1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 650 SDValue &Chain, SDValue *Flag, const Value *V) const; 651 652 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 653 /// operand list. This adds the code marker, matching input operand index 654 /// (if applicable), and includes the number of values added into it. 655 void AddInlineAsmOperands(unsigned Kind, 656 bool HasMatching, unsigned MatchingIdx, 657 SelectionDAG &DAG, 658 std::vector<SDValue> &Ops) const; 659 }; 660 } 661 662 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 663 /// this value and returns the result as a ValueVT value. This uses 664 /// Chain/Flag as the input and updates them for the output Chain/Flag. 665 /// If the Flag pointer is NULL, no flag is used. 666 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 667 FunctionLoweringInfo &FuncInfo, 668 SDLoc dl, 669 SDValue &Chain, SDValue *Flag, 670 const Value *V) const { 671 // A Value with type {} or [0 x %t] needs no registers. 672 if (ValueVTs.empty()) 673 return SDValue(); 674 675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 676 677 // Assemble the legal parts into the final values. 678 SmallVector<SDValue, 4> Values(ValueVTs.size()); 679 SmallVector<SDValue, 8> Parts; 680 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 681 // Copy the legal parts from the registers. 682 EVT ValueVT = ValueVTs[Value]; 683 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 684 MVT RegisterVT = RegVTs[Value]; 685 686 Parts.resize(NumRegs); 687 for (unsigned i = 0; i != NumRegs; ++i) { 688 SDValue P; 689 if (!Flag) { 690 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 691 } else { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 693 *Flag = P.getValue(2); 694 } 695 696 Chain = P.getValue(1); 697 Parts[i] = P; 698 699 // If the source register was virtual and if we know something about it, 700 // add an assert node. 701 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 702 !RegisterVT.isInteger() || RegisterVT.isVector()) 703 continue; 704 705 const FunctionLoweringInfo::LiveOutInfo *LOI = 706 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 707 if (!LOI) 708 continue; 709 710 unsigned RegSize = RegisterVT.getSizeInBits(); 711 unsigned NumSignBits = LOI->NumSignBits; 712 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 713 714 if (NumZeroBits == RegSize) { 715 // The current value is a zero. 716 // Explicitly express that as it would be easier for 717 // optimizations to kick in. 718 Parts[i] = DAG.getConstant(0, RegisterVT); 719 continue; 720 } 721 722 // FIXME: We capture more information than the dag can represent. For 723 // now, just use the tightest assertzext/assertsext possible. 724 bool isSExt = true; 725 EVT FromVT(MVT::Other); 726 if (NumSignBits == RegSize) 727 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 728 else if (NumZeroBits >= RegSize-1) 729 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 730 else if (NumSignBits > RegSize-8) 731 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 732 else if (NumZeroBits >= RegSize-8) 733 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 734 else if (NumSignBits > RegSize-16) 735 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 736 else if (NumZeroBits >= RegSize-16) 737 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 738 else if (NumSignBits > RegSize-32) 739 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 740 else if (NumZeroBits >= RegSize-32) 741 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 742 else 743 continue; 744 745 // Add an assertion node. 746 assert(FromVT != MVT::Other); 747 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 748 RegisterVT, P, DAG.getValueType(FromVT)); 749 } 750 751 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 752 NumRegs, RegisterVT, ValueVT, V); 753 Part += NumRegs; 754 Parts.clear(); 755 } 756 757 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 758 } 759 760 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 761 /// specified value into the registers specified by this object. This uses 762 /// Chain/Flag as the input and updates them for the output Chain/Flag. 763 /// If the Flag pointer is NULL, no flag is used. 764 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 765 SDValue &Chain, SDValue *Flag, 766 const Value *V) const { 767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 768 769 // Get the list of the values's legal parts. 770 unsigned NumRegs = Regs.size(); 771 SmallVector<SDValue, 8> Parts(NumRegs); 772 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 773 EVT ValueVT = ValueVTs[Value]; 774 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 775 MVT RegisterVT = RegVTs[Value]; 776 ISD::NodeType ExtendKind = 777 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 778 779 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 780 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 781 Part += NumParts; 782 } 783 784 // Copy the parts into the registers. 785 SmallVector<SDValue, 8> Chains(NumRegs); 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 SDValue Part; 788 if (!Flag) { 789 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 790 } else { 791 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 792 *Flag = Part.getValue(1); 793 } 794 795 Chains[i] = Part.getValue(0); 796 } 797 798 if (NumRegs == 1 || Flag) 799 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 800 // flagged to it. That is the CopyToReg nodes and the user are considered 801 // a single scheduling unit. If we create a TokenFactor and return it as 802 // chain, then the TokenFactor is both a predecessor (operand) of the 803 // user as well as a successor (the TF operands are flagged to the user). 804 // c1, f1 = CopyToReg 805 // c2, f2 = CopyToReg 806 // c3 = TokenFactor c1, c2 807 // ... 808 // = op c3, ..., f2 809 Chain = Chains[NumRegs-1]; 810 else 811 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 812 } 813 814 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 815 /// operand list. This adds the code marker and includes the number of 816 /// values added into it. 817 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 818 unsigned MatchingIdx, 819 SelectionDAG &DAG, 820 std::vector<SDValue> &Ops) const { 821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 822 823 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 824 if (HasMatching) 825 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 826 else if (!Regs.empty() && 827 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 828 // Put the register class of the virtual registers in the flag word. That 829 // way, later passes can recompute register class constraints for inline 830 // assembly as well as normal instructions. 831 // Don't do this for tied operands that can use the regclass information 832 // from the def. 833 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 834 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 835 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 836 } 837 838 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 839 Ops.push_back(Res); 840 841 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 842 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 843 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 844 MVT RegisterVT = RegVTs[Value]; 845 for (unsigned i = 0; i != NumRegs; ++i) { 846 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 847 unsigned TheReg = Regs[Reg++]; 848 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 849 850 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 851 // If we clobbered the stack pointer, MFI should know about it. 852 assert(DAG.getMachineFunction().getFrameInfo()-> 853 hasInlineAsmWithSPAdjust()); 854 } 855 } 856 } 857 } 858 859 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 860 const TargetLibraryInfo *li) { 861 AA = &aa; 862 GFI = gfi; 863 LibInfo = li; 864 DL = DAG.getTarget().getSubtargetImpl()->getDataLayout(); 865 Context = DAG.getContext(); 866 LPadToCallSiteMap.clear(); 867 } 868 869 /// clear - Clear out the current SelectionDAG and the associated 870 /// state and prepare this SelectionDAGBuilder object to be used 871 /// for a new block. This doesn't clear out information about 872 /// additional blocks that are needed to complete switch lowering 873 /// or PHI node updating; that information is cleared out as it is 874 /// consumed. 875 void SelectionDAGBuilder::clear() { 876 NodeMap.clear(); 877 UnusedArgNodeMap.clear(); 878 PendingLoads.clear(); 879 PendingExports.clear(); 880 CurInst = nullptr; 881 HasTailCall = false; 882 SDNodeOrder = LowestSDNodeOrder; 883 } 884 885 /// clearDanglingDebugInfo - Clear the dangling debug information 886 /// map. This function is separated from the clear so that debug 887 /// information that is dangling in a basic block can be properly 888 /// resolved in a different basic block. This allows the 889 /// SelectionDAG to resolve dangling debug information attached 890 /// to PHI nodes. 891 void SelectionDAGBuilder::clearDanglingDebugInfo() { 892 DanglingDebugInfoMap.clear(); 893 } 894 895 /// getRoot - Return the current virtual root of the Selection DAG, 896 /// flushing any PendingLoad items. This must be done before emitting 897 /// a store or any other node that may need to be ordered after any 898 /// prior load instructions. 899 /// 900 SDValue SelectionDAGBuilder::getRoot() { 901 if (PendingLoads.empty()) 902 return DAG.getRoot(); 903 904 if (PendingLoads.size() == 1) { 905 SDValue Root = PendingLoads[0]; 906 DAG.setRoot(Root); 907 PendingLoads.clear(); 908 return Root; 909 } 910 911 // Otherwise, we have to make a token factor node. 912 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 PendingLoads); 914 PendingLoads.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 /// getControlRoot - Similar to getRoot, but instead of flushing all the 920 /// PendingLoad items, flush all the PendingExports items. It is necessary 921 /// to do this before emitting a terminator instruction. 922 /// 923 SDValue SelectionDAGBuilder::getControlRoot() { 924 SDValue Root = DAG.getRoot(); 925 926 if (PendingExports.empty()) 927 return Root; 928 929 // Turn all of the CopyToReg chains into one factored node. 930 if (Root.getOpcode() != ISD::EntryToken) { 931 unsigned i = 0, e = PendingExports.size(); 932 for (; i != e; ++i) { 933 assert(PendingExports[i].getNode()->getNumOperands() > 1); 934 if (PendingExports[i].getNode()->getOperand(0) == Root) 935 break; // Don't add the root if we already indirectly depend on it. 936 } 937 938 if (i == e) 939 PendingExports.push_back(Root); 940 } 941 942 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 943 PendingExports); 944 PendingExports.clear(); 945 DAG.setRoot(Root); 946 return Root; 947 } 948 949 void SelectionDAGBuilder::visit(const Instruction &I) { 950 // Set up outgoing PHI node register values before emitting the terminator. 951 if (isa<TerminatorInst>(&I)) 952 HandlePHINodesInSuccessorBlocks(I.getParent()); 953 954 ++SDNodeOrder; 955 956 CurInst = &I; 957 958 visit(I.getOpcode(), I); 959 960 if (!isa<TerminatorInst>(&I) && !HasTailCall) 961 CopyToExportRegsIfNeeded(&I); 962 963 CurInst = nullptr; 964 } 965 966 void SelectionDAGBuilder::visitPHI(const PHINode &) { 967 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 968 } 969 970 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 971 // Note: this doesn't use InstVisitor, because it has to work with 972 // ConstantExpr's in addition to instructions. 973 switch (Opcode) { 974 default: llvm_unreachable("Unknown instruction type encountered!"); 975 // Build the switch statement using the Instruction.def file. 976 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 977 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 978 #include "llvm/IR/Instruction.def" 979 } 980 } 981 982 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 983 // generate the debug data structures now that we've seen its definition. 984 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 985 SDValue Val) { 986 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 987 if (DDI.getDI()) { 988 const DbgValueInst *DI = DDI.getDI(); 989 DebugLoc dl = DDI.getdl(); 990 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 991 MDNode *Variable = DI->getVariable(); 992 uint64_t Offset = DI->getOffset(); 993 // A dbg.value for an alloca is always indirect. 994 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 995 SDDbgValue *SDV; 996 if (Val.getNode()) { 997 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 998 SDV = DAG.getDbgValue(Variable, Val.getNode(), 999 Val.getResNo(), IsIndirect, 1000 Offset, dl, DbgSDNodeOrder); 1001 DAG.AddDbgValue(SDV, Val.getNode(), false); 1002 } 1003 } else 1004 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1005 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1006 } 1007 } 1008 1009 /// getValue - Return an SDValue for the given Value. 1010 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1011 // If we already have an SDValue for this value, use it. It's important 1012 // to do this first, so that we don't create a CopyFromReg if we already 1013 // have a regular SDValue. 1014 SDValue &N = NodeMap[V]; 1015 if (N.getNode()) return N; 1016 1017 // If there's a virtual register allocated and initialized for this 1018 // value, use it. 1019 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1020 if (It != FuncInfo.ValueMap.end()) { 1021 unsigned InReg = It->second; 1022 RegsForValue RFV(*DAG.getContext(), 1023 *TM.getSubtargetImpl()->getTargetLowering(), InReg, 1024 V->getType()); 1025 SDValue Chain = DAG.getEntryNode(); 1026 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1027 resolveDanglingDebugInfo(V, N); 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getNonRegisterValue - Return an SDValue for the given Value, but 1039 /// don't look in FuncInfo.ValueMap for a virtual register. 1040 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1041 // If we already have an SDValue for this value, use it. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // Otherwise create a new SDValue and remember it. 1046 SDValue Val = getValueImpl(V); 1047 NodeMap[V] = Val; 1048 resolveDanglingDebugInfo(V, Val); 1049 return Val; 1050 } 1051 1052 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1053 /// Create an SDValue for the given value. 1054 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1055 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1056 1057 if (const Constant *C = dyn_cast<Constant>(V)) { 1058 EVT VT = TLI->getValueType(V->getType(), true); 1059 1060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1061 return DAG.getConstant(*CI, VT); 1062 1063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1064 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1065 1066 if (isa<ConstantPointerNull>(C)) { 1067 unsigned AS = V->getType()->getPointerAddressSpace(); 1068 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1069 } 1070 1071 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1072 return DAG.getConstantFP(*CFP, VT); 1073 1074 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1075 return DAG.getUNDEF(VT); 1076 1077 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1078 visit(CE->getOpcode(), *CE); 1079 SDValue N1 = NodeMap[V]; 1080 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1081 return N1; 1082 } 1083 1084 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1085 SmallVector<SDValue, 4> Constants; 1086 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1087 OI != OE; ++OI) { 1088 SDNode *Val = getValue(*OI).getNode(); 1089 // If the operand is an empty aggregate, there are no values. 1090 if (!Val) continue; 1091 // Add each leaf value from the operand to the Constants list 1092 // to form a flattened list of all the values. 1093 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1094 Constants.push_back(SDValue(Val, i)); 1095 } 1096 1097 return DAG.getMergeValues(Constants, getCurSDLoc()); 1098 } 1099 1100 if (const ConstantDataSequential *CDS = 1101 dyn_cast<ConstantDataSequential>(C)) { 1102 SmallVector<SDValue, 4> Ops; 1103 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1104 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1105 // Add each leaf value from the operand to the Constants list 1106 // to form a flattened list of all the values. 1107 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1108 Ops.push_back(SDValue(Val, i)); 1109 } 1110 1111 if (isa<ArrayType>(CDS->getType())) 1112 return DAG.getMergeValues(Ops, getCurSDLoc()); 1113 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1114 VT, Ops); 1115 } 1116 1117 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1118 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1119 "Unknown struct or array constant!"); 1120 1121 SmallVector<EVT, 4> ValueVTs; 1122 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1123 unsigned NumElts = ValueVTs.size(); 1124 if (NumElts == 0) 1125 return SDValue(); // empty struct 1126 SmallVector<SDValue, 4> Constants(NumElts); 1127 for (unsigned i = 0; i != NumElts; ++i) { 1128 EVT EltVT = ValueVTs[i]; 1129 if (isa<UndefValue>(C)) 1130 Constants[i] = DAG.getUNDEF(EltVT); 1131 else if (EltVT.isFloatingPoint()) 1132 Constants[i] = DAG.getConstantFP(0, EltVT); 1133 else 1134 Constants[i] = DAG.getConstant(0, EltVT); 1135 } 1136 1137 return DAG.getMergeValues(Constants, getCurSDLoc()); 1138 } 1139 1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1141 return DAG.getBlockAddress(BA, VT); 1142 1143 VectorType *VecTy = cast<VectorType>(V->getType()); 1144 unsigned NumElements = VecTy->getNumElements(); 1145 1146 // Now that we know the number and type of the elements, get that number of 1147 // elements into the Ops array based on what kind of constant it is. 1148 SmallVector<SDValue, 16> Ops; 1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1150 for (unsigned i = 0; i != NumElements; ++i) 1151 Ops.push_back(getValue(CV->getOperand(i))); 1152 } else { 1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1154 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1155 1156 SDValue Op; 1157 if (EltVT.isFloatingPoint()) 1158 Op = DAG.getConstantFP(0, EltVT); 1159 else 1160 Op = DAG.getConstant(0, EltVT); 1161 Ops.assign(NumElements, Op); 1162 } 1163 1164 // Create a BUILD_VECTOR node. 1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1166 } 1167 1168 // If this is a static alloca, generate it as the frameindex instead of 1169 // computation. 1170 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1171 DenseMap<const AllocaInst*, int>::iterator SI = 1172 FuncInfo.StaticAllocaMap.find(AI); 1173 if (SI != FuncInfo.StaticAllocaMap.end()) 1174 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1175 } 1176 1177 // If this is an instruction which fast-isel has deferred, select it now. 1178 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1179 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1180 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1189 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1190 SDValue Chain = getControlRoot(); 1191 SmallVector<ISD::OutputArg, 8> Outs; 1192 SmallVector<SDValue, 8> OutVals; 1193 1194 if (!FuncInfo.CanLowerReturn) { 1195 unsigned DemoteReg = FuncInfo.DemoteRegister; 1196 const Function *F = I.getParent()->getParent(); 1197 1198 // Emit a store of the return value through the virtual register. 1199 // Leave Outs empty so that LowerReturn won't try to load return 1200 // registers the usual way. 1201 SmallVector<EVT, 1> PtrValueVTs; 1202 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1203 PtrValueVTs); 1204 1205 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1206 SDValue RetOp = getValue(I.getOperand(0)); 1207 1208 SmallVector<EVT, 4> ValueVTs; 1209 SmallVector<uint64_t, 4> Offsets; 1210 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1211 unsigned NumValues = ValueVTs.size(); 1212 1213 SmallVector<SDValue, 4> Chains(NumValues); 1214 for (unsigned i = 0; i != NumValues; ++i) { 1215 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1216 RetPtr.getValueType(), RetPtr, 1217 DAG.getIntPtrConstant(Offsets[i])); 1218 Chains[i] = 1219 DAG.getStore(Chain, getCurSDLoc(), 1220 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1221 // FIXME: better loc info would be nice. 1222 Add, MachinePointerInfo(), false, false, 0); 1223 } 1224 1225 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1226 MVT::Other, Chains); 1227 } else if (I.getNumOperands() != 0) { 1228 SmallVector<EVT, 4> ValueVTs; 1229 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1230 unsigned NumValues = ValueVTs.size(); 1231 if (NumValues) { 1232 SDValue RetOp = getValue(I.getOperand(0)); 1233 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1237 1238 const Function *F = I.getParent()->getParent(); 1239 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::SExt)) 1241 ExtendKind = ISD::SIGN_EXTEND; 1242 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1243 Attribute::ZExt)) 1244 ExtendKind = ISD::ZERO_EXTEND; 1245 1246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1247 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1248 1249 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1250 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1251 SmallVector<SDValue, 4> Parts(NumParts); 1252 getCopyToParts(DAG, getCurSDLoc(), 1253 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1254 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1255 1256 // 'inreg' on function refers to return value 1257 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::InReg)) 1260 Flags.setInReg(); 1261 1262 // Propagate extension type if any 1263 if (ExtendKind == ISD::SIGN_EXTEND) 1264 Flags.setSExt(); 1265 else if (ExtendKind == ISD::ZERO_EXTEND) 1266 Flags.setZExt(); 1267 1268 for (unsigned i = 0; i < NumParts; ++i) { 1269 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1270 VT, /*isfixed=*/true, 0, 0)); 1271 OutVals.push_back(Parts[i]); 1272 } 1273 } 1274 } 1275 } 1276 1277 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1278 CallingConv::ID CallConv = 1279 DAG.getMachineFunction().getFunction()->getCallingConv(); 1280 Chain = TM.getSubtargetImpl()->getTargetLowering()->LowerReturn( 1281 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1282 1283 // Verify that the target's LowerReturn behaved as expected. 1284 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1285 "LowerReturn didn't return a valid chain!"); 1286 1287 // Update the DAG with the new chain value resulting from return lowering. 1288 DAG.setRoot(Chain); 1289 } 1290 1291 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1292 /// created for it, emit nodes to copy the value into the virtual 1293 /// registers. 1294 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1295 // Skip empty types 1296 if (V->getType()->isEmptyTy()) 1297 return; 1298 1299 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1300 if (VMI != FuncInfo.ValueMap.end()) { 1301 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1302 CopyValueToVirtualRegister(V, VMI->second); 1303 } 1304 } 1305 1306 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1307 /// the current basic block, add it to ValueMap now so that we'll get a 1308 /// CopyTo/FromReg. 1309 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1310 // No need to export constants. 1311 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1312 1313 // Already exported? 1314 if (FuncInfo.isExportedInst(V)) return; 1315 1316 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1317 CopyValueToVirtualRegister(V, Reg); 1318 } 1319 1320 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1321 const BasicBlock *FromBB) { 1322 // The operands of the setcc have to be in this block. We don't know 1323 // how to export them from some other block. 1324 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1325 // Can export from current BB. 1326 if (VI->getParent() == FromBB) 1327 return true; 1328 1329 // Is already exported, noop. 1330 return FuncInfo.isExportedInst(V); 1331 } 1332 1333 // If this is an argument, we can export it if the BB is the entry block or 1334 // if it is already exported. 1335 if (isa<Argument>(V)) { 1336 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1337 return true; 1338 1339 // Otherwise, can only export this if it is already exported. 1340 return FuncInfo.isExportedInst(V); 1341 } 1342 1343 // Otherwise, constants can always be exported. 1344 return true; 1345 } 1346 1347 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1348 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1349 const MachineBasicBlock *Dst) const { 1350 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1351 if (!BPI) 1352 return 0; 1353 const BasicBlock *SrcBB = Src->getBasicBlock(); 1354 const BasicBlock *DstBB = Dst->getBasicBlock(); 1355 return BPI->getEdgeWeight(SrcBB, DstBB); 1356 } 1357 1358 void SelectionDAGBuilder:: 1359 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1360 uint32_t Weight /* = 0 */) { 1361 if (!Weight) 1362 Weight = getEdgeWeight(Src, Dst); 1363 Src->addSuccessor(Dst, Weight); 1364 } 1365 1366 1367 static bool InBlock(const Value *V, const BasicBlock *BB) { 1368 if (const Instruction *I = dyn_cast<Instruction>(V)) 1369 return I->getParent() == BB; 1370 return true; 1371 } 1372 1373 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1374 /// This function emits a branch and is used at the leaves of an OR or an 1375 /// AND operator tree. 1376 /// 1377 void 1378 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1379 MachineBasicBlock *TBB, 1380 MachineBasicBlock *FBB, 1381 MachineBasicBlock *CurBB, 1382 MachineBasicBlock *SwitchBB, 1383 uint32_t TWeight, 1384 uint32_t FWeight) { 1385 const BasicBlock *BB = CurBB->getBasicBlock(); 1386 1387 // If the leaf of the tree is a comparison, merge the condition into 1388 // the caseblock. 1389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1390 // The operands of the cmp have to be in this block. We don't know 1391 // how to export them from some other block. If this is the first block 1392 // of the sequence, no exporting is needed. 1393 if (CurBB == SwitchBB || 1394 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1395 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1396 ISD::CondCode Condition; 1397 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1398 Condition = getICmpCondCode(IC->getPredicate()); 1399 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1400 Condition = getFCmpCondCode(FC->getPredicate()); 1401 if (TM.Options.NoNaNsFPMath) 1402 Condition = getFCmpCodeWithoutNaN(Condition); 1403 } else { 1404 Condition = ISD::SETEQ; // silence warning. 1405 llvm_unreachable("Unknown compare instruction"); 1406 } 1407 1408 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1409 TBB, FBB, CurBB, TWeight, FWeight); 1410 SwitchCases.push_back(CB); 1411 return; 1412 } 1413 } 1414 1415 // Create a CaseBlock record representing this branch. 1416 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1417 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1418 SwitchCases.push_back(CB); 1419 } 1420 1421 /// Scale down both weights to fit into uint32_t. 1422 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1423 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1424 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1425 NewTrue = NewTrue / Scale; 1426 NewFalse = NewFalse / Scale; 1427 } 1428 1429 /// FindMergedConditions - If Cond is an expression like 1430 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1431 MachineBasicBlock *TBB, 1432 MachineBasicBlock *FBB, 1433 MachineBasicBlock *CurBB, 1434 MachineBasicBlock *SwitchBB, 1435 unsigned Opc, uint32_t TWeight, 1436 uint32_t FWeight) { 1437 // If this node is not part of the or/and tree, emit it as a branch. 1438 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1439 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1440 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1441 BOp->getParent() != CurBB->getBasicBlock() || 1442 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1443 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1444 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1445 TWeight, FWeight); 1446 return; 1447 } 1448 1449 // Create TmpBB after CurBB. 1450 MachineFunction::iterator BBI = CurBB; 1451 MachineFunction &MF = DAG.getMachineFunction(); 1452 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1453 CurBB->getParent()->insert(++BBI, TmpBB); 1454 1455 if (Opc == Instruction::Or) { 1456 // Codegen X | Y as: 1457 // BB1: 1458 // jmp_if_X TBB 1459 // jmp TmpBB 1460 // TmpBB: 1461 // jmp_if_Y TBB 1462 // jmp FBB 1463 // 1464 1465 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1466 // The requirement is that 1467 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1468 // = TrueProb for orignal BB. 1469 // Assuming the orignal weights are A and B, one choice is to set BB1's 1470 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1471 // assumes that 1472 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1473 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1474 // TmpBB, but the math is more complicated. 1475 1476 uint64_t NewTrueWeight = TWeight; 1477 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1478 ScaleWeights(NewTrueWeight, NewFalseWeight); 1479 // Emit the LHS condition. 1480 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1481 NewTrueWeight, NewFalseWeight); 1482 1483 NewTrueWeight = TWeight; 1484 NewFalseWeight = 2 * (uint64_t)FWeight; 1485 ScaleWeights(NewTrueWeight, NewFalseWeight); 1486 // Emit the RHS condition into TmpBB. 1487 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1488 NewTrueWeight, NewFalseWeight); 1489 } else { 1490 assert(Opc == Instruction::And && "Unknown merge op!"); 1491 // Codegen X & Y as: 1492 // BB1: 1493 // jmp_if_X TmpBB 1494 // jmp FBB 1495 // TmpBB: 1496 // jmp_if_Y TBB 1497 // jmp FBB 1498 // 1499 // This requires creation of TmpBB after CurBB. 