1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GetElementPtrTypeIterator.h" 71 #include "llvm/IR/InlineAsm.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsAArch64.h" 77 #include "llvm/IR/IntrinsicsWebAssembly.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Statepoint.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/Support/AtomicOrdering.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Target/TargetIntrinsicInfo.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetOptions.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <cstddef> 100 #include <iterator> 101 #include <limits> 102 #include <optional> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace PatternMatch; 107 using namespace SwitchCG; 108 109 #define DEBUG_TYPE "isel" 110 111 /// LimitFloatPrecision - Generate low-precision inline sequences for 112 /// some float libcalls (6, 8 or 12 bits). 113 static unsigned LimitFloatPrecision; 114 115 static cl::opt<bool> 116 InsertAssertAlign("insert-assert-align", cl::init(true), 117 cl::desc("Insert the experimental `assertalign` node."), 118 cl::ReallyHidden); 119 120 static cl::opt<unsigned, true> 121 LimitFPPrecision("limit-float-precision", 122 cl::desc("Generate low-precision inline sequences " 123 "for some float libcalls"), 124 cl::location(LimitFloatPrecision), cl::Hidden, 125 cl::init(0)); 126 127 static cl::opt<unsigned> SwitchPeelThreshold( 128 "switch-peel-threshold", cl::Hidden, cl::init(66), 129 cl::desc("Set the case probability threshold for peeling the case from a " 130 "switch statement. A value greater than 100 will void this " 131 "optimization")); 132 133 // Limit the width of DAG chains. This is important in general to prevent 134 // DAG-based analysis from blowing up. For example, alias analysis and 135 // load clustering may not complete in reasonable time. It is difficult to 136 // recognize and avoid this situation within each individual analysis, and 137 // future analyses are likely to have the same behavior. Limiting DAG width is 138 // the safe approach and will be especially important with global DAGs. 139 // 140 // MaxParallelChains default is arbitrarily high to avoid affecting 141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 142 // sequence over this should have been converted to llvm.memcpy by the 143 // frontend. It is easy to induce this behavior with .ll code such as: 144 // %buffer = alloca [4096 x i8] 145 // %data = load [4096 x i8]* %argPtr 146 // store [4096 x i8] %data, [4096 x i8]* %buffer 147 static const unsigned MaxParallelChains = 64; 148 149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 150 const SDValue *Parts, unsigned NumParts, 151 MVT PartVT, EVT ValueVT, const Value *V, 152 std::optional<CallingConv::ID> CC); 153 154 /// getCopyFromParts - Create a value that contains the specified legal parts 155 /// combined into the value they represent. If the parts combine to a type 156 /// larger than ValueVT then AssertOp can be used to specify whether the extra 157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 158 /// (ISD::AssertSext). 159 static SDValue 160 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 161 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 162 std::optional<CallingConv::ID> CC = std::nullopt, 163 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 164 // Let the target assemble the parts if it wants to 165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 166 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 167 PartVT, ValueVT, CC)) 168 return Val; 169 170 if (ValueVT.isVector()) 171 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 172 CC); 173 174 assert(NumParts > 0 && "No parts to assemble!"); 175 SDValue Val = Parts[0]; 176 177 if (NumParts > 1) { 178 // Assemble the value from multiple parts. 179 if (ValueVT.isInteger()) { 180 unsigned PartBits = PartVT.getSizeInBits(); 181 unsigned ValueBits = ValueVT.getSizeInBits(); 182 183 // Assemble the power of 2 part. 184 unsigned RoundParts = 185 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 std::optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the parts vector has more elements than the value vector, then we 402 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 403 // Extract the elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 421 // Promoted vector extract 422 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 423 } 424 425 // Trivial bitcast if the types are the same size and the destination 426 // vector type is legal. 427 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 428 TLI.isTypeLegal(ValueVT)) 429 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 430 431 if (ValueVT.getVectorNumElements() != 1) { 432 // Certain ABIs require that vectors are passed as integers. For vectors 433 // are the same size, this is an obvious bitcast. 434 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 } else if (ValueVT.bitsLT(PartEVT)) { 437 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 438 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 439 // Drop the extra bits. 440 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 441 return DAG.getBitcast(ValueVT, Val); 442 } 443 444 diagnosePossiblyInvalidConstraint( 445 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 446 return DAG.getUNDEF(ValueVT); 447 } 448 449 // Handle cases such as i8 -> <1 x i1> 450 EVT ValueSVT = ValueVT.getVectorElementType(); 451 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 452 unsigned ValueSize = ValueSVT.getSizeInBits(); 453 if (ValueSize == PartEVT.getSizeInBits()) { 454 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 455 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 456 // It's possible a scalar floating point type gets softened to integer and 457 // then promoted to a larger integer. If PartEVT is the larger integer 458 // we need to truncate it and then bitcast to the FP type. 459 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 Val = DAG.getBitcast(ValueSVT, Val); 463 } else { 464 Val = ValueVT.isFloatingPoint() 465 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 } 468 } 469 470 return DAG.getBuildVector(ValueVT, DL, Val); 471 } 472 473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V, 476 std::optional<CallingConv::ID> CallConv); 477 478 /// getCopyToParts - Create a series of nodes that contain the specified value 479 /// split into legal parts. If the parts contain more bits than Val, then, for 480 /// integers, ExtendKind can be used to specify how to generate the extra bits. 481 static void 482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 483 unsigned NumParts, MVT PartVT, const Value *V, 484 std::optional<CallingConv::ID> CallConv = std::nullopt, 485 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 486 // Let the target split the parts if it wants to 487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 488 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 489 CallConv)) 490 return; 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = 1 << Log2_32(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 575 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 619 const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 ElementCount PartNumElts = PartVT.getVectorElementCount(); 625 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 626 627 // We only support widening vectors with equivalent element types and 628 // fixed/scalable properties. If a target needs to widen a fixed-length type 629 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 630 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 631 PartNumElts.isScalable() != ValueNumElts.isScalable() || 632 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 633 return SDValue(); 634 635 // Widening a scalable vector to another scalable vector is done by inserting 636 // the vector into a larger undef one. 637 if (PartNumElts.isScalable()) 638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 639 Val, DAG.getVectorIdxConstant(0, DL)); 640 641 EVT ElementVT = PartVT.getVectorElementType(); 642 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 643 // undef elements. 644 SmallVector<SDValue, 16> Ops; 645 DAG.ExtractVectorElements(Val, Ops); 646 SDValue EltUndef = DAG.getUNDEF(ElementVT); 647 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 /// getCopyToPartsVector - Create a series of nodes that contain the specified 654 /// value split into legal parts. 655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 656 SDValue Val, SDValue *Parts, unsigned NumParts, 657 MVT PartVT, const Value *V, 658 std::optional<CallingConv::ID> CallConv) { 659 EVT ValueVT = Val.getValueType(); 660 assert(ValueVT.isVector() && "Not a vector"); 661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 662 const bool IsABIRegCopy = CallConv.has_value(); 663 664 if (NumParts == 1) { 665 EVT PartEVT = PartVT; 666 if (PartEVT == ValueVT) { 667 // Nothing to do. 668 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 669 // Bitconvert vector->vector case. 670 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 671 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 672 Val = Widened; 673 } else if (PartVT.isVector() && 674 PartEVT.getVectorElementType().bitsGE( 675 ValueVT.getVectorElementType()) && 676 PartEVT.getVectorElementCount() == 677 ValueVT.getVectorElementCount()) { 678 679 // Promoted vector extract 680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 681 } else if (PartEVT.isVector() && 682 PartEVT.getVectorElementType() != 683 ValueVT.getVectorElementType() && 684 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 685 TargetLowering::TypeWidenVector) { 686 // Combination of widening and promotion. 687 EVT WidenVT = 688 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 689 PartVT.getVectorElementCount()); 690 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 691 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 692 } else { 693 // Don't extract an integer from a float vector. This can happen if the 694 // FP type gets softened to integer and then promoted. The promotion 695 // prevents it from being picked up by the earlier bitcast case. 696 if (ValueVT.getVectorElementCount().isScalar() && 697 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 698 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 699 DAG.getVectorIdxConstant(0, DL)); 700 } else { 701 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 702 assert(PartVT.getFixedSizeInBits() > ValueSize && 703 "lossy conversion of vector to scalar type"); 704 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 705 Val = DAG.getBitcast(IntermediateType, Val); 706 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 707 } 708 } 709 710 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 711 Parts[0] = Val; 712 return; 713 } 714 715 // Handle a multi-element vector. 716 EVT IntermediateVT; 717 MVT RegisterVT; 718 unsigned NumIntermediates; 719 unsigned NumRegs; 720 if (IsABIRegCopy) { 721 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 722 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 723 NumIntermediates, RegisterVT); 724 } else { 725 NumRegs = 726 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 727 NumIntermediates, RegisterVT); 728 } 729 730 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 731 NumParts = NumRegs; // Silence a compiler warning. 732 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 733 734 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 735 "Mixing scalable and fixed vectors when copying in parts"); 736 737 std::optional<ElementCount> DestEltCnt; 738 739 if (IntermediateVT.isVector()) 740 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 741 else 742 DestEltCnt = ElementCount::getFixed(NumIntermediates); 743 744 EVT BuiltVectorTy = EVT::getVectorVT( 745 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 746 747 if (ValueVT == BuiltVectorTy) { 748 // Nothing to do. 749 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 750 // Bitconvert vector->vector case. 751 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 752 } else { 753 if (BuiltVectorTy.getVectorElementType().bitsGT( 754 ValueVT.getVectorElementType())) { 755 // Integer promotion. 756 ValueVT = EVT::getVectorVT(*DAG.getContext(), 757 BuiltVectorTy.getVectorElementType(), 758 ValueVT.getVectorElementCount()); 759 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 760 } 761 762 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 763 Val = Widened; 764 } 765 } 766 767 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 768 769 // Split the vector into intermediate operands. 770 SmallVector<SDValue, 8> Ops(NumIntermediates); 771 for (unsigned i = 0; i != NumIntermediates; ++i) { 772 if (IntermediateVT.isVector()) { 773 // This does something sensible for scalable vectors - see the 774 // definition of EXTRACT_SUBVECTOR for further details. 775 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 776 Ops[i] = 777 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 778 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 779 } else { 780 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 781 DAG.getVectorIdxConstant(i, DL)); 782 } 783 } 784 785 // Split the intermediate operands into legal parts. 786 if (NumParts == NumIntermediates) { 787 // If the register was not expanded, promote or copy the value, 788 // as appropriate. 789 for (unsigned i = 0; i != NumParts; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 791 } else if (NumParts > 0) { 792 // If the intermediate type was expanded, split each the value into 793 // legal parts. 794 assert(NumIntermediates != 0 && "division by zero"); 795 assert(NumParts % NumIntermediates == 0 && 796 "Must expand into a divisible number of parts!"); 797 unsigned Factor = NumParts / NumIntermediates; 798 for (unsigned i = 0; i != NumIntermediates; ++i) 799 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 800 CallConv); 801 } 802 } 803 804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 805 EVT valuevt, std::optional<CallingConv::ID> CC) 806 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 807 RegCount(1, regs.size()), CallConv(CC) {} 808 809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 810 const DataLayout &DL, unsigned Reg, Type *Ty, 811 std::optional<CallingConv::ID> CC) { 812 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 813 814 CallConv = CC; 815 816 for (EVT ValueVT : ValueVTs) { 817 unsigned NumRegs = 818 isABIMangled() 819 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 820 : TLI.getNumRegisters(Context, ValueVT); 821 MVT RegisterVT = 822 isABIMangled() 823 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 824 : TLI.getRegisterType(Context, ValueVT); 825 for (unsigned i = 0; i != NumRegs; ++i) 826 Regs.push_back(Reg + i); 827 RegVTs.push_back(RegisterVT); 828 RegCount.push_back(NumRegs); 829 Reg += NumRegs; 830 } 831 } 832 833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 834 FunctionLoweringInfo &FuncInfo, 835 const SDLoc &dl, SDValue &Chain, 836 SDValue *Flag, const Value *V) const { 837 // A Value with type {} or [0 x %t] needs no registers. 838 if (ValueVTs.empty()) 839 return SDValue(); 840 841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 842 843 // Assemble the legal parts into the final values. 844 SmallVector<SDValue, 4> Values(ValueVTs.size()); 845 SmallVector<SDValue, 8> Parts; 846 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 // Copy the legal parts from the registers. 848 EVT ValueVT = ValueVTs[Value]; 849 unsigned NumRegs = RegCount[Value]; 850 MVT RegisterVT = 851 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 852 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 853 : RegVTs[Value]; 854 855 Parts.resize(NumRegs); 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 SDValue P; 858 if (!Flag) { 859 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 860 } else { 861 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 862 *Flag = P.getValue(2); 863 } 864 865 Chain = P.getValue(1); 866 Parts[i] = P; 867 868 // If the source register was virtual and if we know something about it, 869 // add an assert node. 870 if (!Register::isVirtualRegister(Regs[Part + i]) || 871 !RegisterVT.isInteger()) 872 continue; 873 874 const FunctionLoweringInfo::LiveOutInfo *LOI = 875 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 876 if (!LOI) 877 continue; 878 879 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 880 unsigned NumSignBits = LOI->NumSignBits; 881 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 882 883 if (NumZeroBits == RegSize) { 884 // The current value is a zero. 885 // Explicitly express that as it would be easier for 886 // optimizations to kick in. 887 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 888 continue; 889 } 890 891 // FIXME: We capture more information than the dag can represent. For 892 // now, just use the tightest assertzext/assertsext possible. 893 bool isSExt; 894 EVT FromVT(MVT::Other); 895 if (NumZeroBits) { 896 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 897 isSExt = false; 898 } else if (NumSignBits > 1) { 899 FromVT = 900 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 901 isSExt = true; 902 } else { 903 continue; 904 } 905 // Add an assertion node. 906 assert(FromVT != MVT::Other); 907 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 908 RegisterVT, P, DAG.getValueType(FromVT)); 909 } 910 911 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 912 RegisterVT, ValueVT, V, CallConv); 913 Part += NumRegs; 914 Parts.clear(); 915 } 916 917 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 918 } 919 920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 921 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 922 const Value *V, 923 ISD::NodeType PreferredExtendType) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 ISD::NodeType ExtendKind = PreferredExtendType; 926 927 // Get the list of the values's legal parts. 928 unsigned NumRegs = Regs.size(); 929 SmallVector<SDValue, 8> Parts(NumRegs); 930 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 931 unsigned NumParts = RegCount[Value]; 932 933 MVT RegisterVT = 934 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 935 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 936 : RegVTs[Value]; 937 938 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 939 ExtendKind = ISD::ZERO_EXTEND; 940 941 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 942 NumParts, RegisterVT, V, CallConv, ExtendKind); 943 Part += NumParts; 944 } 945 946 // Copy the parts into the registers. 947 SmallVector<SDValue, 8> Chains(NumRegs); 948 for (unsigned i = 0; i != NumRegs; ++i) { 949 SDValue Part; 950 if (!Flag) { 951 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 952 } else { 953 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 954 *Flag = Part.getValue(1); 955 } 956 957 Chains[i] = Part.getValue(0); 958 } 959 960 if (NumRegs == 1 || Flag) 961 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 962 // flagged to it. That is the CopyToReg nodes and the user are considered 963 // a single scheduling unit. If we create a TokenFactor and return it as 964 // chain, then the TokenFactor is both a predecessor (operand) of the 965 // user as well as a successor (the TF operands are flagged to the user). 966 // c1, f1 = CopyToReg 967 // c2, f2 = CopyToReg 968 // c3 = TokenFactor c1, c2 969 // ... 970 // = op c3, ..., f2 971 Chain = Chains[NumRegs-1]; 972 else 973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 974 } 975 976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 977 unsigned MatchingIdx, const SDLoc &dl, 978 SelectionDAG &DAG, 979 std::vector<SDValue> &Ops) const { 980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 981 982 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 983 if (HasMatching) 984 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 985 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 986 // Put the register class of the virtual registers in the flag word. That 987 // way, later passes can recompute register class constraints for inline 988 // assembly as well as normal instructions. 989 // Don't do this for tied operands that can use the regclass information 990 // from the def. 991 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 992 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 993 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 994 } 995 996 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 997 Ops.push_back(Res); 998 999 if (Code == InlineAsm::Kind_Clobber) { 1000 // Clobbers should always have a 1:1 mapping with registers, and may 1001 // reference registers that have illegal (e.g. vector) types. Hence, we 1002 // shouldn't try to apply any sort of splitting logic to them. 1003 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1004 "No 1:1 mapping from clobbers to regs?"); 1005 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1006 (void)SP; 1007 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1008 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1009 assert( 1010 (Regs[I] != SP || 1011 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1012 "If we clobbered the stack pointer, MFI should know about it."); 1013 } 1014 return; 1015 } 1016 1017 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1018 MVT RegisterVT = RegVTs[Value]; 1019 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1020 RegisterVT); 1021 for (unsigned i = 0; i != NumRegs; ++i) { 1022 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1023 unsigned TheReg = Regs[Reg++]; 1024 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1025 } 1026 } 1027 } 1028 1029 SmallVector<std::pair<unsigned, TypeSize>, 4> 1030 RegsForValue::getRegsAndSizes() const { 1031 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1032 unsigned I = 0; 1033 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1034 unsigned RegCount = std::get<0>(CountAndVT); 1035 MVT RegisterVT = std::get<1>(CountAndVT); 1036 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1037 for (unsigned E = I + RegCount; I != E; ++I) 1038 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1039 } 1040 return OutVec; 1041 } 1042 1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1044 AssumptionCache *ac, 1045 const TargetLibraryInfo *li) { 1046 AA = aa; 1047 AC = ac; 1048 GFI = gfi; 1049 LibInfo = li; 1050 Context = DAG.getContext(); 1051 LPadToCallSiteMap.clear(); 1052 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1053 } 1054 1055 void SelectionDAGBuilder::clear() { 1056 NodeMap.clear(); 1057 UnusedArgNodeMap.clear(); 1058 PendingLoads.clear(); 1059 PendingExports.clear(); 1060 PendingConstrainedFP.clear(); 1061 PendingConstrainedFPStrict.clear(); 1062 CurInst = nullptr; 1063 HasTailCall = false; 1064 SDNodeOrder = LowestSDNodeOrder; 1065 StatepointLowering.clear(); 1066 } 1067 1068 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1069 DanglingDebugInfoMap.clear(); 1070 } 1071 1072 // Update DAG root to include dependencies on Pending chains. 1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1074 SDValue Root = DAG.getRoot(); 1075 1076 if (Pending.empty()) 1077 return Root; 1078 1079 // Add current root to PendingChains, unless we already indirectly 1080 // depend on it. 1081 if (Root.getOpcode() != ISD::EntryToken) { 1082 unsigned i = 0, e = Pending.size(); 1083 for (; i != e; ++i) { 1084 assert(Pending[i].getNode()->getNumOperands() > 1); 1085 if (Pending[i].getNode()->getOperand(0) == Root) 1086 break; // Don't add the root if we already indirectly depend on it. 1087 } 1088 1089 if (i == e) 1090 Pending.push_back(Root); 1091 } 1092 1093 if (Pending.size() == 1) 1094 Root = Pending[0]; 1095 else 1096 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1097 1098 DAG.setRoot(Root); 1099 Pending.clear(); 1100 return Root; 1101 } 1102 1103 SDValue SelectionDAGBuilder::getMemoryRoot() { 1104 return updateRoot(PendingLoads); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getRoot() { 1108 // Chain up all pending constrained intrinsics together with all 1109 // pending loads, by simply appending them to PendingLoads and 1110 // then calling getMemoryRoot(). 1111 PendingLoads.reserve(PendingLoads.size() + 1112 PendingConstrainedFP.size() + 1113 PendingConstrainedFPStrict.size()); 1114 PendingLoads.append(PendingConstrainedFP.begin(), 1115 PendingConstrainedFP.end()); 1116 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1117 PendingConstrainedFPStrict.end()); 1118 PendingConstrainedFP.clear(); 1119 PendingConstrainedFPStrict.clear(); 1120 return getMemoryRoot(); 1121 } 1122 1123 SDValue SelectionDAGBuilder::getControlRoot() { 1124 // We need to emit pending fpexcept.strict constrained intrinsics, 1125 // so append them to the PendingExports list. 1126 PendingExports.append(PendingConstrainedFPStrict.begin(), 1127 PendingConstrainedFPStrict.end()); 1128 PendingConstrainedFPStrict.clear(); 1129 return updateRoot(PendingExports); 1130 } 1131 1132 void SelectionDAGBuilder::visit(const Instruction &I) { 1133 // Set up outgoing PHI node register values before emitting the terminator. 1134 if (I.isTerminator()) { 1135 HandlePHINodesInSuccessorBlocks(I.getParent()); 1136 } 1137 1138 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1139 if (!isa<DbgInfoIntrinsic>(I)) 1140 ++SDNodeOrder; 1141 1142 CurInst = &I; 1143 1144 // Set inserted listener only if required. 1145 bool NodeInserted = false; 1146 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1147 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1148 if (PCSectionsMD) { 1149 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1150 DAG, [&](SDNode *) { NodeInserted = true; }); 1151 } 1152 1153 visit(I.getOpcode(), I); 1154 1155 if (!I.isTerminator() && !HasTailCall && 1156 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1157 CopyToExportRegsIfNeeded(&I); 1158 1159 // Handle metadata. 1160 if (PCSectionsMD) { 1161 auto It = NodeMap.find(&I); 1162 if (It != NodeMap.end()) { 1163 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1164 } else if (NodeInserted) { 1165 // This should not happen; if it does, don't let it go unnoticed so we can 1166 // fix it. Relevant visit*() function is probably missing a setValue(). 1167 errs() << "warning: loosing !pcsections metadata [" 1168 << I.getModule()->getName() << "]\n"; 1169 LLVM_DEBUG(I.dump()); 1170 assert(false); 1171 } 1172 } 1173 1174 CurInst = nullptr; 1175 } 1176 1177 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1178 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1179 } 1180 1181 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1182 // Note: this doesn't use InstVisitor, because it has to work with 1183 // ConstantExpr's in addition to instructions. 1184 switch (Opcode) { 1185 default: llvm_unreachable("Unknown instruction type encountered!"); 1186 // Build the switch statement using the Instruction.def file. 1187 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1188 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1189 #include "llvm/IR/Instruction.def" 1190 } 1191 } 1192 1193 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1194 unsigned Order) { 1195 // We treat variadic dbg_values differently at this stage. 1196 if (DI->hasArgList()) { 1197 // For variadic dbg_values we will now insert an undef. 1198 // FIXME: We can potentially recover these! 1199 SmallVector<SDDbgOperand, 2> Locs; 1200 for (const Value *V : DI->getValues()) { 1201 auto Undef = UndefValue::get(V->getType()); 1202 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1203 } 1204 SDDbgValue *SDV = DAG.getDbgValueList( 1205 DI->getVariable(), DI->getExpression(), Locs, {}, 1206 /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true); 1207 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1208 } else { 1209 // TODO: Dangling debug info will eventually either be resolved or produce 1210 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1211 // between the original dbg.value location and its resolved DBG_VALUE, 1212 // which we should ideally fill with an extra Undef DBG_VALUE. 1213 assert(DI->getNumVariableLocationOps() == 1 && 1214 "DbgValueInst without an ArgList should have a single location " 1215 "operand."); 1216 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1217 } 1218 } 1219 1220 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1221 const DIExpression *Expr) { 1222 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1223 DIVariable *DanglingVariable = DDI.getVariable(); 1224 DIExpression *DanglingExpr = DDI.getExpression(); 1225 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1226 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << DDI << "\n"); 1227 return true; 1228 } 1229 return false; 1230 }; 1231 1232 for (auto &DDIMI : DanglingDebugInfoMap) { 1233 DanglingDebugInfoVector &DDIV = DDIMI.second; 1234 1235 // If debug info is to be dropped, run it through final checks to see 1236 // whether it can be salvaged. 1237 for (auto &DDI : DDIV) 1238 if (isMatchingDbgValue(DDI)) 1239 salvageUnresolvedDbgValue(DDI); 1240 1241 erase_if(DDIV, isMatchingDbgValue); 1242 } 1243 } 1244 1245 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1246 // generate the debug data structures now that we've seen its definition. 1247 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1248 SDValue Val) { 1249 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1250 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1251 return; 1252 1253 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1254 for (auto &DDI : DDIV) { 1255 DebugLoc DL = DDI.getDebugLoc(); 1256 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1257 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1258 DILocalVariable *Variable = DDI.getVariable(); 1259 DIExpression *Expr = DDI.getExpression(); 1260 assert(Variable->isValidLocationForIntrinsic(DL) && 1261 "Expected inlined-at fields to agree"); 1262 SDDbgValue *SDV; 1263 if (Val.getNode()) { 1264 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1265 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1266 // we couldn't resolve it directly when examining the DbgValue intrinsic 1267 // in the first place we should not be more successful here). Unless we 1268 // have some test case that prove this to be correct we should avoid 1269 // calling EmitFuncArgumentDbgValue here. 1270 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1271 FuncArgumentDbgValueKind::Value, Val)) { 1272 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << DDI << "\n"); 1273 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1274 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1275 // inserted after the definition of Val when emitting the instructions 1276 // after ISel. An alternative could be to teach 1277 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1278 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1279 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1280 << ValSDNodeOrder << "\n"); 1281 SDV = getDbgValue(Val, Variable, Expr, DL, 1282 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1283 DAG.AddDbgValue(SDV, false); 1284 } else 1285 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << DDI 1286 << "in EmitFuncArgumentDbgValue\n"); 1287 } else { 1288 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DDI << "\n"); 1289 auto Undef = UndefValue::get(V->getType()); 1290 auto SDV = 1291 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1292 DAG.AddDbgValue(SDV, false); 1293 } 1294 } 1295 DDIV.clear(); 1296 } 1297 1298 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1299 // TODO: For the variadic implementation, instead of only checking the fail 1300 // state of `handleDebugValue`, we need know specifically which values were 1301 // invalid, so that we attempt to salvage only those values when processing 1302 // a DIArgList. 1303 Value *V = DDI.getVariableLocationOp(0); 1304 Value *OrigV = V; 1305 DILocalVariable *Var = DDI.getVariable(); 1306 DIExpression *Expr = DDI.getExpression(); 1307 DebugLoc DL = DDI.getDebugLoc(); 1308 unsigned SDOrder = DDI.getSDNodeOrder(); 1309 1310 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1311 // that DW_OP_stack_value is desired. 1312 bool StackValue = true; 1313 1314 // Can this Value can be encoded without any further work? 1315 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1316 return; 1317 1318 // Attempt to salvage back through as many instructions as possible. Bail if 1319 // a non-instruction is seen, such as a constant expression or global 1320 // variable. FIXME: Further work could recover those too. 1321 while (isa<Instruction>(V)) { 1322 Instruction &VAsInst = *cast<Instruction>(V); 1323 // Temporary "0", awaiting real implementation. 1324 SmallVector<uint64_t, 16> Ops; 1325 SmallVector<Value *, 4> AdditionalValues; 1326 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1327 AdditionalValues); 1328 // If we cannot salvage any further, and haven't yet found a suitable debug 1329 // expression, bail out. 1330 if (!V) 1331 break; 1332 1333 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1334 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1335 // here for variadic dbg_values, remove that condition. 1336 if (!AdditionalValues.empty()) 1337 break; 1338 1339 // New value and expr now represent this debuginfo. 1340 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1341 1342 // Some kind of simplification occurred: check whether the operand of the 1343 // salvaged debug expression can be encoded in this DAG. 1344 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1345 LLVM_DEBUG( 1346 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1347 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1348 return; 1349 } 1350 } 1351 1352 // This was the final opportunity to salvage this debug information, and it 1353 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1354 // any earlier variable location. 1355 assert(OrigV && "V shouldn't be null"); 1356 auto *Undef = UndefValue::get(OrigV->getType()); 1357 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1358 DAG.AddDbgValue(SDV, false); 1359 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI << "\n"); 1360 } 1361 1362 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1363 DILocalVariable *Var, 1364 DIExpression *Expr, DebugLoc DbgLoc, 1365 unsigned Order, bool IsVariadic) { 1366 if (Values.empty()) 1367 return true; 1368 SmallVector<SDDbgOperand> LocationOps; 1369 SmallVector<SDNode *> Dependencies; 1370 for (const Value *V : Values) { 1371 // Constant value. 1372 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1373 isa<ConstantPointerNull>(V)) { 1374 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1375 continue; 1376 } 1377 1378 // Look through IntToPtr constants. 1379 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1380 if (CE->getOpcode() == Instruction::IntToPtr) { 1381 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1382 continue; 1383 } 1384 1385 // If the Value is a frame index, we can create a FrameIndex debug value 1386 // without relying on the DAG at all. 1387 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1388 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1389 if (SI != FuncInfo.StaticAllocaMap.end()) { 1390 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1391 continue; 1392 } 1393 } 1394 1395 // Do not use getValue() in here; we don't want to generate code at 1396 // this point if it hasn't been done yet. 1397 SDValue N = NodeMap[V]; 1398 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1399 N = UnusedArgNodeMap[V]; 1400 if (N.getNode()) { 1401 // Only emit func arg dbg value for non-variadic dbg.values for now. 1402 if (!IsVariadic && 1403 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1404 FuncArgumentDbgValueKind::Value, N)) 1405 return true; 1406 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1407 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1408 // describe stack slot locations. 1409 // 1410 // Consider "int x = 0; int *px = &x;". There are two kinds of 1411 // interesting debug values here after optimization: 1412 // 1413 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1414 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1415 // 1416 // Both describe the direct values of their associated variables. 1417 Dependencies.push_back(N.getNode()); 1418 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1419 continue; 1420 } 1421 LocationOps.emplace_back( 1422 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1423 continue; 1424 } 1425 1426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1427 // Special rules apply for the first dbg.values of parameter variables in a 1428 // function. Identify them by the fact they reference Argument Values, that 1429 // they're parameters, and they are parameters of the current function. We 1430 // need to let them dangle until they get an SDNode. 1431 bool IsParamOfFunc = 1432 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1433 if (IsParamOfFunc) 1434 return false; 1435 1436 // The value is not used in this block yet (or it would have an SDNode). 1437 // We still want the value to appear for the user if possible -- if it has 1438 // an associated VReg, we can refer to that instead. 1439 auto VMI = FuncInfo.ValueMap.find(V); 1440 if (VMI != FuncInfo.ValueMap.end()) { 1441 unsigned Reg = VMI->second; 1442 // If this is a PHI node, it may be split up into several MI PHI nodes 1443 // (in FunctionLoweringInfo::set). 1444 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1445 V->getType(), std::nullopt); 1446 if (RFV.occupiesMultipleRegs()) { 1447 // FIXME: We could potentially support variadic dbg_values here. 1448 if (IsVariadic) 1449 return false; 1450 unsigned Offset = 0; 1451 unsigned BitsToDescribe = 0; 1452 if (auto VarSize = Var->getSizeInBits()) 1453 BitsToDescribe = *VarSize; 1454 if (auto Fragment = Expr->getFragmentInfo()) 1455 BitsToDescribe = Fragment->SizeInBits; 1456 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1457 // Bail out if all bits are described already. 1458 if (Offset >= BitsToDescribe) 1459 break; 1460 // TODO: handle scalable vectors. 1461 unsigned RegisterSize = RegAndSize.second; 1462 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1463 ? BitsToDescribe - Offset 1464 : RegisterSize; 1465 auto FragmentExpr = DIExpression::createFragmentExpression( 1466 Expr, Offset, FragmentSize); 1467 if (!FragmentExpr) 1468 continue; 1469 SDDbgValue *SDV = DAG.getVRegDbgValue( 1470 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1471 DAG.AddDbgValue(SDV, false); 1472 Offset += RegisterSize; 1473 } 1474 return true; 1475 } 1476 // We can use simple vreg locations for variadic dbg_values as well. 1477 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1478 continue; 1479 } 1480 // We failed to create a SDDbgOperand for V. 1481 return false; 1482 } 1483 1484 // We have created a SDDbgOperand for each Value in Values. 1485 // Should use Order instead of SDNodeOrder? 1486 assert(!LocationOps.empty()); 1487 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1488 /*IsIndirect=*/false, DbgLoc, 1489 SDNodeOrder, IsVariadic); 1490 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1491 return true; 1492 } 1493 1494 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1495 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1496 for (auto &Pair : DanglingDebugInfoMap) 1497 for (auto &DDI : Pair.second) 1498 salvageUnresolvedDbgValue(DDI); 1499 clearDanglingDebugInfo(); 1500 } 1501 1502 /// getCopyFromRegs - If there was virtual register allocated for the value V 1503 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1504 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1505 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1506 SDValue Result; 1507 1508 if (It != FuncInfo.ValueMap.end()) { 1509 Register InReg = It->second; 1510 1511 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1512 DAG.getDataLayout(), InReg, Ty, 1513 std::nullopt); // This is not an ABI copy. 1514 SDValue Chain = DAG.getEntryNode(); 1515 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1516 V); 1517 resolveDanglingDebugInfo(V, Result); 1518 } 1519 1520 return Result; 1521 } 1522 1523 /// getValue - Return an SDValue for the given Value. 1524 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1525 // If we already have an SDValue for this value, use it. It's important 1526 // to do this first, so that we don't create a CopyFromReg if we already 1527 // have a regular SDValue. 1528 SDValue &N = NodeMap[V]; 1529 if (N.getNode()) return N; 1530 1531 // If there's a virtual register allocated and initialized for this 1532 // value, use it. 1533 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1534 return copyFromReg; 1535 1536 // Otherwise create a new SDValue and remember it. 1537 SDValue Val = getValueImpl(V); 1538 NodeMap[V] = Val; 1539 resolveDanglingDebugInfo(V, Val); 1540 return Val; 1541 } 1542 1543 /// getNonRegisterValue - Return an SDValue for the given Value, but 1544 /// don't look in FuncInfo.ValueMap for a virtual register. 1545 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1546 // If we already have an SDValue for this value, use it. 1547 SDValue &N = NodeMap[V]; 1548 if (N.getNode()) { 1549 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1550 // Remove the debug location from the node as the node is about to be used 1551 // in a location which may differ from the original debug location. This 1552 // is relevant to Constant and ConstantFP nodes because they can appear 1553 // as constant expressions inside PHI nodes. 1554 N->setDebugLoc(DebugLoc()); 1555 } 1556 return N; 1557 } 1558 1559 // Otherwise create a new SDValue and remember it. 1560 SDValue Val = getValueImpl(V); 1561 NodeMap[V] = Val; 1562 resolveDanglingDebugInfo(V, Val); 1563 return Val; 1564 } 1565 1566 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1567 /// Create an SDValue for the given value. 1568 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1570 1571 if (const Constant *C = dyn_cast<Constant>(V)) { 1572 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1573 1574 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1575 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1576 1577 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1578 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1579 1580 if (isa<ConstantPointerNull>(C)) { 1581 unsigned AS = V->getType()->getPointerAddressSpace(); 1582 return DAG.getConstant(0, getCurSDLoc(), 1583 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1584 } 1585 1586 if (match(C, m_VScale(DAG.getDataLayout()))) 1587 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1588 1589 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1590 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1591 1592 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1593 return DAG.getUNDEF(VT); 1594 1595 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1596 visit(CE->getOpcode(), *CE); 1597 SDValue N1 = NodeMap[V]; 1598 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1599 return N1; 1600 } 1601 1602 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1603 SmallVector<SDValue, 4> Constants; 1604 for (const Use &U : C->operands()) { 1605 SDNode *Val = getValue(U).getNode(); 1606 // If the operand is an empty aggregate, there are no values. 1607 if (!Val) continue; 1608 // Add each leaf value from the operand to the Constants list 1609 // to form a flattened list of all the values. 1610 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1611 Constants.push_back(SDValue(Val, i)); 1612 } 1613 1614 return DAG.getMergeValues(Constants, getCurSDLoc()); 1615 } 1616 1617 if (const ConstantDataSequential *CDS = 1618 dyn_cast<ConstantDataSequential>(C)) { 1619 SmallVector<SDValue, 4> Ops; 1620 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1621 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1622 // Add each leaf value from the operand to the Constants list 1623 // to form a flattened list of all the values. 1624 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1625 Ops.push_back(SDValue(Val, i)); 1626 } 1627 1628 if (isa<ArrayType>(CDS->getType())) 1629 return DAG.getMergeValues(Ops, getCurSDLoc()); 1630 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1631 } 1632 1633 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1634 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1635 "Unknown struct or array constant!"); 1636 1637 SmallVector<EVT, 4> ValueVTs; 1638 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1639 unsigned NumElts = ValueVTs.size(); 1640 if (NumElts == 0) 1641 return SDValue(); // empty struct 1642 SmallVector<SDValue, 4> Constants(NumElts); 1643 for (unsigned i = 0; i != NumElts; ++i) { 1644 EVT EltVT = ValueVTs[i]; 1645 if (isa<UndefValue>(C)) 1646 Constants[i] = DAG.getUNDEF(EltVT); 1647 else if (EltVT.isFloatingPoint()) 1648 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1649 else 1650 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1651 } 1652 1653 return DAG.getMergeValues(Constants, getCurSDLoc()); 1654 } 1655 1656 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1657 return DAG.getBlockAddress(BA, VT); 1658 1659 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1660 return getValue(Equiv->getGlobalValue()); 1661 1662 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1663 return getValue(NC->getGlobalValue()); 1664 1665 VectorType *VecTy = cast<VectorType>(V->getType()); 1666 1667 // Now that we know the number and type of the elements, get that number of 1668 // elements into the Ops array based on what kind of constant it is. 1669 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1670 SmallVector<SDValue, 16> Ops; 1671 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1672 for (unsigned i = 0; i != NumElements; ++i) 1673 Ops.push_back(getValue(CV->getOperand(i))); 1674 1675 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1676 } 1677 1678 if (isa<ConstantAggregateZero>(C)) { 1679 EVT EltVT = 1680 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1681 1682 SDValue Op; 1683 if (EltVT.isFloatingPoint()) 1684 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1685 else 1686 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1687 1688 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1689 } 1690 1691 llvm_unreachable("Unknown vector constant"); 1692 } 1693 1694 // If this is a static alloca, generate it as the frameindex instead of 1695 // computation. 1696 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1697 DenseMap<const AllocaInst*, int>::iterator SI = 1698 FuncInfo.StaticAllocaMap.find(AI); 1699 if (SI != FuncInfo.StaticAllocaMap.end()) 1700 return DAG.getFrameIndex( 1701 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1702 } 1703 1704 // If this is an instruction which fast-isel has deferred, select it now. 1705 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1706 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1707 1708 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1709 Inst->getType(), std::nullopt); 1710 SDValue Chain = DAG.getEntryNode(); 1711 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1712 } 1713 1714 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1715 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1716 1717 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1718 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1719 1720 llvm_unreachable("Can't get register for value!"); 1721 } 1722 1723 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1724 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1725 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1726 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1727 bool IsSEH = isAsynchronousEHPersonality(Pers); 1728 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1729 if (!IsSEH) 1730 CatchPadMBB->setIsEHScopeEntry(); 1731 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1732 if (IsMSVCCXX || IsCoreCLR) 1733 CatchPadMBB->setIsEHFuncletEntry(); 1734 } 1735 1736 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1737 // Update machine-CFG edge. 1738 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1739 FuncInfo.MBB->addSuccessor(TargetMBB); 1740 TargetMBB->setIsEHCatchretTarget(true); 1741 DAG.getMachineFunction().setHasEHCatchret(true); 1742 1743 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1744 bool IsSEH = isAsynchronousEHPersonality(Pers); 1745 if (IsSEH) { 1746 // If this is not a fall-through branch or optimizations are switched off, 1747 // emit the branch. 1748 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1749 TM.getOptLevel() == CodeGenOpt::None) 1750 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1751 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1752 return; 1753 } 1754 1755 // Figure out the funclet membership for the catchret's successor. 1756 // This will be used by the FuncletLayout pass to determine how to order the 1757 // BB's. 1758 // A 'catchret' returns to the outer scope's color. 1759 Value *ParentPad = I.getCatchSwitchParentPad(); 1760 const BasicBlock *SuccessorColor; 1761 if (isa<ConstantTokenNone>(ParentPad)) 1762 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1763 else 1764 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1765 assert(SuccessorColor && "No parent funclet for catchret!"); 1766 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1767 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1768 1769 // Create the terminator node. 1770 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1771 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1772 DAG.getBasicBlock(SuccessorColorMBB)); 1773 DAG.setRoot(Ret); 1774 } 1775 1776 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1777 // Don't emit any special code for the cleanuppad instruction. It just marks 1778 // the start of an EH scope/funclet. 1779 FuncInfo.MBB->setIsEHScopeEntry(); 1780 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1781 if (Pers != EHPersonality::Wasm_CXX) { 1782 FuncInfo.MBB->setIsEHFuncletEntry(); 1783 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1784 } 1785 } 1786 1787 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1788 // not match, it is OK to add only the first unwind destination catchpad to the 1789 // successors, because there will be at least one invoke instruction within the 1790 // catch scope that points to the next unwind destination, if one exists, so 1791 // CFGSort cannot mess up with BB sorting order. 1792 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1793 // call within them, and catchpads only consisting of 'catch (...)' have a 1794 // '__cxa_end_catch' call within them, both of which generate invokes in case 1795 // the next unwind destination exists, i.e., the next unwind destination is not 1796 // the caller.) 1797 // 1798 // Having at most one EH pad successor is also simpler and helps later 1799 // transformations. 1800 // 1801 // For example, 1802 // current: 1803 // invoke void @foo to ... unwind label %catch.dispatch 1804 // catch.dispatch: 1805 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1806 // catch.start: 1807 // ... 1808 // ... in this BB or some other child BB dominated by this BB there will be an 1809 // invoke that points to 'next' BB as an unwind destination 1810 // 1811 // next: ; We don't need to add this to 'current' BB's successor 1812 // ... 