xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision db6bd02185981cbf0e7a50273d7c24b110d96c90)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78 
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81                  cl::desc("Generate low-precision inline sequences "
82                           "for some float libcalls"),
83                  cl::location(LimitFloatPrecision),
84                  cl::init(0));
85 
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88                 cl::desc("Enable fast-math-flags for DAG nodes"));
89 
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93                  cl::desc("Minimum density for building a jump table in "
94                           "a normal function"));
95 
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99                         cl::desc("Minimum density for building a jump table in "
100                                  "an optsize function"));
101 
102 
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118 
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120                                       const SDValue *Parts, unsigned NumParts,
121                                       MVT PartVT, EVT ValueVT, const Value *V);
122 
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent.  If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129                                 const SDValue *Parts, unsigned NumParts,
130                                 MVT PartVT, EVT ValueVT, const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383                            SDValue *Parts, unsigned NumParts, MVT PartVT,
384                            const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT) {
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453     }
454 
455     Parts[0] = Val;
456     return;
457   }
458 
459   // Expand the value into multiple parts.
460   if (NumParts & (NumParts - 1)) {
461     // The number of parts is not a power of 2.  Split off and copy the tail.
462     assert(PartVT.isInteger() && ValueVT.isInteger() &&
463            "Do not know what to expand to!");
464     unsigned RoundParts = 1 << Log2_32(NumParts);
465     unsigned RoundBits = RoundParts * PartBits;
466     unsigned OddParts = NumParts - RoundParts;
467     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468                                  DAG.getIntPtrConstant(RoundBits, DL));
469     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470 
471     if (DAG.getDataLayout().isBigEndian())
472       // The odd parts were reversed by getCopyToParts - unreverse them.
473       std::reverse(Parts + RoundParts, Parts + NumParts);
474 
475     NumParts = RoundParts;
476     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478   }
479 
480   // The number of parts is a power of 2.  Repeatedly bisect the value using
481   // EXTRACT_ELEMENT.
482   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483                          EVT::getIntegerVT(*DAG.getContext(),
484                                            ValueVT.getSizeInBits()),
485                          Val);
486 
487   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488     for (unsigned i = 0; i < NumParts; i += StepSize) {
489       unsigned ThisBits = StepSize * PartBits / 2;
490       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491       SDValue &Part0 = Parts[i];
492       SDValue &Part1 = Parts[i+StepSize/2];
493 
494       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498 
499       if (ThisBits == PartBits && ThisVT != PartVT) {
500         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502       }
503     }
504   }
505 
506   if (DAG.getDataLayout().isBigEndian())
507     std::reverse(Parts, Parts + OrigNumParts);
508 }
509 
510 
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514                                  SDValue Val, SDValue *Parts, unsigned NumParts,
515                                  MVT PartVT, const Value *V) {
516   EVT ValueVT = Val.getValueType();
517   assert(ValueVT.isVector() && "Not a vector");
518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519 
520   if (NumParts == 1) {
521     EVT PartEVT = PartVT;
522     if (PartEVT == ValueVT) {
523       // Nothing to do.
524     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525       // Bitconvert vector->vector case.
526       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     } else if (PartVT.isVector() &&
528                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530       EVT ElementVT = PartVT.getVectorElementType();
531       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
532       // undef elements.
533       SmallVector<SDValue, 16> Ops;
534       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535         Ops.push_back(DAG.getNode(
536             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538 
539       for (unsigned i = ValueVT.getVectorNumElements(),
540            e = PartVT.getVectorNumElements(); i != e; ++i)
541         Ops.push_back(DAG.getUNDEF(ElementVT));
542 
543       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544 
545       // FIXME: Use CONCAT for 2x -> 4x.
546 
547       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549     } else if (PartVT.isVector() &&
550                PartEVT.getVectorElementType().bitsGE(
551                  ValueVT.getVectorElementType()) &&
552                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553 
554       // Promoted vector extract
555       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556     } else{
557       // Vector -> scalar conversion.
558       assert(ValueVT.getVectorNumElements() == 1 &&
559              "Only trivial vector-to-scalar conversions should get here!");
560       Val = DAG.getNode(
561           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563 
564       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Handle a multi-element vector.
572   EVT IntermediateVT;
573   MVT RegisterVT;
574   unsigned NumIntermediates;
575   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576                                                 IntermediateVT,
577                                                 NumIntermediates, RegisterVT);
578   unsigned NumElements = ValueVT.getVectorNumElements();
579 
580   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581   NumParts = NumRegs; // Silence a compiler warning.
582   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583 
584   // Split the vector into intermediate operands.
585   SmallVector<SDValue, 8> Ops(NumIntermediates);
586   for (unsigned i = 0; i != NumIntermediates; ++i) {
587     if (IntermediateVT.isVector())
588       Ops[i] =
589           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
592     else
593       Ops[i] = DAG.getNode(
594           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596   }
597 
598   // Split the intermediate operands into legal parts.
599   if (NumParts == NumIntermediates) {
600     // If the register was not expanded, promote or copy the value,
601     // as appropriate.
602     for (unsigned i = 0; i != NumParts; ++i)
603       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604   } else if (NumParts > 0) {
605     // If the intermediate type was expanded, split each the value into
606     // legal parts.
607     assert(NumIntermediates != 0 && "division by zero");
608     assert(NumParts % NumIntermediates == 0 &&
609            "Must expand into a divisible number of parts!");
610     unsigned Factor = NumParts / NumIntermediates;
611     for (unsigned i = 0; i != NumIntermediates; ++i)
612       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613   }
614 }
615 
616 RegsForValue::RegsForValue() {}
617 
618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
619                            EVT valuevt)
620     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621 
622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623                            const DataLayout &DL, unsigned Reg, Type *Ty) {
624   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625 
626   for (EVT ValueVT : ValueVTs) {
627     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629     for (unsigned i = 0; i != NumRegs; ++i)
630       Regs.push_back(Reg + i);
631     RegVTs.push_back(RegisterVT);
632     Reg += NumRegs;
633   }
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       const SDLoc &dl, SDValue &Chain,
643                                       SDValue *Flag, const Value *V) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     MVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (!Flag) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       if (NumZeroBits == RegSize) {
688         // The current value is a zero.
689         // Explicitly express that as it would be easier for
690         // optimizations to kick in.
691         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692         continue;
693       }
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize) {
700         isSExt = true;   // ASSERT SEXT 1
701         FromVT = MVT::i1;
702       } else if (NumZeroBits >= RegSize - 1) {
703         isSExt = false;  // ASSERT ZEXT 1
704         FromVT = MVT::i1;
705       } else if (NumSignBits > RegSize - 8) {
706         isSExt = true;   // ASSERT SEXT 8
707         FromVT = MVT::i8;
708       } else if (NumZeroBits >= RegSize - 8) {
709         isSExt = false;  // ASSERT ZEXT 8
710         FromVT = MVT::i8;
711       } else if (NumSignBits > RegSize - 16) {
712         isSExt = true;   // ASSERT SEXT 16
713         FromVT = MVT::i16;
714       } else if (NumZeroBits >= RegSize - 16) {
715         isSExt = false;  // ASSERT ZEXT 16
716         FromVT = MVT::i16;
717       } else if (NumSignBits > RegSize - 32) {
718         isSExt = true;   // ASSERT SEXT 32
719         FromVT = MVT::i32;
720       } else if (NumZeroBits >= RegSize - 32) {
721         isSExt = false;  // ASSERT ZEXT 32
722         FromVT = MVT::i32;
723       } else {
724         continue;
725       }
726       // Add an assertion node.
727       assert(FromVT != MVT::Other);
728       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729                              RegisterVT, P, DAG.getValueType(FromVT));
730     }
731 
732     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733                                      NumRegs, RegisterVT, ValueVT, V);
734     Part += NumRegs;
735     Parts.clear();
736   }
737 
738   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740 
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object.  This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747                                  const Value *V,
748                                  ISD::NodeType PreferredExtendType) const {
749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750   ISD::NodeType ExtendKind = PreferredExtendType;
751 
752   // Get the list of the values's legal parts.
753   unsigned NumRegs = Regs.size();
754   SmallVector<SDValue, 8> Parts(NumRegs);
755   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756     EVT ValueVT = ValueVTs[Value];
757     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758     MVT RegisterVT = RegVTs[Value];
759 
760     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761       ExtendKind = ISD::ZERO_EXTEND;
762 
763     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765     Part += NumParts;
766   }
767 
768   // Copy the parts into the registers.
769   SmallVector<SDValue, 8> Chains(NumRegs);
770   for (unsigned i = 0; i != NumRegs; ++i) {
771     SDValue Part;
772     if (!Flag) {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774     } else {
775       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776       *Flag = Part.getValue(1);
777     }
778 
779     Chains[i] = Part.getValue(0);
780   }
781 
782   if (NumRegs == 1 || Flag)
783     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784     // flagged to it. That is the CopyToReg nodes and the user are considered
785     // a single scheduling unit. If we create a TokenFactor and return it as
786     // chain, then the TokenFactor is both a predecessor (operand) of the
787     // user as well as a successor (the TF operands are flagged to the user).
788     // c1, f1 = CopyToReg
789     // c2, f2 = CopyToReg
790     // c3     = TokenFactor c1, c2
791     // ...
792     //        = op c3, ..., f2
793     Chain = Chains[NumRegs-1];
794   else
795     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797 
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list.  This adds the code marker and includes the number of
800 /// values added into it.
801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802                                         unsigned MatchingIdx, const SDLoc &dl,
803                                         SelectionDAG &DAG,
804                                         std::vector<SDValue> &Ops) const {
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808   if (HasMatching)
809     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810   else if (!Regs.empty() &&
811            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812     // Put the register class of the virtual registers in the flag word.  That
813     // way, later passes can recompute register class constraints for inline
814     // assembly as well as normal instructions.
815     // Don't do this for tied operands that can use the regclass information
816     // from the def.
817     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820   }
821 
822   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823   Ops.push_back(Res);
824 
825   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828     MVT RegisterVT = RegVTs[Value];
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       assert(Reg < Regs.size() && "Mismatch in # registers expected");
831       unsigned TheReg = Regs[Reg++];
832       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833 
834       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835         // If we clobbered the stack pointer, MFI should know about it.
836         assert(DAG.getMachineFunction().getFrameInfo()->
837             hasOpaqueSPAdjustment());
838       }
839     }
840   }
841 }
842 
843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
844                                const TargetLibraryInfo *li) {
845   AA = &aa;
846   GFI = gfi;
847   LibInfo = li;
848   DL = &DAG.getDataLayout();
849   Context = DAG.getContext();
850   LPadToCallSiteMap.clear();
851 }
852 
853 /// clear - Clear out the current SelectionDAG and the associated
854 /// state and prepare this SelectionDAGBuilder object to be used
855 /// for a new block. This doesn't clear out information about
856 /// additional blocks that are needed to complete switch lowering
857 /// or PHI node updating; that information is cleared out as it is
858 /// consumed.
859 void SelectionDAGBuilder::clear() {
860   NodeMap.clear();
861   UnusedArgNodeMap.clear();
862   PendingLoads.clear();
863   PendingExports.clear();
864   CurInst = nullptr;
865   HasTailCall = false;
866   SDNodeOrder = LowestSDNodeOrder;
867   StatepointLowering.clear();
868 }
869 
870 /// clearDanglingDebugInfo - Clear the dangling debug information
871 /// map. This function is separated from the clear so that debug
872 /// information that is dangling in a basic block can be properly
873 /// resolved in a different basic block. This allows the
874 /// SelectionDAG to resolve dangling debug information attached
875 /// to PHI nodes.
876 void SelectionDAGBuilder::clearDanglingDebugInfo() {
877   DanglingDebugInfoMap.clear();
878 }
879 
880 /// getRoot - Return the current virtual root of the Selection DAG,
881 /// flushing any PendingLoad items. This must be done before emitting
882 /// a store or any other node that may need to be ordered after any
883 /// prior load instructions.
884 ///
885 SDValue SelectionDAGBuilder::getRoot() {
886   if (PendingLoads.empty())
887     return DAG.getRoot();
888 
889   if (PendingLoads.size() == 1) {
890     SDValue Root = PendingLoads[0];
891     DAG.setRoot(Root);
892     PendingLoads.clear();
893     return Root;
894   }
895 
896   // Otherwise, we have to make a token factor node.
897   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
898                              PendingLoads);
899   PendingLoads.clear();
900   DAG.setRoot(Root);
901   return Root;
902 }
903 
904 /// getControlRoot - Similar to getRoot, but instead of flushing all the
905 /// PendingLoad items, flush all the PendingExports items. It is necessary
906 /// to do this before emitting a terminator instruction.
907 ///
908 SDValue SelectionDAGBuilder::getControlRoot() {
909   SDValue Root = DAG.getRoot();
910 
911   if (PendingExports.empty())
912     return Root;
913 
914   // Turn all of the CopyToReg chains into one factored node.
915   if (Root.getOpcode() != ISD::EntryToken) {
916     unsigned i = 0, e = PendingExports.size();
917     for (; i != e; ++i) {
918       assert(PendingExports[i].getNode()->getNumOperands() > 1);
919       if (PendingExports[i].getNode()->getOperand(0) == Root)
920         break;  // Don't add the root if we already indirectly depend on it.
921     }
922 
923     if (i == e)
924       PendingExports.push_back(Root);
925   }
926 
927   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
928                      PendingExports);
929   PendingExports.clear();
930   DAG.setRoot(Root);
931   return Root;
932 }
933 
934 /// Copy swift error to the final virtual register at end of a basic block, as
935 /// specified by SwiftErrorWorklist, if necessary.
936 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
937   const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
938   if (!TLI.supportSwiftError())
939     return;
940 
941   if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
942     return;
943 
944   // Go through entries in SwiftErrorWorklist, and create copy as necessary.
945   FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
946       SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
947   FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
948       SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
949   for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
950     unsigned WorkReg = WorklistEntry[I];
951 
952     // Find the swifterror virtual register for the value in SwiftErrorMap.
953     unsigned MapReg = MapEntry[I];
954     assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
955            "Entries in SwiftErrorMap should be virtual registers");
956 
957     if (WorkReg == MapReg)
958       continue;
959 
960     // Create copy from SwiftErrorMap to SwiftWorklist.
961     auto &DL = SDB.DAG.getDataLayout();
962     SDValue CopyNode = SDB.DAG.getCopyToReg(
963         SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
964         SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
965     MapEntry[I] = WorkReg;
966     SDB.DAG.setRoot(CopyNode);
967   }
968 }
969 
970 void SelectionDAGBuilder::visit(const Instruction &I) {
971   // Set up outgoing PHI node register values before emitting the terminator.
972   if (isa<TerminatorInst>(&I)) {
973     copySwiftErrorsToFinalVRegs(*this);
974     HandlePHINodesInSuccessorBlocks(I.getParent());
975   }
976 
977   ++SDNodeOrder;
978 
979   CurInst = &I;
980 
981   visit(I.getOpcode(), I);
982 
983   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
984       !isStatepoint(&I)) // statepoints handle their exports internally
985     CopyToExportRegsIfNeeded(&I);
986 
987   CurInst = nullptr;
988 }
989 
990 void SelectionDAGBuilder::visitPHI(const PHINode &) {
991   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
992 }
993 
994 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
995   // Note: this doesn't use InstVisitor, because it has to work with
996   // ConstantExpr's in addition to instructions.
997   switch (Opcode) {
998   default: llvm_unreachable("Unknown instruction type encountered!");
999     // Build the switch statement using the Instruction.def file.
1000 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1001     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1002 #include "llvm/IR/Instruction.def"
1003   }
1004 }
1005 
1006 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1007 // generate the debug data structures now that we've seen its definition.
1008 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1009                                                    SDValue Val) {
1010   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1011   if (DDI.getDI()) {
1012     const DbgValueInst *DI = DDI.getDI();
1013     DebugLoc dl = DDI.getdl();
1014     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1015     DILocalVariable *Variable = DI->getVariable();
1016     DIExpression *Expr = DI->getExpression();
1017     assert(Variable->isValidLocationForIntrinsic(dl) &&
1018            "Expected inlined-at fields to agree");
1019     uint64_t Offset = DI->getOffset();
1020     SDDbgValue *SDV;
1021     if (Val.getNode()) {
1022       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1023                                     Val)) {
1024         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1025                               false, Offset, dl, DbgSDNodeOrder);
1026         DAG.AddDbgValue(SDV, Val.getNode(), false);
1027       }
1028     } else
1029       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1030     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1031   }
1032 }
1033 
1034 /// getCopyFromRegs - If there was virtual register allocated for the value V
1035 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1036 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1037   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1038   SDValue Result;
1039 
1040   if (It != FuncInfo.ValueMap.end()) {
1041     unsigned InReg = It->second;
1042     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1043                      DAG.getDataLayout(), InReg, Ty);
1044     SDValue Chain = DAG.getEntryNode();
1045     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1046     resolveDanglingDebugInfo(V, Result);
1047   }
1048 
1049   return Result;
1050 }
1051 
1052 /// getValue - Return an SDValue for the given Value.
1053 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1054   // If we already have an SDValue for this value, use it. It's important
1055   // to do this first, so that we don't create a CopyFromReg if we already
1056   // have a regular SDValue.
1057   SDValue &N = NodeMap[V];
1058   if (N.getNode()) return N;
1059 
1060   // If there's a virtual register allocated and initialized for this
1061   // value, use it.
1062   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1063     return copyFromReg;
1064 
1065   // Otherwise create a new SDValue and remember it.
1066   SDValue Val = getValueImpl(V);
1067   NodeMap[V] = Val;
1068   resolveDanglingDebugInfo(V, Val);
1069   return Val;
1070 }
1071 
1072 // Return true if SDValue exists for the given Value
1073 bool SelectionDAGBuilder::findValue(const Value *V) const {
1074   return (NodeMap.find(V) != NodeMap.end()) ||
1075     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1076 }
1077 
1078 /// getNonRegisterValue - Return an SDValue for the given Value, but
1079 /// don't look in FuncInfo.ValueMap for a virtual register.
1080 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1081   // If we already have an SDValue for this value, use it.
1082   SDValue &N = NodeMap[V];
1083   if (N.getNode()) {
1084     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1085       // Remove the debug location from the node as the node is about to be used
1086       // in a location which may differ from the original debug location.  This
1087       // is relevant to Constant and ConstantFP nodes because they can appear
1088       // as constant expressions inside PHI nodes.
1089       N->setDebugLoc(DebugLoc());
1090     }
1091     return N;
1092   }
1093 
1094   // Otherwise create a new SDValue and remember it.
1095   SDValue Val = getValueImpl(V);
1096   NodeMap[V] = Val;
1097   resolveDanglingDebugInfo(V, Val);
1098   return Val;
1099 }
1100 
1101 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1102 /// Create an SDValue for the given value.
1103 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1104   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1105 
1106   if (const Constant *C = dyn_cast<Constant>(V)) {
1107     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1108 
1109     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1110       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1111 
1112     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1113       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1114 
1115     if (isa<ConstantPointerNull>(C)) {
1116       unsigned AS = V->getType()->getPointerAddressSpace();
1117       return DAG.getConstant(0, getCurSDLoc(),
1118                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1119     }
1120 
1121     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1122       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1123 
1124     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1125       return DAG.getUNDEF(VT);
1126 
1127     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1128       visit(CE->getOpcode(), *CE);
1129       SDValue N1 = NodeMap[V];
1130       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1131       return N1;
1132     }
1133 
1134     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1135       SmallVector<SDValue, 4> Constants;
1136       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1137            OI != OE; ++OI) {
1138         SDNode *Val = getValue(*OI).getNode();
1139         // If the operand is an empty aggregate, there are no values.
1140         if (!Val) continue;
1141         // Add each leaf value from the operand to the Constants list
1142         // to form a flattened list of all the values.
1143         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1144           Constants.push_back(SDValue(Val, i));
1145       }
1146 
1147       return DAG.getMergeValues(Constants, getCurSDLoc());
1148     }
1149 
1150     if (const ConstantDataSequential *CDS =
1151           dyn_cast<ConstantDataSequential>(C)) {
1152       SmallVector<SDValue, 4> Ops;
1153       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1154         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1155         // Add each leaf value from the operand to the Constants list
1156         // to form a flattened list of all the values.
1157         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1158           Ops.push_back(SDValue(Val, i));
1159       }
1160 
1161       if (isa<ArrayType>(CDS->getType()))
1162         return DAG.getMergeValues(Ops, getCurSDLoc());
1163       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1164                                       VT, Ops);
1165     }
1166 
1167     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1168       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1169              "Unknown struct or array constant!");
1170 
1171       SmallVector<EVT, 4> ValueVTs;
1172       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1173       unsigned NumElts = ValueVTs.size();
1174       if (NumElts == 0)
1175         return SDValue(); // empty struct
1176       SmallVector<SDValue, 4> Constants(NumElts);
1177       for (unsigned i = 0; i != NumElts; ++i) {
1178         EVT EltVT = ValueVTs[i];
1179         if (isa<UndefValue>(C))
1180           Constants[i] = DAG.getUNDEF(EltVT);
1181         else if (EltVT.isFloatingPoint())
1182           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1183         else
1184           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1185       }
1186 
1187       return DAG.getMergeValues(Constants, getCurSDLoc());
1188     }
1189 
1190     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1191       return DAG.getBlockAddress(BA, VT);
1192 
1193     VectorType *VecTy = cast<VectorType>(V->getType());
1194     unsigned NumElements = VecTy->getNumElements();
1195 
1196     // Now that we know the number and type of the elements, get that number of
1197     // elements into the Ops array based on what kind of constant it is.
1198     SmallVector<SDValue, 16> Ops;
1199     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1200       for (unsigned i = 0; i != NumElements; ++i)
1201         Ops.push_back(getValue(CV->getOperand(i)));
1202     } else {
1203       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1204       EVT EltVT =
1205           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1206 
1207       SDValue Op;
1208       if (EltVT.isFloatingPoint())
1209         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1210       else
1211         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1212       Ops.assign(NumElements, Op);
1213     }
1214 
1215     // Create a BUILD_VECTOR node.
1216     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1217   }
1218 
1219   // If this is a static alloca, generate it as the frameindex instead of
1220   // computation.
1221   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1222     DenseMap<const AllocaInst*, int>::iterator SI =
1223       FuncInfo.StaticAllocaMap.find(AI);
1224     if (SI != FuncInfo.StaticAllocaMap.end())
1225       return DAG.getFrameIndex(SI->second,
1226                                TLI.getPointerTy(DAG.getDataLayout()));
1227   }
1228 
1229   // If this is an instruction which fast-isel has deferred, select it now.
1230   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1231     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1232     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1233                      Inst->getType());
1234     SDValue Chain = DAG.getEntryNode();
1235     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1236   }
1237 
1238   llvm_unreachable("Can't get register for value!");
1239 }
1240 
1241 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1242   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1243   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1244   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1245   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1246   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1247   if (IsMSVCCXX || IsCoreCLR)
1248     CatchPadMBB->setIsEHFuncletEntry();
1249 
1250   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1251 }
1252 
1253 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1254   // Update machine-CFG edge.
1255   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1256   FuncInfo.MBB->addSuccessor(TargetMBB);
1257 
1258   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1259   bool IsSEH = isAsynchronousEHPersonality(Pers);
1260   if (IsSEH) {
1261     // If this is not a fall-through branch or optimizations are switched off,
1262     // emit the branch.
1263     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1264         TM.getOptLevel() == CodeGenOpt::None)
1265       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1266                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1267     return;
1268   }
1269 
1270   // Figure out the funclet membership for the catchret's successor.
1271   // This will be used by the FuncletLayout pass to determine how to order the
1272   // BB's.
1273   // A 'catchret' returns to the outer scope's color.
1274   Value *ParentPad = I.getCatchSwitchParentPad();
1275   const BasicBlock *SuccessorColor;
1276   if (isa<ConstantTokenNone>(ParentPad))
1277     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1278   else
1279     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1280   assert(SuccessorColor && "No parent funclet for catchret!");
1281   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1282   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1283 
1284   // Create the terminator node.
1285   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1286                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1287                             DAG.getBasicBlock(SuccessorColorMBB));
1288   DAG.setRoot(Ret);
1289 }
1290 
1291 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1292   // Don't emit any special code for the cleanuppad instruction. It just marks
1293   // the start of a funclet.
1294   FuncInfo.MBB->setIsEHFuncletEntry();
1295   FuncInfo.MBB->setIsCleanupFuncletEntry();
1296 }
1297 
1298 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1299 /// many places it could ultimately go. In the IR, we have a single unwind
1300 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1301 /// This function skips over imaginary basic blocks that hold catchswitch
1302 /// instructions, and finds all the "real" machine
1303 /// basic block destinations. As those destinations may not be successors of
1304 /// EHPadBB, here we also calculate the edge probability to those destinations.
1305 /// The passed-in Prob is the edge probability to EHPadBB.
1306 static void findUnwindDestinations(
1307     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1308     BranchProbability Prob,
1309     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1310         &UnwindDests) {
1311   EHPersonality Personality =
1312     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1313   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1314   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1315 
1316   while (EHPadBB) {
1317     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1318     BasicBlock *NewEHPadBB = nullptr;
1319     if (isa<LandingPadInst>(Pad)) {
1320       // Stop on landingpads. They are not funclets.
1321       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1322       break;
1323     } else if (isa<CleanupPadInst>(Pad)) {
1324       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1325       // personalities.
1326       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1327       UnwindDests.back().first->setIsEHFuncletEntry();
1328       break;
1329     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1330       // Add the catchpad handlers to the possible destinations.
1331       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1332         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1333         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1334         if (IsMSVCCXX || IsCoreCLR)
1335           UnwindDests.back().first->setIsEHFuncletEntry();
1336       }
1337       NewEHPadBB = CatchSwitch->getUnwindDest();
1338     } else {
1339       continue;
1340     }
1341 
1342     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1343     if (BPI && NewEHPadBB)
1344       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1345     EHPadBB = NewEHPadBB;
1346   }
1347 }
1348 
1349 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1350   // Update successor info.
1351   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1352   auto UnwindDest = I.getUnwindDest();
1353   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1354   BranchProbability UnwindDestProb =
1355       (BPI && UnwindDest)
1356           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1357           : BranchProbability::getZero();
1358   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1359   for (auto &UnwindDest : UnwindDests) {
1360     UnwindDest.first->setIsEHPad();
1361     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1362   }
1363   FuncInfo.MBB->normalizeSuccProbs();
1364 
1365   // Create the terminator node.
1366   SDValue Ret =
1367       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1368   DAG.setRoot(Ret);
1369 }
1370 
1371 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1372   report_fatal_error("visitCatchSwitch not yet implemented!");
1373 }
1374 
1375 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1376   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1377   auto &DL = DAG.getDataLayout();
1378   SDValue Chain = getControlRoot();
1379   SmallVector<ISD::OutputArg, 8> Outs;
1380   SmallVector<SDValue, 8> OutVals;
1381 
1382   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1383   // lower
1384   //
1385   //   %val = call <ty> @llvm.experimental.deoptimize()
1386   //   ret <ty> %val
1387   //
1388   // differently.
1389   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1390     LowerDeoptimizingReturn();
1391     return;
1392   }
1393 
1394   if (!FuncInfo.CanLowerReturn) {
1395     unsigned DemoteReg = FuncInfo.DemoteRegister;
1396     const Function *F = I.getParent()->getParent();
1397 
1398     // Emit a store of the return value through the virtual register.
1399     // Leave Outs empty so that LowerReturn won't try to load return
1400     // registers the usual way.
1401     SmallVector<EVT, 1> PtrValueVTs;
1402     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1403                     PtrValueVTs);
1404 
1405     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1406                                         DemoteReg, PtrValueVTs[0]);
1407     SDValue RetOp = getValue(I.getOperand(0));
1408 
1409     SmallVector<EVT, 4> ValueVTs;
1410     SmallVector<uint64_t, 4> Offsets;
1411     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1412     unsigned NumValues = ValueVTs.size();
1413 
1414     // An aggregate return value cannot wrap around the address space, so
1415     // offsets to its parts don't wrap either.
1416     SDNodeFlags Flags;
1417     Flags.setNoUnsignedWrap(true);
1418 
1419     SmallVector<SDValue, 4> Chains(NumValues);
1420     for (unsigned i = 0; i != NumValues; ++i) {
1421       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1422                                 RetPtr.getValueType(), RetPtr,
1423                                 DAG.getIntPtrConstant(Offsets[i],
1424                                                       getCurSDLoc()),
1425                                 &Flags);
1426       Chains[i] =
1427         DAG.getStore(Chain, getCurSDLoc(),
1428                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1429                      // FIXME: better loc info would be nice.
1430                      Add, MachinePointerInfo(), false, false, 0);
1431     }
1432 
1433     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1434                         MVT::Other, Chains);
1435   } else if (I.getNumOperands() != 0) {
1436     SmallVector<EVT, 4> ValueVTs;
1437     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1438     unsigned NumValues = ValueVTs.size();
1439     if (NumValues) {
1440       SDValue RetOp = getValue(I.getOperand(0));
1441 
1442       const Function *F = I.getParent()->getParent();
1443 
1444       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1445       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1446                                           Attribute::SExt))
1447         ExtendKind = ISD::SIGN_EXTEND;
1448       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1449                                                Attribute::ZExt))
1450         ExtendKind = ISD::ZERO_EXTEND;
1451 
1452       LLVMContext &Context = F->getContext();
1453       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1454                                                       Attribute::InReg);
1455 
1456       for (unsigned j = 0; j != NumValues; ++j) {
1457         EVT VT = ValueVTs[j];
1458 
1459         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1460           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1461 
1462         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1463         MVT PartVT = TLI.getRegisterType(Context, VT);
1464         SmallVector<SDValue, 4> Parts(NumParts);
1465         getCopyToParts(DAG, getCurSDLoc(),
1466                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1467                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1468 
1469         // 'inreg' on function refers to return value
1470         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1471         if (RetInReg)
1472           Flags.setInReg();
1473 
1474         // Propagate extension type if any
1475         if (ExtendKind == ISD::SIGN_EXTEND)
1476           Flags.setSExt();
1477         else if (ExtendKind == ISD::ZERO_EXTEND)
1478           Flags.setZExt();
1479 
1480         for (unsigned i = 0; i < NumParts; ++i) {
1481           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1482                                         VT, /*isfixed=*/true, 0, 0));
1483           OutVals.push_back(Parts[i]);
1484         }
1485       }
1486     }
1487   }
1488 
1489   // Push in swifterror virtual register as the last element of Outs. This makes
1490   // sure swifterror virtual register will be returned in the swifterror
1491   // physical register.
1492   const Function *F = I.getParent()->getParent();
1493   if (TLI.supportSwiftError() &&
1494       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1495     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1496     Flags.setSwiftError();
1497     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1498                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1499                                   true /*isfixed*/, 1 /*origidx*/,
1500                                   0 /*partOffs*/));
1501     // Create SDNode for the swifterror virtual register.
1502     OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1503                                       EVT(TLI.getPointerTy(DL))));
1504   }
1505 
1506   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1507   CallingConv::ID CallConv =
1508     DAG.getMachineFunction().getFunction()->getCallingConv();
1509   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1510       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1511 
1512   // Verify that the target's LowerReturn behaved as expected.
1513   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1514          "LowerReturn didn't return a valid chain!");
1515 
1516   // Update the DAG with the new chain value resulting from return lowering.
1517   DAG.setRoot(Chain);
1518 }
1519 
1520 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1521 /// created for it, emit nodes to copy the value into the virtual
1522 /// registers.
1523 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1524   // Skip empty types
1525   if (V->getType()->isEmptyTy())
1526     return;
1527 
1528   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1529   if (VMI != FuncInfo.ValueMap.end()) {
1530     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1531     CopyValueToVirtualRegister(V, VMI->second);
1532   }
1533 }
1534 
1535 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1536 /// the current basic block, add it to ValueMap now so that we'll get a
1537 /// CopyTo/FromReg.
1538 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1539   // No need to export constants.
1540   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1541 
1542   // Already exported?
1543   if (FuncInfo.isExportedInst(V)) return;
1544 
1545   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1546   CopyValueToVirtualRegister(V, Reg);
1547 }
1548 
1549 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1550                                                      const BasicBlock *FromBB) {
1551   // The operands of the setcc have to be in this block.  We don't know
1552   // how to export them from some other block.
1553   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1554     // Can export from current BB.
1555     if (VI->getParent() == FromBB)
1556       return true;
1557 
1558     // Is already exported, noop.
1559     return FuncInfo.isExportedInst(V);
1560   }
1561 
1562   // If this is an argument, we can export it if the BB is the entry block or
1563   // if it is already exported.
1564   if (isa<Argument>(V)) {
1565     if (FromBB == &FromBB->getParent()->getEntryBlock())
1566       return true;
1567 
1568     // Otherwise, can only export this if it is already exported.
1569     return FuncInfo.isExportedInst(V);
1570   }
1571 
1572   // Otherwise, constants can always be exported.
1573   return true;
1574 }
1575 
1576 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1577 BranchProbability
1578 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1579                                         const MachineBasicBlock *Dst) const {
1580   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1581   const BasicBlock *SrcBB = Src->getBasicBlock();
1582   const BasicBlock *DstBB = Dst->getBasicBlock();
1583   if (!BPI) {
1584     // If BPI is not available, set the default probability as 1 / N, where N is
1585     // the number of successors.
