480 if (!Alignment) 4481 Alignment = DAG.getEVTAlignment(VT); 4482 4483 AAMDNodes AAInfo; 4484 I.getAAMetadata(AAInfo); 4485 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4486 4487 SDValue Root = DAG.getRoot(); 4488 SDValue Base; 4489 SDValue Index; 4490 ISD::MemIndexType IndexType; 4491 SDValue Scale; 4492 const Value *BasePtr = Ptr; 4493 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4494 this); 4495 bool ConstantMemory = false; 4496 if (UniformBase && AA && 4497 AA->pointsToConstantMemory( 4498 MemoryLocation(BasePtr, 4499 LocationSize::precise( 4500 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4501 AAInfo))) { 4502 // Do not serialize (non-volatile) loads of constant memory with anything. 4503 Root = DAG.getEntryNode(); 4504 ConstantMemory = true; 4505 } 4506 4507 MachineMemOperand *MMO = 4508 DAG.getMachineFunction(). 4509 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4510 MachineMemOperand::MOLoad, VT.getStoreSize(), 4511 Alignment, AAInfo, Ranges); 4512 4513 if (!UniformBase) { 4514 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4515 Index = getValue(Ptr); 4516 IndexType = ISD::SIGNED_SCALED; 4517 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4518 } 4519 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4520 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4521 Ops, MMO, IndexType); 4522 4523 SDValue OutChain = Gather.getValue(1); 4524 if (!ConstantMemory) 4525 PendingLoads.push_back(OutChain); 4526 setValue(&I, Gather); 4527 } 4528 4529 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4530 SDLoc dl = getCurSDLoc(); 4531 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4532 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4533 SyncScope::ID SSID = I.getSyncScopeID(); 4534 4535 SDValue InChain = getRoot(); 4536 4537 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4538 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4539 4540 auto Alignment = DAG.getEVTAlignment(MemVT); 4541 4542 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4543 if (I.isVolatile()) 4544 Flags |= MachineMemOperand::MOVolatile; 4545 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4546 4547 MachineFunction &MF = DAG.getMachineFunction(); 4548 MachineMemOperand *MMO = 4549 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4550 Flags, MemVT.getStoreSize(), Alignment, 4551 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4552 FailureOrdering); 4553 4554 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4555 dl, MemVT, VTs, InChain, 4556 getValue(I.getPointerOperand()), 4557 getValue(I.getCompareOperand()), 4558 getValue(I.getNewValOperand()), MMO); 4559 4560 SDValue OutChain = L.getValue(2); 4561 4562 setValue(&I, L); 4563 DAG.setRoot(OutChain); 4564 } 4565 4566 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4567 SDLoc dl = getCurSDLoc(); 4568 ISD::NodeType NT; 4569 switch (I.getOperation()) { 4570 default: llvm_unreachable("Unknown atomicrmw operation"); 4571 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4572 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4573 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4574 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4575 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4576 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4577 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4578 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4579 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4580 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4581 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4582 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4583 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4584 } 4585 AtomicOrdering Ordering = I.getOrdering(); 4586 SyncScope::ID SSID = I.getSyncScopeID(); 4587 4588 SDValue InChain = getRoot(); 4589 4590 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4591 auto Alignment = DAG.getEVTAlignment(MemVT); 4592 4593 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4594 if (I.isVolatile()) 4595 Flags |= MachineMemOperand::MOVolatile; 4596 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4597 4598 MachineFunction &MF = DAG.getMachineFunction(); 4599 MachineMemOperand *MMO = 4600 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4601 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4602 nullptr, SSID, Ordering); 4603 4604 SDValue L = 4605 DAG.getAtomic(NT, dl, MemVT, InChain, 4606 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4607 MMO); 4608 4609 SDValue OutChain = L.getValue(1); 4610 4611 setValue(&I, L); 4612 DAG.setRoot(OutChain); 4613 } 4614 4615 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4616 SDLoc dl = getCurSDLoc(); 4617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4618 SDValue Ops[3]; 4619 Ops[0] = getRoot(); 4620 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4621 TLI.getFenceOperandTy(DAG.getDataLayout())); 4622 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4623 TLI.getFenceOperandTy(DAG.getDataLayout())); 4624 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4625 } 4626 4627 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4628 SDLoc dl = getCurSDLoc(); 4629 AtomicOrdering Order = I.getOrdering(); 4630 SyncScope::ID SSID = I.getSyncScopeID(); 4631 4632 SDValue InChain = getRoot(); 4633 4634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4635 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4636 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4637 4638 if (!TLI.supportsUnalignedAtomics() && 4639 I.getAlignment() < MemVT.getSizeInBits() / 8) 4640 report_fatal_error("Cannot generate unaligned atomic load"); 4641 4642 auto Flags = MachineMemOperand::MOLoad; 4643 if (I.isVolatile()) 4644 Flags |= MachineMemOperand::MOVolatile; 4645 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4646 Flags |= MachineMemOperand::MOInvariant; 4647 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4648 DAG.getDataLayout())) 4649 Flags |= MachineMemOperand::MODereferenceable; 4650 4651 Flags |= TLI.getMMOFlags(I); 4652 4653 MachineMemOperand *MMO = 4654 DAG.getMachineFunction(). 4655 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4656 Flags, MemVT.getStoreSize(), 4657 I.getAlignment() ? I.getAlignment() : 4658 DAG.getEVTAlignment(MemVT), 4659 AAMDNodes(), nullptr, SSID, Order); 4660 4661 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4662 SDValue L = 4663 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4664 getValue(I.getPointerOperand()), MMO); 4665 4666 SDValue OutChain = L.getValue(1); 4667 if (MemVT != VT) 4668 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4669 4670 setValue(&I, L); 4671 DAG.setRoot(OutChain); 4672 } 4673 4674 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4675 SDLoc dl = getCurSDLoc(); 4676 4677 AtomicOrdering Ordering = I.getOrdering(); 4678 SyncScope::ID SSID = I.getSyncScopeID(); 4679 4680 SDValue InChain = getRoot(); 4681 4682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4683 EVT MemVT = 4684 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4685 4686 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4687 report_fatal_error("Cannot generate unaligned atomic store"); 4688 4689 auto Flags = MachineMemOperand::MOStore; 4690 if (I.isVolatile()) 4691 Flags |= MachineMemOperand::MOVolatile; 4692 Flags |= TLI.getMMOFlags(I); 4693 4694 MachineFunction &MF = DAG.getMachineFunction(); 4695 MachineMemOperand *MMO = 4696 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4697 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4698 nullptr, SSID, Ordering); 4699 4700 SDValue Val = getValue(I.getValueOperand()); 4701 if (Val.getValueType() != MemVT) 4702 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4703 4704 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4705 getValue(I.getPointerOperand()), Val, MMO); 4706 4707 4708 DAG.setRoot(OutChain); 4709 } 4710 4711 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4712 /// node. 4713 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4714 unsigned Intrinsic) { 4715 // Ignore the callsite's attributes. A specific call site may be marked with 4716 // readnone, but the lowering code will expect the chain based on the 4717 // definition. 4718 const Function *F = I.getCalledFunction(); 4719 bool HasChain = !F->doesNotAccessMemory(); 4720 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4721 4722 // Build the operand list. 4723 SmallVector<SDValue, 8> Ops; 4724 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4725 if (OnlyLoad) { 4726 // We don't need to serialize loads against other loads. 4727 Ops.push_back(DAG.getRoot()); 4728 } else { 4729 Ops.push_back(getRoot()); 4730 } 4731 } 4732 4733 // Info is set by getTgtMemInstrinsic 4734 TargetLowering::IntrinsicInfo Info; 4735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4736 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4737 DAG.getMachineFunction(), 4738 Intrinsic); 4739 4740 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4741 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4742 Info.opc == ISD::INTRINSIC_W_CHAIN) 4743 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4744 TLI.getPointerTy(DAG.getDataLayout()))); 4745 4746 // Add all operands of the call to the operand list. 4747 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4748 SDValue Op = getValue(I.getArgOperand(i)); 4749 Ops.push_back(Op); 4750 } 4751 4752 SmallVector<EVT, 4> ValueVTs; 4753 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4754 4755 if (HasChain) 4756 ValueVTs.push_back(MVT::Other); 4757 4758 SDVTList VTs = DAG.getVTList(ValueVTs); 4759 4760 // Create the node. 4761 SDValue Result; 4762 if (IsTgtIntrinsic) { 4763 // This is target intrinsic that touches memory 4764 AAMDNodes AAInfo; 4765 I.getAAMetadata(AAInfo); 4766 Result = DAG.getMemIntrinsicNode( 4767 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4768 MachinePointerInfo(Info.ptrVal, Info.offset), 4769 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4770 } else if (!HasChain) { 4771 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4772 } else if (!I.getType()->isVoidTy()) { 4773 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4774 } else { 4775 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4776 } 4777 4778 if (HasChain) { 4779 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4780 if (OnlyLoad) 4781 PendingLoads.push_back(Chain); 4782 else 4783 DAG.setRoot(Chain); 4784 } 4785 4786 if (!I.getType()->isVoidTy()) { 4787 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4788 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4789 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4790 } else 4791 Result = lowerRangeToAssertZExt(DAG, I, Result); 4792 4793 setValue(&I, Result); 4794 } 4795 } 4796 4797 /// GetSignificand - Get the significand and build it into a floating-point 4798 /// number with exponent of 1: 4799 /// 4800 /// Op = (Op & 0x007fffff) | 0x3f800000; 4801 /// 4802 /// where Op is the hexadecimal representation of floating point value. 4803 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4804 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4805 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4806 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4807 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4808 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4809 } 4810 4811 /// GetExponent - Get the exponent: 4812 /// 4813 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4814 /// 4815 /// where Op is the hexadecimal representation of floating point value. 4816 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4817 const TargetLowering &TLI, const SDLoc &dl) { 4818 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4819 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4820 SDValue t1 = DAG.getNode( 4821 ISD::SRL, dl, MVT::i32, t0, 4822 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4823 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4824 DAG.getConstant(127, dl, MVT::i32)); 4825 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4826 } 4827 4828 /// getF32Constant - Get 32-bit floating point constant. 4829 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4830 const SDLoc &dl) { 4831 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4832 MVT::f32); 4833 } 4834 4835 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4836 SelectionDAG &DAG) { 4837 // TODO: What fast-math-flags should be set on the floating-point nodes? 4838 4839 // IntegerPartOfX = ((int32_t)(t0); 4840 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4841 4842 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4843 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4844 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4845 4846 // IntegerPartOfX <<= 23; 4847 IntegerPartOfX = DAG.getNode( 4848 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4849 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4850 DAG.getDataLayout()))); 4851 4852 SDValue TwoToFractionalPartOfX; 4853 if (LimitFloatPrecision <= 6) { 4854 // For floating-point precision of 6: 4855 // 4856 // TwoToFractionalPartOfX = 4857 // 0.997535578f + 4858 // (0.735607626f + 0.252464424f * x) * x; 4859 // 4860 // error 0.0144103317, which is 6 bits 4861 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4862 getF32Constant(DAG, 0x3e814304, dl)); 4863 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4864 getF32Constant(DAG, 0x3f3c50c8, dl)); 4865 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4866 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4867 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4868 } else if (LimitFloatPrecision <= 12) { 4869 // For floating-point precision of 12: 4870 // 4871 // TwoToFractionalPartOfX = 4872 // 0.999892986f + 4873 // (0.696457318f + 4874 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4875 // 4876 // error 0.000107046256, which is 13 to 14 bits 4877 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4878 getF32Constant(DAG, 0x3da235e3, dl)); 4879 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4880 getF32Constant(DAG, 0x3e65b8f3, dl)); 4881 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4882 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4883 getF32Constant(DAG, 0x3f324b07, dl)); 4884 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4885 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4886 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4887 } else { // LimitFloatPrecision <= 18 4888 // For floating-point precision of 18: 4889 // 4890 // TwoToFractionalPartOfX = 4891 // 0.999999982f + 4892 // (0.693148872f + 4893 // (0.240227044f + 4894 // (0.554906021e-1f + 4895 // (0.961591928e-2f + 4896 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4897 // error 2.47208000*10^(-7), which is better than 18 bits 4898 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4899 getF32Constant(DAG, 0x3924b03e, dl)); 4900 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4901 getF32Constant(DAG, 0x3ab24b87, dl)); 4902 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4903 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4904 getF32Constant(DAG, 0x3c1d8c17, dl)); 4905 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4906 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4907 getF32Constant(DAG, 0x3d634a1d, dl)); 4908 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4909 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4910 getF32Constant(DAG, 0x3e75fe14, dl)); 4911 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4912 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4913 getF32Constant(DAG, 0x3f317234, dl)); 4914 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4915 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4916 getF32Constant(DAG, 0x3f800000, dl)); 4917 } 4918 4919 // Add the exponent into the result in integer domain. 4920 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4921 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4922 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4923 } 4924 4925 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4926 /// limited-precision mode. 4927 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4928 const TargetLowering &TLI) { 4929 if (Op.getValueType() == MVT::f32 && 4930 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4931 4932 // Put the exponent in the right bit position for later addition to the 4933 // final result: 4934 // 4935 // #define LOG2OFe 1.4426950f 4936 // t0 = Op * LOG2OFe 4937 4938 // TODO: What fast-math-flags should be set here? 4939 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4940 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4941 return getLimitedPrecisionExp2(t0, dl, DAG); 4942 } 4943 4944 // No special expansion. 4945 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4946 } 4947 4948 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4949 /// limited-precision mode. 4950 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4951 const TargetLowering &TLI) { 4952 // TODO: What fast-math-flags should be set on the floating-point nodes? 4953 4954 if (Op.getValueType() == MVT::f32 && 4955 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4956 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4957 4958 // Scale the exponent by log(2) [0.69314718f]. 4959 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4960 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4961 getF32Constant(DAG, 0x3f317218, dl)); 4962 4963 // Get the significand and build it into a floating-point number with 4964 // exponent of 1. 4965 SDValue X = GetSignificand(DAG, Op1, dl); 4966 4967 SDValue LogOfMantissa; 4968 if (LimitFloatPrecision <= 6) { 4969 // For floating-point precision of 6: 4970 // 4971 // LogofMantissa = 4972 // -1.1609546f + 4973 // (1.4034025f - 0.23903021f * x) * x; 4974 // 4975 // error 0.0034276066, which is better than 8 bits 4976 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4977 getF32Constant(DAG, 0xbe74c456, dl)); 4978 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4979 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4980 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4981 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4982 getF32Constant(DAG, 0x3f949a29, dl)); 4983 } else if (LimitFloatPrecision <= 12) { 4984 // For floating-point precision of 12: 4985 // 4986 // LogOfMantissa = 4987 // -1.7417939f + 4988 // (2.8212026f + 4989 // (-1.4699568f + 4990 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4991 // 4992 // error 0.000061011436, which is 14 bits 4993 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4994 getF32Constant(DAG, 0xbd67b6d6, dl)); 4995 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4996 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4997 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4998 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4999 getF32Constant(DAG, 0x3fbc278b, dl)); 5000 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5001 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5002 getF32Constant(DAG, 0x40348e95, dl)); 5003 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5004 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5005 getF32Constant(DAG, 0x3fdef31a, dl)); 5006 } else { // LimitFloatPrecision <= 18 5007 // For floating-point precision of 18: 5008 // 5009 // LogOfMantissa = 5010 // -2.1072184f + 5011 // (4.2372794f + 5012 // (-3.7029485f + 5013 // (2.2781945f + 5014 // (-0.87823314f + 5015 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5016 // 5017 // error 0.0000023660568, which is better than 18 bits 5018 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5019 getF32Constant(DAG, 0xbc91e5ac, dl)); 5020 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5021 getF32Constant(DAG, 0x3e4350aa, dl)); 5022 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5023 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5024 getF32Constant(DAG, 0x3f60d3e3, dl)); 5025 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5026 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5027 getF32Constant(DAG, 0x4011cdf0, dl)); 5028 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5029 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5030 getF32Constant(DAG, 0x406cfd1c, dl)); 5031 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5032 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5033 getF32Constant(DAG, 0x408797cb, dl)); 5034 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5035 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5036 getF32Constant(DAG, 0x4006dcab, dl)); 5037 } 5038 5039 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5040 } 5041 5042 // No special expansion. 5043 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5044 } 5045 5046 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5047 /// limited-precision mode. 5048 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5049 const TargetLowering &TLI) { 5050 // TODO: What fast-math-flags should be set on the floating-point nodes? 5051 5052 if (Op.getValueType() == MVT::f32 && 5053 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5054 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5055 5056 // Get the exponent. 5057 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5058 5059 // Get the significand and build it into a floating-point number with 5060 // exponent of 1. 5061 SDValue X = GetSignificand(DAG, Op1, dl); 5062 5063 // Different possible minimax approximations of significand in 5064 // floating-point for various degrees of accuracy over [1,2]. 5065 SDValue Log2ofMantissa; 5066 if (LimitFloatPrecision <= 6) { 5067 // For floating-point precision of 6: 5068 // 5069 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5070 // 5071 // error 0.0049451742, which is more than 7 bits 5072 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5073 getF32Constant(DAG, 0xbeb08fe0, dl)); 5074 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5075 getF32Constant(DAG, 0x40019463, dl)); 5076 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5077 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5078 getF32Constant(DAG, 0x3fd6633d, dl)); 5079 } else if (LimitFloatPrecision <= 12) { 5080 // For floating-point precision of 12: 5081 // 5082 // Log2ofMantissa = 5083 // -2.51285454f + 5084 // (4.07009056f + 5085 // (-2.12067489f + 5086 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5087 // 5088 // error 0.0000876136000, which is better than 13 bits 5089 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5090 getF32Constant(DAG, 0xbda7262e, dl)); 5091 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5092 getF32Constant(DAG, 0x3f25280b, dl)); 5093 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5094 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5095 getF32Constant(DAG, 0x4007b923, dl)); 5096 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5097 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5098 getF32Constant(DAG, 0x40823e2f, dl)); 5099 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5100 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5101 getF32Constant(DAG, 0x4020d29c, dl)); 5102 } else { // LimitFloatPrecision <= 18 5103 // For floating-point precision of 18: 5104 // 5105 // Log2ofMantissa = 5106 // -3.0400495f + 5107 // (6.1129976f + 5108 // (-5.3420409f + 5109 // (3.2865683f + 5110 // (-1.2669343f + 5111 // (0.27515199f - 5112 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5113 // 5114 // error 0.0000018516, which is better than 18 bits 5115 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5116 getF32Constant(DAG, 0xbcd2769e, dl)); 5117 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5118 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5120 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5121 getF32Constant(DAG, 0x3fa22ae7, dl)); 5122 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5123 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5124 getF32Constant(DAG, 0x40525723, dl)); 5125 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5126 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5127 getF32Constant(DAG, 0x40aaf200, dl)); 5128 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5129 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5130 getF32Constant(DAG, 0x40c39dad, dl)); 5131 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5132 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5133 getF32Constant(DAG, 0x4042902c, dl)); 5134 } 5135 5136 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5137 } 5138 5139 // No special expansion. 5140 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5141 } 5142 5143 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5144 /// limited-precision mode. 5145 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5146 const TargetLowering &TLI) { 5147 // TODO: What fast-math-flags should be set on the floating-point nodes? 5148 5149 if (Op.getValueType() == MVT::f32 && 5150 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5151 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5152 5153 // Scale the exponent by log10(2) [0.30102999f]. 5154 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5155 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5156 getF32Constant(DAG, 0x3e9a209a, dl)); 5157 5158 // Get the significand and build it into a floating-point number with 5159 // exponent of 1. 5160 SDValue X = GetSignificand(DAG, Op1, dl); 5161 5162 SDValue Log10ofMantissa; 5163 if (LimitFloatPrecision <= 6) { 5164 // For floating-point precision of 6: 5165 // 5166 // Log10ofMantissa = 5167 // -0.50419619f + 5168 // (0.60948995f - 0.10380950f * x) * x; 5169 // 5170 // error 0.0014886165, which is 6 bits 5171 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5172 getF32Constant(DAG, 0xbdd49a13, dl)); 5173 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5174 getF32Constant(DAG, 0x3f1c0789, dl)); 5175 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5176 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5177 getF32Constant(DAG, 0x3f011300, dl)); 5178 } else if (LimitFloatPrecision <= 12) { 5179 // For floating-point precision of 12: 5180 // 5181 // Log10ofMantissa = 5182 // -0.64831180f + 5183 // (0.91751397f + 5184 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5185 // 5186 // error 0.00019228036, which is better than 12 bits 5187 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5188 getF32Constant(DAG, 0x3d431f31, dl)); 5189 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5190 getF32Constant(DAG, 0x3ea21fb2, dl)); 5191 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5192 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5193 getF32Constant(DAG, 0x3f6ae232, dl)); 5194 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5195 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5196 getF32Constant(DAG, 0x3f25f7c3, dl)); 5197 } else { // LimitFloatPrecision <= 18 5198 // For floating-point precision of 18: 5199 // 5200 // Log10ofMantissa = 5201 // -0.84299375f + 5202 // (1.5327582f + 5203 // (-1.0688956f + 5204 // (0.49102474f + 5205 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5206 // 5207 // error 0.0000037995730, which is better than 18 bits 5208 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5209 getF32Constant(DAG, 0x3c5d51ce, dl)); 5210 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5211 getF32Constant(DAG, 0x3e00685a, dl)); 5212 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5213 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5214 getF32Constant(DAG, 0x3efb6798, dl)); 5215 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5216 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5217 getF32Constant(DAG, 0x3f88d192, dl)); 5218 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5219 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5220 getF32Constant(DAG, 0x3fc4316c, dl)); 5221 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5222 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5223 getF32Constant(DAG, 0x3f57ce70, dl)); 5224 } 5225 5226 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5227 } 5228 5229 // No special expansion. 