1813 static void findWasmUnwindDestinations( 1814 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1815 BranchProbability Prob, 1816 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1817 &UnwindDests) { 1818 while (EHPadBB) { 1819 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1820 if (isa<CleanupPadInst>(Pad)) { 1821 // Stop on cleanup pads. 1822 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1823 UnwindDests.back().first->setIsEHScopeEntry(); 1824 break; 1825 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1826 // Add the catchpad handlers to the possible destinations. We don't 1827 // continue to the unwind destination of the catchswitch for wasm. 1828 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1829 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1830 UnwindDests.back().first->setIsEHScopeEntry(); 1831 } 1832 break; 1833 } else { 1834 continue; 1835 } 1836 } 1837 } 1838 1839 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1840 /// many places it could ultimately go. In the IR, we have a single unwind 1841 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1842 /// This function skips over imaginary basic blocks that hold catchswitch 1843 /// instructions, and finds all the "real" machine 1844 /// basic block destinations. As those destinations may not be successors of 1845 /// EHPadBB, here we also calculate the edge probability to those destinations. 1846 /// The passed-in Prob is the edge probability to EHPadBB. 1847 static void findUnwindDestinations( 1848 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1849 BranchProbability Prob, 1850 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1851 &UnwindDests) { 1852 EHPersonality Personality = 1853 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1854 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1855 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1856 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1857 bool IsSEH = isAsynchronousEHPersonality(Personality); 1858 1859 if (IsWasmCXX) { 1860 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1861 assert(UnwindDests.size() <= 1 && 1862 "There should be at most one unwind destination for wasm"); 1863 return; 1864 } 1865 1866 while (EHPadBB) { 1867 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1868 BasicBlock *NewEHPadBB = nullptr; 1869 if (isa<LandingPadInst>(Pad)) { 1870 // Stop on landingpads. They are not funclets. 1871 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1872 break; 1873 } else if (isa<CleanupPadInst>(Pad)) { 1874 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1875 // personalities. 1876 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1877 UnwindDests.back().first->setIsEHScopeEntry(); 1878 UnwindDests.back().first->setIsEHFuncletEntry(); 1879 break; 1880 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1881 // Add the catchpad handlers to the possible destinations. 1882 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1883 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1884 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1885 if (IsMSVCCXX || IsCoreCLR) 1886 UnwindDests.back().first->setIsEHFuncletEntry(); 1887 if (!IsSEH) 1888 UnwindDests.back().first->setIsEHScopeEntry(); 1889 } 1890 NewEHPadBB = CatchSwitch->getUnwindDest(); 1891 } else { 1892 continue; 1893 } 1894 1895 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1896 if (BPI && NewEHPadBB) 1897 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1898 EHPadBB = NewEHPadBB; 1899 } 1900 } 1901 1902 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1903 // Update successor info. 1904 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1905 auto UnwindDest = I.getUnwindDest(); 1906 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1907 BranchProbability UnwindDestProb = 1908 (BPI && UnwindDest) 1909 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1910 : BranchProbability::getZero(); 1911 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1912 for (auto &UnwindDest : UnwindDests) { 1913 UnwindDest.first->setIsEHPad(); 1914 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1915 } 1916 FuncInfo.MBB->normalizeSuccProbs(); 1917 1918 // Create the terminator node. 1919 SDValue Ret = 1920 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1921 DAG.setRoot(Ret); 1922 } 1923 1924 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1925 report_fatal_error("visitCatchSwitch not yet implemented!"); 1926 } 1927 1928 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1930 auto &DL = DAG.getDataLayout(); 1931 SDValue Chain = getControlRoot(); 1932 SmallVector<ISD::OutputArg, 8> Outs; 1933 SmallVector<SDValue, 8> OutVals; 1934 1935 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1936 // lower 1937 // 1938 // %val = call <ty> @llvm.experimental.deoptimize() 1939 // ret <ty> %val 1940 // 1941 // differently. 1942 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1943 LowerDeoptimizingReturn(); 1944 return; 1945 } 1946 1947 if (!FuncInfo.CanLowerReturn) { 1948 unsigned DemoteReg = FuncInfo.DemoteRegister; 1949 const Function *F = I.getParent()->getParent(); 1950 1951 // Emit a store of the return value through the virtual register. 1952 // Leave Outs empty so that LowerReturn won't try to load return 1953 // registers the usual way. 1954 SmallVector<EVT, 1> PtrValueVTs; 1955 ComputeValueVTs(TLI, DL, 1956 F->getReturnType()->getPointerTo( 1957 DAG.getDataLayout().getAllocaAddrSpace()), 1958 PtrValueVTs); 1959 1960 SDValue RetPtr = 1961 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1962 SDValue RetOp = getValue(I.getOperand(0)); 1963 1964 SmallVector<EVT, 4> ValueVTs, MemVTs; 1965 SmallVector<uint64_t, 4> Offsets; 1966 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1967 &Offsets); 1968 unsigned NumValues = ValueVTs.size(); 1969 1970 SmallVector<SDValue, 4> Chains(NumValues); 1971 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1972 for (unsigned i = 0; i != NumValues; ++i) { 1973 // An aggregate return value cannot wrap around the address space, so 1974 // offsets to its parts don't wrap either. 1975 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1976 TypeSize::Fixed(Offsets[i])); 1977 1978 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1979 if (MemVTs[i] != ValueVTs[i]) 1980 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1981 Chains[i] = DAG.getStore( 1982 Chain, getCurSDLoc(), Val, 1983 // FIXME: better loc info would be nice. 1984 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1985 commonAlignment(BaseAlign, Offsets[i])); 1986 } 1987 1988 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1989 MVT::Other, Chains); 1990 } else if (I.getNumOperands() != 0) { 1991 SmallVector<EVT, 4> ValueVTs; 1992 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1993 unsigned NumValues = ValueVTs.size(); 1994 if (NumValues) { 1995 SDValue RetOp = getValue(I.getOperand(0)); 1996 1997 const Function *F = I.getParent()->getParent(); 1998 1999 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2000 I.getOperand(0)->getType(), F->getCallingConv(), 2001 /*IsVarArg*/ false, DL); 2002 2003 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2004 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2005 ExtendKind = ISD::SIGN_EXTEND; 2006 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2007 ExtendKind = ISD::ZERO_EXTEND; 2008 2009 LLVMContext &Context = F->getContext(); 2010 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2011 2012 for (unsigned j = 0; j != NumValues; ++j) { 2013 EVT VT = ValueVTs[j]; 2014 2015 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2016 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2017 2018 CallingConv::ID CC = F->getCallingConv(); 2019 2020 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2021 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2022 SmallVector<SDValue, 4> Parts(NumParts); 2023 getCopyToParts(DAG, getCurSDLoc(), 2024 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2025 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2026 2027 // 'inreg' on function refers to return value 2028 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2029 if (RetInReg) 2030 Flags.setInReg(); 2031 2032 if (I.getOperand(0)->getType()->isPointerTy()) { 2033 Flags.setPointer(); 2034 Flags.setPointerAddrSpace( 2035 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2036 } 2037 2038 if (NeedsRegBlock) { 2039 Flags.setInConsecutiveRegs(); 2040 if (j == NumValues - 1) 2041 Flags.setInConsecutiveRegsLast(); 2042 } 2043 2044 // Propagate extension type if any 2045 if (ExtendKind == ISD::SIGN_EXTEND) 2046 Flags.setSExt(); 2047 else if (ExtendKind == ISD::ZERO_EXTEND) 2048 Flags.setZExt(); 2049 2050 for (unsigned i = 0; i < NumParts; ++i) { 2051 Outs.push_back(ISD::OutputArg(Flags, 2052 Parts[i].getValueType().getSimpleVT(), 2053 VT, /*isfixed=*/true, 0, 0)); 2054 OutVals.push_back(Parts[i]); 2055 } 2056 } 2057 } 2058 } 2059 2060 // Push in swifterror virtual register as the last element of Outs. This makes 2061 // sure swifterror virtual register will be returned in the swifterror 2062 // physical register. 2063 const Function *F = I.getParent()->getParent(); 2064 if (TLI.supportSwiftError() && 2065 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2066 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2067 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2068 Flags.setSwiftError(); 2069 Outs.push_back(ISD::OutputArg( 2070 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2071 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2072 // Create SDNode for the swifterror virtual register. 2073 OutVals.push_back( 2074 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2075 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2076 EVT(TLI.getPointerTy(DL)))); 2077 } 2078 2079 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2080 CallingConv::ID CallConv = 2081 DAG.getMachineFunction().getFunction().getCallingConv(); 2082 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2083 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2084 2085 // Verify that the target's LowerReturn behaved as expected. 2086 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2087 "LowerReturn didn't return a valid chain!"); 2088 2089 // Update the DAG with the new chain value resulting from return lowering. 2090 DAG.setRoot(Chain); 2091 } 2092 2093 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2094 /// created for it, emit nodes to copy the value into the virtual 2095 /// registers. 2096 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2097 // Skip empty types 2098 if (V->getType()->isEmptyTy()) 2099 return; 2100 2101 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2102 if (VMI != FuncInfo.ValueMap.end()) { 2103 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2104 CopyValueToVirtualRegister(V, VMI->second); 2105 } 2106 } 2107 2108 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2109 /// the current basic block, add it to ValueMap now so that we'll get a 2110 /// CopyTo/FromReg. 2111 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2112 // No need to export constants. 2113 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2114 2115 // Already exported? 2116 if (FuncInfo.isExportedInst(V)) return; 2117 2118 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2119 CopyValueToVirtualRegister(V, Reg); 2120 } 2121 2122 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2123 const BasicBlock *FromBB) { 2124 // The operands of the setcc have to be in this block. We don't know 2125 // how to export them from some other block. 2126 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2127 // Can export from current BB. 2128 if (VI->getParent() == FromBB) 2129 return true; 2130 2131 // Is already exported, noop. 2132 return FuncInfo.isExportedInst(V); 2133 } 2134 2135 // If this is an argument, we can export it if the BB is the entry block or 2136 // if it is already exported. 2137 if (isa<Argument>(V)) { 2138 if (FromBB->isEntryBlock()) 2139 return true; 2140 2141 // Otherwise, can only export this if it is already exported. 2142 return FuncInfo.isExportedInst(V); 2143 } 2144 2145 // Otherwise, constants can always be exported. 2146 return true; 2147 } 2148 2149 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2150 BranchProbability 2151 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2152 const MachineBasicBlock *Dst) const { 2153 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2154 const BasicBlock *SrcBB = Src->getBasicBlock(); 2155 const BasicBlock *DstBB = Dst->getBasicBlock(); 2156 if (!BPI) { 2157 // If BPI is not available, set the default probability as 1 / N, where N is 2158 // the number of successors. 2159 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2160 return BranchProbability(1, SuccSize); 2161 } 2162 return BPI->getEdgeProbability(SrcBB, DstBB); 2163 } 2164 2165 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2166 MachineBasicBlock *Dst, 2167 BranchProbability Prob) { 2168 if (!FuncInfo.BPI) 2169 Src->addSuccessorWithoutProb(Dst); 2170 else { 2171 if (Prob.isUnknown()) 2172 Prob = getEdgeProbability(Src, Dst); 2173 Src->addSuccessor(Dst, Prob); 2174 } 2175 } 2176 2177 static bool InBlock(const Value *V, const BasicBlock *BB) { 2178 if (const Instruction *I = dyn_cast<Instruction>(V)) 2179 return I->getParent() == BB; 2180 return true; 2181 } 2182 2183 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2184 /// This function emits a branch and is used at the leaves of an OR or an 2185 /// AND operator tree. 2186 void 2187 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2188 MachineBasicBlock *TBB, 2189 MachineBasicBlock *FBB, 2190 MachineBasicBlock *CurBB, 2191 MachineBasicBlock *SwitchBB, 2192 BranchProbability TProb, 2193 BranchProbability FProb, 2194 bool InvertCond) { 2195 const BasicBlock *BB = CurBB->getBasicBlock(); 2196 2197 // If the leaf of the tree is a comparison, merge the condition into 2198 // the caseblock. 2199 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2200 // The operands of the cmp have to be in this block. We don't know 2201 // how to export them from some other block. If this is the first block 2202 // of the sequence, no exporting is needed. 2203 if (CurBB == SwitchBB || 2204 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2205 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2206 ISD::CondCode Condition; 2207 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2208 ICmpInst::Predicate Pred = 2209 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2210 Condition = getICmpCondCode(Pred); 2211 } else { 2212 const FCmpInst *FC = cast<FCmpInst>(Cond); 2213 FCmpInst::Predicate Pred = 2214 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2215 Condition = getFCmpCondCode(Pred); 2216 if (TM.Options.NoNaNsFPMath) 2217 Condition = getFCmpCodeWithoutNaN(Condition); 2218 } 2219 2220 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2221 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2222 SL->SwitchCases.push_back(CB); 2223 return; 2224 } 2225 } 2226 2227 // Create a CaseBlock record representing this branch. 2228 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2229 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2230 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2231 SL->SwitchCases.push_back(CB); 2232 } 2233 2234 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2235 MachineBasicBlock *TBB, 2236 MachineBasicBlock *FBB, 2237 MachineBasicBlock *CurBB, 2238 MachineBasicBlock *SwitchBB, 2239 Instruction::BinaryOps Opc, 2240 BranchProbability TProb, 2241 BranchProbability FProb, 2242 bool InvertCond) { 2243 // Skip over not part of the tree and remember to invert op and operands at 2244 // next level. 2245 Value *NotCond; 2246 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2247 InBlock(NotCond, CurBB->getBasicBlock())) { 2248 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2249 !InvertCond); 2250 return; 2251 } 2252 2253 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2254 const Value *BOpOp0, *BOpOp1; 2255 // Compute the effective opcode for Cond, taking into account whether it needs 2256 // to be inverted, e.g. 2257 // and (not (or A, B)), C 2258 // gets lowered as 2259 // and (and (not A, not B), C) 2260 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2261 if (BOp) { 2262 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2263 ? Instruction::And 2264 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2265 ? Instruction::Or 2266 : (Instruction::BinaryOps)0); 2267 if (InvertCond) { 2268 if (BOpc == Instruction::And) 2269 BOpc = Instruction::Or; 2270 else if (BOpc == Instruction::Or) 2271 BOpc = Instruction::And; 2272 } 2273 } 2274 2275 // If this node is not part of the or/and tree, emit it as a branch. 2276 // Note that all nodes in the tree should have same opcode. 2277 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2278 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2279 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2280 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2281 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2282 TProb, FProb, InvertCond); 2283 return; 2284 } 2285 2286 // Create TmpBB after CurBB. 2287 MachineFunction::iterator BBI(CurBB); 2288 MachineFunction &MF = DAG.getMachineFunction(); 2289 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2290 CurBB->getParent()->insert(++BBI, TmpBB); 2291 2292 if (Opc == Instruction::Or) { 2293 // Codegen X | Y as: 2294 // BB1: 2295 // jmp_if_X TBB 2296 // jmp TmpBB 2297 // TmpBB: 2298 // jmp_if_Y TBB 2299 // jmp FBB 2300 // 2301 2302 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2303 // The requirement is that 2304 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2305 // = TrueProb for original BB. 2306 // Assuming the original probabilities are A and B, one choice is to set 2307 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2308 // A/(1+B) and 2B/(1+B). This choice assumes that 2309 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2310 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2311 // TmpBB, but the math is more complicated. 2312 2313 auto NewTrueProb = TProb / 2; 2314 auto NewFalseProb = TProb / 2 + FProb; 2315 // Emit the LHS condition. 2316 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2317 NewFalseProb, InvertCond); 2318 2319 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2320 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2321 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2322 // Emit the RHS condition into TmpBB. 2323 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2324 Probs[1], InvertCond); 2325 } else { 2326 assert(Opc == Instruction::And && "Unknown merge op!"); 2327 // Codegen X & Y as: 2328 // BB1: 2329 // jmp_if_X TmpBB 2330 // jmp FBB 2331 // TmpBB: 2332 // jmp_if_Y TBB 2333 // jmp FBB 2334 // 2335 // This requires creation of TmpBB after CurBB. 2336 2337 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2338 // The requirement is that 2339 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2340 // = FalseProb for original BB. 2341 // Assuming the original probabilities are A and B, one choice is to set 2342 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2343 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2344 // TrueProb for BB1 * FalseProb for TmpBB. 2345 2346 auto NewTrueProb = TProb + FProb / 2; 2347 auto NewFalseProb = FProb / 2; 2348 // Emit the LHS condition. 2349 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2350 NewFalseProb, InvertCond); 2351 2352 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2353 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2354 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2355 // Emit the RHS condition into TmpBB. 2356 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2357 Probs[1], InvertCond); 2358 } 2359 } 2360 2361 /// If the set of cases should be emitted as a series of branches, return true. 2362 /// If we should emit this as a bunch of and/or'd together conditions, return 2363 /// false. 2364 bool 2365 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2366 if (Cases.size() != 2) return true; 2367 2368 // If this is two comparisons of the same values or'd or and'd together, they 2369 // will get folded into a single comparison, so don't emit two blocks. 2370 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2371 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2372 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2373 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2374 return false; 2375 } 2376 2377 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2378 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2379 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2380 Cases[0].CC == Cases[1].CC && 2381 isa<Constant>(Cases[0].CmpRHS) && 2382 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2383 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2384 return false; 2385 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2386 return false; 2387 } 2388 2389 return true; 2390 } 2391 2392 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2393 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2394 2395 // Update machine-CFG edges. 2396 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2397 2398 if (I.isUnconditional()) { 2399 // Update machine-CFG edges. 2400 BrMBB->addSuccessor(Succ0MBB); 2401 2402 // If this is not a fall-through branch or optimizations are switched off, 2403 // emit the branch. 2404 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2405 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2406 MVT::Other, getControlRoot(), 2407 DAG.getBasicBlock(Succ0MBB))); 2408 2409 return; 2410 } 2411 2412 // If this condition is one of the special cases we handle, do special stuff 2413 // now. 2414 const Value *CondVal = I.getCondition(); 2415 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2416 2417 // If this is a series of conditions that are or'd or and'd together, emit 2418 // this as a sequence of branches instead of setcc's with and/or operations. 2419 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2420 // unpredictable branches, and vector extracts because those jumps are likely 2421 // expensive for any target), this should improve performance. 2422 // For example, instead of something like: 2423 // cmp A, B 2424 // C = seteq 2425 // cmp D, E 2426 // F = setle 2427 // or C, F 2428 // jnz foo 2429 // Emit: 2430 // cmp A, B 2431 // je foo 2432 // cmp D, E 2433 // jle foo 2434 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2435 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2436 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2437 Value *Vec; 2438 const Value *BOp0, *BOp1; 2439 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2440 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2441 Opcode = Instruction::And; 2442 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2443 Opcode = Instruction::Or; 2444 2445 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2446 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2447 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2448 getEdgeProbability(BrMBB, Succ0MBB), 2449 getEdgeProbability(BrMBB, Succ1MBB), 2450 /*InvertCond=*/false); 2451 // If the compares in later blocks need to use values not currently 2452 // exported from this block, export them now. This block should always 2453 // be the first entry. 2454 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2455 2456 // Allow some cases to be rejected. 2457 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2458 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2459 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2460 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2461 } 2462 2463 // Emit the branch for this block. 2464 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2465 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2466 return; 2467 } 2468 2469 // Okay, we decided not to do this, remove any inserted MBB's and clear 2470 // SwitchCases. 2471 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2472 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2473 2474 SL->SwitchCases.clear(); 2475 } 2476 } 2477 2478 // Create a CaseBlock record representing this branch. 2479 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2480 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2481 2482 // Use visitSwitchCase to actually insert the fast branch sequence for this 2483 // cond branch. 2484 visitSwitchCase(CB, BrMBB); 2485 } 2486 2487 /// visitSwitchCase - Emits the necessary code to represent a single node in 2488 /// the binary search tree resulting from lowering a switch instruction. 2489 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2490 MachineBasicBlock *SwitchBB) { 2491 SDValue Cond; 2492 SDValue CondLHS = getValue(CB.CmpLHS); 2493 SDLoc dl = CB.DL; 2494 2495 if (CB.CC == ISD::SETTRUE) { 2496 // Branch or fall through to TrueBB. 2497 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2498 SwitchBB->normalizeSuccProbs(); 2499 if (CB.TrueBB != NextBlock(SwitchBB)) { 2500 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2501 DAG.getBasicBlock(CB.TrueBB))); 2502 } 2503 return; 2504 } 2505 2506 auto &TLI = DAG.getTargetLoweringInfo(); 2507 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2508 2509 // Build the setcc now. 2510 if (!CB.CmpMHS) { 2511 // Fold "(X == true)" to X and "(X == false)" to !X to 2512 // handle common cases produced by branch lowering. 2513 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2514 CB.CC == ISD::SETEQ) 2515 Cond = CondLHS; 2516 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2517 CB.CC == ISD::SETEQ) { 2518 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2519 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2520 } else { 2521 SDValue CondRHS = getValue(CB.CmpRHS); 2522 2523 // If a pointer's DAG type is larger than its memory type then the DAG 2524 // values are zero-extended. This breaks signed comparisons so truncate 2525 // back to the underlying type before doing the compare. 2526 if (CondLHS.getValueType() != MemVT) { 2527 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2528 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2529 } 2530 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2531 } 2532 } else { 2533 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2534 2535 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2536 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2537 2538 SDValue CmpOp = getValue(CB.CmpMHS); 2539 EVT VT = CmpOp.getValueType(); 2540 2541 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2542 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2543 ISD::SETLE); 2544 } else { 2545 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2546 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2547 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2548 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2549 } 2550 } 2551 2552 // Update successor info 2553 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2554 // TrueBB and FalseBB are always different unless the incoming IR is 2555 // degenerate. This only happens when running llc on weird IR. 2556 if (CB.TrueBB != CB.FalseBB) 2557 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2558 SwitchBB->normalizeSuccProbs(); 2559 2560 // If the lhs block is the next block, invert the condition so that we can 2561 // fall through to the lhs instead of the rhs block. 2562 if (CB.TrueBB == NextBlock(SwitchBB)) { 2563 std::swap(CB.TrueBB, CB.FalseBB); 2564 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2565 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2566 } 2567 2568 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2569 MVT::Other, getControlRoot(), Cond, 2570 DAG.getBasicBlock(CB.TrueBB)); 2571 2572 setValue(CurInst, BrCond); 2573 2574 // Insert the false branch. Do this even if it's a fall through branch, 2575 // this makes it easier to do DAG optimizations which require inverting 2576 // the branch condition. 2577 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2578 DAG.getBasicBlock(CB.FalseBB)); 2579 2580 DAG.setRoot(BrCond); 2581 } 2582 2583 /// visitJumpTable - Emit JumpTable node in the current MBB 2584 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2585 // Emit the code for the jump table 2586 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2587 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2588 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2589 JT.Reg, PTy); 2590 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2591 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2592 MVT::Other, Index.getValue(1), 2593 Table, Index); 2594 DAG.setRoot(BrJumpTable); 2595 } 2596 2597 /// visitJumpTableHeader - This function emits necessary code to produce index 2598 /// in the JumpTable from switch case. 2599 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2600 JumpTableHeader &JTH, 2601 MachineBasicBlock *SwitchBB) { 2602 SDLoc dl = getCurSDLoc(); 2603 2604 // Subtract the lowest switch case value from the value being switched on. 2605 SDValue SwitchOp = getValue(JTH.SValue); 2606 EVT VT = SwitchOp.getValueType(); 2607 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2608 DAG.getConstant(JTH.First, dl, VT)); 2609 2610 // The SDNode we just created, which holds the value being switched on minus 2611 // the smallest case value, needs to be copied to a virtual register so it 2612 // can be used as an index into the jump table in a subsequent basic block. 2613 // This value may be smaller or larger than the target's pointer type, and 2614 // therefore require extension or truncating. 2615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2616 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2617 2618 unsigned JumpTableReg = 2619 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2620 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2621 JumpTableReg, SwitchOp); 2622 JT.Reg = JumpTableReg; 2623 2624 if (!JTH.FallthroughUnreachable) { 2625 // Emit the range check for the jump table, and branch to the default block 2626 // for the switch statement if the value being switched on exceeds the 2627 // largest case in the switch. 2628 SDValue CMP = DAG.getSetCC( 2629 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2630 Sub.getValueType()), 2631 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2632 2633 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2634 MVT::Other, CopyTo, CMP, 2635 DAG.getBasicBlock(JT.Default)); 2636 2637 // Avoid emitting unnecessary branches to the next block. 2638 if (JT.MBB != NextBlock(SwitchBB)) 2639 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2640 DAG.getBasicBlock(JT.MBB)); 2641 2642 DAG.setRoot(BrCond); 2643 } else { 2644 // Avoid emitting unnecessary branches to the next block. 2645 if (JT.MBB != NextBlock(SwitchBB)) 2646 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2647 DAG.getBasicBlock(JT.MBB))); 2648 else 2649 DAG.setRoot(CopyTo); 2650 } 2651 } 2652 2653 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2654 /// variable if there exists one. 2655 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2656 SDValue &Chain) { 2657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2658 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2659 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2660 MachineFunction &MF = DAG.getMachineFunction(); 2661 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2662 MachineSDNode *Node = 2663 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2664 if (Global) { 2665 MachinePointerInfo MPInfo(Global); 2666 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2667 MachineMemOperand::MODereferenceable; 2668 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2669 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2670 DAG.setNodeMemRefs(Node, {MemRef}); 2671 } 2672 if (PtrTy != PtrMemTy) 2673 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2674 return SDValue(Node, 0); 2675 } 2676 2677 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2678 /// tail spliced into a stack protector check success bb. 2679 /// 2680 /// For a high level explanation of how this fits into the stack protector 2681 /// generation see the comment on the declaration of class 2682 /// StackProtectorDescriptor. 2683 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2684 MachineBasicBlock *ParentBB) { 2685 2686 // First create the loads to the guard/stack slot for the comparison. 2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2688 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2689 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2690 2691 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2692 int FI = MFI.getStackProtectorIndex(); 2693 2694 SDValue Guard; 2695 SDLoc dl = getCurSDLoc(); 2696 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2697 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2698 Align Align = 2699 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2700 2701 // Generate code to load the content of the guard slot. 2702 SDValue GuardVal = DAG.getLoad( 2703 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2704 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2705 MachineMemOperand::MOVolatile); 2706 2707 if (TLI.useStackGuardXorFP()) 2708 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2709 2710 // Retrieve guard check function, nullptr if instrumentation is inlined. 2711 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2712 // The target provides a guard check function to validate the guard value. 2713 // Generate a call to that function with the content of the guard slot as 2714 // argument. 2715 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2716 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2717 2718 TargetLowering::ArgListTy Args; 2719 TargetLowering::ArgListEntry Entry; 2720 Entry.Node = GuardVal; 2721 Entry.Ty = FnTy->getParamType(0); 2722 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2723 Entry.IsInReg = true; 2724 Args.push_back(Entry); 2725 2726 TargetLowering::CallLoweringInfo CLI(DAG); 2727 CLI.setDebugLoc(getCurSDLoc()) 2728 .setChain(DAG.getEntryNode()) 2729 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2730 getValue(GuardCheckFn), std::move(Args)); 2731 2732 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2733 DAG.setRoot(Result.second); 2734 return; 2735 } 2736 2737 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2738 // Otherwise, emit a volatile load to retrieve the stack guard value. 2739 SDValue Chain = DAG.getEntryNode(); 2740 if (TLI.useLoadStackGuardNode()) { 2741 Guard = getLoadStackGuard(DAG, dl, Chain); 2742 } else { 2743 const Value *IRGuard = TLI.getSDagStackGuard(M); 2744 SDValue GuardPtr = getValue(IRGuard); 2745 2746 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2747 MachinePointerInfo(IRGuard, 0), Align, 2748 MachineMemOperand::MOVolatile); 2749 } 2750 2751 // Perform the comparison via a getsetcc. 2752 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2753 *DAG.getContext(), 2754 Guard.getValueType()), 2755 Guard, GuardVal, ISD::SETNE); 2756 2757 // If the guard/stackslot do not equal, branch to failure MBB. 2758 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2759 MVT::Other, GuardVal.getOperand(0), 2760 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2761 // Otherwise branch to success MBB. 2762 SDValue Br = DAG.getNode(ISD::BR, dl, 2763 MVT::Other, BrCond, 2764 DAG.getBasicBlock(SPD.getSuccessMBB())); 2765 2766 DAG.setRoot(Br); 2767 } 2768 2769 /// Codegen the failure basic block for a stack protector check. 2770 /// 2771 /// A failure stack protector machine basic block consists simply of a call to 2772 /// __stack_chk_fail(). 2773 /// 2774 /// For a high level explanation of how this fits into the stack protector 2775 /// generation see the comment on the declaration of class 2776 /// StackProtectorDescriptor. 2777 void 2778 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2780 TargetLowering::MakeLibCallOptions CallOptions; 2781 CallOptions.setDiscardResult(true); 2782 SDValue Chain = 2783 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2784 None, CallOptions, getCurSDLoc()).second; 2785 // On PS4/PS5, the "return address" must still be within the calling 2786 // function, even if it's at the very end, so emit an explicit TRAP here. 2787 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2788 if (TM.getTargetTriple().isPS()) 2789 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2790 // WebAssembly needs an unreachable instruction after a non-returning call, 2791 // because the function return type can be different from __stack_chk_fail's 2792 // return type (void). 2793 if (TM.getTargetTriple().isWasm()) 2794 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2795 2796 DAG.setRoot(Chain); 2797 } 2798 2799 /// visitBitTestHeader - This function emits necessary code to produce value 2800 /// suitable for "bit tests" 2801 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2802 MachineBasicBlock *SwitchBB) { 2803 SDLoc dl = getCurSDLoc(); 2804 2805 // Subtract the minimum value. 2806 SDValue SwitchOp = getValue(B.SValue); 2807 EVT VT = SwitchOp.getValueType(); 2808 SDValue RangeSub = 2809 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2810 2811 // Determine the type of the test operands. 2812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2813 bool UsePtrType = false; 2814 if (!TLI.isTypeLegal(VT)) { 2815 UsePtrType = true; 2816 } else { 2817 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2818 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2819 // Switch table case range are encoded into series of masks. 2820 // Just use pointer type, it's guaranteed to fit. 2821 UsePtrType = true; 2822 break; 2823 } 2824 } 2825 SDValue Sub = RangeSub; 2826 if (UsePtrType) { 2827 VT = TLI.getPointerTy(DAG.getDataLayout()); 2828 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2829 } 2830 2831 B.RegVT = VT.getSimpleVT(); 2832 B.Reg = FuncInfo.CreateReg(B.RegVT); 2833 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2834 2835 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2836 2837 if (!B.FallthroughUnreachable) 2838 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2839 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2840 SwitchBB->normalizeSuccProbs(); 2841 2842 SDValue Root = CopyTo; 2843 if (!B.FallthroughUnreachable) { 2844 // Conditional branch to the default block. 2845 SDValue RangeCmp = DAG.getSetCC(dl, 2846 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2847 RangeSub.getValueType()), 2848 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2849 ISD::SETUGT); 2850 2851 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2852 DAG.getBasicBlock(B.Default)); 2853 } 2854 2855 // Avoid emitting unnecessary branches to the next block. 2856 if (MBB != NextBlock(SwitchBB)) 2857 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2858 2859 DAG.setRoot(Root); 2860 } 2861 2862 /// visitBitTestCase - this function produces one "bit test" 2863 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2864 MachineBasicBlock* NextMBB, 2865 BranchProbability BranchProbToNext, 2866 unsigned Reg, 2867 BitTestCase &B, 2868 MachineBasicBlock *SwitchBB) { 2869 SDLoc dl = getCurSDLoc(); 2870 MVT VT = BB.RegVT; 2871 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2872 SDValue Cmp; 2873 unsigned PopCount = countPopulation(B.Mask); 2874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2875 if (PopCount == 1) { 2876 // Testing for a single bit; just compare the shift count with what it 2877 // would need to be to shift a 1 bit in that position. 2878 Cmp = DAG.getSetCC( 2879 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2880 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2881 ISD::SETEQ); 2882 } else if (PopCount == BB.Range) { 2883 // There is only one zero bit in the range, test for it directly. 2884 Cmp = DAG.getSetCC( 2885 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2886 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2887 ISD::SETNE); 2888 } else { 2889 // Make desired shift 2890 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2891 DAG.getConstant(1, dl, VT), ShiftOp); 2892 2893 // Emit bit tests and jumps 2894 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2895 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2896 Cmp = DAG.getSetCC( 2897 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2898 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2899 } 2900 2901 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2902 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2903 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2904 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2905 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2906 // one as they are relative probabilities (and thus work more like weights), 2907 // and hence we need to normalize them to let the sum of them become one. 2908 SwitchBB->normalizeSuccProbs(); 2909 2910 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2911 MVT::Other, getControlRoot(), 2912 Cmp, DAG.getBasicBlock(B.TargetBB)); 2913 2914 // Avoid emitting unnecessary branches to the next block. 2915 if (NextMBB != NextBlock(SwitchBB)) 2916 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2917 DAG.getBasicBlock(NextMBB)); 2918 2919 DAG.setRoot(BrAnd); 2920 } 2921 2922 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2923 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2924 2925 // Retrieve successors. Look through artificial IR level blocks like 2926 // catchswitch for successors. 2927 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2928 const BasicBlock *EHPadBB = I.getSuccessor(1); 2929 2930 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2931 // have to do anything here to lower funclet bundles. 2932 assert(!I.hasOperandBundlesOtherThan( 2933 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2934 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2935 LLVMContext::OB_cfguardtarget, 2936 LLVMContext::OB_clang_arc_attachedcall}) && 2937 "Cannot lower invokes with arbitrary operand bundles yet!"); 2938 2939 const Value *Callee(I.getCalledOperand()); 2940 const Function *Fn = dyn_cast<Function>(Callee); 2941 if (isa<InlineAsm>(Callee)) 2942 visitInlineAsm(I, EHPadBB); 2943 else if (Fn && Fn->isIntrinsic()) { 2944 switch (Fn->getIntrinsicID()) { 2945 default: 2946 llvm_unreachable("Cannot invoke this intrinsic"); 2947 case Intrinsic::donothing: 2948 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2949 case Intrinsic::seh_try_begin: 2950 case Intrinsic::seh_scope_begin: 2951 case Intrinsic::seh_try_end: 2952 case Intrinsic::seh_scope_end: 2953 break; 2954 case Intrinsic::experimental_patchpoint_void: 2955 case Intrinsic::experimental_patchpoint_i64: 2956 visitPatchpoint(I, EHPadBB); 2957 break; 2958 case Intrinsic::experimental_gc_statepoint: 2959 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2960 break; 2961 case Intrinsic::wasm_rethrow: { 2962 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2963 // special because it can be invoked, so we manually lower it to a DAG 2964 // node here. 2965 SmallVector<SDValue, 8> Ops; 2966 Ops.push_back(getRoot()); // inchain 2967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2968 Ops.push_back( 2969 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2970 TLI.getPointerTy(DAG.getDataLayout()))); 2971 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2972 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2973 break; 2974 } 2975 } 2976 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2977 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2978 // Eventually we will support lowering the @llvm.experimental.deoptimize 2979 // intrinsic, and right now there are no plans to support other intrinsics 2980 // with deopt state. 2981 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2982 } else { 2983 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2984 } 2985 2986 // If the value of the invoke is used outside of its defining block, make it 2987 // available as a virtual register. 2988 // We already took care of the exported value for the statepoint instruction 2989 // during call to the LowerStatepoint. 2990 if (!isa<GCStatepointInst>(I)) { 2991 CopyToExportRegsIfNeeded(&I); 2992 } 2993 2994 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2995 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2996 BranchProbability EHPadBBProb = 2997 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2998 : BranchProbability::getZero(); 2999 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3000 3001 // Update successor info. 3002 addSuccessorWithProb(InvokeMBB, Return); 3003 for (auto &UnwindDest : UnwindDests) { 3004 UnwindDest.first->setIsEHPad(); 3005 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3006 } 3007 InvokeMBB->normalizeSuccProbs(); 3008 3009 // Drop into normal successor. 3010 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3011 DAG.getBasicBlock(Return))); 3012 } 3013 3014 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3015 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3016 3017 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3018 // have to do anything here to lower funclet bundles. 3019 assert(!I.hasOperandBundlesOtherThan( 3020 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3021 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3022 3023 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3024 visitInlineAsm(I); 3025 CopyToExportRegsIfNeeded(&I); 3026 3027 // Retrieve successors. 3028 SmallPtrSet<BasicBlock *, 8> Dests; 3029 Dests.insert(I.getDefaultDest()); 3030 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3031 3032 // Update successor info. 3033 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3034 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3035 BasicBlock *Dest = I.getIndirectDest(i); 3036 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3037 Target->setIsInlineAsmBrIndirectTarget(); 3038 Target->setMachineBlockAddressTaken(); 3039 Target->setLabelMustBeEmitted(); 3040 // Don't add duplicate machine successors. 3041 if (Dests.insert(Dest).second) 3042 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3043 } 3044 CallBrMBB->normalizeSuccProbs(); 3045 3046 // Drop into default successor. 3047 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3048 MVT::Other, getControlRoot(), 3049 DAG.getBasicBlock(Return))); 3050 } 3051 3052 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3053 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3054 } 3055 3056 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3057 assert(FuncInfo.MBB->isEHPad() && 3058 "Call to landingpad not in landing pad!"); 3059 3060 // If there aren't registers to copy the values into (e.g., during SjLj 3061 // exceptions), then don't bother to create these DAG nodes. 3062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3063 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3064 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3065 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3066 return; 3067 3068 // If landingpad's return type is token type, we don't create DAG nodes 3069 // for its exception pointer and selector value. The extraction of exception 3070 // pointer or selector value from token type landingpads is not currently 3071 // supported. 3072 if (LP.getType()->isTokenTy()) 3073 return; 3074 3075 SmallVector<EVT, 2> ValueVTs; 3076 SDLoc dl = getCurSDLoc(); 3077 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3078 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3079 3080 // Get the two live-in registers as SDValues. The physregs have already been 3081 // copied into virtual registers. 3082 SDValue Ops[2]; 3083 if (FuncInfo.ExceptionPointerVirtReg) { 3084 Ops[0] = DAG.getZExtOrTrunc( 3085 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3086 FuncInfo.ExceptionPointerVirtReg, 3087 TLI.getPointerTy(DAG.getDataLayout())), 3088 dl, ValueVTs[0]); 3089 } else { 3090 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3091 } 3092 Ops[1] = DAG.getZExtOrTrunc( 3093 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3094 FuncInfo.ExceptionSelectorVirtReg, 3095 TLI.getPointerTy(DAG.getDataLayout())), 3096 dl, ValueVTs[1]); 3097 3098 // Merge into one. 3099 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3100 DAG.getVTList(ValueVTs), Ops); 3101 setValue(&LP, Res); 3102 } 3103 3104 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3105 MachineBasicBlock *Last) { 3106 // Update JTCases. 3107 for (JumpTableBlock &JTB : SL->JTCases) 3108 if (JTB.first.HeaderBB == First) 3109 JTB.first.HeaderBB = Last; 3110 3111 // Update BitTestCases. 3112 for (BitTestBlock &BTB : SL->BitTestCases) 3113 if (BTB.Parent == First) 3114 BTB.Parent = Last; 3115 } 3116 3117 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3118 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3119 3120 // Update machine-CFG edges with unique successors. 3121 SmallSet<BasicBlock*, 32> Done; 3122 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3123 BasicBlock *BB = I.getSuccessor(i); 3124 bool Inserted = Done.insert(BB).second; 3125 if (!Inserted) 3126 continue; 3127 3128 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3129 addSuccessorWithProb(IndirectBrMBB, Succ); 3130 } 3131 IndirectBrMBB->normalizeSuccProbs(); 3132 3133 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3134 MVT::Other, getControlRoot(), 3135 getValue(I.getAddress()))); 3136 } 3137 3138 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3139 if (!DAG.getTarget().Options.TrapUnreachable) 3140 return; 3141 3142 // We may be able to ignore unreachable behind a noreturn call. 3143 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3144 const BasicBlock &BB = *I.getParent(); 3145 if (&I != &BB.front()) { 3146 BasicBlock::const_iterator PredI = 3147 std::prev(BasicBlock::const_iterator(&I)); 3148 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3149 if (Call->doesNotReturn()) 3150 return; 3151 } 3152 } 3153 } 3154 3155 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3156 } 3157 3158 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3159 SDNodeFlags Flags; 3160 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3161 Flags.copyFMF(*FPOp); 3162 3163 SDValue Op = getValue(I.getOperand(0)); 3164 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3165 Op, Flags); 3166 setValue(&I, UnNodeValue); 3167 } 3168 3169 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3170 SDNodeFlags Flags; 3171 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3172 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3173 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3174 } 3175 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3176 Flags.setExact(ExactOp->isExact()); 3177 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3178 Flags.copyFMF(*FPOp); 3179 3180 SDValue Op1 = getValue(I.getOperand(0)); 3181 SDValue Op2 = getValue(I.getOperand(1)); 3182 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3183 Op1, Op2, Flags); 3184 setValue(&I, BinNodeValue); 3185 } 3186 3187 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3188 SDValue Op1 = getValue(I.getOperand(0)); 3189 SDValue Op2 = getValue(I.getOperand(1)); 3190 3191 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3192 Op1.getValueType(), DAG.getDataLayout()); 3193 3194 // Coerce the shift amount to the right type if we can. This exposes the 3195 // truncate or zext to optimization early. 