1586     auto SuccSize = std::max<uint32_t>(
1587         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1588     return BranchProbability(1, SuccSize);
1589   }
1590   return BPI->getEdgeProbability(SrcBB, DstBB);
1591 }
1592 
1593 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1594                                                MachineBasicBlock *Dst,
1595                                                BranchProbability Prob) {
1596   if (!FuncInfo.BPI)
1597     Src->addSuccessorWithoutProb(Dst);
1598   else {
1599     if (Prob.isUnknown())
1600       Prob = getEdgeProbability(Src, Dst);
1601     Src->addSuccessor(Dst, Prob);
1602   }
1603 }
1604 
1605 static bool InBlock(const Value *V, const BasicBlock *BB) {
1606   if (const Instruction *I = dyn_cast<Instruction>(V))
1607     return I->getParent() == BB;
1608   return true;
1609 }
1610 
1611 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1612 /// This function emits a branch and is used at the leaves of an OR or an
1613 /// AND operator tree.
1614 ///
1615 void
1616 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1617                                                   MachineBasicBlock *TBB,
1618                                                   MachineBasicBlock *FBB,
1619                                                   MachineBasicBlock *CurBB,
1620                                                   MachineBasicBlock *SwitchBB,
1621                                                   BranchProbability TProb,
1622                                                   BranchProbability FProb) {
1623   const BasicBlock *BB = CurBB->getBasicBlock();
1624 
1625   // If the leaf of the tree is a comparison, merge the condition into
1626   // the caseblock.
1627   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1628     // The operands of the cmp have to be in this block.  We don't know
1629     // how to export them from some other block.  If this is the first block
1630     // of the sequence, no exporting is needed.
1631     if (CurBB == SwitchBB ||
1632         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1633          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1634       ISD::CondCode Condition;
1635       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1636         Condition = getICmpCondCode(IC->getPredicate());
1637       } else {
1638         const FCmpInst *FC = cast<FCmpInst>(Cond);
1639         Condition = getFCmpCondCode(FC->getPredicate());
1640         if (TM.Options.NoNaNsFPMath)
1641           Condition = getFCmpCodeWithoutNaN(Condition);
1642       }
1643 
1644       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1645                    TBB, FBB, CurBB, TProb, FProb);
1646       SwitchCases.push_back(CB);
1647       return;
1648     }
1649   }
1650 
1651   // Create a CaseBlock record representing this branch.
1652   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1653                nullptr, TBB, FBB, CurBB, TProb, FProb);
1654   SwitchCases.push_back(CB);
1655 }
1656 
1657 /// FindMergedConditions - If Cond is an expression like
1658 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1659                                                MachineBasicBlock *TBB,
1660                                                MachineBasicBlock *FBB,
1661                                                MachineBasicBlock *CurBB,
1662                                                MachineBasicBlock *SwitchBB,
1663                                                Instruction::BinaryOps Opc,
1664                                                BranchProbability TProb,
1665                                                BranchProbability FProb) {
1666   // If this node is not part of the or/and tree, emit it as a branch.
1667   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1668   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1669       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1670       BOp->getParent() != CurBB->getBasicBlock() ||
1671       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1672       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1673     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1674                                  TProb, FProb);
1675     return;
1676   }
1677 
1678   //  Create TmpBB after CurBB.
1679   MachineFunction::iterator BBI(CurBB);
1680   MachineFunction &MF = DAG.getMachineFunction();
1681   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1682   CurBB->getParent()->insert(++BBI, TmpBB);
1683 
1684   if (Opc == Instruction::Or) {
1685     // Codegen X | Y as:
1686     // BB1:
1687     //   jmp_if_X TBB
1688     //   jmp TmpBB
1689     // TmpBB:
1690     //   jmp_if_Y TBB
1691     //   jmp FBB
1692     //
1693 
1694     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1695     // The requirement is that
1696     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1697     //     = TrueProb for original BB.
1698     // Assuming the original probabilities are A and B, one choice is to set
1699     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1700     // A/(1+B) and 2B/(1+B). This choice assumes that
1701     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1702     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1703     // TmpBB, but the math is more complicated.
1704 
1705     auto NewTrueProb = TProb / 2;
1706     auto NewFalseProb = TProb / 2 + FProb;
1707     // Emit the LHS condition.
1708     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1709                          NewTrueProb, NewFalseProb);
1710 
1711     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1712     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1713     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1714     // Emit the RHS condition into TmpBB.
1715     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1716                          Probs[0], Probs[1]);
1717   } else {
1718     assert(Opc == Instruction::And && "Unknown merge op!");
1719     // Codegen X & Y as:
1720     // BB1:
1721     //   jmp_if_X TmpBB
1722     //   jmp FBB
1723     // TmpBB:
1724     //   jmp_if_Y TBB
1725     //   jmp FBB
1726     //
1727     //  This requires creation of TmpBB after CurBB.
1728 
1729     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1730     // The requirement is that
1731     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1732     //     = FalseProb for original BB.
1733     // Assuming the original probabilities are A and B, one choice is to set
1734     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1735     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1736     // TrueProb for BB1 * FalseProb for TmpBB.
1737 
1738     auto NewTrueProb = TProb + FProb / 2;
1739     auto NewFalseProb = FProb / 2;
1740     // Emit the LHS condition.
1741     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1742                          NewTrueProb, NewFalseProb);
1743 
1744     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1745     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1746     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1747     // Emit the RHS condition into TmpBB.
1748     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1749                          Probs[0], Probs[1]);
1750   }
1751 }
1752 
1753 /// If the set of cases should be emitted as a series of branches, return true.
1754 /// If we should emit this as a bunch of and/or'd together conditions, return
1755 /// false.
1756 bool
1757 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1758   if (Cases.size() != 2) return true;
1759 
1760   // If this is two comparisons of the same values or'd or and'd together, they
1761   // will get folded into a single comparison, so don't emit two blocks.
1762   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1763        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1764       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1765        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1766     return false;
1767   }
1768 
1769   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1770   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1771   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1772       Cases[0].CC == Cases[1].CC &&
1773       isa<Constant>(Cases[0].CmpRHS) &&
1774       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1775     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1776       return false;
1777     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1778       return false;
1779   }
1780 
1781   return true;
1782 }
1783 
1784 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1785   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1786 
1787   // Update machine-CFG edges.
1788   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1789 
1790   if (I.isUnconditional()) {
1791     // Update machine-CFG edges.
1792     BrMBB->addSuccessor(Succ0MBB);
1793 
1794     // If this is not a fall-through branch or optimizations are switched off,
1795     // emit the branch.
1796     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1797       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1798                               MVT::Other, getControlRoot(),
1799                               DAG.getBasicBlock(Succ0MBB)));
1800 
1801     return;
1802   }
1803 
1804   // If this condition is one of the special cases we handle, do special stuff
1805   // now.
1806   const Value *CondVal = I.getCondition();
1807   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1808 
1809   // If this is a series of conditions that are or'd or and'd together, emit
1810   // this as a sequence of branches instead of setcc's with and/or operations.
1811   // As long as jumps are not expensive, this should improve performance.
1812   // For example, instead of something like:
1813   //     cmp A, B
1814   //     C = seteq
1815   //     cmp D, E
1816   //     F = setle
1817   //     or C, F
1818   //     jnz foo
1819   // Emit:
1820   //     cmp A, B
1821   //     je foo
1822   //     cmp D, E
1823   //     jle foo
1824   //
1825   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1826     Instruction::BinaryOps Opcode = BOp->getOpcode();
1827     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1828         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1829         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1830       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1831                            Opcode,
1832                            getEdgeProbability(BrMBB, Succ0MBB),
1833                            getEdgeProbability(BrMBB, Succ1MBB));
1834       // If the compares in later blocks need to use values not currently
1835       // exported from this block, export them now.  This block should always
1836       // be the first entry.
1837       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1838 
1839       // Allow some cases to be rejected.
1840       if (ShouldEmitAsBranches(SwitchCases)) {
1841         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1842           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1843           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1844         }
1845 
1846         // Emit the branch for this block.
1847         visitSwitchCase(SwitchCases[0], BrMBB);
1848         SwitchCases.erase(SwitchCases.begin());
1849         return;
1850       }
1851 
1852       // Okay, we decided not to do this, remove any inserted MBB's and clear
1853       // SwitchCases.
1854       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1855         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1856 
1857       SwitchCases.clear();
1858     }
1859   }
1860 
1861   // Create a CaseBlock record representing this branch.
1862   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1863                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1864 
1865   // Use visitSwitchCase to actually insert the fast branch sequence for this
1866   // cond branch.
1867   visitSwitchCase(CB, BrMBB);
1868 }
1869 
1870 /// visitSwitchCase - Emits the necessary code to represent a single node in
1871 /// the binary search tree resulting from lowering a switch instruction.
1872 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1873                                           MachineBasicBlock *SwitchBB) {
1874   SDValue Cond;
1875   SDValue CondLHS = getValue(CB.CmpLHS);
1876   SDLoc dl = getCurSDLoc();
1877 
1878   // Build the setcc now.
1879   if (!CB.CmpMHS) {
1880     // Fold "(X == true)" to X and "(X == false)" to !X to
1881     // handle common cases produced by branch lowering.
1882     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1883         CB.CC == ISD::SETEQ)
1884       Cond = CondLHS;
1885     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1886              CB.CC == ISD::SETEQ) {
1887       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1888       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1889     } else
1890       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1891   } else {
1892     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1893 
1894     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1895     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1896 
1897     SDValue CmpOp = getValue(CB.CmpMHS);
1898     EVT VT = CmpOp.getValueType();
1899 
1900     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1901       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1902                           ISD::SETLE);
1903     } else {
1904       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1905                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1906       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1907                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1908     }
1909   }
1910 
1911   // Update successor info
1912   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1913   // TrueBB and FalseBB are always different unless the incoming IR is
1914   // degenerate. This only happens when running llc on weird IR.
1915   if (CB.TrueBB != CB.FalseBB)
1916     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1917   SwitchBB->normalizeSuccProbs();
1918 
1919   // If the lhs block is the next block, invert the condition so that we can
1920   // fall through to the lhs instead of the rhs block.
1921   if (CB.TrueBB == NextBlock(SwitchBB)) {
1922     std::swap(CB.TrueBB, CB.FalseBB);
1923     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1924     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1925   }
1926 
1927   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1928                                MVT::Other, getControlRoot(), Cond,
1929                                DAG.getBasicBlock(CB.TrueBB));
1930 
1931   // Insert the false branch. Do this even if it's a fall through branch,
1932   // this makes it easier to do DAG optimizations which require inverting
1933   // the branch condition.
1934   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1935                        DAG.getBasicBlock(CB.FalseBB));
1936 
1937   DAG.setRoot(BrCond);
1938 }
1939 
1940 /// visitJumpTable - Emit JumpTable node in the current MBB
1941 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1942   // Emit the code for the jump table
1943   assert(JT.Reg != -1U && "Should lower JT Header first!");
1944   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1945   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1946                                      JT.Reg, PTy);
1947   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1948   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1949                                     MVT::Other, Index.getValue(1),
1950                                     Table, Index);
1951   DAG.setRoot(BrJumpTable);
1952 }
1953 
1954 /// visitJumpTableHeader - This function emits necessary code to produce index
1955 /// in the JumpTable from switch case.
1956 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1957                                                JumpTableHeader &JTH,
1958                                                MachineBasicBlock *SwitchBB) {
1959   SDLoc dl = getCurSDLoc();
1960 
1961   // Subtract the lowest switch case value from the value being switched on and
1962   // conditional branch to default mbb if the result is greater than the
1963   // difference between smallest and largest cases.
1964   SDValue SwitchOp = getValue(JTH.SValue);
1965   EVT VT = SwitchOp.getValueType();
1966   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1967                             DAG.getConstant(JTH.First, dl, VT));
1968 
1969   // The SDNode we just created, which holds the value being switched on minus
1970   // the smallest case value, needs to be copied to a virtual register so it
1971   // can be used as an index into the jump table in a subsequent basic block.
1972   // This value may be smaller or larger than the target's pointer type, and
1973   // therefore require extension or truncating.
1974   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1975   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1976 
1977   unsigned JumpTableReg =
1978       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1979   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1980                                     JumpTableReg, SwitchOp);
1981   JT.Reg = JumpTableReg;
1982 
1983   // Emit the range check for the jump table, and branch to the default block
1984   // for the switch statement if the value being switched on exceeds the largest
1985   // case in the switch.
1986   SDValue CMP = DAG.getSetCC(
1987       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1988                                  Sub.getValueType()),
1989       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1990 
1991   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1992                                MVT::Other, CopyTo, CMP,
1993                                DAG.getBasicBlock(JT.Default));
1994 
1995   // Avoid emitting unnecessary branches to the next block.
1996   if (JT.MBB != NextBlock(SwitchBB))
1997     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1998                          DAG.getBasicBlock(JT.MBB));
1999 
2000   DAG.setRoot(BrCond);
2001 }
2002 
2003 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2004 /// variable if there exists one.
2005 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2006                                  SDValue &Chain) {
2007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2008   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2009   MachineFunction &MF = DAG.getMachineFunction();
2010   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2011   MachineSDNode *Node =
2012       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2013   if (Global) {
2014     MachinePointerInfo MPInfo(Global);
2015     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2016     unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
2017     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2018                                        DAG.getEVTAlignment(PtrTy));
2019     Node->setMemRefs(MemRefs, MemRefs + 1);
2020   }
2021   return SDValue(Node, 0);
2022 }
2023 
2024 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2025 /// tail spliced into a stack protector check success bb.
2026 ///
2027 /// For a high level explanation of how this fits into the stack protector
2028 /// generation see the comment on the declaration of class
2029 /// StackProtectorDescriptor.
2030 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2031                                                   MachineBasicBlock *ParentBB) {
2032 
2033   // First create the loads to the guard/stack slot for the comparison.
2034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2035   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2036 
2037   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
2038   int FI = MFI->getStackProtectorIndex();
2039 
2040   SDValue Guard;
2041   SDLoc dl = getCurSDLoc();
2042   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2043   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2044   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2045 
2046   // Generate code to load the content of the guard slot.
2047   SDValue StackSlot = DAG.getLoad(
2048       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2049       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
2050       false, false, Align);
2051 
2052   // Retrieve guard check function, nullptr if instrumentation is inlined.
2053   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2054     // The target provides a guard check function to validate the guard value.
2055     // Generate a call to that function with the content of the guard slot as
2056     // argument.
2057     auto *Fn = cast<Function>(GuardCheck);
2058     FunctionType *FnTy = Fn->getFunctionType();
2059     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2060 
2061     TargetLowering::ArgListTy Args;
2062     TargetLowering::ArgListEntry Entry;
2063     Entry.Node = StackSlot;
2064     Entry.Ty = FnTy->getParamType(0);
2065     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2066       Entry.isInReg = true;
2067     Args.push_back(Entry);
2068 
2069     TargetLowering::CallLoweringInfo CLI(DAG);
2070     CLI.setDebugLoc(getCurSDLoc())
2071       .setChain(DAG.getEntryNode())
2072       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2073                  getValue(GuardCheck), std::move(Args));
2074 
2075     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2076     DAG.setRoot(Result.second);
2077     return;
2078   }
2079 
2080   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2081   // Otherwise, emit a volatile load to retrieve the stack guard value.
2082   SDValue Chain = DAG.getEntryNode();
2083   if (TLI.useLoadStackGuardNode()) {
2084     Guard = getLoadStackGuard(DAG, dl, Chain);
2085   } else {
2086     const Value *IRGuard = TLI.getSDagStackGuard(M);
2087     SDValue GuardPtr = getValue(IRGuard);
2088 
2089     Guard =
2090         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2091                     true, false, false, Align);
2092   }
2093 
2094   // Perform the comparison via a subtract/getsetcc.
2095   EVT VT = Guard.getValueType();
2096   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2097 
2098   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2099                                                         *DAG.getContext(),
2100                                                         Sub.getValueType()),
2101                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2102 
2103   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2104   // branch to failure MBB.
2105   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2106                                MVT::Other, StackSlot.getOperand(0),
2107                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2108   // Otherwise branch to success MBB.
2109   SDValue Br = DAG.getNode(ISD::BR, dl,
2110                            MVT::Other, BrCond,
2111                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2112 
2113   DAG.setRoot(Br);
2114 }
2115 
2116 /// Codegen the failure basic block for a stack protector check.
2117 ///
2118 /// A failure stack protector machine basic block consists simply of a call to
2119 /// __stack_chk_fail().
2120 ///
2121 /// For a high level explanation of how this fits into the stack protector
2122 /// generation see the comment on the declaration of class
2123 /// StackProtectorDescriptor.
2124 void
2125 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2126   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2127   SDValue Chain =
2128       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2129                       None, false, getCurSDLoc(), false, false).second;
2130   DAG.setRoot(Chain);
2131 }
2132 
2133 /// visitBitTestHeader - This function emits necessary code to produce value
2134 /// suitable for "bit tests"
2135 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2136                                              MachineBasicBlock *SwitchBB) {
2137   SDLoc dl = getCurSDLoc();
2138 
2139   // Subtract the minimum value
2140   SDValue SwitchOp = getValue(B.SValue);
2141   EVT VT = SwitchOp.getValueType();
2142   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2143                             DAG.getConstant(B.First, dl, VT));
2144 
2145   // Check range
2146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2147   SDValue RangeCmp = DAG.getSetCC(
2148       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2149                                  Sub.getValueType()),
2150       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2151 
2152   // Determine the type of the test operands.
2153   bool UsePtrType = false;
2154   if (!TLI.isTypeLegal(VT))
2155     UsePtrType = true;
2156   else {
2157     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2158       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2159         // Switch table case range are encoded into series of masks.
2160         // Just use pointer type, it's guaranteed to fit.
2161         UsePtrType = true;
2162         break;
2163       }
2164   }
2165   if (UsePtrType) {
2166     VT = TLI.getPointerTy(DAG.getDataLayout());
2167     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2168   }
2169 
2170   B.RegVT = VT.getSimpleVT();
2171   B.Reg = FuncInfo.CreateReg(B.RegVT);
2172   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2173 
2174   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2175 
2176   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2177   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2178   SwitchBB->normalizeSuccProbs();
2179 
2180   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2181                                 MVT::Other, CopyTo, RangeCmp,
2182                                 DAG.getBasicBlock(B.Default));
2183 
2184   // Avoid emitting unnecessary branches to the next block.
2185   if (MBB != NextBlock(SwitchBB))
2186     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2187                           DAG.getBasicBlock(MBB));
2188 
2189   DAG.setRoot(BrRange);
2190 }
2191 
2192 /// visitBitTestCase - this function produces one "bit test"
2193 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2194                                            MachineBasicBlock* NextMBB,
2195                                            BranchProbability BranchProbToNext,
2196                                            unsigned Reg,
2197                                            BitTestCase &B,
2198                                            MachineBasicBlock *SwitchBB) {
2199   SDLoc dl = getCurSDLoc();
2200   MVT VT = BB.RegVT;
2201   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2202   SDValue Cmp;
2203   unsigned PopCount = countPopulation(B.Mask);
2204   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2205   if (PopCount == 1) {
2206     // Testing for a single bit; just compare the shift count with what it
2207     // would need to be to shift a 1 bit in that position.
2208     Cmp = DAG.getSetCC(
2209         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2210         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2211         ISD::SETEQ);
2212   } else if (PopCount == BB.Range) {
2213     // There is only one zero bit in the range, test for it directly.
2214     Cmp = DAG.getSetCC(
2215         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2216         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2217         ISD::SETNE);
2218   } else {
2219     // Make desired shift
2220     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2221                                     DAG.getConstant(1, dl, VT), ShiftOp);
2222 
2223     // Emit bit tests and jumps
2224     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2225                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2226     Cmp = DAG.getSetCC(
2227         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2228         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2229   }
2230 
2231   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2232   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2233   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2234   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2235   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2236   // one as they are relative probabilities (and thus work more like weights),
2237   // and hence we need to normalize them to let the sum of them become one.
2238   SwitchBB->normalizeSuccProbs();
2239 
2240   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2241                               MVT::Other, getControlRoot(),
2242                               Cmp, DAG.getBasicBlock(B.TargetBB));
2243 
2244   // Avoid emitting unnecessary branches to the next block.
2245   if (NextMBB != NextBlock(SwitchBB))
2246     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2247                         DAG.getBasicBlock(NextMBB));
2248 
2249   DAG.setRoot(BrAnd);
2250 }
2251 
2252 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2253   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2254 
2255   // Retrieve successors. Look through artificial IR level blocks like
2256   // catchswitch for successors.
2257   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2258   const BasicBlock *EHPadBB = I.getSuccessor(1);
2259 
2260   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2261   // have to do anything here to lower funclet bundles.
2262   assert(!I.hasOperandBundlesOtherThan(
2263              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2264          "Cannot lower invokes with arbitrary operand bundles yet!");
2265 
2266   const Value *Callee(I.getCalledValue());
2267   const Function *Fn = dyn_cast<Function>(Callee);
2268   if (isa<InlineAsm>(Callee))
2269     visitInlineAsm(&I);
2270   else if (Fn && Fn->isIntrinsic()) {
2271     switch (Fn->getIntrinsicID()) {
2272     default:
2273       llvm_unreachable("Cannot invoke this intrinsic");
2274     case Intrinsic::donothing:
2275       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2276       break;
2277     case Intrinsic::experimental_patchpoint_void:
2278     case Intrinsic::experimental_patchpoint_i64:
2279       visitPatchpoint(&I, EHPadBB);
2280       break;
2281     case Intrinsic::experimental_gc_statepoint:
2282       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2283       break;
2284     }
2285   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2286     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2287     // Eventually we will support lowering the @llvm.experimental.deoptimize
2288     // intrinsic, and right now there are no plans to support other intrinsics
2289     // with deopt state.
2290     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2291   } else {
2292     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2293   }
2294 
2295   // If the value of the invoke is used outside of its defining block, make it
2296   // available as a virtual register.
2297   // We already took care of the exported value for the statepoint instruction
2298   // during call to the LowerStatepoint.
2299   if (!isStatepoint(I)) {
2300     CopyToExportRegsIfNeeded(&I);
2301   }
2302 
2303   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2304   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2305   BranchProbability EHPadBBProb =
2306       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2307           : BranchProbability::getZero();
2308   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2309 
2310   // Update successor info.
2311   addSuccessorWithProb(InvokeMBB, Return);
2312   for (auto &UnwindDest : UnwindDests) {
2313     UnwindDest.first->setIsEHPad();
2314     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2315   }
2316   InvokeMBB->normalizeSuccProbs();
2317 
2318   // Drop into normal successor.
2319   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2320                           MVT::Other, getControlRoot(),
2321                           DAG.getBasicBlock(Return)));
2322 }
2323 
2324 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2325   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2326 }
2327 
2328 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2329   assert(FuncInfo.MBB->isEHPad() &&
2330          "Call to landingpad not in landing pad!");
2331 
2332   MachineBasicBlock *MBB = FuncInfo.MBB;
2333   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2334   AddLandingPadInfo(LP, MMI, MBB);
2335 
2336   // If there aren't registers to copy the values into (e.g., during SjLj
2337   // exceptions), then don't bother to create these DAG nodes.
2338   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2339   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2340   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2341       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2342     return;
2343 
2344   // If landingpad's return type is token type, we don't create DAG nodes
2345   // for its exception pointer and selector value. The extraction of exception
2346   // pointer or selector value from token type landingpads is not currently
2347   // supported.
2348   if (LP.getType()->isTokenTy())
2349     return;
2350 
2351   SmallVector<EVT, 2> ValueVTs;
2352   SDLoc dl = getCurSDLoc();
2353   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2354   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2355 
2356   // Get the two live-in registers as SDValues. The physregs have already been
2357   // copied into virtual registers.
2358   SDValue Ops[2];
2359   if (FuncInfo.ExceptionPointerVirtReg) {
2360     Ops[0] = DAG.getZExtOrTrunc(
2361         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2362                            FuncInfo.ExceptionPointerVirtReg,
2363                            TLI.getPointerTy(DAG.getDataLayout())),
2364         dl, ValueVTs[0]);
2365   } else {
2366     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2367   }
2368   Ops[1] = DAG.getZExtOrTrunc(
2369       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2370                          FuncInfo.ExceptionSelectorVirtReg,
2371                          TLI.getPointerTy(DAG.getDataLayout())),
2372       dl, ValueVTs[1]);
2373 
2374   // Merge into one.
2375   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2376                             DAG.getVTList(ValueVTs), Ops);
2377   setValue(&LP, Res);
2378 }
2379 
2380 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2381 #ifndef NDEBUG
2382   for (const CaseCluster &CC : Clusters)
2383     assert(CC.Low == CC.High && "Input clusters must be single-case");
2384 #endif
2385 
2386   std::sort(Clusters.begin(), Clusters.end(),
2387             [](const CaseCluster &a, const CaseCluster &b) {
2388     return a.Low->getValue().slt(b.Low->getValue());
2389   });
2390 
2391   // Merge adjacent clusters with the same destination.
2392   const unsigned N = Clusters.size();
2393   unsigned DstIndex = 0;
2394   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2395     CaseCluster &CC = Clusters[SrcIndex];
2396     const ConstantInt *CaseVal = CC.Low;
2397     MachineBasicBlock *Succ = CC.MBB;
2398 
2399     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2400         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2401       // If this case has the same successor and is a neighbour, merge it into
2402       // the previous cluster.
2403       Clusters[DstIndex - 1].High = CaseVal;
2404       Clusters[DstIndex - 1].Prob += CC.Prob;
2405     } else {
2406       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2407                    sizeof(Clusters[SrcIndex]));
2408     }
2409   }
2410   Clusters.resize(DstIndex);
2411 }
2412 
2413 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2414                                            MachineBasicBlock *Last) {
2415   // Update JTCases.
2416   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2417     if (JTCases[i].first.HeaderBB == First)
2418       JTCases[i].first.HeaderBB = Last;
2419 
2420   // Update BitTestCases.
2421   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2422     if (BitTestCases[i].Parent == First)
2423       BitTestCases[i].Parent = Last;
2424 }
2425 
2426 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2427   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2428 
2429   // Update machine-CFG edges with unique successors.
2430   SmallSet<BasicBlock*, 32> Done;
2431   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2432     BasicBlock *BB = I.getSuccessor(i);
2433     bool Inserted = Done.insert(BB).second;
2434     if (!Inserted)
2435         continue;
2436 
2437     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2438     addSuccessorWithProb(IndirectBrMBB, Succ);
2439   }
2440   IndirectBrMBB->normalizeSuccProbs();
2441 
2442   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2443                           MVT::Other, getControlRoot(),
2444                           getValue(I.getAddress())));
2445 }
2446 
2447 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2448   if (DAG.getTarget().Options.TrapUnreachable)
2449     DAG.setRoot(
2450         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2451 }
2452 
2453 void SelectionDAGBuilder::visitFSub(const User &I) {
2454   // -0.0 - X --> fneg
2455   Type *Ty = I.getType();
2456   if (isa<Constant>(I.getOperand(0)) &&
2457       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2458     SDValue Op2 = getValue(I.getOperand(1));
2459     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2460                              Op2.getValueType(), Op2));
2461     return;
2462   }
2463 
2464   visitBinary(I, ISD::FSUB);
2465 }
2466 
2467 /// Checks if the given instruction performs a vector reduction, in which case
2468 /// we have the freedom to alter the elements in the result as long as the
2469 /// reduction of them stays unchanged.
2470 static bool isVectorReductionOp(const User *I) {
2471   const Instruction *Inst = dyn_cast<Instruction>(I);
2472   if (!Inst || !Inst->getType()->isVectorTy())
2473     return false;
2474 
2475   auto OpCode = Inst->getOpcode();
2476   switch (OpCode) {
2477   case Instruction::Add:
2478   case Instruction::Mul:
2479   case Instruction::And:
2480   case Instruction::Or:
2481   case Instruction::Xor:
2482     break;
2483   case Instruction::FAdd:
2484   case Instruction::FMul:
2485     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2486       if (FPOp->getFastMathFlags().unsafeAlgebra())
2487         break;
2488     // Fall through.
2489   default:
2490     return false;
2491   }
2492 
2493   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2494   unsigned ElemNumToReduce = ElemNum;
2495 
2496   // Do DFS search on the def-use chain from the given instruction. We only
2497   // allow four kinds of operations during the search until we reach the
2498   // instruction that extracts the first element from the vector:
2499   //
2500   //   1. The reduction operation of the same opcode as the given instruction.
2501   //
2502   //   2. PHI node.
2503   //
2504   //   3. ShuffleVector instruction together with a reduction operation that
2505   //      does a partial reduction.
2506   //
2507   //   4. ExtractElement that extracts the first element from the vector, and we
2508   //      stop searching the def-use chain here.
2509   //
2510   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2511   // from 1-3 to the stack to continue the DFS. The given instruction is not
2512   // a reduction operation if we meet any other instructions other than those
2513   // listed above.
2514 
2515   SmallVector<const User *, 16> UsersToVisit{Inst};
2516   SmallPtrSet<const User *, 16> Visited;
2517   bool ReduxExtracted = false;
2518 
2519   while (!UsersToVisit.empty()) {
2520     auto User = UsersToVisit.back();
2521     UsersToVisit.pop_back();
2522     if (!Visited.insert(User).second)
2523       continue;
2524 
2525     for (const auto &U : User->users()) {
2526       auto Inst = dyn_cast<Instruction>(U);
2527       if (!Inst)
2528         return false;
2529 
2530       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2531         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2532           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2533             return false;
2534         UsersToVisit.push_back(U);
2535       } else if (const ShuffleVectorInst *ShufInst =
2536                      dyn_cast<ShuffleVectorInst>(U)) {
2537         // Detect the following pattern: A ShuffleVector instruction together
2538         // with a reduction that do partial reduction on the first and second
2539         // ElemNumToReduce / 2 elements, and store the result in
2540         // ElemNumToReduce / 2 elements in another vector.
2541 
2542         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2543         if (ResultElements < ElemNum)
2544           return false;
2545 
2546         if (ElemNumToReduce == 1)
2547           return false;
2548         if (!isa<UndefValue>(U->getOperand(1)))
2549           return false;
2550         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2551           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2552             return false;
2553         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2554           if (ShufInst->getMaskValue(i) != -1)
2555             return false;
2556 
2557         // There is only one user of this ShuffleVector instruction, which
2558         // must be a reduction operation.
2559         if (!U->hasOneUse())
2560           return false;
2561 
2562         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2563         if (!U2 || U2->getOpcode() != OpCode)
2564           return false;
2565 
2566         // Check operands of the reduction operation.
2567         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2568             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2569           UsersToVisit.push_back(U2);
2570           ElemNumToReduce /= 2;
2571         } else
2572           return false;
2573       } else if (isa<ExtractElementInst>(U)) {
2574         // At this moment we should have reduced all elements in the vector.
2575         if (ElemNumToReduce != 1)
2576           return false;
2577 
2578         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2579         if (!Val || Val->getZExtValue() != 0)
2580           return false;
2581 
2582         ReduxExtracted = true;
2583       } else
2584         return false;
2585     }
2586   }
2587   return ReduxExtracted;
2588 }
2589 
2590 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2591   SDValue Op1 = getValue(I.getOperand(0));
2592   SDValue Op2 = getValue(I.getOperand(1));
2593 
2594   bool nuw = false;
2595   bool nsw = false;
2596   bool exact = false;
2597   bool vec_redux = false;
2598   FastMathFlags FMF;
2599 
2600   if (const OverflowingBinaryOperator *OFBinOp =
2601           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2602     nuw = OFBinOp->hasNoUnsignedWrap();
2603     nsw = OFBinOp->hasNoSignedWrap();
2604   }
2605   if (const PossiblyExactOperator *ExactOp =
2606           dyn_cast<const PossiblyExactOperator>(&I))
2607     exact = ExactOp->isExact();
2608   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2609     FMF = FPOp->getFastMathFlags();
2610 
2611   if (isVectorReductionOp(&I)) {
2612     vec_redux = true;
2613     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2614   }
2615 
2616   SDNodeFlags Flags;
2617   Flags.setExact(exact);
2618   Flags.setNoSignedWrap(nsw);
2619   Flags.setNoUnsignedWrap(nuw);
2620   Flags.setVectorReduction(vec_redux);
2621   if (EnableFMFInDAG) {
2622     Flags.setAllowReciprocal(FMF.allowReciprocal());
2623     Flags.setNoInfs(FMF.noInfs());
2624     Flags.setNoNaNs(FMF.noNaNs());
2625     Flags.setNoSignedZeros(FMF.noSignedZeros());
2626     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2627   }
2628   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2629                                      Op1, Op2, &Flags);
2630   setValue(&I, BinNodeValue);
2631 }
2632 
2633 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2634   SDValue Op1 = getValue(I.getOperand(0));
2635   SDValue Op2 = getValue(I.getOperand(1));
2636 
2637   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2638       Op2.getValueType(), DAG.getDataLayout());
2639 
2640   // Coerce the shift amount to the right type if we can.
2641   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2642     unsigned ShiftSize = ShiftTy.getSizeInBits();
2643     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2644     SDLoc DL = getCurSDLoc();
2645 
2646     // If the operand is smaller than the shift count type, promote it.
2647     if (ShiftSize > Op2Size)
2648       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2649 
2650     // If the operand is larger than the shift count type but the shift
2651     // count type has enough bits to represent any shift value, truncate
2652     // it now. This is a common case and it exposes the truncate to
2653     // optimization early.
2654     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2655       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2656     // Otherwise we'll need to temporarily settle for some other convenient
2657     // type.  Type legalization will make adjustments once the shiftee is split.