5230 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5231 } 5232 5233 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5234 /// limited-precision mode. 5235 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5236 const TargetLowering &TLI) { 5237 if (Op.getValueType() == MVT::f32 && 5238 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5239 return getLimitedPrecisionExp2(Op, dl, DAG); 5240 5241 // No special expansion. 5242 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5243 } 5244 5245 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5246 /// limited-precision mode with x == 10.0f. 5247 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5248 SelectionDAG &DAG, const TargetLowering &TLI) { 5249 bool IsExp10 = false; 5250 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5251 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5252 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5253 APFloat Ten(10.0f); 5254 IsExp10 = LHSC->isExactlyValue(Ten); 5255 } 5256 } 5257 5258 // TODO: What fast-math-flags should be set on the FMUL node? 5259 if (IsExp10) { 5260 // Put the exponent in the right bit position for later addition to the 5261 // final result: 5262 // 5263 // #define LOG2OF10 3.3219281f 5264 // t0 = Op * LOG2OF10; 5265 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5266 getF32Constant(DAG, 0x40549a78, dl)); 5267 return getLimitedPrecisionExp2(t0, dl, DAG); 5268 } 5269 5270 // No special expansion. 5271 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5272 } 5273 5274 /// ExpandPowI - Expand a llvm.powi intrinsic. 5275 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5276 SelectionDAG &DAG) { 5277 // If RHS is a constant, we can expand this out to a multiplication tree, 5278 // otherwise we end up lowering to a call to __powidf2 (for example). When 5279 // optimizing for size, we only want to do this if the expansion would produce 5280 // a small number of multiplies, otherwise we do the full expansion. 5281 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5282 // Get the exponent as a positive value. 5283 unsigned Val = RHSC->getSExtValue(); 5284 if ((int)Val < 0) Val = -Val; 5285 5286 // powi(x, 0) -> 1.0 5287 if (Val == 0) 5288 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5289 5290 const Function &F = DAG.getMachineFunction().getFunction(); 5291 if (!F.hasOptSize() || 5292 // If optimizing for size, don't insert too many multiplies. 5293 // This inserts up to 5 multiplies. 5294 countPopulation(Val) + Log2_32(Val) < 7) { 5295 // We use the simple binary decomposition method to generate the multiply 5296 // sequence. There are more optimal ways to do this (for example, 5297 // powi(x,15) generates one more multiply than it should), but this has 5298 // the benefit of being both really simple and much better than a libcall. 5299 SDValue Res; // Logically starts equal to 1.0 5300 SDValue CurSquare = LHS; 5301 // TODO: Intrinsics should have fast-math-flags that propagate to these 5302 // nodes. 5303 while (Val) { 5304 if (Val & 1) { 5305 if (Res.getNode()) 5306 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5307 else 5308 Res = CurSquare; // 1.0*CurSquare. 5309 } 5310 5311 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5312 CurSquare, CurSquare); 5313 Val >>= 1; 5314 } 5315 5316 // If the original was negative, invert the result, producing 1/(x*x*x). 5317 if (RHSC->getSExtValue() < 0) 5318 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5319 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5320 return Res; 5321 } 5322 } 5323 5324 // Otherwise, expand to a libcall. 5325 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5326 } 5327 5328 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5329 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5330 static void 5331 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5332 const SDValue &N) { 5333 switch (N.getOpcode()) { 5334 case ISD::CopyFromReg: { 5335 SDValue Op = N.getOperand(1); 5336 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5337 Op.getValueType().getSizeInBits()); 5338 return; 5339 } 5340 case ISD::BITCAST: 5341 case ISD::AssertZext: 5342 case ISD::AssertSext: 5343 case ISD::TRUNCATE: 5344 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5345 return; 5346 case ISD::BUILD_PAIR: 5347 case ISD::BUILD_VECTOR: 5348 case ISD::CONCAT_VECTORS: 5349 for (SDValue Op : N->op_values()) 5350 getUnderlyingArgRegs(Regs, Op); 5351 return; 5352 default: 5353 return; 5354 } 5355 } 5356 5357 /// If the DbgValueInst is a dbg_value of a function argument, create the 5358 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5359 /// instruction selection, they will be inserted to the entry BB. 5360 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5361 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5362 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5363 const Argument *Arg = dyn_cast<Argument>(V); 5364 if (!Arg) 5365 return false; 5366 5367 if (!IsDbgDeclare) { 5368 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5369 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5370 // the entry block. 5371 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5372 if (!IsInEntryBlock) 5373 return false; 5374 5375 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5376 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5377 // variable that also is a param. 5378 // 5379 // Although, if we are at the top of the entry block already, we can still 5380 // emit using ArgDbgValue. This might catch some situations when the 5381 // dbg.value refers to an argument that isn't used in the entry block, so 5382 // any CopyToReg node would be optimized out and the only way to express 5383 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5384 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5385 // we should only emit as ArgDbgValue if the Variable is an argument to the 5386 // current function, and the dbg.value intrinsic is found in the entry 5387 // block. 5388 bool VariableIsFunctionInputArg = Variable->isParameter() && 5389 !DL->getInlinedAt(); 5390 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5391 if (!IsInPrologue && !VariableIsFunctionInputArg) 5392 return false; 5393 5394 // Here we assume that a function argument on IR level only can be used to 5395 // describe one input parameter on source level. If we for example have 5396 // source code like this 5397 // 5398 // struct A { long x, y; }; 5399 // void foo(struct A a, long b) { 5400 // ... 5401 // b = a.x; 5402 // ... 5403 // } 5404 // 5405 // and IR like this 5406 // 5407 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5408 // entry: 5409 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5410 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5411 // call void @llvm.dbg.value(metadata i32 %b, "b", 5412 // ... 5413 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5414 // ... 5415 // 5416 // then the last dbg.value is describing a parameter "b" using a value that 5417 // is an argument. But since we already has used %a1 to describe a parameter 5418 // we should not handle that last dbg.value here (that would result in an 5419 // incorrect hoisting of the DBG_VALUE to the function entry). 5420 // Notice that we allow one dbg.value per IR level argument, to accomodate 5421 // for the situation with fragments above. 5422 if (VariableIsFunctionInputArg) { 5423 unsigned ArgNo = Arg->getArgNo(); 5424 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5425 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5426 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5427 return false; 5428 FuncInfo.DescribedArgs.set(ArgNo); 5429 } 5430 } 5431 5432 MachineFunction &MF = DAG.getMachineFunction(); 5433 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5434 5435 bool IsIndirect = false; 5436 Optional<MachineOperand> Op; 5437 // Some arguments' frame index is recorded during argument lowering. 5438 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5439 if (FI != std::numeric_limits<int>::max()) 5440 Op = MachineOperand::CreateFI(FI); 5441 5442 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5443 if (!Op && N.getNode()) { 5444 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5445 Register Reg; 5446 if (ArgRegsAndSizes.size() == 1) 5447 Reg = ArgRegsAndSizes.front().first; 5448 5449 if (Reg && Reg.isVirtual()) { 5450 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5451 Register PR = RegInfo.getLiveInPhysReg(Reg); 5452 if (PR) 5453 Reg = PR; 5454 } 5455 if (Reg) { 5456 Op = MachineOperand::CreateReg(Reg, false); 5457 IsIndirect = IsDbgDeclare; 5458 } 5459 } 5460 5461 if (!Op && N.getNode()) { 5462 // Check if frame index is available. 5463 SDValue LCandidate = peekThroughBitcasts(N); 5464 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5465 if (FrameIndexSDNode *FINode = 5466 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5467 Op = MachineOperand::CreateFI(FINode->getIndex()); 5468 } 5469 5470 if (!Op) { 5471 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5472 auto splitMultiRegDbgValue 5473 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5474 unsigned Offset = 0; 5475 for (auto RegAndSize : SplitRegs) { 5476 auto FragmentExpr = DIExpression::createFragmentExpression( 5477 Expr, Offset, RegAndSize.second); 5478 if (!FragmentExpr) 5479 continue; 5480 FuncInfo.ArgDbgValues.push_back( 5481 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5482 RegAndSize.first, Variable, *FragmentExpr)); 5483 Offset += RegAndSize.second; 5484 } 5485 }; 5486 5487 // Check if ValueMap has reg number. 5488 DenseMap<const Value *, unsigned>::const_iterator 5489 VMI = FuncInfo.ValueMap.find(V); 5490 if (VMI != FuncInfo.ValueMap.end()) { 5491 const auto &TLI = DAG.getTargetLoweringInfo(); 5492 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5493 V->getType(), getABIRegCopyCC(V)); 5494 if (RFV.occupiesMultipleRegs()) { 5495 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5496 return true; 5497 } 5498 5499 Op = MachineOperand::CreateReg(VMI->second, false); 5500 IsIndirect = IsDbgDeclare; 5501 } else if (ArgRegsAndSizes.size() > 1) { 5502 // This was split due to the calling convention, and no virtual register 5503 // mapping exists for the value. 5504 splitMultiRegDbgValue(ArgRegsAndSizes); 5505 return true; 5506 } 5507 } 5508 5509 if (!Op) 5510 return false; 5511 5512 assert(Variable->isValidLocationForIntrinsic(DL) && 5513 "Expected inlined-at fields to agree"); 5514 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5515 FuncInfo.ArgDbgValues.push_back( 5516 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5517 *Op, Variable, Expr)); 5518 5519 return true; 5520 } 5521 5522 /// Return the appropriate SDDbgValue based on N. 5523 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5524 DILocalVariable *Variable, 5525 DIExpression *Expr, 5526 const DebugLoc &dl, 5527 unsigned DbgSDNodeOrder) { 5528 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5529 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5530 // stack slot locations. 5531 // 5532 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5533 // debug values here after optimization: 5534 // 5535 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5536 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5537 // 5538 // Both describe the direct values of their associated variables. 5539 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5540 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5541 } 5542 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5543 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5544 } 5545 5546 // VisualStudio defines setjmp as _setjmp 5547 #if defined(_MSC_VER) && defined(setjmp) && \ 5548 !defined(setjmp_undefined_for_msvc) 5549 # pragma push_macro("setjmp") 5550 # undef setjmp 5551 # define setjmp_undefined_for_msvc 5552 #endif 5553 5554 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5555 switch (Intrinsic) { 5556 case Intrinsic::smul_fix: 5557 return ISD::SMULFIX; 5558 case Intrinsic::umul_fix: 5559 return ISD::UMULFIX; 5560 default: 5561 llvm_unreachable("Unhandled fixed point intrinsic"); 5562 } 5563 } 5564 5565 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5566 const char *FunctionName) { 5567 assert(FunctionName && "FunctionName must not be nullptr"); 5568 SDValue Callee = DAG.getExternalSymbol( 5569 FunctionName, 5570 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5571 LowerCallTo(&I, Callee, I.isTailCall()); 5572 } 5573 5574 /// Lower the call to the specified intrinsic function. 5575 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5576 unsigned Intrinsic) { 5577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5578 SDLoc sdl = getCurSDLoc(); 5579 DebugLoc dl = getCurDebugLoc(); 5580 SDValue Res; 5581 5582 switch (Intrinsic) { 5583 default: 5584 // By default, turn this into a target intrinsic node. 5585 visitTargetIntrinsic(I, Intrinsic); 5586 return; 5587 case Intrinsic::vastart: visitVAStart(I); return; 5588 case Intrinsic::vaend: visitVAEnd(I); return; 5589 case Intrinsic::vacopy: visitVACopy(I); return; 5590 case Intrinsic::returnaddress: 5591 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5592 TLI.getPointerTy(DAG.getDataLayout()), 5593 getValue(I.getArgOperand(0)))); 5594 return; 5595 case Intrinsic::addressofreturnaddress: 5596 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5597 TLI.getPointerTy(DAG.getDataLayout()))); 5598 return; 5599 case Intrinsic::sponentry: 5600 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5601 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5602 return; 5603 case Intrinsic::frameaddress: 5604 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5605 TLI.getFrameIndexTy(DAG.getDataLayout()), 5606 getValue(I.getArgOperand(0)))); 5607 return; 5608 case Intrinsic::read_register: { 5609 Value *Reg = I.getArgOperand(0); 5610 SDValue Chain = getRoot(); 5611 SDValue RegName = 5612 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5613 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5614 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5615 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5616 setValue(&I, Res); 5617 DAG.setRoot(Res.getValue(1)); 5618 return; 5619 } 5620 case Intrinsic::write_register: { 5621 Value *Reg = I.getArgOperand(0); 5622 Value *RegValue = I.getArgOperand(1); 5623 SDValue Chain = getRoot(); 5624 SDValue RegName = 5625 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5626 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5627 RegName, getValue(RegValue))); 5628 return; 5629 } 5630 case Intrinsic::setjmp: 5631 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5632 return; 5633 case Intrinsic::longjmp: 5634 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5635 return; 5636 case Intrinsic::memcpy: { 5637 const auto &MCI = cast<MemCpyInst>(I); 5638 SDValue Op1 = getValue(I.getArgOperand(0)); 5639 SDValue Op2 = getValue(I.getArgOperand(1)); 5640 SDValue Op3 = getValue(I.getArgOperand(2)); 5641 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5642 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5643 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5644 unsigned Align = MinAlign(DstAlign, SrcAlign); 5645 bool isVol = MCI.isVolatile(); 5646 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5647 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5648 // node. 5649 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5650 false, isTC, 5651 MachinePointerInfo(I.getArgOperand(0)), 5652 MachinePointerInfo(I.getArgOperand(1))); 5653 updateDAGForMaybeTailCall(MC); 5654 return; 5655 } 5656 case Intrinsic::memset: { 5657 const auto &MSI = cast<MemSetInst>(I); 5658 SDValue Op1 = getValue(I.getArgOperand(0)); 5659 SDValue Op2 = getValue(I.getArgOperand(1)); 5660 SDValue Op3 = getValue(I.getArgOperand(2)); 5661 // @llvm.memset defines 0 and 1 to both mean no alignment. 5662 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5663 bool isVol = MSI.isVolatile(); 5664 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5665 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5666 isTC, MachinePointerInfo(I.getArgOperand(0))); 5667 updateDAGForMaybeTailCall(MS); 5668 return; 5669 } 5670 case Intrinsic::memmove: { 5671 const auto &MMI = cast<MemMoveInst>(I); 5672 SDValue Op1 = getValue(I.getArgOperand(0)); 5673 SDValue Op2 = getValue(I.getArgOperand(1)); 5674 SDValue Op3 = getValue(I.getArgOperand(2)); 5675 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5676 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5677 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5678 unsigned Align = MinAlign(DstAlign, SrcAlign); 5679 bool isVol = MMI.isVolatile(); 5680 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5681 // FIXME: Support passing different dest/src alignments to the memmove DAG 5682 // node. 5683 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5684 isTC, MachinePointerInfo(I.getArgOperand(0)), 5685 MachinePointerInfo(I.getArgOperand(1))); 5686 updateDAGForMaybeTailCall(MM); 5687 return; 5688 } 5689 case Intrinsic::memcpy_element_unordered_atomic: { 5690 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5691 SDValue Dst = getValue(MI.getRawDest()); 5692 SDValue Src = getValue(MI.getRawSource()); 5693 SDValue Length = getValue(MI.getLength()); 5694 5695 unsigned DstAlign = MI.getDestAlignment(); 5696 unsigned SrcAlign = MI.getSourceAlignment(); 5697 Type *LengthTy = MI.getLength()->getType(); 5698 unsigned ElemSz = MI.getElementSizeInBytes(); 5699 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5700 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5701 SrcAlign, Length, LengthTy, ElemSz, isTC, 5702 MachinePointerInfo(MI.getRawDest()), 5703 MachinePointerInfo(MI.getRawSource())); 5704 updateDAGForMaybeTailCall(MC); 5705 return; 5706 } 5707 case Intrinsic::memmove_element_unordered_atomic: { 5708 auto &MI = cast<AtomicMemMoveInst>(I); 5709 SDValue Dst = getValue(MI.getRawDest()); 5710 SDValue Src = getValue(MI.getRawSource()); 5711 SDValue Length = getValue(MI.getLength()); 5712 5713 unsigned DstAlign = MI.getDestAlignment(); 5714 unsigned SrcAlign = MI.getSourceAlignment(); 5715 Type *LengthTy = MI.getLength()->getType(); 5716 unsigned ElemSz = MI.getElementSizeInBytes(); 5717 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5718 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5719 SrcAlign, Length, LengthTy, ElemSz, isTC, 5720 MachinePointerInfo(MI.getRawDest()), 5721 MachinePointerInfo(MI.getRawSource())); 5722 updateDAGForMaybeTailCall(MC); 5723 return; 5724 } 5725 case Intrinsic::memset_element_unordered_atomic: { 5726 auto &MI = cast<AtomicMemSetInst>(I); 5727 SDValue Dst = getValue(MI.getRawDest()); 5728 SDValue Val = getValue(MI.getValue()); 5729 SDValue Length = getValue(MI.getLength()); 5730 5731 unsigned DstAlign = MI.getDestAlignment(); 5732 Type *LengthTy = MI.getLength()->getType(); 5733 unsigned ElemSz = MI.getElementSizeInBytes(); 5734 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5735 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5736 LengthTy, ElemSz, isTC, 5737 MachinePointerInfo(MI.getRawDest())); 5738 updateDAGForMaybeTailCall(MC); 5739 return; 5740 } 5741 case Intrinsic::dbg_addr: 5742 case Intrinsic::dbg_declare: { 5743 const auto &DI = cast<DbgVariableIntrinsic>(I); 5744 DILocalVariable *Variable = DI.getVariable(); 5745 DIExpression *Expression = DI.getExpression(); 5746 dropDanglingDebugInfo(Variable, Expression); 5747 assert(Variable && "Missing variable"); 5748 5749 // Check if address has undef value. 5750 const Value *Address = DI.getVariableLocation(); 5751 if (!Address || isa<UndefValue>(Address) || 5752 (Address->use_empty() && !isa<Argument>(Address))) { 5753 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5754 return; 5755 } 5756 5757 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5758 5759 // Check if this variable can be described by a frame index, typically 5760 // either as a static alloca or a byval parameter. 5761 int FI = std::numeric_limits<int>::max(); 5762 if (const auto *AI = 5763 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5764 if (AI->isStaticAlloca()) { 5765 auto I = FuncInfo.StaticAllocaMap.find(AI); 5766 if (I != FuncInfo.StaticAllocaMap.end()) 5767 FI = I->second; 5768 } 5769 } else if (const auto *Arg = dyn_cast<Argument>( 5770 Address->stripInBoundsConstantOffsets())) { 5771 FI = FuncInfo.getArgumentFrameIndex(Arg); 5772 } 5773 5774 // llvm.dbg.addr is control dependent and always generates indirect 5775 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5776 // the MachineFunction variable table. 5777 if (FI != std::numeric_limits<int>::max()) { 5778 if (Intrinsic == Intrinsic::dbg_addr) { 5779 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5780 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5781 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5782 } 5783 return; 5784 } 5785 5786 SDValue &N = NodeMap[Address]; 5787 if (!N.getNode() && isa<Argument>(Address)) 5788 // Check unused arguments map. 5789 N = UnusedArgNodeMap[Address]; 5790 SDDbgValue *SDV; 5791 if (N.getNode()) { 5792 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5793 Address = BCI->getOperand(0); 5794 // Parameters are handled specially. 5795 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5796 if (isParameter && FINode) { 5797 // Byval parameter. We have a frame index at this point. 5798 SDV = 5799 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5800 /*IsIndirect*/ true, dl, SDNodeOrder); 5801 } else if (isa<Argument>(Address)) { 5802 // Address is an argument, so try to emit its dbg value using 5803 // virtual register info from the FuncInfo.ValueMap. 5804 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5805 return; 5806 } else { 5807 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5808 true, dl, SDNodeOrder); 5809 } 5810 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5811 } else { 5812 // If Address is an argument then try to emit its dbg value using 5813 // virtual register info from the FuncInfo.ValueMap. 5814 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5815 N)) { 5816 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5817 } 5818 } 5819 return; 5820 } 5821 case Intrinsic::dbg_label: { 5822 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5823 DILabel *Label = DI.getLabel(); 5824 assert(Label && "Missing label"); 5825 5826 SDDbgLabel *SDV; 5827 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5828 DAG.AddDbgLabel(SDV); 5829 return; 5830 } 5831 case Intrinsic::dbg_value: { 5832 const DbgValueInst &DI = cast<DbgValueInst>(I); 5833 assert(DI.getVariable() && "Missing variable"); 5834 5835 DILocalVariable *Variable = DI.getVariable(); 5836 DIExpression *Expression = DI.getExpression(); 5837 dropDanglingDebugInfo(Variable, Expression); 5838 const Value *V = DI.getValue(); 5839 if (!V) 5840 return; 5841 5842 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5843 SDNodeOrder)) 5844 return; 5845 5846 // TODO: Dangling debug info will eventually either be resolved or produce 5847 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5848 // between the original dbg.value location and its resolved DBG_VALUE, which 5849 // we should ideally fill with an extra Undef DBG_VALUE. 5850 5851 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5852 return; 5853 } 5854 5855 case Intrinsic::eh_typeid_for: { 5856 // Find the type id for the given typeinfo. 5857 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5858 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5859 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5860 setValue(&I, Res); 5861 return; 5862 } 5863 5864 case Intrinsic::eh_return_i32: 5865 case Intrinsic::eh_return_i64: 5866 DAG.getMachineFunction().setCallsEHReturn(true); 5867 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5868 MVT::Other, 5869 getControlRoot(), 5870 getValue(I.getArgOperand(0)), 5871 getValue(I.getArgOperand(1)))); 5872 return; 5873 case Intrinsic::eh_unwind_init: 5874 DAG.getMachineFunction().setCallsUnwindInit(true); 5875 return; 5876 case Intrinsic::eh_dwarf_cfa: 5877 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5878 TLI.getPointerTy(DAG.getDataLayout()), 5879 getValue(I.getArgOperand(0)))); 5880 return; 5881 case Intrinsic::eh_sjlj_callsite: { 5882 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5883 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5884 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5885 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5886 5887 MMI.setCurrentCallSite(CI->getZExtValue()); 5888 return; 5889 } 5890 case Intrinsic::eh_sjlj_functioncontext: { 5891 // Get and store the index of the function context. 