3196 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3197 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3198 "Unexpected shift type"); 3199 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3200 } 3201 3202 bool nuw = false; 3203 bool nsw = false; 3204 bool exact = false; 3205 3206 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3207 3208 if (const OverflowingBinaryOperator *OFBinOp = 3209 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3210 nuw = OFBinOp->hasNoUnsignedWrap(); 3211 nsw = OFBinOp->hasNoSignedWrap(); 3212 } 3213 if (const PossiblyExactOperator *ExactOp = 3214 dyn_cast<const PossiblyExactOperator>(&I)) 3215 exact = ExactOp->isExact(); 3216 } 3217 SDNodeFlags Flags; 3218 Flags.setExact(exact); 3219 Flags.setNoSignedWrap(nsw); 3220 Flags.setNoUnsignedWrap(nuw); 3221 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3222 Flags); 3223 setValue(&I, Res); 3224 } 3225 3226 void SelectionDAGBuilder::visitSDiv(const User &I) { 3227 SDValue Op1 = getValue(I.getOperand(0)); 3228 SDValue Op2 = getValue(I.getOperand(1)); 3229 3230 SDNodeFlags Flags; 3231 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3232 cast<PossiblyExactOperator>(&I)->isExact()); 3233 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3234 Op2, Flags)); 3235 } 3236 3237 void SelectionDAGBuilder::visitICmp(const User &I) { 3238 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3239 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3240 predicate = IC->getPredicate(); 3241 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3242 predicate = ICmpInst::Predicate(IC->getPredicate()); 3243 SDValue Op1 = getValue(I.getOperand(0)); 3244 SDValue Op2 = getValue(I.getOperand(1)); 3245 ISD::CondCode Opcode = getICmpCondCode(predicate); 3246 3247 auto &TLI = DAG.getTargetLoweringInfo(); 3248 EVT MemVT = 3249 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3250 3251 // If a pointer's DAG type is larger than its memory type then the DAG values 3252 // are zero-extended. This breaks signed comparisons so truncate back to the 3253 // underlying type before doing the compare. 3254 if (Op1.getValueType() != MemVT) { 3255 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3256 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3257 } 3258 3259 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3260 I.getType()); 3261 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3262 } 3263 3264 void SelectionDAGBuilder::visitFCmp(const User &I) { 3265 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3266 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3267 predicate = FC->getPredicate(); 3268 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3269 predicate = FCmpInst::Predicate(FC->getPredicate()); 3270 SDValue Op1 = getValue(I.getOperand(0)); 3271 SDValue Op2 = getValue(I.getOperand(1)); 3272 3273 ISD::CondCode Condition = getFCmpCondCode(predicate); 3274 auto *FPMO = cast<FPMathOperator>(&I); 3275 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3276 Condition = getFCmpCodeWithoutNaN(Condition); 3277 3278 SDNodeFlags Flags; 3279 Flags.copyFMF(*FPMO); 3280 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3281 3282 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3283 I.getType()); 3284 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3285 } 3286 3287 // Check if the condition of the select has one use or two users that are both 3288 // selects with the same condition. 3289 static bool hasOnlySelectUsers(const Value *Cond) { 3290 return llvm::all_of(Cond->users(), [](const Value *V) { 3291 return isa<SelectInst>(V); 3292 }); 3293 } 3294 3295 void SelectionDAGBuilder::visitSelect(const User &I) { 3296 SmallVector<EVT, 4> ValueVTs; 3297 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3298 ValueVTs); 3299 unsigned NumValues = ValueVTs.size(); 3300 if (NumValues == 0) return; 3301 3302 SmallVector<SDValue, 4> Values(NumValues); 3303 SDValue Cond = getValue(I.getOperand(0)); 3304 SDValue LHSVal = getValue(I.getOperand(1)); 3305 SDValue RHSVal = getValue(I.getOperand(2)); 3306 SmallVector<SDValue, 1> BaseOps(1, Cond); 3307 ISD::NodeType OpCode = 3308 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3309 3310 bool IsUnaryAbs = false; 3311 bool Negate = false; 3312 3313 SDNodeFlags Flags; 3314 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3315 Flags.copyFMF(*FPOp); 3316 3317 // Min/max matching is only viable if all output VTs are the same. 3318 if (all_equal(ValueVTs)) { 3319 EVT VT = ValueVTs[0]; 3320 LLVMContext &Ctx = *DAG.getContext(); 3321 auto &TLI = DAG.getTargetLoweringInfo(); 3322 3323 // We care about the legality of the operation after it has been type 3324 // legalized. 3325 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3326 VT = TLI.getTypeToTransformTo(Ctx, VT); 3327 3328 // If the vselect is legal, assume we want to leave this as a vector setcc + 3329 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3330 // min/max is legal on the scalar type. 3331 bool UseScalarMinMax = VT.isVector() && 3332 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3333 3334 Value *LHS, *RHS; 3335 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3336 ISD::NodeType Opc = ISD::DELETED_NODE; 3337 switch (SPR.Flavor) { 3338 case SPF_UMAX: Opc = ISD::UMAX; break; 3339 case SPF_UMIN: Opc = ISD::UMIN; break; 3340 case SPF_SMAX: Opc = ISD::SMAX; break; 3341 case SPF_SMIN: Opc = ISD::SMIN; break; 3342 case SPF_FMINNUM: 3343 switch (SPR.NaNBehavior) { 3344 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3345 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3346 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3347 case SPNB_RETURNS_ANY: { 3348 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3349 Opc = ISD::FMINNUM; 3350 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3351 Opc = ISD::FMINIMUM; 3352 else if (UseScalarMinMax) 3353 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3354 ISD::FMINNUM : ISD::FMINIMUM; 3355 break; 3356 } 3357 } 3358 break; 3359 case SPF_FMAXNUM: 3360 switch (SPR.NaNBehavior) { 3361 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3362 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3363 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3364 case SPNB_RETURNS_ANY: 3365 3366 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3367 Opc = ISD::FMAXNUM; 3368 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3369 Opc = ISD::FMAXIMUM; 3370 else if (UseScalarMinMax) 3371 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3372 ISD::FMAXNUM : ISD::FMAXIMUM; 3373 break; 3374 } 3375 break; 3376 case SPF_NABS: 3377 Negate = true; 3378 [[fallthrough]]; 3379 case SPF_ABS: 3380 IsUnaryAbs = true; 3381 Opc = ISD::ABS; 3382 break; 3383 default: break; 3384 } 3385 3386 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3387 (TLI.isOperationLegalOrCustom(Opc, VT) || 3388 (UseScalarMinMax && 3389 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3390 // If the underlying comparison instruction is used by any other 3391 // instruction, the consumed instructions won't be destroyed, so it is 3392 // not profitable to convert to a min/max. 3393 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3394 OpCode = Opc; 3395 LHSVal = getValue(LHS); 3396 RHSVal = getValue(RHS); 3397 BaseOps.clear(); 3398 } 3399 3400 if (IsUnaryAbs) { 3401 OpCode = Opc; 3402 LHSVal = getValue(LHS); 3403 BaseOps.clear(); 3404 } 3405 } 3406 3407 if (IsUnaryAbs) { 3408 for (unsigned i = 0; i != NumValues; ++i) { 3409 SDLoc dl = getCurSDLoc(); 3410 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3411 Values[i] = 3412 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3413 if (Negate) 3414 Values[i] = DAG.getNegative(Values[i], dl, VT); 3415 } 3416 } else { 3417 for (unsigned i = 0; i != NumValues; ++i) { 3418 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3419 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3420 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3421 Values[i] = DAG.getNode( 3422 OpCode, getCurSDLoc(), 3423 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3424 } 3425 } 3426 3427 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3428 DAG.getVTList(ValueVTs), Values)); 3429 } 3430 3431 void SelectionDAGBuilder::visitTrunc(const User &I) { 3432 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3433 SDValue N = getValue(I.getOperand(0)); 3434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3435 I.getType()); 3436 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3437 } 3438 3439 void SelectionDAGBuilder::visitZExt(const User &I) { 3440 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3441 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3442 SDValue N = getValue(I.getOperand(0)); 3443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3444 I.getType()); 3445 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3446 } 3447 3448 void SelectionDAGBuilder::visitSExt(const User &I) { 3449 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3450 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3451 SDValue N = getValue(I.getOperand(0)); 3452 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3453 I.getType()); 3454 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3455 } 3456 3457 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3458 // FPTrunc is never a no-op cast, no need to check 3459 SDValue N = getValue(I.getOperand(0)); 3460 SDLoc dl = getCurSDLoc(); 3461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3462 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3463 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3464 DAG.getTargetConstant( 3465 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3466 } 3467 3468 void SelectionDAGBuilder::visitFPExt(const User &I) { 3469 // FPExt is never a no-op cast, no need to check 3470 SDValue N = getValue(I.getOperand(0)); 3471 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3472 I.getType()); 3473 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3474 } 3475 3476 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3477 // FPToUI is never a no-op cast, no need to check 3478 SDValue N = getValue(I.getOperand(0)); 3479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3480 I.getType()); 3481 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3482 } 3483 3484 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3485 // FPToSI is never a no-op cast, no need to check 3486 SDValue N = getValue(I.getOperand(0)); 3487 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3488 I.getType()); 3489 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3490 } 3491 3492 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3493 // UIToFP is never a no-op cast, no need to check 3494 SDValue N = getValue(I.getOperand(0)); 3495 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3496 I.getType()); 3497 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3498 } 3499 3500 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3501 // SIToFP is never a no-op cast, no need to check 3502 SDValue N = getValue(I.getOperand(0)); 3503 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3504 I.getType()); 3505 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3506 } 3507 3508 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3509 // What to do depends on the size of the integer and the size of the pointer. 3510 // We can either truncate, zero extend, or no-op, accordingly. 3511 SDValue N = getValue(I.getOperand(0)); 3512 auto &TLI = DAG.getTargetLoweringInfo(); 3513 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3514 I.getType()); 3515 EVT PtrMemVT = 3516 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3517 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3518 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3519 setValue(&I, N); 3520 } 3521 3522 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3523 // What to do depends on the size of the integer and the size of the pointer. 3524 // We can either truncate, zero extend, or no-op, accordingly. 3525 SDValue N = getValue(I.getOperand(0)); 3526 auto &TLI = DAG.getTargetLoweringInfo(); 3527 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3528 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3529 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3530 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3531 setValue(&I, N); 3532 } 3533 3534 void SelectionDAGBuilder::visitBitCast(const User &I) { 3535 SDValue N = getValue(I.getOperand(0)); 3536 SDLoc dl = getCurSDLoc(); 3537 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3538 I.getType()); 3539 3540 // BitCast assures us that source and destination are the same size so this is 3541 // either a BITCAST or a no-op. 3542 if (DestVT != N.getValueType()) 3543 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3544 DestVT, N)); // convert types. 3545 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3546 // might fold any kind of constant expression to an integer constant and that 3547 // is not what we are looking for. Only recognize a bitcast of a genuine 3548 // constant integer as an opaque constant. 3549 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3550 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3551 /*isOpaque*/true)); 3552 else 3553 setValue(&I, N); // noop cast. 3554 } 3555 3556 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3558 const Value *SV = I.getOperand(0); 3559 SDValue N = getValue(SV); 3560 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3561 3562 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3563 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3564 3565 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3566 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3567 3568 setValue(&I, N); 3569 } 3570 3571 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3573 SDValue InVec = getValue(I.getOperand(0)); 3574 SDValue InVal = getValue(I.getOperand(1)); 3575 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3576 TLI.getVectorIdxTy(DAG.getDataLayout())); 3577 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3578 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3579 InVec, InVal, InIdx)); 3580 } 3581 3582 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3584 SDValue InVec = getValue(I.getOperand(0)); 3585 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3586 TLI.getVectorIdxTy(DAG.getDataLayout())); 3587 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3588 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3589 InVec, InIdx)); 3590 } 3591 3592 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3593 SDValue Src1 = getValue(I.getOperand(0)); 3594 SDValue Src2 = getValue(I.getOperand(1)); 3595 ArrayRef<int> Mask; 3596 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3597 Mask = SVI->getShuffleMask(); 3598 else 3599 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3600 SDLoc DL = getCurSDLoc(); 3601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3602 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3603 EVT SrcVT = Src1.getValueType(); 3604 3605 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3606 VT.isScalableVector()) { 3607 // Canonical splat form of first element of first input vector. 3608 SDValue FirstElt = 3609 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3610 DAG.getVectorIdxConstant(0, DL)); 3611 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3612 return; 3613 } 3614 3615 // For now, we only handle splats for scalable vectors. 3616 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3617 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3618 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3619 3620 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3621 unsigned MaskNumElts = Mask.size(); 3622 3623 if (SrcNumElts == MaskNumElts) { 3624 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3625 return; 3626 } 3627 3628 // Normalize the shuffle vector since mask and vector length don't match. 3629 if (SrcNumElts < MaskNumElts) { 3630 // Mask is longer than the source vectors. We can use concatenate vector to 3631 // make the mask and vectors lengths match. 3632 3633 if (MaskNumElts % SrcNumElts == 0) { 3634 // Mask length is a multiple of the source vector length. 3635 // Check if the shuffle is some kind of concatenation of the input 3636 // vectors. 3637 unsigned NumConcat = MaskNumElts / SrcNumElts; 3638 bool IsConcat = true; 3639 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3640 for (unsigned i = 0; i != MaskNumElts; ++i) { 3641 int Idx = Mask[i]; 3642 if (Idx < 0) 3643 continue; 3644 // Ensure the indices in each SrcVT sized piece are sequential and that 3645 // the same source is used for the whole piece. 3646 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3647 (ConcatSrcs[i / SrcNumElts] >= 0 && 3648 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3649 IsConcat = false; 3650 break; 3651 } 3652 // Remember which source this index came from. 3653 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3654 } 3655 3656 // The shuffle is concatenating multiple vectors together. Just emit 3657 // a CONCAT_VECTORS operation. 3658 if (IsConcat) { 3659 SmallVector<SDValue, 8> ConcatOps; 3660 for (auto Src : ConcatSrcs) { 3661 if (Src < 0) 3662 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3663 else if (Src == 0) 3664 ConcatOps.push_back(Src1); 3665 else 3666 ConcatOps.push_back(Src2); 3667 } 3668 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3669 return; 3670 } 3671 } 3672 3673 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3674 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3675 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3676 PaddedMaskNumElts); 3677 3678 // Pad both vectors with undefs to make them the same length as the mask. 3679 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3680 3681 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3682 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3683 MOps1[0] = Src1; 3684 MOps2[0] = Src2; 3685 3686 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3687 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3688 3689 // Readjust mask for new input vector length. 3690 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3691 for (unsigned i = 0; i != MaskNumElts; ++i) { 3692 int Idx = Mask[i]; 3693 if (Idx >= (int)SrcNumElts) 3694 Idx -= SrcNumElts - PaddedMaskNumElts; 3695 MappedOps[i] = Idx; 3696 } 3697 3698 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3699 3700 // If the concatenated vector was padded, extract a subvector with the 3701 // correct number of elements. 3702 if (MaskNumElts != PaddedMaskNumElts) 3703 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3704 DAG.getVectorIdxConstant(0, DL)); 3705 3706 setValue(&I, Result); 3707 return; 3708 } 3709 3710 if (SrcNumElts > MaskNumElts) { 3711 // Analyze the access pattern of the vector to see if we can extract 3712 // two subvectors and do the shuffle. 3713 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3714 bool CanExtract = true; 3715 for (int Idx : Mask) { 3716 unsigned Input = 0; 3717 if (Idx < 0) 3718 continue; 3719 3720 if (Idx >= (int)SrcNumElts) { 3721 Input = 1; 3722 Idx -= SrcNumElts; 3723 } 3724 3725 // If all the indices come from the same MaskNumElts sized portion of 3726 // the sources we can use extract. Also make sure the extract wouldn't 3727 // extract past the end of the source. 3728 int NewStartIdx = alignDown(Idx, MaskNumElts); 3729 if (NewStartIdx + MaskNumElts > SrcNumElts || 3730 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3731 CanExtract = false; 3732 // Make sure we always update StartIdx as we use it to track if all 3733 // elements are undef. 3734 StartIdx[Input] = NewStartIdx; 3735 } 3736 3737 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3738 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3739 return; 3740 } 3741 if (CanExtract) { 3742 // Extract appropriate subvector and generate a vector shuffle 3743 for (unsigned Input = 0; Input < 2; ++Input) { 3744 SDValue &Src = Input == 0 ? Src1 : Src2; 3745 if (StartIdx[Input] < 0) 3746 Src = DAG.getUNDEF(VT); 3747 else { 3748 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3749 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3750 } 3751 } 3752 3753 // Calculate new mask. 3754 SmallVector<int, 8> MappedOps(Mask); 3755 for (int &Idx : MappedOps) { 3756 if (Idx >= (int)SrcNumElts) 3757 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3758 else if (Idx >= 0) 3759 Idx -= StartIdx[0]; 3760 } 3761 3762 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3763 return; 3764 } 3765 } 3766 3767 // We can't use either concat vectors or extract subvectors so fall back to 3768 // replacing the shuffle with extract and build vector. 3769 // to insert and build vector. 3770 EVT EltVT = VT.getVectorElementType(); 3771 SmallVector<SDValue,8> Ops; 3772 for (int Idx : Mask) { 3773 SDValue Res; 3774 3775 if (Idx < 0) { 3776 Res = DAG.getUNDEF(EltVT); 3777 } else { 3778 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3779 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3780 3781 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3782 DAG.getVectorIdxConstant(Idx, DL)); 3783 } 3784 3785 Ops.push_back(Res); 3786 } 3787 3788 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3789 } 3790 3791 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3792 ArrayRef<unsigned> Indices = I.getIndices(); 3793 const Value *Op0 = I.getOperand(0); 3794 const Value *Op1 = I.getOperand(1); 3795 Type *AggTy = I.getType(); 3796 Type *ValTy = Op1->getType(); 3797 bool IntoUndef = isa<UndefValue>(Op0); 3798 bool FromUndef = isa<UndefValue>(Op1); 3799 3800 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3801 3802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3803 SmallVector<EVT, 4> AggValueVTs; 3804 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3805 SmallVector<EVT, 4> ValValueVTs; 3806 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3807 3808 unsigned NumAggValues = AggValueVTs.size(); 3809 unsigned NumValValues = ValValueVTs.size(); 3810 SmallVector<SDValue, 4> Values(NumAggValues); 3811 3812 // Ignore an insertvalue that produces an empty object 3813 if (!NumAggValues) { 3814 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3815 return; 3816 } 3817 3818 SDValue Agg = getValue(Op0); 3819 unsigned i = 0; 3820 // Copy the beginning value(s) from the original aggregate. 3821 for (; i != LinearIndex; ++i) 3822 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3823 SDValue(Agg.getNode(), Agg.getResNo() + i); 3824 // Copy values from the inserted value(s). 3825 if (NumValValues) { 3826 SDValue Val = getValue(Op1); 3827 for (; i != LinearIndex + NumValValues; ++i) 3828 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3829 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3830 } 3831 // Copy remaining value(s) from the original aggregate. 3832 for (; i != NumAggValues; ++i) 3833 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3834 SDValue(Agg.getNode(), Agg.getResNo() + i); 3835 3836 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3837 DAG.getVTList(AggValueVTs), Values)); 3838 } 3839 3840 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3841 ArrayRef<unsigned> Indices = I.getIndices(); 3842 const Value *Op0 = I.getOperand(0); 3843 Type *AggTy = Op0->getType(); 3844 Type *ValTy = I.getType(); 3845 bool OutOfUndef = isa<UndefValue>(Op0); 3846 3847 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3848 3849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3850 SmallVector<EVT, 4> ValValueVTs; 3851 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3852 3853 unsigned NumValValues = ValValueVTs.size(); 3854 3855 // Ignore a extractvalue that produces an empty object 3856 if (!NumValValues) { 3857 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3858 return; 3859 } 3860 3861 SmallVector<SDValue, 4> Values(NumValValues); 3862 3863 SDValue Agg = getValue(Op0); 3864 // Copy out the selected value(s). 3865 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3866 Values[i - LinearIndex] = 3867 OutOfUndef ? 3868 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3869 SDValue(Agg.getNode(), Agg.getResNo() + i); 3870 3871 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3872 DAG.getVTList(ValValueVTs), Values)); 3873 } 3874 3875 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3876 Value *Op0 = I.getOperand(0); 3877 // Note that the pointer operand may be a vector of pointers. Take the scalar 3878 // element which holds a pointer. 3879 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3880 SDValue N = getValue(Op0); 3881 SDLoc dl = getCurSDLoc(); 3882 auto &TLI = DAG.getTargetLoweringInfo(); 3883 3884 // Normalize Vector GEP - all scalar operands should be converted to the 3885 // splat vector. 3886 bool IsVectorGEP = I.getType()->isVectorTy(); 3887 ElementCount VectorElementCount = 3888 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3889 : ElementCount::getFixed(0); 3890 3891 if (IsVectorGEP && !N.getValueType().isVector()) { 3892 LLVMContext &Context = *DAG.getContext(); 3893 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3894 N = DAG.getSplat(VT, dl, N); 3895 } 3896 3897 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3898 GTI != E; ++GTI) { 3899 const Value *Idx = GTI.getOperand(); 3900 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3901 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3902 if (Field) { 3903 // N = N + Offset 3904 uint64_t Offset = 3905 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3906 3907 // In an inbounds GEP with an offset that is nonnegative even when 3908 // interpreted as signed, assume there is no unsigned overflow. 3909 SDNodeFlags Flags; 3910 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3911 Flags.setNoUnsignedWrap(true); 3912 3913 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3914 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3915 } 3916 } else { 3917 // IdxSize is the width of the arithmetic according to IR semantics. 3918 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3919 // (and fix up the result later). 3920 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3921 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3922 TypeSize ElementSize = 3923 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3924 // We intentionally mask away the high bits here; ElementSize may not 3925 // fit in IdxTy. 3926 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3927 bool ElementScalable = ElementSize.isScalable(); 3928 3929 // If this is a scalar constant or a splat vector of constants, 3930 // handle it quickly. 3931 const auto *C = dyn_cast<Constant>(Idx); 3932 if (C && isa<VectorType>(C->getType())) 3933 C = C->getSplatValue(); 3934 3935 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3936 if (CI && CI->isZero()) 3937 continue; 3938 if (CI && !ElementScalable) { 3939 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3940 LLVMContext &Context = *DAG.getContext(); 3941 SDValue OffsVal; 3942 if (IsVectorGEP) 3943 OffsVal = DAG.getConstant( 3944 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3945 else 3946 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3947 3948 // In an inbounds GEP with an offset that is nonnegative even when 3949 // interpreted as signed, assume there is no unsigned overflow. 3950 SDNodeFlags Flags; 3951 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3952 Flags.setNoUnsignedWrap(true); 3953 3954 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3955 3956 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3957 continue; 3958 } 3959 3960 // N = N + Idx * ElementMul; 3961 SDValue IdxN = getValue(Idx); 3962 3963 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3964 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3965 VectorElementCount); 3966 IdxN = DAG.getSplat(VT, dl, IdxN); 3967 } 3968 3969 // If the index is smaller or larger than intptr_t, truncate or extend 3970 // it. 3971 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3972 3973 if (ElementScalable) { 3974 EVT VScaleTy = N.getValueType().getScalarType(); 3975 SDValue VScale = DAG.getNode( 3976 ISD::VSCALE, dl, VScaleTy, 3977 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3978 if (IsVectorGEP) 3979 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3980 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3981 } else { 3982 // If this is a multiply by a power of two, turn it into a shl 3983 // immediately. This is a very common case. 3984 if (ElementMul != 1) { 3985 if (ElementMul.isPowerOf2()) { 3986 unsigned Amt = ElementMul.logBase2(); 3987 IdxN = DAG.getNode(ISD::SHL, dl, 3988 N.getValueType(), IdxN, 3989 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3990 } else { 3991 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3992 IdxN.getValueType()); 3993 IdxN = DAG.getNode(ISD::MUL, dl, 3994 N.getValueType(), IdxN, Scale); 3995 } 3996 } 3997 } 3998 3999 N = DAG.getNode(ISD::ADD, dl, 4000 N.getValueType(), N, IdxN); 4001 } 4002 } 4003 4004 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4005 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4006 if (IsVectorGEP) { 4007 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4008 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4009 } 4010 4011 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4012 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4013 4014 setValue(&I, N); 4015 } 4016 4017 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4018 // If this is a fixed sized alloca in the entry block of the function, 4019 // allocate it statically on the stack. 4020 if (FuncInfo.StaticAllocaMap.count(&I)) 4021 return; // getValue will auto-populate this. 4022 4023 SDLoc dl = getCurSDLoc(); 4024 Type *Ty = I.getAllocatedType(); 4025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4026 auto &DL = DAG.getDataLayout(); 4027 TypeSize TySize = DL.getTypeAllocSize(Ty); 4028 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4029 4030 SDValue AllocSize = getValue(I.getArraySize()); 4031 4032 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4033 if (AllocSize.getValueType() != IntPtr) 4034 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4035 4036 if (TySize.isScalable()) 4037 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4038 DAG.getVScale(dl, IntPtr, 4039 APInt(IntPtr.getScalarSizeInBits(), 4040 TySize.getKnownMinValue()))); 4041 else 4042 AllocSize = 4043 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4044 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4045 4046 // Handle alignment. If the requested alignment is less than or equal to 4047 // the stack alignment, ignore it. If the size is greater than or equal to 4048 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4049 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4050 if (*Alignment <= StackAlign) 4051 Alignment = None; 4052 4053 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4054 // Round the size of the allocation up to the stack alignment size 4055 // by add SA-1 to the size. This doesn't overflow because we're computing 4056 // an address inside an alloca. 4057 SDNodeFlags Flags; 4058 Flags.setNoUnsignedWrap(true); 4059 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4060 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4061 4062 // Mask out the low bits for alignment purposes. 4063 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4064 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4065 4066 SDValue Ops[] = { 4067 getRoot(), AllocSize, 4068 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4069 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4070 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4071 setValue(&I, DSA); 4072 DAG.setRoot(DSA.getValue(1)); 4073 4074 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4075 } 4076 4077 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4078 if (I.isAtomic()) 4079 return visitAtomicLoad(I); 4080 4081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4082 const Value *SV = I.getOperand(0); 4083 if (TLI.supportSwiftError()) { 4084 // Swifterror values can come from either a function parameter with 4085 // swifterror attribute or an alloca with swifterror attribute. 4086 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4087 if (Arg->hasSwiftErrorAttr()) 4088 return visitLoadFromSwiftError(I); 4089 } 4090 4091 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4092 if (Alloca->isSwiftError()) 4093 return visitLoadFromSwiftError(I); 4094 } 4095 } 4096 4097 SDValue Ptr = getValue(SV); 4098 4099 Type *Ty = I.getType(); 4100 SmallVector<EVT, 4> ValueVTs, MemVTs; 4101 SmallVector<uint64_t, 4> Offsets; 4102 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4103 unsigned NumValues = ValueVTs.size(); 4104 if (NumValues == 0) 4105 return; 4106 4107 Align Alignment = I.getAlign(); 4108 AAMDNodes AAInfo = I.getAAMetadata(); 4109 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4110 bool isVolatile = I.isVolatile(); 4111 MachineMemOperand::Flags MMOFlags = 4112 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4113 4114 SDValue Root; 4115 bool ConstantMemory = false; 4116 if (isVolatile) 4117 // Serialize volatile loads with other side effects. 4118 Root = getRoot(); 4119 else if (NumValues > MaxParallelChains) 4120 Root = getMemoryRoot(); 4121 else if (AA && 4122 AA->pointsToConstantMemory(MemoryLocation( 4123 SV, 4124 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4125 AAInfo))) { 4126 // Do not serialize (non-volatile) loads of constant memory with anything. 4127 Root = DAG.getEntryNode(); 4128 ConstantMemory = true; 4129 MMOFlags |= MachineMemOperand::MOInvariant; 4130 } else { 4131 // Do not serialize non-volatile loads against each other. 4132 Root = DAG.getRoot(); 4133 } 4134 4135 if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(), 4136 &I, AC, nullptr, LibInfo)) 4137 MMOFlags |= MachineMemOperand::MODereferenceable; 4138 4139 SDLoc dl = getCurSDLoc(); 4140 4141 if (isVolatile) 4142 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4143 4144 // An aggregate load cannot wrap around the address space, so offsets to its 4145 // parts don't wrap either. 4146 SDNodeFlags Flags; 4147 Flags.setNoUnsignedWrap(true); 4148 4149 SmallVector<SDValue, 4> Values(NumValues); 4150 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4151 EVT PtrVT = Ptr.getValueType(); 4152 4153 unsigned ChainI = 0; 4154 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4155 // Serializing loads here may result in excessive register pressure, and 4156 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4157 // could recover a bit by hoisting nodes upward in the chain by recognizing 4158 // they are side-effect free or do not alias. The optimizer should really 4159 // avoid this case by converting large object/array copies to llvm.memcpy 4160 // (MaxParallelChains should always remain as failsafe). 4161 if (ChainI == MaxParallelChains) { 4162 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4163 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4164 makeArrayRef(Chains.data(), ChainI)); 4165 Root = Chain; 4166 ChainI = 0; 4167 } 4168 SDValue A = DAG.getNode(ISD::ADD, dl, 4169 PtrVT, Ptr, 4170 DAG.getConstant(Offsets[i], dl, PtrVT), 4171 Flags); 4172 4173 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4174 MachinePointerInfo(SV, Offsets[i]), Alignment, 4175 MMOFlags, AAInfo, Ranges); 4176 Chains[ChainI] = L.getValue(1); 4177 4178 if (MemVTs[i] != ValueVTs[i]) 4179 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4180 4181 Values[i] = L; 4182 } 4183 4184 if (!ConstantMemory) { 4185 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4186 makeArrayRef(Chains.data(), ChainI)); 4187 if (isVolatile) 4188 DAG.setRoot(Chain); 4189 else 4190 PendingLoads.push_back(Chain); 4191 } 4192 4193 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4194 DAG.getVTList(ValueVTs), Values)); 4195 } 4196 4197 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4198 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4199 "call visitStoreToSwiftError when backend supports swifterror"); 4200 4201 SmallVector<EVT, 4> ValueVTs; 4202 SmallVector<uint64_t, 4> Offsets; 4203 const Value *SrcV = I.getOperand(0); 4204 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4205 SrcV->getType(), ValueVTs, &Offsets); 4206 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4207 "expect a single EVT for swifterror"); 4208 4209 SDValue Src = getValue(SrcV); 4210 // Create a virtual register, then update the virtual register. 4211 Register VReg = 4212 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4213 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4214 // Chain can be getRoot or getControlRoot. 4215 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4216 SDValue(Src.getNode(), Src.getResNo())); 4217 DAG.setRoot(CopyNode); 4218 } 4219 4220 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4221 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4222 "call visitLoadFromSwiftError when backend supports swifterror"); 4223 4224 assert(!I.isVolatile() && 4225 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4226 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4227 "Support volatile, non temporal, invariant for load_from_swift_error"); 4228 4229 const Value *SV = I.getOperand(0); 4230 Type *Ty = I.getType(); 4231 assert( 4232 (!AA || 4233 !AA->pointsToConstantMemory(MemoryLocation( 4234 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4235 I.getAAMetadata()))) && 4236 "load_from_swift_error should not be constant memory"); 4237 4238 SmallVector<EVT, 4> ValueVTs; 4239 SmallVector<uint64_t, 4> Offsets; 4240 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4241 ValueVTs, &Offsets); 4242 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4243 "expect a single EVT for swifterror"); 4244 4245 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4246 SDValue L = DAG.getCopyFromReg( 4247 getRoot(), getCurSDLoc(), 4248 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4249 4250 setValue(&I, L); 4251 } 4252 4253 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4254 if (I.isAtomic()) 4255 return visitAtomicStore(I); 4256 4257 const Value *SrcV = I.getOperand(0); 4258 const Value *PtrV = I.getOperand(1); 4259 4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4261 if (TLI.supportSwiftError()) { 4262 // Swifterror values can come from either a function parameter with 4263 // swifterror attribute or an alloca with swifterror attribute. 4264 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4265 if (Arg->hasSwiftErrorAttr()) 4266 return visitStoreToSwiftError(I); 4267 } 4268 4269 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4270 if (Alloca->isSwiftError()) 4271 return visitStoreToSwiftError(I); 4272 } 4273 } 4274 4275 SmallVector<EVT, 4> ValueVTs, MemVTs; 4276 SmallVector<uint64_t, 4> Offsets; 4277 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4278 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4279 unsigned NumValues = ValueVTs.size(); 4280 if (NumValues == 0) 4281 return; 4282 4283 // Get the lowered operands. Note that we do this after 4284 // checking if NumResults is zero, because with zero results 4285 // the operands won't have values in the map. 4286 SDValue Src = getValue(SrcV); 4287 SDValue Ptr = getValue(PtrV); 4288 4289 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4290 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4291 SDLoc dl = getCurSDLoc(); 4292 Align Alignment = I.getAlign(); 4293 AAMDNodes AAInfo = I.getAAMetadata(); 4294 4295 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4296 4297 // An aggregate load cannot wrap around the address space, so offsets to its 4298 // parts don't wrap either. 4299 SDNodeFlags Flags; 4300 Flags.setNoUnsignedWrap(true); 4301 4302 unsigned ChainI = 0; 4303 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4304 // See visitLoad comments. 4305 if (ChainI == MaxParallelChains) { 4306 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4307 makeArrayRef(Chains.data(), ChainI)); 4308 Root = Chain; 4309 ChainI = 0; 4310 } 4311 SDValue Add = 4312 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4313 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4314 if (MemVTs[i] != ValueVTs[i]) 4315 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4316 SDValue St = 4317 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4318 Alignment, MMOFlags, AAInfo); 4319 Chains[ChainI] = St; 4320 } 4321 4322 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4323 makeArrayRef(Chains.data(), ChainI)); 4324 setValue(&I, StoreNode); 4325 DAG.setRoot(StoreNode); 4326 } 4327 4328 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4329 bool IsCompressing) { 4330 SDLoc sdl = getCurSDLoc(); 4331 4332 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4333 MaybeAlign &Alignment) { 4334 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4335 Src0 = I.getArgOperand(0); 4336 Ptr = I.getArgOperand(1); 4337 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4338 Mask = I.getArgOperand(3); 4339 }; 4340 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4341 MaybeAlign &Alignment) { 4342 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4343 Src0 = I.getArgOperand(0); 4344 Ptr = I.getArgOperand(1); 4345 Mask = I.getArgOperand(2); 4346 Alignment = None; 4347 }; 4348 4349 Value *PtrOperand, *MaskOperand, *Src0Operand; 4350 MaybeAlign Alignment; 4351 if (IsCompressing) 4352 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4353 else 4354 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4355 4356 SDValue Ptr = getValue(PtrOperand); 4357 SDValue Src0 = getValue(Src0Operand); 4358 SDValue Mask = getValue(MaskOperand); 4359 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4360 4361 EVT VT = Src0.getValueType(); 4362 if (!Alignment) 4363 Alignment = DAG.getEVTAlign(VT); 4364 4365 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4366 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4367 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4368 SDValue StoreNode = 4369 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4370 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4371 DAG.setRoot(StoreNode); 4372 setValue(&I, StoreNode); 4373 } 4374 4375 // Get a uniform base for the Gather/Scatter intrinsic. 4376 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4377 // We try to represent it as a base pointer + vector of indices. 4378 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4379 // The first operand of the GEP may be a single pointer or a vector of pointers 4380 // Example: 4381 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4382 // or 4383 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4384 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4385 // 4386 // When the first GEP operand is a single pointer - it is the uniform base we 4387 // are looking for. If first operand of the GEP is a splat vector - we 4388 // extract the splat value and use it as a uniform base. 4389 // In all other cases the function returns 'false'. 4390 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4391 ISD::MemIndexType &IndexType, SDValue &Scale, 4392 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4393 uint64_t ElemSize) { 4394 SelectionDAG& DAG = SDB->DAG; 4395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4396 const DataLayout &DL = DAG.getDataLayout(); 4397 4398 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4399 4400 // Handle splat constant pointer. 4401 if (auto *C = dyn_cast<Constant>(Ptr)) { 4402 C = C->getSplatValue(); 4403 if (!C) 4404 return false; 4405 4406 Base = SDB->getValue(C); 4407 4408 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4409 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4410 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4411 IndexType = ISD::SIGNED_SCALED; 4412 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4413 return true; 4414 } 4415 4416 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4417 if (!GEP || GEP->getParent() != CurBB) 4418 return false; 4419 4420 if (GEP->getNumOperands() != 2) 4421 return false; 4422 4423 const Value *BasePtr = GEP->getPointerOperand(); 4424 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4425 4426 // Make sure the base is scalar and the index is a vector. 4427 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4428 return false; 4429 4430 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4431 4432 // Target may not support the required addressing mode. 4433 if (ScaleVal != 1 && 4434 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4435 return false; 4436 4437 Base = SDB->getValue(BasePtr); 4438 Index = SDB->getValue(IndexVal); 4439 IndexType = ISD::SIGNED_SCALED; 4440 4441 Scale = 4442 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4443 return true; 4444 } 4445 4446 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4447 SDLoc sdl = getCurSDLoc(); 4448 4449 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4450 const Value *Ptr = I.getArgOperand(1); 4451 SDValue Src0 = getValue(I.getArgOperand(0)); 4452 SDValue Mask = getValue(I.getArgOperand(3)); 4453 EVT VT = Src0.getValueType(); 4454 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4455 ->getMaybeAlignValue() 4456 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4458 4459 SDValue Base; 4460 SDValue Index; 4461 ISD::MemIndexType IndexType; 4462 SDValue Scale; 4463 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4464 I.getParent(), VT.getScalarStoreSize()); 4465 4466 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4467 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4468 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4469 // TODO: Make MachineMemOperands aware of scalable 4470 // vectors. 4471 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4472 if (!UniformBase) { 4473 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4474 Index = getValue(Ptr); 4475 IndexType = ISD::SIGNED_SCALED; 4476 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4477 } 4478 4479 EVT IdxVT = Index.getValueType(); 4480 EVT EltTy = IdxVT.getVectorElementType(); 4481 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4482 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4483 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4484 } 4485 4486 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4487 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4488 Ops, MMO, IndexType, false); 4489 DAG.setRoot(Scatter); 4490 setValue(&I, Scatter); 4491 } 4492 4493 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4494 SDLoc sdl = getCurSDLoc(); 4495 4496 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4497 MaybeAlign &Alignment) { 4498 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4499 Ptr = I.getArgOperand(0); 4500 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4501 Mask = I.getArgOperand(2); 4502 Src0 = I.getArgOperand(3); 4503 }; 4504 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4505 MaybeAlign &Alignment) { 4506 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4507 Ptr = I.getArgOperand(0); 4508 Alignment = None; 4509 Mask = I.getArgOperand(1); 4510 Src0 = I.getArgOperand(2); 4511 }; 4512 4513 Value *PtrOperand, *MaskOperand, *Src0Operand; 4514 MaybeAlign Alignment; 4515 if (IsExpanding) 4516 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4517 else 4518 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4519 4520 SDValue Ptr = getValue(PtrOperand); 4521 SDValue Src0 = getValue(Src0Operand); 4522 SDValue Mask = getValue(MaskOperand); 4523 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4524 4525 EVT VT = Src0.getValueType(); 4526 if (!Alignment) 4527 Alignment = DAG.getEVTAlign(VT); 4528 4529 AAMDNodes AAInfo = I.getAAMetadata(); 4530 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4531 4532 // Do not serialize masked loads of constant memory with anything. 4533 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4534 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4535 4536 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4537 4538 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4539 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4540 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4541 4542 SDValue Load = 4543 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4544 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4545 if (AddToChain) 4546 PendingLoads.push_back(Load.getValue(1)); 4547 setValue(&I, Load); 4548 } 4549 4550 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4551 SDLoc sdl = getCurSDLoc(); 4552 4553 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4554 const Value *Ptr = I.getArgOperand(0); 4555 SDValue Src0 = getValue(I.getArgOperand(3)); 4556 SDValue Mask = getValue(I.getArgOperand(2)); 4557 4558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4559 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4560 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4561 ->getMaybeAlignValue() 4562 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4563 4564 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4565 4566 SDValue Root = DAG.getRoot(); 4567 SDValue Base; 4568 SDValue Index; 4569 ISD::MemIndexType IndexType; 4570 SDValue Scale; 4571 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4572 I.getParent(), VT.getScalarStoreSize()); 4573 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4574 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4575 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4576 // TODO: Make MachineMemOperands aware of scalable 4577 // vectors. 