2658     else
2659       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2660   }
2661 
2662   bool nuw = false;
2663   bool nsw = false;
2664   bool exact = false;
2665 
2666   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2667 
2668     if (const OverflowingBinaryOperator *OFBinOp =
2669             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2670       nuw = OFBinOp->hasNoUnsignedWrap();
2671       nsw = OFBinOp->hasNoSignedWrap();
2672     }
2673     if (const PossiblyExactOperator *ExactOp =
2674             dyn_cast<const PossiblyExactOperator>(&I))
2675       exact = ExactOp->isExact();
2676   }
2677   SDNodeFlags Flags;
2678   Flags.setExact(exact);
2679   Flags.setNoSignedWrap(nsw);
2680   Flags.setNoUnsignedWrap(nuw);
2681   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2682                             &Flags);
2683   setValue(&I, Res);
2684 }
2685 
2686 void SelectionDAGBuilder::visitSDiv(const User &I) {
2687   SDValue Op1 = getValue(I.getOperand(0));
2688   SDValue Op2 = getValue(I.getOperand(1));
2689 
2690   SDNodeFlags Flags;
2691   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2692                  cast<PossiblyExactOperator>(&I)->isExact());
2693   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2694                            Op2, &Flags));
2695 }
2696 
2697 void SelectionDAGBuilder::visitICmp(const User &I) {
2698   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2699   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2700     predicate = IC->getPredicate();
2701   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2702     predicate = ICmpInst::Predicate(IC->getPredicate());
2703   SDValue Op1 = getValue(I.getOperand(0));
2704   SDValue Op2 = getValue(I.getOperand(1));
2705   ISD::CondCode Opcode = getICmpCondCode(predicate);
2706 
2707   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2708                                                         I.getType());
2709   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2710 }
2711 
2712 void SelectionDAGBuilder::visitFCmp(const User &I) {
2713   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2714   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2715     predicate = FC->getPredicate();
2716   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2717     predicate = FCmpInst::Predicate(FC->getPredicate());
2718   SDValue Op1 = getValue(I.getOperand(0));
2719   SDValue Op2 = getValue(I.getOperand(1));
2720   ISD::CondCode Condition = getFCmpCondCode(predicate);
2721 
2722   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2723   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2724   // further optimization, but currently FMF is only applicable to binary nodes.
2725   if (TM.Options.NoNaNsFPMath)
2726     Condition = getFCmpCodeWithoutNaN(Condition);
2727   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2728                                                         I.getType());
2729   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2730 }
2731 
2732 // Check if the condition of the select has one use or two users that are both
2733 // selects with the same condition.
2734 bool hasOnlySelectUsers(const Value *Cond) {
2735   return std::all_of(Cond->user_begin(), Cond->user_end(), [](const Value *V) {
2736     return isa<SelectInst>(V);
2737   });
2738 }
2739 
2740 void SelectionDAGBuilder::visitSelect(const User &I) {
2741   SmallVector<EVT, 4> ValueVTs;
2742   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2743                   ValueVTs);
2744   unsigned NumValues = ValueVTs.size();
2745   if (NumValues == 0) return;
2746 
2747   SmallVector<SDValue, 4> Values(NumValues);
2748   SDValue Cond     = getValue(I.getOperand(0));
2749   SDValue LHSVal   = getValue(I.getOperand(1));
2750   SDValue RHSVal   = getValue(I.getOperand(2));
2751   auto BaseOps = {Cond};
2752   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2753     ISD::VSELECT : ISD::SELECT;
2754 
2755   // Min/max matching is only viable if all output VTs are the same.
2756   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2757     EVT VT = ValueVTs[0];
2758     LLVMContext &Ctx = *DAG.getContext();
2759     auto &TLI = DAG.getTargetLoweringInfo();
2760 
2761     // We care about the legality of the operation after it has been type
2762     // legalized.
2763     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2764            VT != TLI.getTypeToTransformTo(Ctx, VT))
2765       VT = TLI.getTypeToTransformTo(Ctx, VT);
2766 
2767     // If the vselect is legal, assume we want to leave this as a vector setcc +
2768     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2769     // min/max is legal on the scalar type.
2770     bool UseScalarMinMax = VT.isVector() &&
2771       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2772 
2773     Value *LHS, *RHS;
2774     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2775     ISD::NodeType Opc = ISD::DELETED_NODE;
2776     switch (SPR.Flavor) {
2777     case SPF_UMAX:    Opc = ISD::UMAX; break;
2778     case SPF_UMIN:    Opc = ISD::UMIN; break;
2779     case SPF_SMAX:    Opc = ISD::SMAX; break;
2780     case SPF_SMIN:    Opc = ISD::SMIN; break;
2781     case SPF_FMINNUM:
2782       switch (SPR.NaNBehavior) {
2783       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2784       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2785       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2786       case SPNB_RETURNS_ANY: {
2787         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2788           Opc = ISD::FMINNUM;
2789         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2790           Opc = ISD::FMINNAN;
2791         else if (UseScalarMinMax)
2792           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2793             ISD::FMINNUM : ISD::FMINNAN;
2794         break;
2795       }
2796       }
2797       break;
2798     case SPF_FMAXNUM:
2799       switch (SPR.NaNBehavior) {
2800       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2801       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2802       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2803       case SPNB_RETURNS_ANY:
2804 
2805         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2806           Opc = ISD::FMAXNUM;
2807         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2808           Opc = ISD::FMAXNAN;
2809         else if (UseScalarMinMax)
2810           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2811             ISD::FMAXNUM : ISD::FMAXNAN;
2812         break;
2813       }
2814       break;
2815     default: break;
2816     }
2817 
2818     if (Opc != ISD::DELETED_NODE &&
2819         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2820          (UseScalarMinMax &&
2821           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2822         // If the underlying comparison instruction is used by any other
2823         // instruction, the consumed instructions won't be destroyed, so it is
2824         // not profitable to convert to a min/max.
2825         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2826       OpCode = Opc;
2827       LHSVal = getValue(LHS);
2828       RHSVal = getValue(RHS);
2829       BaseOps = {};
2830     }
2831   }
2832 
2833   for (unsigned i = 0; i != NumValues; ++i) {
2834     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2835     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2836     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2837     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2838                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2839                             Ops);
2840   }
2841 
2842   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2843                            DAG.getVTList(ValueVTs), Values));
2844 }
2845 
2846 void SelectionDAGBuilder::visitTrunc(const User &I) {
2847   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2848   SDValue N = getValue(I.getOperand(0));
2849   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2850                                                         I.getType());
2851   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2852 }
2853 
2854 void SelectionDAGBuilder::visitZExt(const User &I) {
2855   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2856   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2857   SDValue N = getValue(I.getOperand(0));
2858   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2859                                                         I.getType());
2860   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2861 }
2862 
2863 void SelectionDAGBuilder::visitSExt(const User &I) {
2864   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2865   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2866   SDValue N = getValue(I.getOperand(0));
2867   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2868                                                         I.getType());
2869   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2870 }
2871 
2872 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2873   // FPTrunc is never a no-op cast, no need to check
2874   SDValue N = getValue(I.getOperand(0));
2875   SDLoc dl = getCurSDLoc();
2876   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2877   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2878   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2879                            DAG.getTargetConstant(
2880                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2881 }
2882 
2883 void SelectionDAGBuilder::visitFPExt(const User &I) {
2884   // FPExt is never a no-op cast, no need to check
2885   SDValue N = getValue(I.getOperand(0));
2886   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2887                                                         I.getType());
2888   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2889 }
2890 
2891 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2892   // FPToUI is never a no-op cast, no need to check
2893   SDValue N = getValue(I.getOperand(0));
2894   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2895                                                         I.getType());
2896   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2897 }
2898 
2899 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2900   // FPToSI is never a no-op cast, no need to check
2901   SDValue N = getValue(I.getOperand(0));
2902   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2903                                                         I.getType());
2904   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2905 }
2906 
2907 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2908   // UIToFP is never a no-op cast, no need to check
2909   SDValue N = getValue(I.getOperand(0));
2910   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2911                                                         I.getType());
2912   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2913 }
2914 
2915 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2916   // SIToFP is never a no-op cast, no need to check
2917   SDValue N = getValue(I.getOperand(0));
2918   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2919                                                         I.getType());
2920   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2921 }
2922 
2923 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2924   // What to do depends on the size of the integer and the size of the pointer.
2925   // We can either truncate, zero extend, or no-op, accordingly.
2926   SDValue N = getValue(I.getOperand(0));
2927   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2928                                                         I.getType());
2929   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2930 }
2931 
2932 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2933   // What to do depends on the size of the integer and the size of the pointer.
2934   // We can either truncate, zero extend, or no-op, accordingly.
2935   SDValue N = getValue(I.getOperand(0));
2936   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2937                                                         I.getType());
2938   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2939 }
2940 
2941 void SelectionDAGBuilder::visitBitCast(const User &I) {
2942   SDValue N = getValue(I.getOperand(0));
2943   SDLoc dl = getCurSDLoc();
2944   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2945                                                         I.getType());
2946 
2947   // BitCast assures us that source and destination are the same size so this is
2948   // either a BITCAST or a no-op.
2949   if (DestVT != N.getValueType())
2950     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2951                              DestVT, N)); // convert types.
2952   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2953   // might fold any kind of constant expression to an integer constant and that
2954   // is not what we are looking for. Only regcognize a bitcast of a genuine
2955   // constant integer as an opaque constant.
2956   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2957     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2958                                  /*isOpaque*/true));
2959   else
2960     setValue(&I, N);            // noop cast.
2961 }
2962 
2963 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2965   const Value *SV = I.getOperand(0);
2966   SDValue N = getValue(SV);
2967   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2968 
2969   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2970   unsigned DestAS = I.getType()->getPointerAddressSpace();
2971 
2972   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2973     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2974 
2975   setValue(&I, N);
2976 }
2977 
2978 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2980   SDValue InVec = getValue(I.getOperand(0));
2981   SDValue InVal = getValue(I.getOperand(1));
2982   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2983                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2984   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2985                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2986                            InVec, InVal, InIdx));
2987 }
2988 
2989 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2991   SDValue InVec = getValue(I.getOperand(0));
2992   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2993                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2994   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2995                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2996                            InVec, InIdx));
2997 }
2998 
2999 // Utility for visitShuffleVector - Return true if every element in Mask,
3000 // beginning from position Pos and ending in Pos+Size, falls within the
3001 // specified sequential range [L, L+Pos). or is undef.
3002 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3003                                 unsigned Pos, unsigned Size, int Low) {
3004   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3005     if (Mask[i] >= 0 && Mask[i] != Low)
3006       return false;
3007   return true;
3008 }
3009 
3010 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3011   SDValue Src1 = getValue(I.getOperand(0));
3012   SDValue Src2 = getValue(I.getOperand(1));
3013 
3014   SmallVector<int, 8> Mask;
3015   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3016   unsigned MaskNumElts = Mask.size();
3017 
3018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3019   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3020   EVT SrcVT = Src1.getValueType();
3021   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3022 
3023   if (SrcNumElts == MaskNumElts) {
3024     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3025                                       &Mask[0]));
3026     return;
3027   }
3028 
3029   // Normalize the shuffle vector since mask and vector length don't match.
3030   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3031     // Mask is longer than the source vectors and is a multiple of the source
3032     // vectors.  We can use concatenate vector to make the mask and vectors
3033     // lengths match.
3034     if (SrcNumElts*2 == MaskNumElts) {
3035       // First check for Src1 in low and Src2 in high
3036       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3037           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3038         // The shuffle is concatenating two vectors together.
3039         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3040                                  VT, Src1, Src2));
3041         return;
3042       }
3043       // Then check for Src2 in low and Src1 in high
3044       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3045           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3046         // The shuffle is concatenating two vectors together.
3047         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3048                                  VT, Src2, Src1));
3049         return;
3050       }
3051     }
3052 
3053     // Pad both vectors with undefs to make them the same length as the mask.
3054     unsigned NumConcat = MaskNumElts / SrcNumElts;
3055     bool Src1U = Src1.isUndef();
3056     bool Src2U = Src2.isUndef();
3057     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3058 
3059     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3060     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3061     MOps1[0] = Src1;
3062     MOps2[0] = Src2;
3063 
3064     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3065                                                   getCurSDLoc(), VT, MOps1);
3066     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3067                                                   getCurSDLoc(), VT, MOps2);
3068 
3069     // Readjust mask for new input vector length.
3070     SmallVector<int, 8> MappedOps;
3071     for (unsigned i = 0; i != MaskNumElts; ++i) {
3072       int Idx = Mask[i];
3073       if (Idx >= (int)SrcNumElts)
3074         Idx -= SrcNumElts - MaskNumElts;
3075       MappedOps.push_back(Idx);
3076     }
3077 
3078     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3079                                       &MappedOps[0]));
3080     return;
3081   }
3082 
3083   if (SrcNumElts > MaskNumElts) {
3084     // Analyze the access pattern of the vector to see if we can extract
3085     // two subvectors and do the shuffle. The analysis is done by calculating
3086     // the range of elements the mask access on both vectors.
3087     int MinRange[2] = { static_cast<int>(SrcNumElts),
3088                         static_cast<int>(SrcNumElts)};
3089     int MaxRange[2] = {-1, -1};
3090 
3091     for (unsigned i = 0; i != MaskNumElts; ++i) {
3092       int Idx = Mask[i];
3093       unsigned Input = 0;
3094       if (Idx < 0)
3095         continue;
3096 
3097       if (Idx >= (int)SrcNumElts) {
3098         Input = 1;
3099         Idx -= SrcNumElts;
3100       }
3101       if (Idx > MaxRange[Input])
3102         MaxRange[Input] = Idx;
3103       if (Idx < MinRange[Input])
3104         MinRange[Input] = Idx;
3105     }
3106 
3107     // Check if the access is smaller than the vector size and can we find
3108     // a reasonable extract index.
3109     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3110                                    // Extract.
3111     int StartIdx[2];  // StartIdx to extract from
3112     for (unsigned Input = 0; Input < 2; ++Input) {
3113       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3114         RangeUse[Input] = 0; // Unused
3115         StartIdx[Input] = 0;
3116         continue;
3117       }
3118 
3119       // Find a good start index that is a multiple of the mask length. Then
3120       // see if the rest of the elements are in range.
3121       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3122       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3123           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3124         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3125     }
3126 
3127     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3128       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3129       return;
3130     }
3131     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3132       // Extract appropriate subvector and generate a vector shuffle
3133       for (unsigned Input = 0; Input < 2; ++Input) {
3134         SDValue &Src = Input == 0 ? Src1 : Src2;
3135         if (RangeUse[Input] == 0)
3136           Src = DAG.getUNDEF(VT);
3137         else {
3138           SDLoc dl = getCurSDLoc();
3139           Src = DAG.getNode(
3140               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
3141               DAG.getConstant(StartIdx[Input], dl,
3142                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3143         }
3144       }
3145 
3146       // Calculate new mask.
3147       SmallVector<int, 8> MappedOps;
3148       for (unsigned i = 0; i != MaskNumElts; ++i) {
3149         int Idx = Mask[i];
3150         if (Idx >= 0) {
3151           if (Idx < (int)SrcNumElts)
3152             Idx -= StartIdx[0];
3153           else
3154             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3155         }
3156         MappedOps.push_back(Idx);
3157       }
3158 
3159       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3160                                         &MappedOps[0]));
3161       return;
3162     }
3163   }
3164 
3165   // We can't use either concat vectors or extract subvectors so fall back to
3166   // replacing the shuffle with extract and build vector.
3167   // to insert and build vector.
3168   EVT EltVT = VT.getVectorElementType();
3169   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3170   SDLoc dl = getCurSDLoc();
3171   SmallVector<SDValue,8> Ops;
3172   for (unsigned i = 0; i != MaskNumElts; ++i) {
3173     int Idx = Mask[i];
3174     SDValue Res;
3175 
3176     if (Idx < 0) {
3177       Res = DAG.getUNDEF(EltVT);
3178     } else {
3179       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3180       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3181 
3182       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3183                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3184     }
3185 
3186     Ops.push_back(Res);
3187   }
3188 
3189   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3190 }
3191 
3192 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3193   const Value *Op0 = I.getOperand(0);
3194   const Value *Op1 = I.getOperand(1);
3195   Type *AggTy = I.getType();
3196   Type *ValTy = Op1->getType();
3197   bool IntoUndef = isa<UndefValue>(Op0);
3198   bool FromUndef = isa<UndefValue>(Op1);
3199 
3200   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3201 
3202   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3203   SmallVector<EVT, 4> AggValueVTs;
3204   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3205   SmallVector<EVT, 4> ValValueVTs;
3206   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3207 
3208   unsigned NumAggValues = AggValueVTs.size();
3209   unsigned NumValValues = ValValueVTs.size();
3210   SmallVector<SDValue, 4> Values(NumAggValues);
3211 
3212   // Ignore an insertvalue that produces an empty object
3213   if (!NumAggValues) {
3214     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3215     return;
3216   }
3217 
3218   SDValue Agg = getValue(Op0);
3219   unsigned i = 0;
3220   // Copy the beginning value(s) from the original aggregate.
3221   for (; i != LinearIndex; ++i)
3222     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3223                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3224   // Copy values from the inserted value(s).
3225   if (NumValValues) {
3226     SDValue Val = getValue(Op1);
3227     for (; i != LinearIndex + NumValValues; ++i)
3228       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3229                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3230   }
3231   // Copy remaining value(s) from the original aggregate.
3232   for (; i != NumAggValues; ++i)
3233     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3234                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3235 
3236   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3237                            DAG.getVTList(AggValueVTs), Values));
3238 }
3239 
3240 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3241   const Value *Op0 = I.getOperand(0);
3242   Type *AggTy = Op0->getType();
3243   Type *ValTy = I.getType();
3244   bool OutOfUndef = isa<UndefValue>(Op0);
3245 
3246   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3247 
3248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3249   SmallVector<EVT, 4> ValValueVTs;
3250   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3251 
3252   unsigned NumValValues = ValValueVTs.size();
3253 
3254   // Ignore a extractvalue that produces an empty object
3255   if (!NumValValues) {
3256     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3257     return;
3258   }
3259 
3260   SmallVector<SDValue, 4> Values(NumValValues);
3261 
3262   SDValue Agg = getValue(Op0);
3263   // Copy out the selected value(s).
3264   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3265     Values[i - LinearIndex] =
3266       OutOfUndef ?
3267         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3268         SDValue(Agg.getNode(), Agg.getResNo() + i);
3269 
3270   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3271                            DAG.getVTList(ValValueVTs), Values));
3272 }
3273 
3274 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3275   Value *Op0 = I.getOperand(0);
3276   // Note that the pointer operand may be a vector of pointers. Take the scalar
3277   // element which holds a pointer.
3278   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3279   SDValue N = getValue(Op0);
3280   SDLoc dl = getCurSDLoc();
3281 
3282   // Normalize Vector GEP - all scalar operands should be converted to the
3283   // splat vector.
3284   unsigned VectorWidth = I.getType()->isVectorTy() ?
3285     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3286 
3287   if (VectorWidth && !N.getValueType().isVector()) {
3288     LLVMContext &Context = *DAG.getContext();
3289     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3290     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3291     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3292   }
3293   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3294        GTI != E; ++GTI) {
3295     const Value *Idx = GTI.getOperand();
3296     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3297       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3298       if (Field) {
3299         // N = N + Offset
3300         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3301 
3302         // In an inbouds GEP with an offset that is nonnegative even when
3303         // interpreted as signed, assume there is no unsigned overflow.
3304         SDNodeFlags Flags;
3305         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3306           Flags.setNoUnsignedWrap(true);
3307 
3308         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3309                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3310       }
3311     } else {
3312       MVT PtrTy =
3313           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3314       unsigned PtrSize = PtrTy.getSizeInBits();
3315       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3316 
3317       // If this is a scalar constant or a splat vector of constants,
3318       // handle it quickly.
3319       const auto *CI = dyn_cast<ConstantInt>(Idx);
3320       if (!CI && isa<ConstantDataVector>(Idx) &&
3321           cast<ConstantDataVector>(Idx)->getSplatValue())
3322         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3323 
3324       if (CI) {
3325         if (CI->isZero())
3326           continue;
3327         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3328         SDValue OffsVal = VectorWidth ?
3329           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3330           DAG.getConstant(Offs, dl, PtrTy);
3331 
3332         // In an inbouds GEP with an offset that is nonnegative even when
3333         // interpreted as signed, assume there is no unsigned overflow.
3334         SDNodeFlags Flags;
3335         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3336           Flags.setNoUnsignedWrap(true);
3337 
3338         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3339         continue;
3340       }
3341 
3342       // N = N + Idx * ElementSize;
3343       SDValue IdxN = getValue(Idx);
3344 
3345       if (!IdxN.getValueType().isVector() && VectorWidth) {
3346         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3347         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3348         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3349       }
3350       // If the index is smaller or larger than intptr_t, truncate or extend
3351       // it.
3352       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3353 
3354       // If this is a multiply by a power of two, turn it into a shl
3355       // immediately.  This is a very common case.
3356       if (ElementSize != 1) {
3357         if (ElementSize.isPowerOf2()) {
3358           unsigned Amt = ElementSize.logBase2();
3359           IdxN = DAG.getNode(ISD::SHL, dl,
3360                              N.getValueType(), IdxN,
3361                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3362         } else {
3363           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3364           IdxN = DAG.getNode(ISD::MUL, dl,
3365                              N.getValueType(), IdxN, Scale);
3366         }
3367       }
3368 
3369       N = DAG.getNode(ISD::ADD, dl,
3370                       N.getValueType(), N, IdxN);
3371     }
3372   }
3373 
3374   setValue(&I, N);
3375 }
3376 
3377 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3378   // If this is a fixed sized alloca in the entry block of the function,
3379   // allocate it statically on the stack.
3380   if (FuncInfo.StaticAllocaMap.count(&I))
3381     return;   // getValue will auto-populate this.
3382 
3383   SDLoc dl = getCurSDLoc();
3384   Type *Ty = I.getAllocatedType();
3385   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3386   auto &DL = DAG.getDataLayout();
3387   uint64_t TySize = DL.getTypeAllocSize(Ty);
3388   unsigned Align =
3389       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3390 
3391   SDValue AllocSize = getValue(I.getArraySize());
3392 
3393   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3394   if (AllocSize.getValueType() != IntPtr)
3395     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3396 
3397   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3398                           AllocSize,
3399                           DAG.getConstant(TySize, dl, IntPtr));
3400 
3401   // Handle alignment.  If the requested alignment is less than or equal to
3402   // the stack alignment, ignore it.  If the size is greater than or equal to
3403   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3404   unsigned StackAlign =
3405       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3406   if (Align <= StackAlign)
3407     Align = 0;
3408 
3409   // Round the size of the allocation up to the stack alignment size
3410   // by add SA-1 to the size. This doesn't overflow because we're computing
3411   // an address inside an alloca.
3412   SDNodeFlags Flags;
3413   Flags.setNoUnsignedWrap(true);
3414   AllocSize = DAG.getNode(ISD::ADD, dl,
3415                           AllocSize.getValueType(), AllocSize,
3416                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3417 
3418   // Mask out the low bits for alignment purposes.
3419   AllocSize = DAG.getNode(ISD::AND, dl,
3420                           AllocSize.getValueType(), AllocSize,
3421                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3422                                                 dl));
3423 
3424   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3425   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3426   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3427   setValue(&I, DSA);
3428   DAG.setRoot(DSA.getValue(1));
3429 
3430   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3431 }
3432 
3433 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3434   if (I.isAtomic())
3435     return visitAtomicLoad(I);
3436 
3437   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3438   const Value *SV = I.getOperand(0);
3439   if (TLI.supportSwiftError()) {
3440     // Swifterror values can come from either a function parameter with
3441     // swifterror attribute or an alloca with swifterror attribute.
3442     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3443       if (Arg->hasSwiftErrorAttr())
3444         return visitLoadFromSwiftError(I);
3445     }
3446 
3447     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3448       if (Alloca->isSwiftError())
3449         return visitLoadFromSwiftError(I);
3450     }
3451   }
3452 
3453   SDValue Ptr = getValue(SV);
3454 
3455   Type *Ty = I.getType();
3456 
3457   bool isVolatile = I.isVolatile();
3458   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3459 
3460   // The IR notion of invariant_load only guarantees that all *non-faulting*
3461   // invariant loads result in the same value.  The MI notion of invariant load
3462   // guarantees that the load can be legally moved to any location within its
3463   // containing function.  The MI notion of invariant_load is stronger than the
3464   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3465   // with a guarantee that the location being loaded from is dereferenceable
3466   // throughout the function's lifetime.
3467 
3468   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3469                      isDereferenceablePointer(SV, DAG.getDataLayout());
3470   unsigned Alignment = I.getAlignment();
3471 
3472   AAMDNodes AAInfo;
3473   I.getAAMetadata(AAInfo);
3474   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3475 
3476   SmallVector<EVT, 4> ValueVTs;
3477   SmallVector<uint64_t, 4> Offsets;
3478   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3479   unsigned NumValues = ValueVTs.size();
3480   if (NumValues == 0)
3481     return;
3482 
3483   SDValue Root;
3484   bool ConstantMemory = false;
3485   if (isVolatile || NumValues > MaxParallelChains)
3486     // Serialize volatile loads with other side effects.
3487     Root = getRoot();
3488   else if (AA->pointsToConstantMemory(MemoryLocation(
3489                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3490     // Do not serialize (non-volatile) loads of constant memory with anything.
3491     Root = DAG.getEntryNode();
3492     ConstantMemory = true;
3493   } else {
3494     // Do not serialize non-volatile loads against each other.
3495     Root = DAG.getRoot();
3496   }
3497 
3498   SDLoc dl = getCurSDLoc();
3499 
3500   if (isVolatile)
3501     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3502 
3503   // An aggregate load cannot wrap around the address space, so offsets to its
3504   // parts don't wrap either.
3505   SDNodeFlags Flags;
3506   Flags.setNoUnsignedWrap(true);
3507 
3508   SmallVector<SDValue, 4> Values(NumValues);
3509   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3510   EVT PtrVT = Ptr.getValueType();
3511   unsigned ChainI = 0;
3512   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3513     // Serializing loads here may result in excessive register pressure, and
3514     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3515     // could recover a bit by hoisting nodes upward in the chain by recognizing
3516     // they are side-effect free or do not alias. The optimizer should really
3517     // avoid this case by converting large object/array copies to llvm.memcpy
3518     // (MaxParallelChains should always remain as failsafe).
3519     if (ChainI == MaxParallelChains) {
3520       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3521       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3522                                   makeArrayRef(Chains.data(), ChainI));
3523       Root = Chain;
3524       ChainI = 0;
3525     }
3526     SDValue A = DAG.getNode(ISD::ADD, dl,
3527                             PtrVT, Ptr,
3528                             DAG.getConstant(Offsets[i], dl, PtrVT),
3529                             &Flags);
3530     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3531                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3532                             isNonTemporal, isInvariant, Alignment, AAInfo,
3533                             Ranges);
3534 
3535     Values[i] = L;
3536     Chains[ChainI] = L.getValue(1);
3537   }
3538 
3539   if (!ConstantMemory) {
3540     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3541                                 makeArrayRef(Chains.data(), ChainI));
3542     if (isVolatile)
3543       DAG.setRoot(Chain);
3544     else
3545       PendingLoads.push_back(Chain);
3546   }
3547 
3548   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3549                            DAG.getVTList(ValueVTs), Values));
3550 }
3551 
3552 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3553   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3554   assert(TLI.supportSwiftError() &&
3555          "call visitStoreToSwiftError when backend supports swifterror");
3556 
3557   SmallVector<EVT, 4> ValueVTs;
3558   SmallVector<uint64_t, 4> Offsets;
3559   const Value *SrcV = I.getOperand(0);
3560   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3561                   SrcV->getType(), ValueVTs, &Offsets);
3562   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3563          "expect a single EVT for swifterror");
3564 
3565   SDValue Src = getValue(SrcV);
3566   // Create a virtual register, then update the virtual register.
3567   auto &DL = DAG.getDataLayout();
3568   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3569   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3570   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3571   // Chain can be getRoot or getControlRoot.
3572   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3573                                       SDValue(Src.getNode(), Src.getResNo()));
3574   DAG.setRoot(CopyNode);
3575   FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3576 }
3577 
3578 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3579   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3580          "call visitLoadFromSwiftError when backend supports swifterror");
3581 
3582   assert(!I.isVolatile() &&
3583          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3584          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3585          "Support volatile, non temporal, invariant for load_from_swift_error");
3586 
3587   const Value *SV = I.getOperand(0);
3588   Type *Ty = I.getType();
3589   AAMDNodes AAInfo;
3590   I.getAAMetadata(AAInfo);
3591   assert(!AA->pointsToConstantMemory(MemoryLocation(
3592              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3593          "load_from_swift_error should not be constant memory");
3594 
3595   SmallVector<EVT, 4> ValueVTs;
3596   SmallVector<uint64_t, 4> Offsets;
3597   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3598                   ValueVTs, &Offsets);
3599   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3600          "expect a single EVT for swifterror");
3601 
3602   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3603   SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3604                                  FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3605                                  ValueVTs[0]);
3606 
3607   setValue(&I, L);
3608 }
3609 
3610 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3611   if (I.isAtomic())
3612     return visitAtomicStore(I);
3613 
3614   const Value *SrcV = I.getOperand(0);
3615   const Value *PtrV = I.getOperand(1);
3616 
3617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3618   if (TLI.supportSwiftError()) {
3619     // Swifterror values can come from either a function parameter with
3620     // swifterror attribute or an alloca with swifterror attribute.
3621     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3622       if (Arg->hasSwiftErrorAttr())
3623         return visitStoreToSwiftError(I);
3624     }
3625 
3626     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3627       if (Alloca->isSwiftError())
3628         return visitStoreToSwiftError(I);
3629     }
3630   }
3631 
3632   SmallVector<EVT, 4> ValueVTs;
3633   SmallVector<uint64_t, 4> Offsets;
3634   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3635                   SrcV->getType(), ValueVTs, &Offsets);
3636   unsigned NumValues = ValueVTs.size();
3637   if (NumValues == 0)
3638     return;
3639 
3640   // Get the lowered operands. Note that we do this after
3641   // checking if NumResults is zero, because with zero results
3642   // the operands won't have values in the map.
3643   SDValue Src = getValue(SrcV);
3644   SDValue Ptr = getValue(PtrV);
3645 
3646   SDValue Root = getRoot();
3647   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3648   EVT PtrVT = Ptr.getValueType();
3649   bool isVolatile = I.isVolatile();
3650   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3651   unsigned Alignment = I.getAlignment();
3652   SDLoc dl = getCurSDLoc();
3653 
3654   AAMDNodes AAInfo;
3655   I.getAAMetadata(AAInfo);
3656 
3657   // An aggregate load cannot wrap around the address space, so offsets to its
3658   // parts don't wrap either.
3659   SDNodeFlags Flags;
3660   Flags.setNoUnsignedWrap(true);
3661 
3662   unsigned ChainI = 0;
3663   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3664     // See visitLoad comments.
3665     if (ChainI == MaxParallelChains) {
3666       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3667                                   makeArrayRef(Chains.data(), ChainI));
3668       Root = Chain;
3669       ChainI = 0;
3670     }
3671     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3672                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3673     SDValue St = DAG.getStore(Root, dl,
3674                               SDValue(Src.getNode(), Src.getResNo() + i),
3675                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3676                               isVolatile, isNonTemporal, Alignment, AAInfo);
3677     Chains[ChainI] = St;
3678   }
3679 
3680   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3681                                   makeArrayRef(Chains.data(), ChainI));
3682   DAG.setRoot(StoreNode);
3683 }
3684 
3685 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3686   SDLoc sdl = getCurSDLoc();
3687 
3688   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3689   Value  *PtrOperand = I.getArgOperand(1);
3690   SDValue Ptr = getValue(PtrOperand);
3691   SDValue Src0 = getValue(I.getArgOperand(0));
3692   SDValue Mask = getValue(I.getArgOperand(3));
3693   EVT VT = Src0.getValueType();
3694   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3695   if (!Alignment)
3696     Alignment = DAG.getEVTAlignment(VT);
3697 
3698   AAMDNodes AAInfo;
3699   I.getAAMetadata(AAInfo);
3700 
3701   MachineMemOperand *MMO =
3702     DAG.getMachineFunction().
3703     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3704                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3705                           Alignment, AAInfo);
3706   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3707                                          MMO, false);
3708   DAG.setRoot(StoreNode);
3709   setValue(&I, StoreNode);
3710 }
3711 
3712 // Get a uniform base for the Gather/Scatter intrinsic.
3713 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3714 // We try to represent it as a base pointer + vector of indices.
3715 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3716 // The first operand of the GEP may be a single pointer or a vector of pointers
3717 // Example:
3718 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3719 //  or
3720 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3721 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3722 //
3723 // When the first GEP operand is a single pointer - it is the uniform base we
3724 // are looking for. If first operand of the GEP is a splat vector - we
3725 // extract the spalt value and use it as a uniform base.
3726 // In all other cases the function returns 'false'.
3727 //
3728 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3729                            SelectionDAGBuilder* SDB) {
3730 
3731   SelectionDAG& DAG = SDB->DAG;
3732   LLVMContext &Context = *DAG.getContext();
3733 
3734   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3735   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3736   if (!GEP || GEP->getNumOperands() > 2)
3737     return false;
3738 
3739   const Value *GEPPtr = GEP->getPointerOperand();
3740   if (!GEPPtr->getType()->isVectorTy())
3741     Ptr = GEPPtr;
3742   else if (!(Ptr = getSplatValue(GEPPtr)))
3743     return false;
3744 
3745   Value *IndexVal = GEP->getOperand(1);
3746 
3747   // The operands of the GEP may be defined in another basic block.