5892 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5893 AllocaInst *FnCtx = 5894 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5895 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5896 MFI.setFunctionContextIndex(FI); 5897 return; 5898 } 5899 case Intrinsic::eh_sjlj_setjmp: { 5900 SDValue Ops[2]; 5901 Ops[0] = getRoot(); 5902 Ops[1] = getValue(I.getArgOperand(0)); 5903 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5904 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5905 setValue(&I, Op.getValue(0)); 5906 DAG.setRoot(Op.getValue(1)); 5907 return; 5908 } 5909 case Intrinsic::eh_sjlj_longjmp: 5910 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5911 getRoot(), getValue(I.getArgOperand(0)))); 5912 return; 5913 case Intrinsic::eh_sjlj_setup_dispatch: 5914 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5915 getRoot())); 5916 return; 5917 case Intrinsic::masked_gather: 5918 visitMaskedGather(I); 5919 return; 5920 case Intrinsic::masked_load: 5921 visitMaskedLoad(I); 5922 return; 5923 case Intrinsic::masked_scatter: 5924 visitMaskedScatter(I); 5925 return; 5926 case Intrinsic::masked_store: 5927 visitMaskedStore(I); 5928 return; 5929 case Intrinsic::masked_expandload: 5930 visitMaskedLoad(I, true /* IsExpanding */); 5931 return; 5932 case Intrinsic::masked_compressstore: 5933 visitMaskedStore(I, true /* IsCompressing */); 5934 return; 5935 case Intrinsic::x86_mmx_pslli_w: 5936 case Intrinsic::x86_mmx_pslli_d: 5937 case Intrinsic::x86_mmx_pslli_q: 5938 case Intrinsic::x86_mmx_psrli_w: 5939 case Intrinsic::x86_mmx_psrli_d: 5940 case Intrinsic::x86_mmx_psrli_q: 5941 case Intrinsic::x86_mmx_psrai_w: 5942 case Intrinsic::x86_mmx_psrai_d: { 5943 SDValue ShAmt = getValue(I.getArgOperand(1)); 5944 if (isa<ConstantSDNode>(ShAmt)) { 5945 visitTargetIntrinsic(I, Intrinsic); 5946 return; 5947 } 5948 unsigned NewIntrinsic = 0; 5949 EVT ShAmtVT = MVT::v2i32; 5950 switch (Intrinsic) { 5951 case Intrinsic::x86_mmx_pslli_w: 5952 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5953 break; 5954 case Intrinsic::x86_mmx_pslli_d: 5955 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5956 break; 5957 case Intrinsic::x86_mmx_pslli_q: 5958 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5959 break; 5960 case Intrinsic::x86_mmx_psrli_w: 5961 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5962 break; 5963 case Intrinsic::x86_mmx_psrli_d: 5964 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5965 break; 5966 case Intrinsic::x86_mmx_psrli_q: 5967 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5968 break; 5969 case Intrinsic::x86_mmx_psrai_w: 5970 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5971 break; 5972 case Intrinsic::x86_mmx_psrai_d: 5973 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5974 break; 5975 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5976 } 5977 5978 // The vector shift intrinsics with scalars uses 32b shift amounts but 5979 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5980 // to be zero. 5981 // We must do this early because v2i32 is not a legal type. 5982 SDValue ShOps[2]; 5983 ShOps[0] = ShAmt; 5984 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5985 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5986 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5987 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5988 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5989 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5990 getValue(I.getArgOperand(0)), ShAmt); 5991 setValue(&I, Res); 5992 return; 5993 } 5994 case Intrinsic::powi: 5995 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5996 getValue(I.getArgOperand(1)), DAG)); 5997 return; 5998 case Intrinsic::log: 5999 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6000 return; 6001 case Intrinsic::log2: 6002 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6003 return; 6004 case Intrinsic::log10: 6005 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6006 return; 6007 case Intrinsic::exp: 6008 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6009 return; 6010 case Intrinsic::exp2: 6011 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6012 return; 6013 case Intrinsic::pow: 6014 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6015 getValue(I.getArgOperand(1)), DAG, TLI)); 6016 return; 6017 case Intrinsic::sqrt: 6018 case Intrinsic::fabs: 6019 case Intrinsic::sin: 6020 case Intrinsic::cos: 6021 case Intrinsic::floor: 6022 case Intrinsic::ceil: 6023 case Intrinsic::trunc: 6024 case Intrinsic::rint: 6025 case Intrinsic::nearbyint: 6026 case Intrinsic::round: 6027 case Intrinsic::canonicalize: { 6028 unsigned Opcode; 6029 switch (Intrinsic) { 6030 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6031 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6032 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6033 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6034 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6035 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6036 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6037 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6038 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6039 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6040 case Intrinsic::round: Opcode = ISD::FROUND; break; 6041 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6042 } 6043 6044 setValue(&I, DAG.getNode(Opcode, sdl, 6045 getValue(I.getArgOperand(0)).getValueType(), 6046 getValue(I.getArgOperand(0)))); 6047 return; 6048 } 6049 case Intrinsic::lround: 6050 case Intrinsic::llround: 6051 case Intrinsic::lrint: 6052 case Intrinsic::llrint: { 6053 unsigned Opcode; 6054 switch (Intrinsic) { 6055 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6056 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6057 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6058 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6059 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6060 } 6061 6062 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6063 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6064 getValue(I.getArgOperand(0)))); 6065 return; 6066 } 6067 case Intrinsic::minnum: 6068 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6069 getValue(I.getArgOperand(0)).getValueType(), 6070 getValue(I.getArgOperand(0)), 6071 getValue(I.getArgOperand(1)))); 6072 return; 6073 case Intrinsic::maxnum: 6074 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6075 getValue(I.getArgOperand(0)).getValueType(), 6076 getValue(I.getArgOperand(0)), 6077 getValue(I.getArgOperand(1)))); 6078 return; 6079 case Intrinsic::minimum: 6080 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6081 getValue(I.getArgOperand(0)).getValueType(), 6082 getValue(I.getArgOperand(0)), 6083 getValue(I.getArgOperand(1)))); 6084 return; 6085 case Intrinsic::maximum: 6086 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6087 getValue(I.getArgOperand(0)).getValueType(), 6088 getValue(I.getArgOperand(0)), 6089 getValue(I.getArgOperand(1)))); 6090 return; 6091 case Intrinsic::copysign: 6092 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6093 getValue(I.getArgOperand(0)).getValueType(), 6094 getValue(I.getArgOperand(0)), 6095 getValue(I.getArgOperand(1)))); 6096 return; 6097 case Intrinsic::fma: 6098 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6099 getValue(I.getArgOperand(0)).getValueType(), 6100 getValue(I.getArgOperand(0)), 6101 getValue(I.getArgOperand(1)), 6102 getValue(I.getArgOperand(2)))); 6103 return; 6104 case Intrinsic::experimental_constrained_fadd: 6105 case Intrinsic::experimental_constrained_fsub: 6106 case Intrinsic::experimental_constrained_fmul: 6107 case Intrinsic::experimental_constrained_fdiv: 6108 case Intrinsic::experimental_constrained_frem: 6109 case Intrinsic::experimental_constrained_fma: 6110 case Intrinsic::experimental_constrained_fptrunc: 6111 case Intrinsic::experimental_constrained_fpext: 6112 case Intrinsic::experimental_constrained_sqrt: 6113 case Intrinsic::experimental_constrained_pow: 6114 case Intrinsic::experimental_constrained_powi: 6115 case Intrinsic::experimental_constrained_sin: 6116 case Intrinsic::experimental_constrained_cos: 6117 case Intrinsic::experimental_constrained_exp: 6118 case Intrinsic::experimental_constrained_exp2: 6119 case Intrinsic::experimental_constrained_log: 6120 case Intrinsic::experimental_constrained_log10: 6121 case Intrinsic::experimental_constrained_log2: 6122 case Intrinsic::experimental_constrained_rint: 6123 case Intrinsic::experimental_constrained_nearbyint: 6124 case Intrinsic::experimental_constrained_maxnum: 6125 case Intrinsic::experimental_constrained_minnum: 6126 case Intrinsic::experimental_constrained_ceil: 6127 case Intrinsic::experimental_constrained_floor: 6128 case Intrinsic::experimental_constrained_round: 6129 case Intrinsic::experimental_constrained_trunc: 6130 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6131 return; 6132 case Intrinsic::fmuladd: { 6133 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6134 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6135 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6136 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6137 getValue(I.getArgOperand(0)).getValueType(), 6138 getValue(I.getArgOperand(0)), 6139 getValue(I.getArgOperand(1)), 6140 getValue(I.getArgOperand(2)))); 6141 } else { 6142 // TODO: Intrinsic calls should have fast-math-flags. 6143 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6144 getValue(I.getArgOperand(0)).getValueType(), 6145 getValue(I.getArgOperand(0)), 6146 getValue(I.getArgOperand(1))); 6147 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6148 getValue(I.getArgOperand(0)).getValueType(), 6149 Mul, 6150 getValue(I.getArgOperand(2))); 6151 setValue(&I, Add); 6152 } 6153 return; 6154 } 6155 case Intrinsic::convert_to_fp16: 6156 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6157 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6158 getValue(I.getArgOperand(0)), 6159 DAG.getTargetConstant(0, sdl, 6160 MVT::i32)))); 6161 return; 6162 case Intrinsic::convert_from_fp16: 6163 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6164 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6165 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6166 getValue(I.getArgOperand(0))))); 6167 return; 6168 case Intrinsic::pcmarker: { 6169 SDValue Tmp = getValue(I.getArgOperand(0)); 6170 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6171 return; 6172 } 6173 case Intrinsic::readcyclecounter: { 6174 SDValue Op = getRoot(); 6175 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6176 DAG.getVTList(MVT::i64, MVT::Other), Op); 6177 setValue(&I, Res); 6178 DAG.setRoot(Res.getValue(1)); 6179 return; 6180 } 6181 case Intrinsic::bitreverse: 6182 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6183 getValue(I.getArgOperand(0)).getValueType(), 6184 getValue(I.getArgOperand(0)))); 6185 return; 6186 case Intrinsic::bswap: 6187 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6188 getValue(I.getArgOperand(0)).getValueType(), 6189 getValue(I.getArgOperand(0)))); 6190 return; 6191 case Intrinsic::cttz: { 6192 SDValue Arg = getValue(I.getArgOperand(0)); 6193 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6194 EVT Ty = Arg.getValueType(); 6195 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6196 sdl, Ty, Arg)); 6197 return; 6198 } 6199 case Intrinsic::ctlz: { 6200 SDValue Arg = getValue(I.getArgOperand(0)); 6201 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6202 EVT Ty = Arg.getValueType(); 6203 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6204 sdl, Ty, Arg)); 6205 return; 6206 } 6207 case Intrinsic::ctpop: { 6208 SDValue Arg = getValue(I.getArgOperand(0)); 6209 EVT Ty = Arg.getValueType(); 6210 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6211 return; 6212 } 6213 case Intrinsic::fshl: 6214 case Intrinsic::fshr: { 6215 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6216 SDValue X = getValue(I.getArgOperand(0)); 6217 SDValue Y = getValue(I.getArgOperand(1)); 6218 SDValue Z = getValue(I.getArgOperand(2)); 6219 EVT VT = X.getValueType(); 6220 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6221 SDValue Zero = DAG.getConstant(0, sdl, VT); 6222 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6223 6224 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6225 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6226 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6227 return; 6228 } 6229 6230 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6231 // avoid the select that is necessary in the general case to filter out 6232 // the 0-shift possibility that leads to UB. 6233 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6234 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6235 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6236 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6237 return; 6238 } 6239 6240 // Some targets only rotate one way. Try the opposite direction. 6241 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6242 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6243 // Negate the shift amount because it is safe to ignore the high bits. 6244 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6245 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6246 return; 6247 } 6248 6249 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6250 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6251 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6252 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6253 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6254 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6255 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6256 return; 6257 } 6258 6259 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6260 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6261 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6262 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6263 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6264 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6265 6266 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6267 // and that is undefined. We must compare and select to avoid UB. 6268 EVT CCVT = MVT::i1; 6269 if (VT.isVector()) 6270 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6271 6272 // For fshl, 0-shift returns the 1st arg (X). 6273 // For fshr, 0-shift returns the 2nd arg (Y). 6274 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6275 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6276 return; 6277 } 6278 case Intrinsic::sadd_sat: { 6279 SDValue Op1 = getValue(I.getArgOperand(0)); 6280 SDValue Op2 = getValue(I.getArgOperand(1)); 6281 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6282 return; 6283 } 6284 case Intrinsic::uadd_sat: { 6285 SDValue Op1 = getValue(I.getArgOperand(0)); 6286 SDValue Op2 = getValue(I.getArgOperand(1)); 6287 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6288 return; 6289 } 6290 case Intrinsic::ssub_sat: { 6291 SDValue Op1 = getValue(I.getArgOperand(0)); 6292 SDValue Op2 = getValue(I.getArgOperand(1)); 6293 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6294 return; 6295 } 6296 case Intrinsic::usub_sat: { 6297 SDValue Op1 = getValue(I.getArgOperand(0)); 6298 SDValue Op2 = getValue(I.getArgOperand(1)); 6299 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6300 return; 6301 } 6302 case Intrinsic::smul_fix: 6303 case Intrinsic::umul_fix: { 6304 SDValue Op1 = getValue(I.getArgOperand(0)); 6305 SDValue Op2 = getValue(I.getArgOperand(1)); 6306 SDValue Op3 = getValue(I.getArgOperand(2)); 6307 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6308 Op1.getValueType(), Op1, Op2, Op3)); 6309 return; 6310 } 6311 case Intrinsic::smul_fix_sat: { 6312 SDValue Op1 = getValue(I.getArgOperand(0)); 6313 SDValue Op2 = getValue(I.getArgOperand(1)); 6314 SDValue Op3 = getValue(I.getArgOperand(2)); 6315 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6316 Op3)); 6317 return; 6318 } 6319 case Intrinsic::stacksave: { 6320 SDValue Op = getRoot(); 6321 Res = DAG.getNode( 6322 ISD::STACKSAVE, sdl, 6323 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6324 setValue(&I, Res); 6325 DAG.setRoot(Res.getValue(1)); 6326 return; 6327 } 6328 case Intrinsic::stackrestore: 6329 Res = getValue(I.getArgOperand(0)); 6330 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6331 return; 6332 case Intrinsic::get_dynamic_area_offset: { 6333 SDValue Op = getRoot(); 6334 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6335 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6336 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6337 // target. 6338 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6339 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6340 " intrinsic!"); 6341 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6342 Op); 6343 DAG.setRoot(Op); 6344 setValue(&I, Res); 6345 return; 6346 } 6347 case Intrinsic::stackguard: { 6348 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6349 MachineFunction &MF = DAG.getMachineFunction(); 6350 const Module &M = *MF.getFunction().getParent(); 6351 SDValue Chain = getRoot(); 6352 if (TLI.useLoadStackGuardNode()) { 6353 Res = getLoadStackGuard(DAG, sdl, Chain); 6354 } else { 6355 const Value *Global = TLI.getSDagStackGuard(M); 6356 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6357 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6358 MachinePointerInfo(Global, 0), Align, 6359 MachineMemOperand::MOVolatile); 6360 } 6361 if (TLI.useStackGuardXorFP()) 6362 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6363 DAG.setRoot(Chain); 6364 setValue(&I, Res); 6365 return; 6366 } 6367 case Intrinsic::stackprotector: { 6368 // Emit code into the DAG to store the stack guard onto the stack. 6369 MachineFunction &MF = DAG.getMachineFunction(); 6370 MachineFrameInfo &MFI = MF.getFrameInfo(); 6371 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6372 SDValue Src, Chain = getRoot(); 6373 6374 if (TLI.useLoadStackGuardNode()) 6375 Src = getLoadStackGuard(DAG, sdl, Chain); 6376 else 6377 Src = getValue(I.getArgOperand(0)); // The guard's value. 6378 6379 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6380 6381 int FI = FuncInfo.StaticAllocaMap[Slot]; 6382 MFI.setStackProtectorIndex(FI); 6383 6384 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6385 6386 // Store the stack protector onto the stack. 6387 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6388 DAG.getMachineFunction(), FI), 6389 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6390 setValue(&I, Res); 6391 DAG.setRoot(Res); 6392 return; 6393 } 6394 case Intrinsic::objectsize: { 6395 // If we don't know by now, we're never going to know. 6396 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6397 6398 assert(CI && "Non-constant type in __builtin_object_size?"); 6399 6400 SDValue Arg = getValue(I.getCalledValue()); 6401 EVT Ty = Arg.getValueType(); 6402 6403 if (CI->isZero()) 6404 Res = DAG.getConstant(-1ULL, sdl, Ty); 6405 else 6406 Res = DAG.getConstant(0, sdl, Ty); 6407 6408 setValue(&I, Res); 6409 return; 6410 } 6411 6412 case Intrinsic::is_constant: 6413 // If this wasn't constant-folded away by now, then it's not a 6414 // constant. 6415 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6416 return; 6417 6418 case Intrinsic::annotation: 6419 case Intrinsic::ptr_annotation: 6420 case Intrinsic::launder_invariant_group: 6421 case Intrinsic::strip_invariant_group: 6422 // Drop the intrinsic, but forward the value 6423 setValue(&I, getValue(I.getOperand(0))); 6424 return; 6425 case Intrinsic::assume: 6426 case Intrinsic::var_annotation: 6427 case Intrinsic::sideeffect: 6428 // Discard annotate attributes, assumptions, and artificial side-effects. 6429 return; 6430 6431 case Intrinsic::codeview_annotation: { 6432 // Emit a label associated with this metadata. 6433 MachineFunction &MF = DAG.getMachineFunction(); 6434 MCSymbol *Label = 6435 MF.getMMI().getContext().createTempSymbol("annotation", true); 6436 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6437 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6438 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6439 DAG.setRoot(Res); 6440 return; 6441 } 6442 6443 case Intrinsic::init_trampoline: { 6444 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6445 6446 SDValue Ops[6]; 6447 Ops[0] = getRoot(); 6448 Ops[1] = getValue(I.getArgOperand(0)); 6449 Ops[2] = getValue(I.getArgOperand(1)); 6450 Ops[3] = getValue(I.getArgOperand(2)); 6451 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6452 Ops[5] = DAG.getSrcValue(F); 6453 6454 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6455 6456 DAG.setRoot(Res); 6457 return; 6458 } 6459 case Intrinsic::adjust_trampoline: 6460 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6461 TLI.getPointerTy(DAG.getDataLayout()), 6462 getValue(I.getArgOperand(0)))); 6463 return; 6464 case Intrinsic::gcroot: { 6465 assert(DAG.getMachineFunction().getFunction().hasGC() && 6466 "only valid in functions with gc specified, enforced by Verifier"); 6467 assert(GFI && "implied by previous"); 6468 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6469 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6470 6471 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6472 GFI->addStackRoot(FI->getIndex(), TypeMap); 6473 return; 6474 } 6475 case Intrinsic::gcread: 6476 case Intrinsic::gcwrite: 6477 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6478 case Intrinsic::flt_rounds: 6479 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6480 return; 6481 6482 case Intrinsic::expect: 6483 // Just replace __builtin_expect(exp, c) with EXP. 6484 setValue(&I, getValue(I.getArgOperand(0))); 6485 return; 6486 6487 case Intrinsic::debugtrap: 6488 case Intrinsic::trap: { 6489 StringRef TrapFuncName = 6490 I.getAttributes() 6491 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6492 .getValueAsString(); 6493 if (TrapFuncName.empty()) { 6494 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6495 ISD::TRAP : ISD::DEBUGTRAP; 6496 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6497 return; 6498 } 6499 TargetLowering::ArgListTy Args; 6500 6501 TargetLowering::CallLoweringInfo CLI(DAG); 6502 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6503 CallingConv::C, I.getType(), 6504 DAG.getExternalSymbol(TrapFuncName.data(), 6505 TLI.getPointerTy(DAG.getDataLayout())), 6506 std::move(Args)); 6507 6508 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6509 DAG.setRoot(Result.second); 6510 return; 6511 } 6512 6513 case Intrinsic::uadd_with_overflow: 6514 case Intrinsic::sadd_with_overflow: 6515 case Intrinsic::usub_with_overflow: 6516 case Intrinsic::ssub_with_overflow: 6517 case Intrinsic::umul_with_overflow: 6518 case Intrinsic::smul_with_overflow: { 6519 ISD::NodeType Op; 6520 switch (Intrinsic) { 6521 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6522 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6523 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6524 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6525 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6526 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6527 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6528 } 6529 SDValue Op1 = getValue(I.getArgOperand(0)); 6530 SDValue Op2 = getValue(I.getArgOperand(1)); 6531 6532 EVT ResultVT = Op1.getValueType(); 6533 EVT OverflowVT = MVT::i1; 6534 if (ResultVT.isVector()) 6535 OverflowVT = EVT::getVectorVT( 6536 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6537 6538 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6539 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6540 return; 6541 } 6542 case Intrinsic::prefetch: { 6543 SDValue Ops[5]; 6544 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6545 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6546 Ops[0] = DAG.getRoot(); 6547 Ops[1] = getValue(I.getArgOperand(0)); 6548 Ops[2] = getValue(I.getArgOperand(1)); 6549 Ops[3] = getValue(I.getArgOperand(2)); 6550 Ops[4] = getValue(I.getArgOperand(3)); 6551 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6552 DAG.getVTList(MVT::Other), Ops, 6553 EVT::getIntegerVT(*Context, 8), 6554 MachinePointerInfo(I.getArgOperand(0)), 6555 0, /* align */ 6556 Flags); 6557 6558 // Chain the prefetch in parallell with any pending loads, to stay out of 6559 // the way of later optimizations. 6560 PendingLoads.push_back(Result); 6561 Result = getRoot(); 6562 DAG.setRoot(Result); 6563 return; 6564 } 6565 case Intrinsic::lifetime_start: 6566 case Intrinsic::lifetime_end: { 6567 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6568 // Stack coloring is not enabled in O0, discard region information. 6569 if (TM.getOptLevel() == CodeGenOpt::None) 6570 return; 6571 6572 const int64_t ObjectSize = 6573 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6574 Value *const ObjectPtr = I.getArgOperand(1); 6575 SmallVector<const Value *, 4> Allocas; 6576 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6577 6578 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6579 E = Allocas.end(); Object != E; ++Object) { 6580 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6581 6582 // Could not find an Alloca. 6583 if (!LifetimeObject) 6584 continue; 6585 6586 // First check that the Alloca is static, otherwise it won't have a 6587 // valid frame index. 6588 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6589 if (SI == FuncInfo.StaticAllocaMap.end()) 6590 return; 6591 6592 const int FrameIndex = SI->second; 6593 int64_t Offset; 6594 if (GetPointerBaseWithConstantOffset( 6595 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6596 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6597 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6598 Offset); 6599 DAG.setRoot(Res); 6600 } 6601 return; 6602 } 6603 case Intrinsic::invariant_start: 6604 // Discard region information. 6605 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6606 return; 6607 case Intrinsic::invariant_end: 6608 // Discard region information. 6609 return; 6610 case Intrinsic::clear_cache: 6611 /// FunctionName may be null. 6612 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6613 lowerCallToExternalSymbol(I, FunctionName); 6614 return; 6615 case Intrinsic::donothing: 6616 // ignore 6617 return; 6618 case Intrinsic::experimental_stackmap: 6619 visitStackmap(I); 6620 return; 6621 case Intrinsic::experimental_patchpoint_void: 6622 case Intrinsic::experimental_patchpoint_i64: 6623 visitPatchpoint(&I); 6624 return; 6625 case Intrinsic::experimental_gc_statepoint: 6626 LowerStatepoint(ImmutableStatepoint(&I)); 6627 return; 6628 case Intrinsic::experimental_gc_result: 6629 visitGCResult(cast<GCResultInst>(I)); 6630 return; 6631 case Intrinsic::experimental_gc_relocate: 6632 visitGCRelocate(cast<GCRelocateInst>(I)); 6633 return; 6634 case Intrinsic::instrprof_increment: 6635 llvm_unreachable("instrprof failed to lower an increment"); 6636 case Intrinsic::instrprof_value_profile: 6637 llvm_unreachable("instrprof failed to lower a value profiling call"); 6638 case Intrinsic::localescape: { 6639 MachineFunction &MF = DAG.getMachineFunction(); 6640 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6641 6642 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6643 // is the same on all targets. 6644 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6645 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6646 if (isa<ConstantPointerNull>(Arg)) 6647 continue; // Skip null pointers. They represent a hole in index space. 6648 AllocaInst *Slot = cast<AllocaInst>(Arg); 6649 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6650 "can only escape static allocas"); 6651 int FI = FuncInfo.StaticAllocaMap[Slot]; 6652 MCSymbol *FrameAllocSym = 6653 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6654 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6655 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6656 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6657 .addSym(FrameAllocSym) 6658 .addFrameIndex(FI); 6659 } 6660 6661 return; 6662 } 6663 6664 case Intrinsic::localrecover: { 6665 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6666 MachineFunction &MF = DAG.getMachineFunction(); 6667 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6668 6669 // Get the symbol that defines the frame offset. 6670 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6671 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6672 unsigned IdxVal = 6673 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6674 MCSymbol *FrameAllocSym = 6675 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6676 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6677 6678 // Create a MCSymbol for the label to avoid any target lowering 6679 // that would make this PC relative. 6680 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6681 SDValue OffsetVal = 6682 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6683 6684 // Add the offset to the FP. 6685 Value *FP = I.getArgOperand(1); 6686 SDValue FPVal = getValue(FP); 6687 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6688 setValue(&I, Add); 6689 6690 return; 6691 } 6692 6693 case Intrinsic::eh_exceptionpointer: 6694 case Intrinsic::eh_exceptioncode: { 6695 // Get the exception pointer vreg, copy from it, and resize it to fit. 6696 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6697 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6698 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6699 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6700 SDValue N = 6701 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6702 if (Intrinsic == Intrinsic::eh_exceptioncode) 6703 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6704 setValue(&I, N); 6705 return; 6706 } 6707 case Intrinsic::xray_customevent: { 6708 // Here we want to make sure that the intrinsic behaves as if it has a 6709 // specific calling convention, and only for x86_64. 6710 // FIXME: Support other platforms later. 6711 const auto &Triple = DAG.getTarget().getTargetTriple(); 6712 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6713 return; 6714 6715 SDLoc DL = getCurSDLoc(); 6716 SmallVector<SDValue, 8> Ops; 6717 6718 // We want to say that we always want the arguments in registers. 6719 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6720 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6721 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6722 SDValue Chain = getRoot(); 6723 Ops.push_back(LogEntryVal); 6724 Ops.push_back(StrSizeVal); 6725 Ops.push_back(Chain); 6726 6727 // We need to enforce the calling convention for the callsite, so that 6728 // argument ordering is enforced correctly, and that register allocation can 6729 // see that some registers may be assumed clobbered and have to preserve 6730 // them across calls to the intrinsic. 6731 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6732 DL, NodeTys, Ops); 6733 SDValue patchableNode = SDValue(MN, 0); 6734 DAG.setRoot(patchableNode); 6735 setValue(&I, patchableNode); 6736 return; 6737 } 6738 case Intrinsic::xray_typedevent: { 6739 // Here we want to make sure that the intrinsic behaves as if it has a 6740 // specific calling convention, and only for x86_64. 6741 // FIXME: Support other platforms later. 6742 const auto &Triple = DAG.getTarget().getTargetTriple(); 6743 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6744 return; 6745 6746 SDLoc DL = getCurSDLoc(); 6747 SmallVector<SDValue, 8> Ops; 6748 6749 // We want to say that we always want the arguments in registers. 