4578 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4579 4580 if (!UniformBase) { 4581 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4582 Index = getValue(Ptr); 4583 IndexType = ISD::SIGNED_SCALED; 4584 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4585 } 4586 4587 EVT IdxVT = Index.getValueType(); 4588 EVT EltTy = IdxVT.getVectorElementType(); 4589 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4590 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4591 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4592 } 4593 4594 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4595 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4596 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4597 4598 PendingLoads.push_back(Gather.getValue(1)); 4599 setValue(&I, Gather); 4600 } 4601 4602 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4603 SDLoc dl = getCurSDLoc(); 4604 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4605 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4606 SyncScope::ID SSID = I.getSyncScopeID(); 4607 4608 SDValue InChain = getRoot(); 4609 4610 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4611 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4612 4613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4614 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4615 4616 MachineFunction &MF = DAG.getMachineFunction(); 4617 MachineMemOperand *MMO = MF.getMachineMemOperand( 4618 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4619 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4620 FailureOrdering); 4621 4622 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4623 dl, MemVT, VTs, InChain, 4624 getValue(I.getPointerOperand()), 4625 getValue(I.getCompareOperand()), 4626 getValue(I.getNewValOperand()), MMO); 4627 4628 SDValue OutChain = L.getValue(2); 4629 4630 setValue(&I, L); 4631 DAG.setRoot(OutChain); 4632 } 4633 4634 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4635 SDLoc dl = getCurSDLoc(); 4636 ISD::NodeType NT; 4637 switch (I.getOperation()) { 4638 default: llvm_unreachable("Unknown atomicrmw operation"); 4639 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4640 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4641 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4642 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4643 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4644 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4645 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4646 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4647 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4648 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4649 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4650 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4651 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4652 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4653 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4654 } 4655 AtomicOrdering Ordering = I.getOrdering(); 4656 SyncScope::ID SSID = I.getSyncScopeID(); 4657 4658 SDValue InChain = getRoot(); 4659 4660 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4662 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4663 4664 MachineFunction &MF = DAG.getMachineFunction(); 4665 MachineMemOperand *MMO = MF.getMachineMemOperand( 4666 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4667 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4668 4669 SDValue L = 4670 DAG.getAtomic(NT, dl, MemVT, InChain, 4671 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4672 MMO); 4673 4674 SDValue OutChain = L.getValue(1); 4675 4676 setValue(&I, L); 4677 DAG.setRoot(OutChain); 4678 } 4679 4680 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4681 SDLoc dl = getCurSDLoc(); 4682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4683 SDValue Ops[3]; 4684 Ops[0] = getRoot(); 4685 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4686 TLI.getFenceOperandTy(DAG.getDataLayout())); 4687 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4688 TLI.getFenceOperandTy(DAG.getDataLayout())); 4689 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4690 setValue(&I, N); 4691 DAG.setRoot(N); 4692 } 4693 4694 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4695 SDLoc dl = getCurSDLoc(); 4696 AtomicOrdering Order = I.getOrdering(); 4697 SyncScope::ID SSID = I.getSyncScopeID(); 4698 4699 SDValue InChain = getRoot(); 4700 4701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4702 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4703 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4704 4705 if (!TLI.supportsUnalignedAtomics() && 4706 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4707 report_fatal_error("Cannot generate unaligned atomic load"); 4708 4709 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4710 4711 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4712 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4713 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4714 4715 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4716 4717 SDValue Ptr = getValue(I.getPointerOperand()); 4718 4719 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4720 // TODO: Once this is better exercised by tests, it should be merged with 4721 // the normal path for loads to prevent future divergence. 4722 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4723 if (MemVT != VT) 4724 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4725 4726 setValue(&I, L); 4727 SDValue OutChain = L.getValue(1); 4728 if (!I.isUnordered()) 4729 DAG.setRoot(OutChain); 4730 else 4731 PendingLoads.push_back(OutChain); 4732 return; 4733 } 4734 4735 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4736 Ptr, MMO); 4737 4738 SDValue OutChain = L.getValue(1); 4739 if (MemVT != VT) 4740 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4741 4742 setValue(&I, L); 4743 DAG.setRoot(OutChain); 4744 } 4745 4746 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4747 SDLoc dl = getCurSDLoc(); 4748 4749 AtomicOrdering Ordering = I.getOrdering(); 4750 SyncScope::ID SSID = I.getSyncScopeID(); 4751 4752 SDValue InChain = getRoot(); 4753 4754 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4755 EVT MemVT = 4756 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4757 4758 if (!TLI.supportsUnalignedAtomics() && 4759 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4760 report_fatal_error("Cannot generate unaligned atomic store"); 4761 4762 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4763 4764 MachineFunction &MF = DAG.getMachineFunction(); 4765 MachineMemOperand *MMO = MF.getMachineMemOperand( 4766 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4767 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4768 4769 SDValue Val = getValue(I.getValueOperand()); 4770 if (Val.getValueType() != MemVT) 4771 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4772 SDValue Ptr = getValue(I.getPointerOperand()); 4773 4774 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4775 // TODO: Once this is better exercised by tests, it should be merged with 4776 // the normal path for stores to prevent future divergence. 4777 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4778 setValue(&I, S); 4779 DAG.setRoot(S); 4780 return; 4781 } 4782 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4783 Ptr, Val, MMO); 4784 4785 setValue(&I, OutChain); 4786 DAG.setRoot(OutChain); 4787 } 4788 4789 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4790 /// node. 4791 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4792 unsigned Intrinsic) { 4793 // Ignore the callsite's attributes. A specific call site may be marked with 4794 // readnone, but the lowering code will expect the chain based on the 4795 // definition. 4796 const Function *F = I.getCalledFunction(); 4797 bool HasChain = !F->doesNotAccessMemory(); 4798 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4799 4800 // Build the operand list. 4801 SmallVector<SDValue, 8> Ops; 4802 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4803 if (OnlyLoad) { 4804 // We don't need to serialize loads against other loads. 4805 Ops.push_back(DAG.getRoot()); 4806 } else { 4807 Ops.push_back(getRoot()); 4808 } 4809 } 4810 4811 // Info is set by getTgtMemIntrinsic 4812 TargetLowering::IntrinsicInfo Info; 4813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4814 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4815 DAG.getMachineFunction(), 4816 Intrinsic); 4817 4818 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4819 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4820 Info.opc == ISD::INTRINSIC_W_CHAIN) 4821 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4822 TLI.getPointerTy(DAG.getDataLayout()))); 4823 4824 // Add all operands of the call to the operand list. 4825 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4826 const Value *Arg = I.getArgOperand(i); 4827 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4828 Ops.push_back(getValue(Arg)); 4829 continue; 4830 } 4831 4832 // Use TargetConstant instead of a regular constant for immarg. 4833 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4834 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4835 assert(CI->getBitWidth() <= 64 && 4836 "large intrinsic immediates not handled"); 4837 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4838 } else { 4839 Ops.push_back( 4840 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4841 } 4842 } 4843 4844 SmallVector<EVT, 4> ValueVTs; 4845 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4846 4847 if (HasChain) 4848 ValueVTs.push_back(MVT::Other); 4849 4850 SDVTList VTs = DAG.getVTList(ValueVTs); 4851 4852 // Propagate fast-math-flags from IR to node(s). 4853 SDNodeFlags Flags; 4854 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4855 Flags.copyFMF(*FPMO); 4856 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4857 4858 // Create the node. 4859 SDValue Result; 4860 // In some cases, custom collection of operands from CallInst I may be needed. 4861 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4862 if (IsTgtIntrinsic) { 4863 // This is target intrinsic that touches memory 4864 // 4865 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4866 // didn't yield anything useful. 4867 MachinePointerInfo MPI; 4868 if (Info.ptrVal) 4869 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4870 else if (Info.fallbackAddressSpace) 4871 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4872 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4873 Info.memVT, MPI, Info.align, Info.flags, 4874 Info.size, I.getAAMetadata()); 4875 } else if (!HasChain) { 4876 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4877 } else if (!I.getType()->isVoidTy()) { 4878 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4879 } else { 4880 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4881 } 4882 4883 if (HasChain) { 4884 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4885 if (OnlyLoad) 4886 PendingLoads.push_back(Chain); 4887 else 4888 DAG.setRoot(Chain); 4889 } 4890 4891 if (!I.getType()->isVoidTy()) { 4892 if (!isa<VectorType>(I.getType())) 4893 Result = lowerRangeToAssertZExt(DAG, I, Result); 4894 4895 MaybeAlign Alignment = I.getRetAlign(); 4896 if (!Alignment) 4897 Alignment = F->getAttributes().getRetAlignment(); 4898 // Insert `assertalign` node if there's an alignment. 4899 if (InsertAssertAlign && Alignment) { 4900 Result = 4901 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4902 } 4903 4904 setValue(&I, Result); 4905 } 4906 } 4907 4908 /// GetSignificand - Get the significand and build it into a floating-point 4909 /// number with exponent of 1: 4910 /// 4911 /// Op = (Op & 0x007fffff) | 0x3f800000; 4912 /// 4913 /// where Op is the hexadecimal representation of floating point value. 4914 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4915 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4916 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4917 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4918 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4919 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4920 } 4921 4922 /// GetExponent - Get the exponent: 4923 /// 4924 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4925 /// 4926 /// where Op is the hexadecimal representation of floating point value. 4927 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4928 const TargetLowering &TLI, const SDLoc &dl) { 4929 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4930 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4931 SDValue t1 = DAG.getNode( 4932 ISD::SRL, dl, MVT::i32, t0, 4933 DAG.getConstant(23, dl, 4934 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4935 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4936 DAG.getConstant(127, dl, MVT::i32)); 4937 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4938 } 4939 4940 /// getF32Constant - Get 32-bit floating point constant. 4941 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4942 const SDLoc &dl) { 4943 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4944 MVT::f32); 4945 } 4946 4947 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4948 SelectionDAG &DAG) { 4949 // TODO: What fast-math-flags should be set on the floating-point nodes? 4950 4951 // IntegerPartOfX = ((int32_t)(t0); 4952 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4953 4954 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4955 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4956 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4957 4958 // IntegerPartOfX <<= 23; 4959 IntegerPartOfX = 4960 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4961 DAG.getConstant(23, dl, 4962 DAG.getTargetLoweringInfo().getShiftAmountTy( 4963 MVT::i32, DAG.getDataLayout()))); 4964 4965 SDValue TwoToFractionalPartOfX; 4966 if (LimitFloatPrecision <= 6) { 4967 // For floating-point precision of 6: 4968 // 4969 // TwoToFractionalPartOfX = 4970 // 0.997535578f + 4971 // (0.735607626f + 0.252464424f * x) * x; 4972 // 4973 // error 0.0144103317, which is 6 bits 4974 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4975 getF32Constant(DAG, 0x3e814304, dl)); 4976 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4977 getF32Constant(DAG, 0x3f3c50c8, dl)); 4978 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4979 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4980 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4981 } else if (LimitFloatPrecision <= 12) { 4982 // For floating-point precision of 12: 4983 // 4984 // TwoToFractionalPartOfX = 4985 // 0.999892986f + 4986 // (0.696457318f + 4987 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4988 // 4989 // error 0.000107046256, which is 13 to 14 bits 4990 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4991 getF32Constant(DAG, 0x3da235e3, dl)); 4992 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4993 getF32Constant(DAG, 0x3e65b8f3, dl)); 4994 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4995 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4996 getF32Constant(DAG, 0x3f324b07, dl)); 4997 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4998 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4999 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5000 } else { // LimitFloatPrecision <= 18 5001 // For floating-point precision of 18: 5002 // 5003 // TwoToFractionalPartOfX = 5004 // 0.999999982f + 5005 // (0.693148872f + 5006 // (0.240227044f + 5007 // (0.554906021e-1f + 5008 // (0.961591928e-2f + 5009 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5010 // error 2.47208000*10^(-7), which is better than 18 bits 5011 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5012 getF32Constant(DAG, 0x3924b03e, dl)); 5013 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5014 getF32Constant(DAG, 0x3ab24b87, dl)); 5015 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5016 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5017 getF32Constant(DAG, 0x3c1d8c17, dl)); 5018 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5019 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5020 getF32Constant(DAG, 0x3d634a1d, dl)); 5021 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5022 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5023 getF32Constant(DAG, 0x3e75fe14, dl)); 5024 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5025 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5026 getF32Constant(DAG, 0x3f317234, dl)); 5027 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5028 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5029 getF32Constant(DAG, 0x3f800000, dl)); 5030 } 5031 5032 // Add the exponent into the result in integer domain. 5033 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5034 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5035 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5036 } 5037 5038 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5039 /// limited-precision mode. 5040 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5041 const TargetLowering &TLI, SDNodeFlags Flags) { 5042 if (Op.getValueType() == MVT::f32 && 5043 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5044 5045 // Put the exponent in the right bit position for later addition to the 5046 // final result: 5047 // 5048 // t0 = Op * log2(e) 5049 5050 // TODO: What fast-math-flags should be set here? 5051 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5052 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5053 return getLimitedPrecisionExp2(t0, dl, DAG); 5054 } 5055 5056 // No special expansion. 5057 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5058 } 5059 5060 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5061 /// limited-precision mode. 5062 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5063 const TargetLowering &TLI, SDNodeFlags Flags) { 5064 // TODO: What fast-math-flags should be set on the floating-point nodes? 5065 5066 if (Op.getValueType() == MVT::f32 && 5067 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5068 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5069 5070 // Scale the exponent by log(2). 5071 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5072 SDValue LogOfExponent = 5073 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5074 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5075 5076 // Get the significand and build it into a floating-point number with 5077 // exponent of 1. 5078 SDValue X = GetSignificand(DAG, Op1, dl); 5079 5080 SDValue LogOfMantissa; 5081 if (LimitFloatPrecision <= 6) { 5082 // For floating-point precision of 6: 5083 // 5084 // LogofMantissa = 5085 // -1.1609546f + 5086 // (1.4034025f - 0.23903021f * x) * x; 5087 // 5088 // error 0.0034276066, which is better than 8 bits 5089 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5090 getF32Constant(DAG, 0xbe74c456, dl)); 5091 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5092 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5093 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5094 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5095 getF32Constant(DAG, 0x3f949a29, dl)); 5096 } else if (LimitFloatPrecision <= 12) { 5097 // For floating-point precision of 12: 5098 // 5099 // LogOfMantissa = 5100 // -1.7417939f + 5101 // (2.8212026f + 5102 // (-1.4699568f + 5103 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5104 // 5105 // error 0.000061011436, which is 14 bits 5106 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5107 getF32Constant(DAG, 0xbd67b6d6, dl)); 5108 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5109 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5110 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5111 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5112 getF32Constant(DAG, 0x3fbc278b, dl)); 5113 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5114 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5115 getF32Constant(DAG, 0x40348e95, dl)); 5116 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5117 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5118 getF32Constant(DAG, 0x3fdef31a, dl)); 5119 } else { // LimitFloatPrecision <= 18 5120 // For floating-point precision of 18: 5121 // 5122 // LogOfMantissa = 5123 // -2.1072184f + 5124 // (4.2372794f + 5125 // (-3.7029485f + 5126 // (2.2781945f + 5127 // (-0.87823314f + 5128 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5129 // 5130 // error 0.0000023660568, which is better than 18 bits 5131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5132 getF32Constant(DAG, 0xbc91e5ac, dl)); 5133 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5134 getF32Constant(DAG, 0x3e4350aa, dl)); 5135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5136 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5137 getF32Constant(DAG, 0x3f60d3e3, dl)); 5138 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5139 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5140 getF32Constant(DAG, 0x4011cdf0, dl)); 5141 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5142 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5143 getF32Constant(DAG, 0x406cfd1c, dl)); 5144 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5145 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5146 getF32Constant(DAG, 0x408797cb, dl)); 5147 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5148 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5149 getF32Constant(DAG, 0x4006dcab, dl)); 5150 } 5151 5152 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5153 } 5154 5155 // No special expansion. 5156 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5157 } 5158 5159 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5160 /// limited-precision mode. 5161 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5162 const TargetLowering &TLI, SDNodeFlags Flags) { 5163 // TODO: What fast-math-flags should be set on the floating-point nodes? 5164 5165 if (Op.getValueType() == MVT::f32 && 5166 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5167 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5168 5169 // Get the exponent. 5170 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5171 5172 // Get the significand and build it into a floating-point number with 5173 // exponent of 1. 5174 SDValue X = GetSignificand(DAG, Op1, dl); 5175 5176 // Different possible minimax approximations of significand in 5177 // floating-point for various degrees of accuracy over [1,2]. 5178 SDValue Log2ofMantissa; 5179 if (LimitFloatPrecision <= 6) { 5180 // For floating-point precision of 6: 5181 // 5182 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5183 // 5184 // error 0.0049451742, which is more than 7 bits 5185 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5186 getF32Constant(DAG, 0xbeb08fe0, dl)); 5187 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5188 getF32Constant(DAG, 0x40019463, dl)); 5189 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5190 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5191 getF32Constant(DAG, 0x3fd6633d, dl)); 5192 } else if (LimitFloatPrecision <= 12) { 5193 // For floating-point precision of 12: 5194 // 5195 // Log2ofMantissa = 5196 // -2.51285454f + 5197 // (4.07009056f + 5198 // (-2.12067489f + 5199 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5200 // 5201 // error 0.0000876136000, which is better than 13 bits 5202 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5203 getF32Constant(DAG, 0xbda7262e, dl)); 5204 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5205 getF32Constant(DAG, 0x3f25280b, dl)); 5206 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5207 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5208 getF32Constant(DAG, 0x4007b923, dl)); 5209 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5210 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5211 getF32Constant(DAG, 0x40823e2f, dl)); 5212 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5213 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5214 getF32Constant(DAG, 0x4020d29c, dl)); 5215 } else { // LimitFloatPrecision <= 18 5216 // For floating-point precision of 18: 5217 // 5218 // Log2ofMantissa = 5219 // -3.0400495f + 5220 // (6.1129976f + 5221 // (-5.3420409f + 5222 // (3.2865683f + 5223 // (-1.2669343f + 5224 // (0.27515199f - 5225 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5226 // 5227 // error 0.0000018516, which is better than 18 bits 5228 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5229 getF32Constant(DAG, 0xbcd2769e, dl)); 5230 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5231 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5232 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5233 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5234 getF32Constant(DAG, 0x3fa22ae7, dl)); 5235 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5236 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5237 getF32Constant(DAG, 0x40525723, dl)); 5238 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5239 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5240 getF32Constant(DAG, 0x40aaf200, dl)); 5241 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5242 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5243 getF32Constant(DAG, 0x40c39dad, dl)); 5244 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5245 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5246 getF32Constant(DAG, 0x4042902c, dl)); 5247 } 5248 5249 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5250 } 5251 5252 // No special expansion. 5253 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5254 } 5255 5256 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5257 /// limited-precision mode. 5258 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5259 const TargetLowering &TLI, SDNodeFlags Flags) { 5260 // TODO: What fast-math-flags should be set on the floating-point nodes? 5261 5262 if (Op.getValueType() == MVT::f32 && 5263 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5264 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5265 5266 // Scale the exponent by log10(2) [0.30102999f]. 5267 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5268 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5269 getF32Constant(DAG, 0x3e9a209a, dl)); 5270 5271 // Get the significand and build it into a floating-point number with 5272 // exponent of 1. 5273 SDValue X = GetSignificand(DAG, Op1, dl); 5274 5275 SDValue Log10ofMantissa; 5276 if (LimitFloatPrecision <= 6) { 5277 // For floating-point precision of 6: 5278 // 5279 // Log10ofMantissa = 5280 // -0.50419619f + 5281 // (0.60948995f - 0.10380950f * x) * x; 5282 // 5283 // error 0.0014886165, which is 6 bits 5284 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5285 getF32Constant(DAG, 0xbdd49a13, dl)); 5286 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5287 getF32Constant(DAG, 0x3f1c0789, dl)); 5288 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5289 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5290 getF32Constant(DAG, 0x3f011300, dl)); 5291 } else if (LimitFloatPrecision <= 12) { 5292 // For floating-point precision of 12: 5293 // 5294 // Log10ofMantissa = 5295 // -0.64831180f + 5296 // (0.91751397f + 5297 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5298 // 5299 // error 0.00019228036, which is better than 12 bits 5300 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5301 getF32Constant(DAG, 0x3d431f31, dl)); 5302 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5303 getF32Constant(DAG, 0x3ea21fb2, dl)); 5304 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5305 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5306 getF32Constant(DAG, 0x3f6ae232, dl)); 5307 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5308 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5309 getF32Constant(DAG, 0x3f25f7c3, dl)); 5310 } else { // LimitFloatPrecision <= 18 5311 // For floating-point precision of 18: 5312 // 5313 // Log10ofMantissa = 5314 // -0.84299375f + 5315 // (1.5327582f + 5316 // (-1.0688956f + 5317 // (0.49102474f + 5318 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5319 // 5320 // error 0.0000037995730, which is better than 18 bits 5321 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5322 getF32Constant(DAG, 0x3c5d51ce, dl)); 5323 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5324 getF32Constant(DAG, 0x3e00685a, dl)); 5325 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5326 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5327 getF32Constant(DAG, 0x3efb6798, dl)); 5328 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5329 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5330 getF32Constant(DAG, 0x3f88d192, dl)); 5331 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5332 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5333 getF32Constant(DAG, 0x3fc4316c, dl)); 5334 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5335 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5336 getF32Constant(DAG, 0x3f57ce70, dl)); 5337 } 5338 5339 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5340 } 5341 5342 // No special expansion. 5343 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5344 } 5345 5346 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5347 /// limited-precision mode. 5348 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5349 const TargetLowering &TLI, SDNodeFlags Flags) { 5350 if (Op.getValueType() == MVT::f32 && 5351 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5352 return getLimitedPrecisionExp2(Op, dl, DAG); 5353 5354 // No special expansion. 5355 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5356 } 5357 5358 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5359 /// limited-precision mode with x == 10.0f. 5360 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5361 SelectionDAG &DAG, const TargetLowering &TLI, 5362 SDNodeFlags Flags) { 5363 bool IsExp10 = false; 5364 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5365 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5366 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5367 APFloat Ten(10.0f); 5368 IsExp10 = LHSC->isExactlyValue(Ten); 5369 } 5370 } 5371 5372 // TODO: What fast-math-flags should be set on the FMUL node? 5373 if (IsExp10) { 5374 // Put the exponent in the right bit position for later addition to the 5375 // final result: 5376 // 5377 // #define LOG2OF10 3.3219281f 5378 // t0 = Op * LOG2OF10; 5379 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5380 getF32Constant(DAG, 0x40549a78, dl)); 5381 return getLimitedPrecisionExp2(t0, dl, DAG); 5382 } 5383 5384 // No special expansion. 5385 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5386 } 5387 5388 /// ExpandPowI - Expand a llvm.powi intrinsic. 5389 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5390 SelectionDAG &DAG) { 5391 // If RHS is a constant, we can expand this out to a multiplication tree if 5392 // it's beneficial on the target, otherwise we end up lowering to a call to 5393 // __powidf2 (for example). 5394 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5395 unsigned Val = RHSC->getSExtValue(); 5396 5397 // powi(x, 0) -> 1.0 5398 if (Val == 0) 5399 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5400 5401 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5402 Val, DAG.shouldOptForSize())) { 5403 // Get the exponent as a positive value. 5404 if ((int)Val < 0) 5405 Val = -Val; 5406 // We use the simple binary decomposition method to generate the multiply 5407 // sequence. There are more optimal ways to do this (for example, 5408 // powi(x,15) generates one more multiply than it should), but this has 5409 // the benefit of being both really simple and much better than a libcall. 5410 SDValue Res; // Logically starts equal to 1.0 5411 SDValue CurSquare = LHS; 5412 // TODO: Intrinsics should have fast-math-flags that propagate to these 5413 // nodes. 5414 while (Val) { 5415 if (Val & 1) { 5416 if (Res.getNode()) 5417 Res = 5418 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5419 else 5420 Res = CurSquare; // 1.0*CurSquare. 5421 } 5422 5423 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5424 CurSquare, CurSquare); 5425 Val >>= 1; 5426 } 5427 5428 // If the original was negative, invert the result, producing 1/(x*x*x). 5429 if (RHSC->getSExtValue() < 0) 5430 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5431 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5432 return Res; 5433 } 5434 } 5435 5436 // Otherwise, expand to a libcall. 5437 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5438 } 5439 5440 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5441 SDValue LHS, SDValue RHS, SDValue Scale, 5442 SelectionDAG &DAG, const TargetLowering &TLI) { 5443 EVT VT = LHS.getValueType(); 5444 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5445 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5446 LLVMContext &Ctx = *DAG.getContext(); 5447 5448 // If the type is legal but the operation isn't, this node might survive all 5449 // the way to operation legalization. If we end up there and we do not have 5450 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5451 // node. 5452 5453 // Coax the legalizer into expanding the node during type legalization instead 5454 // by bumping the size by one bit. This will force it to Promote, enabling the 5455 // early expansion and avoiding the need to expand later. 5456 5457 // We don't have to do this if Scale is 0; that can always be expanded, unless 5458 // it's a saturating signed operation. Those can experience true integer 5459 // division overflow, a case which we must avoid. 5460 5461 // FIXME: We wouldn't have to do this (or any of the early 5462 // expansion/promotion) if it was possible to expand a libcall of an 5463 // illegal type during operation legalization. But it's not, so things 5464 // get a bit hacky. 5465 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5466 if ((ScaleInt > 0 || (Saturating && Signed)) && 5467 (TLI.isTypeLegal(VT) || 5468 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5469 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5470 Opcode, VT, ScaleInt); 5471 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5472 EVT PromVT; 5473 if (VT.isScalarInteger()) 5474 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5475 else if (VT.isVector()) { 5476 PromVT = VT.getVectorElementType(); 5477 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5478 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5479 } else 5480 llvm_unreachable("Wrong VT for DIVFIX?"); 5481 if (Signed) { 5482 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5483 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5484 } else { 5485 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5486 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5487 } 5488 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5489 // For saturating operations, we need to shift up the LHS to get the 5490 // proper saturation width, and then shift down again afterwards. 5491 if (Saturating) 5492 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5493 DAG.getConstant(1, DL, ShiftTy)); 5494 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5495 if (Saturating) 5496 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5497 DAG.getConstant(1, DL, ShiftTy)); 5498 return DAG.getZExtOrTrunc(Res, DL, VT); 5499 } 5500 } 5501 5502 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5503 } 5504 5505 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5506 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5507 static void 5508 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5509 const SDValue &N) { 5510 switch (N.getOpcode()) { 5511 case ISD::CopyFromReg: { 5512 SDValue Op = N.getOperand(1); 5513 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5514 Op.getValueType().getSizeInBits()); 5515 return; 5516 } 5517 case ISD::BITCAST: 5518 case ISD::AssertZext: 5519 case ISD::AssertSext: 5520 case ISD::TRUNCATE: 5521 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5522 return; 5523 case ISD::BUILD_PAIR: 5524 case ISD::BUILD_VECTOR: 5525 case ISD::CONCAT_VECTORS: 5526 for (SDValue Op : N->op_values()) 5527 getUnderlyingArgRegs(Regs, Op); 5528 return; 5529 default: 5530 return; 5531 } 5532 } 5533 5534 /// If the DbgValueInst is a dbg_value of a function argument, create the 5535 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5536 /// instruction selection, they will be inserted to the entry BB. 5537 /// We don't currently support this for variadic dbg_values, as they shouldn't 5538 /// appear for function arguments or in the prologue. 5539 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5540 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5541 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5542 const Argument *Arg = dyn_cast<Argument>(V); 5543 if (!Arg) 5544 return false; 5545 5546 MachineFunction &MF = DAG.getMachineFunction(); 5547 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5548 5549 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5550 // we've been asked to pursue. 5551 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5552 bool Indirect) { 5553 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5554 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5555 // pointing at the VReg, which will be patched up later. 5556 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5557 auto MIB = BuildMI(MF, DL, Inst); 5558 MIB.addReg(Reg); 5559 MIB.addImm(0); 5560 MIB.addMetadata(Variable); 5561 auto *NewDIExpr = FragExpr; 5562 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5563 // the DIExpression. 5564 if (Indirect) 5565 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5566 MIB.addMetadata(NewDIExpr); 5567 return MIB; 5568 } else { 5569 // Create a completely standard DBG_VALUE. 5570 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5571 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5572 } 5573 }; 5574 5575 if (Kind == FuncArgumentDbgValueKind::Value) { 5576 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5577 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5578 // the entry block. 5579 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5580 if (!IsInEntryBlock) 5581 return false; 5582 5583 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5584 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5585 // variable that also is a param. 5586 // 5587 // Although, if we are at the top of the entry block already, we can still 5588 // emit using ArgDbgValue. This might catch some situations when the 5589 // dbg.value refers to an argument that isn't used in the entry block, so 5590 // any CopyToReg node would be optimized out and the only way to express 5591 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5592 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5593 // we should only emit as ArgDbgValue if the Variable is an argument to the 5594 // current function, and the dbg.value intrinsic is found in the entry 5595 // block. 5596 bool VariableIsFunctionInputArg = Variable->isParameter() && 5597 !DL->getInlinedAt(); 5598 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5599 if (!IsInPrologue && !VariableIsFunctionInputArg) 5600 return false; 5601 5602 // Here we assume that a function argument on IR level only can be used to 5603 // describe one input parameter on source level. If we for example have 5604 // source code like this 5605 // 5606 // struct A { long x, y; }; 5607 // void foo(struct A a, long b) { 5608 // ... 5609 // b = a.x; 5610 // ... 5611 // } 5612 // 5613 // and IR like this 5614 // 5615 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5616 // entry: 5617 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5618 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5619 // call void @llvm.dbg.value(metadata i32 %b, "b", 5620 // ... 5621 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5622 // ... 5623 // 5624 // then the last dbg.value is describing a parameter "b" using a value that 5625 // is an argument. But since we already has used %a1 to describe a parameter 5626 // we should not handle that last dbg.value here (that would result in an 5627 // incorrect hoisting of the DBG_VALUE to the function entry). 5628 // Notice that we allow one dbg.value per IR level argument, to accommodate 5629 // for the situation with fragments above. 5630 if (VariableIsFunctionInputArg) { 5631 unsigned ArgNo = Arg->getArgNo(); 5632 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5633 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5634 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5635 return false; 5636 FuncInfo.DescribedArgs.set(ArgNo); 5637 } 5638 } 5639 5640 bool IsIndirect = false; 5641 std::optional<MachineOperand> Op; 5642 // Some arguments' frame index is recorded during argument lowering. 5643 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5644 if (FI != std::numeric_limits<int>::max()) 5645 Op = MachineOperand::CreateFI(FI); 5646 5647 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5648 if (!Op && N.getNode()) { 5649 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5650 Register Reg; 5651 if (ArgRegsAndSizes.size() == 1) 5652 Reg = ArgRegsAndSizes.front().first; 5653 5654 if (Reg && Reg.isVirtual()) { 5655 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5656 Register PR = RegInfo.getLiveInPhysReg(Reg); 5657 if (PR) 5658 Reg = PR; 5659 } 5660 if (Reg) { 5661 Op = MachineOperand::CreateReg(Reg, false); 5662 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5663 } 5664 } 5665 5666 if (!Op && N.getNode()) { 5667 // Check if frame index is available. 5668 SDValue LCandidate = peekThroughBitcasts(N); 5669 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5670 if (FrameIndexSDNode *FINode = 5671 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5672 Op = MachineOperand::CreateFI(FINode->getIndex()); 5673 } 5674 5675 if (!Op) { 5676 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5677 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5678 SplitRegs) { 5679 unsigned Offset = 0; 5680 for (const auto &RegAndSize : SplitRegs) { 5681 // If the expression is already a fragment, the current register 5682 // offset+size might extend beyond the fragment. In this case, only 5683 // the register bits that are inside the fragment are relevant. 5684 int RegFragmentSizeInBits = RegAndSize.second; 5685 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5686 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5687 // The register is entirely outside the expression fragment, 5688 // so is irrelevant for debug info. 5689 if (Offset >= ExprFragmentSizeInBits) 5690 break; 5691 // The register is partially outside the expression fragment, only 5692 // the low bits within the fragment are relevant for debug info. 5693 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5694 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5695 } 5696 } 5697 5698 auto FragmentExpr = DIExpression::createFragmentExpression( 5699 Expr, Offset, RegFragmentSizeInBits); 5700 Offset += RegAndSize.second; 5701 // If a valid fragment expression cannot be created, the variable's 5702 // correct value cannot be determined and so it is set as Undef. 5703 if (!FragmentExpr) { 5704 SDDbgValue *SDV = DAG.getConstantDbgValue( 5705 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5706 DAG.AddDbgValue(SDV, false); 5707 continue; 5708 } 5709 MachineInstr *NewMI = 5710 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5711 Kind != FuncArgumentDbgValueKind::Value); 5712 FuncInfo.ArgDbgValues.push_back(NewMI); 5713 } 5714 }; 5715 5716 // Check if ValueMap has reg number. 5717 DenseMap<const Value *, Register>::const_iterator 5718 VMI = FuncInfo.ValueMap.find(V); 5719 if (VMI != FuncInfo.ValueMap.end()) { 5720 const auto &TLI = DAG.getTargetLoweringInfo(); 5721 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5722 V->getType(), None); 5723 if (RFV.occupiesMultipleRegs()) { 5724 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5725 return true; 5726 } 5727 5728 Op = MachineOperand::CreateReg(VMI->second, false); 5729 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5730 } else if (ArgRegsAndSizes.size() > 1) { 5731 // This was split due to the calling convention, and no virtual register 5732 // mapping exists for the value. 5733 splitMultiRegDbgValue(ArgRegsAndSizes); 5734 return true; 5735 } 5736 } 5737 5738 if (!Op) 5739 return false; 5740 5741 assert(Variable->isValidLocationForIntrinsic(DL) && 5742 "Expected inlined-at fields to agree"); 5743 MachineInstr *NewMI = nullptr; 5744 5745 if (Op->isReg()) 5746 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5747 else 5748 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5749 Variable, Expr); 5750 5751 // Otherwise, use ArgDbgValues. 5752 FuncInfo.ArgDbgValues.push_back(NewMI); 5753 return true; 5754 } 5755 5756 /// Return the appropriate SDDbgValue based on N. 5757 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5758 DILocalVariable *Variable, 5759 DIExpression *Expr, 5760 const DebugLoc &dl, 5761 unsigned DbgSDNodeOrder) { 5762 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5763 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5764 // stack slot locations. 5765 // 5766 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5767 // debug values here after optimization: 5768 // 5769 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5770 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5771 // 5772 // Both describe the direct values of their associated variables. 5773 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5774 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5775 } 5776 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5777 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5778 } 5779 5780 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5781 switch (Intrinsic) { 5782 case Intrinsic::smul_fix: 5783 return ISD::SMULFIX; 5784 case Intrinsic::umul_fix: 5785 return ISD::UMULFIX; 5786 case Intrinsic::smul_fix_sat: 5787 return ISD::SMULFIXSAT; 5788 case Intrinsic::umul_fix_sat: 5789 return ISD::UMULFIXSAT; 5790 case Intrinsic::sdiv_fix: 5791 return ISD::SDIVFIX; 5792 case Intrinsic::udiv_fix: 5793 return ISD::UDIVFIX; 5794 case Intrinsic::sdiv_fix_sat: 5795 return ISD::SDIVFIXSAT; 5796 case Intrinsic::udiv_fix_sat: 5797 return ISD::UDIVFIXSAT; 5798 default: 5799 llvm_unreachable("Unhandled fixed point intrinsic"); 5800 } 5801 } 5802 5803 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5804 const char *FunctionName) { 5805 assert(FunctionName && "FunctionName must not be nullptr"); 5806 SDValue Callee = DAG.getExternalSymbol( 5807 FunctionName, 5808 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5809 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5810 } 5811 5812 /// Given a @llvm.call.preallocated.setup, return the corresponding 5813 /// preallocated call. 5814 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5815 assert(cast<CallBase>(PreallocatedSetup) 5816 ->getCalledFunction() 5817 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5818 "expected call_preallocated_setup Value"); 5819 for (const auto *U : PreallocatedSetup->users()) { 5820 auto *UseCall = cast<CallBase>(U); 5821 const Function *Fn = UseCall->getCalledFunction(); 5822 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5823 return UseCall; 5824 } 5825 } 5826 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5827 } 5828 5829 /// Lower the call to the specified intrinsic function. 5830 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5831 unsigned Intrinsic) { 5832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5833 SDLoc sdl = getCurSDLoc(); 5834 DebugLoc dl = getCurDebugLoc(); 5835 SDValue Res; 5836 5837 SDNodeFlags Flags; 5838 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5839 Flags.copyFMF(*FPOp); 5840 5841 switch (Intrinsic) { 5842 default: 5843 // By default, turn this into a target intrinsic node. 5844 visitTargetIntrinsic(I, Intrinsic); 5845 return; 5846 case Intrinsic::vscale: { 5847 match(&I, m_VScale(DAG.getDataLayout())); 5848 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5849 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5850 return; 5851 } 5852 case Intrinsic::vastart: visitVAStart(I); return; 5853 case Intrinsic::vaend: visitVAEnd(I); return; 5854 case Intrinsic::vacopy: visitVACopy(I); return; 5855 case Intrinsic::returnaddress: 5856 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5857 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5858 getValue(I.getArgOperand(0)))); 5859 return; 5860 case Intrinsic::addressofreturnaddress: 5861 setValue(&I, 5862 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5863 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5864 return; 5865 case Intrinsic::sponentry: 5866 setValue(&I, 5867 DAG.getNode(ISD::SPONENTRY, sdl, 5868 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5869 return; 5870 case Intrinsic::frameaddress: 5871 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5872 TLI.getFrameIndexTy(DAG.getDataLayout()), 5873 getValue(I.getArgOperand(0)))); 5874 return; 5875 case Intrinsic::read_volatile_register: 5876 case Intrinsic::read_register: { 5877 Value *Reg = I.getArgOperand(0); 5878 SDValue Chain = getRoot(); 5879 SDValue RegName = 5880 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5881 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5882 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5883 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5884 setValue(&I, Res); 5885 DAG.setRoot(Res.getValue(1)); 5886 return; 5887 } 5888 case Intrinsic::write_register: { 5889 Value *Reg = I.getArgOperand(0); 5890 Value *RegValue = I.getArgOperand(1); 5891 SDValue Chain = getRoot(); 5892 SDValue RegName = 5893 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5894 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5895 RegName, getValue(RegValue))); 5896 return; 5897 } 5898 case Intrinsic::memcpy: { 5899 const auto &MCI = cast<MemCpyInst>(I); 5900 SDValue Op1 = getValue(I.getArgOperand(0)); 5901 SDValue Op2 = getValue(I.getArgOperand(1)); 5902 SDValue Op3 = getValue(I.getArgOperand(2)); 5903 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5904 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5905 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5906 Align Alignment = std::min(DstAlign, SrcAlign); 5907 bool isVol = MCI.isVolatile(); 5908 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5909 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5910 // node. 5911 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5912 SDValue MC = DAG.getMemcpy( 5913 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5914 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5915 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5916 updateDAGForMaybeTailCall(MC); 5917 return; 5918 } 5919 case Intrinsic::memcpy_inline: { 5920 const auto &MCI = cast<MemCpyInlineInst>(I); 5921 SDValue Dst = getValue(I.getArgOperand(0)); 5922 SDValue Src = getValue(I.getArgOperand(1)); 5923 SDValue Size = getValue(I.getArgOperand(2)); 5924 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5925 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5926 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5927 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5928 Align Alignment = std::min(DstAlign, SrcAlign); 5929 bool isVol = MCI.isVolatile(); 5930 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5931 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5932 // node. 5933 SDValue MC = DAG.getMemcpy( 5934 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5935 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5936 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5937 updateDAGForMaybeTailCall(MC); 5938 return; 5939 } 5940 case Intrinsic::memset: { 5941 const auto &MSI = cast<MemSetInst>(I); 5942 SDValue Op1 = getValue(I.getArgOperand(0)); 5943 SDValue Op2 = getValue(I.getArgOperand(1)); 5944 SDValue Op3 = getValue(I.getArgOperand(2)); 5945 // @llvm.memset defines 0 and 1 to both mean no alignment. 5946 Align Alignment = MSI.getDestAlign().valueOrOne(); 5947 bool isVol = MSI.isVolatile(); 5948 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5949 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5950 SDValue MS = DAG.getMemset( 5951 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5952 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5953 updateDAGForMaybeTailCall(MS); 5954 return; 5955 } 5956 case Intrinsic::memset_inline: { 5957 const auto &MSII = cast<MemSetInlineInst>(I); 5958 SDValue Dst = getValue(I.getArgOperand(0)); 5959 SDValue Value = getValue(I.getArgOperand(1)); 5960 SDValue Size = getValue(I.getArgOperand(2)); 5961 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5962 // @llvm.memset defines 0 and 1 to both mean no alignment. 