3748   // In this case we'll not find nodes for the operands.
3749   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3750     return false;
3751 
3752   Base = SDB->getValue(Ptr);
3753   Index = SDB->getValue(IndexVal);
3754 
3755   // Suppress sign extension.
3756   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3757     if (SDB->findValue(Sext->getOperand(0))) {
3758       IndexVal = Sext->getOperand(0);
3759       Index = SDB->getValue(IndexVal);
3760     }
3761   }
3762   if (!Index.getValueType().isVector()) {
3763     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3764     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3765     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3766     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3767   }
3768   return true;
3769 }
3770 
3771 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3772   SDLoc sdl = getCurSDLoc();
3773 
3774   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3775   const Value *Ptr = I.getArgOperand(1);
3776   SDValue Src0 = getValue(I.getArgOperand(0));
3777   SDValue Mask = getValue(I.getArgOperand(3));
3778   EVT VT = Src0.getValueType();
3779   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3780   if (!Alignment)
3781     Alignment = DAG.getEVTAlignment(VT);
3782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3783 
3784   AAMDNodes AAInfo;
3785   I.getAAMetadata(AAInfo);
3786 
3787   SDValue Base;
3788   SDValue Index;
3789   const Value *BasePtr = Ptr;
3790   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3791 
3792   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3793   MachineMemOperand *MMO = DAG.getMachineFunction().
3794     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3795                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3796                          Alignment, AAInfo);
3797   if (!UniformBase) {
3798     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3799     Index = getValue(Ptr);
3800   }
3801   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3802   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3803                                          Ops, MMO);
3804   DAG.setRoot(Scatter);
3805   setValue(&I, Scatter);
3806 }
3807 
3808 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3809   SDLoc sdl = getCurSDLoc();
3810 
3811   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3812   Value  *PtrOperand = I.getArgOperand(0);
3813   SDValue Ptr = getValue(PtrOperand);
3814   SDValue Src0 = getValue(I.getArgOperand(3));
3815   SDValue Mask = getValue(I.getArgOperand(2));
3816 
3817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3818   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3819   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3820   if (!Alignment)
3821     Alignment = DAG.getEVTAlignment(VT);
3822 
3823   AAMDNodes AAInfo;
3824   I.getAAMetadata(AAInfo);
3825   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3826 
3827   SDValue InChain = DAG.getRoot();
3828   if (AA->pointsToConstantMemory(MemoryLocation(
3829           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3830           AAInfo))) {
3831     // Do not serialize (non-volatile) loads of constant memory with anything.
3832     InChain = DAG.getEntryNode();
3833   }
3834 
3835   MachineMemOperand *MMO =
3836     DAG.getMachineFunction().
3837     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3838                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3839                           Alignment, AAInfo, Ranges);
3840 
3841   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3842                                    ISD::NON_EXTLOAD);
3843   SDValue OutChain = Load.getValue(1);
3844   DAG.setRoot(OutChain);
3845   setValue(&I, Load);
3846 }
3847 
3848 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3849   SDLoc sdl = getCurSDLoc();
3850 
3851   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3852   const Value *Ptr = I.getArgOperand(0);
3853   SDValue Src0 = getValue(I.getArgOperand(3));
3854   SDValue Mask = getValue(I.getArgOperand(2));
3855 
3856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3857   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3858   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3859   if (!Alignment)
3860     Alignment = DAG.getEVTAlignment(VT);
3861 
3862   AAMDNodes AAInfo;
3863   I.getAAMetadata(AAInfo);
3864   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3865 
3866   SDValue Root = DAG.getRoot();
3867   SDValue Base;
3868   SDValue Index;
3869   const Value *BasePtr = Ptr;
3870   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3871   bool ConstantMemory = false;
3872   if (UniformBase &&
3873       AA->pointsToConstantMemory(MemoryLocation(
3874           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3875           AAInfo))) {
3876     // Do not serialize (non-volatile) loads of constant memory with anything.
3877     Root = DAG.getEntryNode();
3878     ConstantMemory = true;
3879   }
3880 
3881   MachineMemOperand *MMO =
3882     DAG.getMachineFunction().
3883     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3884                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3885                          Alignment, AAInfo, Ranges);
3886 
3887   if (!UniformBase) {
3888     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3889     Index = getValue(Ptr);
3890   }
3891   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3892   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3893                                        Ops, MMO);
3894 
3895   SDValue OutChain = Gather.getValue(1);
3896   if (!ConstantMemory)
3897     PendingLoads.push_back(OutChain);
3898   setValue(&I, Gather);
3899 }
3900 
3901 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3902   SDLoc dl = getCurSDLoc();
3903   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3904   AtomicOrdering FailureOrder = I.getFailureOrdering();
3905   SynchronizationScope Scope = I.getSynchScope();
3906 
3907   SDValue InChain = getRoot();
3908 
3909   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3910   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3911   SDValue L = DAG.getAtomicCmpSwap(
3912       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3913       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3914       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3915       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3916 
3917   SDValue OutChain = L.getValue(2);
3918 
3919   setValue(&I, L);
3920   DAG.setRoot(OutChain);
3921 }
3922 
3923 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3924   SDLoc dl = getCurSDLoc();
3925   ISD::NodeType NT;
3926   switch (I.getOperation()) {
3927   default: llvm_unreachable("Unknown atomicrmw operation");
3928   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3929   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3930   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3931   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3932   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3933   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3934   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3935   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3936   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3937   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3938   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3939   }
3940   AtomicOrdering Order = I.getOrdering();
3941   SynchronizationScope Scope = I.getSynchScope();
3942 
3943   SDValue InChain = getRoot();
3944 
3945   SDValue L =
3946     DAG.getAtomic(NT, dl,
3947                   getValue(I.getValOperand()).getSimpleValueType(),
3948                   InChain,
3949                   getValue(I.getPointerOperand()),
3950                   getValue(I.getValOperand()),
3951                   I.getPointerOperand(),
3952                   /* Alignment=*/ 0, Order, Scope);
3953 
3954   SDValue OutChain = L.getValue(1);
3955 
3956   setValue(&I, L);
3957   DAG.setRoot(OutChain);
3958 }
3959 
3960 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3961   SDLoc dl = getCurSDLoc();
3962   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3963   SDValue Ops[3];
3964   Ops[0] = getRoot();
3965   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3966                            TLI.getPointerTy(DAG.getDataLayout()));
3967   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3968                            TLI.getPointerTy(DAG.getDataLayout()));
3969   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3970 }
3971 
3972 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3973   SDLoc dl = getCurSDLoc();
3974   AtomicOrdering Order = I.getOrdering();
3975   SynchronizationScope Scope = I.getSynchScope();
3976 
3977   SDValue InChain = getRoot();
3978 
3979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3980   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3981 
3982   if (I.getAlignment() < VT.getSizeInBits() / 8)
3983     report_fatal_error("Cannot generate unaligned atomic load");
3984 
3985   MachineMemOperand *MMO =
3986       DAG.getMachineFunction().
3987       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3988                            MachineMemOperand::MOVolatile |
3989                            MachineMemOperand::MOLoad,
3990                            VT.getStoreSize(),
3991                            I.getAlignment() ? I.getAlignment() :
3992                                               DAG.getEVTAlignment(VT));
3993 
3994   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3995   SDValue L =
3996       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3997                     getValue(I.getPointerOperand()), MMO,
3998                     Order, Scope);
3999 
4000   SDValue OutChain = L.getValue(1);
4001 
4002   setValue(&I, L);
4003   DAG.setRoot(OutChain);
4004 }
4005 
4006 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4007   SDLoc dl = getCurSDLoc();
4008 
4009   AtomicOrdering Order = I.getOrdering();
4010   SynchronizationScope Scope = I.getSynchScope();
4011 
4012   SDValue InChain = getRoot();
4013 
4014   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4015   EVT VT =
4016       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4017 
4018   if (I.getAlignment() < VT.getSizeInBits() / 8)
4019     report_fatal_error("Cannot generate unaligned atomic store");
4020 
4021   SDValue OutChain =
4022     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4023                   InChain,
4024                   getValue(I.getPointerOperand()),
4025                   getValue(I.getValueOperand()),
4026                   I.getPointerOperand(), I.getAlignment(),
4027                   Order, Scope);
4028 
4029   DAG.setRoot(OutChain);
4030 }
4031 
4032 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4033 /// node.
4034 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4035                                                unsigned Intrinsic) {
4036   bool HasChain = !I.doesNotAccessMemory();
4037   bool OnlyLoad = HasChain && I.onlyReadsMemory();
4038 
4039   // Build the operand list.
4040   SmallVector<SDValue, 8> Ops;
4041   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4042     if (OnlyLoad) {
4043       // We don't need to serialize loads against other loads.
4044       Ops.push_back(DAG.getRoot());
4045     } else {
4046       Ops.push_back(getRoot());
4047     }
4048   }
4049 
4050   // Info is set by getTgtMemInstrinsic
4051   TargetLowering::IntrinsicInfo Info;
4052   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4053   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4054 
4055   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4056   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4057       Info.opc == ISD::INTRINSIC_W_CHAIN)
4058     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4059                                         TLI.getPointerTy(DAG.getDataLayout())));
4060 
4061   // Add all operands of the call to the operand list.
4062   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4063     SDValue Op = getValue(I.getArgOperand(i));
4064     Ops.push_back(Op);
4065   }
4066 
4067   SmallVector<EVT, 4> ValueVTs;
4068   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4069 
4070   if (HasChain)
4071     ValueVTs.push_back(MVT::Other);
4072 
4073   SDVTList VTs = DAG.getVTList(ValueVTs);
4074 
4075   // Create the node.
4076   SDValue Result;
4077   if (IsTgtIntrinsic) {
4078     // This is target intrinsic that touches memory
4079     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4080                                      VTs, Ops, Info.memVT,
4081                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4082                                      Info.align, Info.vol,
4083                                      Info.readMem, Info.writeMem, Info.size);
4084   } else if (!HasChain) {
4085     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4086   } else if (!I.getType()->isVoidTy()) {
4087     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4088   } else {
4089     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4090   }
4091 
4092   if (HasChain) {
4093     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4094     if (OnlyLoad)
4095       PendingLoads.push_back(Chain);
4096     else
4097       DAG.setRoot(Chain);
4098   }
4099 
4100   if (!I.getType()->isVoidTy()) {
4101     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4102       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4103       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4104     } else
4105       Result = lowerRangeToAssertZExt(DAG, I, Result);
4106 
4107     setValue(&I, Result);
4108   }
4109 }
4110 
4111 /// GetSignificand - Get the significand and build it into a floating-point
4112 /// number with exponent of 1:
4113 ///
4114 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4115 ///
4116 /// where Op is the hexadecimal representation of floating point value.
4117 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4118   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4119                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4120   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4121                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4122   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4123 }
4124 
4125 /// GetExponent - Get the exponent:
4126 ///
4127 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4128 ///
4129 /// where Op is the hexadecimal representation of floating point value.
4130 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4131                            const TargetLowering &TLI, const SDLoc &dl) {
4132   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4133                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4134   SDValue t1 = DAG.getNode(
4135       ISD::SRL, dl, MVT::i32, t0,
4136       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4137   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4138                            DAG.getConstant(127, dl, MVT::i32));
4139   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4140 }
4141 
4142 /// getF32Constant - Get 32-bit floating point constant.
4143 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4144                               const SDLoc &dl) {
4145   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4146                            MVT::f32);
4147 }
4148 
4149 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4150                                        SelectionDAG &DAG) {
4151   // TODO: What fast-math-flags should be set on the floating-point nodes?
4152 
4153   //   IntegerPartOfX = ((int32_t)(t0);
4154   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4155 
4156   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4157   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4158   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4159 
4160   //   IntegerPartOfX <<= 23;
4161   IntegerPartOfX = DAG.getNode(
4162       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4163       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4164                                   DAG.getDataLayout())));
4165 
4166   SDValue TwoToFractionalPartOfX;
4167   if (LimitFloatPrecision <= 6) {
4168     // For floating-point precision of 6:
4169     //
4170     //   TwoToFractionalPartOfX =
4171     //     0.997535578f +
4172     //       (0.735607626f + 0.252464424f * x) * x;
4173     //
4174     // error 0.0144103317, which is 6 bits
4175     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4176                              getF32Constant(DAG, 0x3e814304, dl));
4177     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4178                              getF32Constant(DAG, 0x3f3c50c8, dl));
4179     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4180     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4181                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4182   } else if (LimitFloatPrecision <= 12) {
4183     // For floating-point precision of 12:
4184     //
4185     //   TwoToFractionalPartOfX =
4186     //     0.999892986f +
4187     //       (0.696457318f +
4188     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4189     //
4190     // error 0.000107046256, which is 13 to 14 bits
4191     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4192                              getF32Constant(DAG, 0x3da235e3, dl));
4193     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4194                              getF32Constant(DAG, 0x3e65b8f3, dl));
4195     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4196     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4197                              getF32Constant(DAG, 0x3f324b07, dl));
4198     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4199     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4200                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4201   } else { // LimitFloatPrecision <= 18
4202     // For floating-point precision of 18:
4203     //
4204     //   TwoToFractionalPartOfX =
4205     //     0.999999982f +
4206     //       (0.693148872f +
4207     //         (0.240227044f +
4208     //           (0.554906021e-1f +
4209     //             (0.961591928e-2f +
4210     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4211     // error 2.47208000*10^(-7), which is better than 18 bits
4212     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4213                              getF32Constant(DAG, 0x3924b03e, dl));
4214     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4215                              getF32Constant(DAG, 0x3ab24b87, dl));
4216     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4217     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4218                              getF32Constant(DAG, 0x3c1d8c17, dl));
4219     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4220     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4221                              getF32Constant(DAG, 0x3d634a1d, dl));
4222     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4223     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4224                              getF32Constant(DAG, 0x3e75fe14, dl));
4225     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4226     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4227                               getF32Constant(DAG, 0x3f317234, dl));
4228     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4229     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4230                                          getF32Constant(DAG, 0x3f800000, dl));
4231   }
4232 
4233   // Add the exponent into the result in integer domain.
4234   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4235   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4236                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4237 }
4238 
4239 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4240 /// limited-precision mode.
4241 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4242                          const TargetLowering &TLI) {
4243   if (Op.getValueType() == MVT::f32 &&
4244       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4245 
4246     // Put the exponent in the right bit position for later addition to the
4247     // final result:
4248     //
4249     //   #define LOG2OFe 1.4426950f
4250     //   t0 = Op * LOG2OFe
4251 
4252     // TODO: What fast-math-flags should be set here?
4253     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4254                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4255     return getLimitedPrecisionExp2(t0, dl, DAG);
4256   }
4257 
4258   // No special expansion.
4259   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4260 }
4261 
4262 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4263 /// limited-precision mode.
4264 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4265                          const TargetLowering &TLI) {
4266 
4267   // TODO: What fast-math-flags should be set on the floating-point nodes?
4268 
4269   if (Op.getValueType() == MVT::f32 &&
4270       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4271     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4272 
4273     // Scale the exponent by log(2) [0.69314718f].
4274     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4275     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4276                                         getF32Constant(DAG, 0x3f317218, dl));
4277 
4278     // Get the significand and build it into a floating-point number with
4279     // exponent of 1.
4280     SDValue X = GetSignificand(DAG, Op1, dl);
4281 
4282     SDValue LogOfMantissa;
4283     if (LimitFloatPrecision <= 6) {
4284       // For floating-point precision of 6:
4285       //
4286       //   LogofMantissa =
4287       //     -1.1609546f +
4288       //       (1.4034025f - 0.23903021f * x) * x;
4289       //
4290       // error 0.0034276066, which is better than 8 bits
4291       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4292                                getF32Constant(DAG, 0xbe74c456, dl));
4293       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4294                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4295       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4296       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4297                                   getF32Constant(DAG, 0x3f949a29, dl));
4298     } else if (LimitFloatPrecision <= 12) {
4299       // For floating-point precision of 12:
4300       //
4301       //   LogOfMantissa =
4302       //     -1.7417939f +
4303       //       (2.8212026f +
4304       //         (-1.4699568f +
4305       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4306       //
4307       // error 0.000061011436, which is 14 bits
4308       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4309                                getF32Constant(DAG, 0xbd67b6d6, dl));
4310       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4311                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4312       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4313       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4314                                getF32Constant(DAG, 0x3fbc278b, dl));
4315       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4316       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4317                                getF32Constant(DAG, 0x40348e95, dl));
4318       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4319       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4320                                   getF32Constant(DAG, 0x3fdef31a, dl));
4321     } else { // LimitFloatPrecision <= 18
4322       // For floating-point precision of 18:
4323       //
4324       //   LogOfMantissa =
4325       //     -2.1072184f +
4326       //       (4.2372794f +
4327       //         (-3.7029485f +
4328       //           (2.2781945f +
4329       //             (-0.87823314f +
4330       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4331       //
4332       // error 0.0000023660568, which is better than 18 bits
4333       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4334                                getF32Constant(DAG, 0xbc91e5ac, dl));
4335       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4336                                getF32Constant(DAG, 0x3e4350aa, dl));
4337       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4338       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4339                                getF32Constant(DAG, 0x3f60d3e3, dl));
4340       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4341       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4342                                getF32Constant(DAG, 0x4011cdf0, dl));
4343       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4344       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4345                                getF32Constant(DAG, 0x406cfd1c, dl));
4346       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4347       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4348                                getF32Constant(DAG, 0x408797cb, dl));
4349       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4350       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4351                                   getF32Constant(DAG, 0x4006dcab, dl));
4352     }
4353 
4354     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4355   }
4356 
4357   // No special expansion.
4358   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4359 }
4360 
4361 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4362 /// limited-precision mode.
4363 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4364                           const TargetLowering &TLI) {
4365 
4366   // TODO: What fast-math-flags should be set on the floating-point nodes?
4367 
4368   if (Op.getValueType() == MVT::f32 &&
4369       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4370     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4371 
4372     // Get the exponent.
4373     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4374 
4375     // Get the significand and build it into a floating-point number with
4376     // exponent of 1.
4377     SDValue X = GetSignificand(DAG, Op1, dl);
4378 
4379     // Different possible minimax approximations of significand in
4380     // floating-point for various degrees of accuracy over [1,2].
4381     SDValue Log2ofMantissa;
4382     if (LimitFloatPrecision <= 6) {
4383       // For floating-point precision of 6:
4384       //
4385       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4386       //
4387       // error 0.0049451742, which is more than 7 bits
4388       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4389                                getF32Constant(DAG, 0xbeb08fe0, dl));
4390       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4391                                getF32Constant(DAG, 0x40019463, dl));
4392       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4393       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4394                                    getF32Constant(DAG, 0x3fd6633d, dl));
4395     } else if (LimitFloatPrecision <= 12) {
4396       // For floating-point precision of 12:
4397       //
4398       //   Log2ofMantissa =
4399       //     -2.51285454f +
4400       //       (4.07009056f +
4401       //         (-2.12067489f +
4402       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4403       //
4404       // error 0.0000876136000, which is better than 13 bits
4405       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4406                                getF32Constant(DAG, 0xbda7262e, dl));
4407       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4408                                getF32Constant(DAG, 0x3f25280b, dl));
4409       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4410       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4411                                getF32Constant(DAG, 0x4007b923, dl));
4412       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4413       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4414                                getF32Constant(DAG, 0x40823e2f, dl));
4415       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4416       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4417                                    getF32Constant(DAG, 0x4020d29c, dl));
4418     } else { // LimitFloatPrecision <= 18
4419       // For floating-point precision of 18:
4420       //
4421       //   Log2ofMantissa =
4422       //     -3.0400495f +
4423       //       (6.1129976f +
4424       //         (-5.3420409f +
4425       //           (3.2865683f +
4426       //             (-1.2669343f +
4427       //               (0.27515199f -
4428       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4429       //
4430       // error 0.0000018516, which is better than 18 bits
4431       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4432                                getF32Constant(DAG, 0xbcd2769e, dl));
4433       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4434                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4435       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4436       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4437                                getF32Constant(DAG, 0x3fa22ae7, dl));
4438       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4439       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4440                                getF32Constant(DAG, 0x40525723, dl));
4441       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4442       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4443                                getF32Constant(DAG, 0x40aaf200, dl));
4444       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4445       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4446                                getF32Constant(DAG, 0x40c39dad, dl));
4447       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4448       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4449                                    getF32Constant(DAG, 0x4042902c, dl));
4450     }
4451 
4452     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4453   }
4454 
4455   // No special expansion.
4456   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4457 }
4458 
4459 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4460 /// limited-precision mode.
4461 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4462                            const TargetLowering &TLI) {
4463 
4464   // TODO: What fast-math-flags should be set on the floating-point nodes?
4465 
4466   if (Op.getValueType() == MVT::f32 &&
4467       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4468     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4469 
4470     // Scale the exponent by log10(2) [0.30102999f].
4471     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4472     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4473                                         getF32Constant(DAG, 0x3e9a209a, dl));
4474 
4475     // Get the significand and build it into a floating-point number with
4476     // exponent of 1.
4477     SDValue X = GetSignificand(DAG, Op1, dl);
4478 
4479     SDValue Log10ofMantissa;
4480     if (LimitFloatPrecision <= 6) {
4481       // For floating-point precision of 6:
4482       //
4483       //   Log10ofMantissa =
4484       //     -0.50419619f +
4485       //       (0.60948995f - 0.10380950f * x) * x;
4486       //
4487       // error 0.0014886165, which is 6 bits
4488       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4489                                getF32Constant(DAG, 0xbdd49a13, dl));
4490       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4491                                getF32Constant(DAG, 0x3f1c0789, dl));
4492       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4493       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4494                                     getF32Constant(DAG, 0x3f011300, dl));
4495     } else if (LimitFloatPrecision <= 12) {
4496       // For floating-point precision of 12:
4497       //
4498       //   Log10ofMantissa =
4499       //     -0.64831180f +
4500       //       (0.91751397f +
4501       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4502       //
4503       // error 0.00019228036, which is better than 12 bits
4504       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4505                                getF32Constant(DAG, 0x3d431f31, dl));
4506       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4507                                getF32Constant(DAG, 0x3ea21fb2, dl));
4508       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4509       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4510                                getF32Constant(DAG, 0x3f6ae232, dl));
4511       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4512       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4513                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4514     } else { // LimitFloatPrecision <= 18
4515       // For floating-point precision of 18:
4516       //
4517       //   Log10ofMantissa =
4518       //     -0.84299375f +
4519       //       (1.5327582f +
4520       //         (-1.0688956f +
4521       //           (0.49102474f +
4522       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4523       //
4524       // error 0.0000037995730, which is better than 18 bits
4525       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4526                                getF32Constant(DAG, 0x3c5d51ce, dl));
4527       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4528                                getF32Constant(DAG, 0x3e00685a, dl));
4529       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4530       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4531                                getF32Constant(DAG, 0x3efb6798, dl));
4532       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4533       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4534                                getF32Constant(DAG, 0x3f88d192, dl));
4535       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4536       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4537                                getF32Constant(DAG, 0x3fc4316c, dl));
4538       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4539       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4540                                     getF32Constant(DAG, 0x3f57ce70, dl));
4541     }
4542 
4543     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4544   }
4545 
4546   // No special expansion.
4547   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4548 }
4549 
4550 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4551 /// limited-precision mode.
4552 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4553                           const TargetLowering &TLI) {
4554   if (Op.getValueType() == MVT::f32 &&
4555       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4556     return getLimitedPrecisionExp2(Op, dl, DAG);
4557 
4558   // No special expansion.
4559   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4560 }
4561 
4562 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4563 /// limited-precision mode with x == 10.0f.
4564 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4565                          SelectionDAG &DAG, const TargetLowering &TLI) {
4566   bool IsExp10 = false;
4567   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4568       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4569     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4570       APFloat Ten(10.0f);
4571       IsExp10 = LHSC->isExactlyValue(Ten);
4572     }
4573   }
4574 
4575   // TODO: What fast-math-flags should be set on the FMUL node?
4576   if (IsExp10) {
4577     // Put the exponent in the right bit position for later addition to the
4578     // final result:
4579     //
4580     //   #define LOG2OF10 3.3219281f
4581     //   t0 = Op * LOG2OF10;
4582     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4583                              getF32Constant(DAG, 0x40549a78, dl));
4584     return getLimitedPrecisionExp2(t0, dl, DAG);
4585   }
4586 
4587   // No special expansion.
4588   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4589 }
4590 
4591 
4592 /// ExpandPowI - Expand a llvm.powi intrinsic.
4593 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4594                           SelectionDAG &DAG) {
4595   // If RHS is a constant, we can expand this out to a multiplication tree,
4596   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4597   // optimizing for size, we only want to do this if the expansion would produce
4598   // a small number of multiplies, otherwise we do the full expansion.
4599   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4600     // Get the exponent as a positive value.
4601     unsigned Val = RHSC->getSExtValue();
4602     if ((int)Val < 0) Val = -Val;
4603 
4604     // powi(x, 0) -> 1.0
4605     if (Val == 0)
4606       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4607 
4608     const Function *F = DAG.getMachineFunction().getFunction();
4609     if (!F->optForSize() ||
4610         // If optimizing for size, don't insert too many multiplies.
4611         // This inserts up to 5 multiplies.
4612         countPopulation(Val) + Log2_32(Val) < 7) {
4613       // We use the simple binary decomposition method to generate the multiply
4614       // sequence.  There are more optimal ways to do this (for example,
4615       // powi(x,15) generates one more multiply than it should), but this has
4616       // the benefit of being both really simple and much better than a libcall.
4617       SDValue Res;  // Logically starts equal to 1.0
4618       SDValue CurSquare = LHS;
4619       // TODO: Intrinsics should have fast-math-flags that propagate to these
4620       // nodes.
4621       while (Val) {
4622         if (Val & 1) {
4623           if (Res.getNode())
4624             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4625           else
4626             Res = CurSquare;  // 1.0*CurSquare.
4627         }
4628 
4629         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4630                                 CurSquare, CurSquare);
4631         Val >>= 1;
4632       }
4633 
4634       // If the original was negative, invert the result, producing 1/(x*x*x).
4635       if (RHSC->getSExtValue() < 0)
4636         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4637                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4638       return Res;
4639     }
4640   }
4641 
4642   // Otherwise, expand to a libcall.
4643   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4644 }
4645 
4646 // getUnderlyingArgReg - Find underlying register used for a truncated or
4647 // bitcasted argument.
4648 static unsigned getUnderlyingArgReg(const SDValue &N) {
4649   switch (N.getOpcode()) {
4650   case ISD::CopyFromReg:
4651     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4652   case ISD::BITCAST:
4653   case ISD::AssertZext:
4654   case ISD::AssertSext:
4655   case ISD::TRUNCATE:
4656     return getUnderlyingArgReg(N.getOperand(0));
4657   default:
4658     return 0;
4659   }
4660 }
4661 
4662 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4663 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4664 /// At the end of instruction selection, they will be inserted to the entry BB.
4665 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4666     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4667     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4668   const Argument *Arg = dyn_cast<Argument>(V);
4669   if (!Arg)
4670     return false;
4671 
4672   MachineFunction &MF = DAG.getMachineFunction();
4673   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4674 
4675   // Ignore inlined function arguments here.
4676   //
4677   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4678   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4679     return false;
4680 
4681   Optional<MachineOperand> Op;
4682   // Some arguments' frame index is recorded during argument lowering.
4683   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4684     Op = MachineOperand::CreateFI(FI);
4685 
4686   if (!Op && N.getNode()) {
4687     unsigned Reg = getUnderlyingArgReg(N);
4688     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4689       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4690       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4691       if (PR)
4692         Reg = PR;
4693     }
4694     if (Reg)
4695       Op = MachineOperand::CreateReg(Reg, false);
4696   }
4697 
4698   if (!Op) {
4699     // Check if ValueMap has reg number.
4700     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4701     if (VMI != FuncInfo.ValueMap.end())
4702       Op = MachineOperand::CreateReg(VMI->second, false);
4703   }
4704 
4705   if (!Op && N.getNode())
4706     // Check if frame index is available.
4707     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4708       if (FrameIndexSDNode *FINode =
4709           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4710         Op = MachineOperand::CreateFI(FINode->getIndex());
4711 
4712   if (!Op)
4713     return false;
4714 
4715   assert(Variable->isValidLocationForIntrinsic(DL) &&
4716          "Expected inlined-at fields to agree");
4717   if (Op->isReg())
4718     FuncInfo.ArgDbgValues.push_back(
4719         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4720                 Op->getReg(), Offset, Variable, Expr));
4721   else
4722     FuncInfo.ArgDbgValues.push_back(
4723         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4724             .addOperand(*Op)
4725             .addImm(Offset)
4726             .addMetadata(Variable)
4727             .addMetadata(Expr));
4728 
4729   return true;
4730 }
4731 
4732 // VisualStudio defines setjmp as _setjmp
4733 #if defined(_MSC_VER) && defined(setjmp) && \
4734                          !defined(setjmp_undefined_for_msvc)
4735 #  pragma push_macro("setjmp")
4736 #  undef setjmp
4737 #  define setjmp_undefined_for_msvc
4738 #endif
4739 
4740 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4741 /// we want to emit this as a call to a named external function, return the name
4742 /// otherwise lower it and return null.
4743 const char *
4744 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4746   SDLoc sdl = getCurSDLoc();
4747   DebugLoc dl = getCurDebugLoc();
4748   SDValue Res;
4749 
4750   switch (Intrinsic) {
4751   default:
4752     // By default, turn this into a target intrinsic node.
4753     visitTargetIntrinsic(I, Intrinsic);
4754     return nullptr;
4755   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4756   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4757   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4758   case Intrinsic::returnaddress:
4759     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4760                              TLI.getPointerTy(DAG.getDataLayout()),
4761                              getValue(I.getArgOperand(0))));
4762     return nullptr;
4763   case Intrinsic::frameaddress:
4764     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4765                              TLI.getPointerTy(DAG.getDataLayout()),
4766                              getValue(I.getArgOperand(0))));
4767     return nullptr;
4768   case Intrinsic::read_register: {
4769     Value *Reg = I.getArgOperand(0);
4770     SDValue Chain = getRoot();
4771     SDValue RegName =
4772         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4773     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4774     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4775       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4776     setValue(&I, Res);
4777     DAG.setRoot(Res.getValue(1));
4778     return nullptr;
4779   }
4780   case Intrinsic::write_register: {
4781     Value *Reg = I.getArgOperand(0);
4782     Value *RegValue = I.getArgOperand(1);
4783     SDValue Chain = getRoot();
4784     SDValue RegName =
4785         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4786     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4787                             RegName, getValue(RegValue)));
4788     return nullptr;
4789   }
4790   case Intrinsic::setjmp:
4791     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4792   case Intrinsic::longjmp:
4793     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4794   case Intrinsic::memcpy: {
4795     SDValue Op1 = getValue(I.getArgOperand(0));
4796     SDValue Op2 = getValue(I.getArgOperand(1));
4797     SDValue Op3 = getValue(I.getArgOperand(2));
4798     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4799     if (!Align)
4800       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4801     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4802     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4803     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4804                                false, isTC,
4805                                MachinePointerInfo(I.getArgOperand(0)),
4806                                MachinePointerInfo(I.getArgOperand(1)));
4807     updateDAGForMaybeTailCall(MC);
4808     return nullptr;
4809   }
4810   case Intrinsic::memset: {
4811     SDValue Op1 = getValue(I.getArgOperand(0));
4812     SDValue Op2 = getValue(I.getArgOperand(1));
4813     SDValue Op3 = getValue(I.getArgOperand(2));
4814     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4815     if (!Align)
4816       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4817     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4818     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4819     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4820                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4821     updateDAGForMaybeTailCall(MS);
4822     return nullptr;
4823   }
4824   case Intrinsic::memmove: {
4825     SDValue Op1 = getValue(I.getArgOperand(0));
4826     SDValue Op2 = getValue(I.getArgOperand(1));
4827     SDValue Op3 = getValue(I.getArgOperand(2));
4828     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4829     if (!Align)
4830       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4831     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4832     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4833     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4834                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4835                                 MachinePointerInfo(I.getArgOperand(1)));
4836     updateDAGForMaybeTailCall(MM);
4837     return nullptr;
4838   }
4839   case Intrinsic::dbg_declare: {
4840     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4841     DILocalVariable *Variable = DI.getVariable();
4842     DIExpression *Expression = DI.getExpression();
4843     const Value *Address = DI.getAddress();
4844     assert(Variable && "Missing variable");
4845     if (!Address) {
4846       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4847       return nullptr;
4848     }
4849 
4850     // Check if address has undef value.
4851     if (isa<UndefValue>(Address) ||
4852         (Address->use_empty() && !isa<Argument>(Address))) {
4853       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4854       return nullptr;
4855     }
4856 
4857     SDValue &N = NodeMap[Address];
4858     if (!N.getNode() && isa<Argument>(Address))
4859       // Check unused arguments map.
4860       N = UnusedArgNodeMap[Address];
4861     SDDbgValue *SDV;
4862     if (N.getNode()) {
4863       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4864         Address = BCI->getOperand(0);
4865       // Parameters are handled specially.
4866       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4867       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4868       if (isParameter && FINode) {
4869         // Byval parameter. We have a frame index at this point.
4870         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4871                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4872       } else if (isa<Argument>(Address)) {
4873         // Address is an argument, so try to emit its dbg value using
4874         // virtual register info from the FuncInfo.ValueMap.
4875         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4876                                  N);
4877         return nullptr;
4878       } else {
4879         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4880                               true, 0, dl, SDNodeOrder);
4881       }
4882       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4883     } else {
4884       // If Address is an argument then try to emit its dbg value using
4885       // virtual register info from the FuncInfo.ValueMap.