6750 // It's unclear to me how manipulating the selection DAG here forces callers 6751 // to provide arguments in registers instead of on the stack. 6752 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6753 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6754 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6755 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6756 SDValue Chain = getRoot(); 6757 Ops.push_back(LogTypeId); 6758 Ops.push_back(LogEntryVal); 6759 Ops.push_back(StrSizeVal); 6760 Ops.push_back(Chain); 6761 6762 // We need to enforce the calling convention for the callsite, so that 6763 // argument ordering is enforced correctly, and that register allocation can 6764 // see that some registers may be assumed clobbered and have to preserve 6765 // them across calls to the intrinsic. 6766 MachineSDNode *MN = DAG.getMachineNode( 6767 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6768 SDValue patchableNode = SDValue(MN, 0); 6769 DAG.setRoot(patchableNode); 6770 setValue(&I, patchableNode); 6771 return; 6772 } 6773 case Intrinsic::experimental_deoptimize: 6774 LowerDeoptimizeCall(&I); 6775 return; 6776 6777 case Intrinsic::experimental_vector_reduce_v2_fadd: 6778 case Intrinsic::experimental_vector_reduce_v2_fmul: 6779 case Intrinsic::experimental_vector_reduce_add: 6780 case Intrinsic::experimental_vector_reduce_mul: 6781 case Intrinsic::experimental_vector_reduce_and: 6782 case Intrinsic::experimental_vector_reduce_or: 6783 case Intrinsic::experimental_vector_reduce_xor: 6784 case Intrinsic::experimental_vector_reduce_smax: 6785 case Intrinsic::experimental_vector_reduce_smin: 6786 case Intrinsic::experimental_vector_reduce_umax: 6787 case Intrinsic::experimental_vector_reduce_umin: 6788 case Intrinsic::experimental_vector_reduce_fmax: 6789 case Intrinsic::experimental_vector_reduce_fmin: 6790 visitVectorReduce(I, Intrinsic); 6791 return; 6792 6793 case Intrinsic::icall_branch_funnel: { 6794 SmallVector<SDValue, 16> Ops; 6795 Ops.push_back(getValue(I.getArgOperand(0))); 6796 6797 int64_t Offset; 6798 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6799 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6800 if (!Base) 6801 report_fatal_error( 6802 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6803 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6804 6805 struct BranchFunnelTarget { 6806 int64_t Offset; 6807 SDValue Target; 6808 }; 6809 SmallVector<BranchFunnelTarget, 8> Targets; 6810 6811 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6812 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6813 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6814 if (ElemBase != Base) 6815 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6816 "to the same GlobalValue"); 6817 6818 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6819 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6820 if (!GA) 6821 report_fatal_error( 6822 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6823 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6824 GA->getGlobal(), getCurSDLoc(), 6825 Val.getValueType(), GA->getOffset())}); 6826 } 6827 llvm::sort(Targets, 6828 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6829 return T1.Offset < T2.Offset; 6830 }); 6831 6832 for (auto &T : Targets) { 6833 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6834 Ops.push_back(T.Target); 6835 } 6836 6837 Ops.push_back(DAG.getRoot()); // Chain 6838 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6839 getCurSDLoc(), MVT::Other, Ops), 6840 0); 6841 DAG.setRoot(N); 6842 setValue(&I, N); 6843 HasTailCall = true; 6844 return; 6845 } 6846 6847 case Intrinsic::wasm_landingpad_index: 6848 // Information this intrinsic contained has been transferred to 6849 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6850 // delete it now. 6851 return; 6852 6853 case Intrinsic::aarch64_settag: 6854 case Intrinsic::aarch64_settag_zero: { 6855 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6856 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6857 SDValue Val = TSI.EmitTargetCodeForSetTag( 6858 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6859 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6860 ZeroMemory); 6861 DAG.setRoot(Val); 6862 setValue(&I, Val); 6863 return; 6864 } 6865 case Intrinsic::ptrmask: { 6866 SDValue Ptr = getValue(I.getOperand(0)); 6867 SDValue Const = getValue(I.getOperand(1)); 6868 6869 EVT DestVT = 6870 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6871 6872 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6873 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6874 return; 6875 } 6876 } 6877 } 6878 6879 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6880 const ConstrainedFPIntrinsic &FPI) { 6881 SDLoc sdl = getCurSDLoc(); 6882 unsigned Opcode; 6883 switch (FPI.getIntrinsicID()) { 6884 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6885 case Intrinsic::experimental_constrained_fadd: 6886 Opcode = ISD::STRICT_FADD; 6887 break; 6888 case Intrinsic::experimental_constrained_fsub: 6889 Opcode = ISD::STRICT_FSUB; 6890 break; 6891 case Intrinsic::experimental_constrained_fmul: 6892 Opcode = ISD::STRICT_FMUL; 6893 break; 6894 case Intrinsic::experimental_constrained_fdiv: 6895 Opcode = ISD::STRICT_FDIV; 6896 break; 6897 case Intrinsic::experimental_constrained_frem: 6898 Opcode = ISD::STRICT_FREM; 6899 break; 6900 case Intrinsic::experimental_constrained_fma: 6901 Opcode = ISD::STRICT_FMA; 6902 break; 6903 case Intrinsic::experimental_constrained_fptrunc: 6904 Opcode = ISD::STRICT_FP_ROUND; 6905 break; 6906 case Intrinsic::experimental_constrained_fpext: 6907 Opcode = ISD::STRICT_FP_EXTEND; 6908 break; 6909 case Intrinsic::experimental_constrained_sqrt: 6910 Opcode = ISD::STRICT_FSQRT; 6911 break; 6912 case Intrinsic::experimental_constrained_pow: 6913 Opcode = ISD::STRICT_FPOW; 6914 break; 6915 case Intrinsic::experimental_constrained_powi: 6916 Opcode = ISD::STRICT_FPOWI; 6917 break; 6918 case Intrinsic::experimental_constrained_sin: 6919 Opcode = ISD::STRICT_FSIN; 6920 break; 6921 case Intrinsic::experimental_constrained_cos: 6922 Opcode = ISD::STRICT_FCOS; 6923 break; 6924 case Intrinsic::experimental_constrained_exp: 6925 Opcode = ISD::STRICT_FEXP; 6926 break; 6927 case Intrinsic::experimental_constrained_exp2: 6928 Opcode = ISD::STRICT_FEXP2; 6929 break; 6930 case Intrinsic::experimental_constrained_log: 6931 Opcode = ISD::STRICT_FLOG; 6932 break; 6933 case Intrinsic::experimental_constrained_log10: 6934 Opcode = ISD::STRICT_FLOG10; 6935 break; 6936 case Intrinsic::experimental_constrained_log2: 6937 Opcode = ISD::STRICT_FLOG2; 6938 break; 6939 case Intrinsic::experimental_constrained_rint: 6940 Opcode = ISD::STRICT_FRINT; 6941 break; 6942 case Intrinsic::experimental_constrained_nearbyint: 6943 Opcode = ISD::STRICT_FNEARBYINT; 6944 break; 6945 case Intrinsic::experimental_constrained_maxnum: 6946 Opcode = ISD::STRICT_FMAXNUM; 6947 break; 6948 case Intrinsic::experimental_constrained_minnum: 6949 Opcode = ISD::STRICT_FMINNUM; 6950 break; 6951 case Intrinsic::experimental_constrained_ceil: 6952 Opcode = ISD::STRICT_FCEIL; 6953 break; 6954 case Intrinsic::experimental_constrained_floor: 6955 Opcode = ISD::STRICT_FFLOOR; 6956 break; 6957 case Intrinsic::experimental_constrained_round: 6958 Opcode = ISD::STRICT_FROUND; 6959 break; 6960 case Intrinsic::experimental_constrained_trunc: 6961 Opcode = ISD::STRICT_FTRUNC; 6962 break; 6963 } 6964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6965 SDValue Chain = getRoot(); 6966 SmallVector<EVT, 4> ValueVTs; 6967 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6968 ValueVTs.push_back(MVT::Other); // Out chain 6969 6970 SDVTList VTs = DAG.getVTList(ValueVTs); 6971 SDValue Result; 6972 if (Opcode == ISD::STRICT_FP_ROUND) 6973 Result = DAG.getNode(Opcode, sdl, VTs, 6974 { Chain, getValue(FPI.getArgOperand(0)), 6975 DAG.getTargetConstant(0, sdl, 6976 TLI.getPointerTy(DAG.getDataLayout())) }); 6977 else if (FPI.isUnaryOp()) 6978 Result = DAG.getNode(Opcode, sdl, VTs, 6979 { Chain, getValue(FPI.getArgOperand(0)) }); 6980 else if (FPI.isTernaryOp()) 6981 Result = DAG.getNode(Opcode, sdl, VTs, 6982 { Chain, getValue(FPI.getArgOperand(0)), 6983 getValue(FPI.getArgOperand(1)), 6984 getValue(FPI.getArgOperand(2)) }); 6985 else 6986 Result = DAG.getNode(Opcode, sdl, VTs, 6987 { Chain, getValue(FPI.getArgOperand(0)), 6988 getValue(FPI.getArgOperand(1)) }); 6989 6990 if (FPI.getExceptionBehavior() != 6991 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) { 6992 SDNodeFlags Flags; 6993 Flags.setFPExcept(true); 6994 Result->setFlags(Flags); 6995 } 6996 6997 assert(Result.getNode()->getNumValues() == 2); 6998 SDValue OutChain = Result.getValue(1); 6999 DAG.setRoot(OutChain); 7000 SDValue FPResult = Result.getValue(0); 7001 setValue(&FPI, FPResult); 7002 } 7003 7004 std::pair<SDValue, SDValue> 7005 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7006 const BasicBlock *EHPadBB) { 7007 MachineFunction &MF = DAG.getMachineFunction(); 7008 MachineModuleInfo &MMI = MF.getMMI(); 7009 MCSymbol *BeginLabel = nullptr; 7010 7011 if (EHPadBB) { 7012 // Insert a label before the invoke call to mark the try range. This can be 7013 // used to detect deletion of the invoke via the MachineModuleInfo. 7014 BeginLabel = MMI.getContext().createTempSymbol(); 7015 7016 // For SjLj, keep track of which landing pads go with which invokes 7017 // so as to maintain the ordering of pads in the LSDA. 7018 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7019 if (CallSiteIndex) { 7020 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7021 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7022 7023 // Now that the call site is handled, stop tracking it. 7024 MMI.setCurrentCallSite(0); 7025 } 7026 7027 // Both PendingLoads and PendingExports must be flushed here; 7028 // this call might not return. 7029 (void)getRoot(); 7030 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7031 7032 CLI.setChain(getRoot()); 7033 } 7034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7035 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7036 7037 assert((CLI.IsTailCall || Result.second.getNode()) && 7038 "Non-null chain expected with non-tail call!"); 7039 assert((Result.second.getNode() || !Result.first.getNode()) && 7040 "Null value expected with tail call!"); 7041 7042 if (!Result.second.getNode()) { 7043 // As a special case, a null chain means that a tail call has been emitted 7044 // and the DAG root is already updated. 7045 HasTailCall = true; 7046 7047 // Since there's no actual continuation from this block, nothing can be 7048 // relying on us setting vregs for them. 7049 PendingExports.clear(); 7050 } else { 7051 DAG.setRoot(Result.second); 7052 } 7053 7054 if (EHPadBB) { 7055 // Insert a label at the end of the invoke call to mark the try range. This 7056 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7057 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7058 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7059 7060 // Inform MachineModuleInfo of range. 7061 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7062 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7063 // actually use outlined funclets and their LSDA info style. 7064 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7065 assert(CLI.CS); 7066 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7067 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7068 BeginLabel, EndLabel); 7069 } else if (!isScopedEHPersonality(Pers)) { 7070 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7071 } 7072 } 7073 7074 return Result; 7075 } 7076 7077 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7078 bool isTailCall, 7079 const BasicBlock *EHPadBB) { 7080 auto &DL = DAG.getDataLayout(); 7081 FunctionType *FTy = CS.getFunctionType(); 7082 Type *RetTy = CS.getType(); 7083 7084 TargetLowering::ArgListTy Args; 7085 Args.reserve(CS.arg_size()); 7086 7087 const Value *SwiftErrorVal = nullptr; 7088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7089 7090 // We can't tail call inside a function with a swifterror argument. Lowering 7091 // does not support this yet. It would have to move into the swifterror 7092 // register before the call. 7093 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7094 if (TLI.supportSwiftError() && 7095 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7096 isTailCall = false; 7097 7098 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7099 i != e; ++i) { 7100 TargetLowering::ArgListEntry Entry; 7101 const Value *V = *i; 7102 7103 // Skip empty types 7104 if (V->getType()->isEmptyTy()) 7105 continue; 7106 7107 SDValue ArgNode = getValue(V); 7108 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7109 7110 Entry.setAttributes(&CS, i - CS.arg_begin()); 7111 7112 // Use swifterror virtual register as input to the call. 7113 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7114 SwiftErrorVal = V; 7115 // We find the virtual register for the actual swifterror argument. 7116 // Instead of using the Value, we use the virtual register instead. 7117 Entry.Node = DAG.getRegister( 7118 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7119 EVT(TLI.getPointerTy(DL))); 7120 } 7121 7122 Args.push_back(Entry); 7123 7124 // If we have an explicit sret argument that is an Instruction, (i.e., it 7125 // might point to function-local memory), we can't meaningfully tail-call. 7126 if (Entry.IsSRet && isa<Instruction>(V)) 7127 isTailCall = false; 7128 } 7129 7130 // Check if target-independent constraints permit a tail call here. 7131 // Target-dependent constraints are checked within TLI->LowerCallTo. 7132 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7133 isTailCall = false; 7134 7135 // Disable tail calls if there is an swifterror argument. Targets have not 7136 // been updated to support tail calls. 7137 if (TLI.supportSwiftError() && SwiftErrorVal) 7138 isTailCall = false; 7139 7140 TargetLowering::CallLoweringInfo CLI(DAG); 7141 CLI.setDebugLoc(getCurSDLoc()) 7142 .setChain(getRoot()) 7143 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7144 .setTailCall(isTailCall) 7145 .setConvergent(CS.isConvergent()); 7146 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7147 7148 if (Result.first.getNode()) { 7149 const Instruction *Inst = CS.getInstruction(); 7150 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7151 setValue(Inst, Result.first); 7152 } 7153 7154 // The last element of CLI.InVals has the SDValue for swifterror return. 7155 // Here we copy it to a virtual register and update SwiftErrorMap for 7156 // book-keeping. 7157 if (SwiftErrorVal && TLI.supportSwiftError()) { 7158 // Get the last element of InVals. 7159 SDValue Src = CLI.InVals.back(); 7160 Register VReg = SwiftError.getOrCreateVRegDefAt( 7161 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7162 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7163 DAG.setRoot(CopyNode); 7164 } 7165 } 7166 7167 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7168 SelectionDAGBuilder &Builder) { 7169 // Check to see if this load can be trivially constant folded, e.g. if the 7170 // input is from a string literal. 7171 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7172 // Cast pointer to the type we really want to load. 7173 Type *LoadTy = 7174 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7175 if (LoadVT.isVector()) 7176 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7177 7178 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7179 PointerType::getUnqual(LoadTy)); 7180 7181 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7182 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7183 return Builder.getValue(LoadCst); 7184 } 7185 7186 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7187 // still constant memory, the input chain can be the entry node. 7188 SDValue Root; 7189 bool ConstantMemory = false; 7190 7191 // Do not serialize (non-volatile) loads of constant memory with anything. 7192 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7193 Root = Builder.DAG.getEntryNode(); 7194 ConstantMemory = true; 7195 } else { 7196 // Do not serialize non-volatile loads against each other. 7197 Root = Builder.DAG.getRoot(); 7198 } 7199 7200 SDValue Ptr = Builder.getValue(PtrVal); 7201 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7202 Ptr, MachinePointerInfo(PtrVal), 7203 /* Alignment = */ 1); 7204 7205 if (!ConstantMemory) 7206 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7207 return LoadVal; 7208 } 7209 7210 /// Record the value for an instruction that produces an integer result, 7211 /// converting the type where necessary. 7212 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7213 SDValue Value, 7214 bool IsSigned) { 7215 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7216 I.getType(), true); 7217 if (IsSigned) 7218 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7219 else 7220 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7221 setValue(&I, Value); 7222 } 7223 7224 /// See if we can lower a memcmp call into an optimized form. If so, return 7225 /// true and lower it. Otherwise return false, and it will be lowered like a 7226 /// normal call. 7227 /// The caller already checked that \p I calls the appropriate LibFunc with a 7228 /// correct prototype. 7229 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7230 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7231 const Value *Size = I.getArgOperand(2); 7232 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7233 if (CSize && CSize->getZExtValue() == 0) { 7234 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7235 I.getType(), true); 7236 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7237 return true; 7238 } 7239 7240 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7241 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7242 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7243 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7244 if (Res.first.getNode()) { 7245 processIntegerCallValue(I, Res.first, true); 7246 PendingLoads.push_back(Res.second); 7247 return true; 7248 } 7249 7250 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7251 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7252 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7253 return false; 7254 7255 // If the target has a fast compare for the given size, it will return a 7256 // preferred load type for that size. Require that the load VT is legal and 7257 // that the target supports unaligned loads of that type. Otherwise, return 7258 // INVALID. 7259 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7261 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7262 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7263 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7264 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7265 // TODO: Check alignment of src and dest ptrs. 7266 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7267 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7268 if (!TLI.isTypeLegal(LVT) || 7269 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7270 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7271 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7272 } 7273 7274 return LVT; 7275 }; 7276 7277 // This turns into unaligned loads. We only do this if the target natively 7278 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7279 // we'll only produce a small number of byte loads. 7280 MVT LoadVT; 7281 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7282 switch (NumBitsToCompare) { 7283 default: 7284 return false; 7285 case 16: 7286 LoadVT = MVT::i16; 7287 break; 7288 case 32: 7289 LoadVT = MVT::i32; 7290 break; 7291 case 64: 7292 case 128: 7293 case 256: 7294 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7295 break; 7296 } 7297 7298 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7299 return false; 7300 7301 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7302 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7303 7304 // Bitcast to a wide integer type if the loads are vectors. 7305 if (LoadVT.isVector()) { 7306 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7307 LoadL = DAG.getBitcast(CmpVT, LoadL); 7308 LoadR = DAG.getBitcast(CmpVT, LoadR); 7309 } 7310 7311 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7312 processIntegerCallValue(I, Cmp, false); 7313 return true; 7314 } 7315 7316 /// See if we can lower a memchr call into an optimized form. If so, return 7317 /// true and lower it. Otherwise return false, and it will be lowered like a 7318 /// normal call. 7319 /// The caller already checked that \p I calls the appropriate LibFunc with a 7320 /// correct prototype. 7321 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7322 const Value *Src = I.getArgOperand(0); 7323 const Value *Char = I.getArgOperand(1); 7324 const Value *Length = I.getArgOperand(2); 7325 7326 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7327 std::pair<SDValue, SDValue> Res = 7328 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7329 getValue(Src), getValue(Char), getValue(Length), 7330 MachinePointerInfo(Src)); 7331 if (Res.first.getNode()) { 7332 setValue(&I, Res.first); 7333 PendingLoads.push_back(Res.second); 7334 return true; 7335 } 7336 7337 return false; 7338 } 7339 7340 /// See if we can lower a mempcpy call into an optimized form. If so, return 7341 /// true and lower it. Otherwise return false, and it will be lowered like a 7342 /// normal call. 7343 /// The caller already checked that \p I calls the appropriate LibFunc with a 7344 /// correct prototype. 7345 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7346 SDValue Dst = getValue(I.getArgOperand(0)); 7347 SDValue Src = getValue(I.getArgOperand(1)); 7348 SDValue Size = getValue(I.getArgOperand(2)); 7349 7350 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7351 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7352 unsigned Align = std::min(DstAlign, SrcAlign); 7353 if (Align == 0) // Alignment of one or both could not be inferred. 7354 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7355 7356 bool isVol = false; 7357 SDLoc sdl = getCurSDLoc(); 7358 7359 // In the mempcpy context we need to pass in a false value for isTailCall 7360 // because the return pointer needs to be adjusted by the size of 7361 // the copied memory. 7362 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7363 false, /*isTailCall=*/false, 7364 MachinePointerInfo(I.getArgOperand(0)), 7365 MachinePointerInfo(I.getArgOperand(1))); 7366 assert(MC.getNode() != nullptr && 7367 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7368 DAG.setRoot(MC); 7369 7370 // Check if Size needs to be truncated or extended. 7371 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7372 7373 // Adjust return pointer to point just past the last dst byte. 7374 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7375 Dst, Size); 7376 setValue(&I, DstPlusSize); 7377 return true; 7378 } 7379 7380 /// See if we can lower a strcpy call into an optimized form. If so, return 7381 /// true and lower it, otherwise return false and it will be lowered like a 7382 /// normal call. 7383 /// The caller already checked that \p I calls the appropriate LibFunc with a 7384 /// correct prototype. 7385 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7386 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7387 7388 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7389 std::pair<SDValue, SDValue> Res = 7390 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7391 getValue(Arg0), getValue(Arg1), 7392 MachinePointerInfo(Arg0), 7393 MachinePointerInfo(Arg1), isStpcpy); 7394 if (Res.first.getNode()) { 7395 setValue(&I, Res.first); 7396 DAG.setRoot(Res.second); 7397 return true; 7398 } 7399 7400 return false; 7401 } 7402 7403 /// See if we can lower a strcmp call into an optimized form. If so, return 7404 /// true and lower it, otherwise return false and it will be lowered like a 7405 /// normal call. 7406 /// The caller already checked that \p I calls the appropriate LibFunc with a 7407 /// correct prototype. 7408 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7409 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7410 7411 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7412 std::pair<SDValue, SDValue> Res = 7413 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7414 getValue(Arg0), getValue(Arg1), 7415 MachinePointerInfo(Arg0), 7416 MachinePointerInfo(Arg1)); 7417 if (Res.first.getNode()) { 7418 processIntegerCallValue(I, Res.first, true); 7419 PendingLoads.push_back(Res.second); 7420 return true; 7421 } 7422 7423 return false; 7424 } 7425 7426 /// See if we can lower a strlen call into an optimized form. If so, return 7427 /// true and lower it, otherwise return false and it will be lowered like a 7428 /// normal call. 7429 /// The caller already checked that \p I calls the appropriate LibFunc with a 7430 /// correct prototype. 7431 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7432 const Value *Arg0 = I.getArgOperand(0); 7433 7434 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7435 std::pair<SDValue, SDValue> Res = 7436 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7437 getValue(Arg0), MachinePointerInfo(Arg0)); 7438 if (Res.first.getNode()) { 7439 processIntegerCallValue(I, Res.first, false); 7440 PendingLoads.push_back(Res.second); 7441 return true; 7442 } 7443 7444 return false; 7445 } 7446 7447 /// See if we can lower a strnlen call into an optimized form. If so, return 7448 /// true and lower it, otherwise return false and it will be lowered like a 7449 /// normal call. 7450 /// The caller already checked that \p I calls the appropriate LibFunc with a 7451 /// correct prototype. 7452 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7453 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7454 7455 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7456 std::pair<SDValue, SDValue> Res = 7457 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7458 getValue(Arg0), getValue(Arg1), 7459 MachinePointerInfo(Arg0)); 7460 if (Res.first.getNode()) { 7461 processIntegerCallValue(I, Res.first, false); 7462 PendingLoads.push_back(Res.second); 7463 return true; 7464 } 7465 7466 return false; 7467 } 7468 7469 /// See if we can lower a unary floating-point operation into an SDNode with 7470 /// the specified Opcode. If so, return true and lower it, otherwise return 7471 /// false and it will be lowered like a normal call. 7472 /// The caller already checked that \p I calls the appropriate LibFunc with a 7473 /// correct prototype. 7474 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7475 unsigned Opcode) { 7476 // We already checked this call's prototype; verify it doesn't modify errno. 7477 if (!I.onlyReadsMemory()) 7478 return false; 7479 7480 SDValue Tmp = getValue(I.getArgOperand(0)); 7481 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7482 return true; 7483 } 7484 7485 /// See if we can lower a binary floating-point operation into an SDNode with 7486 /// the specified Opcode. If so, return true and lower it. Otherwise return 7487 /// false, and it will be lowered like a normal call. 7488 /// The caller already checked that \p I calls the appropriate LibFunc with a 7489 /// correct prototype. 7490 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7491 unsigned Opcode) { 7492 // We already checked this call's prototype; verify it doesn't modify errno. 7493 if (!I.onlyReadsMemory()) 7494 return false; 7495 7496 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7497 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7498 EVT VT = Tmp0.getValueType(); 7499 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7500 return true; 7501 } 7502 7503 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7504 // Handle inline assembly differently. 7505 if (isa<InlineAsm>(I.getCalledValue())) { 7506 visitInlineAsm(&I); 7507 return; 7508 } 7509 7510 if (Function *F = I.getCalledFunction()) { 7511 if (F->isDeclaration()) { 7512 // Is this an LLVM intrinsic or a target-specific intrinsic? 