1500 1501 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1502 // The requirement is that 1503 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1504 // = FalseProb for orignal BB. 1505 // Assuming the orignal weights are A and B, one choice is to set BB1's 1506 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1507 // assumes that 1508 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1509 1510 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1511 uint64_t NewFalseWeight = FWeight; 1512 ScaleWeights(NewTrueWeight, NewFalseWeight); 1513 // Emit the LHS condition. 1514 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1515 NewTrueWeight, NewFalseWeight); 1516 1517 NewTrueWeight = 2 * (uint64_t)TWeight; 1518 NewFalseWeight = FWeight; 1519 ScaleWeights(NewTrueWeight, NewFalseWeight); 1520 // Emit the RHS condition into TmpBB. 1521 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1522 NewTrueWeight, NewFalseWeight); 1523 } 1524 } 1525 1526 /// If the set of cases should be emitted as a series of branches, return true. 1527 /// If we should emit this as a bunch of and/or'd together conditions, return 1528 /// false. 1529 bool 1530 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1531 if (Cases.size() != 2) return true; 1532 1533 // If this is two comparisons of the same values or'd or and'd together, they 1534 // will get folded into a single comparison, so don't emit two blocks. 1535 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1536 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1537 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1538 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1539 return false; 1540 } 1541 1542 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1543 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1544 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1545 Cases[0].CC == Cases[1].CC && 1546 isa<Constant>(Cases[0].CmpRHS) && 1547 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1548 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1549 return false; 1550 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1558 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1559 1560 // Update machine-CFG edges. 1561 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1562 1563 // Figure out which block is immediately after the current one. 1564 MachineBasicBlock *NextBlock = nullptr; 1565 MachineFunction::iterator BBI = BrMBB; 1566 if (++BBI != FuncInfo.MF->end()) 1567 NextBlock = BBI; 1568 1569 if (I.isUnconditional()) { 1570 // Update machine-CFG edges. 1571 BrMBB->addSuccessor(Succ0MBB); 1572 1573 // If this is not a fall-through branch or optimizations are switched off, 1574 // emit the branch. 1575 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1576 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1577 MVT::Other, getControlRoot(), 1578 DAG.getBasicBlock(Succ0MBB))); 1579 1580 return; 1581 } 1582 1583 // If this condition is one of the special cases we handle, do special stuff 1584 // now. 1585 const Value *CondVal = I.getCondition(); 1586 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1587 1588 // If this is a series of conditions that are or'd or and'd together, emit 1589 // this as a sequence of branches instead of setcc's with and/or operations. 1590 // As long as jumps are not expensive, this should improve performance. 1591 // For example, instead of something like: 1592 // cmp A, B 1593 // C = seteq 1594 // cmp D, E 1595 // F = setle 1596 // or C, F 1597 // jnz foo 1598 // Emit: 1599 // cmp A, B 1600 // je foo 1601 // cmp D, E 1602 // jle foo 1603 // 1604 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1605 if (!TM.getSubtargetImpl()->getTargetLowering()->isJumpExpensive() && 1606 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1607 BOp->getOpcode() == Instruction::Or)) { 1608 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1609 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1610 getEdgeWeight(BrMBB, Succ1MBB)); 1611 // If the compares in later blocks need to use values not currently 1612 // exported from this block, export them now. This block should always 1613 // be the first entry. 1614 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1615 1616 // Allow some cases to be rejected. 1617 if (ShouldEmitAsBranches(SwitchCases)) { 1618 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1619 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1620 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1621 } 1622 1623 // Emit the branch for this block. 1624 visitSwitchCase(SwitchCases[0], BrMBB); 1625 SwitchCases.erase(SwitchCases.begin()); 1626 return; 1627 } 1628 1629 // Okay, we decided not to do this, remove any inserted MBB's and clear 1630 // SwitchCases. 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1632 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1633 1634 SwitchCases.clear(); 1635 } 1636 } 1637 1638 // Create a CaseBlock record representing this branch. 1639 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1640 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1641 1642 // Use visitSwitchCase to actually insert the fast branch sequence for this 1643 // cond branch. 1644 visitSwitchCase(CB, BrMBB); 1645 } 1646 1647 /// visitSwitchCase - Emits the necessary code to represent a single node in 1648 /// the binary search tree resulting from lowering a switch instruction. 1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue Cond; 1652 SDValue CondLHS = getValue(CB.CmpLHS); 1653 SDLoc dl = getCurSDLoc(); 1654 1655 // Build the setcc now. 1656 if (!CB.CmpMHS) { 1657 // Fold "(X == true)" to X and "(X == false)" to !X to 1658 // handle common cases produced by branch lowering. 1659 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1660 CB.CC == ISD::SETEQ) 1661 Cond = CondLHS; 1662 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1663 CB.CC == ISD::SETEQ) { 1664 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1665 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1666 } else 1667 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1668 } else { 1669 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1670 1671 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1672 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1673 1674 SDValue CmpOp = getValue(CB.CmpMHS); 1675 EVT VT = CmpOp.getValueType(); 1676 1677 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1678 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1679 ISD::SETLE); 1680 } else { 1681 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1682 VT, CmpOp, DAG.getConstant(Low, VT)); 1683 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1684 DAG.getConstant(High-Low, VT), ISD::SETULE); 1685 } 1686 } 1687 1688 // Update successor info 1689 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1690 // TrueBB and FalseBB are always different unless the incoming IR is 1691 // degenerate. This only happens when running llc on weird IR. 1692 if (CB.TrueBB != CB.FalseBB) 1693 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1694 1695 // Set NextBlock to be the MBB immediately after the current one, if any. 1696 // This is used to avoid emitting unnecessary branches to the next block. 1697 MachineBasicBlock *NextBlock = nullptr; 1698 MachineFunction::iterator BBI = SwitchBB; 1699 if (++BBI != FuncInfo.MF->end()) 1700 NextBlock = BBI; 1701 1702 // If the lhs block is the next block, invert the condition so that we can 1703 // fall through to the lhs instead of the rhs block. 1704 if (CB.TrueBB == NextBlock) { 1705 std::swap(CB.TrueBB, CB.FalseBB); 1706 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1707 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1708 } 1709 1710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1711 MVT::Other, getControlRoot(), Cond, 1712 DAG.getBasicBlock(CB.TrueBB)); 1713 1714 // Insert the false branch. Do this even if it's a fall through branch, 1715 // this makes it easier to do DAG optimizations which require inverting 1716 // the branch condition. 1717 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1718 DAG.getBasicBlock(CB.FalseBB)); 1719 1720 DAG.setRoot(BrCond); 1721 } 1722 1723 /// visitJumpTable - Emit JumpTable node in the current MBB 1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1725 // Emit the code for the jump table 1726 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1727 EVT PTy = TM.getSubtargetImpl()->getTargetLowering()->getPointerTy(); 1728 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1729 JT.Reg, PTy); 1730 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1731 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1732 MVT::Other, Index.getValue(1), 1733 Table, Index); 1734 DAG.setRoot(BrJumpTable); 1735 } 1736 1737 /// visitJumpTableHeader - This function emits necessary code to produce index 1738 /// in the JumpTable from switch case. 1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1740 JumpTableHeader &JTH, 1741 MachineBasicBlock *SwitchBB) { 1742 // Subtract the lowest switch case value from the value being switched on and 1743 // conditional branch to default mbb if the result is greater than the 1744 // difference between smallest and largest cases. 1745 SDValue SwitchOp = getValue(JTH.SValue); 1746 EVT VT = SwitchOp.getValueType(); 1747 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1748 DAG.getConstant(JTH.First, VT)); 1749 1750 // The SDNode we just created, which holds the value being switched on minus 1751 // the smallest case value, needs to be copied to a virtual register so it 1752 // can be used as an index into the jump table in a subsequent basic block. 1753 // This value may be smaller or larger than the target's pointer type, and 1754 // therefore require extension or truncating. 1755 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1756 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1757 1758 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1759 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1760 JumpTableReg, SwitchOp); 1761 JT.Reg = JumpTableReg; 1762 1763 // Emit the range check for the jump table, and branch to the default block 1764 // for the switch statement if the value being switched on exceeds the largest 1765 // case in the switch. 1766 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1767 TLI->getSetCCResultType(*DAG.getContext(), 1768 Sub.getValueType()), 1769 Sub, 1770 DAG.getConstant(JTH.Last - JTH.First,VT), 1771 ISD::SETUGT); 1772 1773 // Set NextBlock to be the MBB immediately after the current one, if any. 1774 // This is used to avoid emitting unnecessary branches to the next block. 1775 MachineBasicBlock *NextBlock = nullptr; 1776 MachineFunction::iterator BBI = SwitchBB; 1777 1778 if (++BBI != FuncInfo.MF->end()) 1779 NextBlock = BBI; 1780 1781 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1782 MVT::Other, CopyTo, CMP, 1783 DAG.getBasicBlock(JT.Default)); 1784 1785 if (JT.MBB != NextBlock) 1786 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1787 DAG.getBasicBlock(JT.MBB)); 1788 1789 DAG.setRoot(BrCond); 1790 } 1791 1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1793 /// tail spliced into a stack protector check success bb. 1794 /// 1795 /// For a high level explanation of how this fits into the stack protector 1796 /// generation see the comment on the declaration of class 1797 /// StackProtectorDescriptor. 1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1799 MachineBasicBlock *ParentBB) { 1800 1801 // First create the loads to the guard/stack slot for the comparison. 1802 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1803 EVT PtrTy = TLI->getPointerTy(); 1804 1805 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1806 int FI = MFI->getStackProtectorIndex(); 1807 1808 const Value *IRGuard = SPD.getGuard(); 1809 SDValue GuardPtr = getValue(IRGuard); 1810 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1811 1812 unsigned Align = 1813 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1814 1815 SDValue Guard; 1816 1817 // If useLoadStackGuardNode returns true, retrieve the guard value from 1818 // the virtual register holding the value. Otherwise, emit a volatile load 1819 // to retrieve the stack guard value. 1820 if (TLI->useLoadStackGuardNode()) 1821 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1822 SPD.getGuardReg(), PtrTy); 1823 else 1824 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1825 GuardPtr, MachinePointerInfo(IRGuard, 0), 1826 true, false, false, Align); 1827 1828 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 StackSlotPtr, 1830 MachinePointerInfo::getFixedStack(FI), 1831 true, false, false, Align); 1832 1833 // Perform the comparison via a subtract/getsetcc. 1834 EVT VT = Guard.getValueType(); 1835 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1836 1837 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1838 TLI->getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(0, VT), 1841 ISD::SETNE); 1842 1843 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1844 // branch to failure MBB. 1845 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1846 MVT::Other, StackSlot.getOperand(0), 1847 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1848 // Otherwise branch to success MBB. 1849 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1850 MVT::Other, BrCond, 1851 DAG.getBasicBlock(SPD.getSuccessMBB())); 1852 1853 DAG.setRoot(Br); 1854 } 1855 1856 /// Codegen the failure basic block for a stack protector check. 1857 /// 1858 /// A failure stack protector machine basic block consists simply of a call to 1859 /// __stack_chk_fail(). 1860 /// 1861 /// For a high level explanation of how this fits into the stack protector 1862 /// generation see the comment on the declaration of class 1863 /// StackProtectorDescriptor. 1864 void 1865 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1866 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1867 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1868 MVT::isVoid, nullptr, 0, false, 1869 getCurSDLoc(), false, false).second; 1870 DAG.setRoot(Chain); 1871 } 1872 1873 /// visitBitTestHeader - This function emits necessary code to produce value 1874 /// suitable for "bit tests" 1875 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1876 MachineBasicBlock *SwitchBB) { 1877 // Subtract the minimum value 1878 SDValue SwitchOp = getValue(B.SValue); 1879 EVT VT = SwitchOp.getValueType(); 1880 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1881 DAG.getConstant(B.First, VT)); 1882 1883 // Check range 1884 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1885 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1886 TLI->getSetCCResultType(*DAG.getContext(), 1887 Sub.getValueType()), 1888 Sub, DAG.getConstant(B.Range, VT), 1889 ISD::SETUGT); 1890 1891 // Determine the type of the test operands. 1892 bool UsePtrType = false; 1893 if (!TLI->isTypeLegal(VT)) 1894 UsePtrType = true; 1895 else { 1896 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1897 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1898 // Switch table case range are encoded into series of masks. 1899 // Just use pointer type, it's guaranteed to fit. 1900 UsePtrType = true; 1901 break; 1902 } 1903 } 1904 if (UsePtrType) { 1905 VT = TLI->getPointerTy(); 1906 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1907 } 1908 1909 B.RegVT = VT.getSimpleVT(); 1910 B.Reg = FuncInfo.CreateReg(B.RegVT); 1911 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1912 B.Reg, Sub); 1913 1914 // Set NextBlock to be the MBB immediately after the current one, if any. 1915 // This is used to avoid emitting unnecessary branches to the next block. 1916 MachineBasicBlock *NextBlock = nullptr; 1917 MachineFunction::iterator BBI = SwitchBB; 1918 if (++BBI != FuncInfo.MF->end()) 1919 NextBlock = BBI; 1920 1921 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1922 1923 addSuccessorWithWeight(SwitchBB, B.Default); 1924 addSuccessorWithWeight(SwitchBB, MBB); 1925 1926 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1927 MVT::Other, CopyTo, RangeCmp, 1928 DAG.getBasicBlock(B.Default)); 1929 1930 if (MBB != NextBlock) 1931 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1932 DAG.getBasicBlock(MBB)); 1933 1934 DAG.setRoot(BrRange); 1935 } 1936 1937 /// visitBitTestCase - this function produces one "bit test" 1938 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1939 MachineBasicBlock* NextMBB, 1940 uint32_t BranchWeightToNext, 1941 unsigned Reg, 1942 BitTestCase &B, 1943 MachineBasicBlock *SwitchBB) { 1944 MVT VT = BB.RegVT; 1945 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1946 Reg, VT); 1947 SDValue Cmp; 1948 unsigned PopCount = CountPopulation_64(B.Mask); 1949 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1950 if (PopCount == 1) { 1951 // Testing for a single bit; just compare the shift count with what it 1952 // would need to be to shift a 1 bit in that position. 1953 Cmp = DAG.getSetCC(getCurSDLoc(), 1954 TLI->getSetCCResultType(*DAG.getContext(), VT), 1955 ShiftOp, 1956 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1957 ISD::SETEQ); 1958 } else if (PopCount == BB.Range) { 1959 // There is only one zero bit in the range, test for it directly. 1960 Cmp = DAG.getSetCC(getCurSDLoc(), 1961 TLI->getSetCCResultType(*DAG.getContext(), VT), 1962 ShiftOp, 1963 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1964 ISD::SETNE); 1965 } else { 1966 // Make desired shift 1967 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1968 DAG.getConstant(1, VT), ShiftOp); 1969 1970 // Emit bit tests and jumps 1971 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1972 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1973 Cmp = DAG.getSetCC(getCurSDLoc(), 1974 TLI->getSetCCResultType(*DAG.getContext(), VT), 1975 AndOp, DAG.getConstant(0, VT), 1976 ISD::SETNE); 1977 } 1978 1979 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1980 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1981 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1982 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1983 1984 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1985 MVT::Other, getControlRoot(), 1986 Cmp, DAG.getBasicBlock(B.TargetBB)); 1987 1988 // Set NextBlock to be the MBB immediately after the current one, if any. 1989 // This is used to avoid emitting unnecessary branches to the next block. 1990 MachineBasicBlock *NextBlock = nullptr; 1991 MachineFunction::iterator BBI = SwitchBB; 1992 if (++BBI != FuncInfo.MF->end()) 1993 NextBlock = BBI; 1994 1995 if (NextMBB != NextBlock) 1996 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1997 DAG.getBasicBlock(NextMBB)); 1998 1999 DAG.setRoot(BrAnd); 2000 } 2001 2002 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2003 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2004 2005 // Retrieve successors. 2006 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2007 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2008 2009 const Value *Callee(I.getCalledValue()); 2010 const Function *Fn = dyn_cast<Function>(Callee); 2011 if (isa<InlineAsm>(Callee)) 2012 visitInlineAsm(&I); 2013 else if (Fn && Fn->isIntrinsic()) { 2014 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2015 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2016 } else 2017 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2018 2019 // If the value of the invoke is used outside of its defining block, make it 2020 // available as a virtual register. 2021 CopyToExportRegsIfNeeded(&I); 2022 2023 // Update successor info 2024 addSuccessorWithWeight(InvokeMBB, Return); 2025 addSuccessorWithWeight(InvokeMBB, LandingPad); 2026 2027 // Drop into normal successor. 2028 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2029 MVT::Other, getControlRoot(), 2030 DAG.getBasicBlock(Return))); 2031 } 2032 2033 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2034 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2035 } 2036 2037 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2038 assert(FuncInfo.MBB->isLandingPad() && 2039 "Call to landingpad not in landing pad!"); 2040 2041 MachineBasicBlock *MBB = FuncInfo.MBB; 2042 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2043 AddLandingPadInfo(LP, MMI, MBB); 2044 2045 // If there aren't registers to copy the values into (e.g., during SjLj 2046 // exceptions), then don't bother to create these DAG nodes. 2047 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2048 if (TLI->getExceptionPointerRegister() == 0 && 2049 TLI->getExceptionSelectorRegister() == 0) 2050 return; 2051 2052 SmallVector<EVT, 2> ValueVTs; 2053 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2054 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2055 2056 // Get the two live-in registers as SDValues. The physregs have already been 2057 // copied into virtual registers. 2058 SDValue Ops[2]; 2059 Ops[0] = DAG.getZExtOrTrunc( 2060 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2061 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2062 getCurSDLoc(), ValueVTs[0]); 2063 Ops[1] = DAG.getZExtOrTrunc( 2064 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2065 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2066 getCurSDLoc(), ValueVTs[1]); 2067 2068 // Merge into one. 2069 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2070 DAG.getVTList(ValueVTs), Ops); 2071 setValue(&LP, Res); 2072 } 2073 2074 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2075 /// small case ranges). 2076 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2077 CaseRecVector& WorkList, 2078 const Value* SV, 2079 MachineBasicBlock *Default, 2080 MachineBasicBlock *SwitchBB) { 2081 // Size is the number of Cases represented by this range. 2082 size_t Size = CR.Range.second - CR.Range.first; 2083 if (Size > 3) 2084 return false; 2085 2086 // Get the MachineFunction which holds the current MBB. This is used when 2087 // inserting any additional MBBs necessary to represent the switch. 2088 MachineFunction *CurMF = FuncInfo.MF; 2089 2090 // Figure out which block is immediately after the current one. 2091 MachineBasicBlock *NextBlock = nullptr; 2092 MachineFunction::iterator BBI = CR.CaseBB; 2093 2094 if (++BBI != FuncInfo.MF->end()) 2095 NextBlock = BBI; 2096 2097 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2098 // If any two of the cases has the same destination, and if one value 2099 // is the same as the other, but has one bit unset that the other has set, 2100 // use bit manipulation to do two compares at once. For example: 2101 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2102 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2103 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2104 if (Size == 2 && CR.CaseBB == SwitchBB) { 2105 Case &Small = *CR.Range.first; 2106 Case &Big = *(CR.Range.second-1); 2107 2108 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2109 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2110 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2111 2112 // Check that there is only one bit different. 2113 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2114 (SmallValue | BigValue) == BigValue) { 2115 // Isolate the common bit. 2116 APInt CommonBit = BigValue & ~SmallValue; 2117 assert((SmallValue | CommonBit) == BigValue && 2118 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2119 2120 SDValue CondLHS = getValue(SV); 2121 EVT VT = CondLHS.getValueType(); 2122 SDLoc DL = getCurSDLoc(); 2123 2124 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2125 DAG.getConstant(CommonBit, VT)); 2126 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2127 Or, DAG.getConstant(BigValue, VT), 2128 ISD::SETEQ); 2129 2130 // Update successor info. 2131 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2132 addSuccessorWithWeight(SwitchBB, Small.BB, 2133 Small.ExtraWeight + Big.ExtraWeight); 2134 addSuccessorWithWeight(SwitchBB, Default, 2135 // The default destination is the first successor in IR. 2136 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2137 2138 // Insert the true branch. 2139 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2140 getControlRoot(), Cond, 2141 DAG.getBasicBlock(Small.BB)); 2142 2143 // Insert the false branch. 2144 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2145 DAG.getBasicBlock(Default)); 2146 2147 DAG.setRoot(BrCond); 2148 return true; 2149 } 2150 } 2151 } 2152 2153 // Order cases by weight so the most likely case will be checked first. 2154 uint32_t UnhandledWeights = 0; 2155 if (BPI) { 2156 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2157 uint32_t IWeight = I->ExtraWeight; 2158 UnhandledWeights += IWeight; 2159 for (CaseItr J = CR.Range.first; J < I; ++J) { 2160 uint32_t JWeight = J->ExtraWeight; 2161 if (IWeight > JWeight) 2162 std::swap(*I, *J); 2163 } 2164 } 2165 } 2166 // Rearrange the case blocks so that the last one falls through if possible. 2167 Case &BackCase = *(CR.Range.second-1); 2168 if (Size > 1 && 2169 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2170 // The last case block won't fall through into 'NextBlock' if we emit the 2171 // branches in this order. See if rearranging a case value would help. 2172 // We start at the bottom as it's the case with the least weight. 2173 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2174 if (I->BB == NextBlock) { 2175 std::swap(*I, BackCase); 2176 break; 2177 } 2178 } 2179 2180 // Create a CaseBlock record representing a conditional branch to 2181 // the Case's target mbb if the value being switched on SV is equal 2182 // to C. 2183 MachineBasicBlock *CurBlock = CR.CaseBB; 2184 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2185 MachineBasicBlock *FallThrough; 2186 if (I != E-1) { 2187 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2188 CurMF->insert(BBI, FallThrough); 2189 2190 // Put SV in a virtual register to make it available from the new blocks. 2191 ExportFromCurrentBlock(SV); 2192 } else { 2193 // If the last case doesn't match, go to the default block. 2194 FallThrough = Default; 2195 } 2196 2197 const Value *RHS, *LHS, *MHS; 2198 ISD::CondCode CC; 2199 if (I->High == I->Low) { 2200 // This is just small small case range :) containing exactly 1 case 2201 CC = ISD::SETEQ; 2202 LHS = SV; RHS = I->High; MHS = nullptr; 2203 } else { 2204 CC = ISD::SETLE; 2205 LHS = I->Low; MHS = SV; RHS = I->High; 2206 } 2207 2208 // The false weight should be sum of all un-handled cases. 2209 UnhandledWeights -= I->ExtraWeight; 2210 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2211 /* me */ CurBlock, 2212 /* trueweight */ I->ExtraWeight, 2213 /* falseweight */ UnhandledWeights); 2214 2215 // If emitting the first comparison, just call visitSwitchCase to emit the 2216 // code into the current block. Otherwise, push the CaseBlock onto the 2217 // vector to be later processed by SDISel, and insert the node's MBB 2218 // before the next MBB. 2219 if (CurBlock == SwitchBB) 2220 visitSwitchCase(CB, SwitchBB); 2221 else 2222 SwitchCases.push_back(CB); 2223 2224 CurBlock = FallThrough; 2225 } 2226 2227 return true; 2228 } 2229 2230 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2231 return TLI.supportJumpTables() && 2232 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2233 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2234 } 2235 2236 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2237 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2238 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2239 return (LastExt - FirstExt + 1ULL); 2240 } 2241 2242 /// handleJTSwitchCase - Emit jumptable for current switch case range 2243 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2244 CaseRecVector &WorkList, 2245 const Value *SV, 2246 MachineBasicBlock *Default, 2247 MachineBasicBlock *SwitchBB) { 2248 Case& FrontCase = *CR.Range.first; 2249 Case& BackCase = *(CR.Range.second-1); 2250 2251 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2252 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2253 2254 APInt TSize(First.getBitWidth(), 0); 2255 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2256 TSize += I->size(); 2257 2258 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2259 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2260 return false; 2261 2262 APInt Range = ComputeRange(First, Last); 2263 // The density is TSize / Range. Require at least 40%. 2264 // It should not be possible for IntTSize to saturate for sane code, but make 2265 // sure we handle Range saturation correctly. 2266 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2267 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2268 if (IntTSize * 10 < IntRange * 4) 2269 return false; 2270 2271 DEBUG(dbgs() << "Lowering jump table\n" 2272 << "First entry: " << First << ". Last entry: " << Last << '\n' 2273 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2274 2275 // Get the MachineFunction which holds the current MBB. This is used when 2276 // inserting any additional MBBs necessary to represent the switch. 2277 MachineFunction *CurMF = FuncInfo.MF; 2278 2279 // Figure out which block is immediately after the current one. 2280 MachineFunction::iterator BBI = CR.CaseBB; 2281 ++BBI; 2282 2283 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2284 2285 // Create a new basic block to hold the code for loading the address 2286 // of the jump table, and jumping to it. Update successor information; 2287 // we will either branch to the default case for the switch, or the jump 2288 // table. 