4886       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4887                                     N)) {
4888         // If variable is pinned by a alloca in dominating bb then
4889         // use StaticAllocaMap.
4890         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4891           if (AI->getParent() != DI.getParent()) {
4892             DenseMap<const AllocaInst*, int>::iterator SI =
4893               FuncInfo.StaticAllocaMap.find(AI);
4894             if (SI != FuncInfo.StaticAllocaMap.end()) {
4895               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4896                                               0, dl, SDNodeOrder);
4897               DAG.AddDbgValue(SDV, nullptr, false);
4898               return nullptr;
4899             }
4900           }
4901         }
4902         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4903       }
4904     }
4905     return nullptr;
4906   }
4907   case Intrinsic::dbg_value: {
4908     const DbgValueInst &DI = cast<DbgValueInst>(I);
4909     assert(DI.getVariable() && "Missing variable");
4910 
4911     DILocalVariable *Variable = DI.getVariable();
4912     DIExpression *Expression = DI.getExpression();
4913     uint64_t Offset = DI.getOffset();
4914     const Value *V = DI.getValue();
4915     if (!V)
4916       return nullptr;
4917 
4918     SDDbgValue *SDV;
4919     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4920       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4921                                     SDNodeOrder);
4922       DAG.AddDbgValue(SDV, nullptr, false);
4923     } else {
4924       // Do not use getValue() in here; we don't want to generate code at
4925       // this point if it hasn't been done yet.
4926       SDValue N = NodeMap[V];
4927       if (!N.getNode() && isa<Argument>(V))
4928         // Check unused arguments map.
4929         N = UnusedArgNodeMap[V];
4930       if (N.getNode()) {
4931         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4932                                       false, N)) {
4933           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4934                                 false, Offset, dl, SDNodeOrder);
4935           DAG.AddDbgValue(SDV, N.getNode(), false);
4936         }
4937       } else if (!V->use_empty() ) {
4938         // Do not call getValue(V) yet, as we don't want to generate code.
4939         // Remember it for later.
4940         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4941         DanglingDebugInfoMap[V] = DDI;
4942       } else {
4943         // We may expand this to cover more cases.  One case where we have no
4944         // data available is an unreferenced parameter.
4945         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4946       }
4947     }
4948 
4949     // Build a debug info table entry.
4950     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4951       V = BCI->getOperand(0);
4952     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4953     // Don't handle byval struct arguments or VLAs, for example.
4954     if (!AI) {
4955       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4956       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4957       return nullptr;
4958     }
4959     DenseMap<const AllocaInst*, int>::iterator SI =
4960       FuncInfo.StaticAllocaMap.find(AI);
4961     if (SI == FuncInfo.StaticAllocaMap.end())
4962       return nullptr; // VLAs.
4963     return nullptr;
4964   }
4965 
4966   case Intrinsic::eh_typeid_for: {
4967     // Find the type id for the given typeinfo.
4968     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4969     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4970     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4971     setValue(&I, Res);
4972     return nullptr;
4973   }
4974 
4975   case Intrinsic::eh_return_i32:
4976   case Intrinsic::eh_return_i64:
4977     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4978     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4979                             MVT::Other,
4980                             getControlRoot(),
4981                             getValue(I.getArgOperand(0)),
4982                             getValue(I.getArgOperand(1))));
4983     return nullptr;
4984   case Intrinsic::eh_unwind_init:
4985     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4986     return nullptr;
4987   case Intrinsic::eh_dwarf_cfa: {
4988     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4989                                         TLI.getPointerTy(DAG.getDataLayout()));
4990     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4991                                  CfaArg.getValueType(),
4992                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4993                                              CfaArg.getValueType()),
4994                                  CfaArg);
4995     SDValue FA = DAG.getNode(
4996         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4997         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4998     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4999                              FA, Offset));
5000     return nullptr;
5001   }
5002   case Intrinsic::eh_sjlj_callsite: {
5003     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5004     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5005     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5006     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5007 
5008     MMI.setCurrentCallSite(CI->getZExtValue());
5009     return nullptr;
5010   }
5011   case Intrinsic::eh_sjlj_functioncontext: {
5012     // Get and store the index of the function context.
5013     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5014     AllocaInst *FnCtx =
5015       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5016     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5017     MFI->setFunctionContextIndex(FI);
5018     return nullptr;
5019   }
5020   case Intrinsic::eh_sjlj_setjmp: {
5021     SDValue Ops[2];
5022     Ops[0] = getRoot();
5023     Ops[1] = getValue(I.getArgOperand(0));
5024     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5025                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5026     setValue(&I, Op.getValue(0));
5027     DAG.setRoot(Op.getValue(1));
5028     return nullptr;
5029   }
5030   case Intrinsic::eh_sjlj_longjmp: {
5031     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5032                             getRoot(), getValue(I.getArgOperand(0))));
5033     return nullptr;
5034   }
5035   case Intrinsic::eh_sjlj_setup_dispatch: {
5036     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5037                             getRoot()));
5038     return nullptr;
5039   }
5040 
5041   case Intrinsic::masked_gather:
5042     visitMaskedGather(I);
5043     return nullptr;
5044   case Intrinsic::masked_load:
5045     visitMaskedLoad(I);
5046     return nullptr;
5047   case Intrinsic::masked_scatter:
5048     visitMaskedScatter(I);
5049     return nullptr;
5050   case Intrinsic::masked_store:
5051     visitMaskedStore(I);
5052     return nullptr;
5053   case Intrinsic::x86_mmx_pslli_w:
5054   case Intrinsic::x86_mmx_pslli_d:
5055   case Intrinsic::x86_mmx_pslli_q:
5056   case Intrinsic::x86_mmx_psrli_w:
5057   case Intrinsic::x86_mmx_psrli_d:
5058   case Intrinsic::x86_mmx_psrli_q:
5059   case Intrinsic::x86_mmx_psrai_w:
5060   case Intrinsic::x86_mmx_psrai_d: {
5061     SDValue ShAmt = getValue(I.getArgOperand(1));
5062     if (isa<ConstantSDNode>(ShAmt)) {
5063       visitTargetIntrinsic(I, Intrinsic);
5064       return nullptr;
5065     }
5066     unsigned NewIntrinsic = 0;
5067     EVT ShAmtVT = MVT::v2i32;
5068     switch (Intrinsic) {
5069     case Intrinsic::x86_mmx_pslli_w:
5070       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5071       break;
5072     case Intrinsic::x86_mmx_pslli_d:
5073       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5074       break;
5075     case Intrinsic::x86_mmx_pslli_q:
5076       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5077       break;
5078     case Intrinsic::x86_mmx_psrli_w:
5079       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5080       break;
5081     case Intrinsic::x86_mmx_psrli_d:
5082       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5083       break;
5084     case Intrinsic::x86_mmx_psrli_q:
5085       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5086       break;
5087     case Intrinsic::x86_mmx_psrai_w:
5088       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5089       break;
5090     case Intrinsic::x86_mmx_psrai_d:
5091       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5092       break;
5093     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5094     }
5095 
5096     // The vector shift intrinsics with scalars uses 32b shift amounts but
5097     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5098     // to be zero.
5099     // We must do this early because v2i32 is not a legal type.
5100     SDValue ShOps[2];
5101     ShOps[0] = ShAmt;
5102     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5103     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5104     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5105     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5106     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5107                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5108                        getValue(I.getArgOperand(0)), ShAmt);
5109     setValue(&I, Res);
5110     return nullptr;
5111   }
5112   case Intrinsic::convertff:
5113   case Intrinsic::convertfsi:
5114   case Intrinsic::convertfui:
5115   case Intrinsic::convertsif:
5116   case Intrinsic::convertuif:
5117   case Intrinsic::convertss:
5118   case Intrinsic::convertsu:
5119   case Intrinsic::convertus:
5120   case Intrinsic::convertuu: {
5121     ISD::CvtCode Code = ISD::CVT_INVALID;
5122     switch (Intrinsic) {
5123     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5124     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5125     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5126     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5127     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5128     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5129     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5130     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5131     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5132     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5133     }
5134     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5135     const Value *Op1 = I.getArgOperand(0);
5136     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5137                                DAG.getValueType(DestVT),
5138                                DAG.getValueType(getValue(Op1).getValueType()),
5139                                getValue(I.getArgOperand(1)),
5140                                getValue(I.getArgOperand(2)),
5141                                Code);
5142     setValue(&I, Res);
5143     return nullptr;
5144   }
5145   case Intrinsic::powi:
5146     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5147                             getValue(I.getArgOperand(1)), DAG));
5148     return nullptr;
5149   case Intrinsic::log:
5150     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5151     return nullptr;
5152   case Intrinsic::log2:
5153     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5154     return nullptr;
5155   case Intrinsic::log10:
5156     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5157     return nullptr;
5158   case Intrinsic::exp:
5159     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5160     return nullptr;
5161   case Intrinsic::exp2:
5162     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5163     return nullptr;
5164   case Intrinsic::pow:
5165     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5166                            getValue(I.getArgOperand(1)), DAG, TLI));
5167     return nullptr;
5168   case Intrinsic::sqrt:
5169   case Intrinsic::fabs:
5170   case Intrinsic::sin:
5171   case Intrinsic::cos:
5172   case Intrinsic::floor:
5173   case Intrinsic::ceil:
5174   case Intrinsic::trunc:
5175   case Intrinsic::rint:
5176   case Intrinsic::nearbyint:
5177   case Intrinsic::round:
5178   case Intrinsic::canonicalize: {
5179     unsigned Opcode;
5180     switch (Intrinsic) {
5181     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5182     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5183     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5184     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5185     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5186     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5187     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5188     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5189     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5190     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5191     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5192     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5193     }
5194 
5195     setValue(&I, DAG.getNode(Opcode, sdl,
5196                              getValue(I.getArgOperand(0)).getValueType(),
5197                              getValue(I.getArgOperand(0))));
5198     return nullptr;
5199   }
5200   case Intrinsic::minnum: {
5201     auto VT = getValue(I.getArgOperand(0)).getValueType();
5202     unsigned Opc =
5203         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5204             ? ISD::FMINNAN
5205             : ISD::FMINNUM;
5206     setValue(&I, DAG.getNode(Opc, sdl, VT,
5207                              getValue(I.getArgOperand(0)),
5208                              getValue(I.getArgOperand(1))));
5209     return nullptr;
5210   }
5211   case Intrinsic::maxnum: {
5212     auto VT = getValue(I.getArgOperand(0)).getValueType();
5213     unsigned Opc =
5214         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5215             ? ISD::FMAXNAN
5216             : ISD::FMAXNUM;
5217     setValue(&I, DAG.getNode(Opc, sdl, VT,
5218                              getValue(I.getArgOperand(0)),
5219                              getValue(I.getArgOperand(1))));
5220     return nullptr;
5221   }
5222   case Intrinsic::copysign:
5223     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5224                              getValue(I.getArgOperand(0)).getValueType(),
5225                              getValue(I.getArgOperand(0)),
5226                              getValue(I.getArgOperand(1))));
5227     return nullptr;
5228   case Intrinsic::fma:
5229     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5230                              getValue(I.getArgOperand(0)).getValueType(),
5231                              getValue(I.getArgOperand(0)),
5232                              getValue(I.getArgOperand(1)),
5233                              getValue(I.getArgOperand(2))));
5234     return nullptr;
5235   case Intrinsic::fmuladd: {
5236     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5237     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5238         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5239       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5240                                getValue(I.getArgOperand(0)).getValueType(),
5241                                getValue(I.getArgOperand(0)),
5242                                getValue(I.getArgOperand(1)),
5243                                getValue(I.getArgOperand(2))));
5244     } else {
5245       // TODO: Intrinsic calls should have fast-math-flags.
5246       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5247                                 getValue(I.getArgOperand(0)).getValueType(),
5248                                 getValue(I.getArgOperand(0)),
5249                                 getValue(I.getArgOperand(1)));
5250       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5251                                 getValue(I.getArgOperand(0)).getValueType(),
5252                                 Mul,
5253                                 getValue(I.getArgOperand(2)));
5254       setValue(&I, Add);
5255     }
5256     return nullptr;
5257   }
5258   case Intrinsic::convert_to_fp16:
5259     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5260                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5261                                          getValue(I.getArgOperand(0)),
5262                                          DAG.getTargetConstant(0, sdl,
5263                                                                MVT::i32))));
5264     return nullptr;
5265   case Intrinsic::convert_from_fp16:
5266     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5267                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5268                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5269                                          getValue(I.getArgOperand(0)))));
5270     return nullptr;
5271   case Intrinsic::pcmarker: {
5272     SDValue Tmp = getValue(I.getArgOperand(0));
5273     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5274     return nullptr;
5275   }
5276   case Intrinsic::readcyclecounter: {
5277     SDValue Op = getRoot();
5278     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5279                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5280     setValue(&I, Res);
5281     DAG.setRoot(Res.getValue(1));
5282     return nullptr;
5283   }
5284   case Intrinsic::bitreverse:
5285     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5286                              getValue(I.getArgOperand(0)).getValueType(),
5287                              getValue(I.getArgOperand(0))));
5288     return nullptr;
5289   case Intrinsic::bswap:
5290     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5291                              getValue(I.getArgOperand(0)).getValueType(),
5292                              getValue(I.getArgOperand(0))));
5293     return nullptr;
5294   case Intrinsic::cttz: {
5295     SDValue Arg = getValue(I.getArgOperand(0));
5296     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5297     EVT Ty = Arg.getValueType();
5298     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5299                              sdl, Ty, Arg));
5300     return nullptr;
5301   }
5302   case Intrinsic::ctlz: {
5303     SDValue Arg = getValue(I.getArgOperand(0));
5304     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5305     EVT Ty = Arg.getValueType();
5306     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5307                              sdl, Ty, Arg));
5308     return nullptr;
5309   }
5310   case Intrinsic::ctpop: {
5311     SDValue Arg = getValue(I.getArgOperand(0));
5312     EVT Ty = Arg.getValueType();
5313     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5314     return nullptr;
5315   }
5316   case Intrinsic::stacksave: {
5317     SDValue Op = getRoot();
5318     Res = DAG.getNode(
5319         ISD::STACKSAVE, sdl,
5320         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5321     setValue(&I, Res);
5322     DAG.setRoot(Res.getValue(1));
5323     return nullptr;
5324   }
5325   case Intrinsic::stackrestore: {
5326     Res = getValue(I.getArgOperand(0));
5327     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5328     return nullptr;
5329   }
5330   case Intrinsic::get_dynamic_area_offset: {
5331     SDValue Op = getRoot();
5332     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5333     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5334     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5335     // target.
5336     if (PtrTy != ResTy)
5337       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5338                          " intrinsic!");
5339     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5340                       Op);
5341     DAG.setRoot(Op);
5342     setValue(&I, Res);
5343     return nullptr;
5344   }
5345   case Intrinsic::stackguard: {
5346     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5347     MachineFunction &MF = DAG.getMachineFunction();
5348     const Module &M = *MF.getFunction()->getParent();
5349     SDValue Chain = getRoot();
5350     if (TLI.useLoadStackGuardNode()) {
5351       Res = getLoadStackGuard(DAG, sdl, Chain);
5352     } else {
5353       const Value *Global = TLI.getSDagStackGuard(M);
5354       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5355       Res =
5356           DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5357                       MachinePointerInfo(Global, 0), true, false, false, Align);
5358     }
5359     DAG.setRoot(Chain);
5360     setValue(&I, Res);
5361     return nullptr;
5362   }
5363   case Intrinsic::stackprotector: {
5364     // Emit code into the DAG to store the stack guard onto the stack.
5365     MachineFunction &MF = DAG.getMachineFunction();
5366     MachineFrameInfo *MFI = MF.getFrameInfo();
5367     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5368     SDValue Src, Chain = getRoot();
5369 
5370     if (TLI.useLoadStackGuardNode())
5371       Src = getLoadStackGuard(DAG, sdl, Chain);
5372     else
5373       Src = getValue(I.getArgOperand(0));   // The guard's value.
5374 
5375     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5376 
5377     int FI = FuncInfo.StaticAllocaMap[Slot];
5378     MFI->setStackProtectorIndex(FI);
5379 
5380     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5381 
5382     // Store the stack protector onto the stack.
5383     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5384                                                  DAG.getMachineFunction(), FI),
5385                        true, false, 0);
5386     setValue(&I, Res);
5387     DAG.setRoot(Res);
5388     return nullptr;
5389   }
5390   case Intrinsic::objectsize: {
5391     // If we don't know by now, we're never going to know.
5392     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5393 
5394     assert(CI && "Non-constant type in __builtin_object_size?");
5395 
5396     SDValue Arg = getValue(I.getCalledValue());
5397     EVT Ty = Arg.getValueType();
5398 
5399     if (CI->isZero())
5400       Res = DAG.getConstant(-1ULL, sdl, Ty);
5401     else
5402       Res = DAG.getConstant(0, sdl, Ty);
5403 
5404     setValue(&I, Res);
5405     return nullptr;
5406   }
5407   case Intrinsic::annotation:
5408   case Intrinsic::ptr_annotation:
5409     // Drop the intrinsic, but forward the value
5410     setValue(&I, getValue(I.getOperand(0)));
5411     return nullptr;
5412   case Intrinsic::assume:
5413   case Intrinsic::var_annotation:
5414     // Discard annotate attributes and assumptions
5415     return nullptr;
5416 
5417   case Intrinsic::init_trampoline: {
5418     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5419 
5420     SDValue Ops[6];
5421     Ops[0] = getRoot();
5422     Ops[1] = getValue(I.getArgOperand(0));
5423     Ops[2] = getValue(I.getArgOperand(1));
5424     Ops[3] = getValue(I.getArgOperand(2));
5425     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5426     Ops[5] = DAG.getSrcValue(F);
5427 
5428     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5429 
5430     DAG.setRoot(Res);
5431     return nullptr;
5432   }
5433   case Intrinsic::adjust_trampoline: {
5434     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5435                              TLI.getPointerTy(DAG.getDataLayout()),
5436                              getValue(I.getArgOperand(0))));
5437     return nullptr;
5438   }
5439   case Intrinsic::gcroot: {
5440     MachineFunction &MF = DAG.getMachineFunction();
5441     const Function *F = MF.getFunction();
5442     (void)F;
5443     assert(F->hasGC() &&
5444            "only valid in functions with gc specified, enforced by Verifier");
5445     assert(GFI && "implied by previous");
5446     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5447     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5448 
5449     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5450     GFI->addStackRoot(FI->getIndex(), TypeMap);
5451     return nullptr;
5452   }
5453   case Intrinsic::gcread:
5454   case Intrinsic::gcwrite:
5455     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5456   case Intrinsic::flt_rounds:
5457     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5458     return nullptr;
5459 
5460   case Intrinsic::expect: {
5461     // Just replace __builtin_expect(exp, c) with EXP.
5462     setValue(&I, getValue(I.getArgOperand(0)));
5463     return nullptr;
5464   }
5465 
5466   case Intrinsic::debugtrap:
5467   case Intrinsic::trap: {
5468     StringRef TrapFuncName =
5469         I.getAttributes()
5470             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5471             .getValueAsString();
5472     if (TrapFuncName.empty()) {
5473       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5474         ISD::TRAP : ISD::DEBUGTRAP;
5475       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5476       return nullptr;
5477     }
5478     TargetLowering::ArgListTy Args;
5479 
5480     TargetLowering::CallLoweringInfo CLI(DAG);
5481     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5482         CallingConv::C, I.getType(),
5483         DAG.getExternalSymbol(TrapFuncName.data(),
5484                               TLI.getPointerTy(DAG.getDataLayout())),
5485         std::move(Args));
5486 
5487     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5488     DAG.setRoot(Result.second);
5489     return nullptr;
5490   }
5491 
5492   case Intrinsic::uadd_with_overflow:
5493   case Intrinsic::sadd_with_overflow:
5494   case Intrinsic::usub_with_overflow:
5495   case Intrinsic::ssub_with_overflow:
5496   case Intrinsic::umul_with_overflow:
5497   case Intrinsic::smul_with_overflow: {
5498     ISD::NodeType Op;
5499     switch (Intrinsic) {
5500     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5501     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5502     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5503     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5504     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5505     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5506     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5507     }
5508     SDValue Op1 = getValue(I.getArgOperand(0));
5509     SDValue Op2 = getValue(I.getArgOperand(1));
5510 
5511     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5512     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5513     return nullptr;
5514   }
5515   case Intrinsic::prefetch: {
5516     SDValue Ops[5];
5517     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5518     Ops[0] = getRoot();
5519     Ops[1] = getValue(I.getArgOperand(0));
5520     Ops[2] = getValue(I.getArgOperand(1));
5521     Ops[3] = getValue(I.getArgOperand(2));
5522     Ops[4] = getValue(I.getArgOperand(3));
5523     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5524                                         DAG.getVTList(MVT::Other), Ops,
5525                                         EVT::getIntegerVT(*Context, 8),
5526                                         MachinePointerInfo(I.getArgOperand(0)),
5527                                         0, /* align */
5528                                         false, /* volatile */
5529                                         rw==0, /* read */
5530                                         rw==1)); /* write */
5531     return nullptr;
5532   }
5533   case Intrinsic::lifetime_start:
5534   case Intrinsic::lifetime_end: {
5535     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5536     // Stack coloring is not enabled in O0, discard region information.
5537     if (TM.getOptLevel() == CodeGenOpt::None)
5538       return nullptr;
5539 
5540     SmallVector<Value *, 4> Allocas;
5541     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5542 
5543     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5544            E = Allocas.end(); Object != E; ++Object) {
5545       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5546 
5547       // Could not find an Alloca.
5548       if (!LifetimeObject)
5549         continue;
5550 
5551       // First check that the Alloca is static, otherwise it won't have a
5552       // valid frame index.
5553       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5554       if (SI == FuncInfo.StaticAllocaMap.end())
5555         return nullptr;
5556 
5557       int FI = SI->second;
5558 
5559       SDValue Ops[2];
5560       Ops[0] = getRoot();
5561       Ops[1] =
5562           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5563       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5564 
5565       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5566       DAG.setRoot(Res);
5567     }
5568     return nullptr;
5569   }
5570   case Intrinsic::invariant_start:
5571     // Discard region information.
5572     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5573     return nullptr;
5574   case Intrinsic::invariant_end:
5575     // Discard region information.
5576     return nullptr;
5577   case Intrinsic::clear_cache:
5578     return TLI.getClearCacheBuiltinName();
5579   case Intrinsic::donothing:
5580     // ignore
5581     return nullptr;
5582   case Intrinsic::experimental_stackmap: {
5583     visitStackmap(I);
5584     return nullptr;
5585   }
5586   case Intrinsic::experimental_patchpoint_void:
5587   case Intrinsic::experimental_patchpoint_i64: {
5588     visitPatchpoint(&I);
5589     return nullptr;
5590   }
5591   case Intrinsic::experimental_gc_statepoint: {
5592     LowerStatepoint(ImmutableStatepoint(&I));
5593     return nullptr;
5594   }
5595   case Intrinsic::experimental_gc_result: {
5596     visitGCResult(cast<GCResultInst>(I));
5597     return nullptr;
5598   }
5599   case Intrinsic::experimental_gc_relocate: {
5600     visitGCRelocate(cast<GCRelocateInst>(I));
5601     return nullptr;
5602   }
5603   case Intrinsic::instrprof_increment:
5604     llvm_unreachable("instrprof failed to lower an increment");
5605   case Intrinsic::instrprof_value_profile:
5606     llvm_unreachable("instrprof failed to lower a value profiling call");
5607   case Intrinsic::localescape: {
5608     MachineFunction &MF = DAG.getMachineFunction();
5609     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5610 
5611     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5612     // is the same on all targets.
5613     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5614       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5615       if (isa<ConstantPointerNull>(Arg))
5616         continue; // Skip null pointers. They represent a hole in index space.
5617       AllocaInst *Slot = cast<AllocaInst>(Arg);
5618       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5619              "can only escape static allocas");
5620       int FI = FuncInfo.StaticAllocaMap[Slot];
5621       MCSymbol *FrameAllocSym =
5622           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5623               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5624       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5625               TII->get(TargetOpcode::LOCAL_ESCAPE))
5626           .addSym(FrameAllocSym)
5627           .addFrameIndex(FI);
5628     }
5629 
5630     return nullptr;
5631   }
5632 
5633   case Intrinsic::localrecover: {
5634     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5635     MachineFunction &MF = DAG.getMachineFunction();
5636     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5637 
5638     // Get the symbol that defines the frame offset.
5639     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5640     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5641     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5642     MCSymbol *FrameAllocSym =
5643         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5644             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5645 
5646     // Create a MCSymbol for the label to avoid any target lowering
5647     // that would make this PC relative.
5648     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5649     SDValue OffsetVal =
5650         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5651 
5652     // Add the offset to the FP.
5653     Value *FP = I.getArgOperand(1);
5654     SDValue FPVal = getValue(FP);
5655     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5656     setValue(&I, Add);
5657 
5658     return nullptr;
5659   }
5660 
5661   case Intrinsic::eh_exceptionpointer:
5662   case Intrinsic::eh_exceptioncode: {
5663     // Get the exception pointer vreg, copy from it, and resize it to fit.
5664     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5665     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5666     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5667     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5668     SDValue N =
5669         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5670     if (Intrinsic == Intrinsic::eh_exceptioncode)
5671       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5672     setValue(&I, N);
5673     return nullptr;
5674   }
5675 
5676   case Intrinsic::experimental_deoptimize:
5677     LowerDeoptimizeCall(&I);
5678     return nullptr;
5679   }
5680 }
5681 
5682 std::pair<SDValue, SDValue>
5683 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5684                                     const BasicBlock *EHPadBB) {
5685   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5686   MCSymbol *BeginLabel = nullptr;
5687 
5688   if (EHPadBB) {
5689     // Insert a label before the invoke call to mark the try range.  This can be
5690     // used to detect deletion of the invoke via the MachineModuleInfo.
5691     BeginLabel = MMI.getContext().createTempSymbol();
5692 
5693     // For SjLj, keep track of which landing pads go with which invokes
5694     // so as to maintain the ordering of pads in the LSDA.
5695     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5696     if (CallSiteIndex) {
5697       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5698       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5699 
5700       // Now that the call site is handled, stop tracking it.
5701       MMI.setCurrentCallSite(0);
5702     }
5703 
5704     // Both PendingLoads and PendingExports must be flushed here;
5705     // this call might not return.
5706     (void)getRoot();
5707     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5708 
5709     CLI.setChain(getRoot());
5710   }
5711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5712   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5713 
5714   assert((CLI.IsTailCall || Result.second.getNode()) &&
5715          "Non-null chain expected with non-tail call!");
5716   assert((Result.second.getNode() || !Result.first.getNode()) &&
5717          "Null value expected with tail call!");
5718 
5719   if (!Result.second.getNode()) {
5720     // As a special case, a null chain means that a tail call has been emitted
5721     // and the DAG root is already updated.
5722     HasTailCall = true;
5723 
5724     // Since there's no actual continuation from this block, nothing can be
5725     // relying on us setting vregs for them.
5726     PendingExports.clear();
5727   } else {
5728     DAG.setRoot(Result.second);
5729   }
5730 
5731   if (EHPadBB) {
5732     // Insert a label at the end of the invoke call to mark the try range.  This
5733     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5734     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5735     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5736 
5737     // Inform MachineModuleInfo of range.
5738     if (MMI.hasEHFunclets()) {
5739       assert(CLI.CS);
5740       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5741       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5742                                 BeginLabel, EndLabel);
5743     } else {
5744       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5745     }
5746   }
5747 
5748   return Result;
5749 }
5750 
5751 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5752                                       bool isTailCall,
5753                                       const BasicBlock *EHPadBB) {
5754   auto &DL = DAG.getDataLayout();
5755   FunctionType *FTy = CS.getFunctionType();
5756   Type *RetTy = CS.getType();
5757 
5758   TargetLowering::ArgListTy Args;
5759   TargetLowering::ArgListEntry Entry;
5760   Args.reserve(CS.arg_size());
5761 
5762   const Value *SwiftErrorVal = nullptr;
5763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5764   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5765        i != e; ++i) {
5766     const Value *V = *i;
5767 
5768     // Skip empty types
5769     if (V->getType()->isEmptyTy())
5770       continue;
5771 
5772     SDValue ArgNode = getValue(V);
5773     Entry.Node = ArgNode; Entry.Ty = V->getType();
5774 
5775     // Skip the first return-type Attribute to get to params.
5776     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5777 
5778     // Use swifterror virtual register as input to the call.
5779     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5780       SwiftErrorVal = V;
5781       // We find the virtual register for the actual swifterror argument.
5782       // Instead of using the Value, we use the virtual register instead.
5783       Entry.Node = DAG.getRegister(
5784           FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5785           EVT(TLI.getPointerTy(DL)));
5786     }
5787 
5788     Args.push_back(Entry);
5789 
5790     // If we have an explicit sret argument that is an Instruction, (i.e., it
5791     // might point to function-local memory), we can't meaningfully tail-call.
5792     if (Entry.isSRet && isa<Instruction>(V))
5793       isTailCall = false;
5794   }
5795 
5796   // Check if target-independent constraints permit a tail call here.
5797   // Target-dependent constraints are checked within TLI->LowerCallTo.
5798   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5799     isTailCall = false;
5800 
5801   TargetLowering::CallLoweringInfo CLI(DAG);
5802   CLI.setDebugLoc(getCurSDLoc())
5803       .setChain(getRoot())
5804       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5805       .setTailCall(isTailCall)
5806       .setConvergent(CS.isConvergent());
5807   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5808 
5809   if (Result.first.getNode()) {
5810     const Instruction *Inst = CS.getInstruction();
5811     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5812     setValue(Inst, Result.first);
5813   }
5814 
5815   // The last element of CLI.InVals has the SDValue for swifterror return.
5816   // Here we copy it to a virtual register and update SwiftErrorMap for
5817   // book-keeping.
5818   if (SwiftErrorVal && TLI.supportSwiftError()) {
5819     // Get the last element of InVals.
5820     SDValue Src = CLI.InVals.back();
5821     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5822     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5823     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5824     // We update the virtual register for the actual swifterror argument.
5825     FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5826     DAG.setRoot(CopyNode);
5827   }
5828 }
5829 
5830 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5831 /// value is equal or not-equal to zero.
5832 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5833   for (const User *U : V->users()) {
5834     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5835       if (IC->isEquality())
5836         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5837           if (C->isNullValue())
5838             continue;
5839     // Unknown instruction.
5840     return false;
5841   }
5842   return true;
5843 }
5844 
5845 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5846                              Type *LoadTy,
5847                              SelectionDAGBuilder &Builder) {
5848 
5849   // Check to see if this load can be trivially constant folded, e.g. if the
5850   // input is from a string literal.
5851   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5852     // Cast pointer to the type we really want to load.
5853     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5854                                          PointerType::getUnqual(LoadTy));
5855 
5856     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5857             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5858       return Builder.getValue(LoadCst);
5859   }
5860 
5861   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5862   // still constant memory, the input chain can be the entry node.
5863   SDValue Root;
5864   bool ConstantMemory = false;
5865 
5866   // Do not serialize (non-volatile) loads of constant memory with anything.
5867   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5868     Root = Builder.DAG.getEntryNode();
5869     ConstantMemory = true;
5870   } else {
5871     // Do not serialize non-volatile loads against each other.
5872     Root = Builder.DAG.getRoot();
5873   }
5874 
5875   SDValue Ptr = Builder.getValue(PtrVal);
5876   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5877                                         Ptr, MachinePointerInfo(PtrVal),
5878                                         false /*volatile*/,
5879                                         false /*nontemporal*/,
5880                                         false /*isinvariant*/, 1 /* align=1 */);
5881 
5882   if (!ConstantMemory)
5883     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5884   return LoadVal;
5885 }
5886 
5887 /// processIntegerCallValue - Record the value for an instruction that
5888 /// produces an integer result, converting the type where necessary.
5889 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5890                                                   SDValue Value,
5891                                                   bool IsSigned) {
5892   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5893                                                     I.getType(), true);
5894   if (IsSigned)
5895     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5896   else
5897     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5898   setValue(&I, Value);
5899 }
5900 
5901 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5902 /// If so, return true and lower it, otherwise return false and it will be
5903 /// lowered like a normal call.
5904 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5905   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5906   if (I.getNumArgOperands() != 3)
5907     return false;
5908 
5909   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5910   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5911       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5912       !I.getType()->isIntegerTy())
5913     return false;
5914 
5915   const Value *Size = I.getArgOperand(2);
5916   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5917   if (CSize && CSize->getZExtValue() == 0) {
5918     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5919                                                           I.getType(), true);
5920     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5921     return true;
5922   }
5923 
5924   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5925   std::pair<SDValue, SDValue> Res =
5926     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5927                                 getValue(LHS), getValue(RHS), getValue(Size),
5928                                 MachinePointerInfo(LHS),
5929                                 MachinePointerInfo(RHS));
5930   if (Res.first.getNode()) {
5931     processIntegerCallValue(I, Res.first, true);
5932     PendingLoads.push_back(Res.second);
5933     return true;
5934   }
5935 
5936   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5937   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5938   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5939     bool ActuallyDoIt = true;
5940     MVT LoadVT;
5941     Type *LoadTy;
5942     switch (CSize->getZExtValue()) {
5943     default:
5944       LoadVT = MVT::Other;
5945       LoadTy = nullptr;
5946       ActuallyDoIt = false;
5947       break;
5948     case 2:
5949       LoadVT = MVT::i16;
5950       LoadTy = Type::getInt16Ty(CSize->getContext());
5951       break;
5952     case 4:
5953       LoadVT = MVT::i32;
5954       LoadTy = Type::getInt32Ty(CSize->getContext());
5955       break;
5956     case 8:
5957       LoadVT = MVT::i64;
5958       LoadTy = Type::getInt64Ty(CSize->getContext());
5959       break;
5960         /*
5961     case 16:
5962       LoadVT = MVT::v4i32;
5963       LoadTy = Type::getInt32Ty(CSize->getContext());
5964       LoadTy = VectorType::get(LoadTy, 4);
5965       break;
5966          */
5967     }
5968 
5969     // This turns into unaligned loads.  We only do this if the target natively
5970     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5971     // we'll only produce a small number of byte loads.