7513 unsigned IID = F->getIntrinsicID(); 7514 if (!IID) 7515 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7516 IID = II->getIntrinsicID(F); 7517 7518 if (IID) { 7519 visitIntrinsicCall(I, IID); 7520 return; 7521 } 7522 } 7523 7524 // Check for well-known libc/libm calls. If the function is internal, it 7525 // can't be a library call. Don't do the check if marked as nobuiltin for 7526 // some reason or the call site requires strict floating point semantics. 7527 LibFunc Func; 7528 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7529 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7530 LibInfo->hasOptimizedCodeGen(Func)) { 7531 switch (Func) { 7532 default: break; 7533 case LibFunc_copysign: 7534 case LibFunc_copysignf: 7535 case LibFunc_copysignl: 7536 // We already checked this call's prototype; verify it doesn't modify 7537 // errno. 7538 if (I.onlyReadsMemory()) { 7539 SDValue LHS = getValue(I.getArgOperand(0)); 7540 SDValue RHS = getValue(I.getArgOperand(1)); 7541 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7542 LHS.getValueType(), LHS, RHS)); 7543 return; 7544 } 7545 break; 7546 case LibFunc_fabs: 7547 case LibFunc_fabsf: 7548 case LibFunc_fabsl: 7549 if (visitUnaryFloatCall(I, ISD::FABS)) 7550 return; 7551 break; 7552 case LibFunc_fmin: 7553 case LibFunc_fminf: 7554 case LibFunc_fminl: 7555 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7556 return; 7557 break; 7558 case LibFunc_fmax: 7559 case LibFunc_fmaxf: 7560 case LibFunc_fmaxl: 7561 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7562 return; 7563 break; 7564 case LibFunc_sin: 7565 case LibFunc_sinf: 7566 case LibFunc_sinl: 7567 if (visitUnaryFloatCall(I, ISD::FSIN)) 7568 return; 7569 break; 7570 case LibFunc_cos: 7571 case LibFunc_cosf: 7572 case LibFunc_cosl: 7573 if (visitUnaryFloatCall(I, ISD::FCOS)) 7574 return; 7575 break; 7576 case LibFunc_sqrt: 7577 case LibFunc_sqrtf: 7578 case LibFunc_sqrtl: 7579 case LibFunc_sqrt_finite: 7580 case LibFunc_sqrtf_finite: 7581 case LibFunc_sqrtl_finite: 7582 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7583 return; 7584 break; 7585 case LibFunc_floor: 7586 case LibFunc_floorf: 7587 case LibFunc_floorl: 7588 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7589 return; 7590 break; 7591 case LibFunc_nearbyint: 7592 case LibFunc_nearbyintf: 7593 case LibFunc_nearbyintl: 7594 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7595 return; 7596 break; 7597 case LibFunc_ceil: 7598 case LibFunc_ceilf: 7599 case LibFunc_ceill: 7600 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7601 return; 7602 break; 7603 case LibFunc_rint: 7604 case LibFunc_rintf: 7605 case LibFunc_rintl: 7606 if (visitUnaryFloatCall(I, ISD::FRINT)) 7607 return; 7608 break; 7609 case LibFunc_round: 7610 case LibFunc_roundf: 7611 case LibFunc_roundl: 7612 if (visitUnaryFloatCall(I, ISD::FROUND)) 7613 return; 7614 break; 7615 case LibFunc_trunc: 7616 case LibFunc_truncf: 7617 case LibFunc_truncl: 7618 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7619 return; 7620 break; 7621 case LibFunc_log2: 7622 case LibFunc_log2f: 7623 case LibFunc_log2l: 7624 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7625 return; 7626 break; 7627 case LibFunc_exp2: 7628 case LibFunc_exp2f: 7629 case LibFunc_exp2l: 7630 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7631 return; 7632 break; 7633 case LibFunc_memcmp: 7634 if (visitMemCmpCall(I)) 7635 return; 7636 break; 7637 case LibFunc_mempcpy: 7638 if (visitMemPCpyCall(I)) 7639 return; 7640 break; 7641 case LibFunc_memchr: 7642 if (visitMemChrCall(I)) 7643 return; 7644 break; 7645 case LibFunc_strcpy: 7646 if (visitStrCpyCall(I, false)) 7647 return; 7648 break; 7649 case LibFunc_stpcpy: 7650 if (visitStrCpyCall(I, true)) 7651 return; 7652 break; 7653 case LibFunc_strcmp: 7654 if (visitStrCmpCall(I)) 7655 return; 7656 break; 7657 case LibFunc_strlen: 7658 if (visitStrLenCall(I)) 7659 return; 7660 break; 7661 case LibFunc_strnlen: 7662 if (visitStrNLenCall(I)) 7663 return; 7664 break; 7665 } 7666 } 7667 } 7668 7669 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7670 // have to do anything here to lower funclet bundles. 7671 assert(!I.hasOperandBundlesOtherThan( 7672 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7673 "Cannot lower calls with arbitrary operand bundles!"); 7674 7675 SDValue Callee = getValue(I.getCalledValue()); 7676 7677 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7678 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7679 else 7680 // Check if we can potentially perform a tail call. More detailed checking 7681 // is be done within LowerCallTo, after more information about the call is 7682 // known. 7683 LowerCallTo(&I, Callee, I.isTailCall()); 7684 } 7685 7686 namespace { 7687 7688 /// AsmOperandInfo - This contains information for each constraint that we are 7689 /// lowering. 7690 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7691 public: 7692 /// CallOperand - If this is the result output operand or a clobber 7693 /// this is null, otherwise it is the incoming operand to the CallInst. 7694 /// This gets modified as the asm is processed. 7695 SDValue CallOperand; 7696 7697 /// AssignedRegs - If this is a register or register class operand, this 7698 /// contains the set of register corresponding to the operand. 7699 RegsForValue AssignedRegs; 7700 7701 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7702 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7703 } 7704 7705 /// Whether or not this operand accesses memory 7706 bool hasMemory(const TargetLowering &TLI) const { 7707 // Indirect operand accesses access memory. 7708 if (isIndirect) 7709 return true; 7710 7711 for (const auto &Code : Codes) 7712 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7713 return true; 7714 7715 return false; 7716 } 7717 7718 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7719 /// corresponds to. If there is no Value* for this operand, it returns 7720 /// MVT::Other. 7721 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7722 const DataLayout &DL) const { 7723 if (!CallOperandVal) return MVT::Other; 7724 7725 if (isa<BasicBlock>(CallOperandVal)) 7726 return TLI.getPointerTy(DL); 7727 7728 llvm::Type *OpTy = CallOperandVal->getType(); 7729 7730 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7731 // If this is an indirect operand, the operand is a pointer to the 7732 // accessed type. 7733 if (isIndirect) { 7734 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7735 if (!PtrTy) 7736 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7737 OpTy = PtrTy->getElementType(); 7738 } 7739 7740 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7741 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7742 if (STy->getNumElements() == 1) 7743 OpTy = STy->getElementType(0); 7744 7745 // If OpTy is not a single value, it may be a struct/union that we 7746 // can tile with integers. 7747 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7748 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7749 switch (BitSize) { 7750 default: break; 7751 case 1: 7752 case 8: 7753 case 16: 7754 case 32: 7755 case 64: 7756 case 128: 7757 OpTy = IntegerType::get(Context, BitSize); 7758 break; 7759 } 7760 } 7761 7762 return TLI.getValueType(DL, OpTy, true); 7763 } 7764 }; 7765 7766 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7767 7768 } // end anonymous namespace 7769 7770 /// Make sure that the output operand \p OpInfo and its corresponding input 7771 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7772 /// out). 7773 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7774 SDISelAsmOperandInfo &MatchingOpInfo, 7775 SelectionDAG &DAG) { 7776 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7777 return; 7778 7779 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7780 const auto &TLI = DAG.getTargetLoweringInfo(); 7781 7782 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7783 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7784 OpInfo.ConstraintVT); 7785 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7786 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7787 MatchingOpInfo.ConstraintVT); 7788 if ((OpInfo.ConstraintVT.isInteger() != 7789 MatchingOpInfo.ConstraintVT.isInteger()) || 7790 (MatchRC.second != InputRC.second)) { 7791 // FIXME: error out in a more elegant fashion 7792 report_fatal_error("Unsupported asm: input constraint" 7793 " with a matching output constraint of" 7794 " incompatible type!"); 7795 } 7796 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7797 } 7798 7799 /// Get a direct memory input to behave well as an indirect operand. 7800 /// This may introduce stores, hence the need for a \p Chain. 7801 /// \return The (possibly updated) chain. 7802 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7803 SDISelAsmOperandInfo &OpInfo, 7804 SelectionDAG &DAG) { 7805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7806 7807 // If we don't have an indirect input, put it in the constpool if we can, 7808 // otherwise spill it to a stack slot. 7809 // TODO: This isn't quite right. We need to handle these according to 7810 // the addressing mode that the constraint wants. Also, this may take 7811 // an additional register for the computation and we don't want that 7812 // either. 7813 7814 // If the operand is a float, integer, or vector constant, spill to a 7815 // constant pool entry to get its address. 7816 const Value *OpVal = OpInfo.CallOperandVal; 7817 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7818 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7819 OpInfo.CallOperand = DAG.getConstantPool( 7820 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7821 return Chain; 7822 } 7823 7824 // Otherwise, create a stack slot and emit a store to it before the asm. 7825 Type *Ty = OpVal->getType(); 7826 auto &DL = DAG.getDataLayout(); 7827 uint64_t TySize = DL.getTypeAllocSize(Ty); 7828 unsigned Align = DL.getPrefTypeAlignment(Ty); 7829 MachineFunction &MF = DAG.getMachineFunction(); 7830 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7831 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7832 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7833 MachinePointerInfo::getFixedStack(MF, SSFI), 7834 TLI.getMemValueType(DL, Ty)); 7835 OpInfo.CallOperand = StackSlot; 7836 7837 return Chain; 7838 } 7839 7840 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7841 /// specified operand. We prefer to assign virtual registers, to allow the 7842 /// register allocator to handle the assignment process. However, if the asm 7843 /// uses features that we can't model on machineinstrs, we have SDISel do the 7844 /// allocation. This produces generally horrible, but correct, code. 7845 /// 7846 /// OpInfo describes the operand 7847 /// RefOpInfo describes the matching operand if any, the operand otherwise 7848 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7849 SDISelAsmOperandInfo &OpInfo, 7850 SDISelAsmOperandInfo &RefOpInfo) { 7851 LLVMContext &Context = *DAG.getContext(); 7852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7853 7854 MachineFunction &MF = DAG.getMachineFunction(); 7855 SmallVector<unsigned, 4> Regs; 7856 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7857 7858 // No work to do for memory operations. 7859 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7860 return; 7861 7862 // If this is a constraint for a single physreg, or a constraint for a 7863 // register class, find it. 7864 unsigned AssignedReg; 7865 const TargetRegisterClass *RC; 7866 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7867 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7868 // RC is unset only on failure. Return immediately. 7869 if (!RC) 7870 return; 7871 7872 // Get the actual register value type. This is important, because the user 7873 // may have asked for (e.g.) the AX register in i32 type. We need to 7874 // remember that AX is actually i16 to get the right extension. 7875 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7876 7877 if (OpInfo.ConstraintVT != MVT::Other) { 7878 // If this is an FP operand in an integer register (or visa versa), or more 7879 // generally if the operand value disagrees with the register class we plan 7880 // to stick it in, fix the operand type. 7881 // 7882 // If this is an input value, the bitcast to the new type is done now. 7883 // Bitcast for output value is done at the end of visitInlineAsm(). 7884 if ((OpInfo.Type == InlineAsm::isOutput || 7885 OpInfo.Type == InlineAsm::isInput) && 7886 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7887 // Try to convert to the first EVT that the reg class contains. If the 7888 // types are identical size, use a bitcast to convert (e.g. two differing 7889 // vector types). Note: output bitcast is done at the end of 7890 // visitInlineAsm(). 7891 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7892 // Exclude indirect inputs while they are unsupported because the code 7893 // to perform the load is missing and thus OpInfo.CallOperand still 7894 // refers to the input address rather than the pointed-to value. 7895 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7896 OpInfo.CallOperand = 7897 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7898 OpInfo.ConstraintVT = RegVT; 7899 // If the operand is an FP value and we want it in integer registers, 7900 // use the corresponding integer type. This turns an f64 value into 7901 // i64, which can be passed with two i32 values on a 32-bit machine. 7902 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7903 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7904 if (OpInfo.Type == InlineAsm::isInput) 7905 OpInfo.CallOperand = 7906 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7907 OpInfo.ConstraintVT = VT; 7908 } 7909 } 7910 } 7911 7912 // No need to allocate a matching input constraint since the constraint it's 7913 // matching to has already been allocated. 7914 if (OpInfo.isMatchingInputConstraint()) 7915 return; 7916 7917 EVT ValueVT = OpInfo.ConstraintVT; 7918 if (OpInfo.ConstraintVT == MVT::Other) 7919 ValueVT = RegVT; 7920 7921 // Initialize NumRegs. 7922 unsigned NumRegs = 1; 7923 if (OpInfo.ConstraintVT != MVT::Other) 7924 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7925 7926 // If this is a constraint for a specific physical register, like {r17}, 7927 // assign it now. 7928 7929 // If this associated to a specific register, initialize iterator to correct 7930 // place. If virtual, make sure we have enough registers 7931 7932 // Initialize iterator if necessary 7933 TargetRegisterClass::iterator I = RC->begin(); 7934 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7935 7936 // Do not check for single registers. 7937 if (AssignedReg) { 7938 for (; *I != AssignedReg; ++I) 7939 assert(I != RC->end() && "AssignedReg should be member of RC"); 7940 } 7941 7942 for (; NumRegs; --NumRegs, ++I) { 7943 assert(I != RC->end() && "Ran out of registers to allocate!"); 7944 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7945 Regs.push_back(R); 7946 } 7947 7948 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7949 } 7950 7951 static unsigned 7952 findMatchingInlineAsmOperand(unsigned OperandNo, 7953 const std::vector<SDValue> &AsmNodeOperands) { 7954 // Scan until we find the definition we already emitted of this operand. 7955 unsigned CurOp = InlineAsm::Op_FirstOperand; 7956 for (; OperandNo; --OperandNo) { 7957 // Advance to the next operand. 7958 unsigned OpFlag = 7959 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7960 assert((InlineAsm::isRegDefKind(OpFlag) || 7961 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7962 InlineAsm::isMemKind(OpFlag)) && 7963 "Skipped past definitions?"); 7964 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7965 } 7966 return CurOp; 7967 } 7968 7969 namespace { 7970 7971 class ExtraFlags { 7972 unsigned Flags = 0; 7973 7974 public: 7975 explicit ExtraFlags(ImmutableCallSite CS) { 7976 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7977 if (IA->hasSideEffects()) 7978 Flags |= InlineAsm::Extra_HasSideEffects; 7979 if (IA->isAlignStack()) 7980 Flags |= InlineAsm::Extra_IsAlignStack; 7981 if (CS.isConvergent()) 7982 Flags |= InlineAsm::Extra_IsConvergent; 7983 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7984 } 7985 7986 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7987 // Ideally, we would only check against memory constraints. However, the 7988 // meaning of an Other constraint can be target-specific and we can't easily 7989 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7990 // for Other constraints as well. 7991 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7992 OpInfo.ConstraintType == TargetLowering::C_Other) { 7993 if (OpInfo.Type == InlineAsm::isInput) 7994 Flags |= InlineAsm::Extra_MayLoad; 7995 else if (OpInfo.Type == InlineAsm::isOutput) 7996 Flags |= InlineAsm::Extra_MayStore; 7997 else if (OpInfo.Type == InlineAsm::isClobber) 7998 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7999 } 8000 } 8001 8002 unsigned get() const { return Flags; } 8003 }; 8004 8005 } // end anonymous namespace 8006 8007 /// visitInlineAsm - Handle a call to an InlineAsm object. 8008 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8009 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8010 8011 /// ConstraintOperands - Information about all of the constraints. 8012 SDISelAsmOperandInfoVector ConstraintOperands; 8013 8014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8015 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8016 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8017 8018 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8019 // AsmDialect, MayLoad, MayStore). 8020 bool HasSideEffect = IA->hasSideEffects(); 8021 ExtraFlags ExtraInfo(CS); 8022 8023 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8024 unsigned ResNo = 0; // ResNo - The result number of the next output. 8025 for (auto &T : TargetConstraints) { 8026 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8027 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8028 8029 // Compute the value type for each operand. 8030 if (OpInfo.Type == InlineAsm::isInput || 8031 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8032 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8033 8034 // Process the call argument. BasicBlocks are labels, currently appearing 8035 // only in asm's. 8036 const Instruction *I = CS.getInstruction(); 8037 if (isa<CallBrInst>(I) && 8038 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8039 cast<CallBrInst>(I)->getNumIndirectDests())) { 8040 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8041 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8042 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8043 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8044 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8045 } else { 8046 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8047 } 8048 8049 OpInfo.ConstraintVT = 8050 OpInfo 8051 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8052 .getSimpleVT(); 8053 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8054 // The return value of the call is this value. As such, there is no 8055 // corresponding argument. 8056 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8057 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8058 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8059 DAG.getDataLayout(), STy->getElementType(ResNo)); 8060 } else { 8061 assert(ResNo == 0 && "Asm only has one result!"); 8062 OpInfo.ConstraintVT = 8063 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8064 } 8065 ++ResNo; 8066 } else { 8067 OpInfo.ConstraintVT = MVT::Other; 8068 } 8069 8070 if (!HasSideEffect) 8071 HasSideEffect = OpInfo.hasMemory(TLI); 8072 8073 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8074 // FIXME: Could we compute this on OpInfo rather than T? 8075 8076 // Compute the constraint code and ConstraintType to use. 8077 TLI.ComputeConstraintToUse(T, SDValue()); 8078 8079 if (T.ConstraintType == TargetLowering::C_Immediate && 8080 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8081 // We've delayed emitting a diagnostic like the "n" constraint because 8082 // inlining could cause an integer showing up. 8083 return emitInlineAsmError( 8084 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8085 "integer constant expression"); 8086 8087 ExtraInfo.update(T); 8088 } 8089 8090 8091 // We won't need to flush pending loads if this asm doesn't touch 8092 // memory and is nonvolatile. 8093 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8094 8095 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8096 if (IsCallBr) { 8097 // If this is a callbr we need to flush pending exports since inlineasm_br 8098 // is a terminator. We need to do this before nodes are glued to 8099 // the inlineasm_br node. 8100 Chain = getControlRoot(); 8101 } 8102 8103 // Second pass over the constraints: compute which constraint option to use. 8104 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8105 // If this is an output operand with a matching input operand, look up the 8106 // matching input. If their types mismatch, e.g. one is an integer, the 8107 // other is floating point, or their sizes are different, flag it as an 8108 // error. 8109 if (OpInfo.hasMatchingInput()) { 8110 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8111 patchMatchingInput(OpInfo, Input, DAG); 8112 } 8113 8114 // Compute the constraint code and ConstraintType to use. 8115 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8116 8117 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8118 OpInfo.Type == InlineAsm::isClobber) 8119 continue; 8120 8121 // If this is a memory input, and if the operand is not indirect, do what we 8122 // need to provide an address for the memory input. 8123 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8124 !OpInfo.isIndirect) { 8125 assert((OpInfo.isMultipleAlternative || 8126 (OpInfo.Type == InlineAsm::isInput)) && 8127 "Can only indirectify direct input operands!"); 8128 8129 // Memory operands really want the address of the value. 8130 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8131 8132 // There is no longer a Value* corresponding to this operand. 8133 OpInfo.CallOperandVal = nullptr; 8134 8135 // It is now an indirect operand. 8136 OpInfo.isIndirect = true; 8137 } 8138 8139 } 8140 8141 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8142 std::vector<SDValue> AsmNodeOperands; 8143 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8144 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8145 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8146 8147 // If we have a !srcloc metadata node associated with it, we want to attach 8148 // this to the ultimately generated inline asm machineinstr. To do this, we 8149 // pass in the third operand as this (potentially null) inline asm MDNode. 8150 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8151 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8152 8153 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8154 // bits as operand 3. 8155 AsmNodeOperands.push_back(DAG.getTargetConstant( 8156 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8157 8158 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8159 // this, assign virtual and physical registers for inputs and otput. 8160 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8161 // Assign Registers. 8162 SDISelAsmOperandInfo &RefOpInfo = 8163 OpInfo.isMatchingInputConstraint() 8164 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8165 : OpInfo; 8166 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8167 8168 switch (OpInfo.Type) { 8169 case InlineAsm::isOutput: 8170 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8171 ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8172 OpInfo.ConstraintType == TargetLowering::C_Other) && 8173 OpInfo.isIndirect)) { 8174 unsigned ConstraintID = 8175 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8176 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8177 "Failed to convert memory constraint code to constraint id."); 8178 8179 // Add information to the INLINEASM node to know about this output. 8180 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8181 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8182 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8183 MVT::i32)); 8184 AsmNodeOperands.push_back(OpInfo.CallOperand); 8185 break; 8186 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8187 OpInfo.ConstraintType == TargetLowering::C_Other) && 8188 !OpInfo.isIndirect) || 8189 OpInfo.ConstraintType == TargetLowering::C_Register || 8190 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8191 // Otherwise, this outputs to a register (directly for C_Register / 8192 // C_RegisterClass, and a target-defined fashion for 8193 // C_Immediate/C_Other). Find a register that we can use. 8194 if (OpInfo.AssignedRegs.Regs.empty()) { 8195 emitInlineAsmError( 8196 CS, "couldn't allocate output register for constraint '" + 8197 Twine(OpInfo.ConstraintCode) + "'"); 8198 return; 8199 } 8200 8201 // Add information to the INLINEASM node to know that this register is 8202 // set. 8203 OpInfo.AssignedRegs.AddInlineAsmOperands( 8204 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8205 : InlineAsm::Kind_RegDef, 8206 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8207 } 8208 break; 8209 8210 case InlineAsm::isInput: { 8211 SDValue InOperandVal = OpInfo.CallOperand; 8212 8213 if (OpInfo.isMatchingInputConstraint()) { 8214 // If this is required to match an output register we have already set, 8215 // just use its register. 8216 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8217 AsmNodeOperands); 8218 unsigned OpFlag = 8219 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8220 if (InlineAsm::isRegDefKind(OpFlag) || 8221 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8222 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8223 if (OpInfo.isIndirect) { 8224 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8225 emitInlineAsmError(CS, "inline asm not supported yet:" 8226 " don't know how to handle tied " 8227 "indirect register inputs"); 8228 return; 8229 } 8230 8231 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8232 SmallVector<unsigned, 4> Regs; 8233 8234 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8235 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8236 MachineRegisterInfo &RegInfo = 8237 DAG.getMachineFunction().getRegInfo(); 8238 for (unsigned i = 0; i != NumRegs; ++i) 8239 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8240 } else { 8241 emitInlineAsmError(CS, "inline asm error: This value type register " 8242 "class is not natively supported!"); 8243 return; 8244 } 8245 8246 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8247 8248 SDLoc dl = getCurSDLoc(); 8249 // Use the produced MatchedRegs object to 8250 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8251 CS.getInstruction()); 8252 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8253 true, OpInfo.getMatchedOperand(), dl, 8254 DAG, AsmNodeOperands); 8255 break; 8256 } 8257 8258 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8259 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8260 "Unexpected number of operands"); 8261 // Add information to the INLINEASM node to know about this input. 8262 // See InlineAsm.h isUseOperandTiedToDef. 8263 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8264 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8265 OpInfo.getMatchedOperand()); 8266 AsmNodeOperands.push_back(DAG.getTargetConstant( 8267 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8268 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8269 break; 8270 } 8271 8272 // Treat indirect 'X' constraint as memory. 