2289 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2290 CurMF->insert(BBI, JumpTableBB); 2291 2292 addSuccessorWithWeight(CR.CaseBB, Default); 2293 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2294 2295 // Build a vector of destination BBs, corresponding to each target 2296 // of the jump table. If the value of the jump table slot corresponds to 2297 // a case statement, push the case's BB onto the vector, otherwise, push 2298 // the default BB. 2299 std::vector<MachineBasicBlock*> DestBBs; 2300 APInt TEI = First; 2301 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2302 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2303 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2304 2305 if (Low.sle(TEI) && TEI.sle(High)) { 2306 DestBBs.push_back(I->BB); 2307 if (TEI==High) 2308 ++I; 2309 } else { 2310 DestBBs.push_back(Default); 2311 } 2312 } 2313 2314 // Calculate weight for each unique destination in CR. 2315 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2316 if (FuncInfo.BPI) 2317 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2318 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2319 DestWeights.find(I->BB); 2320 if (Itr != DestWeights.end()) 2321 Itr->second += I->ExtraWeight; 2322 else 2323 DestWeights[I->BB] = I->ExtraWeight; 2324 } 2325 2326 // Update successor info. Add one edge to each unique successor. 2327 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2328 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2329 E = DestBBs.end(); I != E; ++I) { 2330 if (!SuccsHandled[(*I)->getNumber()]) { 2331 SuccsHandled[(*I)->getNumber()] = true; 2332 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2333 DestWeights.find(*I); 2334 addSuccessorWithWeight(JumpTableBB, *I, 2335 Itr != DestWeights.end() ? Itr->second : 0); 2336 } 2337 } 2338 2339 // Create a jump table index for this jump table. 2340 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2341 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2342 ->createJumpTableIndex(DestBBs); 2343 2344 // Set the jump table information so that we can codegen it as a second 2345 // MachineBasicBlock 2346 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2347 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2348 if (CR.CaseBB == SwitchBB) 2349 visitJumpTableHeader(JT, JTH, SwitchBB); 2350 2351 JTCases.push_back(JumpTableBlock(JTH, JT)); 2352 return true; 2353 } 2354 2355 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2356 /// 2 subtrees. 2357 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2358 CaseRecVector& WorkList, 2359 const Value* SV, 2360 MachineBasicBlock* Default, 2361 MachineBasicBlock* SwitchBB) { 2362 // Get the MachineFunction which holds the current MBB. This is used when 2363 // inserting any additional MBBs necessary to represent the switch. 2364 MachineFunction *CurMF = FuncInfo.MF; 2365 2366 // Figure out which block is immediately after the current one. 2367 MachineFunction::iterator BBI = CR.CaseBB; 2368 ++BBI; 2369 2370 Case& FrontCase = *CR.Range.first; 2371 Case& BackCase = *(CR.Range.second-1); 2372 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2373 2374 // Size is the number of Cases represented by this range. 2375 unsigned Size = CR.Range.second - CR.Range.first; 2376 2377 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2378 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2379 double FMetric = 0; 2380 CaseItr Pivot = CR.Range.first + Size/2; 2381 2382 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2383 // (heuristically) allow us to emit JumpTable's later. 2384 APInt TSize(First.getBitWidth(), 0); 2385 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2386 I!=E; ++I) 2387 TSize += I->size(); 2388 2389 APInt LSize = FrontCase.size(); 2390 APInt RSize = TSize-LSize; 2391 DEBUG(dbgs() << "Selecting best pivot: \n" 2392 << "First: " << First << ", Last: " << Last <<'\n' 2393 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2394 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2395 J!=E; ++I, ++J) { 2396 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2397 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2398 APInt Range = ComputeRange(LEnd, RBegin); 2399 assert((Range - 2ULL).isNonNegative() && 2400 "Invalid case distance"); 2401 // Use volatile double here to avoid excess precision issues on some hosts, 2402 // e.g. that use 80-bit X87 registers. 2403 volatile double LDensity = 2404 (double)LSize.roundToDouble() / 2405 (LEnd - First + 1ULL).roundToDouble(); 2406 volatile double RDensity = 2407 (double)RSize.roundToDouble() / 2408 (Last - RBegin + 1ULL).roundToDouble(); 2409 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2410 // Should always split in some non-trivial place 2411 DEBUG(dbgs() <<"=>Step\n" 2412 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2413 << "LDensity: " << LDensity 2414 << ", RDensity: " << RDensity << '\n' 2415 << "Metric: " << Metric << '\n'); 2416 if (FMetric < Metric) { 2417 Pivot = J; 2418 FMetric = Metric; 2419 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2420 } 2421 2422 LSize += J->size(); 2423 RSize -= J->size(); 2424 } 2425 2426 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2427 if (areJTsAllowed(*TLI)) { 2428 // If our case is dense we *really* should handle it earlier! 2429 assert((FMetric > 0) && "Should handle dense range earlier!"); 2430 } else { 2431 Pivot = CR.Range.first + Size/2; 2432 } 2433 2434 CaseRange LHSR(CR.Range.first, Pivot); 2435 CaseRange RHSR(Pivot, CR.Range.second); 2436 const Constant *C = Pivot->Low; 2437 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2438 2439 // We know that we branch to the LHS if the Value being switched on is 2440 // less than the Pivot value, C. We use this to optimize our binary 2441 // tree a bit, by recognizing that if SV is greater than or equal to the 2442 // LHS's Case Value, and that Case Value is exactly one less than the 2443 // Pivot's Value, then we can branch directly to the LHS's Target, 2444 // rather than creating a leaf node for it. 2445 if ((LHSR.second - LHSR.first) == 1 && 2446 LHSR.first->High == CR.GE && 2447 cast<ConstantInt>(C)->getValue() == 2448 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2449 TrueBB = LHSR.first->BB; 2450 } else { 2451 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2452 CurMF->insert(BBI, TrueBB); 2453 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2454 2455 // Put SV in a virtual register to make it available from the new blocks. 2456 ExportFromCurrentBlock(SV); 2457 } 2458 2459 // Similar to the optimization above, if the Value being switched on is 2460 // known to be less than the Constant CR.LT, and the current Case Value 2461 // is CR.LT - 1, then we can branch directly to the target block for 2462 // the current Case Value, rather than emitting a RHS leaf node for it. 2463 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2464 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2465 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2466 FalseBB = RHSR.first->BB; 2467 } else { 2468 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2469 CurMF->insert(BBI, FalseBB); 2470 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2471 2472 // Put SV in a virtual register to make it available from the new blocks. 2473 ExportFromCurrentBlock(SV); 2474 } 2475 2476 // Create a CaseBlock record representing a conditional branch to 2477 // the LHS node if the value being switched on SV is less than C. 2478 // Otherwise, branch to LHS. 2479 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2480 2481 if (CR.CaseBB == SwitchBB) 2482 visitSwitchCase(CB, SwitchBB); 2483 else 2484 SwitchCases.push_back(CB); 2485 2486 return true; 2487 } 2488 2489 /// handleBitTestsSwitchCase - if current case range has few destination and 2490 /// range span less, than machine word bitwidth, encode case range into series 2491 /// of masks and emit bit tests with these masks. 2492 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2493 CaseRecVector& WorkList, 2494 const Value* SV, 2495 MachineBasicBlock* Default, 2496 MachineBasicBlock* SwitchBB) { 2497 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2498 EVT PTy = TLI->getPointerTy(); 2499 unsigned IntPtrBits = PTy.getSizeInBits(); 2500 2501 Case& FrontCase = *CR.Range.first; 2502 Case& BackCase = *(CR.Range.second-1); 2503 2504 // Get the MachineFunction which holds the current MBB. This is used when 2505 // inserting any additional MBBs necessary to represent the switch. 2506 MachineFunction *CurMF = FuncInfo.MF; 2507 2508 // If target does not have legal shift left, do not emit bit tests at all. 2509 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2510 return false; 2511 2512 size_t numCmps = 0; 2513 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2514 I!=E; ++I) { 2515 // Single case counts one, case range - two. 2516 numCmps += (I->Low == I->High ? 1 : 2); 2517 } 2518 2519 // Count unique destinations 2520 SmallSet<MachineBasicBlock*, 4> Dests; 2521 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2522 Dests.insert(I->BB); 2523 if (Dests.size() > 3) 2524 // Don't bother the code below, if there are too much unique destinations 2525 return false; 2526 } 2527 DEBUG(dbgs() << "Total number of unique destinations: " 2528 << Dests.size() << '\n' 2529 << "Total number of comparisons: " << numCmps << '\n'); 2530 2531 // Compute span of values. 2532 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2533 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2534 APInt cmpRange = maxValue - minValue; 2535 2536 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2537 << "Low bound: " << minValue << '\n' 2538 << "High bound: " << maxValue << '\n'); 2539 2540 if (cmpRange.uge(IntPtrBits) || 2541 (!(Dests.size() == 1 && numCmps >= 3) && 2542 !(Dests.size() == 2 && numCmps >= 5) && 2543 !(Dests.size() >= 3 && numCmps >= 6))) 2544 return false; 2545 2546 DEBUG(dbgs() << "Emitting bit tests\n"); 2547 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2548 2549 // Optimize the case where all the case values fit in a 2550 // word without having to subtract minValue. In this case, 2551 // we can optimize away the subtraction. 2552 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2553 cmpRange = maxValue; 2554 } else { 2555 lowBound = minValue; 2556 } 2557 2558 CaseBitsVector CasesBits; 2559 unsigned i, count = 0; 2560 2561 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2562 MachineBasicBlock* Dest = I->BB; 2563 for (i = 0; i < count; ++i) 2564 if (Dest == CasesBits[i].BB) 2565 break; 2566 2567 if (i == count) { 2568 assert((count < 3) && "Too much destinations to test!"); 2569 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2570 count++; 2571 } 2572 2573 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2574 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2575 2576 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2577 uint64_t hi = (highValue - lowBound).getZExtValue(); 2578 CasesBits[i].ExtraWeight += I->ExtraWeight; 2579 2580 for (uint64_t j = lo; j <= hi; j++) { 2581 CasesBits[i].Mask |= 1ULL << j; 2582 CasesBits[i].Bits++; 2583 } 2584 2585 } 2586 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2587 2588 BitTestInfo BTC; 2589 2590 // Figure out which block is immediately after the current one. 2591 MachineFunction::iterator BBI = CR.CaseBB; 2592 ++BBI; 2593 2594 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2595 2596 DEBUG(dbgs() << "Cases:\n"); 2597 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2598 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2599 << ", Bits: " << CasesBits[i].Bits 2600 << ", BB: " << CasesBits[i].BB << '\n'); 2601 2602 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2603 CurMF->insert(BBI, CaseBB); 2604 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2605 CaseBB, 2606 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2607 2608 // Put SV in a virtual register to make it available from the new blocks. 2609 ExportFromCurrentBlock(SV); 2610 } 2611 2612 BitTestBlock BTB(lowBound, cmpRange, SV, 2613 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2614 CR.CaseBB, Default, BTC); 2615 2616 if (CR.CaseBB == SwitchBB) 2617 visitBitTestHeader(BTB, SwitchBB); 2618 2619 BitTestCases.push_back(BTB); 2620 2621 return true; 2622 } 2623 2624 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2625 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2626 const SwitchInst& SI) { 2627 size_t numCmps = 0; 2628 2629 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2630 // Start with "simple" cases 2631 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2632 i != e; ++i) { 2633 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2634 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2635 2636 uint32_t ExtraWeight = 2637 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2638 2639 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2640 SMBB, ExtraWeight)); 2641 } 2642 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2643 2644 // Merge case into clusters 2645 if (Cases.size() >= 2) 2646 // Must recompute end() each iteration because it may be 2647 // invalidated by erase if we hold on to it 2648 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2649 J != Cases.end(); ) { 2650 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2651 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2652 MachineBasicBlock* nextBB = J->BB; 2653 MachineBasicBlock* currentBB = I->BB; 2654 2655 // If the two neighboring cases go to the same destination, merge them 2656 // into a single case. 2657 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2658 I->High = J->High; 2659 I->ExtraWeight += J->ExtraWeight; 2660 J = Cases.erase(J); 2661 } else { 2662 I = J++; 2663 } 2664 } 2665 2666 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2667 if (I->Low != I->High) 2668 // A range counts double, since it requires two compares. 2669 ++numCmps; 2670 } 2671 2672 return numCmps; 2673 } 2674 2675 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2676 MachineBasicBlock *Last) { 2677 // Update JTCases. 2678 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2679 if (JTCases[i].first.HeaderBB == First) 2680 JTCases[i].first.HeaderBB = Last; 2681 2682 // Update BitTestCases. 2683 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2684 if (BitTestCases[i].Parent == First) 2685 BitTestCases[i].Parent = Last; 2686 } 2687 2688 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2689 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2690 2691 // Figure out which block is immediately after the current one. 2692 MachineBasicBlock *NextBlock = nullptr; 2693 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2694 2695 // If there is only the default destination, branch to it if it is not the 2696 // next basic block. Otherwise, just fall through. 2697 if (!SI.getNumCases()) { 2698 // Update machine-CFG edges. 2699 2700 // If this is not a fall-through branch, emit the branch. 2701 SwitchMBB->addSuccessor(Default); 2702 if (Default != NextBlock) 2703 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2704 MVT::Other, getControlRoot(), 2705 DAG.getBasicBlock(Default))); 2706 2707 return; 2708 } 2709 2710 // If there are any non-default case statements, create a vector of Cases 2711 // representing each one, and sort the vector so that we can efficiently 2712 // create a binary search tree from them. 2713 CaseVector Cases; 2714 size_t numCmps = Clusterify(Cases, SI); 2715 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2716 << ". Total compares: " << numCmps << '\n'); 2717 (void)numCmps; 2718 2719 // Get the Value to be switched on and default basic blocks, which will be 2720 // inserted into CaseBlock records, representing basic blocks in the binary 2721 // search tree. 2722 const Value *SV = SI.getCondition(); 2723 2724 // Push the initial CaseRec onto the worklist 2725 CaseRecVector WorkList; 2726 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2727 CaseRange(Cases.begin(),Cases.end()))); 2728 2729 while (!WorkList.empty()) { 2730 // Grab a record representing a case range to process off the worklist 2731 CaseRec CR = WorkList.back(); 2732 WorkList.pop_back(); 2733 2734 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2735 continue; 2736 2737 // If the range has few cases (two or less) emit a series of specific 2738 // tests. 2739 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2740 continue; 2741 2742 // If the switch has more than N blocks, and is at least 40% dense, and the 2743 // target supports indirect branches, then emit a jump table rather than 2744 // lowering the switch to a binary tree of conditional branches. 2745 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2746 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2747 continue; 2748 2749 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2750 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2751 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2752 } 2753 } 2754 2755 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2756 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2757 2758 // Update machine-CFG edges with unique successors. 2759 SmallSet<BasicBlock*, 32> Done; 2760 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2761 BasicBlock *BB = I.getSuccessor(i); 2762 bool Inserted = Done.insert(BB); 2763 if (!Inserted) 2764 continue; 2765 2766 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2767 addSuccessorWithWeight(IndirectBrMBB, Succ); 2768 } 2769 2770 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2771 MVT::Other, getControlRoot(), 2772 getValue(I.getAddress()))); 2773 } 2774 2775 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2776 if (DAG.getTarget().Options.TrapUnreachable) 2777 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2778 } 2779 2780 void SelectionDAGBuilder::visitFSub(const User &I) { 2781 // -0.0 - X --> fneg 2782 Type *Ty = I.getType(); 2783 if (isa<Constant>(I.getOperand(0)) && 2784 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2785 SDValue Op2 = getValue(I.getOperand(1)); 2786 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2787 Op2.getValueType(), Op2)); 2788 return; 2789 } 2790 2791 visitBinary(I, ISD::FSUB); 2792 } 2793 2794 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2795 SDValue Op1 = getValue(I.getOperand(0)); 2796 SDValue Op2 = getValue(I.getOperand(1)); 2797 2798 bool nuw = false; 2799 bool nsw = false; 2800 bool exact = false; 2801 if (const OverflowingBinaryOperator *OFBinOp = 2802 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2803 nuw = OFBinOp->hasNoUnsignedWrap(); 2804 nsw = OFBinOp->hasNoSignedWrap(); 2805 } 2806 if (const PossiblyExactOperator *ExactOp = 2807 dyn_cast<const PossiblyExactOperator>(&I)) 2808 exact = ExactOp->isExact(); 2809 2810 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2811 Op1, Op2, nuw, nsw, exact); 2812 setValue(&I, BinNodeValue); 2813 } 2814 2815 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2816 SDValue Op1 = getValue(I.getOperand(0)); 2817 SDValue Op2 = getValue(I.getOperand(1)); 2818 2819 EVT ShiftTy = TM.getSubtargetImpl()->getTargetLowering()->getShiftAmountTy( 2820 Op2.getValueType()); 2821 2822 // Coerce the shift amount to the right type if we can. 2823 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2824 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2825 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2826 SDLoc DL = getCurSDLoc(); 2827 2828 // If the operand is smaller than the shift count type, promote it. 2829 if (ShiftSize > Op2Size) 2830 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2831 2832 // If the operand is larger than the shift count type but the shift 2833 // count type has enough bits to represent any shift value, truncate 2834 // it now. This is a common case and it exposes the truncate to 2835 // optimization early. 2836 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2837 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2838 // Otherwise we'll need to temporarily settle for some other convenient 2839 // type. Type legalization will make adjustments once the shiftee is split. 2840 else 2841 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2842 } 2843 2844 bool nuw = false; 2845 bool nsw = false; 2846 bool exact = false; 2847 2848 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2849 2850 if (const OverflowingBinaryOperator *OFBinOp = 2851 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2852 nuw = OFBinOp->hasNoUnsignedWrap(); 2853 nsw = OFBinOp->hasNoSignedWrap(); 2854 } 2855 if (const PossiblyExactOperator *ExactOp = 2856 dyn_cast<const PossiblyExactOperator>(&I)) 2857 exact = ExactOp->isExact(); 2858 } 2859 2860 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2861 nuw, nsw, exact); 2862 setValue(&I, Res); 2863 } 2864 2865 void SelectionDAGBuilder::visitSDiv(const User &I) { 2866 SDValue Op1 = getValue(I.getOperand(0)); 2867 SDValue Op2 = getValue(I.getOperand(1)); 2868 2869 // Turn exact SDivs into multiplications. 2870 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2871 // exact bit. 2872 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2873 !isa<ConstantSDNode>(Op1) && 2874 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2875 setValue(&I, TM.getSubtargetImpl()->getTargetLowering()->BuildExactSDIV( 2876 Op1, Op2, getCurSDLoc(), DAG)); 2877 else 2878 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2879 Op1, Op2)); 2880 } 2881 2882 void SelectionDAGBuilder::visitICmp(const User &I) { 2883 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2884 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2885 predicate = IC->getPredicate(); 2886 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2887 predicate = ICmpInst::Predicate(IC->getPredicate()); 2888 SDValue Op1 = getValue(I.getOperand(0)); 2889 SDValue Op2 = getValue(I.getOperand(1)); 2890 ISD::CondCode Opcode = getICmpCondCode(predicate); 2891 2892 EVT DestVT = 2893 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2894 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2895 } 2896 2897 void SelectionDAGBuilder::visitFCmp(const User &I) { 2898 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2899 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2900 predicate = FC->getPredicate(); 2901 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2902 predicate = FCmpInst::Predicate(FC->getPredicate()); 2903 SDValue Op1 = getValue(I.getOperand(0)); 2904 SDValue Op2 = getValue(I.getOperand(1)); 2905 ISD::CondCode Condition = getFCmpCondCode(predicate); 2906 if (TM.Options.NoNaNsFPMath) 2907 Condition = getFCmpCodeWithoutNaN(Condition); 2908 EVT DestVT = 2909 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2910 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2911 } 2912 2913 void SelectionDAGBuilder::visitSelect(const User &I) { 2914 SmallVector<EVT, 4> ValueVTs; 2915 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), I.getType(), 2916 ValueVTs); 2917 unsigned NumValues = ValueVTs.size(); 2918 if (NumValues == 0) return; 2919 2920 SmallVector<SDValue, 4> Values(NumValues); 2921 SDValue Cond = getValue(I.getOperand(0)); 2922 SDValue TrueVal = getValue(I.getOperand(1)); 2923 SDValue FalseVal = getValue(I.getOperand(2)); 2924 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2925 ISD::VSELECT : ISD::SELECT; 2926 2927 for (unsigned i = 0; i != NumValues; ++i) 2928 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2929 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2930 Cond, 2931 SDValue(TrueVal.getNode(), 2932 TrueVal.getResNo() + i), 2933 SDValue(FalseVal.getNode(), 2934 FalseVal.getResNo() + i)); 2935 2936 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2937 DAG.getVTList(ValueVTs), Values)); 2938 } 2939 2940 void SelectionDAGBuilder::visitTrunc(const User &I) { 2941 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2942 SDValue N = getValue(I.getOperand(0)); 2943 EVT DestVT = 2944 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2945 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2946 } 2947 2948 void SelectionDAGBuilder::visitZExt(const User &I) { 2949 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2950 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2951 SDValue N = getValue(I.getOperand(0)); 2952 EVT DestVT = 2953 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2954 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2955 } 2956 2957 void SelectionDAGBuilder::visitSExt(const User &I) { 2958 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2959 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2960 SDValue N = getValue(I.getOperand(0)); 2961 EVT DestVT = 2962 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2963 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2964 } 2965 2966 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2967 // FPTrunc is never a no-op cast, no need to check 2968 SDValue N = getValue(I.getOperand(0)); 2969 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2970 EVT DestVT = TLI->getValueType(I.getType()); 2971 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2972 DestVT, N, 2973 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2974 } 2975 2976 void SelectionDAGBuilder::visitFPExt(const User &I) { 2977 // FPExt is never a no-op cast, no need to check 2978 SDValue N = getValue(I.getOperand(0)); 2979 EVT DestVT = 2980 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2981 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2982 } 2983 2984 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2985 // FPToUI is never a no-op cast, no need to check 2986 SDValue N = getValue(I.getOperand(0)); 2987 EVT DestVT = 2988 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2989 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2990 } 2991 2992 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2993 // FPToSI is never a no-op cast, no need to check 2994 SDValue N = getValue(I.getOperand(0)); 2995 EVT DestVT = 2996 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2997 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2998 } 2999 3000 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3001 // UIToFP is never a no-op cast, no need to check 3002 SDValue N = getValue(I.getOperand(0)); 3003 EVT DestVT = 3004 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3005 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3006 } 3007 3008 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3009 // SIToFP is never a no-op cast, no need to check 3010 SDValue N = getValue(I.getOperand(0)); 3011 EVT DestVT = 3012 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3013 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3014 } 3015 3016 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3017 // What to do depends on the size of the integer and the size of the pointer. 3018 // We can either truncate, zero extend, or no-op, accordingly. 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = 3021 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3022 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3023 } 3024 3025 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3026 // What to do depends on the size of the integer and the size of the pointer. 3027 // We can either truncate, zero extend, or no-op, accordingly. 3028 SDValue N = getValue(I.getOperand(0)); 3029 EVT DestVT = 3030 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3031 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3032 } 3033 3034 void SelectionDAGBuilder::visitBitCast(const User &I) { 3035 SDValue N = getValue(I.getOperand(0)); 3036 EVT DestVT = 3037 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3038 3039 // BitCast assures us that source and destination are the same size so this is 3040 // either a BITCAST or a no-op. 3041 if (DestVT != N.getValueType()) 3042 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3043 DestVT, N)); // convert types. 3044 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3045 // might fold any kind of constant expression to an integer constant and that 3046 // is not what we are looking for. Only regcognize a bitcast of a genuine 3047 // constant integer as an opaque constant. 3048 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3049 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3050 /*isOpaque*/true)); 3051 else 3052 setValue(&I, N); // noop cast. 3053 } 3054 3055 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3057 const Value *SV = I.getOperand(0); 3058 SDValue N = getValue(SV); 3059 EVT DestVT = 3060 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3061 3062 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3063 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3064 3065 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3066 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3067 3068 setValue(&I, N); 3069 } 3070 3071 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3073 SDValue InVec = getValue(I.getOperand(0)); 3074 SDValue InVal = getValue(I.getOperand(1)); 3075 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3076 getCurSDLoc(), TLI.getVectorIdxTy()); 3077 setValue(&I, 3078 DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3079 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3080 I.getType()), 3081 InVec, InVal, InIdx)); 3082 } 3083 3084 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3086 SDValue InVec = getValue(I.getOperand(0)); 3087 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3088 getCurSDLoc(), TLI.getVectorIdxTy()); 3089 setValue(&I, 3090 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3091 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3092 I.getType()), 3093 InVec, InIdx)); 3094 } 3095 3096 // Utility for visitShuffleVector - Return true if every element in Mask, 3097 // beginning from position Pos and ending in Pos+Size, falls within the 3098 // specified sequential range [L, L+Pos). or is undef. 