5972 
5973     // Require that we can find a legal MVT, and only do this if the target
5974     // supports unaligned loads of that type.  Expanding into byte loads would
5975     // bloat the code.
5976     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5977     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5978       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5979       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5980       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5981       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5982       // TODO: Check alignment of src and dest ptrs.
5983       if (!TLI.isTypeLegal(LoadVT) ||
5984           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5985           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5986         ActuallyDoIt = false;
5987     }
5988 
5989     if (ActuallyDoIt) {
5990       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5991       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5992 
5993       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5994                                  ISD::SETNE);
5995       processIntegerCallValue(I, Res, false);
5996       return true;
5997     }
5998   }
5999 
6000 
6001   return false;
6002 }
6003 
6004 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6005 /// form.  If so, return true and lower it, otherwise return false and it
6006 /// will be lowered like a normal call.
6007 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6008   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6009   if (I.getNumArgOperands() != 3)
6010     return false;
6011 
6012   const Value *Src = I.getArgOperand(0);
6013   const Value *Char = I.getArgOperand(1);
6014   const Value *Length = I.getArgOperand(2);
6015   if (!Src->getType()->isPointerTy() ||
6016       !Char->getType()->isIntegerTy() ||
6017       !Length->getType()->isIntegerTy() ||
6018       !I.getType()->isPointerTy())
6019     return false;
6020 
6021   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6022   std::pair<SDValue, SDValue> Res =
6023     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6024                                 getValue(Src), getValue(Char), getValue(Length),
6025                                 MachinePointerInfo(Src));
6026   if (Res.first.getNode()) {
6027     setValue(&I, Res.first);
6028     PendingLoads.push_back(Res.second);
6029     return true;
6030   }
6031 
6032   return false;
6033 }
6034 
6035 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6036 /// optimized form.  If so, return true and lower it, otherwise return false
6037 /// and it will be lowered like a normal call.
6038 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6039   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6040   if (I.getNumArgOperands() != 2)
6041     return false;
6042 
6043   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6044   if (!Arg0->getType()->isPointerTy() ||
6045       !Arg1->getType()->isPointerTy() ||
6046       !I.getType()->isPointerTy())
6047     return false;
6048 
6049   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6050   std::pair<SDValue, SDValue> Res =
6051     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6052                                 getValue(Arg0), getValue(Arg1),
6053                                 MachinePointerInfo(Arg0),
6054                                 MachinePointerInfo(Arg1), isStpcpy);
6055   if (Res.first.getNode()) {
6056     setValue(&I, Res.first);
6057     DAG.setRoot(Res.second);
6058     return true;
6059   }
6060 
6061   return false;
6062 }
6063 
6064 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6065 /// If so, return true and lower it, otherwise return false and it will be
6066 /// lowered like a normal call.
6067 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6068   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6069   if (I.getNumArgOperands() != 2)
6070     return false;
6071 
6072   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6073   if (!Arg0->getType()->isPointerTy() ||
6074       !Arg1->getType()->isPointerTy() ||
6075       !I.getType()->isIntegerTy())
6076     return false;
6077 
6078   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6079   std::pair<SDValue, SDValue> Res =
6080     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6081                                 getValue(Arg0), getValue(Arg1),
6082                                 MachinePointerInfo(Arg0),
6083                                 MachinePointerInfo(Arg1));
6084   if (Res.first.getNode()) {
6085     processIntegerCallValue(I, Res.first, true);
6086     PendingLoads.push_back(Res.second);
6087     return true;
6088   }
6089 
6090   return false;
6091 }
6092 
6093 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6094 /// form.  If so, return true and lower it, otherwise return false and it
6095 /// will be lowered like a normal call.
6096 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6097   // Verify that the prototype makes sense.  size_t strlen(char *)
6098   if (I.getNumArgOperands() != 1)
6099     return false;
6100 
6101   const Value *Arg0 = I.getArgOperand(0);
6102   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6103     return false;
6104 
6105   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6106   std::pair<SDValue, SDValue> Res =
6107     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6108                                 getValue(Arg0), MachinePointerInfo(Arg0));
6109   if (Res.first.getNode()) {
6110     processIntegerCallValue(I, Res.first, false);
6111     PendingLoads.push_back(Res.second);
6112     return true;
6113   }
6114 
6115   return false;
6116 }
6117 
6118 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6119 /// form.  If so, return true and lower it, otherwise return false and it
6120 /// will be lowered like a normal call.
6121 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6122   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6123   if (I.getNumArgOperands() != 2)
6124     return false;
6125 
6126   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6127   if (!Arg0->getType()->isPointerTy() ||
6128       !Arg1->getType()->isIntegerTy() ||
6129       !I.getType()->isIntegerTy())
6130     return false;
6131 
6132   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6133   std::pair<SDValue, SDValue> Res =
6134     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6135                                  getValue(Arg0), getValue(Arg1),
6136                                  MachinePointerInfo(Arg0));
6137   if (Res.first.getNode()) {
6138     processIntegerCallValue(I, Res.first, false);
6139     PendingLoads.push_back(Res.second);
6140     return true;
6141   }
6142 
6143   return false;
6144 }
6145 
6146 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6147 /// operation (as expected), translate it to an SDNode with the specified opcode
6148 /// and return true.
6149 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6150                                               unsigned Opcode) {
6151   // Sanity check that it really is a unary floating-point call.
6152   if (I.getNumArgOperands() != 1 ||
6153       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6154       I.getType() != I.getArgOperand(0)->getType() ||
6155       !I.onlyReadsMemory())
6156     return false;
6157 
6158   SDValue Tmp = getValue(I.getArgOperand(0));
6159   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6160   return true;
6161 }
6162 
6163 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6164 /// operation (as expected), translate it to an SDNode with the specified opcode
6165 /// and return true.
6166 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6167                                                unsigned Opcode) {
6168   // Sanity check that it really is a binary floating-point call.
6169   if (I.getNumArgOperands() != 2 ||
6170       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6171       I.getType() != I.getArgOperand(0)->getType() ||
6172       I.getType() != I.getArgOperand(1)->getType() ||
6173       !I.onlyReadsMemory())
6174     return false;
6175 
6176   SDValue Tmp0 = getValue(I.getArgOperand(0));
6177   SDValue Tmp1 = getValue(I.getArgOperand(1));
6178   EVT VT = Tmp0.getValueType();
6179   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6180   return true;
6181 }
6182 
6183 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6184   // Handle inline assembly differently.
6185   if (isa<InlineAsm>(I.getCalledValue())) {
6186     visitInlineAsm(&I);
6187     return;
6188   }
6189 
6190   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6191   ComputeUsesVAFloatArgument(I, &MMI);
6192 
6193   const char *RenameFn = nullptr;
6194   if (Function *F = I.getCalledFunction()) {
6195     if (F->isDeclaration()) {
6196       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6197         if (unsigned IID = II->getIntrinsicID(F)) {
6198           RenameFn = visitIntrinsicCall(I, IID);
6199           if (!RenameFn)
6200             return;
6201         }
6202       }
6203       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6204         RenameFn = visitIntrinsicCall(I, IID);
6205         if (!RenameFn)
6206           return;
6207       }
6208     }
6209 
6210     // Check for well-known libc/libm calls.  If the function is internal, it
6211     // can't be a library call.  Don't do the check if marked as nobuiltin for
6212     // some reason.
6213     LibFunc::Func Func;
6214     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6215         LibInfo->getLibFunc(F->getName(), Func) &&
6216         LibInfo->hasOptimizedCodeGen(Func)) {
6217       switch (Func) {
6218       default: break;
6219       case LibFunc::copysign:
6220       case LibFunc::copysignf:
6221       case LibFunc::copysignl:
6222         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6223             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6224             I.getType() == I.getArgOperand(0)->getType() &&
6225             I.getType() == I.getArgOperand(1)->getType() &&
6226             I.onlyReadsMemory()) {
6227           SDValue LHS = getValue(I.getArgOperand(0));
6228           SDValue RHS = getValue(I.getArgOperand(1));
6229           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6230                                    LHS.getValueType(), LHS, RHS));
6231           return;
6232         }
6233         break;
6234       case LibFunc::fabs:
6235       case LibFunc::fabsf:
6236       case LibFunc::fabsl:
6237         if (visitUnaryFloatCall(I, ISD::FABS))
6238           return;
6239         break;
6240       case LibFunc::fmin:
6241       case LibFunc::fminf:
6242       case LibFunc::fminl:
6243         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6244           return;
6245         break;
6246       case LibFunc::fmax:
6247       case LibFunc::fmaxf:
6248       case LibFunc::fmaxl:
6249         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6250           return;
6251         break;
6252       case LibFunc::sin:
6253       case LibFunc::sinf:
6254       case LibFunc::sinl:
6255         if (visitUnaryFloatCall(I, ISD::FSIN))
6256           return;
6257         break;
6258       case LibFunc::cos:
6259       case LibFunc::cosf:
6260       case LibFunc::cosl:
6261         if (visitUnaryFloatCall(I, ISD::FCOS))
6262           return;
6263         break;
6264       case LibFunc::sqrt:
6265       case LibFunc::sqrtf:
6266       case LibFunc::sqrtl:
6267       case LibFunc::sqrt_finite:
6268       case LibFunc::sqrtf_finite:
6269       case LibFunc::sqrtl_finite:
6270         if (visitUnaryFloatCall(I, ISD::FSQRT))
6271           return;
6272         break;
6273       case LibFunc::floor:
6274       case LibFunc::floorf:
6275       case LibFunc::floorl:
6276         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6277           return;
6278         break;
6279       case LibFunc::nearbyint:
6280       case LibFunc::nearbyintf:
6281       case LibFunc::nearbyintl:
6282         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6283           return;
6284         break;
6285       case LibFunc::ceil:
6286       case LibFunc::ceilf:
6287       case LibFunc::ceill:
6288         if (visitUnaryFloatCall(I, ISD::FCEIL))
6289           return;
6290         break;
6291       case LibFunc::rint:
6292       case LibFunc::rintf:
6293       case LibFunc::rintl:
6294         if (visitUnaryFloatCall(I, ISD::FRINT))
6295           return;
6296         break;
6297       case LibFunc::round:
6298       case LibFunc::roundf:
6299       case LibFunc::roundl:
6300         if (visitUnaryFloatCall(I, ISD::FROUND))
6301           return;
6302         break;
6303       case LibFunc::trunc:
6304       case LibFunc::truncf:
6305       case LibFunc::truncl:
6306         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6307           return;
6308         break;
6309       case LibFunc::log2:
6310       case LibFunc::log2f:
6311       case LibFunc::log2l:
6312         if (visitUnaryFloatCall(I, ISD::FLOG2))
6313           return;
6314         break;
6315       case LibFunc::exp2:
6316       case LibFunc::exp2f:
6317       case LibFunc::exp2l:
6318         if (visitUnaryFloatCall(I, ISD::FEXP2))
6319           return;
6320         break;
6321       case LibFunc::memcmp:
6322         if (visitMemCmpCall(I))
6323           return;
6324         break;
6325       case LibFunc::memchr:
6326         if (visitMemChrCall(I))
6327           return;
6328         break;
6329       case LibFunc::strcpy:
6330         if (visitStrCpyCall(I, false))
6331           return;
6332         break;
6333       case LibFunc::stpcpy:
6334         if (visitStrCpyCall(I, true))
6335           return;
6336         break;
6337       case LibFunc::strcmp:
6338         if (visitStrCmpCall(I))
6339           return;
6340         break;
6341       case LibFunc::strlen:
6342         if (visitStrLenCall(I))
6343           return;
6344         break;
6345       case LibFunc::strnlen:
6346         if (visitStrNLenCall(I))
6347           return;
6348         break;
6349       }
6350     }
6351   }
6352 
6353   SDValue Callee;
6354   if (!RenameFn)
6355     Callee = getValue(I.getCalledValue());
6356   else
6357     Callee = DAG.getExternalSymbol(
6358         RenameFn,
6359         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6360 
6361   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6362   // have to do anything here to lower funclet bundles.
6363   assert(!I.hasOperandBundlesOtherThan(
6364              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6365          "Cannot lower calls with arbitrary operand bundles!");
6366 
6367   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6368     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6369   else
6370     // Check if we can potentially perform a tail call. More detailed checking
6371     // is be done within LowerCallTo, after more information about the call is
6372     // known.
6373     LowerCallTo(&I, Callee, I.isTailCall());
6374 }
6375 
6376 namespace {
6377 
6378 /// AsmOperandInfo - This contains information for each constraint that we are
6379 /// lowering.
6380 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6381 public:
6382   /// CallOperand - If this is the result output operand or a clobber
6383   /// this is null, otherwise it is the incoming operand to the CallInst.
6384   /// This gets modified as the asm is processed.
6385   SDValue CallOperand;
6386 
6387   /// AssignedRegs - If this is a register or register class operand, this
6388   /// contains the set of register corresponding to the operand.
6389   RegsForValue AssignedRegs;
6390 
6391   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6392     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6393   }
6394 
6395   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6396   /// corresponds to.  If there is no Value* for this operand, it returns
6397   /// MVT::Other.
6398   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6399                            const DataLayout &DL) const {
6400     if (!CallOperandVal) return MVT::Other;
6401 
6402     if (isa<BasicBlock>(CallOperandVal))
6403       return TLI.getPointerTy(DL);
6404 
6405     llvm::Type *OpTy = CallOperandVal->getType();
6406 
6407     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6408     // If this is an indirect operand, the operand is a pointer to the
6409     // accessed type.
6410     if (isIndirect) {
6411       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6412       if (!PtrTy)
6413         report_fatal_error("Indirect operand for inline asm not a pointer!");
6414       OpTy = PtrTy->getElementType();
6415     }
6416 
6417     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6418     if (StructType *STy = dyn_cast<StructType>(OpTy))
6419       if (STy->getNumElements() == 1)
6420         OpTy = STy->getElementType(0);
6421 
6422     // If OpTy is not a single value, it may be a struct/union that we
6423     // can tile with integers.
6424     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6425       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6426       switch (BitSize) {
6427       default: break;
6428       case 1:
6429       case 8:
6430       case 16:
6431       case 32:
6432       case 64:
6433       case 128:
6434         OpTy = IntegerType::get(Context, BitSize);
6435         break;
6436       }
6437     }
6438 
6439     return TLI.getValueType(DL, OpTy, true);
6440   }
6441 };
6442 
6443 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6444 
6445 } // end anonymous namespace
6446 
6447 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6448 /// specified operand.  We prefer to assign virtual registers, to allow the
6449 /// register allocator to handle the assignment process.  However, if the asm
6450 /// uses features that we can't model on machineinstrs, we have SDISel do the
6451 /// allocation.  This produces generally horrible, but correct, code.
6452 ///
6453 ///   OpInfo describes the operand.
6454 ///
6455 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6456                                  const SDLoc &DL,
6457                                  SDISelAsmOperandInfo &OpInfo) {
6458   LLVMContext &Context = *DAG.getContext();
6459 
6460   MachineFunction &MF = DAG.getMachineFunction();
6461   SmallVector<unsigned, 4> Regs;
6462 
6463   // If this is a constraint for a single physreg, or a constraint for a
6464   // register class, find it.
6465   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6466       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6467                                        OpInfo.ConstraintCode,
6468                                        OpInfo.ConstraintVT);
6469 
6470   unsigned NumRegs = 1;
6471   if (OpInfo.ConstraintVT != MVT::Other) {
6472     // If this is a FP input in an integer register (or visa versa) insert a bit
6473     // cast of the input value.  More generally, handle any case where the input
6474     // value disagrees with the register class we plan to stick this in.
6475     if (OpInfo.Type == InlineAsm::isInput &&
6476         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6477       // Try to convert to the first EVT that the reg class contains.  If the
6478       // types are identical size, use a bitcast to convert (e.g. two differing
6479       // vector types).
6480       MVT RegVT = *PhysReg.second->vt_begin();
6481       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6482         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6483                                          RegVT, OpInfo.CallOperand);
6484         OpInfo.ConstraintVT = RegVT;
6485       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6486         // If the input is a FP value and we want it in FP registers, do a
6487         // bitcast to the corresponding integer type.  This turns an f64 value
6488         // into i64, which can be passed with two i32 values on a 32-bit
6489         // machine.
6490         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6491         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6492                                          RegVT, OpInfo.CallOperand);
6493         OpInfo.ConstraintVT = RegVT;
6494       }
6495     }
6496 
6497     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6498   }
6499 
6500   MVT RegVT;
6501   EVT ValueVT = OpInfo.ConstraintVT;
6502 
6503   // If this is a constraint for a specific physical register, like {r17},
6504   // assign it now.
6505   if (unsigned AssignedReg = PhysReg.first) {
6506     const TargetRegisterClass *RC = PhysReg.second;
6507     if (OpInfo.ConstraintVT == MVT::Other)
6508       ValueVT = *RC->vt_begin();
6509 
6510     // Get the actual register value type.  This is important, because the user
6511     // may have asked for (e.g.) the AX register in i32 type.  We need to
6512     // remember that AX is actually i16 to get the right extension.
6513     RegVT = *RC->vt_begin();
6514 
6515     // This is a explicit reference to a physical register.
6516     Regs.push_back(AssignedReg);
6517 
6518     // If this is an expanded reference, add the rest of the regs to Regs.
6519     if (NumRegs != 1) {
6520       TargetRegisterClass::iterator I = RC->begin();
6521       for (; *I != AssignedReg; ++I)
6522         assert(I != RC->end() && "Didn't find reg!");
6523 
6524       // Already added the first reg.
6525       --NumRegs; ++I;
6526       for (; NumRegs; --NumRegs, ++I) {
6527         assert(I != RC->end() && "Ran out of registers to allocate!");
6528         Regs.push_back(*I);
6529       }
6530     }
6531 
6532     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6533     return;
6534   }
6535 
6536   // Otherwise, if this was a reference to an LLVM register class, create vregs
6537   // for this reference.
6538   if (const TargetRegisterClass *RC = PhysReg.second) {
6539     RegVT = *RC->vt_begin();
6540     if (OpInfo.ConstraintVT == MVT::Other)
6541       ValueVT = RegVT;
6542 
6543     // Create the appropriate number of virtual registers.
6544     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6545     for (; NumRegs; --NumRegs)
6546       Regs.push_back(RegInfo.createVirtualRegister(RC));
6547 
6548     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6549     return;
6550   }
6551 
6552   // Otherwise, we couldn't allocate enough registers for this.
6553 }
6554 
6555 /// visitInlineAsm - Handle a call to an InlineAsm object.
6556 ///
6557 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6558   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6559 
6560   /// ConstraintOperands - Information about all of the constraints.
6561   SDISelAsmOperandInfoVector ConstraintOperands;
6562 
6563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6564   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6565       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6566 
6567   bool hasMemory = false;
6568 
6569   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6570   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6571   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6572     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6573     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6574 
6575     MVT OpVT = MVT::Other;
6576 
6577     // Compute the value type for each operand.
6578     switch (OpInfo.Type) {
6579     case InlineAsm::isOutput:
6580       // Indirect outputs just consume an argument.
6581       if (OpInfo.isIndirect) {
6582         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6583         break;
6584       }
6585 
6586       // The return value of the call is this value.  As such, there is no
6587       // corresponding argument.
6588       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6589       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6590         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6591                                       STy->getElementType(ResNo));
6592       } else {
6593         assert(ResNo == 0 && "Asm only has one result!");
6594         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6595       }
6596       ++ResNo;
6597       break;
6598     case InlineAsm::isInput:
6599       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6600       break;
6601     case InlineAsm::isClobber:
6602       // Nothing to do.
6603       break;
6604     }
6605 
6606     // If this is an input or an indirect output, process the call argument.
6607     // BasicBlocks are labels, currently appearing only in asm's.
6608     if (OpInfo.CallOperandVal) {
6609       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6610         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6611       } else {
6612         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6613       }
6614 
6615       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6616                                          DAG.getDataLayout()).getSimpleVT();
6617     }
6618 
6619     OpInfo.ConstraintVT = OpVT;
6620 
6621     // Indirect operand accesses access memory.
6622     if (OpInfo.isIndirect)
6623       hasMemory = true;
6624     else {
6625       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6626         TargetLowering::ConstraintType
6627           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6628         if (CType == TargetLowering::C_Memory) {
6629           hasMemory = true;
6630           break;
6631         }
6632       }
6633     }
6634   }
6635 
6636   SDValue Chain, Flag;
6637 
6638   // We won't need to flush pending loads if this asm doesn't touch
6639   // memory and is nonvolatile.
6640   if (hasMemory || IA->hasSideEffects())
6641     Chain = getRoot();
6642   else
6643     Chain = DAG.getRoot();
6644 
6645   // Second pass over the constraints: compute which constraint option to use
6646   // and assign registers to constraints that want a specific physreg.
6647   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6648     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6649 
6650     // If this is an output operand with a matching input operand, look up the
6651     // matching input. If their types mismatch, e.g. one is an integer, the
6652     // other is floating point, or their sizes are different, flag it as an
6653     // error.
6654     if (OpInfo.hasMatchingInput()) {
6655       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6656 
6657       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6658         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6659         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6660             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6661                                              OpInfo.ConstraintVT);
6662         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6663             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6664                                              Input.ConstraintVT);
6665         if ((OpInfo.ConstraintVT.isInteger() !=
6666              Input.ConstraintVT.isInteger()) ||
6667             (MatchRC.second != InputRC.second)) {
6668           report_fatal_error("Unsupported asm: input constraint"
6669                              " with a matching output constraint of"
6670                              " incompatible type!");
6671         }
6672         Input.ConstraintVT = OpInfo.ConstraintVT;
6673       }
6674     }
6675 
6676     // Compute the constraint code and ConstraintType to use.
6677     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6678 
6679     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6680         OpInfo.Type == InlineAsm::isClobber)
6681       continue;
6682 
6683     // If this is a memory input, and if the operand is not indirect, do what we
6684     // need to to provide an address for the memory input.
6685     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6686         !OpInfo.isIndirect) {
6687       assert((OpInfo.isMultipleAlternative ||
6688               (OpInfo.Type == InlineAsm::isInput)) &&
6689              "Can only indirectify direct input operands!");
6690 
6691       // Memory operands really want the address of the value.  If we don't have
6692       // an indirect input, put it in the constpool if we can, otherwise spill
6693       // it to a stack slot.
6694       // TODO: This isn't quite right. We need to handle these according to
6695       // the addressing mode that the constraint wants. Also, this may take
6696       // an additional register for the computation and we don't want that
6697       // either.
6698 
6699       // If the operand is a float, integer, or vector constant, spill to a
6700       // constant pool entry to get its address.
6701       const Value *OpVal = OpInfo.CallOperandVal;
6702       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6703           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6704         OpInfo.CallOperand = DAG.getConstantPool(
6705             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6706       } else {
6707         // Otherwise, create a stack slot and emit a store to it before the
6708         // asm.
6709         Type *Ty = OpVal->getType();
6710         auto &DL = DAG.getDataLayout();
6711         uint64_t TySize = DL.getTypeAllocSize(Ty);
6712         unsigned Align = DL.getPrefTypeAlignment(Ty);
6713         MachineFunction &MF = DAG.getMachineFunction();
6714         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6715         SDValue StackSlot =
6716             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6717         Chain = DAG.getStore(
6718             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6719             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6720             false, false, 0);
6721         OpInfo.CallOperand = StackSlot;
6722       }
6723 
6724       // There is no longer a Value* corresponding to this operand.
6725       OpInfo.CallOperandVal = nullptr;
6726 
6727       // It is now an indirect operand.
6728       OpInfo.isIndirect = true;
6729     }
6730 
6731     // If this constraint is for a specific register, allocate it before
6732     // anything else.
6733     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6734       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6735   }
6736 
6737   // Second pass - Loop over all of the operands, assigning virtual or physregs
6738   // to register class operands.
6739   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6740     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6741 
6742     // C_Register operands have already been allocated, Other/Memory don't need
6743     // to be.
6744     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6745       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6746   }
6747 
6748   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6749   std::vector<SDValue> AsmNodeOperands;
6750   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6751   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6752       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6753 
6754   // If we have a !srcloc metadata node associated with it, we want to attach
6755   // this to the ultimately generated inline asm machineinstr.  To do this, we
6756   // pass in the third operand as this (potentially null) inline asm MDNode.
6757   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6758   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6759 
6760   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6761   // bits as operand 3.
6762   unsigned ExtraInfo = 0;
6763   if (IA->hasSideEffects())
6764     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6765   if (IA->isAlignStack())
6766     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6767   if (CS.isConvergent())
6768     ExtraInfo |= InlineAsm::Extra_IsConvergent;
6769   // Set the asm dialect.
6770   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6771 
6772   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6773   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6774     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6775 
6776     // Compute the constraint code and ConstraintType to use.
6777     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6778 
6779     // Ideally, we would only check against memory constraints.  However, the
6780     // meaning of an other constraint can be target-specific and we can't easily
6781     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6782     // for other constriants as well.
6783     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6784         OpInfo.ConstraintType == TargetLowering::C_Other) {
6785       if (OpInfo.Type == InlineAsm::isInput)
6786         ExtraInfo |= InlineAsm::Extra_MayLoad;
6787       else if (OpInfo.Type == InlineAsm::isOutput)
6788         ExtraInfo |= InlineAsm::Extra_MayStore;
6789       else if (OpInfo.Type == InlineAsm::isClobber)
6790         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6791     }
6792   }
6793 
6794   AsmNodeOperands.push_back(DAG.getTargetConstant(
6795       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6796 
6797   // Loop over all of the inputs, copying the operand values into the
6798   // appropriate registers and processing the output regs.
6799   RegsForValue RetValRegs;
6800 
6801   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6802   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6803 
6804   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6805     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6806 
6807     switch (OpInfo.Type) {
6808     case InlineAsm::isOutput: {
6809       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6810           OpInfo.ConstraintType != TargetLowering::C_Register) {
6811         // Memory output, or 'other' output (e.g. 'X' constraint).
6812         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6813 
6814         unsigned ConstraintID =
6815             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6816         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6817                "Failed to convert memory constraint code to constraint id.");
6818 
6819         // Add information to the INLINEASM node to know about this output.
6820         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6821         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6822         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6823                                                         MVT::i32));
6824         AsmNodeOperands.push_back(OpInfo.CallOperand);
6825         break;
6826       }
6827 
6828       // Otherwise, this is a register or register class output.
6829 
6830       // Copy the output from the appropriate register.  Find a register that
6831       // we can use.
6832       if (OpInfo.AssignedRegs.Regs.empty()) {
6833         emitInlineAsmError(
6834             CS, "couldn't allocate output register for constraint '" +
6835                     Twine(OpInfo.ConstraintCode) + "'");
6836         return;
6837       }
6838 
6839       // If this is an indirect operand, store through the pointer after the
6840       // asm.
6841       if (OpInfo.isIndirect) {
6842         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6843                                                       OpInfo.CallOperandVal));
6844       } else {
6845         // This is the result value of the call.
6846         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6847         // Concatenate this output onto the outputs list.
6848         RetValRegs.append(OpInfo.AssignedRegs);
6849       }
6850 
6851       // Add information to the INLINEASM node to know that this register is
6852       // set.
6853       OpInfo.AssignedRegs
6854           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6855                                     ? InlineAsm::Kind_RegDefEarlyClobber
6856                                     : InlineAsm::Kind_RegDef,
6857                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6858       break;
6859     }
6860     case InlineAsm::isInput: {
6861       SDValue InOperandVal = OpInfo.CallOperand;
6862 
6863       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6864         // If this is required to match an output register we have already set,
6865         // just use its register.
6866         unsigned OperandNo = OpInfo.getMatchedOperand();
6867 
6868         // Scan until we find the definition we already emitted of this operand.
6869         // When we find it, create a RegsForValue operand.
6870         unsigned CurOp = InlineAsm::Op_FirstOperand;
6871         for (; OperandNo; --OperandNo) {
6872           // Advance to the next operand.
6873           unsigned OpFlag =
6874             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6875           assert((InlineAsm::isRegDefKind(OpFlag) ||
6876                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6877                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6878           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6879         }
6880 
6881         unsigned OpFlag =
6882           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6883         if (InlineAsm::isRegDefKind(OpFlag) ||
6884             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6885           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6886           if (OpInfo.isIndirect) {
6887             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6888             emitInlineAsmError(CS, "inline asm not supported yet:"
6889                                    " don't know how to handle tied "
6890                                    "indirect register inputs");
6891             return;
6892           }
6893 
6894           RegsForValue MatchedRegs;
6895           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6896           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6897           MatchedRegs.RegVTs.push_back(RegVT);
6898           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6899           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6900                i != e; ++i) {
6901             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6902               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6903             else {
6904               emitInlineAsmError(
6905                   CS, "inline asm error: This value"
6906                       " type register class is not natively supported!");
6907               return;
6908             }
6909           }
6910           SDLoc dl = getCurSDLoc();
6911           // Use the produced MatchedRegs object to
6912           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6913                                     Chain, &Flag, CS.getInstruction());
6914           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6915                                            true, OpInfo.getMatchedOperand(), dl,
6916                                            DAG, AsmNodeOperands);
6917           break;
6918         }
6919 
6920         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6921         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6922                "Unexpected number of operands");
6923         // Add information to the INLINEASM node to know about this input.
6924         // See InlineAsm.h isUseOperandTiedToDef.
6925         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6926         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6927                                                     OpInfo.getMatchedOperand());
6928         AsmNodeOperands.push_back(DAG.getTargetConstant(
6929             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6930         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6931         break;
6932       }
6933 
6934       // Treat indirect 'X' constraint as memory.
6935       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6936           OpInfo.isIndirect)
6937         OpInfo.ConstraintType = TargetLowering::C_Memory;
6938 
6939       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6940         std::vector<SDValue> Ops;
6941         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6942                                           Ops, DAG);
6943         if (Ops.empty()) {
6944           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
6945                                      Twine(OpInfo.ConstraintCode) + "'");
6946           return;
6947         }
6948 
6949         // Add information to the INLINEASM node to know about this input.
6950         unsigned ResOpType =
6951           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6952         AsmNodeOperands.push_back(DAG.getTargetConstant(
6953             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6954         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6955         break;
6956       }
6957 
6958       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6959         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6960         assert(InOperandVal.getValueType() ==
6961                    TLI.getPointerTy(DAG.getDataLayout()) &&
6962                "Memory operands expect pointer values");
6963 
6964         unsigned ConstraintID =
6965             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6966         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6967                "Failed to convert memory constraint code to constraint id.");
6968 
6969         // Add information to the INLINEASM node to know about this input.
6970         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6971         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6972         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6973                                                         getCurSDLoc(),
6974                                                         MVT::i32));
6975         AsmNodeOperands.push_back(InOperandVal);
6976         break;
6977       }
6978 
6979       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6980               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6981              "Unknown constraint type!");
6982 
6983       // TODO: Support this.
6984       if (OpInfo.isIndirect) {
6985         emitInlineAsmError(
6986             CS, "Don't know how to handle indirect register inputs yet "
6987                 "for constraint '" +
6988                     Twine(OpInfo.ConstraintCode) + "'");
6989         return;
6990       }
6991 
6992       // Copy the input into the appropriate registers.
6993       if (OpInfo.AssignedRegs.Regs.empty()) {
6994         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
6995                                    Twine(OpInfo.ConstraintCode) + "'");
6996         return;
6997       }
6998 
6999       SDLoc dl = getCurSDLoc();
7000 
7001       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7002                                         Chain, &Flag, CS.getInstruction());
7003 
7004       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7005                                                dl, DAG, AsmNodeOperands);
7006       break;
7007     }
7008     case InlineAsm::isClobber: {
7009       // Add the clobbered value to the operand list, so that the register
7010       // allocator is aware that the physreg got clobbered.
7011       if (!OpInfo.AssignedRegs.Regs.empty())
7012         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7013                                                  false, 0, getCurSDLoc(), DAG,
7014                                                  AsmNodeOperands);
7015       break;
7016     }
7017     }
7018   }
7019 
7020   // Finish up input operands.  Set the input chain and add the flag last.
7021   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7022   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7023 
7024   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7025                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7026   Flag = Chain.getValue(1);
7027 
7028   // If this asm returns a register value, copy the result from that register
7029   // and set it as the value of the call.
7030   if (!RetValRegs.Regs.empty()) {
7031     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7032                                              Chain, &Flag, CS.getInstruction());
7033 
7034     // FIXME: Why don't we do this for inline asms with MRVs?
7035     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7036       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7037 
7038       // If any of the results of the inline asm is a vector, it may have the
7039       // wrong width/num elts.  This can happen for register classes that can
7040       // contain multiple different value types.  The preg or vreg allocated may
7041       // not have the same VT as was expected.  Convert it to the right type
7042       // with bit_convert.
7043       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7044         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7045                           ResultType, Val);
7046 
7047       } else if (ResultType != Val.getValueType() &&
7048                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7049         // If a result value was tied to an input value, the computed result may
7050         // have a wider width than the expected result.  Extract the relevant
7051         // portion.