8273 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8274 OpInfo.ConstraintType == TargetLowering::C_Other) && 8275 OpInfo.isIndirect) 8276 OpInfo.ConstraintType = TargetLowering::C_Memory; 8277 8278 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8279 OpInfo.ConstraintType == TargetLowering::C_Other) { 8280 std::vector<SDValue> Ops; 8281 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8282 Ops, DAG); 8283 if (Ops.empty()) { 8284 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8285 if (isa<ConstantSDNode>(InOperandVal)) { 8286 emitInlineAsmError(CS, "value out of range for constraint '" + 8287 Twine(OpInfo.ConstraintCode) + "'"); 8288 return; 8289 } 8290 8291 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8292 Twine(OpInfo.ConstraintCode) + "'"); 8293 return; 8294 } 8295 8296 // Add information to the INLINEASM node to know about this input. 8297 unsigned ResOpType = 8298 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8299 AsmNodeOperands.push_back(DAG.getTargetConstant( 8300 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8301 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8302 break; 8303 } 8304 8305 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8306 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8307 assert(InOperandVal.getValueType() == 8308 TLI.getPointerTy(DAG.getDataLayout()) && 8309 "Memory operands expect pointer values"); 8310 8311 unsigned ConstraintID = 8312 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8313 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8314 "Failed to convert memory constraint code to constraint id."); 8315 8316 // Add information to the INLINEASM node to know about this input. 8317 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8318 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8319 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8320 getCurSDLoc(), 8321 MVT::i32)); 8322 AsmNodeOperands.push_back(InOperandVal); 8323 break; 8324 } 8325 8326 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8327 OpInfo.ConstraintType == TargetLowering::C_Register || 8328 OpInfo.ConstraintType == TargetLowering::C_Immediate) && 8329 "Unknown constraint type!"); 8330 8331 // TODO: Support this. 8332 if (OpInfo.isIndirect) { 8333 emitInlineAsmError( 8334 CS, "Don't know how to handle indirect register inputs yet " 8335 "for constraint '" + 8336 Twine(OpInfo.ConstraintCode) + "'"); 8337 return; 8338 } 8339 8340 // Copy the input into the appropriate registers. 8341 if (OpInfo.AssignedRegs.Regs.empty()) { 8342 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8343 Twine(OpInfo.ConstraintCode) + "'"); 8344 return; 8345 } 8346 8347 SDLoc dl = getCurSDLoc(); 8348 8349 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8350 Chain, &Flag, CS.getInstruction()); 8351 8352 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8353 dl, DAG, AsmNodeOperands); 8354 break; 8355 } 8356 case InlineAsm::isClobber: 8357 // Add the clobbered value to the operand list, so that the register 8358 // allocator is aware that the physreg got clobbered. 8359 if (!OpInfo.AssignedRegs.Regs.empty()) 8360 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8361 false, 0, getCurSDLoc(), DAG, 8362 AsmNodeOperands); 8363 break; 8364 } 8365 } 8366 8367 // Finish up input operands. Set the input chain and add the flag last. 8368 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8369 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8370 8371 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8372 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8373 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8374 Flag = Chain.getValue(1); 8375 8376 // Do additional work to generate outputs. 8377 8378 SmallVector<EVT, 1> ResultVTs; 8379 SmallVector<SDValue, 1> ResultValues; 8380 SmallVector<SDValue, 8> OutChains; 8381 8382 llvm::Type *CSResultType = CS.getType(); 8383 ArrayRef<Type *> ResultTypes; 8384 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8385 ResultTypes = StructResult->elements(); 8386 else if (!CSResultType->isVoidTy()) 8387 ResultTypes = makeArrayRef(CSResultType); 8388 8389 auto CurResultType = ResultTypes.begin(); 8390 auto handleRegAssign = [&](SDValue V) { 8391 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8392 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8393 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8394 ++CurResultType; 8395 // If the type of the inline asm call site return value is different but has 8396 // same size as the type of the asm output bitcast it. One example of this 8397 // is for vectors with different width / number of elements. This can 8398 // happen for register classes that can contain multiple different value 8399 // types. The preg or vreg allocated may not have the same VT as was 8400 // expected. 8401 // 8402 // This can also happen for a return value that disagrees with the register 8403 // class it is put in, eg. a double in a general-purpose register on a 8404 // 32-bit machine. 8405 if (ResultVT != V.getValueType() && 8406 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8407 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8408 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8409 V.getValueType().isInteger()) { 8410 // If a result value was tied to an input value, the computed result 8411 // may have a wider width than the expected result. Extract the 8412 // relevant portion. 8413 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8414 } 8415 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8416 ResultVTs.push_back(ResultVT); 8417 ResultValues.push_back(V); 8418 }; 8419 8420 // Deal with output operands. 8421 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8422 if (OpInfo.Type == InlineAsm::isOutput) { 8423 SDValue Val; 8424 // Skip trivial output operands. 8425 if (OpInfo.AssignedRegs.Regs.empty()) 8426 continue; 8427 8428 switch (OpInfo.ConstraintType) { 8429 case TargetLowering::C_Register: 8430 case TargetLowering::C_RegisterClass: 8431 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8432 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8433 break; 8434 case TargetLowering::C_Immediate: 8435 case TargetLowering::C_Other: 8436 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8437 OpInfo, DAG); 8438 break; 8439 case TargetLowering::C_Memory: 8440 break; // Already handled. 8441 case TargetLowering::C_Unknown: 8442 assert(false && "Unexpected unknown constraint"); 8443 } 8444 8445 // Indirect output manifest as stores. Record output chains. 8446 if (OpInfo.isIndirect) { 8447 const Value *Ptr = OpInfo.CallOperandVal; 8448 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8449 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8450 MachinePointerInfo(Ptr)); 8451 OutChains.push_back(Store); 8452 } else { 8453 // generate CopyFromRegs to associated registers. 8454 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8455 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8456 for (const SDValue &V : Val->op_values()) 8457 handleRegAssign(V); 8458 } else 8459 handleRegAssign(Val); 8460 } 8461 } 8462 } 8463 8464 // Set results. 8465 if (!ResultValues.empty()) { 8466 assert(CurResultType == ResultTypes.end() && 8467 "Mismatch in number of ResultTypes"); 8468 assert(ResultValues.size() == ResultTypes.size() && 8469 "Mismatch in number of output operands in asm result"); 8470 8471 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8472 DAG.getVTList(ResultVTs), ResultValues); 8473 setValue(CS.getInstruction(), V); 8474 } 8475 8476 // Collect store chains. 8477 if (!OutChains.empty()) 8478 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8479 8480 // Only Update Root if inline assembly has a memory effect. 8481 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8482 DAG.setRoot(Chain); 8483 } 8484 8485 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8486 const Twine &Message) { 8487 LLVMContext &Ctx = *DAG.getContext(); 8488 Ctx.emitError(CS.getInstruction(), Message); 8489 8490 // Make sure we leave the DAG in a valid state 8491 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8492 SmallVector<EVT, 1> ValueVTs; 8493 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8494 8495 if (ValueVTs.empty()) 8496 return; 8497 8498 SmallVector<SDValue, 1> Ops; 8499 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8500 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8501 8502 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8503 } 8504 8505 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8506 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8507 MVT::Other, getRoot(), 8508 getValue(I.getArgOperand(0)), 8509 DAG.getSrcValue(I.getArgOperand(0)))); 8510 } 8511 8512 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8514 const DataLayout &DL = DAG.getDataLayout(); 8515 SDValue V = DAG.getVAArg( 8516 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8517 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8518 DL.getABITypeAlignment(I.getType())); 8519 DAG.setRoot(V.getValue(1)); 8520 8521 if (I.getType()->isPointerTy()) 8522 V = DAG.getPtrExtOrTrunc( 8523 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8524 setValue(&I, V); 8525 } 8526 8527 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8528 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8529 MVT::Other, getRoot(), 8530 getValue(I.getArgOperand(0)), 8531 DAG.getSrcValue(I.getArgOperand(0)))); 8532 } 8533 8534 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8535 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8536 MVT::Other, getRoot(), 8537 getValue(I.getArgOperand(0)), 8538 getValue(I.getArgOperand(1)), 8539 DAG.getSrcValue(I.getArgOperand(0)), 8540 DAG.getSrcValue(I.getArgOperand(1)))); 8541 } 8542 8543 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8544 const Instruction &I, 8545 SDValue Op) { 8546 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8547 if (!Range) 8548 return Op; 8549 8550 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8551 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8552 return Op; 8553 8554 APInt Lo = CR.getUnsignedMin(); 8555 if (!Lo.isMinValue()) 8556 return Op; 8557 8558 APInt Hi = CR.getUnsignedMax(); 8559 unsigned Bits = std::max(Hi.getActiveBits(), 8560 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8561 8562 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8563 8564 SDLoc SL = getCurSDLoc(); 8565 8566 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8567 DAG.getValueType(SmallVT)); 8568 unsigned NumVals = Op.getNode()->getNumValues(); 8569 if (NumVals == 1) 8570 return ZExt; 8571 8572 SmallVector<SDValue, 4> Ops; 8573 8574 Ops.push_back(ZExt); 8575 for (unsigned I = 1; I != NumVals; ++I) 8576 Ops.push_back(Op.getValue(I)); 8577 8578 return DAG.getMergeValues(Ops, SL); 8579 } 8580 8581 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8582 /// the call being lowered. 8583 /// 8584 /// This is a helper for lowering intrinsics that follow a target calling 8585 /// convention or require stack pointer adjustment. Only a subset of the 8586 /// intrinsic's operands need to participate in the calling convention. 8587 void SelectionDAGBuilder::populateCallLoweringInfo( 8588 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8589 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8590 bool IsPatchPoint) { 8591 TargetLowering::ArgListTy Args; 8592 Args.reserve(NumArgs); 8593 8594 // Populate the argument list. 8595 // Attributes for args start at offset 1, after the return attribute. 8596 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8597 ArgI != ArgE; ++ArgI) { 8598 const Value *V = Call->getOperand(ArgI); 8599 8600 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8601 8602 TargetLowering::ArgListEntry Entry; 8603 Entry.Node = getValue(V); 8604 Entry.Ty = V->getType(); 8605 Entry.setAttributes(Call, ArgI); 8606 Args.push_back(Entry); 8607 } 8608 8609 CLI.setDebugLoc(getCurSDLoc()) 8610 .setChain(getRoot()) 8611 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8612 .setDiscardResult(Call->use_empty()) 8613 .setIsPatchPoint(IsPatchPoint); 8614 } 8615 8616 /// Add a stack map intrinsic call's live variable operands to a stackmap 8617 /// or patchpoint target node's operand list. 8618 /// 8619 /// Constants are converted to TargetConstants purely as an optimization to 8620 /// avoid constant materialization and register allocation. 8621 /// 8622 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8623 /// generate addess computation nodes, and so FinalizeISel can convert the 8624 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8625 /// address materialization and register allocation, but may also be required 8626 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8627 /// alloca in the entry block, then the runtime may assume that the alloca's 8628 /// StackMap location can be read immediately after compilation and that the 8629 /// location is valid at any point during execution (this is similar to the 8630 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8631 /// only available in a register, then the runtime would need to trap when 8632 /// execution reaches the StackMap in order to read the alloca's location. 8633 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8634 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8635 SelectionDAGBuilder &Builder) { 8636 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8637 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8638 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8639 Ops.push_back( 8640 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8641 Ops.push_back( 8642 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8643 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8644 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8645 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8646 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8647 } else 8648 Ops.push_back(OpVal); 8649 } 8650 } 8651 8652 /// Lower llvm.experimental.stackmap directly to its target opcode. 8653 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8654 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8655 // [live variables...]) 8656 8657 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8658 8659 SDValue Chain, InFlag, Callee, NullPtr; 8660 SmallVector<SDValue, 32> Ops; 8661 8662 SDLoc DL = getCurSDLoc(); 8663 Callee = getValue(CI.getCalledValue()); 8664 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8665 8666 // The stackmap intrinsic only records the live variables (the arguemnts 8667 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8668 // intrinsic, this won't be lowered to a function call. This means we don't 8669 // have to worry about calling conventions and target specific lowering code. 8670 // Instead we perform the call lowering right here. 8671 // 8672 // chain, flag = CALLSEQ_START(chain, 0, 0) 8673 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8674 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8675 // 8676 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8677 InFlag = Chain.getValue(1); 8678 8679 // Add the <id> and <numBytes> constants. 8680 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8681 Ops.push_back(DAG.getTargetConstant( 8682 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8683 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8684 Ops.push_back(DAG.getTargetConstant( 8685 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8686 MVT::i32)); 8687 8688 // Push live variables for the stack map. 8689 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8690 8691 // We are not pushing any register mask info here on the operands list, 8692 // because the stackmap doesn't clobber anything. 8693 8694 // Push the chain and the glue flag. 8695 Ops.push_back(Chain); 8696 Ops.push_back(InFlag); 8697 8698 // Create the STACKMAP node. 8699 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8700 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8701 Chain = SDValue(SM, 0); 8702 InFlag = Chain.getValue(1); 8703 8704 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8705 8706 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8707 8708 // Set the root to the target-lowered call chain. 8709 DAG.setRoot(Chain); 8710 8711 // Inform the Frame Information that we have a stackmap in this function. 8712 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8713 } 8714 8715 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8716 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8717 const BasicBlock *EHPadBB) { 8718 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8719 // i32 <numBytes>, 8720 // i8* <target>, 8721 // i32 <numArgs>, 8722 // [Args...], 8723 // [live variables...]) 8724 8725 CallingConv::ID CC = CS.getCallingConv(); 8726 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8727 bool HasDef = !CS->getType()->isVoidTy(); 8728 SDLoc dl = getCurSDLoc(); 8729 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8730 8731 // Handle immediate and symbolic callees. 8732 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8733 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8734 /*isTarget=*/true); 8735 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8736 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8737 SDLoc(SymbolicCallee), 8738 SymbolicCallee->getValueType(0)); 8739 8740 // Get the real number of arguments participating in the call <numArgs> 8741 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8742 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8743 8744 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8745 // Intrinsics include all meta-operands up to but not including CC. 8746 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8747 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8748 "Not enough arguments provided to the patchpoint intrinsic"); 8749 8750 // For AnyRegCC the arguments are lowered later on manually. 8751 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8752 Type *ReturnTy = 8753 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8754 8755 TargetLowering::CallLoweringInfo CLI(DAG); 8756 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8757 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8758 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8759 8760 SDNode *CallEnd = Result.second.getNode(); 8761 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8762 CallEnd = CallEnd->getOperand(0).getNode(); 8763 8764 /// Get a call instruction from the call sequence chain. 8765 /// Tail calls are not allowed. 8766 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8767 "Expected a callseq node."); 8768 SDNode *Call = CallEnd->getOperand(0).getNode(); 8769 bool HasGlue = Call->getGluedNode(); 8770 8771 // Replace the target specific call node with the patchable intrinsic. 8772 SmallVector<SDValue, 8> Ops; 8773 8774 // Add the <id> and <numBytes> constants. 8775 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8776 Ops.push_back(DAG.getTargetConstant( 8777 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8778 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8779 Ops.push_back(DAG.getTargetConstant( 8780 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8781 MVT::i32)); 8782 8783 // Add the callee. 8784 Ops.push_back(Callee); 8785 8786 // Adjust <numArgs> to account for any arguments that have been passed on the 8787 // stack instead. 8788 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8789 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8790 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8791 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8792 8793 // Add the calling convention 8794 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8795 8796 // Add the arguments we omitted previously. The register allocator should 8797 // place these in any free register. 8798 if (IsAnyRegCC) 8799 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8800 Ops.push_back(getValue(CS.getArgument(i))); 8801 8802 // Push the arguments from the call instruction up to the register mask. 8803 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8804 Ops.append(Call->op_begin() + 2, e); 8805 8806 // Push live variables for the stack map. 8807 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8808 8809 // Push the register mask info. 8810 if (HasGlue) 8811 Ops.push_back(*(Call->op_end()-2)); 8812 else 8813 Ops.push_back(*(Call->op_end()-1)); 8814 8815 // Push the chain (this is originally the first operand of the call, but 8816 // becomes now the last or second to last operand). 8817 Ops.push_back(*(Call->op_begin())); 8818 8819 // Push the glue flag (last operand). 8820 if (HasGlue) 8821 Ops.push_back(*(Call->op_end()-1)); 8822 8823 SDVTList NodeTys; 8824 if (IsAnyRegCC && HasDef) { 8825 // Create the return types based on the intrinsic definition 8826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8827 SmallVector<EVT, 3> ValueVTs; 8828 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8829 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8830 8831 // There is always a chain and a glue type at the end 8832 ValueVTs.push_back(MVT::Other); 8833 ValueVTs.push_back(MVT::Glue); 8834 NodeTys = DAG.getVTList(ValueVTs); 8835 } else 8836 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8837 8838 // Replace the target specific call node with a PATCHPOINT node. 8839 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8840 dl, NodeTys, Ops); 8841 8842 // Update the NodeMap. 8843 if (HasDef) { 8844 if (IsAnyRegCC) 8845 setValue(CS.getInstruction(), SDValue(MN, 0)); 8846 else 8847 setValue(CS.getInstruction(), Result.first); 8848 } 8849 8850 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8851 // call sequence. Furthermore the location of the chain and glue can change 8852 // when the AnyReg calling convention is used and the intrinsic returns a 8853 // value. 8854 if (IsAnyRegCC && HasDef) { 8855 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8856 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8857 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8858 } else 8859 DAG.ReplaceAllUsesWith(Call, MN); 8860 DAG.DeleteNode(Call); 8861 8862 // Inform the Frame Information that we have a patchpoint in this function. 8863 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8864 } 8865 8866 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8867 unsigned Intrinsic) { 8868 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8869 SDValue Op1 = getValue(I.getArgOperand(0)); 8870 SDValue Op2; 8871 if (I.getNumArgOperands() > 1) 8872 Op2 = getValue(I.getArgOperand(1)); 8873 SDLoc dl = getCurSDLoc(); 8874 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8875 SDValue Res; 8876 FastMathFlags FMF; 8877 if (isa<FPMathOperator>(I)) 8878 FMF = I.getFastMathFlags(); 8879 8880 switch (Intrinsic) { 8881 case Intrinsic::experimental_vector_reduce_v2_fadd: 8882 if (FMF.allowReassoc()) 8883 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8884 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8885 else 8886 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8887 break; 8888 case Intrinsic::experimental_vector_reduce_v2_fmul: 8889 if (FMF.allowReassoc()) 8890 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8891 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8892 else 8893 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8894 break; 8895 case Intrinsic::experimental_vector_reduce_add: 8896 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8897 break; 8898 case Intrinsic::experimental_vector_reduce_mul: 8899 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8900 break; 8901 case Intrinsic::experimental_vector_reduce_and: 8902 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8903 break; 8904 case Intrinsic::experimental_vector_reduce_or: 8905 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8906 break; 8907 case Intrinsic::experimental_vector_reduce_xor: 8908 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8909 break; 8910 case Intrinsic::experimental_vector_reduce_smax: 8911 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8912 break; 8913 case Intrinsic::experimental_vector_reduce_smin: 8914 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8915 break; 8916 case Intrinsic::experimental_vector_reduce_umax: 8917 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8918 break; 8919 case Intrinsic::experimental_vector_reduce_umin: 8920 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8921 break; 8922 case Intrinsic::experimental_vector_reduce_fmax: 8923 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8924 break; 8925 case Intrinsic::experimental_vector_reduce_fmin: 8926 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8927 break; 8928 default: 8929 llvm_unreachable("Unhandled vector reduce intrinsic"); 8930 } 8931 setValue(&I, Res); 8932 } 8933 8934 /// Returns an AttributeList representing the attributes applied to the return 8935 /// value of the given call. 8936 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8937 SmallVector<Attribute::AttrKind, 2> Attrs; 8938 if (CLI.RetSExt) 8939 Attrs.push_back(Attribute::SExt); 8940 if (CLI.RetZExt) 8941 Attrs.push_back(Attribute::ZExt); 8942 if (CLI.IsInReg) 8943 Attrs.push_back(Attribute::InReg); 8944 8945 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8946 Attrs); 8947 } 8948 8949 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8950 /// implementation, which just calls LowerCall. 8951 /// FIXME: When all targets are 8952 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8953 std::pair<SDValue, SDValue> 8954 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8955 // Handle the incoming return values from the call. 8956 CLI.Ins.clear(); 8957 Type *OrigRetTy = CLI.RetTy; 8958 SmallVector<EVT, 4> RetTys; 8959 SmallVector<uint64_t, 4> Offsets; 8960 auto &DL = CLI.DAG.getDataLayout(); 8961 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8962 8963 if (CLI.IsPostTypeLegalization) { 8964 // If we are lowering a libcall after legalization, split the return type. 8965 SmallVector<EVT, 4> OldRetTys; 8966 SmallVector<uint64_t, 4> OldOffsets; 8967 RetTys.swap(OldRetTys); 8968 Offsets.swap(OldOffsets); 8969 8970 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8971 EVT RetVT = OldRetTys[i]; 8972 uint64_t Offset = OldOffsets[i]; 8973 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8974 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8975 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8976 RetTys.append(NumRegs, RegisterVT); 8977 for (unsigned j = 0; j != NumRegs; ++j) 8978 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8979 } 8980 } 8981 8982 SmallVector<ISD::OutputArg, 4> Outs; 8983 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8984 8985 bool CanLowerReturn = 8986 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8987 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8988 8989 SDValue DemoteStackSlot; 8990 int DemoteStackIdx = -100; 8991 if (!CanLowerReturn) { 8992 // FIXME: equivalent assert? 8993 // assert(!CS.hasInAllocaArgument() && 8994 // "sret demotion is incompatible with inalloca"); 8995 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8996 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8997 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8998 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8999 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9000 DL.getAllocaAddrSpace()); 9001 9002 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9003 ArgListEntry Entry; 9004 Entry.Node = DemoteStackSlot; 9005 Entry.Ty = StackSlotPtrType; 9006 Entry.IsSExt = false; 9007 Entry.IsZExt = false; 9008 Entry.IsInReg = false; 9009 Entry.IsSRet = true; 9010 Entry.IsNest = false; 9011 Entry.IsByVal = false; 9012 Entry.IsReturned = false; 9013 Entry.IsSwiftSelf = false; 9014 Entry.IsSwiftError = false; 9015 Entry.Alignment = Align; 9016 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9017 CLI.NumFixedArgs += 1; 9018 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9019 9020 // sret demotion isn't compatible with tail-calls, since the sret argument 9021 // points into the callers stack frame. 