3099 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3100 unsigned Pos, unsigned Size, int Low) { 3101 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3102 if (Mask[i] >= 0 && Mask[i] != Low) 3103 return false; 3104 return true; 3105 } 3106 3107 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3108 SDValue Src1 = getValue(I.getOperand(0)); 3109 SDValue Src2 = getValue(I.getOperand(1)); 3110 3111 SmallVector<int, 8> Mask; 3112 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3113 unsigned MaskNumElts = Mask.size(); 3114 3115 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3116 EVT VT = TLI->getValueType(I.getType()); 3117 EVT SrcVT = Src1.getValueType(); 3118 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3119 3120 if (SrcNumElts == MaskNumElts) { 3121 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3122 &Mask[0])); 3123 return; 3124 } 3125 3126 // Normalize the shuffle vector since mask and vector length don't match. 3127 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3128 // Mask is longer than the source vectors and is a multiple of the source 3129 // vectors. We can use concatenate vector to make the mask and vectors 3130 // lengths match. 3131 if (SrcNumElts*2 == MaskNumElts) { 3132 // First check for Src1 in low and Src2 in high 3133 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3134 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3135 // The shuffle is concatenating two vectors together. 3136 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3137 VT, Src1, Src2)); 3138 return; 3139 } 3140 // Then check for Src2 in low and Src1 in high 3141 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3142 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3143 // The shuffle is concatenating two vectors together. 3144 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3145 VT, Src2, Src1)); 3146 return; 3147 } 3148 } 3149 3150 // Pad both vectors with undefs to make them the same length as the mask. 3151 unsigned NumConcat = MaskNumElts / SrcNumElts; 3152 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3153 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3154 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3155 3156 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3157 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3158 MOps1[0] = Src1; 3159 MOps2[0] = Src2; 3160 3161 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3162 getCurSDLoc(), VT, MOps1); 3163 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3164 getCurSDLoc(), VT, MOps2); 3165 3166 // Readjust mask for new input vector length. 3167 SmallVector<int, 8> MappedOps; 3168 for (unsigned i = 0; i != MaskNumElts; ++i) { 3169 int Idx = Mask[i]; 3170 if (Idx >= (int)SrcNumElts) 3171 Idx -= SrcNumElts - MaskNumElts; 3172 MappedOps.push_back(Idx); 3173 } 3174 3175 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3176 &MappedOps[0])); 3177 return; 3178 } 3179 3180 if (SrcNumElts > MaskNumElts) { 3181 // Analyze the access pattern of the vector to see if we can extract 3182 // two subvectors and do the shuffle. The analysis is done by calculating 3183 // the range of elements the mask access on both vectors. 3184 int MinRange[2] = { static_cast<int>(SrcNumElts), 3185 static_cast<int>(SrcNumElts)}; 3186 int MaxRange[2] = {-1, -1}; 3187 3188 for (unsigned i = 0; i != MaskNumElts; ++i) { 3189 int Idx = Mask[i]; 3190 unsigned Input = 0; 3191 if (Idx < 0) 3192 continue; 3193 3194 if (Idx >= (int)SrcNumElts) { 3195 Input = 1; 3196 Idx -= SrcNumElts; 3197 } 3198 if (Idx > MaxRange[Input]) 3199 MaxRange[Input] = Idx; 3200 if (Idx < MinRange[Input]) 3201 MinRange[Input] = Idx; 3202 } 3203 3204 // Check if the access is smaller than the vector size and can we find 3205 // a reasonable extract index. 3206 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3207 // Extract. 3208 int StartIdx[2]; // StartIdx to extract from 3209 for (unsigned Input = 0; Input < 2; ++Input) { 3210 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3211 RangeUse[Input] = 0; // Unused 3212 StartIdx[Input] = 0; 3213 continue; 3214 } 3215 3216 // Find a good start index that is a multiple of the mask length. Then 3217 // see if the rest of the elements are in range. 3218 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3219 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3220 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3221 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3222 } 3223 3224 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3225 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3226 return; 3227 } 3228 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3229 // Extract appropriate subvector and generate a vector shuffle 3230 for (unsigned Input = 0; Input < 2; ++Input) { 3231 SDValue &Src = Input == 0 ? Src1 : Src2; 3232 if (RangeUse[Input] == 0) 3233 Src = DAG.getUNDEF(VT); 3234 else 3235 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3236 Src, DAG.getConstant(StartIdx[Input], 3237 TLI->getVectorIdxTy())); 3238 } 3239 3240 // Calculate new mask. 3241 SmallVector<int, 8> MappedOps; 3242 for (unsigned i = 0; i != MaskNumElts; ++i) { 3243 int Idx = Mask[i]; 3244 if (Idx >= 0) { 3245 if (Idx < (int)SrcNumElts) 3246 Idx -= StartIdx[0]; 3247 else 3248 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3249 } 3250 MappedOps.push_back(Idx); 3251 } 3252 3253 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3254 &MappedOps[0])); 3255 return; 3256 } 3257 } 3258 3259 // We can't use either concat vectors or extract subvectors so fall back to 3260 // replacing the shuffle with extract and build vector. 3261 // to insert and build vector. 3262 EVT EltVT = VT.getVectorElementType(); 3263 EVT IdxVT = TLI->getVectorIdxTy(); 3264 SmallVector<SDValue,8> Ops; 3265 for (unsigned i = 0; i != MaskNumElts; ++i) { 3266 int Idx = Mask[i]; 3267 SDValue Res; 3268 3269 if (Idx < 0) { 3270 Res = DAG.getUNDEF(EltVT); 3271 } else { 3272 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3273 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3274 3275 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3276 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3277 } 3278 3279 Ops.push_back(Res); 3280 } 3281 3282 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3283 } 3284 3285 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3286 const Value *Op0 = I.getOperand(0); 3287 const Value *Op1 = I.getOperand(1); 3288 Type *AggTy = I.getType(); 3289 Type *ValTy = Op1->getType(); 3290 bool IntoUndef = isa<UndefValue>(Op0); 3291 bool FromUndef = isa<UndefValue>(Op1); 3292 3293 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3294 3295 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3296 SmallVector<EVT, 4> AggValueVTs; 3297 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3298 SmallVector<EVT, 4> ValValueVTs; 3299 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3300 3301 unsigned NumAggValues = AggValueVTs.size(); 3302 unsigned NumValValues = ValValueVTs.size(); 3303 SmallVector<SDValue, 4> Values(NumAggValues); 3304 3305 SDValue Agg = getValue(Op0); 3306 unsigned i = 0; 3307 // Copy the beginning value(s) from the original aggregate. 3308 for (; i != LinearIndex; ++i) 3309 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3310 SDValue(Agg.getNode(), Agg.getResNo() + i); 3311 // Copy values from the inserted value(s). 3312 if (NumValValues) { 3313 SDValue Val = getValue(Op1); 3314 for (; i != LinearIndex + NumValValues; ++i) 3315 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3316 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3317 } 3318 // Copy remaining value(s) from the original aggregate. 3319 for (; i != NumAggValues; ++i) 3320 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3321 SDValue(Agg.getNode(), Agg.getResNo() + i); 3322 3323 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3324 DAG.getVTList(AggValueVTs), Values)); 3325 } 3326 3327 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3328 const Value *Op0 = I.getOperand(0); 3329 Type *AggTy = Op0->getType(); 3330 Type *ValTy = I.getType(); 3331 bool OutOfUndef = isa<UndefValue>(Op0); 3332 3333 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3334 3335 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3336 SmallVector<EVT, 4> ValValueVTs; 3337 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3338 3339 unsigned NumValValues = ValValueVTs.size(); 3340 3341 // Ignore a extractvalue that produces an empty object 3342 if (!NumValValues) { 3343 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3344 return; 3345 } 3346 3347 SmallVector<SDValue, 4> Values(NumValValues); 3348 3349 SDValue Agg = getValue(Op0); 3350 // Copy out the selected value(s). 3351 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3352 Values[i - LinearIndex] = 3353 OutOfUndef ? 3354 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3355 SDValue(Agg.getNode(), Agg.getResNo() + i); 3356 3357 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3358 DAG.getVTList(ValValueVTs), Values)); 3359 } 3360 3361 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3362 Value *Op0 = I.getOperand(0); 3363 // Note that the pointer operand may be a vector of pointers. Take the scalar 3364 // element which holds a pointer. 3365 Type *Ty = Op0->getType()->getScalarType(); 3366 unsigned AS = Ty->getPointerAddressSpace(); 3367 SDValue N = getValue(Op0); 3368 3369 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3370 OI != E; ++OI) { 3371 const Value *Idx = *OI; 3372 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3373 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3374 if (Field) { 3375 // N = N + Offset 3376 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3377 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3378 DAG.getConstant(Offset, N.getValueType())); 3379 } 3380 3381 Ty = StTy->getElementType(Field); 3382 } else { 3383 Ty = cast<SequentialType>(Ty)->getElementType(); 3384 3385 // If this is a constant subscript, handle it quickly. 3386 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3387 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3388 if (CI->isZero()) continue; 3389 uint64_t Offs = 3390 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3391 SDValue OffsVal; 3392 EVT PTy = TLI->getPointerTy(AS); 3393 unsigned PtrBits = PTy.getSizeInBits(); 3394 if (PtrBits < 64) 3395 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3396 DAG.getConstant(Offs, MVT::i64)); 3397 else 3398 OffsVal = DAG.getConstant(Offs, PTy); 3399 3400 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3401 OffsVal); 3402 continue; 3403 } 3404 3405 // N = N + Idx * ElementSize; 3406 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3407 DL->getTypeAllocSize(Ty)); 3408 SDValue IdxN = getValue(Idx); 3409 3410 // If the index is smaller or larger than intptr_t, truncate or extend 3411 // it. 3412 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3413 3414 // If this is a multiply by a power of two, turn it into a shl 3415 // immediately. This is a very common case. 3416 if (ElementSize != 1) { 3417 if (ElementSize.isPowerOf2()) { 3418 unsigned Amt = ElementSize.logBase2(); 3419 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3420 N.getValueType(), IdxN, 3421 DAG.getConstant(Amt, IdxN.getValueType())); 3422 } else { 3423 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3424 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3425 N.getValueType(), IdxN, Scale); 3426 } 3427 } 3428 3429 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3430 N.getValueType(), N, IdxN); 3431 } 3432 } 3433 3434 setValue(&I, N); 3435 } 3436 3437 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3438 // If this is a fixed sized alloca in the entry block of the function, 3439 // allocate it statically on the stack. 3440 if (FuncInfo.StaticAllocaMap.count(&I)) 3441 return; // getValue will auto-populate this. 3442 3443 Type *Ty = I.getAllocatedType(); 3444 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3445 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3446 unsigned Align = 3447 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3448 I.getAlignment()); 3449 3450 SDValue AllocSize = getValue(I.getArraySize()); 3451 3452 EVT IntPtr = TLI->getPointerTy(); 3453 if (AllocSize.getValueType() != IntPtr) 3454 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3455 3456 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3457 AllocSize, 3458 DAG.getConstant(TySize, IntPtr)); 3459 3460 // Handle alignment. If the requested alignment is less than or equal to 3461 // the stack alignment, ignore it. If the size is greater than or equal to 3462 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3463 unsigned StackAlign = 3464 TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); 3465 if (Align <= StackAlign) 3466 Align = 0; 3467 3468 // Round the size of the allocation up to the stack alignment size 3469 // by add SA-1 to the size. 3470 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3471 AllocSize.getValueType(), AllocSize, 3472 DAG.getIntPtrConstant(StackAlign-1)); 3473 3474 // Mask out the low bits for alignment purposes. 3475 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3476 AllocSize.getValueType(), AllocSize, 3477 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3478 3479 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3480 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3481 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3482 setValue(&I, DSA); 3483 DAG.setRoot(DSA.getValue(1)); 3484 3485 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3486 } 3487 3488 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3489 if (I.isAtomic()) 3490 return visitAtomicLoad(I); 3491 3492 const Value *SV = I.getOperand(0); 3493 SDValue Ptr = getValue(SV); 3494 3495 Type *Ty = I.getType(); 3496 3497 bool isVolatile = I.isVolatile(); 3498 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3499 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3500 unsigned Alignment = I.getAlignment(); 3501 3502 AAMDNodes AAInfo; 3503 I.getAAMetadata(AAInfo); 3504 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3505 3506 SmallVector<EVT, 4> ValueVTs; 3507 SmallVector<uint64_t, 4> Offsets; 3508 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), Ty, ValueVTs, 3509 &Offsets); 3510 unsigned NumValues = ValueVTs.size(); 3511 if (NumValues == 0) 3512 return; 3513 3514 SDValue Root; 3515 bool ConstantMemory = false; 3516 if (isVolatile || NumValues > MaxParallelChains) 3517 // Serialize volatile loads with other side effects. 3518 Root = getRoot(); 3519 else if (AA->pointsToConstantMemory( 3520 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3521 // Do not serialize (non-volatile) loads of constant memory with anything. 3522 Root = DAG.getEntryNode(); 3523 ConstantMemory = true; 3524 } else { 3525 // Do not serialize non-volatile loads against each other. 3526 Root = DAG.getRoot(); 3527 } 3528 3529 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3530 if (isVolatile) 3531 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3532 3533 SmallVector<SDValue, 4> Values(NumValues); 3534 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3535 NumValues)); 3536 EVT PtrVT = Ptr.getValueType(); 3537 unsigned ChainI = 0; 3538 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3539 // Serializing loads here may result in excessive register pressure, and 3540 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3541 // could recover a bit by hoisting nodes upward in the chain by recognizing 3542 // they are side-effect free or do not alias. The optimizer should really 3543 // avoid this case by converting large object/array copies to llvm.memcpy 3544 // (MaxParallelChains should always remain as failsafe). 3545 if (ChainI == MaxParallelChains) { 3546 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3547 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3548 makeArrayRef(Chains.data(), ChainI)); 3549 Root = Chain; 3550 ChainI = 0; 3551 } 3552 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3553 PtrVT, Ptr, 3554 DAG.getConstant(Offsets[i], PtrVT)); 3555 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3556 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3557 isNonTemporal, isInvariant, Alignment, AAInfo, 3558 Ranges); 3559 3560 Values[i] = L; 3561 Chains[ChainI] = L.getValue(1); 3562 } 3563 3564 if (!ConstantMemory) { 3565 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3566 makeArrayRef(Chains.data(), ChainI)); 3567 if (isVolatile) 3568 DAG.setRoot(Chain); 3569 else 3570 PendingLoads.push_back(Chain); 3571 } 3572 3573 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3574 DAG.getVTList(ValueVTs), Values)); 3575 } 3576 3577 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3578 if (I.isAtomic()) 3579 return visitAtomicStore(I); 3580 3581 const Value *SrcV = I.getOperand(0); 3582 const Value *PtrV = I.getOperand(1); 3583 3584 SmallVector<EVT, 4> ValueVTs; 3585 SmallVector<uint64_t, 4> Offsets; 3586 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), SrcV->getType(), 3587 ValueVTs, &Offsets); 3588 unsigned NumValues = ValueVTs.size(); 3589 if (NumValues == 0) 3590 return; 3591 3592 // Get the lowered operands. Note that we do this after 3593 // checking if NumResults is zero, because with zero results 3594 // the operands won't have values in the map. 3595 SDValue Src = getValue(SrcV); 3596 SDValue Ptr = getValue(PtrV); 3597 3598 SDValue Root = getRoot(); 3599 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3600 NumValues)); 3601 EVT PtrVT = Ptr.getValueType(); 3602 bool isVolatile = I.isVolatile(); 3603 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3604 unsigned Alignment = I.getAlignment(); 3605 3606 AAMDNodes AAInfo; 3607 I.getAAMetadata(AAInfo); 3608 3609 unsigned ChainI = 0; 3610 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3611 // See visitLoad comments. 3612 if (ChainI == MaxParallelChains) { 3613 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3614 makeArrayRef(Chains.data(), ChainI)); 3615 Root = Chain; 3616 ChainI = 0; 3617 } 3618 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3619 DAG.getConstant(Offsets[i], PtrVT)); 3620 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3621 SDValue(Src.getNode(), Src.getResNo() + i), 3622 Add, MachinePointerInfo(PtrV, Offsets[i]), 3623 isVolatile, isNonTemporal, Alignment, AAInfo); 3624 Chains[ChainI] = St; 3625 } 3626 3627 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3628 makeArrayRef(Chains.data(), ChainI)); 3629 DAG.setRoot(StoreNode); 3630 } 3631 3632 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3633 SynchronizationScope Scope, 3634 bool Before, SDLoc dl, 3635 SelectionDAG &DAG, 3636 const TargetLowering &TLI) { 3637 // Fence, if necessary 3638 if (Before) { 3639 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3640 Order = Release; 3641 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3642 return Chain; 3643 } else { 3644 if (Order == AcquireRelease) 3645 Order = Acquire; 3646 else if (Order == Release || Order == Monotonic || Order == Unordered) 3647 return Chain; 3648 } 3649 SDValue Ops[3]; 3650 Ops[0] = Chain; 3651 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3652 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3653 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3654 } 3655 3656 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3657 SDLoc dl = getCurSDLoc(); 3658 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3659 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3660 SynchronizationScope Scope = I.getSynchScope(); 3661 3662 SDValue InChain = getRoot(); 3663 3664 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3665 if (TLI->getInsertFencesForAtomic()) 3666 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3667 DAG, *TLI); 3668 3669 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3670 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3671 SDValue L = DAG.getAtomicCmpSwap( 3672 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3673 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3674 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3675 0 /* Alignment */, 3676 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3677 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3678 3679 SDValue OutChain = L.getValue(2); 3680 3681 if (TLI->getInsertFencesForAtomic()) 3682 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3683 DAG, *TLI); 3684 3685 setValue(&I, L); 3686 DAG.setRoot(OutChain); 3687 } 3688 3689 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3690 SDLoc dl = getCurSDLoc(); 3691 ISD::NodeType NT; 3692 switch (I.getOperation()) { 3693 default: llvm_unreachable("Unknown atomicrmw operation"); 3694 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3695 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3696 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3697 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3698 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3699 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3700 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3701 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3702 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3703 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3704 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3705 } 3706 AtomicOrdering Order = I.getOrdering(); 3707 SynchronizationScope Scope = I.getSynchScope(); 3708 3709 SDValue InChain = getRoot(); 3710 3711 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3712 if (TLI->getInsertFencesForAtomic()) 3713 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3714 DAG, *TLI); 3715 3716 SDValue L = 3717 DAG.getAtomic(NT, dl, 3718 getValue(I.getValOperand()).getSimpleValueType(), 3719 InChain, 3720 getValue(I.getPointerOperand()), 3721 getValue(I.getValOperand()), 3722 I.getPointerOperand(), 0 /* Alignment */, 3723 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3724 Scope); 3725 3726 SDValue OutChain = L.getValue(1); 3727 3728 if (TLI->getInsertFencesForAtomic()) 3729 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3730 DAG, *TLI); 3731 3732 setValue(&I, L); 3733 DAG.setRoot(OutChain); 3734 } 3735 3736 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3737 SDLoc dl = getCurSDLoc(); 3738 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3739 SDValue Ops[3]; 3740 Ops[0] = getRoot(); 3741 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3742 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3743 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3744 } 3745 3746 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3747 SDLoc dl = getCurSDLoc(); 3748 AtomicOrdering Order = I.getOrdering(); 3749 SynchronizationScope Scope = I.getSynchScope(); 3750 3751 SDValue InChain = getRoot(); 3752 3753 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3754 EVT VT = TLI->getValueType(I.getType()); 3755 3756 if (I.getAlignment() < VT.getSizeInBits() / 8) 3757 report_fatal_error("Cannot generate unaligned atomic load"); 3758 3759 MachineMemOperand *MMO = 3760 DAG.getMachineFunction(). 3761 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3762 MachineMemOperand::MOVolatile | 3763 MachineMemOperand::MOLoad, 3764 VT.getStoreSize(), 3765 I.getAlignment() ? I.getAlignment() : 3766 DAG.getEVTAlignment(VT)); 3767 3768 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3769 SDValue L = 3770 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3771 getValue(I.getPointerOperand()), MMO, 3772 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3773 Scope); 3774 3775 SDValue OutChain = L.getValue(1); 3776 3777 if (TLI->getInsertFencesForAtomic()) 3778 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3779 DAG, *TLI); 3780 3781 setValue(&I, L); 3782 DAG.setRoot(OutChain); 3783 } 3784 3785 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3786 SDLoc dl = getCurSDLoc(); 3787 3788 AtomicOrdering Order = I.getOrdering(); 3789 SynchronizationScope Scope = I.getSynchScope(); 3790 3791 SDValue InChain = getRoot(); 3792 3793 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3794 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3795 3796 if (I.getAlignment() < VT.getSizeInBits() / 8) 3797 report_fatal_error("Cannot generate unaligned atomic store"); 3798 3799 if (TLI->getInsertFencesForAtomic()) 3800 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3801 DAG, *TLI); 3802 3803 SDValue OutChain = 3804 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3805 InChain, 3806 getValue(I.getPointerOperand()), 3807 getValue(I.getValueOperand()), 3808 I.getPointerOperand(), I.getAlignment(), 3809 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3810 Scope); 3811 3812 if (TLI->getInsertFencesForAtomic()) 3813 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3814 DAG, *TLI); 3815 3816 DAG.setRoot(OutChain); 3817 } 3818 3819 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3820 /// node. 3821 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3822 unsigned Intrinsic) { 3823 bool HasChain = !I.doesNotAccessMemory(); 3824 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3825 3826 // Build the operand list. 3827 SmallVector<SDValue, 8> Ops; 3828 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3829 if (OnlyLoad) { 3830 // We don't need to serialize loads against other loads. 3831 Ops.push_back(DAG.getRoot()); 3832 } else { 3833 Ops.push_back(getRoot()); 3834 } 3835 } 3836 3837 // Info is set by getTgtMemInstrinsic 3838 TargetLowering::IntrinsicInfo Info; 3839 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3840 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3841 3842 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3843 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3844 Info.opc == ISD::INTRINSIC_W_CHAIN) 3845 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3846 3847 // Add all operands of the call to the operand list. 3848 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3849 SDValue Op = getValue(I.getArgOperand(i)); 3850 Ops.push_back(Op); 3851 } 3852 3853 SmallVector<EVT, 4> ValueVTs; 3854 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3855 3856 if (HasChain) 3857 ValueVTs.push_back(MVT::Other); 3858 3859 SDVTList VTs = DAG.getVTList(ValueVTs); 3860 3861 // Create the node. 3862 SDValue Result; 3863 if (IsTgtIntrinsic) { 3864 // This is target intrinsic that touches memory 3865 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3866 VTs, Ops, Info.memVT, 3867 MachinePointerInfo(Info.ptrVal, Info.offset), 3868 Info.align, Info.vol, 3869 Info.readMem, Info.writeMem); 3870 } else if (!HasChain) { 3871 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3872 } else if (!I.getType()->isVoidTy()) { 3873 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3874 } else { 3875 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3876 } 3877 3878 if (HasChain) { 3879 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3880 if (OnlyLoad) 3881 PendingLoads.push_back(Chain); 3882 else 3883 DAG.setRoot(Chain); 3884 } 3885 3886 if (!I.getType()->isVoidTy()) { 3887 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3888 EVT VT = TLI->getValueType(PTy); 3889 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3890 } 3891 3892 setValue(&I, Result); 3893 } 3894 } 3895 3896 /// GetSignificand - Get the significand and build it into a floating-point 3897 /// number with exponent of 1: 3898 /// 3899 /// Op = (Op & 0x007fffff) | 0x3f800000; 3900 /// 3901 /// where Op is the hexadecimal representation of floating point value. 3902 static SDValue 3903 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3904 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3905 DAG.getConstant(0x007fffff, MVT::i32)); 3906 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3907 DAG.getConstant(0x3f800000, MVT::i32)); 3908 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3909 } 3910 3911 /// GetExponent - Get the exponent: 3912 /// 3913 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3914 /// 3915 /// where Op is the hexadecimal representation of floating point value. 3916 static SDValue 3917 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3918 SDLoc dl) { 3919 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3920 DAG.getConstant(0x7f800000, MVT::i32)); 3921 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3922 DAG.getConstant(23, TLI.getPointerTy())); 3923 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3924 DAG.getConstant(127, MVT::i32)); 3925 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3926 } 3927 3928 /// getF32Constant - Get 32-bit floating point constant. 