7052         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7053       }
7054 
7055       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7056     }
7057 
7058     setValue(CS.getInstruction(), Val);
7059     // Don't need to use this as a chain in this case.
7060     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7061       return;
7062   }
7063 
7064   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7065 
7066   // Process indirect outputs, first output all of the flagged copies out of
7067   // physregs.
7068   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7069     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7070     const Value *Ptr = IndirectStoresToEmit[i].second;
7071     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7072                                              Chain, &Flag, IA);
7073     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7074   }
7075 
7076   // Emit the non-flagged stores from the physregs.
7077   SmallVector<SDValue, 8> OutChains;
7078   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7079     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
7080                                StoresToEmit[i].first,
7081                                getValue(StoresToEmit[i].second),
7082                                MachinePointerInfo(StoresToEmit[i].second),
7083                                false, false, 0);
7084     OutChains.push_back(Val);
7085   }
7086 
7087   if (!OutChains.empty())
7088     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7089 
7090   DAG.setRoot(Chain);
7091 }
7092 
7093 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7094                                              const Twine &Message) {
7095   LLVMContext &Ctx = *DAG.getContext();
7096   Ctx.emitError(CS.getInstruction(), Message);
7097 
7098   // Make sure we leave the DAG in a valid state
7099   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7100   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7101   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7102 }
7103 
7104 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7105   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7106                           MVT::Other, getRoot(),
7107                           getValue(I.getArgOperand(0)),
7108                           DAG.getSrcValue(I.getArgOperand(0))));
7109 }
7110 
7111 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7112   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7113   const DataLayout &DL = DAG.getDataLayout();
7114   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7115                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7116                            DAG.getSrcValue(I.getOperand(0)),
7117                            DL.getABITypeAlignment(I.getType()));
7118   setValue(&I, V);
7119   DAG.setRoot(V.getValue(1));
7120 }
7121 
7122 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7123   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7124                           MVT::Other, getRoot(),
7125                           getValue(I.getArgOperand(0)),
7126                           DAG.getSrcValue(I.getArgOperand(0))));
7127 }
7128 
7129 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7130   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7131                           MVT::Other, getRoot(),
7132                           getValue(I.getArgOperand(0)),
7133                           getValue(I.getArgOperand(1)),
7134                           DAG.getSrcValue(I.getArgOperand(0)),
7135                           DAG.getSrcValue(I.getArgOperand(1))));
7136 }
7137 
7138 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7139                                                     const Instruction &I,
7140                                                     SDValue Op) {
7141   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7142   if (!Range)
7143     return Op;
7144 
7145   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7146   if (!Lo->isNullValue())
7147     return Op;
7148 
7149   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7150   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7151 
7152   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7153 
7154   SDLoc SL = getCurSDLoc();
7155 
7156   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7157                              Op, DAG.getValueType(SmallVT));
7158   unsigned NumVals = Op.getNode()->getNumValues();
7159   if (NumVals == 1)
7160     return ZExt;
7161 
7162   SmallVector<SDValue, 4> Ops;
7163 
7164   Ops.push_back(ZExt);
7165   for (unsigned I = 1; I != NumVals; ++I)
7166     Ops.push_back(Op.getValue(I));
7167 
7168   return DAG.getMergeValues(Ops, SL);
7169 }
7170 
7171 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7172 /// the call being lowered.
7173 ///
7174 /// This is a helper for lowering intrinsics that follow a target calling
7175 /// convention or require stack pointer adjustment. Only a subset of the
7176 /// intrinsic's operands need to participate in the calling convention.
7177 void SelectionDAGBuilder::populateCallLoweringInfo(
7178     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7179     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7180     bool IsPatchPoint) {
7181   TargetLowering::ArgListTy Args;
7182   Args.reserve(NumArgs);
7183 
7184   // Populate the argument list.
7185   // Attributes for args start at offset 1, after the return attribute.
7186   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7187        ArgI != ArgE; ++ArgI) {
7188     const Value *V = CS->getOperand(ArgI);
7189 
7190     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7191 
7192     TargetLowering::ArgListEntry Entry;
7193     Entry.Node = getValue(V);
7194     Entry.Ty = V->getType();
7195     Entry.setAttributes(&CS, AttrI);
7196     Args.push_back(Entry);
7197   }
7198 
7199   CLI.setDebugLoc(getCurSDLoc())
7200       .setChain(getRoot())
7201       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7202       .setDiscardResult(CS->use_empty())
7203       .setIsPatchPoint(IsPatchPoint);
7204 }
7205 
7206 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7207 /// or patchpoint target node's operand list.
7208 ///
7209 /// Constants are converted to TargetConstants purely as an optimization to
7210 /// avoid constant materialization and register allocation.
7211 ///
7212 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7213 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7214 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7215 /// address materialization and register allocation, but may also be required
7216 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7217 /// alloca in the entry block, then the runtime may assume that the alloca's
7218 /// StackMap location can be read immediately after compilation and that the
7219 /// location is valid at any point during execution (this is similar to the
7220 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7221 /// only available in a register, then the runtime would need to trap when
7222 /// execution reaches the StackMap in order to read the alloca's location.
7223 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7224                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7225                                 SelectionDAGBuilder &Builder) {
7226   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7227     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7228     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7229       Ops.push_back(
7230         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7231       Ops.push_back(
7232         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7233     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7234       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7235       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7236           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7237     } else
7238       Ops.push_back(OpVal);
7239   }
7240 }
7241 
7242 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7243 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7244   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7245   //                                  [live variables...])
7246 
7247   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7248 
7249   SDValue Chain, InFlag, Callee, NullPtr;
7250   SmallVector<SDValue, 32> Ops;
7251 
7252   SDLoc DL = getCurSDLoc();
7253   Callee = getValue(CI.getCalledValue());
7254   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7255 
7256   // The stackmap intrinsic only records the live variables (the arguemnts
7257   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7258   // intrinsic, this won't be lowered to a function call. This means we don't
7259   // have to worry about calling conventions and target specific lowering code.
7260   // Instead we perform the call lowering right here.
7261   //
7262   // chain, flag = CALLSEQ_START(chain, 0)
7263   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7264   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7265   //
7266   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7267   InFlag = Chain.getValue(1);
7268 
7269   // Add the <id> and <numBytes> constants.
7270   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7271   Ops.push_back(DAG.getTargetConstant(
7272                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7273   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7274   Ops.push_back(DAG.getTargetConstant(
7275                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7276                   MVT::i32));
7277 
7278   // Push live variables for the stack map.
7279   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7280 
7281   // We are not pushing any register mask info here on the operands list,
7282   // because the stackmap doesn't clobber anything.
7283 
7284   // Push the chain and the glue flag.
7285   Ops.push_back(Chain);
7286   Ops.push_back(InFlag);
7287 
7288   // Create the STACKMAP node.
7289   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7290   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7291   Chain = SDValue(SM, 0);
7292   InFlag = Chain.getValue(1);
7293 
7294   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7295 
7296   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7297 
7298   // Set the root to the target-lowered call chain.
7299   DAG.setRoot(Chain);
7300 
7301   // Inform the Frame Information that we have a stackmap in this function.
7302   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7303 }
7304 
7305 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7306 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7307                                           const BasicBlock *EHPadBB) {
7308   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7309   //                                                 i32 <numBytes>,
7310   //                                                 i8* <target>,
7311   //                                                 i32 <numArgs>,
7312   //                                                 [Args...],
7313   //                                                 [live variables...])
7314 
7315   CallingConv::ID CC = CS.getCallingConv();
7316   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7317   bool HasDef = !CS->getType()->isVoidTy();
7318   SDLoc dl = getCurSDLoc();
7319   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7320 
7321   // Handle immediate and symbolic callees.
7322   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7323     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7324                                    /*isTarget=*/true);
7325   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7326     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7327                                          SDLoc(SymbolicCallee),
7328                                          SymbolicCallee->getValueType(0));
7329 
7330   // Get the real number of arguments participating in the call <numArgs>
7331   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7332   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7333 
7334   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7335   // Intrinsics include all meta-operands up to but not including CC.
7336   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7337   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7338          "Not enough arguments provided to the patchpoint intrinsic");
7339 
7340   // For AnyRegCC the arguments are lowered later on manually.
7341   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7342   Type *ReturnTy =
7343     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7344 
7345   TargetLowering::CallLoweringInfo CLI(DAG);
7346   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7347                            true);
7348   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7349 
7350   SDNode *CallEnd = Result.second.getNode();
7351   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7352     CallEnd = CallEnd->getOperand(0).getNode();
7353 
7354   /// Get a call instruction from the call sequence chain.
7355   /// Tail calls are not allowed.
7356   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7357          "Expected a callseq node.");
7358   SDNode *Call = CallEnd->getOperand(0).getNode();
7359   bool HasGlue = Call->getGluedNode();
7360 
7361   // Replace the target specific call node with the patchable intrinsic.
7362   SmallVector<SDValue, 8> Ops;
7363 
7364   // Add the <id> and <numBytes> constants.
7365   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7366   Ops.push_back(DAG.getTargetConstant(
7367                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7368   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7369   Ops.push_back(DAG.getTargetConstant(
7370                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7371                   MVT::i32));
7372 
7373   // Add the callee.
7374   Ops.push_back(Callee);
7375 
7376   // Adjust <numArgs> to account for any arguments that have been passed on the
7377   // stack instead.
7378   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7379   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7380   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7381   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7382 
7383   // Add the calling convention
7384   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7385 
7386   // Add the arguments we omitted previously. The register allocator should
7387   // place these in any free register.
7388   if (IsAnyRegCC)
7389     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7390       Ops.push_back(getValue(CS.getArgument(i)));
7391 
7392   // Push the arguments from the call instruction up to the register mask.
7393   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7394   Ops.append(Call->op_begin() + 2, e);
7395 
7396   // Push live variables for the stack map.
7397   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7398 
7399   // Push the register mask info.
7400   if (HasGlue)
7401     Ops.push_back(*(Call->op_end()-2));
7402   else
7403     Ops.push_back(*(Call->op_end()-1));
7404 
7405   // Push the chain (this is originally the first operand of the call, but
7406   // becomes now the last or second to last operand).
7407   Ops.push_back(*(Call->op_begin()));
7408 
7409   // Push the glue flag (last operand).
7410   if (HasGlue)
7411     Ops.push_back(*(Call->op_end()-1));
7412 
7413   SDVTList NodeTys;
7414   if (IsAnyRegCC && HasDef) {
7415     // Create the return types based on the intrinsic definition
7416     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7417     SmallVector<EVT, 3> ValueVTs;
7418     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7419     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7420 
7421     // There is always a chain and a glue type at the end
7422     ValueVTs.push_back(MVT::Other);
7423     ValueVTs.push_back(MVT::Glue);
7424     NodeTys = DAG.getVTList(ValueVTs);
7425   } else
7426     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7427 
7428   // Replace the target specific call node with a PATCHPOINT node.
7429   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7430                                          dl, NodeTys, Ops);
7431 
7432   // Update the NodeMap.
7433   if (HasDef) {
7434     if (IsAnyRegCC)
7435       setValue(CS.getInstruction(), SDValue(MN, 0));
7436     else
7437       setValue(CS.getInstruction(), Result.first);
7438   }
7439 
7440   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7441   // call sequence. Furthermore the location of the chain and glue can change
7442   // when the AnyReg calling convention is used and the intrinsic returns a
7443   // value.
7444   if (IsAnyRegCC && HasDef) {
7445     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7446     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7447     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7448   } else
7449     DAG.ReplaceAllUsesWith(Call, MN);
7450   DAG.DeleteNode(Call);
7451 
7452   // Inform the Frame Information that we have a patchpoint in this function.
7453   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7454 }
7455 
7456 /// Returns an AttributeSet representing the attributes applied to the return
7457 /// value of the given call.
7458 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7459   SmallVector<Attribute::AttrKind, 2> Attrs;
7460   if (CLI.RetSExt)
7461     Attrs.push_back(Attribute::SExt);
7462   if (CLI.RetZExt)
7463     Attrs.push_back(Attribute::ZExt);
7464   if (CLI.IsInReg)
7465     Attrs.push_back(Attribute::InReg);
7466 
7467   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7468                            Attrs);
7469 }
7470 
7471 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7472 /// implementation, which just calls LowerCall.
7473 /// FIXME: When all targets are
7474 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7475 std::pair<SDValue, SDValue>
7476 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7477   // Handle the incoming return values from the call.
7478   CLI.Ins.clear();
7479   Type *OrigRetTy = CLI.RetTy;
7480   SmallVector<EVT, 4> RetTys;
7481   SmallVector<uint64_t, 4> Offsets;
7482   auto &DL = CLI.DAG.getDataLayout();
7483   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7484 
7485   SmallVector<ISD::OutputArg, 4> Outs;
7486   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7487 
7488   bool CanLowerReturn =
7489       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7490                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7491 
7492   SDValue DemoteStackSlot;
7493   int DemoteStackIdx = -100;
7494   if (!CanLowerReturn) {
7495     // FIXME: equivalent assert?
7496     // assert(!CS.hasInAllocaArgument() &&
7497     //        "sret demotion is incompatible with inalloca");
7498     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7499     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7500     MachineFunction &MF = CLI.DAG.getMachineFunction();
7501     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7502     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7503 
7504     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7505     ArgListEntry Entry;
7506     Entry.Node = DemoteStackSlot;
7507     Entry.Ty = StackSlotPtrType;
7508     Entry.isSExt = false;
7509     Entry.isZExt = false;
7510     Entry.isInReg = false;
7511     Entry.isSRet = true;
7512     Entry.isNest = false;
7513     Entry.isByVal = false;
7514     Entry.isReturned = false;
7515     Entry.isSwiftSelf = false;
7516     Entry.isSwiftError = false;
7517     Entry.Alignment = Align;
7518     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7519     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7520 
7521     // sret demotion isn't compatible with tail-calls, since the sret argument
7522     // points into the callers stack frame.
7523     CLI.IsTailCall = false;
7524   } else {
7525     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7526       EVT VT = RetTys[I];
7527       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7528       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7529       for (unsigned i = 0; i != NumRegs; ++i) {
7530         ISD::InputArg MyFlags;
7531         MyFlags.VT = RegisterVT;
7532         MyFlags.ArgVT = VT;
7533         MyFlags.Used = CLI.IsReturnValueUsed;
7534         if (CLI.RetSExt)
7535           MyFlags.Flags.setSExt();
7536         if (CLI.RetZExt)
7537           MyFlags.Flags.setZExt();
7538         if (CLI.IsInReg)
7539           MyFlags.Flags.setInReg();
7540         CLI.Ins.push_back(MyFlags);
7541       }
7542     }
7543   }
7544 
7545   // We push in swifterror return as the last element of CLI.Ins.
7546   ArgListTy &Args = CLI.getArgs();
7547   if (supportSwiftError()) {
7548     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7549       if (Args[i].isSwiftError) {
7550         ISD::InputArg MyFlags;
7551         MyFlags.VT = getPointerTy(DL);
7552         MyFlags.ArgVT = EVT(getPointerTy(DL));
7553         MyFlags.Flags.setSwiftError();
7554         CLI.Ins.push_back(MyFlags);
7555       }
7556     }
7557   }
7558 
7559   // Handle all of the outgoing arguments.
7560   CLI.Outs.clear();
7561   CLI.OutVals.clear();
7562   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7563     SmallVector<EVT, 4> ValueVTs;
7564     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7565     Type *FinalType = Args[i].Ty;
7566     if (Args[i].isByVal)
7567       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7568     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7569         FinalType, CLI.CallConv, CLI.IsVarArg);
7570     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7571          ++Value) {
7572       EVT VT = ValueVTs[Value];
7573       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7574       SDValue Op = SDValue(Args[i].Node.getNode(),
7575                            Args[i].Node.getResNo() + Value);
7576       ISD::ArgFlagsTy Flags;
7577       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7578 
7579       if (Args[i].isZExt)
7580         Flags.setZExt();
7581       if (Args[i].isSExt)
7582         Flags.setSExt();
7583       if (Args[i].isInReg)
7584         Flags.setInReg();
7585       if (Args[i].isSRet)
7586         Flags.setSRet();
7587       if (Args[i].isSwiftSelf)
7588         Flags.setSwiftSelf();
7589       if (Args[i].isSwiftError)
7590         Flags.setSwiftError();
7591       if (Args[i].isByVal)
7592         Flags.setByVal();
7593       if (Args[i].isInAlloca) {
7594         Flags.setInAlloca();
7595         // Set the byval flag for CCAssignFn callbacks that don't know about
7596         // inalloca.  This way we can know how many bytes we should've allocated
7597         // and how many bytes a callee cleanup function will pop.  If we port
7598         // inalloca to more targets, we'll have to add custom inalloca handling
7599         // in the various CC lowering callbacks.
7600         Flags.setByVal();
7601       }
7602       if (Args[i].isByVal || Args[i].isInAlloca) {
7603         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7604         Type *ElementTy = Ty->getElementType();
7605         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7606         // For ByVal, alignment should come from FE.  BE will guess if this
7607         // info is not there but there are cases it cannot get right.
7608         unsigned FrameAlign;
7609         if (Args[i].Alignment)
7610           FrameAlign = Args[i].Alignment;
7611         else
7612           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7613         Flags.setByValAlign(FrameAlign);
7614       }
7615       if (Args[i].isNest)
7616         Flags.setNest();
7617       if (NeedsRegBlock)
7618         Flags.setInConsecutiveRegs();
7619       Flags.setOrigAlign(OriginalAlignment);
7620 
7621       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7622       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7623       SmallVector<SDValue, 4> Parts(NumParts);
7624       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7625 
7626       if (Args[i].isSExt)
7627         ExtendKind = ISD::SIGN_EXTEND;
7628       else if (Args[i].isZExt)
7629         ExtendKind = ISD::ZERO_EXTEND;
7630 
7631       // Conservatively only handle 'returned' on non-vectors for now
7632       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7633         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7634                "unexpected use of 'returned'");
7635         // Before passing 'returned' to the target lowering code, ensure that
7636         // either the register MVT and the actual EVT are the same size or that
7637         // the return value and argument are extended in the same way; in these
7638         // cases it's safe to pass the argument register value unchanged as the
7639         // return register value (although it's at the target's option whether
7640         // to do so)
7641         // TODO: allow code generation to take advantage of partially preserved
7642         // registers rather than clobbering the entire register when the
7643         // parameter extension method is not compatible with the return
7644         // extension method
7645         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7646             (ExtendKind != ISD::ANY_EXTEND &&
7647              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7648         Flags.setReturned();
7649       }
7650 
7651       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7652                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7653 
7654       for (unsigned j = 0; j != NumParts; ++j) {
7655         // if it isn't first piece, alignment must be 1
7656         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7657                                i < CLI.NumFixedArgs,
7658                                i, j*Parts[j].getValueType().getStoreSize());
7659         if (NumParts > 1 && j == 0)
7660           MyFlags.Flags.setSplit();
7661         else if (j != 0) {
7662           MyFlags.Flags.setOrigAlign(1);
7663           if (j == NumParts - 1)
7664             MyFlags.Flags.setSplitEnd();
7665         }
7666 
7667         CLI.Outs.push_back(MyFlags);
7668         CLI.OutVals.push_back(Parts[j]);
7669       }
7670 
7671       if (NeedsRegBlock && Value == NumValues - 1)
7672         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7673     }
7674   }
7675 
7676   SmallVector<SDValue, 4> InVals;
7677   CLI.Chain = LowerCall(CLI, InVals);
7678 
7679   // Update CLI.InVals to use outside of this function.
7680   CLI.InVals = InVals;
7681 
7682   // Verify that the target's LowerCall behaved as expected.
7683   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7684          "LowerCall didn't return a valid chain!");
7685   assert((!CLI.IsTailCall || InVals.empty()) &&
7686          "LowerCall emitted a return value for a tail call!");
7687   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7688          "LowerCall didn't emit the correct number of values!");
7689 
7690   // For a tail call, the return value is merely live-out and there aren't
7691   // any nodes in the DAG representing it. Return a special value to
7692   // indicate that a tail call has been emitted and no more Instructions
7693   // should be processed in the current block.
7694   if (CLI.IsTailCall) {
7695     CLI.DAG.setRoot(CLI.Chain);
7696     return std::make_pair(SDValue(), SDValue());
7697   }
7698 
7699 #ifndef NDEBUG
7700   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7701     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7702     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7703            "LowerCall emitted a value with the wrong type!");
7704   }
7705 #endif
7706 
7707   SmallVector<SDValue, 4> ReturnValues;
7708   if (!CanLowerReturn) {
7709     // The instruction result is the result of loading from the
7710     // hidden sret parameter.
7711     SmallVector<EVT, 1> PVTs;
7712     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7713 
7714     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7715     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7716     EVT PtrVT = PVTs[0];
7717 
7718     unsigned NumValues = RetTys.size();
7719     ReturnValues.resize(NumValues);
7720     SmallVector<SDValue, 4> Chains(NumValues);
7721 
7722     // An aggregate return value cannot wrap around the address space, so
7723     // offsets to its parts don't wrap either.
7724     SDNodeFlags Flags;
7725     Flags.setNoUnsignedWrap(true);
7726 
7727     for (unsigned i = 0; i < NumValues; ++i) {
7728       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7729                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7730                                                         PtrVT), &Flags);
7731       SDValue L = CLI.DAG.getLoad(
7732           RetTys[i], CLI.DL, CLI.Chain, Add,
7733           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7734                                             DemoteStackIdx, Offsets[i]),
7735           false, false, false, 1);
7736       ReturnValues[i] = L;
7737       Chains[i] = L.getValue(1);
7738     }
7739 
7740     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7741   } else {
7742     // Collect the legal value parts into potentially illegal values
7743     // that correspond to the original function's return values.
7744     Optional<ISD::NodeType> AssertOp;
7745     if (CLI.RetSExt)
7746       AssertOp = ISD::AssertSext;
7747     else if (CLI.RetZExt)
7748       AssertOp = ISD::AssertZext;
7749     unsigned CurReg = 0;
7750     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7751       EVT VT = RetTys[I];
7752       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7753       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7754 
7755       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7756                                               NumRegs, RegisterVT, VT, nullptr,
7757                                               AssertOp));
7758       CurReg += NumRegs;
7759     }
7760 
7761     // For a function returning void, there is no return value. We can't create
7762     // such a node, so we just return a null return value in that case. In
7763     // that case, nothing will actually look at the value.
7764     if (ReturnValues.empty())
7765       return std::make_pair(SDValue(), CLI.Chain);
7766   }
7767 
7768   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7769                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7770   return std::make_pair(Res, CLI.Chain);
7771 }
7772 
7773 void TargetLowering::LowerOperationWrapper(SDNode *N,
7774                                            SmallVectorImpl<SDValue> &Results,
7775                                            SelectionDAG &DAG) const {
7776   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7777     Results.push_back(Res);
7778 }
7779 
7780 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7781   llvm_unreachable("LowerOperation not implemented for this target!");
7782 }
7783 
7784 void
7785 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7786   SDValue Op = getNonRegisterValue(V);
7787   assert((Op.getOpcode() != ISD::CopyFromReg ||
7788           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7789          "Copy from a reg to the same reg!");
7790   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7791 
7792   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7793   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7794                    V->getType());
7795   SDValue Chain = DAG.getEntryNode();
7796 
7797   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7798                               FuncInfo.PreferredExtendType.end())
7799                                  ? ISD::ANY_EXTEND
7800                                  : FuncInfo.PreferredExtendType[V];
7801   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7802   PendingExports.push_back(Chain);
7803 }
7804 
7805 #include "llvm/CodeGen/SelectionDAGISel.h"
7806 
7807 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7808 /// entry block, return true.  This includes arguments used by switches, since
7809 /// the switch may expand into multiple basic blocks.
7810 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7811   // With FastISel active, we may be splitting blocks, so force creation
7812   // of virtual registers for all non-dead arguments.
7813   if (FastISel)
7814     return A->use_empty();
7815 
7816   const BasicBlock &Entry = A->getParent()->front();
7817   for (const User *U : A->users())
7818     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7819       return false;  // Use not in entry block.
7820 
7821   return true;
7822 }
7823 
7824 void SelectionDAGISel::LowerArguments(const Function &F) {
7825   SelectionDAG &DAG = SDB->DAG;
7826   SDLoc dl = SDB->getCurSDLoc();
7827   const DataLayout &DL = DAG.getDataLayout();
7828   SmallVector<ISD::InputArg, 16> Ins;
7829 
7830   if (!FuncInfo->CanLowerReturn) {
7831     // Put in an sret pointer parameter before all the other parameters.
7832     SmallVector<EVT, 1> ValueVTs;
7833     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7834                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7835 
7836     // NOTE: Assuming that a pointer will never break down to more than one VT
7837     // or one register.
7838     ISD::ArgFlagsTy Flags;
7839     Flags.setSRet();
7840     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7841     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7842                          ISD::InputArg::NoArgIndex, 0);
7843     Ins.push_back(RetArg);
7844   }
7845 
7846   // Set up the incoming argument description vector.
7847   unsigned Idx = 1;
7848   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7849        I != E; ++I, ++Idx) {
7850     SmallVector<EVT, 4> ValueVTs;
7851     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7852     bool isArgValueUsed = !I->use_empty();
7853     unsigned PartBase = 0;
7854     Type *FinalType = I->getType();
7855     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7856       FinalType = cast<PointerType>(FinalType)->getElementType();
7857     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7858         FinalType, F.getCallingConv(), F.isVarArg());
7859     for (unsigned Value = 0, NumValues = ValueVTs.size();
7860          Value != NumValues; ++Value) {
7861       EVT VT = ValueVTs[Value];
7862       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7863       ISD::ArgFlagsTy Flags;
7864       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7865 
7866       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7867         Flags.setZExt();
7868       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7869         Flags.setSExt();
7870       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7871         Flags.setInReg();
7872       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7873         Flags.setSRet();
7874       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7875         Flags.setSwiftSelf();
7876       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7877         Flags.setSwiftError();
7878       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7879         Flags.setByVal();
7880       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7881         Flags.setInAlloca();
7882         // Set the byval flag for CCAssignFn callbacks that don't know about
7883         // inalloca.  This way we can know how many bytes we should've allocated
7884         // and how many bytes a callee cleanup function will pop.  If we port
7885         // inalloca to more targets, we'll have to add custom inalloca handling
7886         // in the various CC lowering callbacks.
7887         Flags.setByVal();
7888       }
7889       if (F.getCallingConv() == CallingConv::X86_INTR) {
7890         // IA Interrupt passes frame (1st parameter) by value in the stack.
7891         if (Idx == 1)
7892           Flags.setByVal();
7893       }
7894       if (Flags.isByVal() || Flags.isInAlloca()) {
7895         PointerType *Ty = cast<PointerType>(I->getType());
7896         Type *ElementTy = Ty->getElementType();
7897         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7898         // For ByVal, alignment should be passed from FE.  BE will guess if
7899         // this info is not there but there are cases it cannot get right.
7900         unsigned FrameAlign;
7901         if (F.getParamAlignment(Idx))
7902           FrameAlign = F.getParamAlignment(Idx);
7903         else
7904           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7905         Flags.setByValAlign(FrameAlign);
7906       }
7907       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7908         Flags.setNest();
7909       if (NeedsRegBlock)
7910         Flags.setInConsecutiveRegs();
7911       Flags.setOrigAlign(OriginalAlignment);
7912 
7913       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7914       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7915       for (unsigned i = 0; i != NumRegs; ++i) {
7916         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7917                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7918         if (NumRegs > 1 && i == 0)
7919           MyFlags.Flags.setSplit();
7920         // if it isn't first piece, alignment must be 1
7921         else if (i > 0) {
7922           MyFlags.Flags.setOrigAlign(1);
7923           if (i == NumRegs - 1)
7924             MyFlags.Flags.setSplitEnd();
7925         }
7926         Ins.push_back(MyFlags);
7927       }
7928       if (NeedsRegBlock && Value == NumValues - 1)
7929         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7930       PartBase += VT.getStoreSize();
7931     }
7932   }
7933 
7934   // Call the target to set up the argument values.
7935   SmallVector<SDValue, 8> InVals;
7936   SDValue NewRoot = TLI->LowerFormalArguments(
7937       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7938 
7939   // Verify that the target's LowerFormalArguments behaved as expected.
7940   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7941          "LowerFormalArguments didn't return a valid chain!");
7942   assert(InVals.size() == Ins.size() &&
7943          "LowerFormalArguments didn't emit the correct number of values!");
7944   DEBUG({
7945       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7946         assert(InVals[i].getNode() &&
7947                "LowerFormalArguments emitted a null value!");
7948         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7949                "LowerFormalArguments emitted a value with the wrong type!");
7950       }
7951     });
7952 
7953   // Update the DAG with the new chain value resulting from argument lowering.
7954   DAG.setRoot(NewRoot);
7955 
7956   // Set up the argument values.
7957   unsigned i = 0;
7958   Idx = 1;
7959   if (!FuncInfo->CanLowerReturn) {
7960     // Create a virtual register for the sret pointer, and put in a copy
7961     // from the sret argument into it.
7962     SmallVector<EVT, 1> ValueVTs;
7963     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7964                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7965     MVT VT = ValueVTs[0].getSimpleVT();
7966     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7967     Optional<ISD::NodeType> AssertOp = None;
7968     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7969                                         RegVT, VT, nullptr, AssertOp);
7970 
7971     MachineFunction& MF = SDB->DAG.getMachineFunction();
7972     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7973     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7974     FuncInfo->DemoteRegister = SRetReg;
7975     NewRoot =
7976         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7977     DAG.setRoot(NewRoot);
7978 
7979     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7980     // Idx indexes LLVM arguments.  Don't touch it.
7981     ++i;
7982   }
7983 
7984   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7985       ++I, ++Idx) {
7986     SmallVector<SDValue, 4> ArgValues;
7987     SmallVector<EVT, 4> ValueVTs;
7988     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7989     unsigned NumValues = ValueVTs.size();
7990 
7991     // If this argument is unused then remember its value. It is used to generate
7992     // debugging information.
7993     if (I->use_empty() && NumValues) {
7994       SDB->setUnusedArgValue(&*I, InVals[i]);
7995 
7996       // Also remember any frame index for use in FastISel.
7997       if (FrameIndexSDNode *FI =
7998           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7999         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8000     }
8001 
8002     for (unsigned Val = 0; Val != NumValues; ++Val) {
8003       EVT VT = ValueVTs[Val];
8004       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8005       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8006 
8007       if (!I->use_empty()) {
8008         Optional<ISD::NodeType> AssertOp;
8009         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8010           AssertOp = ISD::AssertSext;
8011         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8012           AssertOp = ISD::AssertZext;
8013 
8014         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8015                                              NumParts, PartVT, VT,
8016                                              nullptr, AssertOp));
8017       }
8018 
8019       i += NumParts;
8020     }
8021 
8022     // We don't need to do anything else for unused arguments.
8023     if (ArgValues.empty())
8024       continue;
8025 
8026     // Note down frame index.
8027     if (FrameIndexSDNode *FI =
8028         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8029       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8030 
8031     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8032                                      SDB->getCurSDLoc());
8033 
8034     SDB->setValue(&*I, Res);
8035     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8036       if (LoadSDNode *LNode =
8037           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8038         if (FrameIndexSDNode *FI =
8039             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8040         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8041     }
8042 
8043     // Update SwiftErrorMap.
8044     if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
8045         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
8046       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8047       if (TargetRegisterInfo::isVirtualRegister(Reg))
8048         FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
8049     }
8050 
8051     // If this argument is live outside of the entry block, insert a copy from
8052     // wherever we got it to the vreg that other BB's will reference it as.
8053     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8054       // If we can, though, try to skip creating an unnecessary vreg.
8055       // FIXME: This isn't very clean... it would be nice to make this more
8056       // general.  It's also subtly incompatible with the hacks FastISel
8057       // uses with vregs.
8058       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8059       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8060         FuncInfo->ValueMap[&*I] = Reg;
8061         continue;
8062       }
8063     }
8064     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8065       FuncInfo->InitializeRegForValue(&*I);
8066       SDB->CopyToExportRegsIfNeeded(&*I);
8067     }
8068   }
8069 
8070   assert(i == InVals.size() && "Argument register count mismatch!");
8071 
8072   // Finally, if the target has anything special to do, allow it to do so.
8073   EmitFunctionEntryCode();
8074 }
8075 
8076 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8077 /// ensure constants are generated when needed.  Remember the virtual registers
8078 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8079 /// directly add them, because expansion might result in multiple MBB's for one
8080 /// BB.  As such, the start of the BB might correspond to a different MBB than
8081 /// the end.
8082 ///
8083 void
8084 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8085   const TerminatorInst *TI = LLVMBB->getTerminator();
8086 
8087   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8088 
8089   // Check PHI nodes in successors that expect a value to be available from this
8090   // block.
8091   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8092     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8093     if (!isa<PHINode>(SuccBB->begin())) continue;
8094     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8095 
8096     // If this terminator has multiple identical successors (common for
8097     // switches), only handle each succ once.
8098     if (!SuccsHandled.insert(SuccMBB).second)
8099       continue;
8100 
8101     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8102 
8103     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8104     // nodes and Machine PHI nodes, but the incoming operands have not been
8105     // emitted yet.
8106     for (BasicBlock::const_iterator I = SuccBB->begin();
8107          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8108       // Ignore dead phi's.