5963 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5964 bool isVol = MSII.isVolatile(); 5965 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5966 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5967 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5968 /* AlwaysInline */ true, isTC, 5969 MachinePointerInfo(I.getArgOperand(0)), 5970 I.getAAMetadata()); 5971 updateDAGForMaybeTailCall(MC); 5972 return; 5973 } 5974 case Intrinsic::memmove: { 5975 const auto &MMI = cast<MemMoveInst>(I); 5976 SDValue Op1 = getValue(I.getArgOperand(0)); 5977 SDValue Op2 = getValue(I.getArgOperand(1)); 5978 SDValue Op3 = getValue(I.getArgOperand(2)); 5979 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5980 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5981 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5982 Align Alignment = std::min(DstAlign, SrcAlign); 5983 bool isVol = MMI.isVolatile(); 5984 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5985 // FIXME: Support passing different dest/src alignments to the memmove DAG 5986 // node. 5987 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5988 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5989 isTC, MachinePointerInfo(I.getArgOperand(0)), 5990 MachinePointerInfo(I.getArgOperand(1)), 5991 I.getAAMetadata(), AA); 5992 updateDAGForMaybeTailCall(MM); 5993 return; 5994 } 5995 case Intrinsic::memcpy_element_unordered_atomic: { 5996 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5997 SDValue Dst = getValue(MI.getRawDest()); 5998 SDValue Src = getValue(MI.getRawSource()); 5999 SDValue Length = getValue(MI.getLength()); 6000 6001 Type *LengthTy = MI.getLength()->getType(); 6002 unsigned ElemSz = MI.getElementSizeInBytes(); 6003 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6004 SDValue MC = 6005 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6006 isTC, MachinePointerInfo(MI.getRawDest()), 6007 MachinePointerInfo(MI.getRawSource())); 6008 updateDAGForMaybeTailCall(MC); 6009 return; 6010 } 6011 case Intrinsic::memmove_element_unordered_atomic: { 6012 auto &MI = cast<AtomicMemMoveInst>(I); 6013 SDValue Dst = getValue(MI.getRawDest()); 6014 SDValue Src = getValue(MI.getRawSource()); 6015 SDValue Length = getValue(MI.getLength()); 6016 6017 Type *LengthTy = MI.getLength()->getType(); 6018 unsigned ElemSz = MI.getElementSizeInBytes(); 6019 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6020 SDValue MC = 6021 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6022 isTC, MachinePointerInfo(MI.getRawDest()), 6023 MachinePointerInfo(MI.getRawSource())); 6024 updateDAGForMaybeTailCall(MC); 6025 return; 6026 } 6027 case Intrinsic::memset_element_unordered_atomic: { 6028 auto &MI = cast<AtomicMemSetInst>(I); 6029 SDValue Dst = getValue(MI.getRawDest()); 6030 SDValue Val = getValue(MI.getValue()); 6031 SDValue Length = getValue(MI.getLength()); 6032 6033 Type *LengthTy = MI.getLength()->getType(); 6034 unsigned ElemSz = MI.getElementSizeInBytes(); 6035 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6036 SDValue MC = 6037 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6038 isTC, MachinePointerInfo(MI.getRawDest())); 6039 updateDAGForMaybeTailCall(MC); 6040 return; 6041 } 6042 case Intrinsic::call_preallocated_setup: { 6043 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6044 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6045 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6046 getRoot(), SrcValue); 6047 setValue(&I, Res); 6048 DAG.setRoot(Res); 6049 return; 6050 } 6051 case Intrinsic::call_preallocated_arg: { 6052 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6053 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6054 SDValue Ops[3]; 6055 Ops[0] = getRoot(); 6056 Ops[1] = SrcValue; 6057 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6058 MVT::i32); // arg index 6059 SDValue Res = DAG.getNode( 6060 ISD::PREALLOCATED_ARG, sdl, 6061 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6062 setValue(&I, Res); 6063 DAG.setRoot(Res.getValue(1)); 6064 return; 6065 } 6066 case Intrinsic::dbg_addr: 6067 case Intrinsic::dbg_declare: { 6068 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6069 // they are non-variadic. 6070 const auto &DI = cast<DbgVariableIntrinsic>(I); 6071 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6072 DILocalVariable *Variable = DI.getVariable(); 6073 DIExpression *Expression = DI.getExpression(); 6074 dropDanglingDebugInfo(Variable, Expression); 6075 assert(Variable && "Missing variable"); 6076 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6077 << "\n"); 6078 // Check if address has undef value. 6079 const Value *Address = DI.getVariableLocationOp(0); 6080 if (!Address || isa<UndefValue>(Address) || 6081 (Address->use_empty() && !isa<Argument>(Address))) { 6082 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6083 << " (bad/undef/unused-arg address)\n"); 6084 return; 6085 } 6086 6087 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6088 6089 // Check if this variable can be described by a frame index, typically 6090 // either as a static alloca or a byval parameter. 6091 int FI = std::numeric_limits<int>::max(); 6092 if (const auto *AI = 6093 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6094 if (AI->isStaticAlloca()) { 6095 auto I = FuncInfo.StaticAllocaMap.find(AI); 6096 if (I != FuncInfo.StaticAllocaMap.end()) 6097 FI = I->second; 6098 } 6099 } else if (const auto *Arg = dyn_cast<Argument>( 6100 Address->stripInBoundsConstantOffsets())) { 6101 FI = FuncInfo.getArgumentFrameIndex(Arg); 6102 } 6103 6104 // llvm.dbg.addr is control dependent and always generates indirect 6105 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6106 // the MachineFunction variable table. 6107 if (FI != std::numeric_limits<int>::max()) { 6108 if (Intrinsic == Intrinsic::dbg_addr) { 6109 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6110 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6111 dl, SDNodeOrder); 6112 DAG.AddDbgValue(SDV, isParameter); 6113 } else { 6114 LLVM_DEBUG(dbgs() << "Skipping " << DI 6115 << " (variable info stashed in MF side table)\n"); 6116 } 6117 return; 6118 } 6119 6120 SDValue &N = NodeMap[Address]; 6121 if (!N.getNode() && isa<Argument>(Address)) 6122 // Check unused arguments map. 6123 N = UnusedArgNodeMap[Address]; 6124 SDDbgValue *SDV; 6125 if (N.getNode()) { 6126 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6127 Address = BCI->getOperand(0); 6128 // Parameters are handled specially. 6129 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6130 if (isParameter && FINode) { 6131 // Byval parameter. We have a frame index at this point. 6132 SDV = 6133 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6134 /*IsIndirect*/ true, dl, SDNodeOrder); 6135 } else if (isa<Argument>(Address)) { 6136 // Address is an argument, so try to emit its dbg value using 6137 // virtual register info from the FuncInfo.ValueMap. 6138 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6139 FuncArgumentDbgValueKind::Declare, N); 6140 return; 6141 } else { 6142 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6143 true, dl, SDNodeOrder); 6144 } 6145 DAG.AddDbgValue(SDV, isParameter); 6146 } else { 6147 // If Address is an argument then try to emit its dbg value using 6148 // virtual register info from the FuncInfo.ValueMap. 6149 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6150 FuncArgumentDbgValueKind::Declare, N)) { 6151 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6152 << " (could not emit func-arg dbg_value)\n"); 6153 } 6154 } 6155 return; 6156 } 6157 case Intrinsic::dbg_label: { 6158 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6159 DILabel *Label = DI.getLabel(); 6160 assert(Label && "Missing label"); 6161 6162 SDDbgLabel *SDV; 6163 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6164 DAG.AddDbgLabel(SDV); 6165 return; 6166 } 6167 case Intrinsic::dbg_value: { 6168 const DbgValueInst &DI = cast<DbgValueInst>(I); 6169 assert(DI.getVariable() && "Missing variable"); 6170 6171 DILocalVariable *Variable = DI.getVariable(); 6172 DIExpression *Expression = DI.getExpression(); 6173 dropDanglingDebugInfo(Variable, Expression); 6174 SmallVector<Value *, 4> Values(DI.getValues()); 6175 if (Values.empty()) 6176 return; 6177 6178 if (llvm::is_contained(Values, nullptr)) 6179 return; 6180 6181 bool IsVariadic = DI.hasArgList(); 6182 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6183 SDNodeOrder, IsVariadic)) 6184 addDanglingDebugInfo(&DI, SDNodeOrder); 6185 return; 6186 } 6187 6188 case Intrinsic::eh_typeid_for: { 6189 // Find the type id for the given typeinfo. 6190 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6191 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6192 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6193 setValue(&I, Res); 6194 return; 6195 } 6196 6197 case Intrinsic::eh_return_i32: 6198 case Intrinsic::eh_return_i64: 6199 DAG.getMachineFunction().setCallsEHReturn(true); 6200 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6201 MVT::Other, 6202 getControlRoot(), 6203 getValue(I.getArgOperand(0)), 6204 getValue(I.getArgOperand(1)))); 6205 return; 6206 case Intrinsic::eh_unwind_init: 6207 DAG.getMachineFunction().setCallsUnwindInit(true); 6208 return; 6209 case Intrinsic::eh_dwarf_cfa: 6210 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6211 TLI.getPointerTy(DAG.getDataLayout()), 6212 getValue(I.getArgOperand(0)))); 6213 return; 6214 case Intrinsic::eh_sjlj_callsite: { 6215 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6216 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6217 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6218 6219 MMI.setCurrentCallSite(CI->getZExtValue()); 6220 return; 6221 } 6222 case Intrinsic::eh_sjlj_functioncontext: { 6223 // Get and store the index of the function context. 6224 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6225 AllocaInst *FnCtx = 6226 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6227 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6228 MFI.setFunctionContextIndex(FI); 6229 return; 6230 } 6231 case Intrinsic::eh_sjlj_setjmp: { 6232 SDValue Ops[2]; 6233 Ops[0] = getRoot(); 6234 Ops[1] = getValue(I.getArgOperand(0)); 6235 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6236 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6237 setValue(&I, Op.getValue(0)); 6238 DAG.setRoot(Op.getValue(1)); 6239 return; 6240 } 6241 case Intrinsic::eh_sjlj_longjmp: 6242 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6243 getRoot(), getValue(I.getArgOperand(0)))); 6244 return; 6245 case Intrinsic::eh_sjlj_setup_dispatch: 6246 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6247 getRoot())); 6248 return; 6249 case Intrinsic::masked_gather: 6250 visitMaskedGather(I); 6251 return; 6252 case Intrinsic::masked_load: 6253 visitMaskedLoad(I); 6254 return; 6255 case Intrinsic::masked_scatter: 6256 visitMaskedScatter(I); 6257 return; 6258 case Intrinsic::masked_store: 6259 visitMaskedStore(I); 6260 return; 6261 case Intrinsic::masked_expandload: 6262 visitMaskedLoad(I, true /* IsExpanding */); 6263 return; 6264 case Intrinsic::masked_compressstore: 6265 visitMaskedStore(I, true /* IsCompressing */); 6266 return; 6267 case Intrinsic::powi: 6268 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6269 getValue(I.getArgOperand(1)), DAG)); 6270 return; 6271 case Intrinsic::log: 6272 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6273 return; 6274 case Intrinsic::log2: 6275 setValue(&I, 6276 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6277 return; 6278 case Intrinsic::log10: 6279 setValue(&I, 6280 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6281 return; 6282 case Intrinsic::exp: 6283 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6284 return; 6285 case Intrinsic::exp2: 6286 setValue(&I, 6287 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6288 return; 6289 case Intrinsic::pow: 6290 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6291 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6292 return; 6293 case Intrinsic::sqrt: 6294 case Intrinsic::fabs: 6295 case Intrinsic::sin: 6296 case Intrinsic::cos: 6297 case Intrinsic::floor: 6298 case Intrinsic::ceil: 6299 case Intrinsic::trunc: 6300 case Intrinsic::rint: 6301 case Intrinsic::nearbyint: 6302 case Intrinsic::round: 6303 case Intrinsic::roundeven: 6304 case Intrinsic::canonicalize: { 6305 unsigned Opcode; 6306 switch (Intrinsic) { 6307 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6308 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6309 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6310 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6311 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6312 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6313 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6314 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6315 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6316 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6317 case Intrinsic::round: Opcode = ISD::FROUND; break; 6318 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6319 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6320 } 6321 6322 setValue(&I, DAG.getNode(Opcode, sdl, 6323 getValue(I.getArgOperand(0)).getValueType(), 6324 getValue(I.getArgOperand(0)), Flags)); 6325 return; 6326 } 6327 case Intrinsic::lround: 6328 case Intrinsic::llround: 6329 case Intrinsic::lrint: 6330 case Intrinsic::llrint: { 6331 unsigned Opcode; 6332 switch (Intrinsic) { 6333 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6334 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6335 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6336 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6337 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6338 } 6339 6340 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6341 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6342 getValue(I.getArgOperand(0)))); 6343 return; 6344 } 6345 case Intrinsic::minnum: 6346 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6347 getValue(I.getArgOperand(0)).getValueType(), 6348 getValue(I.getArgOperand(0)), 6349 getValue(I.getArgOperand(1)), Flags)); 6350 return; 6351 case Intrinsic::maxnum: 6352 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6353 getValue(I.getArgOperand(0)).getValueType(), 6354 getValue(I.getArgOperand(0)), 6355 getValue(I.getArgOperand(1)), Flags)); 6356 return; 6357 case Intrinsic::minimum: 6358 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6359 getValue(I.getArgOperand(0)).getValueType(), 6360 getValue(I.getArgOperand(0)), 6361 getValue(I.getArgOperand(1)), Flags)); 6362 return; 6363 case Intrinsic::maximum: 6364 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6365 getValue(I.getArgOperand(0)).getValueType(), 6366 getValue(I.getArgOperand(0)), 6367 getValue(I.getArgOperand(1)), Flags)); 6368 return; 6369 case Intrinsic::copysign: 6370 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6371 getValue(I.getArgOperand(0)).getValueType(), 6372 getValue(I.getArgOperand(0)), 6373 getValue(I.getArgOperand(1)), Flags)); 6374 return; 6375 case Intrinsic::arithmetic_fence: { 6376 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6377 getValue(I.getArgOperand(0)).getValueType(), 6378 getValue(I.getArgOperand(0)), Flags)); 6379 return; 6380 } 6381 case Intrinsic::fma: 6382 setValue(&I, DAG.getNode( 6383 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6384 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6385 getValue(I.getArgOperand(2)), Flags)); 6386 return; 6387 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6388 case Intrinsic::INTRINSIC: 6389 #include "llvm/IR/ConstrainedOps.def" 6390 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6391 return; 6392 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6393 #include "llvm/IR/VPIntrinsics.def" 6394 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6395 return; 6396 case Intrinsic::fptrunc_round: { 6397 // Get the last argument, the metadata and convert it to an integer in the 6398 // call 6399 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6400 Optional<RoundingMode> RoundMode = 6401 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6402 6403 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6404 6405 // Propagate fast-math-flags from IR to node(s). 6406 SDNodeFlags Flags; 6407 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6408 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6409 6410 SDValue Result; 6411 Result = DAG.getNode( 6412 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6413 DAG.getTargetConstant((int)*RoundMode, sdl, 6414 TLI.getPointerTy(DAG.getDataLayout()))); 6415 setValue(&I, Result); 6416 6417 return; 6418 } 6419 case Intrinsic::fmuladd: { 6420 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6421 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6422 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6423 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6424 getValue(I.getArgOperand(0)).getValueType(), 6425 getValue(I.getArgOperand(0)), 6426 getValue(I.getArgOperand(1)), 6427 getValue(I.getArgOperand(2)), Flags)); 6428 } else { 6429 // TODO: Intrinsic calls should have fast-math-flags. 6430 SDValue Mul = DAG.getNode( 6431 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6432 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6433 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6434 getValue(I.getArgOperand(0)).getValueType(), 6435 Mul, getValue(I.getArgOperand(2)), Flags); 6436 setValue(&I, Add); 6437 } 6438 return; 6439 } 6440 case Intrinsic::convert_to_fp16: 6441 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6442 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6443 getValue(I.getArgOperand(0)), 6444 DAG.getTargetConstant(0, sdl, 6445 MVT::i32)))); 6446 return; 6447 case Intrinsic::convert_from_fp16: 6448 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6449 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6450 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6451 getValue(I.getArgOperand(0))))); 6452 return; 6453 case Intrinsic::fptosi_sat: { 6454 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6455 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6456 getValue(I.getArgOperand(0)), 6457 DAG.getValueType(VT.getScalarType()))); 6458 return; 6459 } 6460 case Intrinsic::fptoui_sat: { 6461 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6462 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6463 getValue(I.getArgOperand(0)), 6464 DAG.getValueType(VT.getScalarType()))); 6465 return; 6466 } 6467 case Intrinsic::set_rounding: 6468 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6469 {getRoot(), getValue(I.getArgOperand(0))}); 6470 setValue(&I, Res); 6471 DAG.setRoot(Res.getValue(0)); 6472 return; 6473 case Intrinsic::is_fpclass: { 6474 const DataLayout DLayout = DAG.getDataLayout(); 6475 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6476 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6477 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6478 MachineFunction &MF = DAG.getMachineFunction(); 6479 const Function &F = MF.getFunction(); 6480 SDValue Op = getValue(I.getArgOperand(0)); 6481 SDNodeFlags Flags; 6482 Flags.setNoFPExcept( 6483 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6484 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6485 // expansion can use illegal types. Making expansion early allows 6486 // legalizing these types prior to selection. 6487 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6488 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6489 setValue(&I, Result); 6490 return; 6491 } 6492 6493 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6494 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6495 setValue(&I, V); 6496 return; 6497 } 6498 case Intrinsic::pcmarker: { 6499 SDValue Tmp = getValue(I.getArgOperand(0)); 6500 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6501 return; 6502 } 6503 case Intrinsic::readcyclecounter: { 6504 SDValue Op = getRoot(); 6505 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6506 DAG.getVTList(MVT::i64, MVT::Other), Op); 6507 setValue(&I, Res); 6508 DAG.setRoot(Res.getValue(1)); 6509 return; 6510 } 6511 case Intrinsic::bitreverse: 6512 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6513 getValue(I.getArgOperand(0)).getValueType(), 6514 getValue(I.getArgOperand(0)))); 6515 return; 6516 case Intrinsic::bswap: 6517 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6518 getValue(I.getArgOperand(0)).getValueType(), 6519 getValue(I.getArgOperand(0)))); 6520 return; 6521 case Intrinsic::cttz: { 6522 SDValue Arg = getValue(I.getArgOperand(0)); 6523 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6524 EVT Ty = Arg.getValueType(); 6525 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6526 sdl, Ty, Arg)); 6527 return; 6528 } 6529 case Intrinsic::ctlz: { 6530 SDValue Arg = getValue(I.getArgOperand(0)); 6531 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6532 EVT Ty = Arg.getValueType(); 6533 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6534 sdl, Ty, Arg)); 6535 return; 6536 } 6537 case Intrinsic::ctpop: { 6538 SDValue Arg = getValue(I.getArgOperand(0)); 6539 EVT Ty = Arg.getValueType(); 6540 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6541 return; 6542 } 6543 case Intrinsic::fshl: 6544 case Intrinsic::fshr: { 6545 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6546 SDValue X = getValue(I.getArgOperand(0)); 6547 SDValue Y = getValue(I.getArgOperand(1)); 6548 SDValue Z = getValue(I.getArgOperand(2)); 6549 EVT VT = X.getValueType(); 6550 6551 if (X == Y) { 6552 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6553 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6554 } else { 6555 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6556 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6557 } 6558 return; 6559 } 6560 case Intrinsic::sadd_sat: { 6561 SDValue Op1 = getValue(I.getArgOperand(0)); 6562 SDValue Op2 = getValue(I.getArgOperand(1)); 6563 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6564 return; 6565 } 6566 case Intrinsic::uadd_sat: { 6567 SDValue Op1 = getValue(I.getArgOperand(0)); 6568 SDValue Op2 = getValue(I.getArgOperand(1)); 6569 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6570 return; 6571 } 6572 case Intrinsic::ssub_sat: { 6573 SDValue Op1 = getValue(I.getArgOperand(0)); 6574 SDValue Op2 = getValue(I.getArgOperand(1)); 6575 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6576 return; 6577 } 6578 case Intrinsic::usub_sat: { 6579 SDValue Op1 = getValue(I.getArgOperand(0)); 6580 SDValue Op2 = getValue(I.getArgOperand(1)); 6581 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6582 return; 6583 } 6584 case Intrinsic::sshl_sat: { 6585 SDValue Op1 = getValue(I.getArgOperand(0)); 6586 SDValue Op2 = getValue(I.getArgOperand(1)); 6587 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6588 return; 6589 } 6590 case Intrinsic::ushl_sat: { 6591 SDValue Op1 = getValue(I.getArgOperand(0)); 6592 SDValue Op2 = getValue(I.getArgOperand(1)); 6593 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6594 return; 6595 } 6596 case Intrinsic::smul_fix: 6597 case Intrinsic::umul_fix: 6598 case Intrinsic::smul_fix_sat: 6599 case Intrinsic::umul_fix_sat: { 6600 SDValue Op1 = getValue(I.getArgOperand(0)); 6601 SDValue Op2 = getValue(I.getArgOperand(1)); 6602 SDValue Op3 = getValue(I.getArgOperand(2)); 6603 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6604 Op1.getValueType(), Op1, Op2, Op3)); 6605 return; 6606 } 6607 case Intrinsic::sdiv_fix: 6608 case Intrinsic::udiv_fix: 6609 case Intrinsic::sdiv_fix_sat: 6610 case Intrinsic::udiv_fix_sat: { 6611 SDValue Op1 = getValue(I.getArgOperand(0)); 6612 SDValue Op2 = getValue(I.getArgOperand(1)); 6613 SDValue Op3 = getValue(I.getArgOperand(2)); 6614 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6615 Op1, Op2, Op3, DAG, TLI)); 6616 return; 6617 } 6618 case Intrinsic::smax: { 6619 SDValue Op1 = getValue(I.getArgOperand(0)); 6620 SDValue Op2 = getValue(I.getArgOperand(1)); 6621 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6622 return; 6623 } 6624 case Intrinsic::smin: { 6625 SDValue Op1 = getValue(I.getArgOperand(0)); 6626 SDValue Op2 = getValue(I.getArgOperand(1)); 6627 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6628 return; 6629 } 6630 case Intrinsic::umax: { 6631 SDValue Op1 = getValue(I.getArgOperand(0)); 6632 SDValue Op2 = getValue(I.getArgOperand(1)); 6633 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6634 return; 6635 } 6636 case Intrinsic::umin: { 6637 SDValue Op1 = getValue(I.getArgOperand(0)); 6638 SDValue Op2 = getValue(I.getArgOperand(1)); 6639 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6640 return; 6641 } 6642 case Intrinsic::abs: { 6643 // TODO: Preserve "int min is poison" arg in SDAG? 6644 SDValue Op1 = getValue(I.getArgOperand(0)); 6645 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6646 return; 6647 } 6648 case Intrinsic::stacksave: { 6649 SDValue Op = getRoot(); 6650 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6651 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6652 setValue(&I, Res); 6653 DAG.setRoot(Res.getValue(1)); 6654 return; 6655 } 6656 case Intrinsic::stackrestore: 6657 Res = getValue(I.getArgOperand(0)); 6658 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6659 return; 6660 case Intrinsic::get_dynamic_area_offset: { 6661 SDValue Op = getRoot(); 6662 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6663 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6664 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6665 // target. 6666 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6667 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6668 " intrinsic!"); 6669 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6670 Op); 6671 DAG.setRoot(Op); 6672 setValue(&I, Res); 6673 return; 6674 } 6675 case Intrinsic::stackguard: { 6676 MachineFunction &MF = DAG.getMachineFunction(); 6677 const Module &M = *MF.getFunction().getParent(); 6678 SDValue Chain = getRoot(); 6679 if (TLI.useLoadStackGuardNode()) { 6680 Res = getLoadStackGuard(DAG, sdl, Chain); 6681 } else { 6682 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6683 const Value *Global = TLI.getSDagStackGuard(M); 6684 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6685 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6686 MachinePointerInfo(Global, 0), Align, 6687 MachineMemOperand::MOVolatile); 6688 } 6689 if (TLI.useStackGuardXorFP()) 6690 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6691 DAG.setRoot(Chain); 6692 setValue(&I, Res); 6693 return; 6694 } 6695 case Intrinsic::stackprotector: { 6696 // Emit code into the DAG to store the stack guard onto the stack. 6697 MachineFunction &MF = DAG.getMachineFunction(); 6698 MachineFrameInfo &MFI = MF.getFrameInfo(); 6699 SDValue Src, Chain = getRoot(); 6700 6701 if (TLI.useLoadStackGuardNode()) 6702 Src = getLoadStackGuard(DAG, sdl, Chain); 6703 else 6704 Src = getValue(I.getArgOperand(0)); // The guard's value. 6705 6706 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6707 6708 int FI = FuncInfo.StaticAllocaMap[Slot]; 6709 MFI.setStackProtectorIndex(FI); 6710 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6711 6712 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6713 6714 // Store the stack protector onto the stack. 6715 Res = DAG.getStore( 6716 Chain, sdl, Src, FIN, 6717 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6718 MaybeAlign(), MachineMemOperand::MOVolatile); 6719 setValue(&I, Res); 6720 DAG.setRoot(Res); 6721 return; 6722 } 6723 case Intrinsic::objectsize: 6724 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6725 6726 case Intrinsic::is_constant: 6727 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6728 6729 case Intrinsic::annotation: 6730 case Intrinsic::ptr_annotation: 6731 case Intrinsic::launder_invariant_group: 6732 case Intrinsic::strip_invariant_group: 6733 // Drop the intrinsic, but forward the value 6734 setValue(&I, getValue(I.getOperand(0))); 6735 return; 6736 6737 case Intrinsic::assume: 6738 case Intrinsic::experimental_noalias_scope_decl: 6739 case Intrinsic::var_annotation: 6740 case Intrinsic::sideeffect: 6741 // Discard annotate attributes, noalias scope declarations, assumptions, and 6742 // artificial side-effects. 6743 return; 6744 6745 case Intrinsic::codeview_annotation: { 6746 // Emit a label associated with this metadata. 6747 MachineFunction &MF = DAG.getMachineFunction(); 6748 MCSymbol *Label = 6749 MF.getMMI().getContext().createTempSymbol("annotation", true); 6750 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6751 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6752 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6753 DAG.setRoot(Res); 6754 return; 6755 } 6756 6757 case Intrinsic::init_trampoline: { 6758 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6759 6760 SDValue Ops[6]; 6761 Ops[0] = getRoot(); 6762 Ops[1] = getValue(I.getArgOperand(0)); 6763 Ops[2] = getValue(I.getArgOperand(1)); 6764 Ops[3] = getValue(I.getArgOperand(2)); 6765 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6766 Ops[5] = DAG.getSrcValue(F); 6767 6768 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6769 6770 DAG.setRoot(Res); 6771 return; 6772 } 6773 case Intrinsic::adjust_trampoline: 6774 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6775 TLI.getPointerTy(DAG.getDataLayout()), 6776 getValue(I.getArgOperand(0)))); 6777 return; 6778 case Intrinsic::gcroot: { 6779 assert(DAG.getMachineFunction().getFunction().hasGC() && 6780 "only valid in functions with gc specified, enforced by Verifier"); 6781 assert(GFI && "implied by previous"); 6782 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6783 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6784 6785 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6786 GFI->addStackRoot(FI->getIndex(), TypeMap); 6787 return; 6788 } 6789 case Intrinsic::gcread: 6790 case Intrinsic::gcwrite: 6791 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6792 case Intrinsic::flt_rounds: 6793 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6794 setValue(&I, Res); 6795 DAG.setRoot(Res.getValue(1)); 6796 return; 6797 6798 case Intrinsic::expect: 6799 // Just replace __builtin_expect(exp, c) with EXP. 6800 setValue(&I, getValue(I.getArgOperand(0))); 6801 return; 6802 6803 case Intrinsic::ubsantrap: 6804 case Intrinsic::debugtrap: 6805 case Intrinsic::trap: { 6806 StringRef TrapFuncName = 6807 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6808 if (TrapFuncName.empty()) { 6809 switch (Intrinsic) { 6810 case Intrinsic::trap: 6811 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6812 break; 6813 case Intrinsic::debugtrap: 6814 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6815 break; 6816 case Intrinsic::ubsantrap: 6817 DAG.setRoot(DAG.getNode( 6818 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6819 DAG.getTargetConstant( 6820 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6821 MVT::i32))); 6822 break; 6823 default: llvm_unreachable("unknown trap intrinsic"); 6824 } 6825 return; 6826 } 6827 TargetLowering::ArgListTy Args; 6828 if (Intrinsic == Intrinsic::ubsantrap) { 6829 Args.push_back(TargetLoweringBase::ArgListEntry()); 6830 Args[0].Val = I.getArgOperand(0); 6831 Args[0].Node = getValue(Args[0].Val); 6832 Args[0].Ty = Args[0].Val->getType(); 6833 } 6834 6835 TargetLowering::CallLoweringInfo CLI(DAG); 6836 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6837 CallingConv::C, I.getType(), 6838 DAG.getExternalSymbol(TrapFuncName.data(), 6839 TLI.getPointerTy(DAG.getDataLayout())), 6840 std::move(Args)); 6841 6842 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6843 DAG.setRoot(Result.second); 6844 return; 6845 } 6846 6847 case Intrinsic::uadd_with_overflow: 6848 case Intrinsic::sadd_with_overflow: 6849 case Intrinsic::usub_with_overflow: 6850 case Intrinsic::ssub_with_overflow: 6851 case Intrinsic::umul_with_overflow: 6852 case Intrinsic::smul_with_overflow: { 6853 ISD::NodeType Op; 6854 switch (Intrinsic) { 6855 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6856 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6857 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6858 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6859 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6860 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6861 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6862 } 6863 SDValue Op1 = getValue(I.getArgOperand(0)); 6864 SDValue Op2 = getValue(I.getArgOperand(1)); 6865 6866 EVT ResultVT = Op1.getValueType(); 6867 EVT OverflowVT = MVT::i1; 6868 if (ResultVT.isVector()) 6869 OverflowVT = EVT::getVectorVT( 6870 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6871 6872 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6873 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6874 return; 6875 } 6876 case Intrinsic::prefetch: { 6877 SDValue Ops[5]; 6878 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6879 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6880 Ops[0] = DAG.getRoot(); 6881 Ops[1] = getValue(I.getArgOperand(0)); 6882 Ops[2] = getValue(I.getArgOperand(1)); 6883 Ops[3] = getValue(I.getArgOperand(2)); 6884 Ops[4] = getValue(I.getArgOperand(3)); 6885 SDValue Result = DAG.getMemIntrinsicNode( 6886 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6887 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6888 /* align */ None, Flags); 6889 6890 // Chain the prefetch in parallell with any pending loads, to stay out of 6891 // the way of later optimizations. 6892 PendingLoads.push_back(Result); 6893 Result = getRoot(); 6894 DAG.setRoot(Result); 6895 return; 6896 } 6897 case Intrinsic::lifetime_start: 6898 case Intrinsic::lifetime_end: { 6899 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6900 // Stack coloring is not enabled in O0, discard region information. 6901 if (TM.getOptLevel() == CodeGenOpt::None) 6902 return; 6903 6904 const int64_t ObjectSize = 6905 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6906 Value *const ObjectPtr = I.getArgOperand(1); 6907 SmallVector<const Value *, 4> Allocas; 6908 getUnderlyingObjects(ObjectPtr, Allocas); 6909 6910 for (const Value *Alloca : Allocas) { 6911 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6912 6913 // Could not find an Alloca. 6914 if (!LifetimeObject) 6915 continue; 6916 6917 // First check that the Alloca is static, otherwise it won't have a 6918 // valid frame index. 6919 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6920 if (SI == FuncInfo.StaticAllocaMap.end()) 6921 return; 6922 6923 const int FrameIndex = SI->second; 6924 int64_t Offset; 6925 if (GetPointerBaseWithConstantOffset( 6926 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6927 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6928 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6929 Offset); 6930 DAG.setRoot(Res); 6931 } 6932 return; 6933 } 6934 case Intrinsic::pseudoprobe: { 6935 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6936 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6937 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6938 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6939 DAG.setRoot(Res); 6940 return; 6941 } 6942 case Intrinsic::invariant_start: 6943 // Discard region information. 6944 setValue(&I, 6945 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6946 return; 6947 case Intrinsic::invariant_end: 6948 // Discard region information. 6949 return; 6950 case Intrinsic::clear_cache: 6951 /// FunctionName may be null. 6952 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6953 lowerCallToExternalSymbol(I, FunctionName); 6954 return; 6955 case Intrinsic::donothing: 6956 case Intrinsic::seh_try_begin: 6957 case Intrinsic::seh_scope_begin: 6958 case Intrinsic::seh_try_end: 6959 case Intrinsic::seh_scope_end: 6960 // ignore 6961 return; 6962 case Intrinsic::experimental_stackmap: 6963 visitStackmap(I); 6964 return; 6965 case Intrinsic::experimental_patchpoint_void: 6966 case Intrinsic::experimental_patchpoint_i64: 6967 visitPatchpoint(I); 6968 return; 6969 case Intrinsic::experimental_gc_statepoint: 6970 LowerStatepoint(cast<GCStatepointInst>(I)); 6971 return; 6972 case Intrinsic::experimental_gc_result: 6973 visitGCResult(cast<GCResultInst>(I)); 6974 return; 6975 case Intrinsic::experimental_gc_relocate: 6976 visitGCRelocate(cast<GCRelocateInst>(I)); 6977 return; 6978 case Intrinsic::instrprof_cover: 6979 llvm_unreachable("instrprof failed to lower a cover"); 6980 case Intrinsic::instrprof_increment: 6981 llvm_unreachable("instrprof failed to lower an increment"); 6982 case Intrinsic::instrprof_value_profile: 6983 llvm_unreachable("instrprof failed to lower a value profiling call"); 6984 case Intrinsic::localescape: { 6985 MachineFunction &MF = DAG.getMachineFunction(); 6986 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6987 6988 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6989 // is the same on all targets. 6990 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6991 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6992 if (isa<ConstantPointerNull>(Arg)) 6993 continue; // Skip null pointers. They represent a hole in index space. 6994 AllocaInst *Slot = cast<AllocaInst>(Arg); 6995 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6996 "can only escape static allocas"); 6997 int FI = FuncInfo.StaticAllocaMap[Slot]; 6998 MCSymbol *FrameAllocSym = 6999 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7000 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7001 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7002 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7003 .addSym(FrameAllocSym) 7004 .addFrameIndex(FI); 7005 } 7006 7007 return; 7008 } 7009 7010 case Intrinsic::localrecover: { 7011 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7012 MachineFunction &MF = DAG.getMachineFunction(); 7013 7014 // Get the symbol that defines the frame offset. 7015 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7016 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7017 unsigned IdxVal = 7018 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7019 MCSymbol *FrameAllocSym = 7020 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7021 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7022 7023 Value *FP = I.getArgOperand(1); 7024 SDValue FPVal = getValue(FP); 7025 EVT PtrVT = FPVal.getValueType(); 7026 7027 // Create a MCSymbol for the label to avoid any target lowering 7028 // that would make this PC relative. 7029 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7030 SDValue OffsetVal = 7031 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7032 7033 // Add the offset to the FP. 7034 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7035 setValue(&I, Add); 7036 7037 return; 7038 } 7039 7040 case Intrinsic::eh_exceptionpointer: 7041 case Intrinsic::eh_exceptioncode: { 7042 // Get the exception pointer vreg, copy from it, and resize it to fit. 7043 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7044 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7045 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7046 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7047 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7048 if (Intrinsic == Intrinsic::eh_exceptioncode) 7049 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7050 setValue(&I, N); 7051 return; 7052 } 7053 case Intrinsic::xray_customevent: { 7054 // Here we want to make sure that the intrinsic behaves as if it has a 7055 // specific calling convention, and only for x86_64. 7056 // FIXME: Support other platforms later. 7057 const auto &Triple = DAG.getTarget().getTargetTriple(); 7058 if (Triple.getArch() != Triple::x86_64) 7059 return; 7060 7061 SmallVector<SDValue, 8> Ops; 7062 7063 // We want to say that we always want the arguments in registers. 7064 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7065 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7066 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7067 SDValue Chain = getRoot(); 7068 Ops.push_back(LogEntryVal); 7069 Ops.push_back(StrSizeVal); 7070 Ops.push_back(Chain); 7071 7072 // We need to enforce the calling convention for the callsite, so that 7073 // argument ordering is enforced correctly, and that register allocation can 7074 // see that some registers may be assumed clobbered and have to preserve 7075 // them across calls to the intrinsic. 7076 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7077 sdl, NodeTys, Ops); 7078 SDValue patchableNode = SDValue(MN, 0); 7079 DAG.setRoot(patchableNode); 7080 setValue(&I, patchableNode); 7081 return; 7082 } 7083 case Intrinsic::xray_typedevent: { 7084 // Here we want to make sure that the intrinsic behaves as if it has a 7085 // specific calling convention, and only for x86_64. 7086 // FIXME: Support other platforms later. 7087 const auto &Triple = DAG.getTarget().getTargetTriple(); 7088 if (Triple.getArch() != Triple::x86_64) 7089 return; 7090 7091 SmallVector<SDValue, 8> Ops; 7092 7093 // We want to say that we always want the arguments in registers. 7094 // It's unclear to me how manipulating the selection DAG here forces callers 7095 // to provide arguments in registers instead of on the stack. 7096 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7097 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7098 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7099 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7100 SDValue Chain = getRoot(); 7101 Ops.push_back(LogTypeId); 7102 Ops.push_back(LogEntryVal); 7103 Ops.push_back(StrSizeVal); 7104 Ops.push_back(Chain); 7105 7106 // We need to enforce the calling convention for the callsite, so that 7107 // argument ordering is enforced correctly, and that register allocation can 7108 // see that some registers may be assumed clobbered and have to preserve 7109 // them across calls to the intrinsic. 7110 MachineSDNode *MN = DAG.getMachineNode( 7111 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7112 SDValue patchableNode = SDValue(MN, 0); 7113 DAG.setRoot(patchableNode); 7114 setValue(&I, patchableNode); 7115 return; 7116 } 7117 case Intrinsic::experimental_deoptimize: 7118 LowerDeoptimizeCall(&I); 7119 return; 7120 case Intrinsic::experimental_stepvector: 7121 visitStepVector(I); 7122 return; 7123 case Intrinsic::vector_reduce_fadd: 7124 case Intrinsic::vector_reduce_fmul: 7125 case Intrinsic::vector_reduce_add: 7126 case Intrinsic::vector_reduce_mul: 7127 case Intrinsic::vector_reduce_and: 7128 case Intrinsic::vector_reduce_or: 7129 case Intrinsic::vector_reduce_xor: 7130 case Intrinsic::vector_reduce_smax: 7131 case Intrinsic::vector_reduce_smin: 7132 case Intrinsic::vector_reduce_umax: 7133 case Intrinsic::vector_reduce_umin: 7134 case Intrinsic::vector_reduce_fmax: 7135 case Intrinsic::vector_reduce_fmin: 7136 visitVectorReduce(I, Intrinsic); 7137 return; 7138 7139 case Intrinsic::icall_branch_funnel: { 7140 SmallVector<SDValue, 16> Ops; 7141 Ops.push_back(getValue(I.getArgOperand(0))); 7142 7143 int64_t Offset; 7144 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7145 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7146 if (!Base) 7147 report_fatal_error( 7148 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7149 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7150 7151 struct BranchFunnelTarget { 7152 int64_t Offset; 7153 SDValue Target; 7154 }; 7155 SmallVector<BranchFunnelTarget, 8> Targets; 7156 7157 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7158 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7159 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7160 if (ElemBase != Base) 7161 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7162 "to the same GlobalValue"); 7163 7164 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7165 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7166 if (!GA) 7167 report_fatal_error( 7168 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7169 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7170 GA->getGlobal(), sdl, Val.getValueType(), 7171 GA->getOffset())}); 7172 } 7173 llvm::sort(Targets, 7174 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7175 return T1.Offset < T2.Offset; 7176 }); 7177 7178 for (auto &T : Targets) { 7179 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7180 Ops.push_back(T.Target); 7181 } 7182 7183 Ops.push_back(DAG.getRoot()); // Chain 7184 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7185 MVT::Other, Ops), 7186 0); 7187 DAG.setRoot(N); 7188 setValue(&I, N); 7189 HasTailCall = true; 7190 return; 7191 } 7192 7193 case Intrinsic::wasm_landingpad_index: 7194 // Information this intrinsic contained has been transferred to 7195 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7196 // delete it now. 7197 return; 7198 7199 case Intrinsic::aarch64_settag: 7200 case Intrinsic::aarch64_settag_zero: { 7201 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7202 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7203 SDValue Val = TSI.EmitTargetCodeForSetTag( 7204 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7205 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7206 ZeroMemory); 7207 DAG.setRoot(Val); 7208 setValue(&I, Val); 7209 return; 7210 } 7211 case Intrinsic::ptrmask: { 7212 SDValue Ptr = getValue(I.getOperand(0)); 7213 SDValue Const = getValue(I.getOperand(1)); 7214 7215 EVT PtrVT = Ptr.getValueType(); 7216 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7217 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7218 return; 7219 } 7220 case Intrinsic::threadlocal_address: { 7221 setValue(&I, getValue(I.getOperand(0))); 7222 return; 7223 } 7224 case Intrinsic::get_active_lane_mask: { 7225 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7226 SDValue Index = getValue(I.getOperand(0)); 7227 EVT ElementVT = Index.getValueType(); 7228 7229 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7230 visitTargetIntrinsic(I, Intrinsic); 7231 return; 7232 } 7233 7234 SDValue TripCount = getValue(I.getOperand(1)); 7235 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7236 7237 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7238 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7239 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7240 SDValue VectorInduction = DAG.getNode( 7241 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7242 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7243 VectorTripCount, ISD::CondCode::SETULT); 7244 setValue(&I, SetCC); 7245 return; 7246 } 7247 case Intrinsic::vector_insert: { 7248 SDValue Vec = getValue(I.getOperand(0)); 7249 SDValue SubVec = getValue(I.getOperand(1)); 7250 SDValue Index = getValue(I.getOperand(2)); 7251 7252 // The intrinsic's index type is i64, but the SDNode requires an index type 7253 // suitable for the target. Convert the index as required. 7254 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7255 if (Index.getValueType() != VectorIdxTy) 7256 Index = DAG.getVectorIdxConstant( 7257 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7258 7259 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7260 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7261 Index)); 7262 return; 7263 } 7264 case Intrinsic::vector_extract: { 7265 SDValue Vec = getValue(I.getOperand(0)); 7266 SDValue Index = getValue(I.getOperand(1)); 7267 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7268 7269 // The intrinsic's index type is i64, but the SDNode requires an index type 7270 // suitable for the target. Convert the index as required. 7271 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7272 if (Index.getValueType() != VectorIdxTy) 7273 Index = DAG.getVectorIdxConstant( 7274 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7275 7276 setValue(&I, 7277 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7278 return; 7279 } 7280 case Intrinsic::experimental_vector_reverse: 7281 visitVectorReverse(I); 7282 return; 7283 case Intrinsic::experimental_vector_splice: 7284 visitVectorSplice(I); 7285 return; 7286 } 7287 } 7288 7289 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7290 const ConstrainedFPIntrinsic &FPI) { 7291 SDLoc sdl = getCurSDLoc(); 7292 7293 // We do not need to serialize constrained FP intrinsics against 7294 // each other or against (nonvolatile) loads, so they can be 7295 // chained like loads. 7296 SDValue Chain = DAG.getRoot(); 7297 SmallVector<SDValue, 4> Opers; 7298 Opers.push_back(Chain); 7299 if (FPI.isUnaryOp()) { 7300 Opers.push_back(getValue(FPI.getArgOperand(0))); 7301 } else if (FPI.isTernaryOp()) { 7302 Opers.push_back(getValue(FPI.getArgOperand(0))); 7303 Opers.push_back(getValue(FPI.getArgOperand(1))); 7304 Opers.push_back(getValue(FPI.getArgOperand(2))); 7305 } else { 7306 Opers.push_back(getValue(FPI.getArgOperand(0))); 7307 Opers.push_back(getValue(FPI.getArgOperand(1))); 7308 } 7309 7310 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7311 assert(Result.getNode()->getNumValues() == 2); 7312 7313 // Push node to the appropriate list so that future instructions can be 7314 // chained up correctly. 7315 SDValue OutChain = Result.getValue(1); 7316 switch (EB) { 7317 case fp::ExceptionBehavior::ebIgnore: 7318 // The only reason why ebIgnore nodes still need to be chained is that 7319 // they might depend on the current rounding mode, and therefore must 7320 // not be moved across instruction that may change that mode. 7321 [[fallthrough]]; 7322 case fp::ExceptionBehavior::ebMayTrap: 7323 // These must not be moved across calls or instructions that may change 7324 // floating-point exception masks. 7325 PendingConstrainedFP.push_back(OutChain); 7326 break; 7327 case fp::ExceptionBehavior::ebStrict: 7328 // These must not be moved across calls or instructions that may change 7329 // floating-point exception masks or read floating-point exception flags. 7330 // In addition, they cannot be optimized out even if unused. 7331 PendingConstrainedFPStrict.push_back(OutChain); 7332 break; 7333 } 7334 }; 7335 7336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7337 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7338 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7339 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7340 7341 SDNodeFlags Flags; 7342 if (EB == fp::ExceptionBehavior::ebIgnore) 7343 Flags.setNoFPExcept(true); 7344 7345 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7346 Flags.copyFMF(*FPOp); 7347 7348 unsigned Opcode; 7349 switch (FPI.getIntrinsicID()) { 7350 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7351 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7352 case Intrinsic::INTRINSIC: \ 7353 Opcode = ISD::STRICT_##DAGN; \ 7354 break; 7355 #include "llvm/IR/ConstrainedOps.def" 7356 case Intrinsic::experimental_constrained_fmuladd: { 7357 Opcode = ISD::STRICT_FMA; 7358 // Break fmuladd into fmul and fadd. 7359 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7360 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7361 Opers.pop_back(); 7362 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7363 pushOutChain(Mul, EB); 7364 Opcode = ISD::STRICT_FADD; 7365 Opers.clear(); 7366 Opers.push_back(Mul.getValue(1)); 7367 Opers.push_back(Mul.getValue(0)); 7368 Opers.push_back(getValue(FPI.getArgOperand(2))); 7369 } 7370 break; 7371 } 7372 } 7373 7374 // A few strict DAG nodes carry additional operands that are not 7375 // set up by the default code above. 