3929 static SDValue 3930 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3931 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3932 MVT::f32); 3933 } 3934 3935 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3936 /// limited-precision mode. 3937 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3938 const TargetLowering &TLI) { 3939 if (Op.getValueType() == MVT::f32 && 3940 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3941 3942 // Put the exponent in the right bit position for later addition to the 3943 // final result: 3944 // 3945 // #define LOG2OFe 1.4426950f 3946 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3947 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3948 getF32Constant(DAG, 0x3fb8aa3b)); 3949 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3950 3951 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3952 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3953 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3954 3955 // IntegerPartOfX <<= 23; 3956 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3957 DAG.getConstant(23, TLI.getPointerTy())); 3958 3959 SDValue TwoToFracPartOfX; 3960 if (LimitFloatPrecision <= 6) { 3961 // For floating-point precision of 6: 3962 // 3963 // TwoToFractionalPartOfX = 3964 // 0.997535578f + 3965 // (0.735607626f + 0.252464424f * x) * x; 3966 // 3967 // error 0.0144103317, which is 6 bits 3968 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3969 getF32Constant(DAG, 0x3e814304)); 3970 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3971 getF32Constant(DAG, 0x3f3c50c8)); 3972 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3973 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3974 getF32Constant(DAG, 0x3f7f5e7e)); 3975 } else if (LimitFloatPrecision <= 12) { 3976 // For floating-point precision of 12: 3977 // 3978 // TwoToFractionalPartOfX = 3979 // 0.999892986f + 3980 // (0.696457318f + 3981 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3982 // 3983 // 0.000107046256 error, which is 13 to 14 bits 3984 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3985 getF32Constant(DAG, 0x3da235e3)); 3986 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3987 getF32Constant(DAG, 0x3e65b8f3)); 3988 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3989 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3990 getF32Constant(DAG, 0x3f324b07)); 3991 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3992 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3993 getF32Constant(DAG, 0x3f7ff8fd)); 3994 } else { // LimitFloatPrecision <= 18 3995 // For floating-point precision of 18: 3996 // 3997 // TwoToFractionalPartOfX = 3998 // 0.999999982f + 3999 // (0.693148872f + 4000 // (0.240227044f + 4001 // (0.554906021e-1f + 4002 // (0.961591928e-2f + 4003 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4004 // 4005 // error 2.47208000*10^(-7), which is better than 18 bits 4006 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4007 getF32Constant(DAG, 0x3924b03e)); 4008 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4009 getF32Constant(DAG, 0x3ab24b87)); 4010 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4011 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4012 getF32Constant(DAG, 0x3c1d8c17)); 4013 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4014 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4015 getF32Constant(DAG, 0x3d634a1d)); 4016 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4017 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4018 getF32Constant(DAG, 0x3e75fe14)); 4019 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4020 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4021 getF32Constant(DAG, 0x3f317234)); 4022 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4023 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4024 getF32Constant(DAG, 0x3f800000)); 4025 } 4026 4027 // Add the exponent into the result in integer domain. 4028 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4029 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4030 DAG.getNode(ISD::ADD, dl, MVT::i32, 4031 t13, IntegerPartOfX)); 4032 } 4033 4034 // No special expansion. 4035 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4036 } 4037 4038 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4039 /// limited-precision mode. 4040 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4041 const TargetLowering &TLI) { 4042 if (Op.getValueType() == MVT::f32 && 4043 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4044 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4045 4046 // Scale the exponent by log(2) [0.69314718f]. 4047 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4048 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4049 getF32Constant(DAG, 0x3f317218)); 4050 4051 // Get the significand and build it into a floating-point number with 4052 // exponent of 1. 4053 SDValue X = GetSignificand(DAG, Op1, dl); 4054 4055 SDValue LogOfMantissa; 4056 if (LimitFloatPrecision <= 6) { 4057 // For floating-point precision of 6: 4058 // 4059 // LogofMantissa = 4060 // -1.1609546f + 4061 // (1.4034025f - 0.23903021f * x) * x; 4062 // 4063 // error 0.0034276066, which is better than 8 bits 4064 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4065 getF32Constant(DAG, 0xbe74c456)); 4066 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4067 getF32Constant(DAG, 0x3fb3a2b1)); 4068 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4069 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4070 getF32Constant(DAG, 0x3f949a29)); 4071 } else if (LimitFloatPrecision <= 12) { 4072 // For floating-point precision of 12: 4073 // 4074 // LogOfMantissa = 4075 // -1.7417939f + 4076 // (2.8212026f + 4077 // (-1.4699568f + 4078 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4079 // 4080 // error 0.000061011436, which is 14 bits 4081 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4082 getF32Constant(DAG, 0xbd67b6d6)); 4083 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4084 getF32Constant(DAG, 0x3ee4f4b8)); 4085 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4086 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4087 getF32Constant(DAG, 0x3fbc278b)); 4088 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4089 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4090 getF32Constant(DAG, 0x40348e95)); 4091 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4092 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4093 getF32Constant(DAG, 0x3fdef31a)); 4094 } else { // LimitFloatPrecision <= 18 4095 // For floating-point precision of 18: 4096 // 4097 // LogOfMantissa = 4098 // -2.1072184f + 4099 // (4.2372794f + 4100 // (-3.7029485f + 4101 // (2.2781945f + 4102 // (-0.87823314f + 4103 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4104 // 4105 // error 0.0000023660568, which is better than 18 bits 4106 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4107 getF32Constant(DAG, 0xbc91e5ac)); 4108 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4109 getF32Constant(DAG, 0x3e4350aa)); 4110 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4111 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4112 getF32Constant(DAG, 0x3f60d3e3)); 4113 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4114 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4115 getF32Constant(DAG, 0x4011cdf0)); 4116 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4117 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4118 getF32Constant(DAG, 0x406cfd1c)); 4119 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4120 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4121 getF32Constant(DAG, 0x408797cb)); 4122 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4123 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4124 getF32Constant(DAG, 0x4006dcab)); 4125 } 4126 4127 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4128 } 4129 4130 // No special expansion. 4131 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4132 } 4133 4134 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4135 /// limited-precision mode. 4136 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4137 const TargetLowering &TLI) { 4138 if (Op.getValueType() == MVT::f32 && 4139 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4140 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4141 4142 // Get the exponent. 4143 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4144 4145 // Get the significand and build it into a floating-point number with 4146 // exponent of 1. 4147 SDValue X = GetSignificand(DAG, Op1, dl); 4148 4149 // Different possible minimax approximations of significand in 4150 // floating-point for various degrees of accuracy over [1,2]. 4151 SDValue Log2ofMantissa; 4152 if (LimitFloatPrecision <= 6) { 4153 // For floating-point precision of 6: 4154 // 4155 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4156 // 4157 // error 0.0049451742, which is more than 7 bits 4158 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4159 getF32Constant(DAG, 0xbeb08fe0)); 4160 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4161 getF32Constant(DAG, 0x40019463)); 4162 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4163 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4164 getF32Constant(DAG, 0x3fd6633d)); 4165 } else if (LimitFloatPrecision <= 12) { 4166 // For floating-point precision of 12: 4167 // 4168 // Log2ofMantissa = 4169 // -2.51285454f + 4170 // (4.07009056f + 4171 // (-2.12067489f + 4172 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4173 // 4174 // error 0.0000876136000, which is better than 13 bits 4175 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4176 getF32Constant(DAG, 0xbda7262e)); 4177 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4178 getF32Constant(DAG, 0x3f25280b)); 4179 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4180 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4181 getF32Constant(DAG, 0x4007b923)); 4182 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4183 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4184 getF32Constant(DAG, 0x40823e2f)); 4185 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4186 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4187 getF32Constant(DAG, 0x4020d29c)); 4188 } else { // LimitFloatPrecision <= 18 4189 // For floating-point precision of 18: 4190 // 4191 // Log2ofMantissa = 4192 // -3.0400495f + 4193 // (6.1129976f + 4194 // (-5.3420409f + 4195 // (3.2865683f + 4196 // (-1.2669343f + 4197 // (0.27515199f - 4198 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4199 // 4200 // error 0.0000018516, which is better than 18 bits 4201 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4202 getF32Constant(DAG, 0xbcd2769e)); 4203 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4204 getF32Constant(DAG, 0x3e8ce0b9)); 4205 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4206 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4207 getF32Constant(DAG, 0x3fa22ae7)); 4208 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4209 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4210 getF32Constant(DAG, 0x40525723)); 4211 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4212 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4213 getF32Constant(DAG, 0x40aaf200)); 4214 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4215 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4216 getF32Constant(DAG, 0x40c39dad)); 4217 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4218 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4219 getF32Constant(DAG, 0x4042902c)); 4220 } 4221 4222 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4223 } 4224 4225 // No special expansion. 4226 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4227 } 4228 4229 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4230 /// limited-precision mode. 4231 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4232 const TargetLowering &TLI) { 4233 if (Op.getValueType() == MVT::f32 && 4234 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4235 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4236 4237 // Scale the exponent by log10(2) [0.30102999f]. 4238 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4239 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4240 getF32Constant(DAG, 0x3e9a209a)); 4241 4242 // Get the significand and build it into a floating-point number with 4243 // exponent of 1. 4244 SDValue X = GetSignificand(DAG, Op1, dl); 4245 4246 SDValue Log10ofMantissa; 4247 if (LimitFloatPrecision <= 6) { 4248 // For floating-point precision of 6: 4249 // 4250 // Log10ofMantissa = 4251 // -0.50419619f + 4252 // (0.60948995f - 0.10380950f * x) * x; 4253 // 4254 // error 0.0014886165, which is 6 bits 4255 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4256 getF32Constant(DAG, 0xbdd49a13)); 4257 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4258 getF32Constant(DAG, 0x3f1c0789)); 4259 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4260 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4261 getF32Constant(DAG, 0x3f011300)); 4262 } else if (LimitFloatPrecision <= 12) { 4263 // For floating-point precision of 12: 4264 // 4265 // Log10ofMantissa = 4266 // -0.64831180f + 4267 // (0.91751397f + 4268 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4269 // 4270 // error 0.00019228036, which is better than 12 bits 4271 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4272 getF32Constant(DAG, 0x3d431f31)); 4273 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4274 getF32Constant(DAG, 0x3ea21fb2)); 4275 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4276 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4277 getF32Constant(DAG, 0x3f6ae232)); 4278 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4279 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4280 getF32Constant(DAG, 0x3f25f7c3)); 4281 } else { // LimitFloatPrecision <= 18 4282 // For floating-point precision of 18: 4283 // 4284 // Log10ofMantissa = 4285 // -0.84299375f + 4286 // (1.5327582f + 4287 // (-1.0688956f + 4288 // (0.49102474f + 4289 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4290 // 4291 // error 0.0000037995730, which is better than 18 bits 4292 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4293 getF32Constant(DAG, 0x3c5d51ce)); 4294 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4295 getF32Constant(DAG, 0x3e00685a)); 4296 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4297 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4298 getF32Constant(DAG, 0x3efb6798)); 4299 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4300 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4301 getF32Constant(DAG, 0x3f88d192)); 4302 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4303 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4304 getF32Constant(DAG, 0x3fc4316c)); 4305 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4306 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4307 getF32Constant(DAG, 0x3f57ce70)); 4308 } 4309 4310 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4311 } 4312 4313 // No special expansion. 4314 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4315 } 4316 4317 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4318 /// limited-precision mode. 4319 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4320 const TargetLowering &TLI) { 4321 if (Op.getValueType() == MVT::f32 && 4322 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4323 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4324 4325 // FractionalPartOfX = x - (float)IntegerPartOfX; 4326 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4327 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4328 4329 // IntegerPartOfX <<= 23; 4330 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4331 DAG.getConstant(23, TLI.getPointerTy())); 4332 4333 SDValue TwoToFractionalPartOfX; 4334 if (LimitFloatPrecision <= 6) { 4335 // For floating-point precision of 6: 4336 // 4337 // TwoToFractionalPartOfX = 4338 // 0.997535578f + 4339 // (0.735607626f + 0.252464424f * x) * x; 4340 // 4341 // error 0.0144103317, which is 6 bits 4342 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4343 getF32Constant(DAG, 0x3e814304)); 4344 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4345 getF32Constant(DAG, 0x3f3c50c8)); 4346 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4347 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4348 getF32Constant(DAG, 0x3f7f5e7e)); 4349 } else if (LimitFloatPrecision <= 12) { 4350 // For floating-point precision of 12: 4351 // 4352 // TwoToFractionalPartOfX = 4353 // 0.999892986f + 4354 // (0.696457318f + 4355 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4356 // 4357 // error 0.000107046256, which is 13 to 14 bits 4358 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4359 getF32Constant(DAG, 0x3da235e3)); 4360 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4361 getF32Constant(DAG, 0x3e65b8f3)); 4362 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4363 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4364 getF32Constant(DAG, 0x3f324b07)); 4365 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4366 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4367 getF32Constant(DAG, 0x3f7ff8fd)); 4368 } else { // LimitFloatPrecision <= 18 4369 // For floating-point precision of 18: 4370 // 4371 // TwoToFractionalPartOfX = 4372 // 0.999999982f + 4373 // (0.693148872f + 4374 // (0.240227044f + 4375 // (0.554906021e-1f + 4376 // (0.961591928e-2f + 4377 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4378 // error 2.47208000*10^(-7), which is better than 18 bits 4379 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4380 getF32Constant(DAG, 0x3924b03e)); 4381 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4382 getF32Constant(DAG, 0x3ab24b87)); 4383 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4384 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4385 getF32Constant(DAG, 0x3c1d8c17)); 4386 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4387 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4388 getF32Constant(DAG, 0x3d634a1d)); 4389 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4390 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4391 getF32Constant(DAG, 0x3e75fe14)); 4392 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4393 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4394 getF32Constant(DAG, 0x3f317234)); 4395 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4396 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4397 getF32Constant(DAG, 0x3f800000)); 4398 } 4399 4400 // Add the exponent into the result in integer domain. 4401 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4402 TwoToFractionalPartOfX); 4403 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4404 DAG.getNode(ISD::ADD, dl, MVT::i32, 4405 t13, IntegerPartOfX)); 4406 } 4407 4408 // No special expansion. 4409 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4410 } 4411 4412 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4413 /// limited-precision mode with x == 10.0f. 4414 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4415 SelectionDAG &DAG, const TargetLowering &TLI) { 4416 bool IsExp10 = false; 4417 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4418 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4419 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4420 APFloat Ten(10.0f); 4421 IsExp10 = LHSC->isExactlyValue(Ten); 4422 } 4423 } 4424 4425 if (IsExp10) { 4426 // Put the exponent in the right bit position for later addition to the 4427 // final result: 4428 // 4429 // #define LOG2OF10 3.3219281f 4430 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4431 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4432 getF32Constant(DAG, 0x40549a78)); 4433 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4434 4435 // FractionalPartOfX = x - (float)IntegerPartOfX; 4436 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4437 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4438 4439 // IntegerPartOfX <<= 23; 4440 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4441 DAG.getConstant(23, TLI.getPointerTy())); 4442 4443 SDValue TwoToFractionalPartOfX; 4444 if (LimitFloatPrecision <= 6) { 4445 // For floating-point precision of 6: 4446 // 4447 // twoToFractionalPartOfX = 4448 // 0.997535578f + 4449 // (0.735607626f + 0.252464424f * x) * x; 4450 // 4451 // error 0.0144103317, which is 6 bits 4452 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4453 getF32Constant(DAG, 0x3e814304)); 4454 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4455 getF32Constant(DAG, 0x3f3c50c8)); 4456 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4457 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4458 getF32Constant(DAG, 0x3f7f5e7e)); 4459 } else if (LimitFloatPrecision <= 12) { 4460 // For floating-point precision of 12: 4461 // 4462 // TwoToFractionalPartOfX = 4463 // 0.999892986f + 4464 // (0.696457318f + 4465 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4466 // 4467 // error 0.000107046256, which is 13 to 14 bits 4468 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4469 getF32Constant(DAG, 0x3da235e3)); 4470 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4471 getF32Constant(DAG, 0x3e65b8f3)); 4472 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4473 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4474 getF32Constant(DAG, 0x3f324b07)); 4475 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4476 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4477 getF32Constant(DAG, 0x3f7ff8fd)); 4478 } else { // LimitFloatPrecision <= 18 4479 // For floating-point precision of 18: 4480 // 4481 // TwoToFractionalPartOfX = 4482 // 0.999999982f + 4483 // (0.693148872f + 4484 // (0.240227044f + 4485 // (0.554906021e-1f + 4486 // (0.961591928e-2f + 4487 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4488 // error 2.47208000*10^(-7), which is better than 18 bits 4489 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4490 getF32Constant(DAG, 0x3924b03e)); 4491 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4492 getF32Constant(DAG, 0x3ab24b87)); 4493 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4494 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4495 getF32Constant(DAG, 0x3c1d8c17)); 4496 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4497 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4498 getF32Constant(DAG, 0x3d634a1d)); 4499 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4500 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4501 getF32Constant(DAG, 0x3e75fe14)); 4502 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4503 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4504 getF32Constant(DAG, 0x3f317234)); 4505 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4506 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4507 getF32Constant(DAG, 0x3f800000)); 4508 } 4509 4510 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4511 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4512 DAG.getNode(ISD::ADD, dl, MVT::i32, 4513 t13, IntegerPartOfX)); 4514 } 4515 4516 // No special expansion. 4517 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4518 } 4519 4520 4521 /// ExpandPowI - Expand a llvm.powi intrinsic. 4522 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4523 SelectionDAG &DAG) { 4524 // If RHS is a constant, we can expand this out to a multiplication tree, 4525 // otherwise we end up lowering to a call to __powidf2 (for example). When 4526 // optimizing for size, we only want to do this if the expansion would produce 4527 // a small number of multiplies, otherwise we do the full expansion. 4528 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4529 // Get the exponent as a positive value. 4530 unsigned Val = RHSC->getSExtValue(); 4531 if ((int)Val < 0) Val = -Val; 4532 4533 // powi(x, 0) -> 1.0 4534 if (Val == 0) 4535 return DAG.getConstantFP(1.0, LHS.getValueType()); 4536 4537 const Function *F = DAG.getMachineFunction().getFunction(); 4538 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4539 Attribute::OptimizeForSize) || 4540 // If optimizing for size, don't insert too many multiplies. This 4541 // inserts up to 5 multiplies. 4542 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4543 // We use the simple binary decomposition method to generate the multiply 4544 // sequence. There are more optimal ways to do this (for example, 4545 // powi(x,15) generates one more multiply than it should), but this has 4546 // the benefit of being both really simple and much better than a libcall. 4547 SDValue Res; // Logically starts equal to 1.0 4548 SDValue CurSquare = LHS; 4549 while (Val) { 4550 if (Val & 1) { 4551 if (Res.getNode()) 4552 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4553 else 4554 Res = CurSquare; // 1.0*CurSquare. 4555 } 4556 4557 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4558 CurSquare, CurSquare); 4559 Val >>= 1; 4560 } 4561 4562 // If the original was negative, invert the result, producing 1/(x*x*x). 4563 if (RHSC->getSExtValue() < 0) 4564 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4565 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4566 return Res; 4567 } 4568 } 4569 4570 // Otherwise, expand to a libcall. 4571 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4572 } 4573 4574 // getTruncatedArgReg - Find underlying register used for an truncated 4575 // argument. 4576 static unsigned getTruncatedArgReg(const SDValue &N) { 4577 if (N.getOpcode() != ISD::TRUNCATE) 4578 return 0; 4579 4580 const SDValue &Ext = N.getOperand(0); 4581 if (Ext.getOpcode() == ISD::AssertZext || 4582 Ext.getOpcode() == ISD::AssertSext) { 4583 const SDValue &CFR = Ext.getOperand(0); 4584 if (CFR.getOpcode() == ISD::CopyFromReg) 4585 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4586 if (CFR.getOpcode() == ISD::TRUNCATE) 4587 return getTruncatedArgReg(CFR); 4588 } 4589 return 0; 4590 } 4591 4592 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4593 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4594 /// At the end of instruction selection, they will be inserted to the entry BB. 4595 bool 4596 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4597 int64_t Offset, bool IsIndirect, 4598 const SDValue &N) { 4599 const Argument *Arg = dyn_cast<Argument>(V); 4600 if (!Arg) 4601 return false; 4602 4603 MachineFunction &MF = DAG.getMachineFunction(); 4604 const TargetInstrInfo *TII = 4605 DAG.getTarget().getSubtargetImpl()->getInstrInfo(); 4606 4607 // Ignore inlined function arguments here. 4608 DIVariable DV(Variable); 4609 if (DV.isInlinedFnArgument(MF.getFunction())) 4610 return false; 4611 4612 Optional<MachineOperand> Op; 4613 // Some arguments' frame index is recorded during argument lowering. 4614 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4615 Op = MachineOperand::CreateFI(FI); 4616 4617 if (!Op && N.getNode()) { 4618 unsigned Reg; 4619 if (N.getOpcode() == ISD::CopyFromReg) 4620 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4621 else 4622 Reg = getTruncatedArgReg(N); 4623 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4624 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4625 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4626 if (PR) 4627 Reg = PR; 4628 } 4629 if (Reg) 4630 Op = MachineOperand::CreateReg(Reg, false); 4631 } 4632 4633 if (!Op) { 4634 // Check if ValueMap has reg number. 4635 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4636 if (VMI != FuncInfo.ValueMap.end()) 4637 Op = MachineOperand::CreateReg(VMI->second, false); 4638 } 4639 4640 if (!Op && N.getNode()) 4641 // Check if frame index is available. 4642 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4643 if (FrameIndexSDNode *FINode = 4644 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4645 Op = MachineOperand::CreateFI(FINode->getIndex()); 4646 4647 if (!Op) 4648 return false; 4649 4650 if (Op->isReg()) 4651 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4652 TII->get(TargetOpcode::DBG_VALUE), 4653 IsIndirect, 4654 Op->getReg(), Offset, Variable)); 4655 else 4656 FuncInfo.ArgDbgValues.push_back( 4657 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4658 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4659 4660 return true; 4661 } 4662 4663 // VisualStudio defines setjmp as _setjmp 4664 #if defined(_MSC_VER) && defined(setjmp) && \ 4665 !defined(setjmp_undefined_for_msvc) 4666 # pragma push_macro("setjmp") 4667 # undef setjmp 4668 # define setjmp_undefined_for_msvc 4669 #endif 4670 4671 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4672 /// we want to emit this as a call to a named external function, return the name 4673 /// otherwise lower it and return null. 4674 const char * 4675 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4676 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 4677 SDLoc sdl = getCurSDLoc(); 4678 DebugLoc dl = getCurDebugLoc(); 4679 SDValue Res; 4680 4681 switch (Intrinsic) { 4682 default: 4683 // By default, turn this into a target intrinsic node. 4684 visitTargetIntrinsic(I, Intrinsic); 4685 return nullptr; 4686 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4687 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4688 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4689 case Intrinsic::returnaddress: 4690 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4691 getValue(I.getArgOperand(0)))); 4692 return nullptr; 4693 case Intrinsic::frameaddress: 4694 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4695 getValue(I.getArgOperand(0)))); 4696 return nullptr; 4697 case Intrinsic::read_register: { 4698 Value *Reg = I.getArgOperand(0); 4699 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4700 EVT VT = 4701 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 4702 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4703 return nullptr; 4704 } 4705 case Intrinsic::write_register: { 4706 Value *Reg = I.getArgOperand(0); 4707 Value *RegValue = I.getArgOperand(1); 4708 SDValue Chain = getValue(RegValue).getOperand(0); 4709 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4710 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4711 RegName, getValue(RegValue))); 4712 return nullptr; 4713 } 4714 case Intrinsic::setjmp: 4715 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4716 case Intrinsic::longjmp: 4717 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4718 case Intrinsic::memcpy: { 4719 // Assert for address < 256 since we support only user defined address 4720 // spaces. 4721 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4722 < 256 && 4723 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4724 < 256 && 4725 "Unknown address space"); 4726 SDValue Op1 = getValue(I.getArgOperand(0)); 4727 SDValue Op2 = getValue(I.getArgOperand(1)); 4728 SDValue Op3 = getValue(I.getArgOperand(2)); 4729 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4730 if (!Align) 4731 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4732 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4733 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4734 MachinePointerInfo(I.getArgOperand(0)), 4735 MachinePointerInfo(I.getArgOperand(1)))); 4736 return nullptr; 4737 } 4738 case Intrinsic::memset: { 4739 // Assert for address < 256 since we support only user defined address 4740 // spaces. 