8109       if (PN->use_empty()) continue;
8110 
8111       // Skip empty types
8112       if (PN->getType()->isEmptyTy())
8113         continue;
8114 
8115       unsigned Reg;
8116       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8117 
8118       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8119         unsigned &RegOut = ConstantsOut[C];
8120         if (RegOut == 0) {
8121           RegOut = FuncInfo.CreateRegs(C->getType());
8122           CopyValueToVirtualRegister(C, RegOut);
8123         }
8124         Reg = RegOut;
8125       } else {
8126         DenseMap<const Value *, unsigned>::iterator I =
8127           FuncInfo.ValueMap.find(PHIOp);
8128         if (I != FuncInfo.ValueMap.end())
8129           Reg = I->second;
8130         else {
8131           assert(isa<AllocaInst>(PHIOp) &&
8132                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8133                  "Didn't codegen value into a register!??");
8134           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8135           CopyValueToVirtualRegister(PHIOp, Reg);
8136         }
8137       }
8138 
8139       // Remember that this register needs to added to the machine PHI node as
8140       // the input for this MBB.
8141       SmallVector<EVT, 4> ValueVTs;
8142       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8143       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8144       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8145         EVT VT = ValueVTs[vti];
8146         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8147         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8148           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
8149         Reg += NumRegisters;
8150       }
8151     }
8152   }
8153 
8154   ConstantsOut.clear();
8155 }
8156 
8157 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8158 /// is 0.
8159 MachineBasicBlock *
8160 SelectionDAGBuilder::StackProtectorDescriptor::
8161 AddSuccessorMBB(const BasicBlock *BB,
8162                 MachineBasicBlock *ParentMBB,
8163                 bool IsLikely,
8164                 MachineBasicBlock *SuccMBB) {
8165   // If SuccBB has not been created yet, create it.
8166   if (!SuccMBB) {
8167     MachineFunction *MF = ParentMBB->getParent();
8168     MachineFunction::iterator BBI(ParentMBB);
8169     SuccMBB = MF->CreateMachineBasicBlock(BB);
8170     MF->insert(++BBI, SuccMBB);
8171   }
8172   // Add it as a successor of ParentMBB.
8173   ParentMBB->addSuccessor(
8174       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8175   return SuccMBB;
8176 }
8177 
8178 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8179   MachineFunction::iterator I(MBB);
8180   if (++I == FuncInfo.MF->end())
8181     return nullptr;
8182   return &*I;
8183 }
8184 
8185 /// During lowering new call nodes can be created (such as memset, etc.).
8186 /// Those will become new roots of the current DAG, but complications arise
8187 /// when they are tail calls. In such cases, the call lowering will update
8188 /// the root, but the builder still needs to know that a tail call has been
8189 /// lowered in order to avoid generating an additional return.
8190 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8191   // If the node is null, we do have a tail call.
8192   if (MaybeTC.getNode() != nullptr)
8193     DAG.setRoot(MaybeTC);
8194   else
8195     HasTailCall = true;
8196 }
8197 
8198 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8199                                   unsigned *TotalCases, unsigned First,
8200                                   unsigned Last,
8201                                   unsigned Density) {
8202   assert(Last >= First);
8203   assert(TotalCases[Last] >= TotalCases[First]);
8204 
8205   APInt LowCase = Clusters[First].Low->getValue();
8206   APInt HighCase = Clusters[Last].High->getValue();
8207   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8208 
8209   // FIXME: A range of consecutive cases has 100% density, but only requires one
8210   // comparison to lower. We should discriminate against such consecutive ranges
8211   // in jump tables.
8212 
8213   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8214   uint64_t Range = Diff + 1;
8215 
8216   uint64_t NumCases =
8217       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8218 
8219   assert(NumCases < UINT64_MAX / 100);
8220   assert(Range >= NumCases);
8221 
8222   return NumCases * 100 >= Range * Density;
8223 }
8224 
8225 static inline bool areJTsAllowed(const TargetLowering &TLI,
8226                                  const SwitchInst *SI) {
8227   const Function *Fn = SI->getParent()->getParent();
8228   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8229     return false;
8230 
8231   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8232          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8233 }
8234 
8235 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8236                                          unsigned First, unsigned Last,
8237                                          const SwitchInst *SI,
8238                                          MachineBasicBlock *DefaultMBB,
8239                                          CaseCluster &JTCluster) {
8240   assert(First <= Last);
8241 
8242   auto Prob = BranchProbability::getZero();
8243   unsigned NumCmps = 0;
8244   std::vector<MachineBasicBlock*> Table;
8245   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8246 
8247   // Initialize probabilities in JTProbs.
8248   for (unsigned I = First; I <= Last; ++I)
8249     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8250 
8251   for (unsigned I = First; I <= Last; ++I) {
8252     assert(Clusters[I].Kind == CC_Range);
8253     Prob += Clusters[I].Prob;
8254     APInt Low = Clusters[I].Low->getValue();
8255     APInt High = Clusters[I].High->getValue();
8256     NumCmps += (Low == High) ? 1 : 2;
8257     if (I != First) {
8258       // Fill the gap between this and the previous cluster.
8259       APInt PreviousHigh = Clusters[I - 1].High->getValue();
8260       assert(PreviousHigh.slt(Low));
8261       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8262       for (uint64_t J = 0; J < Gap; J++)
8263         Table.push_back(DefaultMBB);
8264     }
8265     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8266     for (uint64_t J = 0; J < ClusterSize; ++J)
8267       Table.push_back(Clusters[I].MBB);
8268     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8269   }
8270 
8271   unsigned NumDests = JTProbs.size();
8272   if (isSuitableForBitTests(NumDests, NumCmps,
8273                             Clusters[First].Low->getValue(),
8274                             Clusters[Last].High->getValue())) {
8275     // Clusters[First..Last] should be lowered as bit tests instead.
8276     return false;
8277   }
8278 
8279   // Create the MBB that will load from and jump through the table.
8280   // Note: We create it here, but it's not inserted into the function yet.
8281   MachineFunction *CurMF = FuncInfo.MF;
8282   MachineBasicBlock *JumpTableMBB =
8283       CurMF->CreateMachineBasicBlock(SI->getParent());
8284 
8285   // Add successors. Note: use table order for determinism.
8286   SmallPtrSet<MachineBasicBlock *, 8> Done;
8287   for (MachineBasicBlock *Succ : Table) {
8288     if (Done.count(Succ))
8289       continue;
8290     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8291     Done.insert(Succ);
8292   }
8293   JumpTableMBB->normalizeSuccProbs();
8294 
8295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8296   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8297                      ->createJumpTableIndex(Table);
8298 
8299   // Set up the jump table info.
8300   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8301   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8302                       Clusters[Last].High->getValue(), SI->getCondition(),
8303                       nullptr, false);
8304   JTCases.emplace_back(std::move(JTH), std::move(JT));
8305 
8306   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8307                                      JTCases.size() - 1, Prob);
8308   return true;
8309 }
8310 
8311 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8312                                          const SwitchInst *SI,
8313                                          MachineBasicBlock *DefaultMBB) {
8314 #ifndef NDEBUG
8315   // Clusters must be non-empty, sorted, and only contain Range clusters.
8316   assert(!Clusters.empty());
8317   for (CaseCluster &C : Clusters)
8318     assert(C.Kind == CC_Range);
8319   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8320     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8321 #endif
8322 
8323   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8324   if (!areJTsAllowed(TLI, SI))
8325     return;
8326 
8327   const int64_t N = Clusters.size();
8328   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8329 
8330   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8331   SmallVector<unsigned, 8> TotalCases(N);
8332 
8333   for (unsigned i = 0; i < N; ++i) {
8334     APInt Hi = Clusters[i].High->getValue();
8335     APInt Lo = Clusters[i].Low->getValue();
8336     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8337     if (i != 0)
8338       TotalCases[i] += TotalCases[i - 1];
8339   }
8340 
8341   unsigned MinDensity = JumpTableDensity;
8342   if (DefaultMBB->getParent()->getFunction()->optForSize())
8343     MinDensity = OptsizeJumpTableDensity;
8344   if (N >= MinJumpTableSize
8345       && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8346     // Cheap case: the whole range might be suitable for jump table.
8347     CaseCluster JTCluster;
8348     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8349       Clusters[0] = JTCluster;
8350       Clusters.resize(1);
8351       return;
8352     }
8353   }
8354 
8355   // The algorithm below is not suitable for -O0.
8356   if (TM.getOptLevel() == CodeGenOpt::None)
8357     return;
8358 
8359   // Split Clusters into minimum number of dense partitions. The algorithm uses
8360   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8361   // for the Case Statement'" (1994), but builds the MinPartitions array in
8362   // reverse order to make it easier to reconstruct the partitions in ascending
8363   // order. In the choice between two optimal partitionings, it picks the one
8364   // which yields more jump tables.
8365 
8366   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8367   SmallVector<unsigned, 8> MinPartitions(N);
8368   // LastElement[i] is the last element of the partition starting at i.
8369   SmallVector<unsigned, 8> LastElement(N);
8370   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8371   SmallVector<unsigned, 8> NumTables(N);
8372 
8373   // Base case: There is only one way to partition Clusters[N-1].
8374   MinPartitions[N - 1] = 1;
8375   LastElement[N - 1] = N - 1;
8376   assert(MinJumpTableSize > 1);
8377   NumTables[N - 1] = 0;
8378 
8379   // Note: loop indexes are signed to avoid underflow.
8380   for (int64_t i = N - 2; i >= 0; i--) {
8381     // Find optimal partitioning of Clusters[i..N-1].
8382     // Baseline: Put Clusters[i] into a partition on its own.
8383     MinPartitions[i] = MinPartitions[i + 1] + 1;
8384     LastElement[i] = i;
8385     NumTables[i] = NumTables[i + 1];
8386 
8387     // Search for a solution that results in fewer partitions.
8388     for (int64_t j = N - 1; j > i; j--) {
8389       // Try building a partition from Clusters[i..j].
8390       if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8391         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8392         bool IsTable = j - i + 1 >= MinJumpTableSize;
8393         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8394 
8395         // If this j leads to fewer partitions, or same number of partitions
8396         // with more lookup tables, it is a better partitioning.
8397         if (NumPartitions < MinPartitions[i] ||
8398             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8399           MinPartitions[i] = NumPartitions;
8400           LastElement[i] = j;
8401           NumTables[i] = Tables;
8402         }
8403       }
8404     }
8405   }
8406 
8407   // Iterate over the partitions, replacing some with jump tables in-place.
8408   unsigned DstIndex = 0;
8409   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8410     Last = LastElement[First];
8411     assert(Last >= First);
8412     assert(DstIndex <= First);
8413     unsigned NumClusters = Last - First + 1;
8414 
8415     CaseCluster JTCluster;
8416     if (NumClusters >= MinJumpTableSize &&
8417         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8418       Clusters[DstIndex++] = JTCluster;
8419     } else {
8420       for (unsigned I = First; I <= Last; ++I)
8421         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8422     }
8423   }
8424   Clusters.resize(DstIndex);
8425 }
8426 
8427 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8428   // FIXME: Using the pointer type doesn't seem ideal.
8429   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8430   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8431   return Range <= BW;
8432 }
8433 
8434 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8435                                                 unsigned NumCmps,
8436                                                 const APInt &Low,
8437                                                 const APInt &High) {
8438   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8439   // range of cases both require only one branch to lower. Just looking at the
8440   // number of clusters and destinations should be enough to decide whether to
8441   // build bit tests.
8442 
8443   // To lower a range with bit tests, the range must fit the bitwidth of a
8444   // machine word.
8445   if (!rangeFitsInWord(Low, High))
8446     return false;
8447 
8448   // Decide whether it's profitable to lower this range with bit tests. Each
8449   // destination requires a bit test and branch, and there is an overall range
8450   // check branch. For a small number of clusters, separate comparisons might be
8451   // cheaper, and for many destinations, splitting the range might be better.
8452   return (NumDests == 1 && NumCmps >= 3) ||
8453          (NumDests == 2 && NumCmps >= 5) ||
8454          (NumDests == 3 && NumCmps >= 6);
8455 }
8456 
8457 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8458                                         unsigned First, unsigned Last,
8459                                         const SwitchInst *SI,
8460                                         CaseCluster &BTCluster) {
8461   assert(First <= Last);
8462   if (First == Last)
8463     return false;
8464 
8465   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8466   unsigned NumCmps = 0;
8467   for (int64_t I = First; I <= Last; ++I) {
8468     assert(Clusters[I].Kind == CC_Range);
8469     Dests.set(Clusters[I].MBB->getNumber());
8470     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8471   }
8472   unsigned NumDests = Dests.count();
8473 
8474   APInt Low = Clusters[First].Low->getValue();
8475   APInt High = Clusters[Last].High->getValue();
8476   assert(Low.slt(High));
8477 
8478   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8479     return false;
8480 
8481   APInt LowBound;
8482   APInt CmpRange;
8483 
8484   const int BitWidth = DAG.getTargetLoweringInfo()
8485                            .getPointerTy(DAG.getDataLayout())
8486                            .getSizeInBits();
8487   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8488 
8489   // Check if the clusters cover a contiguous range such that no value in the
8490   // range will jump to the default statement.
8491   bool ContiguousRange = true;
8492   for (int64_t I = First + 1; I <= Last; ++I) {
8493     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8494       ContiguousRange = false;
8495       break;
8496     }
8497   }
8498 
8499   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8500     // Optimize the case where all the case values fit in a word without having
8501     // to subtract minValue. In this case, we can optimize away the subtraction.
8502     LowBound = APInt::getNullValue(Low.getBitWidth());
8503     CmpRange = High;
8504     ContiguousRange = false;
8505   } else {
8506     LowBound = Low;
8507     CmpRange = High - Low;
8508   }
8509 
8510   CaseBitsVector CBV;
8511   auto TotalProb = BranchProbability::getZero();
8512   for (unsigned i = First; i <= Last; ++i) {
8513     // Find the CaseBits for this destination.
8514     unsigned j;
8515     for (j = 0; j < CBV.size(); ++j)
8516       if (CBV[j].BB == Clusters[i].MBB)
8517         break;
8518     if (j == CBV.size())
8519       CBV.push_back(
8520           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8521     CaseBits *CB = &CBV[j];
8522 
8523     // Update Mask, Bits and ExtraProb.
8524     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8525     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8526     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8527     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8528     CB->Bits += Hi - Lo + 1;
8529     CB->ExtraProb += Clusters[i].Prob;
8530     TotalProb += Clusters[i].Prob;
8531   }
8532 
8533   BitTestInfo BTI;
8534   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8535     // Sort by probability first, number of bits second.
8536     if (a.ExtraProb != b.ExtraProb)
8537       return a.ExtraProb > b.ExtraProb;
8538     return a.Bits > b.Bits;
8539   });
8540 
8541   for (auto &CB : CBV) {
8542     MachineBasicBlock *BitTestBB =
8543         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8544     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8545   }
8546   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8547                             SI->getCondition(), -1U, MVT::Other, false,
8548                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8549                             TotalProb);
8550 
8551   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8552                                     BitTestCases.size() - 1, TotalProb);
8553   return true;
8554 }
8555 
8556 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8557                                               const SwitchInst *SI) {
8558 // Partition Clusters into as few subsets as possible, where each subset has a
8559 // range that fits in a machine word and has <= 3 unique destinations.
8560 
8561 #ifndef NDEBUG
8562   // Clusters must be sorted and contain Range or JumpTable clusters.
8563   assert(!Clusters.empty());
8564   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8565   for (const CaseCluster &C : Clusters)
8566     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8567   for (unsigned i = 1; i < Clusters.size(); ++i)
8568     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8569 #endif
8570 
8571   // The algorithm below is not suitable for -O0.
8572   if (TM.getOptLevel() == CodeGenOpt::None)
8573     return;
8574 
8575   // If target does not have legal shift left, do not emit bit tests at all.
8576   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8577   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8578   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8579     return;
8580 
8581   int BitWidth = PTy.getSizeInBits();
8582   const int64_t N = Clusters.size();
8583 
8584   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8585   SmallVector<unsigned, 8> MinPartitions(N);
8586   // LastElement[i] is the last element of the partition starting at i.
8587   SmallVector<unsigned, 8> LastElement(N);
8588 
8589   // FIXME: This might not be the best algorithm for finding bit test clusters.
8590 
8591   // Base case: There is only one way to partition Clusters[N-1].
8592   MinPartitions[N - 1] = 1;
8593   LastElement[N - 1] = N - 1;
8594 
8595   // Note: loop indexes are signed to avoid underflow.
8596   for (int64_t i = N - 2; i >= 0; --i) {
8597     // Find optimal partitioning of Clusters[i..N-1].
8598     // Baseline: Put Clusters[i] into a partition on its own.
8599     MinPartitions[i] = MinPartitions[i + 1] + 1;
8600     LastElement[i] = i;
8601 
8602     // Search for a solution that results in fewer partitions.
8603     // Note: the search is limited by BitWidth, reducing time complexity.
8604     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8605       // Try building a partition from Clusters[i..j].
8606 
8607       // Check the range.
8608       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8609                            Clusters[j].High->getValue()))
8610         continue;
8611 
8612       // Check nbr of destinations and cluster types.
8613       // FIXME: This works, but doesn't seem very efficient.
8614       bool RangesOnly = true;
8615       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8616       for (int64_t k = i; k <= j; k++) {
8617         if (Clusters[k].Kind != CC_Range) {
8618           RangesOnly = false;
8619           break;
8620         }
8621         Dests.set(Clusters[k].MBB->getNumber());
8622       }
8623       if (!RangesOnly || Dests.count() > 3)
8624         break;
8625 
8626       // Check if it's a better partition.
8627       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8628       if (NumPartitions < MinPartitions[i]) {
8629         // Found a better partition.
8630         MinPartitions[i] = NumPartitions;
8631         LastElement[i] = j;
8632       }
8633     }
8634   }
8635 
8636   // Iterate over the partitions, replacing with bit-test clusters in-place.
8637   unsigned DstIndex = 0;
8638   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8639     Last = LastElement[First];
8640     assert(First <= Last);
8641     assert(DstIndex <= First);
8642 
8643     CaseCluster BitTestCluster;
8644     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8645       Clusters[DstIndex++] = BitTestCluster;
8646     } else {
8647       size_t NumClusters = Last - First + 1;
8648       std::memmove(&Clusters[DstIndex], &Clusters[First],
8649                    sizeof(Clusters[0]) * NumClusters);
8650       DstIndex += NumClusters;
8651     }
8652   }
8653   Clusters.resize(DstIndex);
8654 }
8655 
8656 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8657                                         MachineBasicBlock *SwitchMBB,
8658                                         MachineBasicBlock *DefaultMBB) {
8659   MachineFunction *CurMF = FuncInfo.MF;
8660   MachineBasicBlock *NextMBB = nullptr;
8661   MachineFunction::iterator BBI(W.MBB);
8662   if (++BBI != FuncInfo.MF->end())
8663     NextMBB = &*BBI;
8664 
8665   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8666 
8667   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8668 
8669   if (Size == 2 && W.MBB == SwitchMBB) {
8670     // If any two of the cases has the same destination, and if one value
8671     // is the same as the other, but has one bit unset that the other has set,
8672     // use bit manipulation to do two compares at once.  For example:
8673     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8674     // TODO: This could be extended to merge any 2 cases in switches with 3
8675     // cases.
8676     // TODO: Handle cases where W.CaseBB != SwitchBB.
8677     CaseCluster &Small = *W.FirstCluster;
8678     CaseCluster &Big = *W.LastCluster;
8679 
8680     if (Small.Low == Small.High && Big.Low == Big.High &&
8681         Small.MBB == Big.MBB) {
8682       const APInt &SmallValue = Small.Low->getValue();
8683       const APInt &BigValue = Big.Low->getValue();
8684 
8685       // Check that there is only one bit different.
8686       APInt CommonBit = BigValue ^ SmallValue;
8687       if (CommonBit.isPowerOf2()) {
8688         SDValue CondLHS = getValue(Cond);
8689         EVT VT = CondLHS.getValueType();
8690         SDLoc DL = getCurSDLoc();
8691 
8692         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8693                                  DAG.getConstant(CommonBit, DL, VT));
8694         SDValue Cond = DAG.getSetCC(
8695             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8696             ISD::SETEQ);
8697 
8698         // Update successor info.
8699         // Both Small and Big will jump to Small.BB, so we sum up the
8700         // probabilities.
8701         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8702         if (BPI)
8703           addSuccessorWithProb(
8704               SwitchMBB, DefaultMBB,
8705               // The default destination is the first successor in IR.
8706               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8707         else
8708           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8709 
8710         // Insert the true branch.
8711         SDValue BrCond =
8712             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8713                         DAG.getBasicBlock(Small.MBB));
8714         // Insert the false branch.
8715         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8716                              DAG.getBasicBlock(DefaultMBB));
8717 
8718         DAG.setRoot(BrCond);
8719         return;
8720       }
8721     }
8722   }
8723 
8724   if (TM.getOptLevel() != CodeGenOpt::None) {
8725     // Order cases by probability so the most likely case will be checked first.
8726     std::sort(W.FirstCluster, W.LastCluster + 1,
8727               [](const CaseCluster &a, const CaseCluster &b) {
8728       return a.Prob > b.Prob;
8729     });
8730 
8731     // Rearrange the case blocks so that the last one falls through if possible
8732     // without without changing the order of probabilities.
8733     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8734       --I;
8735       if (I->Prob > W.LastCluster->Prob)
8736         break;
8737       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8738         std::swap(*I, *W.LastCluster);
8739         break;
8740       }
8741     }
8742   }
8743 
8744   // Compute total probability.
8745   BranchProbability DefaultProb = W.DefaultProb;
8746   BranchProbability UnhandledProbs = DefaultProb;
8747   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8748     UnhandledProbs += I->Prob;
8749 
8750   MachineBasicBlock *CurMBB = W.MBB;
8751   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8752     MachineBasicBlock *Fallthrough;
8753     if (I == W.LastCluster) {
8754       // For the last cluster, fall through to the default destination.
8755       Fallthrough = DefaultMBB;
8756     } else {
8757       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8758       CurMF->insert(BBI, Fallthrough);
8759       // Put Cond in a virtual register to make it available from the new blocks.
8760       ExportFromCurrentBlock(Cond);
8761     }
8762     UnhandledProbs -= I->Prob;
8763 
8764     switch (I->Kind) {
8765       case CC_JumpTable: {
8766         // FIXME: Optimize away range check based on pivot comparisons.
8767         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8768         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8769 
8770         // The jump block hasn't been inserted yet; insert it here.
8771         MachineBasicBlock *JumpMBB = JT->MBB;
8772         CurMF->insert(BBI, JumpMBB);
8773 
8774         auto JumpProb = I->Prob;
8775         auto FallthroughProb = UnhandledProbs;
8776 
8777         // If the default statement is a target of the jump table, we evenly
8778         // distribute the default probability to successors of CurMBB. Also
8779         // update the probability on the edge from JumpMBB to Fallthrough.
8780         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8781                                               SE = JumpMBB->succ_end();
8782              SI != SE; ++SI) {
8783           if (*SI == DefaultMBB) {
8784             JumpProb += DefaultProb / 2;
8785             FallthroughProb -= DefaultProb / 2;
8786             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8787             JumpMBB->normalizeSuccProbs();
8788             break;
8789           }
8790         }
8791 
8792         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8793         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8794         CurMBB->normalizeSuccProbs();
8795 
8796         // The jump table header will be inserted in our current block, do the
8797         // range check, and fall through to our fallthrough block.
8798         JTH->HeaderBB = CurMBB;
8799         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8800 
8801         // If we're in the right place, emit the jump table header right now.
8802         if (CurMBB == SwitchMBB) {
8803           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8804           JTH->Emitted = true;
8805         }
8806         break;
8807       }
8808       case CC_BitTests: {
8809         // FIXME: Optimize away range check based on pivot comparisons.
8810         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8811 
8812         // The bit test blocks haven't been inserted yet; insert them here.
8813         for (BitTestCase &BTC : BTB->Cases)
8814           CurMF->insert(BBI, BTC.ThisBB);
8815 
8816         // Fill in fields of the BitTestBlock.
8817         BTB->Parent = CurMBB;
8818         BTB->Default = Fallthrough;
8819 
8820         BTB->DefaultProb = UnhandledProbs;
8821         // If the cases in bit test don't form a contiguous range, we evenly
8822         // distribute the probability on the edge to Fallthrough to two
8823         // successors of CurMBB.
8824         if (!BTB->ContiguousRange) {
8825           BTB->Prob += DefaultProb / 2;
8826           BTB->DefaultProb -= DefaultProb / 2;
8827         }
8828 
8829         // If we're in the right place, emit the bit test header right now.
8830         if (CurMBB == SwitchMBB) {
8831           visitBitTestHeader(*BTB, SwitchMBB);
8832           BTB->Emitted = true;
8833         }
8834         break;
8835       }
8836       case CC_Range: {
8837         const Value *RHS, *LHS, *MHS;
8838         ISD::CondCode CC;
8839         if (I->Low == I->High) {
8840           // Check Cond == I->Low.
8841           CC = ISD::SETEQ;
8842           LHS = Cond;
8843           RHS=I->Low;
8844           MHS = nullptr;
8845         } else {
8846           // Check I->Low <= Cond <= I->High.
8847           CC = ISD::SETLE;
8848           LHS = I->Low;
8849           MHS = Cond;
8850           RHS = I->High;
8851         }
8852 
8853         // The false probability is the sum of all unhandled cases.
8854         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8855                      UnhandledProbs);
8856 
8857         if (CurMBB == SwitchMBB)
8858           visitSwitchCase(CB, SwitchMBB);
8859         else
8860           SwitchCases.push_back(CB);
8861 
8862         break;
8863       }
8864     }
8865     CurMBB = Fallthrough;
8866   }
8867 }
8868 
8869 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8870                                               CaseClusterIt First,
8871                                               CaseClusterIt Last) {
8872   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8873     if (X.Prob != CC.Prob)
8874       return X.Prob > CC.Prob;
8875 
8876     // Ties are broken by comparing the case value.
8877     return X.Low->getValue().slt(CC.Low->getValue());
8878   });
8879 }
8880 
8881 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8882                                         const SwitchWorkListItem &W,
8883                                         Value *Cond,
8884                                         MachineBasicBlock *SwitchMBB) {
8885   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8886          "Clusters not sorted?");
8887 
8888   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8889 
8890   // Balance the tree based on branch probabilities to create a near-optimal (in
8891   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8892   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8893   CaseClusterIt LastLeft = W.FirstCluster;
8894   CaseClusterIt FirstRight = W.LastCluster;
8895   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8896   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8897 
8898   // Move LastLeft and FirstRight towards each other from opposite directions to
8899   // find a partitioning of the clusters which balances the probability on both
8900   // sides. If LeftProb and RightProb are equal, alternate which side is
8901   // taken to ensure 0-probability nodes are distributed evenly.
8902   unsigned I = 0;
8903   while (LastLeft + 1 < FirstRight) {
8904     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8905       LeftProb += (++LastLeft)->Prob;
8906     else
8907       RightProb += (--FirstRight)->Prob;
8908     I++;
8909   }
8910 
8911   for (;;) {
8912     // Our binary search tree differs from a typical BST in that ours can have up
8913     // to three values in each leaf. The pivot selection above doesn't take that
8914     // into account, which means the tree might require more nodes and be less
8915     // efficient. We compensate for this here.
8916 
8917     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8918     unsigned NumRight = W.LastCluster - FirstRight + 1;
8919 
8920     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8921       // If one side has less than 3 clusters, and the other has more than 3,
8922       // consider taking a cluster from the other side.
8923 
8924       if (NumLeft < NumRight) {
8925         // Consider moving the first cluster on the right to the left side.
8926         CaseCluster &CC = *FirstRight;
8927         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8928         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8929         if (LeftSideRank <= RightSideRank) {
8930           // Moving the cluster to the left does not demote it.
8931           ++LastLeft;
8932           ++FirstRight;
8933           continue;
8934         }
8935       } else {
8936         assert(NumRight < NumLeft);
8937         // Consider moving the last element on the left to the right side.
8938         CaseCluster &CC = *LastLeft;
8939         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8940         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8941         if (RightSideRank <= LeftSideRank) {
8942           // Moving the cluster to the right does not demot it.
8943           --LastLeft;
8944           --FirstRight;
8945           continue;
8946         }
8947       }
8948     }
8949     break;
8950   }
8951 
8952   assert(LastLeft + 1 == FirstRight);
8953   assert(LastLeft >= W.FirstCluster);
8954   assert(FirstRight <= W.LastCluster);
8955 
8956   // Use the first element on the right as pivot since we will make less-than
8957   // comparisons against it.
8958   CaseClusterIt PivotCluster = FirstRight;
8959   assert(PivotCluster > W.FirstCluster);
8960   assert(PivotCluster <= W.LastCluster);
8961 
8962   CaseClusterIt FirstLeft = W.FirstCluster;
8963   CaseClusterIt LastRight = W.LastCluster;
8964 
8965   const ConstantInt *Pivot = PivotCluster->Low;
8966 
8967   // New blocks will be inserted immediately after the current one.
8968   MachineFunction::iterator BBI(W.MBB);
8969   ++BBI;
8970 
8971   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8972   // we can branch to its destination directly if it's squeezed exactly in
8973   // between the known lower bound and Pivot - 1.
8974   MachineBasicBlock *LeftMBB;
8975   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8976       FirstLeft->Low == W.GE &&
8977       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8978     LeftMBB = FirstLeft->MBB;
8979   } else {
8980     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8981     FuncInfo.MF->insert(BBI, LeftMBB);
8982     WorkList.push_back(
8983         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8984     // Put Cond in a virtual register to make it available from the new blocks.
8985     ExportFromCurrentBlock(Cond);
8986   }
8987 
8988   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8989   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8990   // directly if RHS.High equals the current upper bound.
8991   MachineBasicBlock *RightMBB;
8992   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8993       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8994     RightMBB = FirstRight->MBB;
8995   } else {
8996     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8997     FuncInfo.MF->insert(BBI, RightMBB);
8998     WorkList.push_back(
8999         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9000     // Put Cond in a virtual register to make it available from the new blocks.
9001     ExportFromCurrentBlock(Cond);
9002   }
9003 
9004   // Create the CaseBlock record that will be used to lower the branch.
9005   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9006                LeftProb, RightProb);
9007 
9008   if (W.MBB == SwitchMBB)
9009     visitSwitchCase(CB, SwitchMBB);
9010   else
9011     SwitchCases.push_back(CB);
9012 }
9013 
9014 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9015   // Extract cases from the switch.
9016   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9017   CaseClusterVector Clusters;
9018   Clusters.reserve(SI.getNumCases());
9019   for (auto I : SI.cases()) {
9020     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9021     const ConstantInt *CaseVal = I.getCaseValue();
9022     BranchProbability Prob =
9023         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9024             : BranchProbability(1, SI.getNumCases() + 1);
9025     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9026   }
9027 
9028   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9029 
9030   // Cluster adjacent cases with the same destination. We do this at all
9031   // optimization levels because it's cheap to do and will make codegen faster
9032   // if there are many clusters.
9033   sortAndRangeify(Clusters);
9034 
9035   if (TM.getOptLevel() != CodeGenOpt::None) {
9036     // Replace an unreachable default with the most popular destination.
9037     // FIXME: Exploit unreachable default more aggressively.
9038     bool UnreachableDefault =
9039         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9040     if (UnreachableDefault && !Clusters.empty()) {
9041       DenseMap<const BasicBlock *, unsigned> Popularity;
9042       unsigned MaxPop = 0;
9043       const BasicBlock *MaxBB = nullptr;
9044       for (auto I : SI.cases()) {
9045         const BasicBlock *BB = I.getCaseSuccessor();
9046         if (++Popularity[BB] > MaxPop) {
9047           MaxPop = Popularity[BB];
9048           MaxBB = BB;
9049         }
9050       }
9051       // Set new default.
9052       assert(MaxPop > 0 && MaxBB);
9053       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9054 
9055       // Remove cases that were pointing to the destination that is now the
9056       // default.
9057       CaseClusterVector New;
9058       New.reserve(Clusters.size());
9059       for (CaseCluster &CC : Clusters) {
9060         if (CC.MBB != DefaultMBB)
9061           New.push_back(CC);
9062       }
9063       Clusters = std::move(New);
9064     }
9065   }
9066 
9067   // If there is only the default destination, jump there directly.
9068   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9069   if (Clusters.empty()) {
9070     SwitchMBB->addSuccessor(DefaultMBB);
9071     if (DefaultMBB != NextBlock(SwitchMBB)) {
9072       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9073                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9074     }
9075     return;
9076   }
9077 
9078   findJumpTables(Clusters, &SI, DefaultMBB);
9079   findBitTestClusters(Clusters, &SI);
9080 
9081   DEBUG({
9082     dbgs() << "Case clusters: ";
9083     for (const CaseCluster &C : Clusters) {
9084       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9085       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9086 
9087       C.Low->getValue().print(dbgs(), true);
9088       if (C.Low != C.High) {
9089         dbgs() << '-';
9090         C.High->getValue().print(dbgs(), true);
9091       }
9092       dbgs() << ' ';
9093     }
9094     dbgs() << '\n';
9095   });
9096 
9097   assert(!Clusters.empty());
9098   SwitchWorkList WorkList;
9099   CaseClusterIt First = Clusters.begin();
9100   CaseClusterIt Last = Clusters.end() - 1;
9101   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9102   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9103 
9104   while (!WorkList.empty()) {
9105     SwitchWorkListItem W = WorkList.back();
9106     WorkList.pop_back();
9107     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9108 
9109     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9110       // For optimized builds, lower large range as a balanced binary tree.
9111       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9112       continue;
9113     }
9114 
9115     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9116   }
9117 }
9118