9022 CLI.IsTailCall = false; 9023 } else { 9024 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9025 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9026 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9027 ISD::ArgFlagsTy Flags; 9028 if (NeedsRegBlock) { 9029 Flags.setInConsecutiveRegs(); 9030 if (I == RetTys.size() - 1) 9031 Flags.setInConsecutiveRegsLast(); 9032 } 9033 EVT VT = RetTys[I]; 9034 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9035 CLI.CallConv, VT); 9036 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9037 CLI.CallConv, VT); 9038 for (unsigned i = 0; i != NumRegs; ++i) { 9039 ISD::InputArg MyFlags; 9040 MyFlags.Flags = Flags; 9041 MyFlags.VT = RegisterVT; 9042 MyFlags.ArgVT = VT; 9043 MyFlags.Used = CLI.IsReturnValueUsed; 9044 if (CLI.RetTy->isPointerTy()) { 9045 MyFlags.Flags.setPointer(); 9046 MyFlags.Flags.setPointerAddrSpace( 9047 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9048 } 9049 if (CLI.RetSExt) 9050 MyFlags.Flags.setSExt(); 9051 if (CLI.RetZExt) 9052 MyFlags.Flags.setZExt(); 9053 if (CLI.IsInReg) 9054 MyFlags.Flags.setInReg(); 9055 CLI.Ins.push_back(MyFlags); 9056 } 9057 } 9058 } 9059 9060 // We push in swifterror return as the last element of CLI.Ins. 9061 ArgListTy &Args = CLI.getArgs(); 9062 if (supportSwiftError()) { 9063 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9064 if (Args[i].IsSwiftError) { 9065 ISD::InputArg MyFlags; 9066 MyFlags.VT = getPointerTy(DL); 9067 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9068 MyFlags.Flags.setSwiftError(); 9069 CLI.Ins.push_back(MyFlags); 9070 } 9071 } 9072 } 9073 9074 // Handle all of the outgoing arguments. 9075 CLI.Outs.clear(); 9076 CLI.OutVals.clear(); 9077 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9078 SmallVector<EVT, 4> ValueVTs; 9079 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9080 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9081 Type *FinalType = Args[i].Ty; 9082 if (Args[i].IsByVal) 9083 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9084 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9085 FinalType, CLI.CallConv, CLI.IsVarArg); 9086 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9087 ++Value) { 9088 EVT VT = ValueVTs[Value]; 9089 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9090 SDValue Op = SDValue(Args[i].Node.getNode(), 9091 Args[i].Node.getResNo() + Value); 9092 ISD::ArgFlagsTy Flags; 9093 9094 // Certain targets (such as MIPS), may have a different ABI alignment 9095 // for a type depending on the context. Give the target a chance to 9096 // specify the alignment it wants. 9097 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 9098 9099 if (Args[i].Ty->isPointerTy()) { 9100 Flags.setPointer(); 9101 Flags.setPointerAddrSpace( 9102 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9103 } 9104 if (Args[i].IsZExt) 9105 Flags.setZExt(); 9106 if (Args[i].IsSExt) 9107 Flags.setSExt(); 9108 if (Args[i].IsInReg) { 9109 // If we are using vectorcall calling convention, a structure that is 9110 // passed InReg - is surely an HVA 9111 if (CLI.CallConv == CallingConv::X86_VectorCall && 9112 isa<StructType>(FinalType)) { 9113 // The first value of a structure is marked 9114 if (0 == Value) 9115 Flags.setHvaStart(); 9116 Flags.setHva(); 9117 } 9118 // Set InReg Flag 9119 Flags.setInReg(); 9120 } 9121 if (Args[i].IsSRet) 9122 Flags.setSRet(); 9123 if (Args[i].IsSwiftSelf) 9124 Flags.setSwiftSelf(); 9125 if (Args[i].IsSwiftError) 9126 Flags.setSwiftError(); 9127 if (Args[i].IsByVal) 9128 Flags.setByVal(); 9129 if (Args[i].IsInAlloca) { 9130 Flags.setInAlloca(); 9131 // Set the byval flag for CCAssignFn callbacks that don't know about 9132 // inalloca. This way we can know how many bytes we should've allocated 9133 // and how many bytes a callee cleanup function will pop. If we port 9134 // inalloca to more targets, we'll have to add custom inalloca handling 9135 // in the various CC lowering callbacks. 9136 Flags.setByVal(); 9137 } 9138 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9139 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9140 Type *ElementTy = Ty->getElementType(); 9141 9142 unsigned FrameSize = DL.getTypeAllocSize( 9143 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9144 Flags.setByValSize(FrameSize); 9145 9146 // info is not there but there are cases it cannot get right. 9147 unsigned FrameAlign; 9148 if (Args[i].Alignment) 9149 FrameAlign = Args[i].Alignment; 9150 else 9151 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9152 Flags.setByValAlign(FrameAlign); 9153 } 9154 if (Args[i].IsNest) 9155 Flags.setNest(); 9156 if (NeedsRegBlock) 9157 Flags.setInConsecutiveRegs(); 9158 Flags.setOrigAlign(OriginalAlignment); 9159 9160 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9161 CLI.CallConv, VT); 9162 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9163 CLI.CallConv, VT); 9164 SmallVector<SDValue, 4> Parts(NumParts); 9165 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9166 9167 if (Args[i].IsSExt) 9168 ExtendKind = ISD::SIGN_EXTEND; 9169 else if (Args[i].IsZExt) 9170 ExtendKind = ISD::ZERO_EXTEND; 9171 9172 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9173 // for now. 9174 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9175 CanLowerReturn) { 9176 assert((CLI.RetTy == Args[i].Ty || 9177 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9178 CLI.RetTy->getPointerAddressSpace() == 9179 Args[i].Ty->getPointerAddressSpace())) && 9180 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9181 // Before passing 'returned' to the target lowering code, ensure that 9182 // either the register MVT and the actual EVT are the same size or that 9183 // the return value and argument are extended in the same way; in these 9184 // cases it's safe to pass the argument register value unchanged as the 9185 // return register value (although it's at the target's option whether 9186 // to do so) 9187 // TODO: allow code generation to take advantage of partially preserved 9188 // registers rather than clobbering the entire register when the 9189 // parameter extension method is not compatible with the return 9190 // extension method 9191 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9192 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9193 CLI.RetZExt == Args[i].IsZExt)) 9194 Flags.setReturned(); 9195 } 9196 9197 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9198 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9199 9200 for (unsigned j = 0; j != NumParts; ++j) { 9201 // if it isn't first piece, alignment must be 1 9202 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9203 i < CLI.NumFixedArgs, 9204 i, j*Parts[j].getValueType().getStoreSize()); 9205 if (NumParts > 1 && j == 0) 9206 MyFlags.Flags.setSplit(); 9207 else if (j != 0) { 9208 MyFlags.Flags.setOrigAlign(1); 9209 if (j == NumParts - 1) 9210 MyFlags.Flags.setSplitEnd(); 9211 } 9212 9213 CLI.Outs.push_back(MyFlags); 9214 CLI.OutVals.push_back(Parts[j]); 9215 } 9216 9217 if (NeedsRegBlock && Value == NumValues - 1) 9218 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9219 } 9220 } 9221 9222 SmallVector<SDValue, 4> InVals; 9223 CLI.Chain = LowerCall(CLI, InVals); 9224 9225 // Update CLI.InVals to use outside of this function. 9226 CLI.InVals = InVals; 9227 9228 // Verify that the target's LowerCall behaved as expected. 9229 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9230 "LowerCall didn't return a valid chain!"); 9231 assert((!CLI.IsTailCall || InVals.empty()) && 9232 "LowerCall emitted a return value for a tail call!"); 9233 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9234 "LowerCall didn't emit the correct number of values!"); 9235 9236 // For a tail call, the return value is merely live-out and there aren't 9237 // any nodes in the DAG representing it. Return a special value to 9238 // indicate that a tail call has been emitted and no more Instructions 9239 // should be processed in the current block. 9240 if (CLI.IsTailCall) { 9241 CLI.DAG.setRoot(CLI.Chain); 9242 return std::make_pair(SDValue(), SDValue()); 9243 } 9244 9245 #ifndef NDEBUG 9246 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9247 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9248 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9249 "LowerCall emitted a value with the wrong type!"); 9250 } 9251 #endif 9252 9253 SmallVector<SDValue, 4> ReturnValues; 9254 if (!CanLowerReturn) { 9255 // The instruction result is the result of loading from the 9256 // hidden sret parameter. 9257 SmallVector<EVT, 1> PVTs; 9258 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9259 9260 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9261 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9262 EVT PtrVT = PVTs[0]; 9263 9264 unsigned NumValues = RetTys.size(); 9265 ReturnValues.resize(NumValues); 9266 SmallVector<SDValue, 4> Chains(NumValues); 9267 9268 // An aggregate return value cannot wrap around the address space, so 9269 // offsets to its parts don't wrap either. 9270 SDNodeFlags Flags; 9271 Flags.setNoUnsignedWrap(true); 9272 9273 for (unsigned i = 0; i < NumValues; ++i) { 9274 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9275 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9276 PtrVT), Flags); 9277 SDValue L = CLI.DAG.getLoad( 9278 RetTys[i], CLI.DL, CLI.Chain, Add, 9279 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9280 DemoteStackIdx, Offsets[i]), 9281 /* Alignment = */ 1); 9282 ReturnValues[i] = L; 9283 Chains[i] = L.getValue(1); 9284 } 9285 9286 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9287 } else { 9288 // Collect the legal value parts into potentially illegal values 9289 // that correspond to the original function's return values. 9290 Optional<ISD::NodeType> AssertOp; 9291 if (CLI.RetSExt) 9292 AssertOp = ISD::AssertSext; 9293 else if (CLI.RetZExt) 9294 AssertOp = ISD::AssertZext; 9295 unsigned CurReg = 0; 9296 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9297 EVT VT = RetTys[I]; 9298 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9299 CLI.CallConv, VT); 9300 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9301 CLI.CallConv, VT); 9302 9303 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9304 NumRegs, RegisterVT, VT, nullptr, 9305 CLI.CallConv, AssertOp)); 9306 CurReg += NumRegs; 9307 } 9308 9309 // For a function returning void, there is no return value. We can't create 9310 // such a node, so we just return a null return value in that case. In 9311 // that case, nothing will actually look at the value. 9312 if (ReturnValues.empty()) 9313 return std::make_pair(SDValue(), CLI.Chain); 9314 } 9315 9316 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9317 CLI.DAG.getVTList(RetTys), ReturnValues); 9318 return std::make_pair(Res, CLI.Chain); 9319 } 9320 9321 void TargetLowering::LowerOperationWrapper(SDNode *N, 9322 SmallVectorImpl<SDValue> &Results, 9323 SelectionDAG &DAG) const { 9324 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9325 Results.push_back(Res); 9326 } 9327 9328 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9329 llvm_unreachable("LowerOperation not implemented for this target!"); 9330 } 9331 9332 void 9333 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9334 SDValue Op = getNonRegisterValue(V); 9335 assert((Op.getOpcode() != ISD::CopyFromReg || 9336 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9337 "Copy from a reg to the same reg!"); 9338 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9339 9340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9341 // If this is an InlineAsm we have to match the registers required, not the 9342 // notional registers required by the type. 9343 9344 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9345 None); // This is not an ABI copy. 9346 SDValue Chain = DAG.getEntryNode(); 9347 9348 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9349 FuncInfo.PreferredExtendType.end()) 9350 ? ISD::ANY_EXTEND 9351 : FuncInfo.PreferredExtendType[V]; 9352 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9353 PendingExports.push_back(Chain); 9354 } 9355 9356 #include "llvm/CodeGen/SelectionDAGISel.h" 9357 9358 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9359 /// entry block, return true. This includes arguments used by switches, since 9360 /// the switch may expand into multiple basic blocks. 9361 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9362 // With FastISel active, we may be splitting blocks, so force creation 9363 // of virtual registers for all non-dead arguments. 9364 if (FastISel) 9365 return A->use_empty(); 9366 9367 const BasicBlock &Entry = A->getParent()->front(); 9368 for (const User *U : A->users()) 9369 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9370 return false; // Use not in entry block. 9371 9372 return true; 9373 } 9374 9375 using ArgCopyElisionMapTy = 9376 DenseMap<const Argument *, 9377 std::pair<const AllocaInst *, const StoreInst *>>; 9378 9379 /// Scan the entry block of the function in FuncInfo for arguments that look 9380 /// like copies into a local alloca. Record any copied arguments in 9381 /// ArgCopyElisionCandidates. 9382 static void 9383 findArgumentCopyElisionCandidates(const DataLayout &DL, 9384 FunctionLoweringInfo *FuncInfo, 9385 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9386 // Record the state of every static alloca used in the entry block. Argument 9387 // allocas are all used in the entry block, so we need approximately as many 9388 // entries as we have arguments. 9389 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9390 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9391 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9392 StaticAllocas.reserve(NumArgs * 2); 9393 9394 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9395 if (!V) 9396 return nullptr; 9397 V = V->stripPointerCasts(); 9398 const auto *AI = dyn_cast<AllocaInst>(V); 9399 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9400 return nullptr; 9401 auto Iter = StaticAllocas.insert({AI, Unknown}); 9402 return &Iter.first->second; 9403 }; 9404 9405 // Look for stores of arguments to static allocas. Look through bitcasts and 9406 // GEPs to handle type coercions, as long as the alloca is fully initialized 9407 // by the store. Any non-store use of an alloca escapes it and any subsequent 9408 // unanalyzed store might write it. 9409 // FIXME: Handle structs initialized with multiple stores. 9410 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9411 // Look for stores, and handle non-store uses conservatively. 9412 const auto *SI = dyn_cast<StoreInst>(&I); 9413 if (!SI) { 9414 // We will look through cast uses, so ignore them completely. 9415 if (I.isCast()) 9416 continue; 9417 // Ignore debug info intrinsics, they don't escape or store to allocas. 9418 if (isa<DbgInfoIntrinsic>(I)) 9419 continue; 9420 // This is an unknown instruction. Assume it escapes or writes to all 9421 // static alloca operands. 9422 for (const Use &U : I.operands()) { 9423 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9424 *Info = StaticAllocaInfo::Clobbered; 9425 } 9426 continue; 9427 } 9428 9429 // If the stored value is a static alloca, mark it as escaped. 9430 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9431 *Info = StaticAllocaInfo::Clobbered; 9432 9433 // Check if the destination is a static alloca. 9434 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9435 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9436 if (!Info) 9437 continue; 9438 const AllocaInst *AI = cast<AllocaInst>(Dst); 9439 9440 // Skip allocas that have been initialized or clobbered. 9441 if (*Info != StaticAllocaInfo::Unknown) 9442 continue; 9443 9444 // Check if the stored value is an argument, and that this store fully 9445 // initializes the alloca. Don't elide copies from the same argument twice. 9446 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9447 const auto *Arg = dyn_cast<Argument>(Val); 9448 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9449 Arg->getType()->isEmptyTy() || 9450 DL.getTypeStoreSize(Arg->getType()) != 9451 DL.getTypeAllocSize(AI->getAllocatedType()) || 9452 ArgCopyElisionCandidates.count(Arg)) { 9453 *Info = StaticAllocaInfo::Clobbered; 9454 continue; 9455 } 9456 9457 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9458 << '\n'); 9459 9460 // Mark this alloca and store for argument copy elision. 9461 *Info = StaticAllocaInfo::Elidable; 9462 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9463 9464 // Stop scanning if we've seen all arguments. This will happen early in -O0 9465 // builds, which is useful, because -O0 builds have large entry blocks and 9466 // many allocas. 9467 if (ArgCopyElisionCandidates.size() == NumArgs) 9468 break; 9469 } 9470 } 9471 9472 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9473 /// ArgVal is a load from a suitable fixed stack object. 9474 static void tryToElideArgumentCopy( 9475 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9476 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9477 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9478 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9479 SDValue ArgVal, bool &ArgHasUses) { 9480 // Check if this is a load from a fixed stack object. 9481 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9482 if (!LNode) 9483 return; 9484 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9485 if (!FINode) 9486 return; 9487 9488 // Check that the fixed stack object is the right size and alignment. 9489 // Look at the alignment that the user wrote on the alloca instead of looking 9490 // at the stack object. 9491 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9492 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9493 const AllocaInst *AI = ArgCopyIter->second.first; 9494 int FixedIndex = FINode->getIndex(); 9495 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9496 int OldIndex = AllocaIndex; 9497 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9498 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9499 LLVM_DEBUG( 9500 dbgs() << " argument copy elision failed due to bad fixed stack " 9501 "object size\n"); 9502 return; 9503 } 9504 unsigned RequiredAlignment = AI->getAlignment(); 9505 if (!RequiredAlignment) { 9506 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9507 AI->getAllocatedType()); 9508 } 9509 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9510 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9511 "greater than stack argument alignment (" 9512 << RequiredAlignment << " vs " 9513 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9514 return; 9515 } 9516 9517 // Perform the elision. Delete the old stack object and replace its only use 9518 // in the variable info map. Mark the stack object as mutable. 9519 LLVM_DEBUG({ 9520 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9521 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9522 << '\n'; 9523 }); 9524 MFI.RemoveStackObject(OldIndex); 9525 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9526 AllocaIndex = FixedIndex; 9527 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9528 Chains.push_back(ArgVal.getValue(1)); 9529 9530 // Avoid emitting code for the store implementing the copy. 9531 const StoreInst *SI = ArgCopyIter->second.second; 9532 ElidedArgCopyInstrs.insert(SI); 9533 9534 // Check for uses of the argument again so that we can avoid exporting ArgVal 9535 // if it is't used by anything other than the store. 9536 for (const Value *U : Arg.users()) { 9537 if (U != SI) { 9538 ArgHasUses = true; 9539 break; 9540 } 9541 } 9542 } 9543 9544 void SelectionDAGISel::LowerArguments(const Function &F) { 9545 SelectionDAG &DAG = SDB->DAG; 9546 SDLoc dl = SDB->getCurSDLoc(); 9547 const DataLayout &DL = DAG.getDataLayout(); 9548 SmallVector<ISD::InputArg, 16> Ins; 9549 9550 if (!FuncInfo->CanLowerReturn) { 9551 // Put in an sret pointer parameter before all the other parameters. 9552 SmallVector<EVT, 1> ValueVTs; 9553 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9554 F.getReturnType()->getPointerTo( 9555 DAG.getDataLayout().getAllocaAddrSpace()), 9556 ValueVTs); 9557 9558 // NOTE: Assuming that a pointer will never break down to more than one VT 9559 // or one register. 9560 ISD::ArgFlagsTy Flags; 9561 Flags.setSRet(); 9562 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9563 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9564 ISD::InputArg::NoArgIndex, 0); 9565 Ins.push_back(RetArg); 9566 } 9567 9568 // Look for stores of arguments to static allocas. Mark such arguments with a 9569 // flag to ask the target to give us the memory location of that argument if 9570 // available. 9571 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9572 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9573 9574 // Set up the incoming argument description vector. 9575 for (const Argument &Arg : F.args()) { 9576 unsigned ArgNo = Arg.getArgNo(); 9577 SmallVector<EVT, 4> ValueVTs; 9578 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9579 bool isArgValueUsed = !Arg.use_empty(); 9580 unsigned PartBase = 0; 9581 Type *FinalType = Arg.getType(); 9582 if (Arg.hasAttribute(Attribute::ByVal)) 9583 FinalType = Arg.getParamByValType(); 9584 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9585 FinalType, F.getCallingConv(), F.isVarArg()); 9586 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9587 Value != NumValues; ++Value) { 9588 EVT VT = ValueVTs[Value]; 9589 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9590 ISD::ArgFlagsTy Flags; 9591 9592 // Certain targets (such as MIPS), may have a different ABI alignment 9593 // for a type depending on the context. Give the target a chance to 9594 // specify the alignment it wants. 9595 unsigned OriginalAlignment = 9596 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9597 9598 if (Arg.getType()->isPointerTy()) { 9599 Flags.setPointer(); 9600 Flags.setPointerAddrSpace( 9601 cast<PointerType>(Arg.getType())->getAddressSpace()); 9602 } 9603 if (Arg.hasAttribute(Attribute::ZExt)) 9604 Flags.setZExt(); 9605 if (Arg.hasAttribute(Attribute::SExt)) 9606 Flags.setSExt(); 9607 if (Arg.hasAttribute(Attribute::InReg)) { 9608 // If we are using vectorcall calling convention, a structure that is 9609 // passed InReg - is surely an HVA 9610 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9611 isa<StructType>(Arg.getType())) { 9612 // The first value of a structure is marked 9613 if (0 == Value) 9614 Flags.setHvaStart(); 9615 Flags.setHva(); 9616 } 9617 // Set InReg Flag 9618 Flags.setInReg(); 9619 } 9620 if (Arg.hasAttribute(Attribute::StructRet)) 9621 Flags.setSRet(); 9622 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9623 Flags.setSwiftSelf(); 9624 if (Arg.hasAttribute(Attribute::SwiftError)) 9625 Flags.setSwiftError(); 9626 if (Arg.hasAttribute(Attribute::ByVal)) 9627 Flags.setByVal(); 9628 if (Arg.hasAttribute(Attribute::InAlloca)) { 9629 Flags.setInAlloca(); 9630 // Set the byval flag for CCAssignFn callbacks that don't know about 9631 // inalloca. This way we can know how many bytes we should've allocated 9632 // and how many bytes a callee cleanup function will pop. If we port 9633 // inalloca to more targets, we'll have to add custom inalloca handling 9634 // in the various CC lowering callbacks. 9635 Flags.setByVal(); 9636 } 9637 if (F.getCallingConv() == CallingConv::X86_INTR) { 9638 // IA Interrupt passes frame (1st parameter) by value in the stack. 9639 if (ArgNo == 0) 9640 Flags.setByVal(); 9641 } 9642 if (Flags.isByVal() || Flags.isInAlloca()) { 9643 Type *ElementTy = Arg.getParamByValType(); 9644 9645 // For ByVal, size and alignment should be passed from FE. BE will 9646 // guess if this info is not there but there are cases it cannot get 9647 // right. 9648 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9649 Flags.setByValSize(FrameSize); 9650 9651 unsigned FrameAlign; 9652 if (Arg.getParamAlignment()) 9653 FrameAlign = Arg.getParamAlignment(); 9654 else 9655 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9656 Flags.setByValAlign(FrameAlign); 9657 } 9658 if (Arg.hasAttribute(Attribute::Nest)) 9659 Flags.setNest(); 9660 if (NeedsRegBlock) 9661 Flags.setInConsecutiveRegs(); 9662 Flags.setOrigAlign(OriginalAlignment); 9663 if (ArgCopyElisionCandidates.count(&Arg)) 9664 Flags.setCopyElisionCandidate(); 9665 if (Arg.hasAttribute(Attribute::Returned)) 9666 Flags.setReturned(); 9667 9668 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9669 *CurDAG->getContext(), F.getCallingConv(), VT); 9670 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9671 *CurDAG->getContext(), F.getCallingConv(), VT); 9672 for (unsigned i = 0; i != NumRegs; ++i) { 9673 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9674 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9675 if (NumRegs > 1 && i == 0) 9676 MyFlags.Flags.setSplit(); 9677 // if it isn't first piece, alignment must be 1 9678 else if (i > 0) { 9679 MyFlags.Flags.setOrigAlign(1); 9680 if (i == NumRegs - 1) 9681 MyFlags.Flags.setSplitEnd(); 9682 } 9683 Ins.push_back(MyFlags); 9684 } 9685 if (NeedsRegBlock && Value == NumValues - 1) 9686 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9687 PartBase += VT.getStoreSize(); 9688 } 9689 } 9690 9691 // Call the target to set up the argument values. 9692 SmallVector<SDValue, 8> InVals; 9693 SDValue NewRoot = TLI->LowerFormalArguments( 9694 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9695 9696 // Verify that the target's LowerFormalArguments behaved as expected. 9697 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9698 "LowerFormalArguments didn't return a valid chain!"); 9699 assert(InVals.size() == Ins.size() && 9700 "LowerFormalArguments didn't emit the correct number of values!"); 9701 LLVM_DEBUG({ 9702 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9703 assert(InVals[i].getNode() && 9704 "LowerFormalArguments emitted a null value!"); 9705 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9706 "LowerFormalArguments emitted a value with the wrong type!"); 9707 } 9708 }); 9709 9710 // Update the DAG with the new chain value resulting from argument lowering. 9711 DAG.setRoot(NewRoot); 9712 9713 // Set up the argument values. 9714 unsigned i = 0; 9715 if (!FuncInfo->CanLowerReturn) { 9716 // Create a virtual register for the sret pointer, and put in a copy 9717 // from the sret argument into it. 9718 SmallVector<EVT, 1> ValueVTs; 9719 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9720 F.getReturnType()->getPointerTo( 9721 DAG.getDataLayout().getAllocaAddrSpace()), 9722 ValueVTs); 9723 MVT VT = ValueVTs[0].getSimpleVT(); 9724 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9725 Optional<ISD::NodeType> AssertOp = None; 9726 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9727 nullptr, F.getCallingConv(), AssertOp); 9728 9729 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9730 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9731 Register SRetReg = 9732 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9733 FuncInfo->DemoteRegister = SRetReg; 9734 NewRoot = 9735 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9736 DAG.setRoot(NewRoot); 9737 9738 // i indexes lowered arguments. Bump it past the hidden sret argument. 9739 ++i; 9740 } 9741 9742 SmallVector<SDValue, 4> Chains; 9743 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9744 for (const Argument &Arg : F.args()) { 9745 SmallVector<SDValue, 4> ArgValues; 9746 SmallVector<EVT, 4> ValueVTs; 9747 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9748 unsigned NumValues = ValueVTs.size(); 9749 if (NumValues == 0) 9750 continue; 9751 9752 bool ArgHasUses = !Arg.use_empty(); 9753 9754 // Elide the copying store if the target loaded this argument from a 9755 // suitable fixed stack object. 9756 if (Ins[i].Flags.isCopyElisionCandidate()) { 9757 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9758 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9759 InVals[i], ArgHasUses); 9760 } 9761 9762 // If this argument is unused then remember its value. It is used to generate 9763 // debugging information. 9764 bool isSwiftErrorArg = 9765 TLI->supportSwiftError() && 9766 Arg.hasAttribute(Attribute::SwiftError); 9767 if (!ArgHasUses && !isSwiftErrorArg) { 9768 SDB->setUnusedArgValue(&Arg, InVals[i]); 9769 9770 // Also remember any frame index for use in FastISel. 9771 if (FrameIndexSDNode *FI = 9772 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9773 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9774 } 9775 9776 for (unsigned Val = 0; Val != NumValues; ++Val) { 9777 EVT VT = ValueVTs[Val]; 9778 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9779 F.getCallingConv(), VT); 9780 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9781 *CurDAG->getContext(), F.getCallingConv(), VT); 9782 9783 // Even an apparant 'unused' swifterror argument needs to be returned. So 9784 // we do generate a copy for it that can be used on return from the 9785 // function. 