4741 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4742 < 256 && 4743 "Unknown address space"); 4744 SDValue Op1 = getValue(I.getArgOperand(0)); 4745 SDValue Op2 = getValue(I.getArgOperand(1)); 4746 SDValue Op3 = getValue(I.getArgOperand(2)); 4747 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4748 if (!Align) 4749 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4750 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4751 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4752 MachinePointerInfo(I.getArgOperand(0)))); 4753 return nullptr; 4754 } 4755 case Intrinsic::memmove: { 4756 // Assert for address < 256 since we support only user defined address 4757 // spaces. 4758 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4759 < 256 && 4760 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4761 < 256 && 4762 "Unknown address space"); 4763 SDValue Op1 = getValue(I.getArgOperand(0)); 4764 SDValue Op2 = getValue(I.getArgOperand(1)); 4765 SDValue Op3 = getValue(I.getArgOperand(2)); 4766 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4767 if (!Align) 4768 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4769 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4770 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4771 MachinePointerInfo(I.getArgOperand(0)), 4772 MachinePointerInfo(I.getArgOperand(1)))); 4773 return nullptr; 4774 } 4775 case Intrinsic::dbg_declare: { 4776 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4777 MDNode *Variable = DI.getVariable(); 4778 const Value *Address = DI.getAddress(); 4779 DIVariable DIVar(Variable); 4780 assert((!DIVar || DIVar.isVariable()) && 4781 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4782 if (!Address || !DIVar) { 4783 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4784 return nullptr; 4785 } 4786 4787 // Check if address has undef value. 4788 if (isa<UndefValue>(Address) || 4789 (Address->use_empty() && !isa<Argument>(Address))) { 4790 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4791 return nullptr; 4792 } 4793 4794 SDValue &N = NodeMap[Address]; 4795 if (!N.getNode() && isa<Argument>(Address)) 4796 // Check unused arguments map. 4797 N = UnusedArgNodeMap[Address]; 4798 SDDbgValue *SDV; 4799 if (N.getNode()) { 4800 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4801 Address = BCI->getOperand(0); 4802 // Parameters are handled specially. 4803 bool isParameter = 4804 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4805 isa<Argument>(Address)); 4806 4807 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4808 4809 if (isParameter && !AI) { 4810 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4811 if (FINode) 4812 // Byval parameter. We have a frame index at this point. 4813 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4814 0, dl, SDNodeOrder); 4815 else { 4816 // Address is an argument, so try to emit its dbg value using 4817 // virtual register info from the FuncInfo.ValueMap. 4818 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4819 return nullptr; 4820 } 4821 } else if (AI) 4822 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4823 true, 0, dl, SDNodeOrder); 4824 else { 4825 // Can't do anything with other non-AI cases yet. 4826 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4827 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4828 DEBUG(Address->dump()); 4829 return nullptr; 4830 } 4831 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4832 } else { 4833 // If Address is an argument then try to emit its dbg value using 4834 // virtual register info from the FuncInfo.ValueMap. 4835 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4836 // If variable is pinned by a alloca in dominating bb then 4837 // use StaticAllocaMap. 4838 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4839 if (AI->getParent() != DI.getParent()) { 4840 DenseMap<const AllocaInst*, int>::iterator SI = 4841 FuncInfo.StaticAllocaMap.find(AI); 4842 if (SI != FuncInfo.StaticAllocaMap.end()) { 4843 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4844 0, dl, SDNodeOrder); 4845 DAG.AddDbgValue(SDV, nullptr, false); 4846 return nullptr; 4847 } 4848 } 4849 } 4850 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4851 } 4852 } 4853 return nullptr; 4854 } 4855 case Intrinsic::dbg_value: { 4856 const DbgValueInst &DI = cast<DbgValueInst>(I); 4857 DIVariable DIVar(DI.getVariable()); 4858 assert((!DIVar || DIVar.isVariable()) && 4859 "Variable in DbgValueInst should be either null or a DIVariable."); 4860 if (!DIVar) 4861 return nullptr; 4862 4863 MDNode *Variable = DI.getVariable(); 4864 uint64_t Offset = DI.getOffset(); 4865 const Value *V = DI.getValue(); 4866 if (!V) 4867 return nullptr; 4868 4869 SDDbgValue *SDV; 4870 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4871 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4872 DAG.AddDbgValue(SDV, nullptr, false); 4873 } else { 4874 // Do not use getValue() in here; we don't want to generate code at 4875 // this point if it hasn't been done yet. 4876 SDValue N = NodeMap[V]; 4877 if (!N.getNode() && isa<Argument>(V)) 4878 // Check unused arguments map. 4879 N = UnusedArgNodeMap[V]; 4880 if (N.getNode()) { 4881 // A dbg.value for an alloca is always indirect. 4882 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4883 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4884 SDV = DAG.getDbgValue(Variable, N.getNode(), 4885 N.getResNo(), IsIndirect, 4886 Offset, dl, SDNodeOrder); 4887 DAG.AddDbgValue(SDV, N.getNode(), false); 4888 } 4889 } else if (!V->use_empty() ) { 4890 // Do not call getValue(V) yet, as we don't want to generate code. 4891 // Remember it for later. 4892 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4893 DanglingDebugInfoMap[V] = DDI; 4894 } else { 4895 // We may expand this to cover more cases. One case where we have no 4896 // data available is an unreferenced parameter. 4897 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4898 } 4899 } 4900 4901 // Build a debug info table entry. 4902 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4903 V = BCI->getOperand(0); 4904 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4905 // Don't handle byval struct arguments or VLAs, for example. 4906 if (!AI) { 4907 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4908 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4909 return nullptr; 4910 } 4911 DenseMap<const AllocaInst*, int>::iterator SI = 4912 FuncInfo.StaticAllocaMap.find(AI); 4913 if (SI == FuncInfo.StaticAllocaMap.end()) 4914 return nullptr; // VLAs. 4915 return nullptr; 4916 } 4917 4918 case Intrinsic::eh_typeid_for: { 4919 // Find the type id for the given typeinfo. 4920 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4921 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4922 Res = DAG.getConstant(TypeID, MVT::i32); 4923 setValue(&I, Res); 4924 return nullptr; 4925 } 4926 4927 case Intrinsic::eh_return_i32: 4928 case Intrinsic::eh_return_i64: 4929 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4930 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4931 MVT::Other, 4932 getControlRoot(), 4933 getValue(I.getArgOperand(0)), 4934 getValue(I.getArgOperand(1)))); 4935 return nullptr; 4936 case Intrinsic::eh_unwind_init: 4937 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4938 return nullptr; 4939 case Intrinsic::eh_dwarf_cfa: { 4940 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4941 TLI->getPointerTy()); 4942 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4943 CfaArg.getValueType(), 4944 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4945 CfaArg.getValueType()), 4946 CfaArg); 4947 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4948 TLI->getPointerTy(), 4949 DAG.getConstant(0, TLI->getPointerTy())); 4950 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4951 FA, Offset)); 4952 return nullptr; 4953 } 4954 case Intrinsic::eh_sjlj_callsite: { 4955 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4956 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4957 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4958 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4959 4960 MMI.setCurrentCallSite(CI->getZExtValue()); 4961 return nullptr; 4962 } 4963 case Intrinsic::eh_sjlj_functioncontext: { 4964 // Get and store the index of the function context. 4965 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4966 AllocaInst *FnCtx = 4967 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4968 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4969 MFI->setFunctionContextIndex(FI); 4970 return nullptr; 4971 } 4972 case Intrinsic::eh_sjlj_setjmp: { 4973 SDValue Ops[2]; 4974 Ops[0] = getRoot(); 4975 Ops[1] = getValue(I.getArgOperand(0)); 4976 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4977 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4978 setValue(&I, Op.getValue(0)); 4979 DAG.setRoot(Op.getValue(1)); 4980 return nullptr; 4981 } 4982 case Intrinsic::eh_sjlj_longjmp: { 4983 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4984 getRoot(), getValue(I.getArgOperand(0)))); 4985 return nullptr; 4986 } 4987 4988 case Intrinsic::x86_mmx_pslli_w: 4989 case Intrinsic::x86_mmx_pslli_d: 4990 case Intrinsic::x86_mmx_pslli_q: 4991 case Intrinsic::x86_mmx_psrli_w: 4992 case Intrinsic::x86_mmx_psrli_d: 4993 case Intrinsic::x86_mmx_psrli_q: 4994 case Intrinsic::x86_mmx_psrai_w: 4995 case Intrinsic::x86_mmx_psrai_d: { 4996 SDValue ShAmt = getValue(I.getArgOperand(1)); 4997 if (isa<ConstantSDNode>(ShAmt)) { 4998 visitTargetIntrinsic(I, Intrinsic); 4999 return nullptr; 5000 } 5001 unsigned NewIntrinsic = 0; 5002 EVT ShAmtVT = MVT::v2i32; 5003 switch (Intrinsic) { 5004 case Intrinsic::x86_mmx_pslli_w: 5005 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5006 break; 5007 case Intrinsic::x86_mmx_pslli_d: 5008 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5009 break; 5010 case Intrinsic::x86_mmx_pslli_q: 5011 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5012 break; 5013 case Intrinsic::x86_mmx_psrli_w: 5014 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5015 break; 5016 case Intrinsic::x86_mmx_psrli_d: 5017 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5018 break; 5019 case Intrinsic::x86_mmx_psrli_q: 5020 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5021 break; 5022 case Intrinsic::x86_mmx_psrai_w: 5023 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5024 break; 5025 case Intrinsic::x86_mmx_psrai_d: 5026 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5027 break; 5028 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5029 } 5030 5031 // The vector shift intrinsics with scalars uses 32b shift amounts but 5032 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5033 // to be zero. 5034 // We must do this early because v2i32 is not a legal type. 5035 SDValue ShOps[2]; 5036 ShOps[0] = ShAmt; 5037 ShOps[1] = DAG.getConstant(0, MVT::i32); 5038 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5039 EVT DestVT = TLI->getValueType(I.getType()); 5040 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5041 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5042 DAG.getConstant(NewIntrinsic, MVT::i32), 5043 getValue(I.getArgOperand(0)), ShAmt); 5044 setValue(&I, Res); 5045 return nullptr; 5046 } 5047 case Intrinsic::x86_avx_vinsertf128_pd_256: 5048 case Intrinsic::x86_avx_vinsertf128_ps_256: 5049 case Intrinsic::x86_avx_vinsertf128_si_256: 5050 case Intrinsic::x86_avx2_vinserti128: { 5051 EVT DestVT = TLI->getValueType(I.getType()); 5052 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5053 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5054 ElVT.getVectorNumElements(); 5055 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5056 getValue(I.getArgOperand(0)), 5057 getValue(I.getArgOperand(1)), 5058 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5059 setValue(&I, Res); 5060 return nullptr; 5061 } 5062 case Intrinsic::x86_avx_vextractf128_pd_256: 5063 case Intrinsic::x86_avx_vextractf128_ps_256: 5064 case Intrinsic::x86_avx_vextractf128_si_256: 5065 case Intrinsic::x86_avx2_vextracti128: { 5066 EVT DestVT = TLI->getValueType(I.getType()); 5067 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5068 DestVT.getVectorNumElements(); 5069 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5070 getValue(I.getArgOperand(0)), 5071 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5072 setValue(&I, Res); 5073 return nullptr; 5074 } 5075 case Intrinsic::convertff: 5076 case Intrinsic::convertfsi: 5077 case Intrinsic::convertfui: 5078 case Intrinsic::convertsif: 5079 case Intrinsic::convertuif: 5080 case Intrinsic::convertss: 5081 case Intrinsic::convertsu: 5082 case Intrinsic::convertus: 5083 case Intrinsic::convertuu: { 5084 ISD::CvtCode Code = ISD::CVT_INVALID; 5085 switch (Intrinsic) { 5086 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5087 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5088 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5089 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5090 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5091 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5092 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5093 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5094 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5095 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5096 } 5097 EVT DestVT = TLI->getValueType(I.getType()); 5098 const Value *Op1 = I.getArgOperand(0); 5099 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5100 DAG.getValueType(DestVT), 5101 DAG.getValueType(getValue(Op1).getValueType()), 5102 getValue(I.getArgOperand(1)), 5103 getValue(I.getArgOperand(2)), 5104 Code); 5105 setValue(&I, Res); 5106 return nullptr; 5107 } 5108 case Intrinsic::powi: 5109 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5110 getValue(I.getArgOperand(1)), DAG)); 5111 return nullptr; 5112 case Intrinsic::log: 5113 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5114 return nullptr; 5115 case Intrinsic::log2: 5116 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5117 return nullptr; 5118 case Intrinsic::log10: 5119 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5120 return nullptr; 5121 case Intrinsic::exp: 5122 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5123 return nullptr; 5124 case Intrinsic::exp2: 5125 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5126 return nullptr; 5127 case Intrinsic::pow: 5128 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5129 getValue(I.getArgOperand(1)), DAG, *TLI)); 5130 return nullptr; 5131 case Intrinsic::sqrt: 5132 case Intrinsic::fabs: 5133 case Intrinsic::sin: 5134 case Intrinsic::cos: 5135 case Intrinsic::floor: 5136 case Intrinsic::ceil: 5137 case Intrinsic::trunc: 5138 case Intrinsic::rint: 5139 case Intrinsic::nearbyint: 5140 case Intrinsic::round: { 5141 unsigned Opcode; 5142 switch (Intrinsic) { 5143 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5144 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5145 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5146 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5147 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5148 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5149 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5150 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5151 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5152 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5153 case Intrinsic::round: Opcode = ISD::FROUND; break; 5154 } 5155 5156 setValue(&I, DAG.getNode(Opcode, sdl, 5157 getValue(I.getArgOperand(0)).getValueType(), 5158 getValue(I.getArgOperand(0)))); 5159 return nullptr; 5160 } 5161 case Intrinsic::copysign: 5162 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5163 getValue(I.getArgOperand(0)).getValueType(), 5164 getValue(I.getArgOperand(0)), 5165 getValue(I.getArgOperand(1)))); 5166 return nullptr; 5167 case Intrinsic::fma: 5168 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5169 getValue(I.getArgOperand(0)).getValueType(), 5170 getValue(I.getArgOperand(0)), 5171 getValue(I.getArgOperand(1)), 5172 getValue(I.getArgOperand(2)))); 5173 return nullptr; 5174 case Intrinsic::fmuladd: { 5175 EVT VT = TLI->getValueType(I.getType()); 5176 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5177 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5178 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5179 getValue(I.getArgOperand(0)).getValueType(), 5180 getValue(I.getArgOperand(0)), 5181 getValue(I.getArgOperand(1)), 5182 getValue(I.getArgOperand(2)))); 5183 } else { 5184 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5185 getValue(I.getArgOperand(0)).getValueType(), 5186 getValue(I.getArgOperand(0)), 5187 getValue(I.getArgOperand(1))); 5188 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5189 getValue(I.getArgOperand(0)).getValueType(), 5190 Mul, 5191 getValue(I.getArgOperand(2))); 5192 setValue(&I, Add); 5193 } 5194 return nullptr; 5195 } 5196 case Intrinsic::convert_to_fp16: 5197 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5198 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5199 getValue(I.getArgOperand(0)), 5200 DAG.getTargetConstant(0, MVT::i32)))); 5201 return nullptr; 5202 case Intrinsic::convert_from_fp16: 5203 setValue(&I, 5204 DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()), 5205 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5206 getValue(I.getArgOperand(0))))); 5207 return nullptr; 5208 case Intrinsic::pcmarker: { 5209 SDValue Tmp = getValue(I.getArgOperand(0)); 5210 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5211 return nullptr; 5212 } 5213 case Intrinsic::readcyclecounter: { 5214 SDValue Op = getRoot(); 5215 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5216 DAG.getVTList(MVT::i64, MVT::Other), Op); 5217 setValue(&I, Res); 5218 DAG.setRoot(Res.getValue(1)); 5219 return nullptr; 5220 } 5221 case Intrinsic::bswap: 5222 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5223 getValue(I.getArgOperand(0)).getValueType(), 5224 getValue(I.getArgOperand(0)))); 5225 return nullptr; 5226 case Intrinsic::cttz: { 5227 SDValue Arg = getValue(I.getArgOperand(0)); 5228 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5229 EVT Ty = Arg.getValueType(); 5230 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5231 sdl, Ty, Arg)); 5232 return nullptr; 5233 } 5234 case Intrinsic::ctlz: { 5235 SDValue Arg = getValue(I.getArgOperand(0)); 5236 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5237 EVT Ty = Arg.getValueType(); 5238 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5239 sdl, Ty, Arg)); 5240 return nullptr; 5241 } 5242 case Intrinsic::ctpop: { 5243 SDValue Arg = getValue(I.getArgOperand(0)); 5244 EVT Ty = Arg.getValueType(); 5245 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5246 return nullptr; 5247 } 5248 case Intrinsic::stacksave: { 5249 SDValue Op = getRoot(); 5250 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5251 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5252 setValue(&I, Res); 5253 DAG.setRoot(Res.getValue(1)); 5254 return nullptr; 5255 } 5256 case Intrinsic::stackrestore: { 5257 Res = getValue(I.getArgOperand(0)); 5258 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5259 return nullptr; 5260 } 5261 case Intrinsic::stackprotector: { 5262 // Emit code into the DAG to store the stack guard onto the stack. 5263 MachineFunction &MF = DAG.getMachineFunction(); 5264 MachineFrameInfo *MFI = MF.getFrameInfo(); 5265 EVT PtrTy = TLI->getPointerTy(); 5266 SDValue Src, Chain = getRoot(); 5267 5268 if (TLI->useLoadStackGuardNode()) { 5269 // Emit a LOAD_STACK_GUARD node. 5270 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5271 sdl, PtrTy, Chain); 5272 LoadInst *LI = cast<LoadInst>(I.getArgOperand(0)); 5273 MachinePointerInfo MPInfo(LI->getPointerOperand()); 5274 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5275 unsigned Flags = MachineMemOperand::MOLoad | 5276 MachineMemOperand::MOInvariant; 5277 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5278 PtrTy.getSizeInBits() / 8, 5279 DAG.getEVTAlignment(PtrTy)); 5280 Node->setMemRefs(MemRefs, MemRefs + 1); 5281 5282 // Copy the guard value to a virtual register so that it can be 5283 // retrieved in the epilogue. 5284 Src = SDValue(Node, 0); 5285 const TargetRegisterClass *RC = 5286 TLI->getRegClassFor(Src.getSimpleValueType()); 5287 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5288 5289 SPDescriptor.setGuardReg(Reg); 5290 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5291 } else { 5292 Src = getValue(I.getArgOperand(0)); // The guard's value. 5293 } 5294 5295 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5296 5297 int FI = FuncInfo.StaticAllocaMap[Slot]; 5298 MFI->setStackProtectorIndex(FI); 5299 5300 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5301 5302 // Store the stack protector onto the stack. 5303 Res = DAG.getStore(Chain, sdl, Src, FIN, 5304 MachinePointerInfo::getFixedStack(FI), 5305 true, false, 0); 5306 setValue(&I, Res); 5307 DAG.setRoot(Res); 5308 return nullptr; 5309 } 5310 case Intrinsic::objectsize: { 5311 // If we don't know by now, we're never going to know. 5312 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5313 5314 assert(CI && "Non-constant type in __builtin_object_size?"); 5315 5316 SDValue Arg = getValue(I.getCalledValue()); 5317 EVT Ty = Arg.getValueType(); 5318 5319 if (CI->isZero()) 5320 Res = DAG.getConstant(-1ULL, Ty); 5321 else 5322 Res = DAG.getConstant(0, Ty); 5323 5324 setValue(&I, Res); 5325 return nullptr; 5326 } 5327 case Intrinsic::annotation: 5328 case Intrinsic::ptr_annotation: 5329 // Drop the intrinsic, but forward the value 5330 setValue(&I, getValue(I.getOperand(0))); 5331 return nullptr; 5332 case Intrinsic::assume: 5333 case Intrinsic::var_annotation: 5334 // Discard annotate attributes and assumptions 5335 return nullptr; 5336 5337 case Intrinsic::init_trampoline: { 5338 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5339 5340 SDValue Ops[6]; 5341 Ops[0] = getRoot(); 5342 Ops[1] = getValue(I.getArgOperand(0)); 5343 Ops[2] = getValue(I.getArgOperand(1)); 5344 Ops[3] = getValue(I.getArgOperand(2)); 5345 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5346 Ops[5] = DAG.getSrcValue(F); 5347 5348 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5349 5350 DAG.setRoot(Res); 5351 return nullptr; 5352 } 5353 case Intrinsic::adjust_trampoline: { 5354 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5355 TLI->getPointerTy(), 5356 getValue(I.getArgOperand(0)))); 5357 return nullptr; 5358 } 5359 case Intrinsic::gcroot: 5360 if (GFI) { 5361 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5362 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5363 5364 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5365 GFI->addStackRoot(FI->getIndex(), TypeMap); 5366 } 5367 return nullptr; 5368 case Intrinsic::gcread: 5369 case Intrinsic::gcwrite: 5370 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5371 case Intrinsic::flt_rounds: 5372 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5373 return nullptr; 5374 5375 case Intrinsic::expect: { 5376 // Just replace __builtin_expect(exp, c) with EXP. 5377 setValue(&I, getValue(I.getArgOperand(0))); 5378 return nullptr; 5379 } 5380 5381 case Intrinsic::debugtrap: 5382 case Intrinsic::trap: { 5383 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5384 if (TrapFuncName.empty()) { 5385 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5386 ISD::TRAP : ISD::DEBUGTRAP; 5387 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5388 return nullptr; 5389 } 5390 TargetLowering::ArgListTy Args; 5391 5392 TargetLowering::CallLoweringInfo CLI(DAG); 5393 CLI.setDebugLoc(sdl).setChain(getRoot()) 5394 .setCallee(CallingConv::C, I.getType(), 5395 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5396 std::move(Args), 0); 5397 5398 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5399 DAG.setRoot(Result.second); 5400 return nullptr; 5401 } 5402 5403 case Intrinsic::uadd_with_overflow: 5404 case Intrinsic::sadd_with_overflow: 5405 case Intrinsic::usub_with_overflow: 5406 case Intrinsic::ssub_with_overflow: 5407 case Intrinsic::umul_with_overflow: 5408 case Intrinsic::smul_with_overflow: { 5409 ISD::NodeType Op; 5410 switch (Intrinsic) { 5411 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5412 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5413 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5414 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5415 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5416 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5417 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5418 } 5419 SDValue Op1 = getValue(I.getArgOperand(0)); 5420 SDValue Op2 = getValue(I.getArgOperand(1)); 5421 5422 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5423 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5424 return nullptr; 5425 } 5426 case Intrinsic::prefetch: { 5427 SDValue Ops[5]; 5428 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5429 Ops[0] = getRoot(); 5430 Ops[1] = getValue(I.getArgOperand(0)); 5431 Ops[2] = getValue(I.getArgOperand(1)); 5432 Ops[3] = getValue(I.getArgOperand(2)); 5433 Ops[4] = getValue(I.getArgOperand(3)); 5434 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5435 DAG.getVTList(MVT::Other), Ops, 5436 EVT::getIntegerVT(*Context, 8), 5437 MachinePointerInfo(I.getArgOperand(0)), 5438 0, /* align */ 5439 false, /* volatile */ 5440 rw==0, /* read */ 5441 rw==1)); /* write */ 5442 return nullptr; 5443 } 5444 case Intrinsic::lifetime_start: 5445 case Intrinsic::lifetime_end: { 5446 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5447 // Stack coloring is not enabled in O0, discard region information. 5448 if (TM.getOptLevel() == CodeGenOpt::None) 5449 return nullptr; 5450 5451 SmallVector<Value *, 4> Allocas; 5452 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5453 5454 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5455 E = Allocas.end(); Object != E; ++Object) { 5456 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5457 5458 // Could not find an Alloca. 5459 if (!LifetimeObject) 5460 continue; 5461 5462 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5463 5464 SDValue Ops[2]; 5465 Ops[0] = getRoot(); 5466 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5467 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5468 5469 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5470 DAG.setRoot(Res); 5471 } 5472 return nullptr; 5473 } 5474 case Intrinsic::invariant_start: 5475 // Discard region information. 5476 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5477 return nullptr; 5478 case Intrinsic::invariant_end: 5479 // Discard region information. 5480 return nullptr; 5481 case Intrinsic::stackprotectorcheck: { 5482 // Do not actually emit anything for this basic block. Instead we initialize 5483 // the stack protector descriptor and export the guard variable so we can 5484 // access it in FinishBasicBlock. 5485 const BasicBlock *BB = I.getParent(); 5486 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5487 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5488 5489 // Flush our exports since we are going to process a terminator. 5490 (void)getControlRoot(); 5491 return nullptr; 5492 } 5493 case Intrinsic::clear_cache: 5494 return TLI->getClearCacheBuiltinName(); 5495 case Intrinsic::donothing: 5496 // ignore 5497 return nullptr; 5498 case Intrinsic::experimental_stackmap: { 5499 visitStackmap(I); 5500 return nullptr; 5501 } 5502 case Intrinsic::experimental_patchpoint_void: 5503 case Intrinsic::experimental_patchpoint_i64: { 5504 visitPatchpoint(I); 5505 return nullptr; 5506 } 5507 } 5508 } 5509 5510 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5511 bool isTailCall, 5512 MachineBasicBlock *LandingPad) { 5513 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5514 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5515 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5516 Type *RetTy = FTy->getReturnType(); 5517 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5518 MCSymbol *BeginLabel = nullptr; 5519 5520 TargetLowering::ArgListTy Args; 5521 TargetLowering::ArgListEntry Entry; 5522 Args.reserve(CS.arg_size()); 5523 5524 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5525 i != e; ++i) { 5526 const Value *V = *i; 5527 5528 // Skip empty types 5529 if (V->getType()->isEmptyTy()) 5530 continue; 5531 5532 SDValue ArgNode = getValue(V); 5533 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5534 5535 // Skip the first return-type Attribute to get to params. 5536 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5537 Args.push_back(Entry); 5538 } 5539 5540 if (LandingPad) { 5541 // Insert a label before the invoke call to mark the try range. This can be 5542 // used to detect deletion of the invoke via the MachineModuleInfo. 5543 BeginLabel = MMI.getContext().CreateTempSymbol(); 5544 5545 // For SjLj, keep track of which landing pads go with which invokes 5546 // so as to maintain the ordering of pads in the LSDA. 5547 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5548 if (CallSiteIndex) { 5549 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5550 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5551 5552 // Now that the call site is handled, stop tracking it. 5553 MMI.setCurrentCallSite(0); 5554 } 5555 5556 // Both PendingLoads and PendingExports must be flushed here; 5557 // this call might not return. 