7376 switch (Opcode) { 7377 default: break; 7378 case ISD::STRICT_FP_ROUND: 7379 Opers.push_back( 7380 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7381 break; 7382 case ISD::STRICT_FSETCC: 7383 case ISD::STRICT_FSETCCS: { 7384 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7385 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7386 if (TM.Options.NoNaNsFPMath) 7387 Condition = getFCmpCodeWithoutNaN(Condition); 7388 Opers.push_back(DAG.getCondCode(Condition)); 7389 break; 7390 } 7391 } 7392 7393 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7394 pushOutChain(Result, EB); 7395 7396 SDValue FPResult = Result.getValue(0); 7397 setValue(&FPI, FPResult); 7398 } 7399 7400 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7401 std::optional<unsigned> ResOPC; 7402 switch (VPIntrin.getIntrinsicID()) { 7403 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7404 case Intrinsic::VPID: \ 7405 ResOPC = ISD::VPSD; \ 7406 break; 7407 #include "llvm/IR/VPIntrinsics.def" 7408 } 7409 7410 if (!ResOPC) 7411 llvm_unreachable( 7412 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7413 7414 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7415 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7416 if (VPIntrin.getFastMathFlags().allowReassoc()) 7417 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7418 : ISD::VP_REDUCE_FMUL; 7419 } 7420 7421 return *ResOPC; 7422 } 7423 7424 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7425 SmallVector<SDValue, 7> &OpValues) { 7426 SDLoc DL = getCurSDLoc(); 7427 Value *PtrOperand = VPIntrin.getArgOperand(0); 7428 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7429 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7430 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7431 SDValue LD; 7432 bool AddToChain = true; 7433 // Do not serialize variable-length loads of constant memory with 7434 // anything. 7435 if (!Alignment) 7436 Alignment = DAG.getEVTAlign(VT); 7437 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7438 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7439 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7440 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7441 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7442 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7443 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7444 MMO, false /*IsExpanding */); 7445 if (AddToChain) 7446 PendingLoads.push_back(LD.getValue(1)); 7447 setValue(&VPIntrin, LD); 7448 } 7449 7450 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7451 SmallVector<SDValue, 7> &OpValues) { 7452 SDLoc DL = getCurSDLoc(); 7453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7454 Value *PtrOperand = VPIntrin.getArgOperand(0); 7455 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7456 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7457 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7458 SDValue LD; 7459 if (!Alignment) 7460 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7461 unsigned AS = 7462 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7463 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7464 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7465 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7466 SDValue Base, Index, Scale; 7467 ISD::MemIndexType IndexType; 7468 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7469 this, VPIntrin.getParent(), 7470 VT.getScalarStoreSize()); 7471 if (!UniformBase) { 7472 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7473 Index = getValue(PtrOperand); 7474 IndexType = ISD::SIGNED_SCALED; 7475 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7476 } 7477 EVT IdxVT = Index.getValueType(); 7478 EVT EltTy = IdxVT.getVectorElementType(); 7479 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7480 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7481 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7482 } 7483 LD = DAG.getGatherVP( 7484 DAG.getVTList(VT, MVT::Other), VT, DL, 7485 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7486 IndexType); 7487 PendingLoads.push_back(LD.getValue(1)); 7488 setValue(&VPIntrin, LD); 7489 } 7490 7491 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7492 SmallVector<SDValue, 7> &OpValues) { 7493 SDLoc DL = getCurSDLoc(); 7494 Value *PtrOperand = VPIntrin.getArgOperand(1); 7495 EVT VT = OpValues[0].getValueType(); 7496 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7497 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7498 SDValue ST; 7499 if (!Alignment) 7500 Alignment = DAG.getEVTAlign(VT); 7501 SDValue Ptr = OpValues[1]; 7502 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7503 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7504 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7505 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7506 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7507 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7508 /* IsTruncating */ false, /*IsCompressing*/ false); 7509 DAG.setRoot(ST); 7510 setValue(&VPIntrin, ST); 7511 } 7512 7513 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7514 SmallVector<SDValue, 7> &OpValues) { 7515 SDLoc DL = getCurSDLoc(); 7516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7517 Value *PtrOperand = VPIntrin.getArgOperand(1); 7518 EVT VT = OpValues[0].getValueType(); 7519 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7520 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7521 SDValue ST; 7522 if (!Alignment) 7523 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7524 unsigned AS = 7525 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7526 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7527 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7528 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7529 SDValue Base, Index, Scale; 7530 ISD::MemIndexType IndexType; 7531 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7532 this, VPIntrin.getParent(), 7533 VT.getScalarStoreSize()); 7534 if (!UniformBase) { 7535 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7536 Index = getValue(PtrOperand); 7537 IndexType = ISD::SIGNED_SCALED; 7538 Scale = 7539 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7540 } 7541 EVT IdxVT = Index.getValueType(); 7542 EVT EltTy = IdxVT.getVectorElementType(); 7543 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7544 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7545 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7546 } 7547 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7548 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7549 OpValues[2], OpValues[3]}, 7550 MMO, IndexType); 7551 DAG.setRoot(ST); 7552 setValue(&VPIntrin, ST); 7553 } 7554 7555 void SelectionDAGBuilder::visitVPStridedLoad( 7556 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7557 SDLoc DL = getCurSDLoc(); 7558 Value *PtrOperand = VPIntrin.getArgOperand(0); 7559 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7560 if (!Alignment) 7561 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7562 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7563 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7564 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7565 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7566 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7567 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7568 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7569 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7570 7571 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7572 OpValues[2], OpValues[3], MMO, 7573 false /*IsExpanding*/); 7574 7575 if (AddToChain) 7576 PendingLoads.push_back(LD.getValue(1)); 7577 setValue(&VPIntrin, LD); 7578 } 7579 7580 void SelectionDAGBuilder::visitVPStridedStore( 7581 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7582 SDLoc DL = getCurSDLoc(); 7583 Value *PtrOperand = VPIntrin.getArgOperand(1); 7584 EVT VT = OpValues[0].getValueType(); 7585 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7586 if (!Alignment) 7587 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7588 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7589 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7590 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7591 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7592 7593 SDValue ST = DAG.getStridedStoreVP( 7594 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7595 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7596 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7597 /*IsCompressing*/ false); 7598 7599 DAG.setRoot(ST); 7600 setValue(&VPIntrin, ST); 7601 } 7602 7603 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7604 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7605 SDLoc DL = getCurSDLoc(); 7606 7607 ISD::CondCode Condition; 7608 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7609 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7610 if (IsFP) { 7611 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7612 // flags, but calls that don't return floating-point types can't be 7613 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7614 Condition = getFCmpCondCode(CondCode); 7615 if (TM.Options.NoNaNsFPMath) 7616 Condition = getFCmpCodeWithoutNaN(Condition); 7617 } else { 7618 Condition = getICmpCondCode(CondCode); 7619 } 7620 7621 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7622 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7623 // #2 is the condition code 7624 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7625 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7626 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7627 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7628 "Unexpected target EVL type"); 7629 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7630 7631 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7632 VPIntrin.getType()); 7633 setValue(&VPIntrin, 7634 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7635 } 7636 7637 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7638 const VPIntrinsic &VPIntrin) { 7639 SDLoc DL = getCurSDLoc(); 7640 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7641 7642 auto IID = VPIntrin.getIntrinsicID(); 7643 7644 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7645 return visitVPCmp(*CmpI); 7646 7647 SmallVector<EVT, 4> ValueVTs; 7648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7649 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7650 SDVTList VTs = DAG.getVTList(ValueVTs); 7651 7652 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7653 7654 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7655 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7656 "Unexpected target EVL type"); 7657 7658 // Request operands. 7659 SmallVector<SDValue, 7> OpValues; 7660 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7661 auto Op = getValue(VPIntrin.getArgOperand(I)); 7662 if (I == EVLParamPos) 7663 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7664 OpValues.push_back(Op); 7665 } 7666 7667 switch (Opcode) { 7668 default: { 7669 SDNodeFlags SDFlags; 7670 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7671 SDFlags.copyFMF(*FPMO); 7672 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7673 setValue(&VPIntrin, Result); 7674 break; 7675 } 7676 case ISD::VP_LOAD: 7677 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7678 break; 7679 case ISD::VP_GATHER: 7680 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7681 break; 7682 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7683 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7684 break; 7685 case ISD::VP_STORE: 7686 visitVPStore(VPIntrin, OpValues); 7687 break; 7688 case ISD::VP_SCATTER: 7689 visitVPScatter(VPIntrin, OpValues); 7690 break; 7691 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7692 visitVPStridedStore(VPIntrin, OpValues); 7693 break; 7694 case ISD::VP_FMULADD: { 7695 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7696 SDNodeFlags SDFlags; 7697 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7698 SDFlags.copyFMF(*FPMO); 7699 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7700 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7701 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7702 } else { 7703 SDValue Mul = DAG.getNode( 7704 ISD::VP_FMUL, DL, VTs, 7705 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7706 SDValue Add = 7707 DAG.getNode(ISD::VP_FADD, DL, VTs, 7708 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7709 setValue(&VPIntrin, Add); 7710 } 7711 break; 7712 } 7713 case ISD::VP_INTTOPTR: { 7714 SDValue N = OpValues[0]; 7715 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7716 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7717 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7718 OpValues[2]); 7719 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7720 OpValues[2]); 7721 setValue(&VPIntrin, N); 7722 break; 7723 } 7724 case ISD::VP_PTRTOINT: { 7725 SDValue N = OpValues[0]; 7726 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7727 VPIntrin.getType()); 7728 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 7729 VPIntrin.getOperand(0)->getType()); 7730 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7731 OpValues[2]); 7732 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7733 OpValues[2]); 7734 setValue(&VPIntrin, N); 7735 break; 7736 } 7737 } 7738 } 7739 7740 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7741 const BasicBlock *EHPadBB, 7742 MCSymbol *&BeginLabel) { 7743 MachineFunction &MF = DAG.getMachineFunction(); 7744 MachineModuleInfo &MMI = MF.getMMI(); 7745 7746 // Insert a label before the invoke call to mark the try range. This can be 7747 // used to detect deletion of the invoke via the MachineModuleInfo. 7748 BeginLabel = MMI.getContext().createTempSymbol(); 7749 7750 // For SjLj, keep track of which landing pads go with which invokes 7751 // so as to maintain the ordering of pads in the LSDA. 7752 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7753 if (CallSiteIndex) { 7754 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7755 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7756 7757 // Now that the call site is handled, stop tracking it. 7758 MMI.setCurrentCallSite(0); 7759 } 7760 7761 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7762 } 7763 7764 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7765 const BasicBlock *EHPadBB, 7766 MCSymbol *BeginLabel) { 7767 assert(BeginLabel && "BeginLabel should've been set"); 7768 7769 MachineFunction &MF = DAG.getMachineFunction(); 7770 MachineModuleInfo &MMI = MF.getMMI(); 7771 7772 // Insert a label at the end of the invoke call to mark the try range. This 7773 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7774 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7775 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7776 7777 // Inform MachineModuleInfo of range. 7778 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7779 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7780 // actually use outlined funclets and their LSDA info style. 7781 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7782 assert(II && "II should've been set"); 7783 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7784 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7785 } else if (!isScopedEHPersonality(Pers)) { 7786 assert(EHPadBB); 7787 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7788 } 7789 7790 return Chain; 7791 } 7792 7793 std::pair<SDValue, SDValue> 7794 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7795 const BasicBlock *EHPadBB) { 7796 MCSymbol *BeginLabel = nullptr; 7797 7798 if (EHPadBB) { 7799 // Both PendingLoads and PendingExports must be flushed here; 7800 // this call might not return. 7801 (void)getRoot(); 7802 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7803 CLI.setChain(getRoot()); 7804 } 7805 7806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7807 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7808 7809 assert((CLI.IsTailCall || Result.second.getNode()) && 7810 "Non-null chain expected with non-tail call!"); 7811 assert((Result.second.getNode() || !Result.first.getNode()) && 7812 "Null value expected with tail call!"); 7813 7814 if (!Result.second.getNode()) { 7815 // As a special case, a null chain means that a tail call has been emitted 7816 // and the DAG root is already updated. 7817 HasTailCall = true; 7818 7819 // Since there's no actual continuation from this block, nothing can be 7820 // relying on us setting vregs for them. 7821 PendingExports.clear(); 7822 } else { 7823 DAG.setRoot(Result.second); 7824 } 7825 7826 if (EHPadBB) { 7827 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7828 BeginLabel)); 7829 } 7830 7831 return Result; 7832 } 7833 7834 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7835 bool isTailCall, 7836 bool isMustTailCall, 7837 const BasicBlock *EHPadBB) { 7838 auto &DL = DAG.getDataLayout(); 7839 FunctionType *FTy = CB.getFunctionType(); 7840 Type *RetTy = CB.getType(); 7841 7842 TargetLowering::ArgListTy Args; 7843 Args.reserve(CB.arg_size()); 7844 7845 const Value *SwiftErrorVal = nullptr; 7846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7847 7848 if (isTailCall) { 7849 // Avoid emitting tail calls in functions with the disable-tail-calls 7850 // attribute. 7851 auto *Caller = CB.getParent()->getParent(); 7852 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7853 "true" && !isMustTailCall) 7854 isTailCall = false; 7855 7856 // We can't tail call inside a function with a swifterror argument. Lowering 7857 // does not support this yet. It would have to move into the swifterror 7858 // register before the call. 7859 if (TLI.supportSwiftError() && 7860 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7861 isTailCall = false; 7862 } 7863 7864 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7865 TargetLowering::ArgListEntry Entry; 7866 const Value *V = *I; 7867 7868 // Skip empty types 7869 if (V->getType()->isEmptyTy()) 7870 continue; 7871 7872 SDValue ArgNode = getValue(V); 7873 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7874 7875 Entry.setAttributes(&CB, I - CB.arg_begin()); 7876 7877 // Use swifterror virtual register as input to the call. 7878 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7879 SwiftErrorVal = V; 7880 // We find the virtual register for the actual swifterror argument. 7881 // Instead of using the Value, we use the virtual register instead. 7882 Entry.Node = 7883 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7884 EVT(TLI.getPointerTy(DL))); 7885 } 7886 7887 Args.push_back(Entry); 7888 7889 // If we have an explicit sret argument that is an Instruction, (i.e., it 7890 // might point to function-local memory), we can't meaningfully tail-call. 7891 if (Entry.IsSRet && isa<Instruction>(V)) 7892 isTailCall = false; 7893 } 7894 7895 // If call site has a cfguardtarget operand bundle, create and add an 7896 // additional ArgListEntry. 7897 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7898 TargetLowering::ArgListEntry Entry; 7899 Value *V = Bundle->Inputs[0]; 7900 SDValue ArgNode = getValue(V); 7901 Entry.Node = ArgNode; 7902 Entry.Ty = V->getType(); 7903 Entry.IsCFGuardTarget = true; 7904 Args.push_back(Entry); 7905 } 7906 7907 // Check if target-independent constraints permit a tail call here. 7908 // Target-dependent constraints are checked within TLI->LowerCallTo. 7909 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7910 isTailCall = false; 7911 7912 // Disable tail calls if there is an swifterror argument. Targets have not 7913 // been updated to support tail calls. 7914 if (TLI.supportSwiftError() && SwiftErrorVal) 7915 isTailCall = false; 7916 7917 ConstantInt *CFIType = nullptr; 7918 if (CB.isIndirectCall()) { 7919 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7920 if (!TLI.supportKCFIBundles()) 7921 report_fatal_error( 7922 "Target doesn't support calls with kcfi operand bundles."); 7923 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7924 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7925 } 7926 } 7927 7928 TargetLowering::CallLoweringInfo CLI(DAG); 7929 CLI.setDebugLoc(getCurSDLoc()) 7930 .setChain(getRoot()) 7931 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7932 .setTailCall(isTailCall) 7933 .setConvergent(CB.isConvergent()) 7934 .setIsPreallocated( 7935 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7936 .setCFIType(CFIType); 7937 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7938 7939 if (Result.first.getNode()) { 7940 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7941 setValue(&CB, Result.first); 7942 } 7943 7944 // The last element of CLI.InVals has the SDValue for swifterror return. 7945 // Here we copy it to a virtual register and update SwiftErrorMap for 7946 // book-keeping. 7947 if (SwiftErrorVal && TLI.supportSwiftError()) { 7948 // Get the last element of InVals. 7949 SDValue Src = CLI.InVals.back(); 7950 Register VReg = 7951 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7952 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7953 DAG.setRoot(CopyNode); 7954 } 7955 } 7956 7957 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7958 SelectionDAGBuilder &Builder) { 7959 // Check to see if this load can be trivially constant folded, e.g. if the 7960 // input is from a string literal. 7961 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7962 // Cast pointer to the type we really want to load. 7963 Type *LoadTy = 7964 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7965 if (LoadVT.isVector()) 7966 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7967 7968 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7969 PointerType::getUnqual(LoadTy)); 7970 7971 if (const Constant *LoadCst = 7972 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7973 LoadTy, Builder.DAG.getDataLayout())) 7974 return Builder.getValue(LoadCst); 7975 } 7976 7977 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7978 // still constant memory, the input chain can be the entry node. 7979 SDValue Root; 7980 bool ConstantMemory = false; 7981 7982 // Do not serialize (non-volatile) loads of constant memory with anything. 7983 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7984 Root = Builder.DAG.getEntryNode(); 7985 ConstantMemory = true; 7986 } else { 7987 // Do not serialize non-volatile loads against each other. 7988 Root = Builder.DAG.getRoot(); 7989 } 7990 7991 SDValue Ptr = Builder.getValue(PtrVal); 7992 SDValue LoadVal = 7993 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7994 MachinePointerInfo(PtrVal), Align(1)); 7995 7996 if (!ConstantMemory) 7997 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7998 return LoadVal; 7999 } 8000 8001 /// Record the value for an instruction that produces an integer result, 8002 /// converting the type where necessary. 8003 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8004 SDValue Value, 8005 bool IsSigned) { 8006 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8007 I.getType(), true); 8008 if (IsSigned) 8009 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 8010 else 8011 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 8012 setValue(&I, Value); 8013 } 8014 8015 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8016 /// true and lower it. Otherwise return false, and it will be lowered like a 8017 /// normal call. 8018 /// The caller already checked that \p I calls the appropriate LibFunc with a 8019 /// correct prototype. 8020 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8021 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8022 const Value *Size = I.getArgOperand(2); 8023 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8024 if (CSize && CSize->getZExtValue() == 0) { 8025 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8026 I.getType(), true); 8027 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8028 return true; 8029 } 8030 8031 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8032 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8033 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8034 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8035 if (Res.first.getNode()) { 8036 processIntegerCallValue(I, Res.first, true); 8037 PendingLoads.push_back(Res.second); 8038 return true; 8039 } 8040 8041 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8042 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8043 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8044 return false; 8045 8046 // If the target has a fast compare for the given size, it will return a 8047 // preferred load type for that size. Require that the load VT is legal and 8048 // that the target supports unaligned loads of that type. Otherwise, return 8049 // INVALID. 8050 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8052 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8053 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8054 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8055 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8056 // TODO: Check alignment of src and dest ptrs. 8057 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8058 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8059 if (!TLI.isTypeLegal(LVT) || 8060 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8061 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8062 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8063 } 8064 8065 return LVT; 8066 }; 8067 8068 // This turns into unaligned loads. We only do this if the target natively 8069 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8070 // we'll only produce a small number of byte loads. 8071 MVT LoadVT; 8072 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8073 switch (NumBitsToCompare) { 8074 default: 8075 return false; 8076 case 16: 8077 LoadVT = MVT::i16; 8078 break; 8079 case 32: 8080 LoadVT = MVT::i32; 8081 break; 8082 case 64: 8083 case 128: 8084 case 256: 8085 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8086 break; 8087 } 8088 8089 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8090 return false; 8091 8092 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8093 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8094 8095 // Bitcast to a wide integer type if the loads are vectors. 8096 if (LoadVT.isVector()) { 8097 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8098 LoadL = DAG.getBitcast(CmpVT, LoadL); 8099 LoadR = DAG.getBitcast(CmpVT, LoadR); 8100 } 8101 8102 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8103 processIntegerCallValue(I, Cmp, false); 8104 return true; 8105 } 8106 8107 /// See if we can lower a memchr call into an optimized form. If so, return 8108 /// true and lower it. Otherwise return false, and it will be lowered like a 8109 /// normal call. 8110 /// The caller already checked that \p I calls the appropriate LibFunc with a 8111 /// correct prototype. 8112 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8113 const Value *Src = I.getArgOperand(0); 8114 const Value *Char = I.getArgOperand(1); 8115 const Value *Length = I.getArgOperand(2); 8116 8117 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8118 std::pair<SDValue, SDValue> Res = 8119 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8120 getValue(Src), getValue(Char), getValue(Length), 8121 MachinePointerInfo(Src)); 8122 if (Res.first.getNode()) { 8123 setValue(&I, Res.first); 8124 PendingLoads.push_back(Res.second); 8125 return true; 8126 } 8127 8128 return false; 8129 } 8130 8131 /// See if we can lower a mempcpy call into an optimized form. If so, return 8132 /// true and lower it. Otherwise return false, and it will be lowered like a 8133 /// normal call. 8134 /// The caller already checked that \p I calls the appropriate LibFunc with a 8135 /// correct prototype. 8136 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8137 SDValue Dst = getValue(I.getArgOperand(0)); 8138 SDValue Src = getValue(I.getArgOperand(1)); 8139 SDValue Size = getValue(I.getArgOperand(2)); 8140 8141 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8142 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8143 // DAG::getMemcpy needs Alignment to be defined. 8144 Align Alignment = std::min(DstAlign, SrcAlign); 8145 8146 bool isVol = false; 8147 SDLoc sdl = getCurSDLoc(); 8148 8149 // In the mempcpy context we need to pass in a false value for isTailCall 8150 // because the return pointer needs to be adjusted by the size of 8151 // the copied memory. 8152 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8153 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8154 /*isTailCall=*/false, 8155 MachinePointerInfo(I.getArgOperand(0)), 8156 MachinePointerInfo(I.getArgOperand(1)), 8157 I.getAAMetadata()); 8158 assert(MC.getNode() != nullptr && 8159 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8160 DAG.setRoot(MC); 8161 8162 // Check if Size needs to be truncated or extended. 8163 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8164 8165 // Adjust return pointer to point just past the last dst byte. 8166 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8167 Dst, Size); 8168 setValue(&I, DstPlusSize); 8169 return true; 8170 } 8171 8172 /// See if we can lower a strcpy call into an optimized form. If so, return 8173 /// true and lower it, otherwise return false and it will be lowered like a 8174 /// normal call. 8175 /// The caller already checked that \p I calls the appropriate LibFunc with a 8176 /// correct prototype. 8177 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8178 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8179 8180 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8181 std::pair<SDValue, SDValue> Res = 8182 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8183 getValue(Arg0), getValue(Arg1), 8184 MachinePointerInfo(Arg0), 8185 MachinePointerInfo(Arg1), isStpcpy); 8186 if (Res.first.getNode()) { 8187 setValue(&I, Res.first); 8188 DAG.setRoot(Res.second); 8189 return true; 8190 } 8191 8192 return false; 8193 } 8194 8195 /// See if we can lower a strcmp call into an optimized form. If so, return 8196 /// true and lower it, otherwise return false and it will be lowered like a 8197 /// normal call. 8198 /// The caller already checked that \p I calls the appropriate LibFunc with a 8199 /// correct prototype. 8200 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8201 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8202 8203 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8204 std::pair<SDValue, SDValue> Res = 8205 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8206 getValue(Arg0), getValue(Arg1), 8207 MachinePointerInfo(Arg0), 8208 MachinePointerInfo(Arg1)); 8209 if (Res.first.getNode()) { 8210 processIntegerCallValue(I, Res.first, true); 8211 PendingLoads.push_back(Res.second); 8212 return true; 8213 } 8214 8215 return false; 8216 } 8217 8218 /// See if we can lower a strlen call into an optimized form. If so, return 8219 /// true and lower it, otherwise return false and it will be lowered like a 8220 /// normal call. 8221 /// The caller already checked that \p I calls the appropriate LibFunc with a 8222 /// correct prototype. 8223 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8224 const Value *Arg0 = I.getArgOperand(0); 8225 8226 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8227 std::pair<SDValue, SDValue> Res = 8228 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8229 getValue(Arg0), MachinePointerInfo(Arg0)); 8230 if (Res.first.getNode()) { 8231 processIntegerCallValue(I, Res.first, false); 8232 PendingLoads.push_back(Res.second); 8233 return true; 8234 } 8235 8236 return false; 8237 } 8238 8239 /// See if we can lower a strnlen call into an optimized form. If so, return 8240 /// true and lower it, otherwise return false and it will be lowered like a 8241 /// normal call. 8242 /// The caller already checked that \p I calls the appropriate LibFunc with a 8243 /// correct prototype. 8244 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8245 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8246 8247 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8248 std::pair<SDValue, SDValue> Res = 8249 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8250 getValue(Arg0), getValue(Arg1), 8251 MachinePointerInfo(Arg0)); 8252 if (Res.first.getNode()) { 8253 processIntegerCallValue(I, Res.first, false); 8254 PendingLoads.push_back(Res.second); 8255 return true; 8256 } 8257 8258 return false; 8259 } 8260 8261 /// See if we can lower a unary floating-point operation into an SDNode with 8262 /// the specified Opcode. If so, return true and lower it, otherwise return 8263 /// false and it will be lowered like a normal call. 8264 /// The caller already checked that \p I calls the appropriate LibFunc with a 8265 /// correct prototype. 8266 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8267 unsigned Opcode) { 8268 // We already checked this call's prototype; verify it doesn't modify errno. 8269 if (!I.onlyReadsMemory()) 8270 return false; 8271 8272 SDNodeFlags Flags; 8273 Flags.copyFMF(cast<FPMathOperator>(I)); 8274 8275 SDValue Tmp = getValue(I.getArgOperand(0)); 8276 setValue(&I, 8277 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8278 return true; 8279 } 8280 8281 /// See if we can lower a binary floating-point operation into an SDNode with 8282 /// the specified Opcode. If so, return true and lower it. Otherwise return 8283 /// false, and it will be lowered like a normal call. 8284 /// The caller already checked that \p I calls the appropriate LibFunc with a 8285 /// correct prototype. 8286 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8287 unsigned Opcode) { 8288 // We already checked this call's prototype; verify it doesn't modify errno. 8289 if (!I.onlyReadsMemory()) 8290 return false; 8291 8292 SDNodeFlags Flags; 8293 Flags.copyFMF(cast<FPMathOperator>(I)); 8294 8295 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8296 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8297 EVT VT = Tmp0.getValueType(); 8298 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8299 return true; 8300 } 8301 8302 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8303 // Handle inline assembly differently. 8304 if (I.isInlineAsm()) { 8305 visitInlineAsm(I); 8306 return; 8307 } 8308 8309 if (Function *F = I.getCalledFunction()) { 8310 diagnoseDontCall(I); 8311 8312 if (F->isDeclaration()) { 8313 // Is this an LLVM intrinsic or a target-specific intrinsic? 8314 unsigned IID = F->getIntrinsicID(); 8315 if (!IID) 8316 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8317 IID = II->getIntrinsicID(F); 8318 8319 if (IID) { 8320 visitIntrinsicCall(I, IID); 8321 return; 8322 } 8323 } 8324 8325 // Check for well-known libc/libm calls. If the function is internal, it 8326 // can't be a library call. Don't do the check if marked as nobuiltin for 8327 // some reason or the call site requires strict floating point semantics. 8328 LibFunc Func; 8329 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8330 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8331 LibInfo->hasOptimizedCodeGen(Func)) { 8332 switch (Func) { 8333 default: break; 8334 case LibFunc_bcmp: 8335 if (visitMemCmpBCmpCall(I)) 8336 return; 8337 break; 8338 case LibFunc_copysign: 8339 case LibFunc_copysignf: 8340 case LibFunc_copysignl: 8341 // We already checked this call's prototype; verify it doesn't modify 8342 // errno. 8343 if (I.onlyReadsMemory()) { 8344 SDValue LHS = getValue(I.getArgOperand(0)); 8345 SDValue RHS = getValue(I.getArgOperand(1)); 8346 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8347 LHS.getValueType(), LHS, RHS)); 8348 return; 8349 } 8350 break; 8351 case LibFunc_fabs: 8352 case LibFunc_fabsf: 8353 case LibFunc_fabsl: 8354 if (visitUnaryFloatCall(I, ISD::FABS)) 8355 return; 8356 break; 8357 case LibFunc_fmin: 8358 case LibFunc_fminf: 8359 case LibFunc_fminl: 8360 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8361 return; 8362 break; 8363 case LibFunc_fmax: 8364 case LibFunc_fmaxf: 8365 case LibFunc_fmaxl: 8366 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8367 return; 8368 break; 8369 case LibFunc_sin: 8370 case LibFunc_sinf: 8371 case LibFunc_sinl: 8372 if (visitUnaryFloatCall(I, ISD::FSIN)) 8373 return; 8374 break; 8375 case LibFunc_cos: 8376 case LibFunc_cosf: 8377 case LibFunc_cosl: 8378 if (visitUnaryFloatCall(I, ISD::FCOS)) 8379 return; 8380 break; 8381 case LibFunc_sqrt: 8382 case LibFunc_sqrtf: 8383 case LibFunc_sqrtl: 8384 case LibFunc_sqrt_finite: 8385 case LibFunc_sqrtf_finite: 8386 case LibFunc_sqrtl_finite: 8387 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8388 return; 8389 break; 8390 case LibFunc_floor: 8391 case LibFunc_floorf: 8392 case LibFunc_floorl: 8393 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8394 return; 8395 break; 8396 case LibFunc_nearbyint: 8397 case LibFunc_nearbyintf: 8398 case LibFunc_nearbyintl: 8399 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8400 return; 8401 break; 8402 case LibFunc_ceil: 8403 case LibFunc_ceilf: 8404 case LibFunc_ceill: 8405 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8406 return; 8407 break; 8408 case LibFunc_rint: 8409 case LibFunc_rintf: 8410 case LibFunc_rintl: 8411 if (visitUnaryFloatCall(I, ISD::FRINT)) 8412 return; 8413 break; 8414 case LibFunc_round: 8415 case LibFunc_roundf: 8416 case LibFunc_roundl: 8417 if (visitUnaryFloatCall(I, ISD::FROUND)) 8418 return; 8419 break; 8420 case LibFunc_trunc: 8421 case LibFunc_truncf: 8422 case LibFunc_truncl: 8423 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8424 return; 8425 break; 8426 case LibFunc_log2: 8427 case LibFunc_log2f: 8428 case LibFunc_log2l: 8429 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8430 return; 8431 break; 8432 case LibFunc_exp2: 8433 case LibFunc_exp2f: 8434 case LibFunc_exp2l: 8435 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8436 return; 8437 break; 8438 case LibFunc_memcmp: 8439 if (visitMemCmpBCmpCall(I)) 8440 return; 8441 break; 8442 case LibFunc_mempcpy: 8443 if (visitMemPCpyCall(I)) 8444 return; 8445 break; 8446 case LibFunc_memchr: 8447 if (visitMemChrCall(I)) 8448 return; 8449 break; 8450 case LibFunc_strcpy: 8451 if (visitStrCpyCall(I, false)) 8452 return; 8453 break; 8454 case LibFunc_stpcpy: 8455 if (visitStrCpyCall(I, true)) 8456 return; 8457 break; 8458 case LibFunc_strcmp: 8459 if (visitStrCmpCall(I)) 8460 return; 8461 break; 8462 case LibFunc_strlen: 8463 if (visitStrLenCall(I)) 8464 return; 8465 break; 8466 case LibFunc_strnlen: 8467 if (visitStrNLenCall(I)) 8468 return; 8469 break; 8470 } 8471 } 8472 } 8473 8474 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8475 // have to do anything here to lower funclet bundles. 8476 // CFGuardTarget bundles are lowered in LowerCallTo. 8477 assert(!I.hasOperandBundlesOtherThan( 8478 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8479 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8480 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8481 "Cannot lower calls with arbitrary operand bundles!"); 8482 8483 SDValue Callee = getValue(I.getCalledOperand()); 8484 8485 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8486 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8487 else 8488 // Check if we can potentially perform a tail call. More detailed checking 8489 // is be done within LowerCallTo, after more information about the call is 8490 // known. 8491 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8492 } 8493 8494 namespace { 8495 8496 /// AsmOperandInfo - This contains information for each constraint that we are 8497 /// lowering. 8498 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8499 public: 8500 /// CallOperand - If this is the result output operand or a clobber 8501 /// this is null, otherwise it is the incoming operand to the CallInst. 8502 /// This gets modified as the asm is processed. 8503 SDValue CallOperand; 8504 8505 /// AssignedRegs - If this is a register or register class operand, this 8506 /// contains the set of register corresponding to the operand. 8507 RegsForValue AssignedRegs; 8508 8509 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8510 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8511 } 8512 8513 /// Whether or not this operand accesses memory 8514 bool hasMemory(const TargetLowering &TLI) const { 8515 // Indirect operand accesses access memory. 8516 if (isIndirect) 8517 return true; 8518 8519 for (const auto &Code : Codes) 8520 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8521 return true; 8522 8523 return false; 8524 } 8525 }; 8526 8527 8528 } // end anonymous namespace 8529 8530 /// Make sure that the output operand \p OpInfo and its corresponding input 8531 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8532 /// out). 8533 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8534 SDISelAsmOperandInfo &MatchingOpInfo, 8535 SelectionDAG &DAG) { 8536 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8537 return; 8538 8539 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8540 const auto &TLI = DAG.getTargetLoweringInfo(); 8541 8542 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8543 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8544 OpInfo.ConstraintVT); 8545 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8546 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8547 MatchingOpInfo.ConstraintVT); 8548 if ((OpInfo.ConstraintVT.isInteger() != 8549 MatchingOpInfo.ConstraintVT.isInteger()) || 8550 (MatchRC.second != InputRC.second)) { 8551 // FIXME: error out in a more elegant fashion 8552 report_fatal_error("Unsupported asm: input constraint" 8553 " with a matching output constraint of" 8554 " incompatible type!"); 8555 } 8556 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8557 } 8558 8559 /// Get a direct memory input to behave well as an indirect operand. 8560 /// This may introduce stores, hence the need for a \p Chain. 8561 /// \return The (possibly updated) chain. 8562 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8563 SDISelAsmOperandInfo &OpInfo, 8564 SelectionDAG &DAG) { 8565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8566 8567 // If we don't have an indirect input, put it in the constpool if we can, 8568 // otherwise spill it to a stack slot. 8569 // TODO: This isn't quite right. We need to handle these according to 8570 // the addressing mode that the constraint wants. Also, this may take 8571 // an additional register for the computation and we don't want that 8572 // either. 8573 8574 // If the operand is a float, integer, or vector constant, spill to a 8575 // constant pool entry to get its address. 8576 const Value *OpVal = OpInfo.CallOperandVal; 8577 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8578 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8579 OpInfo.CallOperand = DAG.getConstantPool( 8580 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8581 return Chain; 8582 } 8583 8584 // Otherwise, create a stack slot and emit a store to it before the asm. 8585 Type *Ty = OpVal->getType(); 8586 auto &DL = DAG.getDataLayout(); 8587 uint64_t TySize = DL.getTypeAllocSize(Ty); 8588 MachineFunction &MF = DAG.getMachineFunction(); 8589 int SSFI = MF.getFrameInfo().CreateStackObject( 8590 TySize, DL.getPrefTypeAlign(Ty), false); 8591 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8592 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8593 MachinePointerInfo::getFixedStack(MF, SSFI), 8594 TLI.getMemValueType(DL, Ty)); 8595 OpInfo.CallOperand = StackSlot; 8596 8597 return Chain; 8598 } 8599 8600 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8601 /// specified operand. We prefer to assign virtual registers, to allow the 8602 /// register allocator to handle the assignment process. However, if the asm 8603 /// uses features that we can't model on machineinstrs, we have SDISel do the 8604 /// allocation. This produces generally horrible, but correct, code. 8605 /// 8606 /// OpInfo describes the operand 8607 /// RefOpInfo describes the matching operand if any, the operand otherwise 8608 static std::optional<unsigned> 8609 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8610 SDISelAsmOperandInfo &OpInfo, 8611 SDISelAsmOperandInfo &RefOpInfo) { 8612 LLVMContext &Context = *DAG.getContext(); 8613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8614 8615 MachineFunction &MF = DAG.getMachineFunction(); 8616 SmallVector<unsigned, 4> Regs; 8617 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8618 8619 // No work to do for memory/address operands. 8620 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8621 OpInfo.ConstraintType == TargetLowering::C_Address) 8622 return std::nullopt; 8623 8624 // If this is a constraint for a single physreg, or a constraint for a 8625 // register class, find it. 8626 unsigned AssignedReg; 8627 const TargetRegisterClass *RC; 8628 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8629 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8630 // RC is unset only on failure. Return immediately. 8631 if (!RC) 8632 return std::nullopt; 8633 8634 // Get the actual register value type. This is important, because the user 8635 // may have asked for (e.g.) the AX register in i32 type. We need to 8636 // remember that AX is actually i16 to get the right extension. 8637 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8638 8639 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8640 // If this is an FP operand in an integer register (or visa versa), or more 8641 // generally if the operand value disagrees with the register class we plan 8642 // to stick it in, fix the operand type. 8643 // 8644 // If this is an input value, the bitcast to the new type is done now. 8645 // Bitcast for output value is done at the end of visitInlineAsm(). 8646 if ((OpInfo.Type == InlineAsm::isOutput || 8647 OpInfo.Type == InlineAsm::isInput) && 8648 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8649 // Try to convert to the first EVT that the reg class contains. If the 8650 // types are identical size, use a bitcast to convert (e.g. two differing 8651 // vector types). Note: output bitcast is done at the end of 8652 // visitInlineAsm(). 8653 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8654 // Exclude indirect inputs while they are unsupported because the code 8655 // to perform the load is missing and thus OpInfo.CallOperand still 8656 // refers to the input address rather than the pointed-to value. 8657 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8658 OpInfo.CallOperand = 8659 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8660 OpInfo.ConstraintVT = RegVT; 8661 // If the operand is an FP value and we want it in integer registers, 8662 // use the corresponding integer type. This turns an f64 value into 8663 // i64, which can be passed with two i32 values on a 32-bit machine. 8664 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8665 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8666 if (OpInfo.Type == InlineAsm::isInput) 8667 OpInfo.CallOperand = 8668 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8669 OpInfo.ConstraintVT = VT; 8670 } 8671 } 8672 } 8673 8674 // No need to allocate a matching input constraint since the constraint it's 8675 // matching to has already been allocated. 8676 if (OpInfo.isMatchingInputConstraint()) 8677 return std::nullopt; 8678 8679 EVT ValueVT = OpInfo.ConstraintVT; 8680 if (OpInfo.ConstraintVT == MVT::Other) 8681 ValueVT = RegVT; 8682 8683 // Initialize NumRegs. 8684 unsigned NumRegs = 1; 8685 if (OpInfo.ConstraintVT != MVT::Other) 8686 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8687 8688 // If this is a constraint for a specific physical register, like {r17}, 8689 // assign it now. 8690 8691 // If this associated to a specific register, initialize iterator to correct 8692 // place. If virtual, make sure we have enough registers 8693 8694 // Initialize iterator if necessary 8695 TargetRegisterClass::iterator I = RC->begin(); 8696 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8697 8698 // Do not check for single registers. 8699 if (AssignedReg) { 8700 I = std::find(I, RC->end(), AssignedReg); 8701 if (I == RC->end()) { 8702 // RC does not contain the selected register, which indicates a 8703 // mismatch between the register and the required type/bitwidth. 8704 return {AssignedReg}; 8705 } 8706 } 8707 8708 for (; NumRegs; --NumRegs, ++I) { 8709 assert(I != RC->end() && "Ran out of registers to allocate!"); 8710 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8711 Regs.push_back(R); 8712 } 8713 8714 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8715 return std::nullopt; 8716 } 8717 8718 static unsigned 8719 findMatchingInlineAsmOperand(unsigned OperandNo, 8720 const std::vector<SDValue> &AsmNodeOperands) { 8721 // Scan until we find the definition we already emitted of this operand. 8722 unsigned CurOp = InlineAsm::Op_FirstOperand; 8723 for (; OperandNo; --OperandNo) { 8724 // Advance to the next operand. 8725 unsigned OpFlag = 8726 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8727 assert((InlineAsm::isRegDefKind(OpFlag) || 8728 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8729 InlineAsm::isMemKind(OpFlag)) && 8730 "Skipped past definitions?"); 8731 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8732 } 8733 return CurOp; 8734 } 8735 8736 namespace { 8737 8738 class ExtraFlags { 8739 unsigned Flags = 0; 8740 8741 public: 8742 explicit ExtraFlags(const CallBase &Call) { 8743 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8744 if (IA->hasSideEffects()) 8745 Flags |= InlineAsm::Extra_HasSideEffects; 8746 if (IA->isAlignStack()) 8747 Flags |= InlineAsm::Extra_IsAlignStack; 8748 if (Call.isConvergent()) 8749 Flags |= InlineAsm::Extra_IsConvergent; 8750 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8751 } 8752 8753 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8754 // Ideally, we would only check against memory constraints. However, the 8755 // meaning of an Other constraint can be target-specific and we can't easily 8756 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8757 // for Other constraints as well. 8758 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8759 OpInfo.ConstraintType == TargetLowering::C_Other) { 8760 if (OpInfo.Type == InlineAsm::isInput) 8761 Flags |= InlineAsm::Extra_MayLoad; 8762 else if (OpInfo.Type == InlineAsm::isOutput) 8763 Flags |= InlineAsm::Extra_MayStore; 8764 else if (OpInfo.Type == InlineAsm::isClobber) 8765 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8766 } 8767 } 8768 8769 unsigned get() const { return Flags; } 8770 }; 8771 8772 } // end anonymous namespace 8773 8774 static bool isFunction(SDValue Op) { 8775 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 8776 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8777 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 8778 8779 // In normal "call dllimport func" instruction (non-inlineasm) it force 8780 // indirect access by specifing call opcode. And usually specially print 8781 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 8782 // not do in this way now. (In fact, this is similar with "Data Access" 8783 // action). So here we ignore dllimport function. 8784 if (Fn && !Fn->hasDLLImportStorageClass()) 8785 return true; 8786 } 8787 } 8788 return false; 8789 } 8790 8791 /// visitInlineAsm - Handle a call to an InlineAsm object. 8792 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8793 const BasicBlock *EHPadBB) { 8794 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8795 8796 /// ConstraintOperands - Information about all of the constraints. 8797 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8798 8799 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8800 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8801 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8802 8803 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8804 // AsmDialect, MayLoad, MayStore). 