9786 if (ArgHasUses || isSwiftErrorArg) { 9787 Optional<ISD::NodeType> AssertOp; 9788 if (Arg.hasAttribute(Attribute::SExt)) 9789 AssertOp = ISD::AssertSext; 9790 else if (Arg.hasAttribute(Attribute::ZExt)) 9791 AssertOp = ISD::AssertZext; 9792 9793 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9794 PartVT, VT, nullptr, 9795 F.getCallingConv(), AssertOp)); 9796 } 9797 9798 i += NumParts; 9799 } 9800 9801 // We don't need to do anything else for unused arguments. 9802 if (ArgValues.empty()) 9803 continue; 9804 9805 // Note down frame index. 9806 if (FrameIndexSDNode *FI = 9807 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9808 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9809 9810 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9811 SDB->getCurSDLoc()); 9812 9813 SDB->setValue(&Arg, Res); 9814 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9815 // We want to associate the argument with the frame index, among 9816 // involved operands, that correspond to the lowest address. The 9817 // getCopyFromParts function, called earlier, is swapping the order of 9818 // the operands to BUILD_PAIR depending on endianness. The result of 9819 // that swapping is that the least significant bits of the argument will 9820 // be in the first operand of the BUILD_PAIR node, and the most 9821 // significant bits will be in the second operand. 9822 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9823 if (LoadSDNode *LNode = 9824 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9825 if (FrameIndexSDNode *FI = 9826 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9827 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9828 } 9829 9830 // Update the SwiftErrorVRegDefMap. 9831 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9832 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9833 if (Register::isVirtualRegister(Reg)) 9834 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9835 Reg); 9836 } 9837 9838 // If this argument is live outside of the entry block, insert a copy from 9839 // wherever we got it to the vreg that other BB's will reference it as. 9840 if (Res.getOpcode() == ISD::CopyFromReg) { 9841 // If we can, though, try to skip creating an unnecessary vreg. 9842 // FIXME: This isn't very clean... it would be nice to make this more 9843 // general. 9844 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9845 if (Register::isVirtualRegister(Reg)) { 9846 FuncInfo->ValueMap[&Arg] = Reg; 9847 continue; 9848 } 9849 } 9850 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9851 FuncInfo->InitializeRegForValue(&Arg); 9852 SDB->CopyToExportRegsIfNeeded(&Arg); 9853 } 9854 } 9855 9856 if (!Chains.empty()) { 9857 Chains.push_back(NewRoot); 9858 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9859 } 9860 9861 DAG.setRoot(NewRoot); 9862 9863 assert(i == InVals.size() && "Argument register count mismatch!"); 9864 9865 // If any argument copy elisions occurred and we have debug info, update the 9866 // stale frame indices used in the dbg.declare variable info table. 9867 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9868 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9869 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9870 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9871 if (I != ArgCopyElisionFrameIndexMap.end()) 9872 VI.Slot = I->second; 9873 } 9874 } 9875 9876 // Finally, if the target has anything special to do, allow it to do so. 9877 EmitFunctionEntryCode(); 9878 } 9879 9880 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9881 /// ensure constants are generated when needed. Remember the virtual registers 9882 /// that need to be added to the Machine PHI nodes as input. We cannot just 9883 /// directly add them, because expansion might result in multiple MBB's for one 9884 /// BB. As such, the start of the BB might correspond to a different MBB than 9885 /// the end. 9886 void 9887 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9888 const Instruction *TI = LLVMBB->getTerminator(); 9889 9890 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9891 9892 // Check PHI nodes in successors that expect a value to be available from this 9893 // block. 9894 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9895 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9896 if (!isa<PHINode>(SuccBB->begin())) continue; 9897 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9898 9899 // If this terminator has multiple identical successors (common for 9900 // switches), only handle each succ once. 9901 if (!SuccsHandled.insert(SuccMBB).second) 9902 continue; 9903 9904 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9905 9906 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9907 // nodes and Machine PHI nodes, but the incoming operands have not been 9908 // emitted yet. 9909 for (const PHINode &PN : SuccBB->phis()) { 9910 // Ignore dead phi's. 9911 if (PN.use_empty()) 9912 continue; 9913 9914 // Skip empty types 9915 if (PN.getType()->isEmptyTy()) 9916 continue; 9917 9918 unsigned Reg; 9919 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9920 9921 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9922 unsigned &RegOut = ConstantsOut[C]; 9923 if (RegOut == 0) { 9924 RegOut = FuncInfo.CreateRegs(C); 9925 CopyValueToVirtualRegister(C, RegOut); 9926 } 9927 Reg = RegOut; 9928 } else { 9929 DenseMap<const Value *, unsigned>::iterator I = 9930 FuncInfo.ValueMap.find(PHIOp); 9931 if (I != FuncInfo.ValueMap.end()) 9932 Reg = I->second; 9933 else { 9934 assert(isa<AllocaInst>(PHIOp) && 9935 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9936 "Didn't codegen value into a register!??"); 9937 Reg = FuncInfo.CreateRegs(PHIOp); 9938 CopyValueToVirtualRegister(PHIOp, Reg); 9939 } 9940 } 9941 9942 // Remember that this register needs to added to the machine PHI node as 9943 // the input for this MBB. 9944 SmallVector<EVT, 4> ValueVTs; 9945 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9946 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9947 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9948 EVT VT = ValueVTs[vti]; 9949 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9950 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9951 FuncInfo.PHINodesToUpdate.push_back( 9952 std::make_pair(&*MBBI++, Reg + i)); 9953 Reg += NumRegisters; 9954 } 9955 } 9956 } 9957 9958 ConstantsOut.clear(); 9959 } 9960 9961 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9962 /// is 0. 9963 MachineBasicBlock * 9964 SelectionDAGBuilder::StackProtectorDescriptor:: 9965 AddSuccessorMBB(const BasicBlock *BB, 9966 MachineBasicBlock *ParentMBB, 9967 bool IsLikely, 9968 MachineBasicBlock *SuccMBB) { 9969 // If SuccBB has not been created yet, create it. 9970 if (!SuccMBB) { 9971 MachineFunction *MF = ParentMBB->getParent(); 9972 MachineFunction::iterator BBI(ParentMBB); 9973 SuccMBB = MF->CreateMachineBasicBlock(BB); 9974 MF->insert(++BBI, SuccMBB); 9975 } 9976 // Add it as a successor of ParentMBB. 9977 ParentMBB->addSuccessor( 9978 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9979 return SuccMBB; 9980 } 9981 9982 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9983 MachineFunction::iterator I(MBB); 9984 if (++I == FuncInfo.MF->end()) 9985 return nullptr; 9986 return &*I; 9987 } 9988 9989 /// During lowering new call nodes can be created (such as memset, etc.). 9990 /// Those will become new roots of the current DAG, but complications arise 9991 /// when they are tail calls. In such cases, the call lowering will update 9992 /// the root, but the builder still needs to know that a tail call has been 9993 /// lowered in order to avoid generating an additional return. 9994 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9995 // If the node is null, we do have a tail call. 9996 if (MaybeTC.getNode() != nullptr) 9997 DAG.setRoot(MaybeTC); 9998 else 9999 HasTailCall = true; 10000 } 10001 10002 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10003 MachineBasicBlock *SwitchMBB, 10004 MachineBasicBlock *DefaultMBB) { 10005 MachineFunction *CurMF = FuncInfo.MF; 10006 MachineBasicBlock *NextMBB = nullptr; 10007 MachineFunction::iterator BBI(W.MBB); 10008 if (++BBI != FuncInfo.MF->end()) 10009 NextMBB = &*BBI; 10010 10011 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10012 10013 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10014 10015 if (Size == 2 && W.MBB == SwitchMBB) { 10016 // If any two of the cases has the same destination, and if one value 10017 // is the same as the other, but has one bit unset that the other has set, 10018 // use bit manipulation to do two compares at once. For example: 10019 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10020 // TODO: This could be extended to merge any 2 cases in switches with 3 10021 // cases. 10022 // TODO: Handle cases where W.CaseBB != SwitchBB. 10023 CaseCluster &Small = *W.FirstCluster; 10024 CaseCluster &Big = *W.LastCluster; 10025 10026 if (Small.Low == Small.High && Big.Low == Big.High && 10027 Small.MBB == Big.MBB) { 10028 const APInt &SmallValue = Small.Low->getValue(); 10029 const APInt &BigValue = Big.Low->getValue(); 10030 10031 // Check that there is only one bit different. 10032 APInt CommonBit = BigValue ^ SmallValue; 10033 if (CommonBit.isPowerOf2()) { 10034 SDValue CondLHS = getValue(Cond); 10035 EVT VT = CondLHS.getValueType(); 10036 SDLoc DL = getCurSDLoc(); 10037 10038 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10039 DAG.getConstant(CommonBit, DL, VT)); 10040 SDValue Cond = DAG.getSetCC( 10041 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10042 ISD::SETEQ); 10043 10044 // Update successor info. 10045 // Both Small and Big will jump to Small.BB, so we sum up the 10046 // probabilities. 10047 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10048 if (BPI) 10049 addSuccessorWithProb( 10050 SwitchMBB, DefaultMBB, 10051 // The default destination is the first successor in IR. 10052 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10053 else 10054 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10055 10056 // Insert the true branch. 10057 SDValue BrCond = 10058 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10059 DAG.getBasicBlock(Small.MBB)); 10060 // Insert the false branch. 10061 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10062 DAG.getBasicBlock(DefaultMBB)); 10063 10064 DAG.setRoot(BrCond); 10065 return; 10066 } 10067 } 10068 } 10069 10070 if (TM.getOptLevel() != CodeGenOpt::None) { 10071 // Here, we order cases by probability so the most likely case will be 10072 // checked first. However, two clusters can have the same probability in 10073 // which case their relative ordering is non-deterministic. So we use Low 10074 // as a tie-breaker as clusters are guaranteed to never overlap. 10075 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10076 [](const CaseCluster &a, const CaseCluster &b) { 10077 return a.Prob != b.Prob ? 10078 a.Prob > b.Prob : 10079 a.Low->getValue().slt(b.Low->getValue()); 10080 }); 10081 10082 // Rearrange the case blocks so that the last one falls through if possible 10083 // without changing the order of probabilities. 10084 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10085 --I; 10086 if (I->Prob > W.LastCluster->Prob) 10087 break; 10088 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10089 std::swap(*I, *W.LastCluster); 10090 break; 10091 } 10092 } 10093 } 10094 10095 // Compute total probability. 10096 BranchProbability DefaultProb = W.DefaultProb; 10097 BranchProbability UnhandledProbs = DefaultProb; 10098 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10099 UnhandledProbs += I->Prob; 10100 10101 MachineBasicBlock *CurMBB = W.MBB; 10102 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10103 bool FallthroughUnreachable = false; 10104 MachineBasicBlock *Fallthrough; 10105 if (I == W.LastCluster) { 10106 // For the last cluster, fall through to the default destination. 10107 Fallthrough = DefaultMBB; 10108 FallthroughUnreachable = isa<UnreachableInst>( 10109 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10110 } else { 10111 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10112 CurMF->insert(BBI, Fallthrough); 10113 // Put Cond in a virtual register to make it available from the new blocks. 10114 ExportFromCurrentBlock(Cond); 10115 } 10116 UnhandledProbs -= I->Prob; 10117 10118 switch (I->Kind) { 10119 case CC_JumpTable: { 10120 // FIXME: Optimize away range check based on pivot comparisons. 10121 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10122 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10123 10124 // The jump block hasn't been inserted yet; insert it here. 10125 MachineBasicBlock *JumpMBB = JT->MBB; 10126 CurMF->insert(BBI, JumpMBB); 10127 10128 auto JumpProb = I->Prob; 10129 auto FallthroughProb = UnhandledProbs; 10130 10131 // If the default statement is a target of the jump table, we evenly 10132 // distribute the default probability to successors of CurMBB. Also 10133 // update the probability on the edge from JumpMBB to Fallthrough. 10134 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10135 SE = JumpMBB->succ_end(); 10136 SI != SE; ++SI) { 10137 if (*SI == DefaultMBB) { 10138 JumpProb += DefaultProb / 2; 10139 FallthroughProb -= DefaultProb / 2; 10140 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10141 JumpMBB->normalizeSuccProbs(); 10142 break; 10143 } 10144 } 10145 10146 if (FallthroughUnreachable) { 10147 // Skip the range check if the fallthrough block is unreachable. 10148 JTH->OmitRangeCheck = true; 10149 } 10150 10151 if (!JTH->OmitRangeCheck) 10152 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10153 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10154 CurMBB->normalizeSuccProbs(); 10155 10156 // The jump table header will be inserted in our current block, do the 10157 // range check, and fall through to our fallthrough block. 10158 JTH->HeaderBB = CurMBB; 10159 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10160 10161 // If we're in the right place, emit the jump table header right now. 10162 if (CurMBB == SwitchMBB) { 10163 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10164 JTH->Emitted = true; 10165 } 10166 break; 10167 } 10168 case CC_BitTests: { 10169 // FIXME: If Fallthrough is unreachable, skip the range check. 10170 10171 // FIXME: Optimize away range check based on pivot comparisons. 10172 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10173 10174 // The bit test blocks haven't been inserted yet; insert them here. 10175 for (BitTestCase &BTC : BTB->Cases) 10176 CurMF->insert(BBI, BTC.ThisBB); 10177 10178 // Fill in fields of the BitTestBlock. 10179 BTB->Parent = CurMBB; 10180 BTB->Default = Fallthrough; 10181 10182 BTB->DefaultProb = UnhandledProbs; 10183 // If the cases in bit test don't form a contiguous range, we evenly 10184 // distribute the probability on the edge to Fallthrough to two 10185 // successors of CurMBB. 10186 if (!BTB->ContiguousRange) { 10187 BTB->Prob += DefaultProb / 2; 10188 BTB->DefaultProb -= DefaultProb / 2; 10189 } 10190 10191 // If we're in the right place, emit the bit test header right now. 10192 if (CurMBB == SwitchMBB) { 10193 visitBitTestHeader(*BTB, SwitchMBB); 10194 BTB->Emitted = true; 10195 } 10196 break; 10197 } 10198 case CC_Range: { 10199 const Value *RHS, *LHS, *MHS; 10200 ISD::CondCode CC; 10201 if (I->Low == I->High) { 10202 // Check Cond == I->Low. 10203 CC = ISD::SETEQ; 10204 LHS = Cond; 10205 RHS=I->Low; 10206 MHS = nullptr; 10207 } else { 10208 // Check I->Low <= Cond <= I->High. 10209 CC = ISD::SETLE; 10210 LHS = I->Low; 10211 MHS = Cond; 10212 RHS = I->High; 10213 } 10214 10215 // If Fallthrough is unreachable, fold away the comparison. 10216 if (FallthroughUnreachable) 10217 CC = ISD::SETTRUE; 10218 10219 // The false probability is the sum of all unhandled cases. 10220 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10221 getCurSDLoc(), I->Prob, UnhandledProbs); 10222 10223 if (CurMBB == SwitchMBB) 10224 visitSwitchCase(CB, SwitchMBB); 10225 else 10226 SL->SwitchCases.push_back(CB); 10227 10228 break; 10229 } 10230 } 10231 CurMBB = Fallthrough; 10232 } 10233 } 10234 10235 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10236 CaseClusterIt First, 10237 CaseClusterIt Last) { 10238 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10239 if (X.Prob != CC.Prob) 10240 return X.Prob > CC.Prob; 10241 10242 // Ties are broken by comparing the case value. 10243 return X.Low->getValue().slt(CC.Low->getValue()); 10244 }); 10245 } 10246 10247 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10248 const SwitchWorkListItem &W, 10249 Value *Cond, 10250 MachineBasicBlock *SwitchMBB) { 10251 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10252 "Clusters not sorted?"); 10253 10254 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10255 10256 // Balance the tree based on branch probabilities to create a near-optimal (in 10257 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10258 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10259 CaseClusterIt LastLeft = W.FirstCluster; 10260 CaseClusterIt FirstRight = W.LastCluster; 10261 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10262 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10263 10264 // Move LastLeft and FirstRight towards each other from opposite directions to 10265 // find a partitioning of the clusters which balances the probability on both 10266 // sides. If LeftProb and RightProb are equal, alternate which side is 10267 // taken to ensure 0-probability nodes are distributed evenly. 10268 unsigned I = 0; 10269 while (LastLeft + 1 < FirstRight) { 10270 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10271 LeftProb += (++LastLeft)->Prob; 10272 else 10273 RightProb += (--FirstRight)->Prob; 10274 I++; 10275 } 10276 10277 while (true) { 10278 // Our binary search tree differs from a typical BST in that ours can have up 10279 // to three values in each leaf. The pivot selection above doesn't take that 10280 // into account, which means the tree might require more nodes and be less 10281 // efficient. We compensate for this here. 10282 10283 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10284 unsigned NumRight = W.LastCluster - FirstRight + 1; 10285 10286 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10287 // If one side has less than 3 clusters, and the other has more than 3, 10288 // consider taking a cluster from the other side. 10289 10290 if (NumLeft < NumRight) { 10291 // Consider moving the first cluster on the right to the left side. 10292 CaseCluster &CC = *FirstRight; 10293 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10294 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10295 if (LeftSideRank <= RightSideRank) { 10296 // Moving the cluster to the left does not demote it. 10297 ++LastLeft; 10298 ++FirstRight; 10299 continue; 10300 } 10301 } else { 10302 assert(NumRight < NumLeft); 10303 // Consider moving the last element on the left to the right side. 10304 CaseCluster &CC = *LastLeft; 10305 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10306 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10307 if (RightSideRank <= LeftSideRank) { 10308 // Moving the cluster to the right does not demot it. 10309 --LastLeft; 10310 --FirstRight; 10311 continue; 10312 } 10313 } 10314 } 10315 break; 10316 } 10317 10318 assert(LastLeft + 1 == FirstRight); 10319 assert(LastLeft >= W.FirstCluster); 10320 assert(FirstRight <= W.LastCluster); 10321 10322 // Use the first element on the right as pivot since we will make less-than 10323 // comparisons against it. 10324 CaseClusterIt PivotCluster = FirstRight; 10325 assert(PivotCluster > W.FirstCluster); 10326 assert(PivotCluster <= W.LastCluster); 10327 10328 CaseClusterIt FirstLeft = W.FirstCluster; 10329 CaseClusterIt LastRight = W.LastCluster; 10330 10331 const ConstantInt *Pivot = PivotCluster->Low; 10332 10333 // New blocks will be inserted immediately after the current one. 10334 MachineFunction::iterator BBI(W.MBB); 10335 ++BBI; 10336 10337 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10338 // we can branch to its destination directly if it's squeezed exactly in 10339 // between the known lower bound and Pivot - 1. 10340 MachineBasicBlock *LeftMBB; 10341 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10342 FirstLeft->Low == W.GE && 10343 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10344 LeftMBB = FirstLeft->MBB; 10345 } else { 10346 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10347 FuncInfo.MF->insert(BBI, LeftMBB); 10348 WorkList.push_back( 10349 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10350 // Put Cond in a virtual register to make it available from the new blocks. 10351 ExportFromCurrentBlock(Cond); 10352 } 10353 10354 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10355 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10356 // directly if RHS.High equals the current upper bound. 10357 MachineBasicBlock *RightMBB; 10358 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10359 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10360 RightMBB = FirstRight->MBB; 10361 } else { 10362 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10363 FuncInfo.MF->insert(BBI, RightMBB); 10364 WorkList.push_back( 10365 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10366 // Put Cond in a virtual register to make it available from the new blocks. 10367 ExportFromCurrentBlock(Cond); 10368 } 10369 10370 // Create the CaseBlock record that will be used to lower the branch. 10371 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10372 getCurSDLoc(), LeftProb, RightProb); 10373 10374 if (W.MBB == SwitchMBB) 10375 visitSwitchCase(CB, SwitchMBB); 10376 else 10377 SL->SwitchCases.push_back(CB); 10378 } 10379 10380 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10381 // from the swith statement. 10382 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10383 BranchProbability PeeledCaseProb) { 10384 if (PeeledCaseProb == BranchProbability::getOne()) 10385 return BranchProbability::getZero(); 10386 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10387 10388 uint32_t Numerator = CaseProb.getNumerator(); 10389 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10390 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10391 } 10392 10393 // Try to peel the top probability case if it exceeds the threshold. 10394 // Return current MachineBasicBlock for the switch statement if the peeling 10395 // does not occur. 10396 // If the peeling is performed, return the newly created MachineBasicBlock 10397 // for the peeled switch statement. Also update Clusters to remove the peeled 10398 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10399 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10400 const SwitchInst &SI, CaseClusterVector &Clusters, 10401 BranchProbability &PeeledCaseProb) { 10402 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10403 // Don't perform if there is only one cluster or optimizing for size. 10404 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10405 TM.getOptLevel() == CodeGenOpt::None || 10406 SwitchMBB->getParent()->getFunction().hasMinSize()) 10407 return SwitchMBB; 10408 10409 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10410 unsigned PeeledCaseIndex = 0; 10411 bool SwitchPeeled = false; 10412 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10413 CaseCluster &CC = Clusters[Index]; 10414 if (CC.Prob < TopCaseProb) 10415 continue; 10416 TopCaseProb = CC.Prob; 10417 PeeledCaseIndex = Index; 10418 SwitchPeeled = true; 10419 } 10420 if (!SwitchPeeled) 10421 return SwitchMBB; 10422 10423 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10424 << TopCaseProb << "\n"); 10425 10426 // Record the MBB for the peeled switch statement. 10427 MachineFunction::iterator BBI(SwitchMBB); 10428 ++BBI; 10429 MachineBasicBlock *PeeledSwitchMBB = 10430 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10431 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10432 10433 ExportFromCurrentBlock(SI.getCondition()); 10434 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10435 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10436 nullptr, nullptr, TopCaseProb.getCompl()}; 10437 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10438 10439 Clusters.erase(PeeledCaseIt); 10440 for (CaseCluster &CC : Clusters) { 10441 LLVM_DEBUG( 10442 dbgs() << "Scale the probablity for one cluster, before scaling: " 10443 << CC.Prob << "\n"); 10444 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10445 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10446 } 10447 PeeledCaseProb = TopCaseProb; 10448 return PeeledSwitchMBB; 10449 } 10450 10451 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10452 // Extract cases from the switch. 10453 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10454 CaseClusterVector Clusters; 10455 Clusters.reserve(SI.getNumCases()); 10456 for (auto I : SI.cases()) { 10457 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10458 const ConstantInt *CaseVal = I.getCaseValue(); 10459 BranchProbability Prob = 10460 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10461 : BranchProbability(1, SI.getNumCases() + 1); 10462 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10463 } 10464 10465 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10466 10467 // Cluster adjacent cases with the same destination. We do this at all 10468 // optimization levels because it's cheap to do and will make codegen faster 10469 // if there are many clusters. 10470 sortAndRangeify(Clusters); 10471 10472 // The branch probablity of the peeled case. 10473 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10474 MachineBasicBlock *PeeledSwitchMBB = 10475 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10476 10477 // If there is only the default destination, jump there directly. 10478 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10479 if (Clusters.empty()) { 10480 assert(PeeledSwitchMBB == SwitchMBB); 10481 SwitchMBB->addSuccessor(DefaultMBB); 10482 if (DefaultMBB != NextBlock(SwitchMBB)) { 10483 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10484 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10485 } 10486 return; 10487 } 10488 10489 SL->findJumpTables(Clusters, &SI, DefaultMBB); 10490 SL->findBitTestClusters(Clusters, &SI); 10491 10492 LLVM_DEBUG({ 10493 dbgs() << "Case clusters: "; 10494 for (const CaseCluster &C : Clusters) { 10495 if (C.Kind == CC_JumpTable) 10496 dbgs() << "JT:"; 10497 if (C.Kind == CC_BitTests) 10498 dbgs() << "BT:"; 10499 10500 C.Low->getValue().print(dbgs(), true); 10501 if (C.Low != C.High) { 10502 dbgs() << '-'; 10503 C.High->getValue().print(dbgs(), true); 10504 } 10505 dbgs() << ' '; 10506 } 10507 dbgs() << '\n'; 10508 }); 10509 10510 assert(!Clusters.empty()); 10511 SwitchWorkList WorkList; 10512 CaseClusterIt First = Clusters.begin(); 10513 CaseClusterIt Last = Clusters.end() - 1; 10514 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10515 // Scale the branchprobability for DefaultMBB if the peel occurs and 10516 // DefaultMBB is not replaced. 10517 if (PeeledCaseProb != BranchProbability::getZero() && 10518 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10519 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10520 WorkList.push_back( 10521 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10522 10523 while (!WorkList.empty()) { 10524 SwitchWorkListItem W = WorkList.back(); 10525 WorkList.pop_back(); 10526 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10527 10528 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10529 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10530 // For optimized builds, lower large range as a balanced binary tree. 10531 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10532 continue; 10533 } 10534 10535 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10536 } 10537 } 10538