5558 (void)getRoot(); 5559 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5560 } 5561 5562 // Check if target-independent constraints permit a tail call here. 5563 // Target-dependent constraints are checked within TLI->LowerCallTo. 5564 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5565 isTailCall = false; 5566 5567 TargetLowering::CallLoweringInfo CLI(DAG); 5568 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5569 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5570 5571 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5572 assert((isTailCall || Result.second.getNode()) && 5573 "Non-null chain expected with non-tail call!"); 5574 assert((Result.second.getNode() || !Result.first.getNode()) && 5575 "Null value expected with tail call!"); 5576 if (Result.first.getNode()) 5577 setValue(CS.getInstruction(), Result.first); 5578 5579 if (!Result.second.getNode()) { 5580 // As a special case, a null chain means that a tail call has been emitted 5581 // and the DAG root is already updated. 5582 HasTailCall = true; 5583 5584 // Since there's no actual continuation from this block, nothing can be 5585 // relying on us setting vregs for them. 5586 PendingExports.clear(); 5587 } else { 5588 DAG.setRoot(Result.second); 5589 } 5590 5591 if (LandingPad) { 5592 // Insert a label at the end of the invoke call to mark the try range. This 5593 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5594 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5595 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5596 5597 // Inform MachineModuleInfo of range. 5598 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5599 } 5600 } 5601 5602 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5603 /// value is equal or not-equal to zero. 5604 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5605 for (const User *U : V->users()) { 5606 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5607 if (IC->isEquality()) 5608 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5609 if (C->isNullValue()) 5610 continue; 5611 // Unknown instruction. 5612 return false; 5613 } 5614 return true; 5615 } 5616 5617 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5618 Type *LoadTy, 5619 SelectionDAGBuilder &Builder) { 5620 5621 // Check to see if this load can be trivially constant folded, e.g. if the 5622 // input is from a string literal. 5623 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5624 // Cast pointer to the type we really want to load. 5625 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5626 PointerType::getUnqual(LoadTy)); 5627 5628 if (const Constant *LoadCst = 5629 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5630 Builder.DL)) 5631 return Builder.getValue(LoadCst); 5632 } 5633 5634 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5635 // still constant memory, the input chain can be the entry node. 5636 SDValue Root; 5637 bool ConstantMemory = false; 5638 5639 // Do not serialize (non-volatile) loads of constant memory with anything. 5640 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5641 Root = Builder.DAG.getEntryNode(); 5642 ConstantMemory = true; 5643 } else { 5644 // Do not serialize non-volatile loads against each other. 5645 Root = Builder.DAG.getRoot(); 5646 } 5647 5648 SDValue Ptr = Builder.getValue(PtrVal); 5649 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5650 Ptr, MachinePointerInfo(PtrVal), 5651 false /*volatile*/, 5652 false /*nontemporal*/, 5653 false /*isinvariant*/, 1 /* align=1 */); 5654 5655 if (!ConstantMemory) 5656 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5657 return LoadVal; 5658 } 5659 5660 /// processIntegerCallValue - Record the value for an instruction that 5661 /// produces an integer result, converting the type where necessary. 5662 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5663 SDValue Value, 5664 bool IsSigned) { 5665 EVT VT = TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType(), 5666 true); 5667 if (IsSigned) 5668 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5669 else 5670 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5671 setValue(&I, Value); 5672 } 5673 5674 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5675 /// If so, return true and lower it, otherwise return false and it will be 5676 /// lowered like a normal call. 5677 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5678 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5679 if (I.getNumArgOperands() != 3) 5680 return false; 5681 5682 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5683 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5684 !I.getArgOperand(2)->getType()->isIntegerTy() || 5685 !I.getType()->isIntegerTy()) 5686 return false; 5687 5688 const Value *Size = I.getArgOperand(2); 5689 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5690 if (CSize && CSize->getZExtValue() == 0) { 5691 EVT CallVT = TM.getSubtargetImpl()->getTargetLowering()->getValueType( 5692 I.getType(), true); 5693 setValue(&I, DAG.getConstant(0, CallVT)); 5694 return true; 5695 } 5696 5697 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5698 std::pair<SDValue, SDValue> Res = 5699 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5700 getValue(LHS), getValue(RHS), getValue(Size), 5701 MachinePointerInfo(LHS), 5702 MachinePointerInfo(RHS)); 5703 if (Res.first.getNode()) { 5704 processIntegerCallValue(I, Res.first, true); 5705 PendingLoads.push_back(Res.second); 5706 return true; 5707 } 5708 5709 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5710 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5711 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5712 bool ActuallyDoIt = true; 5713 MVT LoadVT; 5714 Type *LoadTy; 5715 switch (CSize->getZExtValue()) { 5716 default: 5717 LoadVT = MVT::Other; 5718 LoadTy = nullptr; 5719 ActuallyDoIt = false; 5720 break; 5721 case 2: 5722 LoadVT = MVT::i16; 5723 LoadTy = Type::getInt16Ty(CSize->getContext()); 5724 break; 5725 case 4: 5726 LoadVT = MVT::i32; 5727 LoadTy = Type::getInt32Ty(CSize->getContext()); 5728 break; 5729 case 8: 5730 LoadVT = MVT::i64; 5731 LoadTy = Type::getInt64Ty(CSize->getContext()); 5732 break; 5733 /* 5734 case 16: 5735 LoadVT = MVT::v4i32; 5736 LoadTy = Type::getInt32Ty(CSize->getContext()); 5737 LoadTy = VectorType::get(LoadTy, 4); 5738 break; 5739 */ 5740 } 5741 5742 // This turns into unaligned loads. We only do this if the target natively 5743 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5744 // we'll only produce a small number of byte loads. 5745 5746 // Require that we can find a legal MVT, and only do this if the target 5747 // supports unaligned loads of that type. Expanding into byte loads would 5748 // bloat the code. 5749 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5750 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5751 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5752 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5753 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5754 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5755 // TODO: Check alignment of src and dest ptrs. 5756 if (!TLI->isTypeLegal(LoadVT) || 5757 !TLI->allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5758 !TLI->allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5759 ActuallyDoIt = false; 5760 } 5761 5762 if (ActuallyDoIt) { 5763 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5764 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5765 5766 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5767 ISD::SETNE); 5768 processIntegerCallValue(I, Res, false); 5769 return true; 5770 } 5771 } 5772 5773 5774 return false; 5775 } 5776 5777 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5778 /// form. If so, return true and lower it, otherwise return false and it 5779 /// will be lowered like a normal call. 5780 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5781 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5782 if (I.getNumArgOperands() != 3) 5783 return false; 5784 5785 const Value *Src = I.getArgOperand(0); 5786 const Value *Char = I.getArgOperand(1); 5787 const Value *Length = I.getArgOperand(2); 5788 if (!Src->getType()->isPointerTy() || 5789 !Char->getType()->isIntegerTy() || 5790 !Length->getType()->isIntegerTy() || 5791 !I.getType()->isPointerTy()) 5792 return false; 5793 5794 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5795 std::pair<SDValue, SDValue> Res = 5796 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5797 getValue(Src), getValue(Char), getValue(Length), 5798 MachinePointerInfo(Src)); 5799 if (Res.first.getNode()) { 5800 setValue(&I, Res.first); 5801 PendingLoads.push_back(Res.second); 5802 return true; 5803 } 5804 5805 return false; 5806 } 5807 5808 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5809 /// optimized form. If so, return true and lower it, otherwise return false 5810 /// and it will be lowered like a normal call. 5811 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5812 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5813 if (I.getNumArgOperands() != 2) 5814 return false; 5815 5816 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5817 if (!Arg0->getType()->isPointerTy() || 5818 !Arg1->getType()->isPointerTy() || 5819 !I.getType()->isPointerTy()) 5820 return false; 5821 5822 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5823 std::pair<SDValue, SDValue> Res = 5824 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5825 getValue(Arg0), getValue(Arg1), 5826 MachinePointerInfo(Arg0), 5827 MachinePointerInfo(Arg1), isStpcpy); 5828 if (Res.first.getNode()) { 5829 setValue(&I, Res.first); 5830 DAG.setRoot(Res.second); 5831 return true; 5832 } 5833 5834 return false; 5835 } 5836 5837 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5838 /// If so, return true and lower it, otherwise return false and it will be 5839 /// lowered like a normal call. 5840 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5841 // Verify that the prototype makes sense. int strcmp(void*,void*) 5842 if (I.getNumArgOperands() != 2) 5843 return false; 5844 5845 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5846 if (!Arg0->getType()->isPointerTy() || 5847 !Arg1->getType()->isPointerTy() || 5848 !I.getType()->isIntegerTy()) 5849 return false; 5850 5851 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5852 std::pair<SDValue, SDValue> Res = 5853 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5854 getValue(Arg0), getValue(Arg1), 5855 MachinePointerInfo(Arg0), 5856 MachinePointerInfo(Arg1)); 5857 if (Res.first.getNode()) { 5858 processIntegerCallValue(I, Res.first, true); 5859 PendingLoads.push_back(Res.second); 5860 return true; 5861 } 5862 5863 return false; 5864 } 5865 5866 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5867 /// form. If so, return true and lower it, otherwise return false and it 5868 /// will be lowered like a normal call. 5869 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5870 // Verify that the prototype makes sense. size_t strlen(char *) 5871 if (I.getNumArgOperands() != 1) 5872 return false; 5873 5874 const Value *Arg0 = I.getArgOperand(0); 5875 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5876 return false; 5877 5878 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5879 std::pair<SDValue, SDValue> Res = 5880 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5881 getValue(Arg0), MachinePointerInfo(Arg0)); 5882 if (Res.first.getNode()) { 5883 processIntegerCallValue(I, Res.first, false); 5884 PendingLoads.push_back(Res.second); 5885 return true; 5886 } 5887 5888 return false; 5889 } 5890 5891 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5892 /// form. If so, return true and lower it, otherwise return false and it 5893 /// will be lowered like a normal call. 5894 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5895 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5896 if (I.getNumArgOperands() != 2) 5897 return false; 5898 5899 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5900 if (!Arg0->getType()->isPointerTy() || 5901 !Arg1->getType()->isIntegerTy() || 5902 !I.getType()->isIntegerTy()) 5903 return false; 5904 5905 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5906 std::pair<SDValue, SDValue> Res = 5907 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5908 getValue(Arg0), getValue(Arg1), 5909 MachinePointerInfo(Arg0)); 5910 if (Res.first.getNode()) { 5911 processIntegerCallValue(I, Res.first, false); 5912 PendingLoads.push_back(Res.second); 5913 return true; 5914 } 5915 5916 return false; 5917 } 5918 5919 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5920 /// operation (as expected), translate it to an SDNode with the specified opcode 5921 /// and return true. 5922 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5923 unsigned Opcode) { 5924 // Sanity check that it really is a unary floating-point call. 5925 if (I.getNumArgOperands() != 1 || 5926 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5927 I.getType() != I.getArgOperand(0)->getType() || 5928 !I.onlyReadsMemory()) 5929 return false; 5930 5931 SDValue Tmp = getValue(I.getArgOperand(0)); 5932 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5933 return true; 5934 } 5935 5936 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5937 // Handle inline assembly differently. 5938 if (isa<InlineAsm>(I.getCalledValue())) { 5939 visitInlineAsm(&I); 5940 return; 5941 } 5942 5943 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5944 ComputeUsesVAFloatArgument(I, &MMI); 5945 5946 const char *RenameFn = nullptr; 5947 if (Function *F = I.getCalledFunction()) { 5948 if (F->isDeclaration()) { 5949 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5950 if (unsigned IID = II->getIntrinsicID(F)) { 5951 RenameFn = visitIntrinsicCall(I, IID); 5952 if (!RenameFn) 5953 return; 5954 } 5955 } 5956 if (unsigned IID = F->getIntrinsicID()) { 5957 RenameFn = visitIntrinsicCall(I, IID); 5958 if (!RenameFn) 5959 return; 5960 } 5961 } 5962 5963 // Check for well-known libc/libm calls. If the function is internal, it 5964 // can't be a library call. 5965 LibFunc::Func Func; 5966 if (!F->hasLocalLinkage() && F->hasName() && 5967 LibInfo->getLibFunc(F->getName(), Func) && 5968 LibInfo->hasOptimizedCodeGen(Func)) { 5969 switch (Func) { 5970 default: break; 5971 case LibFunc::copysign: 5972 case LibFunc::copysignf: 5973 case LibFunc::copysignl: 5974 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5975 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5976 I.getType() == I.getArgOperand(0)->getType() && 5977 I.getType() == I.getArgOperand(1)->getType() && 5978 I.onlyReadsMemory()) { 5979 SDValue LHS = getValue(I.getArgOperand(0)); 5980 SDValue RHS = getValue(I.getArgOperand(1)); 5981 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5982 LHS.getValueType(), LHS, RHS)); 5983 return; 5984 } 5985 break; 5986 case LibFunc::fabs: 5987 case LibFunc::fabsf: 5988 case LibFunc::fabsl: 5989 if (visitUnaryFloatCall(I, ISD::FABS)) 5990 return; 5991 break; 5992 case LibFunc::sin: 5993 case LibFunc::sinf: 5994 case LibFunc::sinl: 5995 if (visitUnaryFloatCall(I, ISD::FSIN)) 5996 return; 5997 break; 5998 case LibFunc::cos: 5999 case LibFunc::cosf: 6000 case LibFunc::cosl: 6001 if (visitUnaryFloatCall(I, ISD::FCOS)) 6002 return; 6003 break; 6004 case LibFunc::sqrt: 6005 case LibFunc::sqrtf: 6006 case LibFunc::sqrtl: 6007 case LibFunc::sqrt_finite: 6008 case LibFunc::sqrtf_finite: 6009 case LibFunc::sqrtl_finite: 6010 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6011 return; 6012 break; 6013 case LibFunc::floor: 6014 case LibFunc::floorf: 6015 case LibFunc::floorl: 6016 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6017 return; 6018 break; 6019 case LibFunc::nearbyint: 6020 case LibFunc::nearbyintf: 6021 case LibFunc::nearbyintl: 6022 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6023 return; 6024 break; 6025 case LibFunc::ceil: 6026 case LibFunc::ceilf: 6027 case LibFunc::ceill: 6028 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6029 return; 6030 break; 6031 case LibFunc::rint: 6032 case LibFunc::rintf: 6033 case LibFunc::rintl: 6034 if (visitUnaryFloatCall(I, ISD::FRINT)) 6035 return; 6036 break; 6037 case LibFunc::round: 6038 case LibFunc::roundf: 6039 case LibFunc::roundl: 6040 if (visitUnaryFloatCall(I, ISD::FROUND)) 6041 return; 6042 break; 6043 case LibFunc::trunc: 6044 case LibFunc::truncf: 6045 case LibFunc::truncl: 6046 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6047 return; 6048 break; 6049 case LibFunc::log2: 6050 case LibFunc::log2f: 6051 case LibFunc::log2l: 6052 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6053 return; 6054 break; 6055 case LibFunc::exp2: 6056 case LibFunc::exp2f: 6057 case LibFunc::exp2l: 6058 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6059 return; 6060 break; 6061 case LibFunc::memcmp: 6062 if (visitMemCmpCall(I)) 6063 return; 6064 break; 6065 case LibFunc::memchr: 6066 if (visitMemChrCall(I)) 6067 return; 6068 break; 6069 case LibFunc::strcpy: 6070 if (visitStrCpyCall(I, false)) 6071 return; 6072 break; 6073 case LibFunc::stpcpy: 6074 if (visitStrCpyCall(I, true)) 6075 return; 6076 break; 6077 case LibFunc::strcmp: 6078 if (visitStrCmpCall(I)) 6079 return; 6080 break; 6081 case LibFunc::strlen: 6082 if (visitStrLenCall(I)) 6083 return; 6084 break; 6085 case LibFunc::strnlen: 6086 if (visitStrNLenCall(I)) 6087 return; 6088 break; 6089 } 6090 } 6091 } 6092 6093 SDValue Callee; 6094 if (!RenameFn) 6095 Callee = getValue(I.getCalledValue()); 6096 else 6097 Callee = DAG.getExternalSymbol( 6098 RenameFn, TM.getSubtargetImpl()->getTargetLowering()->getPointerTy()); 6099 6100 // Check if we can potentially perform a tail call. More detailed checking is 6101 // be done within LowerCallTo, after more information about the call is known. 6102 LowerCallTo(&I, Callee, I.isTailCall()); 6103 } 6104 6105 namespace { 6106 6107 /// AsmOperandInfo - This contains information for each constraint that we are 6108 /// lowering. 6109 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6110 public: 6111 /// CallOperand - If this is the result output operand or a clobber 6112 /// this is null, otherwise it is the incoming operand to the CallInst. 6113 /// This gets modified as the asm is processed. 6114 SDValue CallOperand; 6115 6116 /// AssignedRegs - If this is a register or register class operand, this 6117 /// contains the set of register corresponding to the operand. 6118 RegsForValue AssignedRegs; 6119 6120 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6121 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6122 } 6123 6124 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6125 /// corresponds to. If there is no Value* for this operand, it returns 6126 /// MVT::Other. 6127 EVT getCallOperandValEVT(LLVMContext &Context, 6128 const TargetLowering &TLI, 6129 const DataLayout *DL) const { 6130 if (!CallOperandVal) return MVT::Other; 6131 6132 if (isa<BasicBlock>(CallOperandVal)) 6133 return TLI.getPointerTy(); 6134 6135 llvm::Type *OpTy = CallOperandVal->getType(); 6136 6137 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6138 // If this is an indirect operand, the operand is a pointer to the 6139 // accessed type. 6140 if (isIndirect) { 6141 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6142 if (!PtrTy) 6143 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6144 OpTy = PtrTy->getElementType(); 6145 } 6146 6147 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6148 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6149 if (STy->getNumElements() == 1) 6150 OpTy = STy->getElementType(0); 6151 6152 // If OpTy is not a single value, it may be a struct/union that we 6153 // can tile with integers. 6154 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6155 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6156 switch (BitSize) { 6157 default: break; 6158 case 1: 6159 case 8: 6160 case 16: 6161 case 32: 6162 case 64: 6163 case 128: 6164 OpTy = IntegerType::get(Context, BitSize); 6165 break; 6166 } 6167 } 6168 6169 return TLI.getValueType(OpTy, true); 6170 } 6171 }; 6172 6173 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6174 6175 } // end anonymous namespace 6176 6177 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6178 /// specified operand. We prefer to assign virtual registers, to allow the 6179 /// register allocator to handle the assignment process. However, if the asm 6180 /// uses features that we can't model on machineinstrs, we have SDISel do the 6181 /// allocation. This produces generally horrible, but correct, code. 6182 /// 6183 /// OpInfo describes the operand. 6184 /// 6185 static void GetRegistersForValue(SelectionDAG &DAG, 6186 const TargetLowering &TLI, 6187 SDLoc DL, 6188 SDISelAsmOperandInfo &OpInfo) { 6189 LLVMContext &Context = *DAG.getContext(); 6190 6191 MachineFunction &MF = DAG.getMachineFunction(); 6192 SmallVector<unsigned, 4> Regs; 6193 6194 // If this is a constraint for a single physreg, or a constraint for a 6195 // register class, find it. 6196 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6197 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6198 OpInfo.ConstraintVT); 6199 6200 unsigned NumRegs = 1; 6201 if (OpInfo.ConstraintVT != MVT::Other) { 6202 // If this is a FP input in an integer register (or visa versa) insert a bit 6203 // cast of the input value. More generally, handle any case where the input 6204 // value disagrees with the register class we plan to stick this in. 6205 if (OpInfo.Type == InlineAsm::isInput && 6206 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6207 // Try to convert to the first EVT that the reg class contains. If the 6208 // types are identical size, use a bitcast to convert (e.g. two differing 6209 // vector types). 6210 MVT RegVT = *PhysReg.second->vt_begin(); 6211 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6212 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6213 RegVT, OpInfo.CallOperand); 6214 OpInfo.ConstraintVT = RegVT; 6215 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6216 // If the input is a FP value and we want it in FP registers, do a 6217 // bitcast to the corresponding integer type. This turns an f64 value 6218 // into i64, which can be passed with two i32 values on a 32-bit 6219 // machine. 6220 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6221 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6222 RegVT, OpInfo.CallOperand); 6223 OpInfo.ConstraintVT = RegVT; 6224 } 6225 } 6226 6227 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6228 } 6229 6230 MVT RegVT; 6231 EVT ValueVT = OpInfo.ConstraintVT; 6232 6233 // If this is a constraint for a specific physical register, like {r17}, 6234 // assign it now. 6235 if (unsigned AssignedReg = PhysReg.first) { 6236 const TargetRegisterClass *RC = PhysReg.second; 6237 if (OpInfo.ConstraintVT == MVT::Other) 6238 ValueVT = *RC->vt_begin(); 6239 6240 // Get the actual register value type. This is important, because the user 6241 // may have asked for (e.g.) the AX register in i32 type. We need to 6242 // remember that AX is actually i16 to get the right extension. 6243 RegVT = *RC->vt_begin(); 6244 6245 // This is a explicit reference to a physical register. 6246 Regs.push_back(AssignedReg); 6247 6248 // If this is an expanded reference, add the rest of the regs to Regs. 6249 if (NumRegs != 1) { 6250 TargetRegisterClass::iterator I = RC->begin(); 6251 for (; *I != AssignedReg; ++I) 6252 assert(I != RC->end() && "Didn't find reg!"); 6253 6254 // Already added the first reg. 6255 --NumRegs; ++I; 6256 for (; NumRegs; --NumRegs, ++I) { 6257 assert(I != RC->end() && "Ran out of registers to allocate!"); 6258 Regs.push_back(*I); 6259 } 6260 } 6261 6262 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6263 return; 6264 } 6265 6266 // Otherwise, if this was a reference to an LLVM register class, create vregs 6267 // for this reference. 6268 if (const TargetRegisterClass *RC = PhysReg.second) { 6269 RegVT = *RC->vt_begin(); 6270 if (OpInfo.ConstraintVT == MVT::Other) 6271 ValueVT = RegVT; 6272 6273 // Create the appropriate number of virtual registers. 6274 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6275 for (; NumRegs; --NumRegs) 6276 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6277 6278 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6279 return; 6280 } 6281 6282 // Otherwise, we couldn't allocate enough registers for this. 6283 } 6284 6285 /// visitInlineAsm - Handle a call to an InlineAsm object. 6286 /// 6287 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6288 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6289 6290 /// ConstraintOperands - Information about all of the constraints. 6291 SDISelAsmOperandInfoVector ConstraintOperands; 6292 6293 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6294 TargetLowering::AsmOperandInfoVector 6295 TargetConstraints = TLI->ParseConstraints(CS); 6296 6297 bool hasMemory = false; 6298 6299 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6300 unsigned ResNo = 0; // ResNo - The result number of the next output. 6301 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6302 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6303 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6304 6305 MVT OpVT = MVT::Other; 6306 6307 // Compute the value type for each operand. 6308 switch (OpInfo.Type) { 6309 case InlineAsm::isOutput: 6310 // Indirect outputs just consume an argument. 6311 if (OpInfo.isIndirect) { 6312 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6313 break; 6314 } 6315 6316 // The return value of the call is this value. As such, there is no 6317 // corresponding argument. 6318 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6319 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6320 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6321 } else { 6322 assert(ResNo == 0 && "Asm only has one result!"); 6323 OpVT = TLI->getSimpleValueType(CS.getType()); 6324 } 6325 ++ResNo; 6326 break; 6327 case InlineAsm::isInput: 6328 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6329 break; 6330 case InlineAsm::isClobber: 6331 // Nothing to do. 6332 break; 6333 } 6334 6335 // If this is an input or an indirect output, process the call argument. 6336 // BasicBlocks are labels, currently appearing only in asm's. 6337 if (OpInfo.CallOperandVal) { 6338 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6339 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6340 } else { 6341 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6342 } 6343 6344 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6345 getSimpleVT(); 6346 } 6347 6348 OpInfo.ConstraintVT = OpVT; 6349 6350 // Indirect operand accesses access memory. 6351 if (OpInfo.isIndirect) 6352 hasMemory = true; 6353 else { 6354 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6355 TargetLowering::ConstraintType 6356 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6357 if (CType == TargetLowering::C_Memory) { 6358 hasMemory = true; 6359 break; 6360 } 6361 } 6362 } 6363 } 6364 6365 SDValue Chain, Flag; 6366 6367 // We won't need to flush pending loads if this asm doesn't touch 6368 // memory and is nonvolatile. 6369 if (hasMemory || IA->hasSideEffects()) 6370 Chain = getRoot(); 6371 else 6372 Chain = DAG.getRoot(); 6373 6374 // Second pass over the constraints: compute which constraint option to use 6375 // and assign registers to constraints that want a specific physreg. 6376 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6377 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6378 6379 // If this is an output operand with a matching input operand, look up the 6380 // matching input. If their types mismatch, e.g. one is an integer, the 6381 // other is floating point, or their sizes are different, flag it as an 6382 // error. 6383 if (OpInfo.hasMatchingInput()) { 6384 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6385 6386 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6387 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6388 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6389 OpInfo.ConstraintVT); 6390 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6391 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6392 Input.ConstraintVT); 6393 if ((OpInfo.ConstraintVT.isInteger() != 6394 Input.ConstraintVT.isInteger()) || 6395 (MatchRC.second != InputRC.second)) { 6396 report_fatal_error("Unsupported asm: input constraint" 6397 " with a matching output constraint of" 6398 " incompatible type!"); 6399 } 6400 Input.ConstraintVT = OpInfo.ConstraintVT; 6401 } 6402 } 6403 6404 // Compute the constraint code and ConstraintType to use. 6405 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6406 6407 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6408 OpInfo.Type == InlineAsm::isClobber) 6409 continue; 6410 6411 // If this is a memory input, and if the operand is not indirect, do what we 6412 // need to to provide an address for the memory input. 6413 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6414 !OpInfo.isIndirect) { 6415 assert((OpInfo.isMultipleAlternative || 6416 (OpInfo.Type == InlineAsm::isInput)) && 6417 "Can only indirectify direct input operands!"); 6418 6419 // Memory operands really want the address of the value. If we don't have 6420 // an indirect input, put it in the constpool if we can, otherwise spill 6421 // it to a stack slot. 6422 // TODO: This isn't quite right. We need to handle these according to 6423 // the addressing mode that the constraint wants. Also, this may take 6424 // an additional register for the computation and we don't want that 6425 // either. 6426 6427 // If the operand is a float, integer, or vector constant, spill to a 6428 // constant pool entry to get its address. 