8805 bool HasSideEffect = IA->hasSideEffects(); 8806 ExtraFlags ExtraInfo(Call); 8807 8808 for (auto &T : TargetConstraints) { 8809 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8810 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8811 8812 if (OpInfo.CallOperandVal) 8813 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8814 8815 if (!HasSideEffect) 8816 HasSideEffect = OpInfo.hasMemory(TLI); 8817 8818 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8819 // FIXME: Could we compute this on OpInfo rather than T? 8820 8821 // Compute the constraint code and ConstraintType to use. 8822 TLI.ComputeConstraintToUse(T, SDValue()); 8823 8824 if (T.ConstraintType == TargetLowering::C_Immediate && 8825 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8826 // We've delayed emitting a diagnostic like the "n" constraint because 8827 // inlining could cause an integer showing up. 8828 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8829 "' expects an integer constant " 8830 "expression"); 8831 8832 ExtraInfo.update(T); 8833 } 8834 8835 // We won't need to flush pending loads if this asm doesn't touch 8836 // memory and is nonvolatile. 8837 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8838 8839 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8840 if (EmitEHLabels) { 8841 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8842 } 8843 bool IsCallBr = isa<CallBrInst>(Call); 8844 8845 if (IsCallBr || EmitEHLabels) { 8846 // If this is a callbr or invoke we need to flush pending exports since 8847 // inlineasm_br and invoke are terminators. 8848 // We need to do this before nodes are glued to the inlineasm_br node. 8849 Chain = getControlRoot(); 8850 } 8851 8852 MCSymbol *BeginLabel = nullptr; 8853 if (EmitEHLabels) { 8854 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8855 } 8856 8857 int OpNo = -1; 8858 SmallVector<StringRef> AsmStrs; 8859 IA->collectAsmStrs(AsmStrs); 8860 8861 // Second pass over the constraints: compute which constraint option to use. 8862 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8863 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 8864 OpNo++; 8865 8866 // If this is an output operand with a matching input operand, look up the 8867 // matching input. If their types mismatch, e.g. one is an integer, the 8868 // other is floating point, or their sizes are different, flag it as an 8869 // error. 8870 if (OpInfo.hasMatchingInput()) { 8871 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8872 patchMatchingInput(OpInfo, Input, DAG); 8873 } 8874 8875 // Compute the constraint code and ConstraintType to use. 8876 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8877 8878 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8879 OpInfo.Type == InlineAsm::isClobber) || 8880 OpInfo.ConstraintType == TargetLowering::C_Address) 8881 continue; 8882 8883 // In Linux PIC model, there are 4 cases about value/label addressing: 8884 // 8885 // 1: Function call or Label jmp inside the module. 8886 // 2: Data access (such as global variable, static variable) inside module. 8887 // 3: Function call or Label jmp outside the module. 8888 // 4: Data access (such as global variable) outside the module. 8889 // 8890 // Due to current llvm inline asm architecture designed to not "recognize" 8891 // the asm code, there are quite troubles for us to treat mem addressing 8892 // differently for same value/adress used in different instuctions. 8893 // For example, in pic model, call a func may in plt way or direclty 8894 // pc-related, but lea/mov a function adress may use got. 8895 // 8896 // Here we try to "recognize" function call for the case 1 and case 3 in 8897 // inline asm. And try to adjust the constraint for them. 8898 // 8899 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 8900 // label, so here we don't handle jmp function label now, but we need to 8901 // enhance it (especilly in PIC model) if we meet meaningful requirements. 8902 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 8903 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 8904 TM.getCodeModel() != CodeModel::Large) { 8905 OpInfo.isIndirect = false; 8906 OpInfo.ConstraintType = TargetLowering::C_Address; 8907 } 8908 8909 // If this is a memory input, and if the operand is not indirect, do what we 8910 // need to provide an address for the memory input. 8911 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8912 !OpInfo.isIndirect) { 8913 assert((OpInfo.isMultipleAlternative || 8914 (OpInfo.Type == InlineAsm::isInput)) && 8915 "Can only indirectify direct input operands!"); 8916 8917 // Memory operands really want the address of the value. 8918 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8919 8920 // There is no longer a Value* corresponding to this operand. 8921 OpInfo.CallOperandVal = nullptr; 8922 8923 // It is now an indirect operand. 8924 OpInfo.isIndirect = true; 8925 } 8926 8927 } 8928 8929 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8930 std::vector<SDValue> AsmNodeOperands; 8931 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8932 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8933 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8934 8935 // If we have a !srcloc metadata node associated with it, we want to attach 8936 // this to the ultimately generated inline asm machineinstr. To do this, we 8937 // pass in the third operand as this (potentially null) inline asm MDNode. 8938 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8939 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8940 8941 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8942 // bits as operand 3. 8943 AsmNodeOperands.push_back(DAG.getTargetConstant( 8944 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8945 8946 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8947 // this, assign virtual and physical registers for inputs and otput. 8948 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8949 // Assign Registers. 8950 SDISelAsmOperandInfo &RefOpInfo = 8951 OpInfo.isMatchingInputConstraint() 8952 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8953 : OpInfo; 8954 const auto RegError = 8955 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8956 if (RegError) { 8957 const MachineFunction &MF = DAG.getMachineFunction(); 8958 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8959 const char *RegName = TRI.getName(RegError.value()); 8960 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8961 "' allocated for constraint '" + 8962 Twine(OpInfo.ConstraintCode) + 8963 "' does not match required type"); 8964 return; 8965 } 8966 8967 auto DetectWriteToReservedRegister = [&]() { 8968 const MachineFunction &MF = DAG.getMachineFunction(); 8969 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8970 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8971 if (Register::isPhysicalRegister(Reg) && 8972 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8973 const char *RegName = TRI.getName(Reg); 8974 emitInlineAsmError(Call, "write to reserved register '" + 8975 Twine(RegName) + "'"); 8976 return true; 8977 } 8978 } 8979 return false; 8980 }; 8981 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8982 (OpInfo.Type == InlineAsm::isInput && 8983 !OpInfo.isMatchingInputConstraint())) && 8984 "Only address as input operand is allowed."); 8985 8986 switch (OpInfo.Type) { 8987 case InlineAsm::isOutput: 8988 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8989 unsigned ConstraintID = 8990 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8991 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8992 "Failed to convert memory constraint code to constraint id."); 8993 8994 // Add information to the INLINEASM node to know about this output. 8995 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8996 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8997 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8998 MVT::i32)); 8999 AsmNodeOperands.push_back(OpInfo.CallOperand); 9000 } else { 9001 // Otherwise, this outputs to a register (directly for C_Register / 9002 // C_RegisterClass, and a target-defined fashion for 9003 // C_Immediate/C_Other). Find a register that we can use. 9004 if (OpInfo.AssignedRegs.Regs.empty()) { 9005 emitInlineAsmError( 9006 Call, "couldn't allocate output register for constraint '" + 9007 Twine(OpInfo.ConstraintCode) + "'"); 9008 return; 9009 } 9010 9011 if (DetectWriteToReservedRegister()) 9012 return; 9013 9014 // Add information to the INLINEASM node to know that this register is 9015 // set. 9016 OpInfo.AssignedRegs.AddInlineAsmOperands( 9017 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 9018 : InlineAsm::Kind_RegDef, 9019 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9020 } 9021 break; 9022 9023 case InlineAsm::isInput: 9024 case InlineAsm::isLabel: { 9025 SDValue InOperandVal = OpInfo.CallOperand; 9026 9027 if (OpInfo.isMatchingInputConstraint()) { 9028 // If this is required to match an output register we have already set, 9029 // just use its register. 9030 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9031 AsmNodeOperands); 9032 unsigned OpFlag = 9033 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9034 if (InlineAsm::isRegDefKind(OpFlag) || 9035 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9036 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9037 if (OpInfo.isIndirect) { 9038 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9039 emitInlineAsmError(Call, "inline asm not supported yet: " 9040 "don't know how to handle tied " 9041 "indirect register inputs"); 9042 return; 9043 } 9044 9045 SmallVector<unsigned, 4> Regs; 9046 MachineFunction &MF = DAG.getMachineFunction(); 9047 MachineRegisterInfo &MRI = MF.getRegInfo(); 9048 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9049 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9050 Register TiedReg = R->getReg(); 9051 MVT RegVT = R->getSimpleValueType(0); 9052 const TargetRegisterClass *RC = 9053 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9054 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9055 : TRI.getMinimalPhysRegClass(TiedReg); 9056 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9057 for (unsigned i = 0; i != NumRegs; ++i) 9058 Regs.push_back(MRI.createVirtualRegister(RC)); 9059 9060 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9061 9062 SDLoc dl = getCurSDLoc(); 9063 // Use the produced MatchedRegs object to 9064 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9065 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9066 true, OpInfo.getMatchedOperand(), dl, 9067 DAG, AsmNodeOperands); 9068 break; 9069 } 9070 9071 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9072 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9073 "Unexpected number of operands"); 9074 // Add information to the INLINEASM node to know about this input. 9075 // See InlineAsm.h isUseOperandTiedToDef. 9076 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9077 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9078 OpInfo.getMatchedOperand()); 9079 AsmNodeOperands.push_back(DAG.getTargetConstant( 9080 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9081 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9082 break; 9083 } 9084 9085 // Treat indirect 'X' constraint as memory. 9086 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9087 OpInfo.isIndirect) 9088 OpInfo.ConstraintType = TargetLowering::C_Memory; 9089 9090 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9091 OpInfo.ConstraintType == TargetLowering::C_Other) { 9092 std::vector<SDValue> Ops; 9093 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9094 Ops, DAG); 9095 if (Ops.empty()) { 9096 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9097 if (isa<ConstantSDNode>(InOperandVal)) { 9098 emitInlineAsmError(Call, "value out of range for constraint '" + 9099 Twine(OpInfo.ConstraintCode) + "'"); 9100 return; 9101 } 9102 9103 emitInlineAsmError(Call, 9104 "invalid operand for inline asm constraint '" + 9105 Twine(OpInfo.ConstraintCode) + "'"); 9106 return; 9107 } 9108 9109 // Add information to the INLINEASM node to know about this input. 9110 unsigned ResOpType = 9111 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9112 AsmNodeOperands.push_back(DAG.getTargetConstant( 9113 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9114 llvm::append_range(AsmNodeOperands, Ops); 9115 break; 9116 } 9117 9118 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9119 assert((OpInfo.isIndirect || 9120 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9121 "Operand must be indirect to be a mem!"); 9122 assert(InOperandVal.getValueType() == 9123 TLI.getPointerTy(DAG.getDataLayout()) && 9124 "Memory operands expect pointer values"); 9125 9126 unsigned ConstraintID = 9127 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9128 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9129 "Failed to convert memory constraint code to constraint id."); 9130 9131 // Add information to the INLINEASM node to know about this input. 9132 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9133 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9134 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9135 getCurSDLoc(), 9136 MVT::i32)); 9137 AsmNodeOperands.push_back(InOperandVal); 9138 break; 9139 } 9140 9141 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9142 assert(InOperandVal.getValueType() == 9143 TLI.getPointerTy(DAG.getDataLayout()) && 9144 "Address operands expect pointer values"); 9145 9146 unsigned ConstraintID = 9147 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9148 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9149 "Failed to convert memory constraint code to constraint id."); 9150 9151 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9152 9153 SDValue AsmOp = InOperandVal; 9154 if (isFunction(InOperandVal)) { 9155 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9156 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9157 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9158 InOperandVal.getValueType(), 9159 GA->getOffset()); 9160 } 9161 9162 // Add information to the INLINEASM node to know about this input. 9163 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9164 9165 AsmNodeOperands.push_back( 9166 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9167 9168 AsmNodeOperands.push_back(AsmOp); 9169 break; 9170 } 9171 9172 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9173 OpInfo.ConstraintType == TargetLowering::C_Register) && 9174 "Unknown constraint type!"); 9175 9176 // TODO: Support this. 9177 if (OpInfo.isIndirect) { 9178 emitInlineAsmError( 9179 Call, "Don't know how to handle indirect register inputs yet " 9180 "for constraint '" + 9181 Twine(OpInfo.ConstraintCode) + "'"); 9182 return; 9183 } 9184 9185 // Copy the input into the appropriate registers. 9186 if (OpInfo.AssignedRegs.Regs.empty()) { 9187 emitInlineAsmError(Call, 9188 "couldn't allocate input reg for constraint '" + 9189 Twine(OpInfo.ConstraintCode) + "'"); 9190 return; 9191 } 9192 9193 if (DetectWriteToReservedRegister()) 9194 return; 9195 9196 SDLoc dl = getCurSDLoc(); 9197 9198 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9199 &Call); 9200 9201 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9202 dl, DAG, AsmNodeOperands); 9203 break; 9204 } 9205 case InlineAsm::isClobber: 9206 // Add the clobbered value to the operand list, so that the register 9207 // allocator is aware that the physreg got clobbered. 9208 if (!OpInfo.AssignedRegs.Regs.empty()) 9209 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9210 false, 0, getCurSDLoc(), DAG, 9211 AsmNodeOperands); 9212 break; 9213 } 9214 } 9215 9216 // Finish up input operands. Set the input chain and add the flag last. 9217 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9218 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9219 9220 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9221 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9222 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9223 Flag = Chain.getValue(1); 9224 9225 // Do additional work to generate outputs. 9226 9227 SmallVector<EVT, 1> ResultVTs; 9228 SmallVector<SDValue, 1> ResultValues; 9229 SmallVector<SDValue, 8> OutChains; 9230 9231 llvm::Type *CallResultType = Call.getType(); 9232 ArrayRef<Type *> ResultTypes; 9233 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9234 ResultTypes = StructResult->elements(); 9235 else if (!CallResultType->isVoidTy()) 9236 ResultTypes = makeArrayRef(CallResultType); 9237 9238 auto CurResultType = ResultTypes.begin(); 9239 auto handleRegAssign = [&](SDValue V) { 9240 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9241 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9242 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9243 ++CurResultType; 9244 // If the type of the inline asm call site return value is different but has 9245 // same size as the type of the asm output bitcast it. One example of this 9246 // is for vectors with different width / number of elements. This can 9247 // happen for register classes that can contain multiple different value 9248 // types. The preg or vreg allocated may not have the same VT as was 9249 // expected. 9250 // 9251 // This can also happen for a return value that disagrees with the register 9252 // class it is put in, eg. a double in a general-purpose register on a 9253 // 32-bit machine. 9254 if (ResultVT != V.getValueType() && 9255 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9256 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9257 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9258 V.getValueType().isInteger()) { 9259 // If a result value was tied to an input value, the computed result 9260 // may have a wider width than the expected result. Extract the 9261 // relevant portion. 9262 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9263 } 9264 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9265 ResultVTs.push_back(ResultVT); 9266 ResultValues.push_back(V); 9267 }; 9268 9269 // Deal with output operands. 9270 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9271 if (OpInfo.Type == InlineAsm::isOutput) { 9272 SDValue Val; 9273 // Skip trivial output operands. 9274 if (OpInfo.AssignedRegs.Regs.empty()) 9275 continue; 9276 9277 switch (OpInfo.ConstraintType) { 9278 case TargetLowering::C_Register: 9279 case TargetLowering::C_RegisterClass: 9280 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9281 Chain, &Flag, &Call); 9282 break; 9283 case TargetLowering::C_Immediate: 9284 case TargetLowering::C_Other: 9285 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9286 OpInfo, DAG); 9287 break; 9288 case TargetLowering::C_Memory: 9289 break; // Already handled. 9290 case TargetLowering::C_Address: 9291 break; // Silence warning. 9292 case TargetLowering::C_Unknown: 9293 assert(false && "Unexpected unknown constraint"); 9294 } 9295 9296 // Indirect output manifest as stores. Record output chains. 9297 if (OpInfo.isIndirect) { 9298 const Value *Ptr = OpInfo.CallOperandVal; 9299 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9300 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9301 MachinePointerInfo(Ptr)); 9302 OutChains.push_back(Store); 9303 } else { 9304 // generate CopyFromRegs to associated registers. 9305 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9306 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9307 for (const SDValue &V : Val->op_values()) 9308 handleRegAssign(V); 9309 } else 9310 handleRegAssign(Val); 9311 } 9312 } 9313 } 9314 9315 // Set results. 9316 if (!ResultValues.empty()) { 9317 assert(CurResultType == ResultTypes.end() && 9318 "Mismatch in number of ResultTypes"); 9319 assert(ResultValues.size() == ResultTypes.size() && 9320 "Mismatch in number of output operands in asm result"); 9321 9322 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9323 DAG.getVTList(ResultVTs), ResultValues); 9324 setValue(&Call, V); 9325 } 9326 9327 // Collect store chains. 9328 if (!OutChains.empty()) 9329 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9330 9331 if (EmitEHLabels) { 9332 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9333 } 9334 9335 // Only Update Root if inline assembly has a memory effect. 9336 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9337 EmitEHLabels) 9338 DAG.setRoot(Chain); 9339 } 9340 9341 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9342 const Twine &Message) { 9343 LLVMContext &Ctx = *DAG.getContext(); 9344 Ctx.emitError(&Call, Message); 9345 9346 // Make sure we leave the DAG in a valid state 9347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9348 SmallVector<EVT, 1> ValueVTs; 9349 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9350 9351 if (ValueVTs.empty()) 9352 return; 9353 9354 SmallVector<SDValue, 1> Ops; 9355 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9356 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9357 9358 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9359 } 9360 9361 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9362 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9363 MVT::Other, getRoot(), 9364 getValue(I.getArgOperand(0)), 9365 DAG.getSrcValue(I.getArgOperand(0)))); 9366 } 9367 9368 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9370 const DataLayout &DL = DAG.getDataLayout(); 9371 SDValue V = DAG.getVAArg( 9372 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9373 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9374 DL.getABITypeAlign(I.getType()).value()); 9375 DAG.setRoot(V.getValue(1)); 9376 9377 if (I.getType()->isPointerTy()) 9378 V = DAG.getPtrExtOrTrunc( 9379 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9380 setValue(&I, V); 9381 } 9382 9383 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9384 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9385 MVT::Other, getRoot(), 9386 getValue(I.getArgOperand(0)), 9387 DAG.getSrcValue(I.getArgOperand(0)))); 9388 } 9389 9390 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9391 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9392 MVT::Other, getRoot(), 9393 getValue(I.getArgOperand(0)), 9394 getValue(I.getArgOperand(1)), 9395 DAG.getSrcValue(I.getArgOperand(0)), 9396 DAG.getSrcValue(I.getArgOperand(1)))); 9397 } 9398 9399 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9400 const Instruction &I, 9401 SDValue Op) { 9402 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9403 if (!Range) 9404 return Op; 9405 9406 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9407 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9408 return Op; 9409 9410 APInt Lo = CR.getUnsignedMin(); 9411 if (!Lo.isMinValue()) 9412 return Op; 9413 9414 APInt Hi = CR.getUnsignedMax(); 9415 unsigned Bits = std::max(Hi.getActiveBits(), 9416 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9417 9418 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9419 9420 SDLoc SL = getCurSDLoc(); 9421 9422 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9423 DAG.getValueType(SmallVT)); 9424 unsigned NumVals = Op.getNode()->getNumValues(); 9425 if (NumVals == 1) 9426 return ZExt; 9427 9428 SmallVector<SDValue, 4> Ops; 9429 9430 Ops.push_back(ZExt); 9431 for (unsigned I = 1; I != NumVals; ++I) 9432 Ops.push_back(Op.getValue(I)); 9433 9434 return DAG.getMergeValues(Ops, SL); 9435 } 9436 9437 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9438 /// the call being lowered. 9439 /// 9440 /// This is a helper for lowering intrinsics that follow a target calling 9441 /// convention or require stack pointer adjustment. Only a subset of the 9442 /// intrinsic's operands need to participate in the calling convention. 9443 void SelectionDAGBuilder::populateCallLoweringInfo( 9444 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9445 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9446 bool IsPatchPoint) { 9447 TargetLowering::ArgListTy Args; 9448 Args.reserve(NumArgs); 9449 9450 // Populate the argument list. 9451 // Attributes for args start at offset 1, after the return attribute. 9452 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9453 ArgI != ArgE; ++ArgI) { 9454 const Value *V = Call->getOperand(ArgI); 9455 9456 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9457 9458 TargetLowering::ArgListEntry Entry; 9459 Entry.Node = getValue(V); 9460 Entry.Ty = V->getType(); 9461 Entry.setAttributes(Call, ArgI); 9462 Args.push_back(Entry); 9463 } 9464 9465 CLI.setDebugLoc(getCurSDLoc()) 9466 .setChain(getRoot()) 9467 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9468 .setDiscardResult(Call->use_empty()) 9469 .setIsPatchPoint(IsPatchPoint) 9470 .setIsPreallocated( 9471 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9472 } 9473 9474 /// Add a stack map intrinsic call's live variable operands to a stackmap 9475 /// or patchpoint target node's operand list. 9476 /// 9477 /// Constants are converted to TargetConstants purely as an optimization to 9478 /// avoid constant materialization and register allocation. 9479 /// 9480 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9481 /// generate addess computation nodes, and so FinalizeISel can convert the 9482 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9483 /// address materialization and register allocation, but may also be required 9484 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9485 /// alloca in the entry block, then the runtime may assume that the alloca's 9486 /// StackMap location can be read immediately after compilation and that the 9487 /// location is valid at any point during execution (this is similar to the 9488 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9489 /// only available in a register, then the runtime would need to trap when 9490 /// execution reaches the StackMap in order to read the alloca's location. 9491 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9492 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9493 SelectionDAGBuilder &Builder) { 9494 SelectionDAG &DAG = Builder.DAG; 9495 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9496 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9497 9498 // Things on the stack are pointer-typed, meaning that they are already 9499 // legal and can be emitted directly to target nodes. 9500 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9501 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9502 } else { 9503 // Otherwise emit a target independent node to be legalised. 9504 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9505 } 9506 } 9507 } 9508 9509 /// Lower llvm.experimental.stackmap. 9510 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9511 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9512 // [live variables...]) 9513 9514 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9515 9516 SDValue Chain, InFlag, Callee; 9517 SmallVector<SDValue, 32> Ops; 9518 9519 SDLoc DL = getCurSDLoc(); 9520 Callee = getValue(CI.getCalledOperand()); 9521 9522 // The stackmap intrinsic only records the live variables (the arguments 9523 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9524 // intrinsic, this won't be lowered to a function call. This means we don't 9525 // have to worry about calling conventions and target specific lowering code. 9526 // Instead we perform the call lowering right here. 9527 // 9528 // chain, flag = CALLSEQ_START(chain, 0, 0) 9529 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9530 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9531 // 9532 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9533 InFlag = Chain.getValue(1); 9534 9535 // Add the STACKMAP operands, starting with DAG house-keeping. 9536 Ops.push_back(Chain); 9537 Ops.push_back(InFlag); 9538 9539 // Add the <id>, <numShadowBytes> operands. 9540 // 9541 // These do not require legalisation, and can be emitted directly to target 9542 // constant nodes. 9543 SDValue ID = getValue(CI.getArgOperand(0)); 9544 assert(ID.getValueType() == MVT::i64); 9545 SDValue IDConst = DAG.getTargetConstant( 9546 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9547 Ops.push_back(IDConst); 9548 9549 SDValue Shad = getValue(CI.getArgOperand(1)); 9550 assert(Shad.getValueType() == MVT::i32); 9551 SDValue ShadConst = DAG.getTargetConstant( 9552 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9553 Ops.push_back(ShadConst); 9554 9555 // Add the live variables. 9556 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9557 9558 // Create the STACKMAP node. 9559 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9560 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9561 InFlag = Chain.getValue(1); 9562 9563 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9564 9565 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9566 9567 // Set the root to the target-lowered call chain. 9568 DAG.setRoot(Chain); 9569 9570 // Inform the Frame Information that we have a stackmap in this function. 9571 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9572 } 9573 9574 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9575 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9576 const BasicBlock *EHPadBB) { 9577 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9578 // i32 <numBytes>, 9579 // i8* <target>, 9580 // i32 <numArgs>, 9581 // [Args...], 9582 // [live variables...]) 9583 9584 CallingConv::ID CC = CB.getCallingConv(); 9585 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9586 bool HasDef = !CB.getType()->isVoidTy(); 9587 SDLoc dl = getCurSDLoc(); 9588 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9589 9590 // Handle immediate and symbolic callees. 9591 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9592 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9593 /*isTarget=*/true); 9594 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9595 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9596 SDLoc(SymbolicCallee), 9597 SymbolicCallee->getValueType(0)); 9598 9599 // Get the real number of arguments participating in the call <numArgs> 9600 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9601 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9602 9603 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9604 // Intrinsics include all meta-operands up to but not including CC. 9605 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9606 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9607 "Not enough arguments provided to the patchpoint intrinsic"); 9608 9609 // For AnyRegCC the arguments are lowered later on manually. 9610 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9611 Type *ReturnTy = 9612 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9613 9614 TargetLowering::CallLoweringInfo CLI(DAG); 9615 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9616 ReturnTy, true); 9617 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9618 9619 SDNode *CallEnd = Result.second.getNode(); 9620 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9621 CallEnd = CallEnd->getOperand(0).getNode(); 9622 9623 /// Get a call instruction from the call sequence chain. 9624 /// Tail calls are not allowed. 9625 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9626 "Expected a callseq node."); 9627 SDNode *Call = CallEnd->getOperand(0).getNode(); 9628 bool HasGlue = Call->getGluedNode(); 9629 9630 // Replace the target specific call node with the patchable intrinsic. 9631 SmallVector<SDValue, 8> Ops; 9632 9633 // Push the chain. 9634 Ops.push_back(*(Call->op_begin())); 9635 9636 // Optionally, push the glue (if any). 9637 if (HasGlue) 9638 Ops.push_back(*(Call->op_end() - 1)); 9639 9640 // Push the register mask info. 9641 if (HasGlue) 9642 Ops.push_back(*(Call->op_end() - 2)); 9643 else 9644 Ops.push_back(*(Call->op_end() - 1)); 9645 9646 // Add the <id> and <numBytes> constants. 9647 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9648 Ops.push_back(DAG.getTargetConstant( 9649 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9650 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9651 Ops.push_back(DAG.getTargetConstant( 9652 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9653 MVT::i32)); 9654 9655 // Add the callee. 9656 Ops.push_back(Callee); 9657 9658 // Adjust <numArgs> to account for any arguments that have been passed on the 9659 // stack instead. 9660 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9661 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9662 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9663 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9664 9665 // Add the calling convention 9666 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9667 9668 // Add the arguments we omitted previously. The register allocator should 9669 // place these in any free register. 9670 if (IsAnyRegCC) 9671 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9672 Ops.push_back(getValue(CB.getArgOperand(i))); 9673 9674 // Push the arguments from the call instruction. 9675 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9676 Ops.append(Call->op_begin() + 2, e); 9677 9678 // Push live variables for the stack map. 9679 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9680 9681 SDVTList NodeTys; 9682 if (IsAnyRegCC && HasDef) { 9683 // Create the return types based on the intrinsic definition 9684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9685 SmallVector<EVT, 3> ValueVTs; 9686 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9687 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9688 9689 // There is always a chain and a glue type at the end 9690 ValueVTs.push_back(MVT::Other); 9691 ValueVTs.push_back(MVT::Glue); 9692 NodeTys = DAG.getVTList(ValueVTs); 9693 } else 9694 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9695 9696 // Replace the target specific call node with a PATCHPOINT node. 9697 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9698 9699 // Update the NodeMap. 9700 if (HasDef) { 9701 if (IsAnyRegCC) 9702 setValue(&CB, SDValue(PPV.getNode(), 0)); 9703 else 9704 setValue(&CB, Result.first); 9705 } 9706 9707 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9708 // call sequence. Furthermore the location of the chain and glue can change 9709 // when the AnyReg calling convention is used and the intrinsic returns a 9710 // value. 9711 if (IsAnyRegCC && HasDef) { 9712 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9713 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9714 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9715 } else 9716 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9717 DAG.DeleteNode(Call); 9718 9719 // Inform the Frame Information that we have a patchpoint in this function. 9720 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9721 } 9722 9723 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9724 unsigned Intrinsic) { 9725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9726 SDValue Op1 = getValue(I.getArgOperand(0)); 9727 SDValue Op2; 9728 if (I.arg_size() > 1) 9729 Op2 = getValue(I.getArgOperand(1)); 9730 SDLoc dl = getCurSDLoc(); 9731 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9732 SDValue Res; 9733 SDNodeFlags SDFlags; 9734 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9735 SDFlags.copyFMF(*FPMO); 9736 9737 switch (Intrinsic) { 9738 case Intrinsic::vector_reduce_fadd: 9739 if (SDFlags.hasAllowReassociation()) 9740 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9741 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9742 SDFlags); 9743 else 9744 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9745 break; 9746 case Intrinsic::vector_reduce_fmul: 9747 if (SDFlags.hasAllowReassociation()) 9748 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9749 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9750 SDFlags); 9751 else 9752 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9753 break; 9754 case Intrinsic::vector_reduce_add: 9755 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9756 break; 9757 case Intrinsic::vector_reduce_mul: 9758 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9759 break; 9760 case Intrinsic::vector_reduce_and: 9761 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9762 break; 9763 case Intrinsic::vector_reduce_or: 9764 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9765 break; 9766 case Intrinsic::vector_reduce_xor: 9767 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9768 break; 9769 case Intrinsic::vector_reduce_smax: 9770 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9771 break; 9772 case Intrinsic::vector_reduce_smin: 9773 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9774 break; 9775 case Intrinsic::vector_reduce_umax: 9776 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9777 break; 9778 case Intrinsic::vector_reduce_umin: 9779 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9780 break; 9781 case Intrinsic::vector_reduce_fmax: 9782 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9783 break; 9784 case Intrinsic::vector_reduce_fmin: 9785 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9786 break; 9787 default: 9788 llvm_unreachable("Unhandled vector reduce intrinsic"); 9789 } 9790 setValue(&I, Res); 9791 } 9792 9793 /// Returns an AttributeList representing the attributes applied to the return 9794 /// value of the given call. 9795 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9796 SmallVector<Attribute::AttrKind, 2> Attrs; 9797 if (CLI.RetSExt) 9798 Attrs.push_back(Attribute::SExt); 9799 if (CLI.RetZExt) 9800 Attrs.push_back(Attribute::ZExt); 9801 if (CLI.IsInReg) 9802 Attrs.push_back(Attribute::InReg); 9803 9804 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9805 Attrs); 9806 } 9807 9808 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9809 /// implementation, which just calls LowerCall. 9810 /// FIXME: When all targets are 9811 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9812 std::pair<SDValue, SDValue> 9813 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9814 // Handle the incoming return values from the call. 9815 CLI.Ins.clear(); 9816 Type *OrigRetTy = CLI.RetTy; 9817 SmallVector<EVT, 4> RetTys; 9818 SmallVector<uint64_t, 4> Offsets; 9819 auto &DL = CLI.DAG.getDataLayout(); 9820 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9821 9822 if (CLI.IsPostTypeLegalization) { 9823 // If we are lowering a libcall after legalization, split the return type. 9824 SmallVector<EVT, 4> OldRetTys; 9825 SmallVector<uint64_t, 4> OldOffsets; 9826 RetTys.swap(OldRetTys); 9827 Offsets.swap(OldOffsets); 9828 9829 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9830 EVT RetVT = OldRetTys[i]; 9831 uint64_t Offset = OldOffsets[i]; 9832 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9833 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9834 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9835 RetTys.append(NumRegs, RegisterVT); 9836 for (unsigned j = 0; j != NumRegs; ++j) 9837 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9838 } 9839 } 9840 9841 SmallVector<ISD::OutputArg, 4> Outs; 9842 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9843 9844 bool CanLowerReturn = 9845 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9846 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9847 9848 SDValue DemoteStackSlot; 9849 int DemoteStackIdx = -100; 9850 if (!CanLowerReturn) { 9851 // FIXME: equivalent assert? 9852 // assert(!CS.hasInAllocaArgument() && 9853 // "sret demotion is incompatible with inalloca"); 9854 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9855 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9856 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9857 DemoteStackIdx = 9858 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9859 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9860 DL.getAllocaAddrSpace()); 9861 9862 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9863 ArgListEntry Entry; 9864 Entry.Node = DemoteStackSlot; 9865 Entry.Ty = StackSlotPtrType; 9866 Entry.IsSExt = false; 9867 Entry.IsZExt = false; 9868 Entry.IsInReg = false; 9869 Entry.IsSRet = true; 9870 Entry.IsNest = false; 9871 Entry.IsByVal = false; 9872 Entry.IsByRef = false; 9873 Entry.IsReturned = false; 9874 Entry.IsSwiftSelf = false; 9875 Entry.IsSwiftAsync = false; 9876 Entry.IsSwiftError = false; 9877 Entry.IsCFGuardTarget = false; 9878 Entry.Alignment = Alignment; 9879 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9880 CLI.NumFixedArgs += 1; 9881 CLI.getArgs()[0].IndirectType = CLI.RetTy; 9882 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9883 9884 // sret demotion isn't compatible with tail-calls, since the sret argument 9885 // points into the callers stack frame. 9886 CLI.IsTailCall = false; 9887 } else { 9888 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9889 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9890 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9891 ISD::ArgFlagsTy Flags; 9892 if (NeedsRegBlock) { 9893 Flags.setInConsecutiveRegs(); 9894 if (I == RetTys.size() - 1) 9895 Flags.setInConsecutiveRegsLast(); 9896 } 9897 EVT VT = RetTys[I]; 9898 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9899 CLI.CallConv, VT); 9900 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9901 CLI.CallConv, VT); 9902 for (unsigned i = 0; i != NumRegs; ++i) { 9903 ISD::InputArg MyFlags; 9904 MyFlags.Flags = Flags; 9905 MyFlags.VT = RegisterVT; 9906 MyFlags.ArgVT = VT; 9907 MyFlags.Used = CLI.IsReturnValueUsed; 9908 if (CLI.RetTy->isPointerTy()) { 9909 MyFlags.Flags.setPointer(); 9910 MyFlags.Flags.setPointerAddrSpace( 9911 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9912 } 9913 if (CLI.RetSExt) 9914 MyFlags.Flags.setSExt(); 9915 if (CLI.RetZExt) 9916 MyFlags.Flags.setZExt(); 9917 if (CLI.IsInReg) 9918 MyFlags.Flags.setInReg(); 9919 CLI.Ins.push_back(MyFlags); 9920 } 9921 } 9922 } 9923 9924 // We push in swifterror return as the last element of CLI.Ins. 9925 ArgListTy &Args = CLI.getArgs(); 9926 if (supportSwiftError()) { 9927 for (const ArgListEntry &Arg : Args) { 9928 if (Arg.IsSwiftError) { 9929 ISD::InputArg MyFlags; 9930 MyFlags.VT = getPointerTy(DL); 9931 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9932 MyFlags.Flags.setSwiftError(); 9933 CLI.Ins.push_back(MyFlags); 9934 } 9935 } 9936 } 9937 9938 // Handle all of the outgoing arguments. 9939 CLI.Outs.clear(); 9940 CLI.OutVals.clear(); 9941 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9942 SmallVector<EVT, 4> ValueVTs; 9943 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9944 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9945 Type *FinalType = Args[i].Ty; 9946 if (Args[i].IsByVal) 9947 FinalType = Args[i].IndirectType; 9948 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9949 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9950 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9951 ++Value) { 9952 EVT VT = ValueVTs[Value]; 9953 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9954 SDValue Op = SDValue(Args[i].Node.getNode(), 9955 Args[i].Node.getResNo() + Value); 9956 ISD::ArgFlagsTy Flags; 9957 9958 // Certain targets (such as MIPS), may have a different ABI alignment 9959 // for a type depending on the context. Give the target a chance to 9960 // specify the alignment it wants. 9961 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9962 Flags.setOrigAlign(OriginalAlignment); 9963 9964 if (Args[i].Ty->isPointerTy()) { 9965 Flags.setPointer(); 9966 Flags.setPointerAddrSpace( 9967 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9968 } 9969 if (Args[i].IsZExt) 9970 Flags.setZExt(); 9971 if (Args[i].IsSExt) 9972 Flags.setSExt(); 9973 if (Args[i].IsInReg) { 9974 // If we are using vectorcall calling convention, a structure that is 9975 // passed InReg - is surely an HVA 9976 if (CLI.CallConv == CallingConv::X86_VectorCall && 9977 isa<StructType>(FinalType)) { 9978 // The first value of a structure is marked 9979 if (0 == Value) 9980 Flags.setHvaStart(); 9981 Flags.setHva(); 9982 } 9983 // Set InReg Flag 9984 Flags.setInReg(); 9985 } 9986 if (Args[i].IsSRet) 9987 Flags.setSRet(); 9988 if (Args[i].IsSwiftSelf) 9989 Flags.setSwiftSelf(); 9990 if (Args[i].IsSwiftAsync) 9991 Flags.setSwiftAsync(); 9992 if (Args[i].IsSwiftError) 9993 Flags.setSwiftError(); 9994 if (Args[i].IsCFGuardTarget) 9995 Flags.setCFGuardTarget(); 9996 if (Args[i].IsByVal) 9997 Flags.setByVal(); 9998 if (Args[i].IsByRef) 9999 Flags.setByRef(); 10000 if (Args[i].IsPreallocated) { 10001 Flags.setPreallocated(); 10002 // Set the byval flag for CCAssignFn callbacks that don't know about 10003 // preallocated. This way we can know how many bytes we should've 10004 // allocated and how many bytes a callee cleanup function will pop. If 10005 // we port preallocated to more targets, we'll have to add custom 10006 // preallocated handling in the various CC lowering callbacks. 10007 Flags.setByVal(); 10008 } 10009 if (Args[i].IsInAlloca) { 10010 Flags.setInAlloca(); 10011 // Set the byval flag for CCAssignFn callbacks that don't know about 10012 // inalloca. This way we can know how many bytes we should've allocated 10013 // and how many bytes a callee cleanup function will pop. If we port 10014 // inalloca to more targets, we'll have to add custom inalloca handling 10015 // in the various CC lowering callbacks. 10016 Flags.setByVal(); 10017 } 10018 Align MemAlign; 10019 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10020 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10021 Flags.setByValSize(FrameSize); 10022 10023 // info is not there but there are cases it cannot get right. 10024 if (auto MA = Args[i].Alignment) 10025 MemAlign = *MA; 10026 else 10027 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10028 } else if (auto MA = Args[i].Alignment) { 10029 MemAlign = *MA; 10030 } else { 10031 MemAlign = OriginalAlignment; 10032 } 10033 Flags.setMemAlign(MemAlign); 10034 if (Args[i].IsNest) 10035 Flags.setNest(); 10036 if (NeedsRegBlock) 10037 Flags.setInConsecutiveRegs(); 10038 10039 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10040 CLI.CallConv, VT); 10041 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10042 CLI.CallConv, VT); 10043 SmallVector<SDValue, 4> Parts(NumParts); 10044 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10045 10046 if (Args[i].IsSExt) 10047 ExtendKind = ISD::SIGN_EXTEND; 10048 else if (Args[i].IsZExt) 10049 ExtendKind = ISD::ZERO_EXTEND; 10050 10051 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10052 // for now. 10053 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10054 CanLowerReturn) { 10055 assert((CLI.RetTy == Args[i].Ty || 10056 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10057 CLI.RetTy->getPointerAddressSpace() == 10058 Args[i].Ty->getPointerAddressSpace())) && 10059 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10060 // Before passing 'returned' to the target lowering code, ensure that 10061 // either the register MVT and the actual EVT are the same size or that 10062 // the return value and argument are extended in the same way; in these 10063 // cases it's safe to pass the argument register value unchanged as the 10064 // return register value (although it's at the target's option whether 10065 // to do so) 10066 // TODO: allow code generation to take advantage of partially preserved 10067 // registers rather than clobbering the entire register when the 10068 // parameter extension method is not compatible with the return 10069 // extension method 10070 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10071 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10072 CLI.RetZExt == Args[i].IsZExt)) 10073 Flags.setReturned(); 10074 } 10075 10076 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10077 CLI.CallConv, ExtendKind); 10078 10079 for (unsigned j = 0; j != NumParts; ++j) { 10080 // if it isn't first piece, alignment must be 1 10081 // For scalable vectors the scalable part is currently handled 10082 // by individual targets, so we just use the known minimum size here. 10083 ISD::OutputArg MyFlags( 10084 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10085 i < CLI.NumFixedArgs, i, 10086 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 10087 if (NumParts > 1 && j == 0) 10088 MyFlags.Flags.setSplit(); 10089 else if (j != 0) { 10090 MyFlags.Flags.setOrigAlign(Align(1)); 10091 if (j == NumParts - 1) 10092 MyFlags.Flags.setSplitEnd(); 10093 } 10094 10095 CLI.Outs.push_back(MyFlags); 10096 CLI.OutVals.push_back(Parts[j]); 10097 } 10098 10099 if (NeedsRegBlock && Value == NumValues - 1) 10100 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10101 } 10102 } 10103 10104 SmallVector<SDValue, 4> InVals; 10105 CLI.Chain = LowerCall(CLI, InVals); 10106 10107 // Update CLI.InVals to use outside of this function. 10108 CLI.InVals = InVals; 10109 10110 // Verify that the target's LowerCall behaved as expected. 10111 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10112 "LowerCall didn't return a valid chain!"); 10113 assert((!CLI.IsTailCall || InVals.empty()) && 10114 "LowerCall emitted a return value for a tail call!"); 10115 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10116 "LowerCall didn't emit the correct number of values!"); 10117 10118 // For a tail call, the return value is merely live-out and there aren't 10119 // any nodes in the DAG representing it. Return a special value to 10120 // indicate that a tail call has been emitted and no more Instructions 10121 // should be processed in the current block. 10122 if (CLI.IsTailCall) { 10123 CLI.DAG.setRoot(CLI.Chain); 10124 return std::make_pair(SDValue(), SDValue()); 10125 } 10126 10127 #ifndef NDEBUG 10128 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10129 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10130 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10131 "LowerCall emitted a value with the wrong type!"); 10132 } 10133 #endif 10134 10135 SmallVector<SDValue, 4> ReturnValues; 10136 if (!CanLowerReturn) { 10137 // The instruction result is the result of loading from the 10138 // hidden sret parameter. 10139 SmallVector<EVT, 1> PVTs; 10140 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10141 10142 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10143 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10144 EVT PtrVT = PVTs[0]; 10145 10146 unsigned NumValues = RetTys.size(); 10147 ReturnValues.resize(NumValues); 10148 SmallVector<SDValue, 4> Chains(NumValues); 10149 10150 // An aggregate return value cannot wrap around the address space, so 10151 // offsets to its parts don't wrap either. 10152 SDNodeFlags Flags; 10153 Flags.setNoUnsignedWrap(true); 10154 10155 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10156 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10157 for (unsigned i = 0; i < NumValues; ++i) { 10158 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10159 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10160 PtrVT), Flags); 10161 SDValue L = CLI.DAG.getLoad( 10162 RetTys[i], CLI.DL, CLI.Chain, Add, 10163 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10164 DemoteStackIdx, Offsets[i]), 10165 HiddenSRetAlign); 10166 ReturnValues[i] = L; 10167 Chains[i] = L.getValue(1); 10168 } 10169 10170 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10171 } else { 10172 // Collect the legal value parts into potentially illegal values 10173 // that correspond to the original function's return values. 10174 std::optional<ISD::NodeType> AssertOp; 10175 if (CLI.RetSExt) 10176 AssertOp = ISD::AssertSext; 10177 else if (CLI.RetZExt) 10178 AssertOp = ISD::AssertZext; 10179 unsigned CurReg = 0; 10180 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10181 EVT VT = RetTys[I]; 10182 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10183 CLI.CallConv, VT); 10184 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10185 CLI.CallConv, VT); 10186 10187 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10188 NumRegs, RegisterVT, VT, nullptr, 10189 CLI.CallConv, AssertOp)); 10190 CurReg += NumRegs; 10191 } 10192 10193 // For a function returning void, there is no return value. We can't create 10194 // such a node, so we just return a null return value in that case. In 10195 // that case, nothing will actually look at the value. 10196 if (ReturnValues.empty()) 10197 return std::make_pair(SDValue(), CLI.Chain); 10198 } 10199 10200 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10201 CLI.DAG.getVTList(RetTys), ReturnValues); 10202 return std::make_pair(Res, CLI.Chain); 10203 } 10204 10205 /// Places new result values for the node in Results (their number 10206 /// and types must exactly match those of the original return values of 10207 /// the node), or leaves Results empty, which indicates that the node is not 10208 /// to be custom lowered after all. 10209 void TargetLowering::LowerOperationWrapper(SDNode *N, 10210 SmallVectorImpl<SDValue> &Results, 10211 SelectionDAG &DAG) const { 10212 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10213 10214 if (!Res.getNode()) 10215 return; 10216 10217 // If the original node has one result, take the return value from 10218 // LowerOperation as is. It might not be result number 0. 10219 if (N->getNumValues() == 1) { 10220 Results.push_back(Res); 10221 return; 10222 } 10223 10224 // If the original node has multiple results, then the return node should 10225 // have the same number of results. 10226 assert((N->getNumValues() == Res->getNumValues()) && 10227 "Lowering returned the wrong number of results!"); 10228 10229 // Places new result values base on N result number. 10230 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10231 Results.push_back(Res.getValue(I)); 10232 } 10233 10234 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10235 llvm_unreachable("LowerOperation not implemented for this target!"); 10236 } 10237 10238 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10239 unsigned Reg, 10240 ISD::NodeType ExtendType) { 10241 SDValue Op = getNonRegisterValue(V); 10242 assert((Op.getOpcode() != ISD::CopyFromReg || 10243 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10244 "Copy from a reg to the same reg!"); 10245 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10246 10247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10248 // If this is an InlineAsm we have to match the registers required, not the 10249 // notional registers required by the type. 10250 10251 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10252 None); // This is not an ABI copy. 10253 SDValue Chain = DAG.getEntryNode(); 10254 10255 if (ExtendType == ISD::ANY_EXTEND) { 10256 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10257 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10258 ExtendType = PreferredExtendIt->second; 10259 } 10260 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10261 PendingExports.push_back(Chain); 10262 } 10263 10264 #include "llvm/CodeGen/SelectionDAGISel.h" 10265 10266 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10267 /// entry block, return true. This includes arguments used by switches, since 10268 /// the switch may expand into multiple basic blocks. 10269 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10270 // With FastISel active, we may be splitting blocks, so force creation 10271 // of virtual registers for all non-dead arguments. 10272 if (FastISel) 10273 return A->use_empty(); 10274 10275 const BasicBlock &Entry = A->getParent()->front(); 10276 for (const User *U : A->users()) 10277 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10278 return false; // Use not in entry block. 10279 10280 return true; 10281 } 10282 10283 using ArgCopyElisionMapTy = 10284 DenseMap<const Argument *, 10285 std::pair<const AllocaInst *, const StoreInst *>>; 10286 10287 /// Scan the entry block of the function in FuncInfo for arguments that look 10288 /// like copies into a local alloca. Record any copied arguments in 10289 /// ArgCopyElisionCandidates. 10290 static void 10291 findArgumentCopyElisionCandidates(const DataLayout &DL, 10292 FunctionLoweringInfo *FuncInfo, 10293 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10294 // Record the state of every static alloca used in the entry block. Argument 10295 // allocas are all used in the entry block, so we need approximately as many 10296 // entries as we have arguments. 10297 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10298 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10299 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10300 StaticAllocas.reserve(NumArgs * 2); 10301 10302 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10303 if (!V) 10304 return nullptr; 10305 V = V->stripPointerCasts(); 10306 const auto *AI = dyn_cast<AllocaInst>(V); 10307 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10308 return nullptr; 10309 auto Iter = StaticAllocas.insert({AI, Unknown}); 10310 return &Iter.first->second; 10311 }; 10312 10313 // Look for stores of arguments to static allocas. Look through bitcasts and 10314 // GEPs to handle type coercions, as long as the alloca is fully initialized 10315 // by the store. Any non-store use of an alloca escapes it and any subsequent 10316 // unanalyzed store might write it. 10317 // FIXME: Handle structs initialized with multiple stores. 10318 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10319 // Look for stores, and handle non-store uses conservatively. 10320 const auto *SI = dyn_cast<StoreInst>(&I); 10321 if (!SI) { 10322 // We will look through cast uses, so ignore them completely. 10323 if (I.isCast()) 10324 continue; 10325 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10326 // to allocas. 10327 if (I.isDebugOrPseudoInst()) 10328 continue; 10329 // This is an unknown instruction. Assume it escapes or writes to all 10330 // static alloca operands. 10331 for (const Use &U : I.operands()) { 10332 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10333 *Info = StaticAllocaInfo::Clobbered; 10334 } 10335 continue; 10336 } 10337 10338 // If the stored value is a static alloca, mark it as escaped. 10339 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10340 *Info = StaticAllocaInfo::Clobbered; 10341 10342 // Check if the destination is a static alloca. 10343 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10344 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10345 if (!Info) 10346 continue; 10347 const AllocaInst *AI = cast<AllocaInst>(Dst); 10348 10349 // Skip allocas that have been initialized or clobbered. 10350 if (*Info != StaticAllocaInfo::Unknown) 10351 continue; 10352 10353 // Check if the stored value is an argument, and that this store fully 10354 // initializes the alloca. 10355 // If the argument type has padding bits we can't directly forward a pointer 10356 // as the upper bits may contain garbage. 10357 // Don't elide copies from the same argument twice. 10358 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10359 const auto *Arg = dyn_cast<Argument>(Val); 10360 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10361 Arg->getType()->isEmptyTy() || 10362 DL.getTypeStoreSize(Arg->getType()) != 10363 DL.getTypeAllocSize(AI->getAllocatedType()) || 10364 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10365 ArgCopyElisionCandidates.count(Arg)) { 10366 *Info = StaticAllocaInfo::Clobbered; 10367 continue; 10368 } 10369 10370 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10371 << '\n'); 10372 10373 // Mark this alloca and store for argument copy elision. 10374 *Info = StaticAllocaInfo::Elidable; 10375 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10376 10377 // Stop scanning if we've seen all arguments. This will happen early in -O0 10378 // builds, which is useful, because -O0 builds have large entry blocks and 10379 // many allocas. 10380 if (ArgCopyElisionCandidates.size() == NumArgs) 10381 break; 10382 } 10383 } 10384 10385 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10386 /// ArgVal is a load from a suitable fixed stack object. 10387 static void tryToElideArgumentCopy( 10388 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10389 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10390 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10391 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10392 SDValue ArgVal, bool &ArgHasUses) { 10393 // Check if this is a load from a fixed stack object. 10394 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10395 if (!LNode) 10396 return; 10397 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10398 if (!FINode) 10399 return; 10400 10401 // Check that the fixed stack object is the right size and alignment. 10402 // Look at the alignment that the user wrote on the alloca instead of looking 10403 // at the stack object. 10404 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10405 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10406 const AllocaInst *AI = ArgCopyIter->second.first; 10407 int FixedIndex = FINode->getIndex(); 10408 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10409 int OldIndex = AllocaIndex; 10410 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10411 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10412 LLVM_DEBUG( 10413 dbgs() << " argument copy elision failed due to bad fixed stack " 10414 "object size\n"); 10415 return; 10416 } 10417 Align RequiredAlignment = AI->getAlign(); 10418 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10419 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10420 "greater than stack argument alignment (" 10421 << DebugStr(RequiredAlignment) << " vs " 10422 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10423 return; 10424 } 10425 10426 // Perform the elision. Delete the old stack object and replace its only use 10427 // in the variable info map. Mark the stack object as mutable. 10428 LLVM_DEBUG({ 10429 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10430 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10431 << '\n'; 10432 }); 10433 MFI.RemoveStackObject(OldIndex); 10434 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10435 AllocaIndex = FixedIndex; 10436 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10437 Chains.push_back(ArgVal.getValue(1)); 10438 10439 // Avoid emitting code for the store implementing the copy. 10440 const StoreInst *SI = ArgCopyIter->second.second; 10441 ElidedArgCopyInstrs.insert(SI); 10442 10443 // Check for uses of the argument again so that we can avoid exporting ArgVal 10444 // if it is't used by anything other than the store. 10445 for (const Value *U : Arg.users()) { 10446 if (U != SI) { 10447 ArgHasUses = true; 10448 break; 10449 } 10450 } 10451 } 10452 10453 void SelectionDAGISel::LowerArguments(const Function &F) { 10454 SelectionDAG &DAG = SDB->DAG; 10455 SDLoc dl = SDB->getCurSDLoc(); 10456 const DataLayout &DL = DAG.getDataLayout(); 10457 SmallVector<ISD::InputArg, 16> Ins; 10458 10459 // In Naked functions we aren't going to save any registers. 10460 if (F.hasFnAttribute(Attribute::Naked)) 10461 return; 10462 10463 if (!FuncInfo->CanLowerReturn) { 10464 // Put in an sret pointer parameter before all the other parameters. 10465 SmallVector<EVT, 1> ValueVTs; 10466 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10467 F.getReturnType()->getPointerTo( 10468 DAG.getDataLayout().getAllocaAddrSpace()), 10469 ValueVTs); 10470 10471 // NOTE: Assuming that a pointer will never break down to more than one VT 10472 // or one register. 10473 ISD::ArgFlagsTy Flags; 10474 Flags.setSRet(); 10475 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10476 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10477 ISD::InputArg::NoArgIndex, 0); 10478 Ins.push_back(RetArg); 10479 } 10480 10481 // Look for stores of arguments to static allocas. Mark such arguments with a 10482 // flag to ask the target to give us the memory location of that argument if 10483 // available. 10484 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10485 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10486 ArgCopyElisionCandidates); 10487 10488 // Set up the incoming argument description vector. 10489 for (const Argument &Arg : F.args()) { 10490 unsigned ArgNo = Arg.getArgNo(); 10491 SmallVector<EVT, 4> ValueVTs; 10492 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10493 bool isArgValueUsed = !Arg.use_empty(); 10494 unsigned PartBase = 0; 10495 Type *FinalType = Arg.getType(); 10496 if (Arg.hasAttribute(Attribute::ByVal)) 10497 FinalType = Arg.getParamByValType(); 10498 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10499 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10500 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10501 Value != NumValues; ++Value) { 10502 EVT VT = ValueVTs[Value]; 10503 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10504 ISD::ArgFlagsTy Flags; 10505 10506 10507 if (Arg.getType()->isPointerTy()) { 10508 Flags.setPointer(); 10509 Flags.setPointerAddrSpace( 10510 cast<PointerType>(Arg.getType())->getAddressSpace()); 10511 } 10512 if (Arg.hasAttribute(Attribute::ZExt)) 10513 Flags.setZExt(); 10514 if (Arg.hasAttribute(Attribute::SExt)) 10515 Flags.setSExt(); 10516 if (Arg.hasAttribute(Attribute::InReg)) { 10517 // If we are using vectorcall calling convention, a structure that is 10518 // passed InReg - is surely an HVA 10519 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10520 isa<StructType>(Arg.getType())) { 10521 // The first value of a structure is marked 10522 if (0 == Value) 10523 Flags.setHvaStart(); 10524 Flags.setHva(); 10525 } 10526 // Set InReg Flag 10527 Flags.setInReg(); 10528 } 10529 if (Arg.hasAttribute(Attribute::StructRet)) 10530 Flags.setSRet(); 10531 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10532 Flags.setSwiftSelf(); 10533 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10534 Flags.setSwiftAsync(); 10535 if (Arg.hasAttribute(Attribute::SwiftError)) 10536 Flags.setSwiftError(); 10537 if (Arg.hasAttribute(Attribute::ByVal)) 10538 Flags.setByVal(); 10539 if (Arg.hasAttribute(Attribute::ByRef)) 10540 Flags.setByRef(); 10541 if (Arg.hasAttribute(Attribute::InAlloca)) { 10542 Flags.setInAlloca(); 10543 // Set the byval flag for CCAssignFn callbacks that don't know about 10544 // inalloca. This way we can know how many bytes we should've allocated 10545 // and how many bytes a callee cleanup function will pop. If we port 10546 // inalloca to more targets, we'll have to add custom inalloca handling 10547 // in the various CC lowering callbacks. 10548 Flags.setByVal(); 10549 } 10550 if (Arg.hasAttribute(Attribute::Preallocated)) { 10551 Flags.setPreallocated(); 10552 // Set the byval flag for CCAssignFn callbacks that don't know about 10553 // preallocated. This way we can know how many bytes we should've 10554 // allocated and how many bytes a callee cleanup function will pop. If 10555 // we port preallocated to more targets, we'll have to add custom 10556 // preallocated handling in the various CC lowering callbacks. 10557 Flags.setByVal(); 10558 } 10559 10560 // Certain targets (such as MIPS), may have a different ABI alignment 10561 // for a type depending on the context. Give the target a chance to 10562 // specify the alignment it wants. 10563 const Align OriginalAlignment( 10564 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10565 Flags.setOrigAlign(OriginalAlignment); 10566 10567 Align MemAlign; 10568 Type *ArgMemTy = nullptr; 10569 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10570 Flags.isByRef()) { 10571 if (!ArgMemTy) 10572 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10573 10574 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10575 10576 // For in-memory arguments, size and alignment should be passed from FE. 10577 // BE will guess if this info is not there but there are cases it cannot 10578 // get right. 10579 if (auto ParamAlign = Arg.getParamStackAlign()) 10580 MemAlign = *ParamAlign; 10581 else if ((ParamAlign = Arg.getParamAlign())) 10582 MemAlign = *ParamAlign; 10583 else 10584 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10585 if (Flags.isByRef()) 10586 Flags.setByRefSize(MemSize); 10587 else 10588 Flags.setByValSize(MemSize); 10589 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10590 MemAlign = *ParamAlign; 10591 } else { 10592 MemAlign = OriginalAlignment; 10593 } 10594 Flags.setMemAlign(MemAlign); 10595 10596 if (Arg.hasAttribute(Attribute::Nest)) 10597 Flags.setNest(); 10598 if (NeedsRegBlock) 10599 Flags.setInConsecutiveRegs(); 10600 if (ArgCopyElisionCandidates.count(&Arg)) 10601 Flags.setCopyElisionCandidate(); 10602 if (Arg.hasAttribute(Attribute::Returned)) 10603 Flags.setReturned(); 10604 10605 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10606 *CurDAG->getContext(), F.getCallingConv(), VT); 10607 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10608 *CurDAG->getContext(), F.getCallingConv(), VT); 10609 for (unsigned i = 0; i != NumRegs; ++i) { 10610 // For scalable vectors, use the minimum size; individual targets 10611 // are responsible for handling scalable vector arguments and 10612 // return values. 10613 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10614 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10615 if (NumRegs > 1 && i == 0) 10616 MyFlags.Flags.setSplit(); 10617 // if it isn't first piece, alignment must be 1 10618 else if (i > 0) { 10619 MyFlags.Flags.setOrigAlign(Align(1)); 10620 if (i == NumRegs - 1) 10621 MyFlags.Flags.setSplitEnd(); 10622 } 10623 Ins.push_back(MyFlags); 10624 } 10625 if (NeedsRegBlock && Value == NumValues - 1) 10626 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10627 PartBase += VT.getStoreSize().getKnownMinSize(); 10628 } 10629 } 10630 10631 // Call the target to set up the argument values. 10632 SmallVector<SDValue, 8> InVals; 10633 SDValue NewRoot = TLI->LowerFormalArguments( 10634 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10635 10636 // Verify that the target's LowerFormalArguments behaved as expected. 10637 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10638 "LowerFormalArguments didn't return a valid chain!"); 10639 assert(InVals.size() == Ins.size() && 10640 "LowerFormalArguments didn't emit the correct number of values!"); 10641 LLVM_DEBUG({ 10642 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10643 assert(InVals[i].getNode() && 10644 "LowerFormalArguments emitted a null value!"); 10645 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10646 "LowerFormalArguments emitted a value with the wrong type!"); 10647 } 10648 }); 10649 10650 // Update the DAG with the new chain value resulting from argument lowering. 10651 DAG.setRoot(NewRoot); 10652 10653 // Set up the argument values. 10654 unsigned i = 0; 10655 if (!FuncInfo->CanLowerReturn) { 10656 // Create a virtual register for the sret pointer, and put in a copy 10657 // from the sret argument into it. 10658 SmallVector<EVT, 1> ValueVTs; 10659 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10660 F.getReturnType()->getPointerTo( 10661 DAG.getDataLayout().getAllocaAddrSpace()), 10662 ValueVTs); 10663 MVT VT = ValueVTs[0].getSimpleVT(); 10664 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10665 std::optional<ISD::NodeType> AssertOp; 10666 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10667 nullptr, F.getCallingConv(), AssertOp); 10668 10669 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10670 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10671 Register SRetReg = 10672 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10673 FuncInfo->DemoteRegister = SRetReg; 10674 NewRoot = 10675 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10676 DAG.setRoot(NewRoot); 10677 10678 // i indexes lowered arguments. Bump it past the hidden sret argument. 10679 ++i; 10680 } 10681 10682 SmallVector<SDValue, 4> Chains; 10683 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10684 for (const Argument &Arg : F.args()) { 10685 SmallVector<SDValue, 4> ArgValues; 10686 SmallVector<EVT, 4> ValueVTs; 10687 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10688 unsigned NumValues = ValueVTs.size(); 10689 if (NumValues == 0) 10690 continue; 10691 10692 bool ArgHasUses = !Arg.use_empty(); 10693 10694 // Elide the copying store if the target loaded this argument from a 10695 // suitable fixed stack object. 10696 if (Ins[i].Flags.isCopyElisionCandidate()) { 10697 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10698 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10699 InVals[i], ArgHasUses); 10700 } 10701 10702 // If this argument is unused then remember its value. It is used to generate 10703 // debugging information. 10704 bool isSwiftErrorArg = 10705 TLI->supportSwiftError() && 10706 Arg.hasAttribute(Attribute::SwiftError); 10707 if (!ArgHasUses && !isSwiftErrorArg) { 10708 SDB->setUnusedArgValue(&Arg, InVals[i]); 10709 10710 // Also remember any frame index for use in FastISel. 10711 if (FrameIndexSDNode *FI = 10712 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10713 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10714 } 10715 10716 for (unsigned Val = 0; Val != NumValues; ++Val) { 10717 EVT VT = ValueVTs[Val]; 10718 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10719 F.getCallingConv(), VT); 10720 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10721 *CurDAG->getContext(), F.getCallingConv(), VT); 10722 10723 // Even an apparent 'unused' swifterror argument needs to be returned. So 10724 // we do generate a copy for it that can be used on return from the 10725 // function. 10726 if (ArgHasUses || isSwiftErrorArg) { 10727 std::optional<ISD::NodeType> AssertOp; 10728 if (Arg.hasAttribute(Attribute::SExt)) 10729 AssertOp = ISD::AssertSext; 10730 else if (Arg.hasAttribute(Attribute::ZExt)) 10731 AssertOp = ISD::AssertZext; 10732 10733 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10734 PartVT, VT, nullptr, 10735 F.getCallingConv(), AssertOp)); 10736 } 10737 10738 i += NumParts; 10739 } 10740 10741 // We don't need to do anything else for unused arguments. 10742 if (ArgValues.empty()) 10743 continue; 10744 10745 // Note down frame index. 10746 if (FrameIndexSDNode *FI = 10747 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10748 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10749 10750 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10751 SDB->getCurSDLoc()); 10752 10753 SDB->setValue(&Arg, Res); 10754 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10755 // We want to associate the argument with the frame index, among 10756 // involved operands, that correspond to the lowest address. The 10757 // getCopyFromParts function, called earlier, is swapping the order of 10758 // the operands to BUILD_PAIR depending on endianness. The result of 10759 // that swapping is that the least significant bits of the argument will 10760 // be in the first operand of the BUILD_PAIR node, and the most 10761 // significant bits will be in the second operand. 10762 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10763 if (LoadSDNode *LNode = 10764 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10765 if (FrameIndexSDNode *FI = 10766 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10767 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10768 } 10769 10770 // Analyses past this point are naive and don't expect an assertion. 10771 if (Res.getOpcode() == ISD::AssertZext) 10772 Res = Res.getOperand(0); 10773 10774 // Update the SwiftErrorVRegDefMap. 10775 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10776 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10777 if (Register::isVirtualRegister(Reg)) 10778 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10779 Reg); 10780 } 10781 10782 // If this argument is live outside of the entry block, insert a copy from 10783 // wherever we got it to the vreg that other BB's will reference it as. 10784 if (Res.getOpcode() == ISD::CopyFromReg) { 10785 // If we can, though, try to skip creating an unnecessary vreg. 10786 // FIXME: This isn't very clean... it would be nice to make this more 10787 // general. 10788 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10789 if (Register::isVirtualRegister(Reg)) { 10790 FuncInfo->ValueMap[&Arg] = Reg; 10791 continue; 10792 } 10793 } 10794 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10795 FuncInfo->InitializeRegForValue(&Arg); 10796 SDB->CopyToExportRegsIfNeeded(&Arg); 10797 } 10798 } 10799 10800 if (!Chains.empty()) { 10801 Chains.push_back(NewRoot); 10802 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10803 } 10804 10805 DAG.setRoot(NewRoot); 10806 10807 assert(i == InVals.size() && "Argument register count mismatch!"); 10808 10809 // If any argument copy elisions occurred and we have debug info, update the 10810 // stale frame indices used in the dbg.declare variable info table. 10811 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10812 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10813 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10814 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10815 if (I != ArgCopyElisionFrameIndexMap.end()) 10816 VI.Slot = I->second; 10817 } 10818 } 10819 10820 // Finally, if the target has anything special to do, allow it to do so. 10821 emitFunctionEntryCode(); 10822 } 10823 10824 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10825 /// ensure constants are generated when needed. Remember the virtual registers 10826 /// that need to be added to the Machine PHI nodes as input. We cannot just 10827 /// directly add them, because expansion might result in multiple MBB's for one 10828 /// BB. As such, the start of the BB might correspond to a different MBB than 10829 /// the end. 10830 void 10831 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10833 10834 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10835 10836 // Check PHI nodes in successors that expect a value to be available from this 10837 // block. 10838 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 10839 if (!isa<PHINode>(SuccBB->begin())) continue; 10840 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10841 10842 // If this terminator has multiple identical successors (common for 10843 // switches), only handle each succ once. 10844 if (!SuccsHandled.insert(SuccMBB).second) 10845 continue; 10846 10847 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10848 10849 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10850 // nodes and Machine PHI nodes, but the incoming operands have not been 10851 // emitted yet. 10852 for (const PHINode &PN : SuccBB->phis()) { 10853 // Ignore dead phi's. 10854 if (PN.use_empty()) 10855 continue; 10856 10857 // Skip empty types 10858 if (PN.getType()->isEmptyTy()) 10859 continue; 10860 10861 unsigned Reg; 10862 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10863 10864 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 10865 unsigned &RegOut = ConstantsOut[C]; 10866 if (RegOut == 0) { 10867 RegOut = FuncInfo.CreateRegs(C); 10868 // We need to zero/sign extend ConstantInt phi operands to match 10869 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10870 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10871 if (auto *CI = dyn_cast<ConstantInt>(C)) 10872 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10873 : ISD::ZERO_EXTEND; 10874 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10875 } 10876 Reg = RegOut; 10877 } else { 10878 DenseMap<const Value *, Register>::iterator I = 10879 FuncInfo.ValueMap.find(PHIOp); 10880 if (I != FuncInfo.ValueMap.end()) 10881 Reg = I->second; 10882 else { 10883 assert(isa<AllocaInst>(PHIOp) && 10884 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10885 "Didn't codegen value into a register!??"); 10886 Reg = FuncInfo.CreateRegs(PHIOp); 10887 CopyValueToVirtualRegister(PHIOp, Reg); 10888 } 10889 } 10890 10891 // Remember that this register needs to added to the machine PHI node as 10892 // the input for this MBB. 10893 SmallVector<EVT, 4> ValueVTs; 10894 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10895 for (EVT VT : ValueVTs) { 10896 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10897 for (unsigned i = 0; i != NumRegisters; ++i) 10898 FuncInfo.PHINodesToUpdate.push_back( 10899 std::make_pair(&*MBBI++, Reg + i)); 10900 Reg += NumRegisters; 10901 } 10902 } 10903 } 10904 10905 ConstantsOut.clear(); 10906 } 10907 10908 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10909 MachineFunction::iterator I(MBB); 10910 if (++I == FuncInfo.MF->end()) 10911 return nullptr; 10912 return &*I; 10913 } 10914 10915 /// During lowering new call nodes can be created (such as memset, etc.). 10916 /// Those will become new roots of the current DAG, but complications arise 10917 /// when they are tail calls. In such cases, the call lowering will update 10918 /// the root, but the builder still needs to know that a tail call has been 10919 /// lowered in order to avoid generating an additional return. 10920 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10921 // If the node is null, we do have a tail call. 10922 if (MaybeTC.getNode() != nullptr) 10923 DAG.setRoot(MaybeTC); 10924 else 10925 HasTailCall = true; 10926 } 10927 10928 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10929 MachineBasicBlock *SwitchMBB, 10930 MachineBasicBlock *DefaultMBB) { 10931 MachineFunction *CurMF = FuncInfo.MF; 10932 MachineBasicBlock *NextMBB = nullptr; 10933 MachineFunction::iterator BBI(W.MBB); 10934 if (++BBI != FuncInfo.MF->end()) 10935 NextMBB = &*BBI; 10936 10937 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10938 10939 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10940 10941 if (Size == 2 && W.MBB == SwitchMBB) { 10942 // If any two of the cases has the same destination, and if one value 10943 // is the same as the other, but has one bit unset that the other has set, 10944 // use bit manipulation to do two compares at once. For example: 10945 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10946 // TODO: This could be extended to merge any 2 cases in switches with 3 10947 // cases. 10948 // TODO: Handle cases where W.CaseBB != SwitchBB. 10949 CaseCluster &Small = *W.FirstCluster; 10950 CaseCluster &Big = *W.LastCluster; 10951 10952 if (Small.Low == Small.High && Big.Low == Big.High && 10953 Small.MBB == Big.MBB) { 10954 const APInt &SmallValue = Small.Low->getValue(); 10955 const APInt &BigValue = Big.Low->getValue(); 10956 10957 // Check that there is only one bit different. 10958 APInt CommonBit = BigValue ^ SmallValue; 10959 if (CommonBit.isPowerOf2()) { 10960 SDValue CondLHS = getValue(Cond); 10961 EVT VT = CondLHS.getValueType(); 10962 SDLoc DL = getCurSDLoc(); 10963 10964 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10965 DAG.getConstant(CommonBit, DL, VT)); 10966 SDValue Cond = DAG.getSetCC( 10967 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10968 ISD::SETEQ); 10969 10970 // Update successor info. 10971 // Both Small and Big will jump to Small.BB, so we sum up the 10972 // probabilities. 10973 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10974 if (BPI) 10975 addSuccessorWithProb( 10976 SwitchMBB, DefaultMBB, 10977 // The default destination is the first successor in IR. 10978 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10979 else 10980 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10981 10982 // Insert the true branch. 10983 SDValue BrCond = 10984 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10985 DAG.getBasicBlock(Small.MBB)); 10986 // Insert the false branch. 10987 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10988 DAG.getBasicBlock(DefaultMBB)); 10989 10990 DAG.setRoot(BrCond); 10991 return; 10992 } 10993 } 10994 } 10995 10996 if (TM.getOptLevel() != CodeGenOpt::None) { 10997 // Here, we order cases by probability so the most likely case will be 10998 // checked first. However, two clusters can have the same probability in 10999 // which case their relative ordering is non-deterministic. So we use Low 11000 // as a tie-breaker as clusters are guaranteed to never overlap. 11001 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11002 [](const CaseCluster &a, const CaseCluster &b) { 11003 return a.Prob != b.Prob ? 11004 a.Prob > b.Prob : 11005 a.Low->getValue().slt(b.Low->getValue()); 11006 }); 11007 11008 // Rearrange the case blocks so that the last one falls through if possible 11009 // without changing the order of probabilities. 11010 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11011 --I; 11012 if (I->Prob > W.LastCluster->Prob) 11013 break; 11014 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11015 std::swap(*I, *W.LastCluster); 11016 break; 11017 } 11018 } 11019 } 11020 11021 // Compute total probability. 11022 BranchProbability DefaultProb = W.DefaultProb; 11023 BranchProbability UnhandledProbs = DefaultProb; 11024 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11025 UnhandledProbs += I->Prob; 11026 11027 MachineBasicBlock *CurMBB = W.MBB; 11028 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11029 bool FallthroughUnreachable = false; 11030 MachineBasicBlock *Fallthrough; 11031 if (I == W.LastCluster) { 11032 // For the last cluster, fall through to the default destination. 11033 Fallthrough = DefaultMBB; 11034 FallthroughUnreachable = isa<UnreachableInst>( 11035 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11036 } else { 11037 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11038 CurMF->insert(BBI, Fallthrough); 11039 // Put Cond in a virtual register to make it available from the new blocks. 11040 ExportFromCurrentBlock(Cond); 11041 } 11042 UnhandledProbs -= I->Prob; 11043 11044 switch (I->Kind) { 11045 case CC_JumpTable: { 11046 // FIXME: Optimize away range check based on pivot comparisons. 11047 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11048 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11049 11050 // The jump block hasn't been inserted yet; insert it here. 11051 MachineBasicBlock *JumpMBB = JT->MBB; 11052 CurMF->insert(BBI, JumpMBB); 11053 11054 auto JumpProb = I->Prob; 11055 auto FallthroughProb = UnhandledProbs; 11056 11057 // If the default statement is a target of the jump table, we evenly 11058 // distribute the default probability to successors of CurMBB. Also 11059 // update the probability on the edge from JumpMBB to Fallthrough. 11060 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11061 SE = JumpMBB->succ_end(); 11062 SI != SE; ++SI) { 11063 if (*SI == DefaultMBB) { 11064 JumpProb += DefaultProb / 2; 11065 FallthroughProb -= DefaultProb / 2; 11066 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11067 JumpMBB->normalizeSuccProbs(); 11068 break; 11069 } 11070 } 11071 11072 if (FallthroughUnreachable) 11073 JTH->FallthroughUnreachable = true; 11074 11075 if (!JTH->FallthroughUnreachable) 11076 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11077 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11078 CurMBB->normalizeSuccProbs(); 11079 11080 // The jump table header will be inserted in our current block, do the 11081 // range check, and fall through to our fallthrough block. 11082 JTH->HeaderBB = CurMBB; 11083 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11084 11085 // If we're in the right place, emit the jump table header right now. 11086 if (CurMBB == SwitchMBB) { 11087 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11088 JTH->Emitted = true; 11089 } 11090 break; 11091 } 11092 case CC_BitTests: { 11093 // FIXME: Optimize away range check based on pivot comparisons. 11094 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11095 11096 // The bit test blocks haven't been inserted yet; insert them here. 11097 for (BitTestCase &BTC : BTB->Cases) 11098 CurMF->insert(BBI, BTC.ThisBB); 11099 11100 // Fill in fields of the BitTestBlock. 11101 BTB->Parent = CurMBB; 11102 BTB->Default = Fallthrough; 11103 11104 BTB->DefaultProb = UnhandledProbs; 11105 // If the cases in bit test don't form a contiguous range, we evenly 11106 // distribute the probability on the edge to Fallthrough to two 11107 // successors of CurMBB. 11108 if (!BTB->ContiguousRange) { 11109 BTB->Prob += DefaultProb / 2; 11110 BTB->DefaultProb -= DefaultProb / 2; 11111 } 11112 11113 if (FallthroughUnreachable) 11114 BTB->FallthroughUnreachable = true; 11115 11116 // If we're in the right place, emit the bit test header right now. 11117 if (CurMBB == SwitchMBB) { 11118 visitBitTestHeader(*BTB, SwitchMBB); 11119 BTB->Emitted = true; 11120 } 11121 break; 11122 } 11123 case CC_Range: { 11124 const Value *RHS, *LHS, *MHS; 11125 ISD::CondCode CC; 11126 if (I->Low == I->High) { 11127 // Check Cond == I->Low. 11128 CC = ISD::SETEQ; 11129 LHS = Cond; 11130 RHS=I->Low; 11131 MHS = nullptr; 11132 } else { 11133 // Check I->Low <= Cond <= I->High. 11134 CC = ISD::SETLE; 11135 LHS = I->Low; 11136 MHS = Cond; 11137 RHS = I->High; 11138 } 11139 11140 // If Fallthrough is unreachable, fold away the comparison. 11141 if (FallthroughUnreachable) 11142 CC = ISD::SETTRUE; 11143 11144 // The false probability is the sum of all unhandled cases. 11145 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11146 getCurSDLoc(), I->Prob, UnhandledProbs); 11147 11148 if (CurMBB == SwitchMBB) 11149 visitSwitchCase(CB, SwitchMBB); 11150 else 11151 SL->SwitchCases.push_back(CB); 11152 11153 break; 11154 } 11155 } 11156 CurMBB = Fallthrough; 11157 } 11158 } 11159 11160 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11161 CaseClusterIt First, 11162 CaseClusterIt Last) { 11163 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11164 if (X.Prob != CC.Prob) 11165 return X.Prob > CC.Prob; 11166 11167 // Ties are broken by comparing the case value. 11168 return X.Low->getValue().slt(CC.Low->getValue()); 11169 }); 11170 } 11171 11172 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11173 const SwitchWorkListItem &W, 11174 Value *Cond, 11175 MachineBasicBlock *SwitchMBB) { 11176 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11177 "Clusters not sorted?"); 11178 11179 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11180 11181 // Balance the tree based on branch probabilities to create a near-optimal (in 11182 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11183 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11184 CaseClusterIt LastLeft = W.FirstCluster; 11185 CaseClusterIt FirstRight = W.LastCluster; 11186 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11187 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11188 11189 // Move LastLeft and FirstRight towards each other from opposite directions to 11190 // find a partitioning of the clusters which balances the probability on both 11191 // sides. If LeftProb and RightProb are equal, alternate which side is 11192 // taken to ensure 0-probability nodes are distributed evenly. 11193 unsigned I = 0; 11194 while (LastLeft + 1 < FirstRight) { 11195 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11196 LeftProb += (++LastLeft)->Prob; 11197 else 11198 RightProb += (--FirstRight)->Prob; 11199 I++; 11200 } 11201 11202 while (true) { 11203 // Our binary search tree differs from a typical BST in that ours can have up 11204 // to three values in each leaf. The pivot selection above doesn't take that 11205 // into account, which means the tree might require more nodes and be less 11206 // efficient. We compensate for this here. 11207 11208 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11209 unsigned NumRight = W.LastCluster - FirstRight + 1; 11210 11211 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11212 // If one side has less than 3 clusters, and the other has more than 3, 11213 // consider taking a cluster from the other side. 11214 11215 if (NumLeft < NumRight) { 11216 // Consider moving the first cluster on the right to the left side. 11217 CaseCluster &CC = *FirstRight; 11218 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11219 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11220 if (LeftSideRank <= RightSideRank) { 11221 // Moving the cluster to the left does not demote it. 11222 ++LastLeft; 11223 ++FirstRight; 11224 continue; 11225 } 11226 } else { 11227 assert(NumRight < NumLeft); 11228 // Consider moving the last element on the left to the right side. 11229 CaseCluster &CC = *LastLeft; 11230 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11231 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11232 if (RightSideRank <= LeftSideRank) { 11233 // Moving the cluster to the right does not demot it. 11234 --LastLeft; 11235 --FirstRight; 11236 continue; 11237 } 11238 } 11239 } 11240 break; 11241 } 11242 11243 assert(LastLeft + 1 == FirstRight); 11244 assert(LastLeft >= W.FirstCluster); 11245 assert(FirstRight <= W.LastCluster); 11246 11247 // Use the first element on the right as pivot since we will make less-than 11248 // comparisons against it. 11249 CaseClusterIt PivotCluster = FirstRight; 11250 assert(PivotCluster > W.FirstCluster); 11251 assert(PivotCluster <= W.LastCluster); 11252 11253 CaseClusterIt FirstLeft = W.FirstCluster; 11254 CaseClusterIt LastRight = W.LastCluster; 11255 11256 const ConstantInt *Pivot = PivotCluster->Low; 11257 11258 // New blocks will be inserted immediately after the current one. 11259 MachineFunction::iterator BBI(W.MBB); 11260 ++BBI; 11261 11262 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11263 // we can branch to its destination directly if it's squeezed exactly in 11264 // between the known lower bound and Pivot - 1. 11265 MachineBasicBlock *LeftMBB; 11266 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11267 FirstLeft->Low == W.GE && 11268 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11269 LeftMBB = FirstLeft->MBB; 11270 } else { 11271 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11272 FuncInfo.MF->insert(BBI, LeftMBB); 11273 WorkList.push_back( 11274 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11275 // Put Cond in a virtual register to make it available from the new blocks. 11276 ExportFromCurrentBlock(Cond); 11277 } 11278 11279 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11280 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11281 // directly if RHS.High equals the current upper bound. 11282 MachineBasicBlock *RightMBB; 11283 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11284 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11285 RightMBB = FirstRight->MBB; 11286 } else { 11287 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11288 FuncInfo.MF->insert(BBI, RightMBB); 11289 WorkList.push_back( 11290 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11291 // Put Cond in a virtual register to make it available from the new blocks. 11292 ExportFromCurrentBlock(Cond); 11293 } 11294 11295 // Create the CaseBlock record that will be used to lower the branch. 11296 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11297 getCurSDLoc(), LeftProb, RightProb); 11298 11299 if (W.MBB == SwitchMBB) 11300 visitSwitchCase(CB, SwitchMBB); 11301 else 11302 SL->SwitchCases.push_back(CB); 11303 } 11304 11305 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11306 // from the swith statement. 11307 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11308 BranchProbability PeeledCaseProb) { 11309 if (PeeledCaseProb == BranchProbability::getOne()) 11310 return BranchProbability::getZero(); 11311 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11312 11313 uint32_t Numerator = CaseProb.getNumerator(); 11314 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11315 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11316 } 11317 11318 // Try to peel the top probability case if it exceeds the threshold. 11319 // Return current MachineBasicBlock for the switch statement if the peeling 11320 // does not occur. 11321 // If the peeling is performed, return the newly created MachineBasicBlock 11322 // for the peeled switch statement. Also update Clusters to remove the peeled 11323 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11324 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11325 const SwitchInst &SI, CaseClusterVector &Clusters, 11326 BranchProbability &PeeledCaseProb) { 11327 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11328 // Don't perform if there is only one cluster or optimizing for size. 11329 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11330 TM.getOptLevel() == CodeGenOpt::None || 11331 SwitchMBB->getParent()->getFunction().hasMinSize()) 11332 return SwitchMBB; 11333 11334 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11335 unsigned PeeledCaseIndex = 0; 11336 bool SwitchPeeled = false; 11337 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11338 CaseCluster &CC = Clusters[Index]; 11339 if (CC.Prob < TopCaseProb) 11340 continue; 11341 TopCaseProb = CC.Prob; 11342 PeeledCaseIndex = Index; 11343 SwitchPeeled = true; 11344 } 11345 if (!SwitchPeeled) 11346 return SwitchMBB; 11347 11348 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11349 << TopCaseProb << "\n"); 11350 11351 // Record the MBB for the peeled switch statement. 11352 MachineFunction::iterator BBI(SwitchMBB); 11353 ++BBI; 11354 MachineBasicBlock *PeeledSwitchMBB = 11355 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11356 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11357 11358 ExportFromCurrentBlock(SI.getCondition()); 11359 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11360 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11361 nullptr, nullptr, TopCaseProb.getCompl()}; 11362 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11363 11364 Clusters.erase(PeeledCaseIt); 11365 for (CaseCluster &CC : Clusters) { 11366 LLVM_DEBUG( 11367 dbgs() << "Scale the probablity for one cluster, before scaling: " 11368 << CC.Prob << "\n"); 11369 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11370 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11371 } 11372 PeeledCaseProb = TopCaseProb; 11373 return PeeledSwitchMBB; 11374 } 11375 11376 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11377 // Extract cases from the switch. 11378 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11379 CaseClusterVector Clusters; 11380 Clusters.reserve(SI.getNumCases()); 11381 for (auto I : SI.cases()) { 11382 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11383 const ConstantInt *CaseVal = I.getCaseValue(); 11384 BranchProbability Prob = 11385 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11386 : BranchProbability(1, SI.getNumCases() + 1); 11387 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11388 } 11389 11390 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11391 11392 // Cluster adjacent cases with the same destination. We do this at all 11393 // optimization levels because it's cheap to do and will make codegen faster 11394 // if there are many clusters. 11395 sortAndRangeify(Clusters); 11396 11397 // The branch probablity of the peeled case. 11398 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11399 MachineBasicBlock *PeeledSwitchMBB = 11400 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11401 11402 // If there is only the default destination, jump there directly. 11403 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11404 if (Clusters.empty()) { 11405 assert(PeeledSwitchMBB == SwitchMBB); 11406 SwitchMBB->addSuccessor(DefaultMBB); 11407 if (DefaultMBB != NextBlock(SwitchMBB)) { 11408 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11409 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11410 } 11411 return; 11412 } 11413 11414 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11415 SL->findBitTestClusters(Clusters, &SI); 11416 11417 LLVM_DEBUG({ 11418 dbgs() << "Case clusters: "; 11419 for (const CaseCluster &C : Clusters) { 11420 if (C.Kind == CC_JumpTable) 11421 dbgs() << "JT:"; 11422 if (C.Kind == CC_BitTests) 11423 dbgs() << "BT:"; 11424 11425 C.Low->getValue().print(dbgs(), true); 11426 if (C.Low != C.High) { 11427 dbgs() << '-'; 11428 C.High->getValue().print(dbgs(), true); 11429 } 11430 dbgs() << ' '; 11431 } 11432 dbgs() << '\n'; 11433 }); 11434 11435 assert(!Clusters.empty()); 11436 SwitchWorkList WorkList; 11437 CaseClusterIt First = Clusters.begin(); 11438 CaseClusterIt Last = Clusters.end() - 1; 11439 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11440 // Scale the branchprobability for DefaultMBB if the peel occurs and 11441 // DefaultMBB is not replaced. 11442 if (PeeledCaseProb != BranchProbability::getZero() && 11443 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11444 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11445 WorkList.push_back( 11446 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11447 11448 while (!WorkList.empty()) { 11449 SwitchWorkListItem W = WorkList.pop_back_val(); 11450 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11451 11452 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11453 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11454 // For optimized builds, lower large range as a balanced binary tree. 11455 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11456 continue; 11457 } 11458 11459 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11460 } 11461 } 11462 11463 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11465 auto DL = getCurSDLoc(); 11466 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11467 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11468 } 11469 11470 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11472 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11473 11474 SDLoc DL = getCurSDLoc(); 11475 SDValue V = getValue(I.getOperand(0)); 11476 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11477 11478 if (VT.isScalableVector()) { 11479 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11480 return; 11481 } 11482 11483 // Use VECTOR_SHUFFLE for the fixed-length vector 11484 // to maintain existing behavior. 11485 SmallVector<int, 8> Mask; 11486 unsigned NumElts = VT.getVectorMinNumElements(); 11487 for (unsigned i = 0; i != NumElts; ++i) 11488 Mask.push_back(NumElts - 1 - i); 11489 11490 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11491 } 11492 11493 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11494 SmallVector<EVT, 4> ValueVTs; 11495 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11496 ValueVTs); 11497 unsigned NumValues = ValueVTs.size(); 11498 if (NumValues == 0) return; 11499 11500 SmallVector<SDValue, 4> Values(NumValues); 11501 SDValue Op = getValue(I.getOperand(0)); 11502 11503 for (unsigned i = 0; i != NumValues; ++i) 11504 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11505 SDValue(Op.getNode(), Op.getResNo() + i)); 11506 11507 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11508 DAG.getVTList(ValueVTs), Values)); 11509 } 11510 11511 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11513 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11514 11515 SDLoc DL = getCurSDLoc(); 11516 SDValue V1 = getValue(I.getOperand(0)); 11517 SDValue V2 = getValue(I.getOperand(1)); 11518 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11519 11520 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11521 if (VT.isScalableVector()) { 11522 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11523 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11524 DAG.getConstant(Imm, DL, IdxVT))); 11525 return; 11526 } 11527 11528 unsigned NumElts = VT.getVectorNumElements(); 11529 11530 uint64_t Idx = (NumElts + Imm) % NumElts; 11531 11532 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11533 SmallVector<int, 8> Mask; 11534 for (unsigned i = 0; i < NumElts; ++i) 11535 Mask.push_back(Idx + i); 11536 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11537 } 11538