6429 const Value *OpVal = OpInfo.CallOperandVal; 6430 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6431 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6432 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6433 TLI->getPointerTy()); 6434 } else { 6435 // Otherwise, create a stack slot and emit a store to it before the 6436 // asm. 6437 Type *Ty = OpVal->getType(); 6438 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6439 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6440 MachineFunction &MF = DAG.getMachineFunction(); 6441 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6442 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6443 Chain = DAG.getStore(Chain, getCurSDLoc(), 6444 OpInfo.CallOperand, StackSlot, 6445 MachinePointerInfo::getFixedStack(SSFI), 6446 false, false, 0); 6447 OpInfo.CallOperand = StackSlot; 6448 } 6449 6450 // There is no longer a Value* corresponding to this operand. 6451 OpInfo.CallOperandVal = nullptr; 6452 6453 // It is now an indirect operand. 6454 OpInfo.isIndirect = true; 6455 } 6456 6457 // If this constraint is for a specific register, allocate it before 6458 // anything else. 6459 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6460 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6461 } 6462 6463 // Second pass - Loop over all of the operands, assigning virtual or physregs 6464 // to register class operands. 6465 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6466 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6467 6468 // C_Register operands have already been allocated, Other/Memory don't need 6469 // to be. 6470 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6471 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6472 } 6473 6474 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6475 std::vector<SDValue> AsmNodeOperands; 6476 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6477 AsmNodeOperands.push_back( 6478 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6479 TLI->getPointerTy())); 6480 6481 // If we have a !srcloc metadata node associated with it, we want to attach 6482 // this to the ultimately generated inline asm machineinstr. To do this, we 6483 // pass in the third operand as this (potentially null) inline asm MDNode. 6484 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6485 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6486 6487 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6488 // bits as operand 3. 6489 unsigned ExtraInfo = 0; 6490 if (IA->hasSideEffects()) 6491 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6492 if (IA->isAlignStack()) 6493 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6494 // Set the asm dialect. 6495 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6496 6497 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6498 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6499 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6500 6501 // Compute the constraint code and ConstraintType to use. 6502 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6503 6504 // Ideally, we would only check against memory constraints. However, the 6505 // meaning of an other constraint can be target-specific and we can't easily 6506 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6507 // for other constriants as well. 6508 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6509 OpInfo.ConstraintType == TargetLowering::C_Other) { 6510 if (OpInfo.Type == InlineAsm::isInput) 6511 ExtraInfo |= InlineAsm::Extra_MayLoad; 6512 else if (OpInfo.Type == InlineAsm::isOutput) 6513 ExtraInfo |= InlineAsm::Extra_MayStore; 6514 else if (OpInfo.Type == InlineAsm::isClobber) 6515 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6516 } 6517 } 6518 6519 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6520 TLI->getPointerTy())); 6521 6522 // Loop over all of the inputs, copying the operand values into the 6523 // appropriate registers and processing the output regs. 6524 RegsForValue RetValRegs; 6525 6526 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6527 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6528 6529 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6530 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6531 6532 switch (OpInfo.Type) { 6533 case InlineAsm::isOutput: { 6534 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6535 OpInfo.ConstraintType != TargetLowering::C_Register) { 6536 // Memory output, or 'other' output (e.g. 'X' constraint). 6537 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6538 6539 // Add information to the INLINEASM node to know about this output. 6540 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6541 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6542 TLI->getPointerTy())); 6543 AsmNodeOperands.push_back(OpInfo.CallOperand); 6544 break; 6545 } 6546 6547 // Otherwise, this is a register or register class output. 6548 6549 // Copy the output from the appropriate register. Find a register that 6550 // we can use. 6551 if (OpInfo.AssignedRegs.Regs.empty()) { 6552 LLVMContext &Ctx = *DAG.getContext(); 6553 Ctx.emitError(CS.getInstruction(), 6554 "couldn't allocate output register for constraint '" + 6555 Twine(OpInfo.ConstraintCode) + "'"); 6556 return; 6557 } 6558 6559 // If this is an indirect operand, store through the pointer after the 6560 // asm. 6561 if (OpInfo.isIndirect) { 6562 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6563 OpInfo.CallOperandVal)); 6564 } else { 6565 // This is the result value of the call. 6566 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6567 // Concatenate this output onto the outputs list. 6568 RetValRegs.append(OpInfo.AssignedRegs); 6569 } 6570 6571 // Add information to the INLINEASM node to know that this register is 6572 // set. 6573 OpInfo.AssignedRegs 6574 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6575 ? InlineAsm::Kind_RegDefEarlyClobber 6576 : InlineAsm::Kind_RegDef, 6577 false, 0, DAG, AsmNodeOperands); 6578 break; 6579 } 6580 case InlineAsm::isInput: { 6581 SDValue InOperandVal = OpInfo.CallOperand; 6582 6583 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6584 // If this is required to match an output register we have already set, 6585 // just use its register. 6586 unsigned OperandNo = OpInfo.getMatchedOperand(); 6587 6588 // Scan until we find the definition we already emitted of this operand. 6589 // When we find it, create a RegsForValue operand. 6590 unsigned CurOp = InlineAsm::Op_FirstOperand; 6591 for (; OperandNo; --OperandNo) { 6592 // Advance to the next operand. 6593 unsigned OpFlag = 6594 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6595 assert((InlineAsm::isRegDefKind(OpFlag) || 6596 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6597 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6598 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6599 } 6600 6601 unsigned OpFlag = 6602 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6603 if (InlineAsm::isRegDefKind(OpFlag) || 6604 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6605 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6606 if (OpInfo.isIndirect) { 6607 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6608 LLVMContext &Ctx = *DAG.getContext(); 6609 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6610 " don't know how to handle tied " 6611 "indirect register inputs"); 6612 return; 6613 } 6614 6615 RegsForValue MatchedRegs; 6616 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6617 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6618 MatchedRegs.RegVTs.push_back(RegVT); 6619 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6620 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6621 i != e; ++i) { 6622 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6623 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6624 else { 6625 LLVMContext &Ctx = *DAG.getContext(); 6626 Ctx.emitError(CS.getInstruction(), 6627 "inline asm error: This value" 6628 " type register class is not natively supported!"); 6629 return; 6630 } 6631 } 6632 // Use the produced MatchedRegs object to 6633 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6634 Chain, &Flag, CS.getInstruction()); 6635 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6636 true, OpInfo.getMatchedOperand(), 6637 DAG, AsmNodeOperands); 6638 break; 6639 } 6640 6641 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6642 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6643 "Unexpected number of operands"); 6644 // Add information to the INLINEASM node to know about this input. 6645 // See InlineAsm.h isUseOperandTiedToDef. 6646 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6647 OpInfo.getMatchedOperand()); 6648 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6649 TLI->getPointerTy())); 6650 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6651 break; 6652 } 6653 6654 // Treat indirect 'X' constraint as memory. 6655 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6656 OpInfo.isIndirect) 6657 OpInfo.ConstraintType = TargetLowering::C_Memory; 6658 6659 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6660 std::vector<SDValue> Ops; 6661 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6662 Ops, DAG); 6663 if (Ops.empty()) { 6664 LLVMContext &Ctx = *DAG.getContext(); 6665 Ctx.emitError(CS.getInstruction(), 6666 "invalid operand for inline asm constraint '" + 6667 Twine(OpInfo.ConstraintCode) + "'"); 6668 return; 6669 } 6670 6671 // Add information to the INLINEASM node to know about this input. 6672 unsigned ResOpType = 6673 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6674 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6675 TLI->getPointerTy())); 6676 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6677 break; 6678 } 6679 6680 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6681 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6682 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6683 "Memory operands expect pointer values"); 6684 6685 // Add information to the INLINEASM node to know about this input. 6686 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6687 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6688 TLI->getPointerTy())); 6689 AsmNodeOperands.push_back(InOperandVal); 6690 break; 6691 } 6692 6693 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6694 OpInfo.ConstraintType == TargetLowering::C_Register) && 6695 "Unknown constraint type!"); 6696 6697 // TODO: Support this. 6698 if (OpInfo.isIndirect) { 6699 LLVMContext &Ctx = *DAG.getContext(); 6700 Ctx.emitError(CS.getInstruction(), 6701 "Don't know how to handle indirect register inputs yet " 6702 "for constraint '" + 6703 Twine(OpInfo.ConstraintCode) + "'"); 6704 return; 6705 } 6706 6707 // Copy the input into the appropriate registers. 6708 if (OpInfo.AssignedRegs.Regs.empty()) { 6709 LLVMContext &Ctx = *DAG.getContext(); 6710 Ctx.emitError(CS.getInstruction(), 6711 "couldn't allocate input reg for constraint '" + 6712 Twine(OpInfo.ConstraintCode) + "'"); 6713 return; 6714 } 6715 6716 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6717 Chain, &Flag, CS.getInstruction()); 6718 6719 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6720 DAG, AsmNodeOperands); 6721 break; 6722 } 6723 case InlineAsm::isClobber: { 6724 // Add the clobbered value to the operand list, so that the register 6725 // allocator is aware that the physreg got clobbered. 6726 if (!OpInfo.AssignedRegs.Regs.empty()) 6727 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6728 false, 0, DAG, 6729 AsmNodeOperands); 6730 break; 6731 } 6732 } 6733 } 6734 6735 // Finish up input operands. Set the input chain and add the flag last. 6736 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6737 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6738 6739 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6740 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6741 Flag = Chain.getValue(1); 6742 6743 // If this asm returns a register value, copy the result from that register 6744 // and set it as the value of the call. 6745 if (!RetValRegs.Regs.empty()) { 6746 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6747 Chain, &Flag, CS.getInstruction()); 6748 6749 // FIXME: Why don't we do this for inline asms with MRVs? 6750 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6751 EVT ResultType = TLI->getValueType(CS.getType()); 6752 6753 // If any of the results of the inline asm is a vector, it may have the 6754 // wrong width/num elts. This can happen for register classes that can 6755 // contain multiple different value types. The preg or vreg allocated may 6756 // not have the same VT as was expected. Convert it to the right type 6757 // with bit_convert. 6758 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6759 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6760 ResultType, Val); 6761 6762 } else if (ResultType != Val.getValueType() && 6763 ResultType.isInteger() && Val.getValueType().isInteger()) { 6764 // If a result value was tied to an input value, the computed result may 6765 // have a wider width than the expected result. Extract the relevant 6766 // portion. 6767 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6768 } 6769 6770 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6771 } 6772 6773 setValue(CS.getInstruction(), Val); 6774 // Don't need to use this as a chain in this case. 6775 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6776 return; 6777 } 6778 6779 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6780 6781 // Process indirect outputs, first output all of the flagged copies out of 6782 // physregs. 6783 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6784 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6785 const Value *Ptr = IndirectStoresToEmit[i].second; 6786 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6787 Chain, &Flag, IA); 6788 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6789 } 6790 6791 // Emit the non-flagged stores from the physregs. 6792 SmallVector<SDValue, 8> OutChains; 6793 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6794 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6795 StoresToEmit[i].first, 6796 getValue(StoresToEmit[i].second), 6797 MachinePointerInfo(StoresToEmit[i].second), 6798 false, false, 0); 6799 OutChains.push_back(Val); 6800 } 6801 6802 if (!OutChains.empty()) 6803 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6804 6805 DAG.setRoot(Chain); 6806 } 6807 6808 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6809 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6810 MVT::Other, getRoot(), 6811 getValue(I.getArgOperand(0)), 6812 DAG.getSrcValue(I.getArgOperand(0)))); 6813 } 6814 6815 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6816 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6817 const DataLayout &DL = *TLI->getDataLayout(); 6818 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6819 getRoot(), getValue(I.getOperand(0)), 6820 DAG.getSrcValue(I.getOperand(0)), 6821 DL.getABITypeAlignment(I.getType())); 6822 setValue(&I, V); 6823 DAG.setRoot(V.getValue(1)); 6824 } 6825 6826 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6827 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6828 MVT::Other, getRoot(), 6829 getValue(I.getArgOperand(0)), 6830 DAG.getSrcValue(I.getArgOperand(0)))); 6831 } 6832 6833 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6834 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6835 MVT::Other, getRoot(), 6836 getValue(I.getArgOperand(0)), 6837 getValue(I.getArgOperand(1)), 6838 DAG.getSrcValue(I.getArgOperand(0)), 6839 DAG.getSrcValue(I.getArgOperand(1)))); 6840 } 6841 6842 /// \brief Lower an argument list according to the target calling convention. 6843 /// 6844 /// \return A tuple of <return-value, token-chain> 6845 /// 6846 /// This is a helper for lowering intrinsics that follow a target calling 6847 /// convention or require stack pointer adjustment. Only a subset of the 6848 /// intrinsic's operands need to participate in the calling convention. 6849 std::pair<SDValue, SDValue> 6850 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6851 unsigned NumArgs, SDValue Callee, 6852 bool useVoidTy) { 6853 TargetLowering::ArgListTy Args; 6854 Args.reserve(NumArgs); 6855 6856 // Populate the argument list. 6857 // Attributes for args start at offset 1, after the return attribute. 6858 ImmutableCallSite CS(&CI); 6859 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6860 ArgI != ArgE; ++ArgI) { 6861 const Value *V = CI.getOperand(ArgI); 6862 6863 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6864 6865 TargetLowering::ArgListEntry Entry; 6866 Entry.Node = getValue(V); 6867 Entry.Ty = V->getType(); 6868 Entry.setAttributes(&CS, AttrI); 6869 Args.push_back(Entry); 6870 } 6871 6872 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6873 TargetLowering::CallLoweringInfo CLI(DAG); 6874 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6875 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6876 .setDiscardResult(!CI.use_empty()); 6877 6878 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6879 return TLI->LowerCallTo(CLI); 6880 } 6881 6882 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6883 /// or patchpoint target node's operand list. 6884 /// 6885 /// Constants are converted to TargetConstants purely as an optimization to 6886 /// avoid constant materialization and register allocation. 6887 /// 6888 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6889 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6890 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6891 /// address materialization and register allocation, but may also be required 6892 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6893 /// alloca in the entry block, then the runtime may assume that the alloca's 6894 /// StackMap location can be read immediately after compilation and that the 6895 /// location is valid at any point during execution (this is similar to the 6896 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6897 /// only available in a register, then the runtime would need to trap when 6898 /// execution reaches the StackMap in order to read the alloca's location. 6899 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6900 SmallVectorImpl<SDValue> &Ops, 6901 SelectionDAGBuilder &Builder) { 6902 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6903 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6904 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6905 Ops.push_back( 6906 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6907 Ops.push_back( 6908 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6909 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6910 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6911 Ops.push_back( 6912 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6913 } else 6914 Ops.push_back(OpVal); 6915 } 6916 } 6917 6918 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6919 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6920 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6921 // [live variables...]) 6922 6923 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6924 6925 SDValue Chain, InFlag, Callee, NullPtr; 6926 SmallVector<SDValue, 32> Ops; 6927 6928 SDLoc DL = getCurSDLoc(); 6929 Callee = getValue(CI.getCalledValue()); 6930 NullPtr = DAG.getIntPtrConstant(0, true); 6931 6932 // The stackmap intrinsic only records the live variables (the arguemnts 6933 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6934 // intrinsic, this won't be lowered to a function call. This means we don't 6935 // have to worry about calling conventions and target specific lowering code. 6936 // Instead we perform the call lowering right here. 6937 // 6938 // chain, flag = CALLSEQ_START(chain, 0) 6939 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6940 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6941 // 6942 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6943 InFlag = Chain.getValue(1); 6944 6945 // Add the <id> and <numBytes> constants. 6946 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6947 Ops.push_back(DAG.getTargetConstant( 6948 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6949 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6950 Ops.push_back(DAG.getTargetConstant( 6951 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6952 6953 // Push live variables for the stack map. 6954 addStackMapLiveVars(CI, 2, Ops, *this); 6955 6956 // We are not pushing any register mask info here on the operands list, 6957 // because the stackmap doesn't clobber anything. 6958 6959 // Push the chain and the glue flag. 6960 Ops.push_back(Chain); 6961 Ops.push_back(InFlag); 6962 6963 // Create the STACKMAP node. 6964 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6965 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6966 Chain = SDValue(SM, 0); 6967 InFlag = Chain.getValue(1); 6968 6969 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6970 6971 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6972 6973 // Set the root to the target-lowered call chain. 6974 DAG.setRoot(Chain); 6975 6976 // Inform the Frame Information that we have a stackmap in this function. 6977 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6978 } 6979 6980 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6981 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6982 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6983 // i32 <numBytes>, 6984 // i8* <target>, 6985 // i32 <numArgs>, 6986 // [Args...], 6987 // [live variables...]) 6988 6989 CallingConv::ID CC = CI.getCallingConv(); 6990 bool isAnyRegCC = CC == CallingConv::AnyReg; 6991 bool hasDef = !CI.getType()->isVoidTy(); 6992 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6993 6994 // Get the real number of arguments participating in the call <numArgs> 6995 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6996 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6997 6998 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6999 // Intrinsics include all meta-operands up to but not including CC. 7000 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7001 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 7002 "Not enough arguments provided to the patchpoint intrinsic"); 7003 7004 // For AnyRegCC the arguments are lowered later on manually. 7005 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 7006 std::pair<SDValue, SDValue> Result = 7007 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 7008 7009 // Set the root to the target-lowered call chain. 7010 SDValue Chain = Result.second; 7011 DAG.setRoot(Chain); 7012 7013 SDNode *CallEnd = Chain.getNode(); 7014 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7015 CallEnd = CallEnd->getOperand(0).getNode(); 7016 7017 /// Get a call instruction from the call sequence chain. 7018 /// Tail calls are not allowed. 7019 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7020 "Expected a callseq node."); 7021 SDNode *Call = CallEnd->getOperand(0).getNode(); 7022 bool hasGlue = Call->getGluedNode(); 7023 7024 // Replace the target specific call node with the patchable intrinsic. 7025 SmallVector<SDValue, 8> Ops; 7026 7027 // Add the <id> and <numBytes> constants. 7028 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7029 Ops.push_back(DAG.getTargetConstant( 7030 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7031 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7032 Ops.push_back(DAG.getTargetConstant( 7033 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7034 7035 // Assume that the Callee is a constant address. 7036 // FIXME: handle function symbols in the future. 7037 Ops.push_back( 7038 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7039 /*isTarget=*/true)); 7040 7041 // Adjust <numArgs> to account for any arguments that have been passed on the 7042 // stack instead. 7043 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7044 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7045 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7046 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7047 7048 // Add the calling convention 7049 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7050 7051 // Add the arguments we omitted previously. The register allocator should 7052 // place these in any free register. 7053 if (isAnyRegCC) 7054 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7055 Ops.push_back(getValue(CI.getArgOperand(i))); 7056 7057 // Push the arguments from the call instruction up to the register mask. 7058 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7059 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7060 Ops.push_back(*i); 7061 7062 // Push live variables for the stack map. 7063 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7064 7065 // Push the register mask info. 7066 if (hasGlue) 7067 Ops.push_back(*(Call->op_end()-2)); 7068 else 7069 Ops.push_back(*(Call->op_end()-1)); 7070 7071 // Push the chain (this is originally the first operand of the call, but 7072 // becomes now the last or second to last operand). 7073 Ops.push_back(*(Call->op_begin())); 7074 7075 // Push the glue flag (last operand). 7076 if (hasGlue) 7077 Ops.push_back(*(Call->op_end()-1)); 7078 7079 SDVTList NodeTys; 7080 if (isAnyRegCC && hasDef) { 7081 // Create the return types based on the intrinsic definition 7082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7083 SmallVector<EVT, 3> ValueVTs; 7084 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7085 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7086 7087 // There is always a chain and a glue type at the end 7088 ValueVTs.push_back(MVT::Other); 7089 ValueVTs.push_back(MVT::Glue); 7090 NodeTys = DAG.getVTList(ValueVTs); 7091 } else 7092 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7093 7094 // Replace the target specific call node with a PATCHPOINT node. 7095 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7096 getCurSDLoc(), NodeTys, Ops); 7097 7098 // Update the NodeMap. 7099 if (hasDef) { 7100 if (isAnyRegCC) 7101 setValue(&CI, SDValue(MN, 0)); 7102 else 7103 setValue(&CI, Result.first); 7104 } 7105 7106 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7107 // call sequence. Furthermore the location of the chain and glue can change 7108 // when the AnyReg calling convention is used and the intrinsic returns a 7109 // value. 7110 if (isAnyRegCC && hasDef) { 7111 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7112 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7113 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7114 } else 7115 DAG.ReplaceAllUsesWith(Call, MN); 7116 DAG.DeleteNode(Call); 7117 7118 // Inform the Frame Information that we have a patchpoint in this function. 7119 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7120 } 7121 7122 /// Returns an AttributeSet representing the attributes applied to the return 7123 /// value of the given call. 7124 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7125 SmallVector<Attribute::AttrKind, 2> Attrs; 7126 if (CLI.RetSExt) 7127 Attrs.push_back(Attribute::SExt); 7128 if (CLI.RetZExt) 7129 Attrs.push_back(Attribute::ZExt); 7130 if (CLI.IsInReg) 7131 Attrs.push_back(Attribute::InReg); 7132 7133 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7134 Attrs); 7135 } 7136 7137 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7138 /// implementation, which just calls LowerCall. 7139 /// FIXME: When all targets are 7140 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7141 std::pair<SDValue, SDValue> 7142 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7143 // Handle the incoming return values from the call. 7144 CLI.Ins.clear(); 7145 Type *OrigRetTy = CLI.RetTy; 7146 SmallVector<EVT, 4> RetTys; 7147 SmallVector<uint64_t, 4> Offsets; 7148 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7149 7150 SmallVector<ISD::OutputArg, 4> Outs; 7151 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7152 7153 bool CanLowerReturn = 7154 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7155 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7156 7157 SDValue DemoteStackSlot; 7158 int DemoteStackIdx = -100; 7159 if (!CanLowerReturn) { 7160 // FIXME: equivalent assert? 7161 // assert(!CS.hasInAllocaArgument() && 7162 // "sret demotion is incompatible with inalloca"); 7163 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7164 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7165 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7166 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7167 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7168 7169 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7170 ArgListEntry Entry; 7171 Entry.Node = DemoteStackSlot; 7172 Entry.Ty = StackSlotPtrType; 7173 Entry.isSExt = false; 7174 Entry.isZExt = false; 7175 Entry.isInReg = false; 7176 Entry.isSRet = true; 7177 Entry.isNest = false; 7178 Entry.isByVal = false; 7179 Entry.isReturned = false; 7180 Entry.Alignment = Align; 7181 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7182 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7183 } else { 7184 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7185 EVT VT = RetTys[I]; 7186 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7187 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7188 for (unsigned i = 0; i != NumRegs; ++i) { 7189 ISD::InputArg MyFlags; 7190 MyFlags.VT = RegisterVT; 7191 MyFlags.ArgVT = VT; 7192 MyFlags.Used = CLI.IsReturnValueUsed; 7193 if (CLI.RetSExt) 7194 MyFlags.Flags.setSExt(); 7195 if (CLI.RetZExt) 7196 MyFlags.Flags.setZExt(); 7197 if (CLI.IsInReg) 7198 MyFlags.Flags.setInReg(); 7199 CLI.Ins.push_back(MyFlags); 7200 } 7201 } 7202 } 7203 7204 // Handle all of the outgoing arguments. 7205 CLI.Outs.clear(); 7206 CLI.OutVals.clear(); 7207 ArgListTy &Args = CLI.getArgs(); 7208 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7209 SmallVector<EVT, 4> ValueVTs; 7210 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7211 Type *FinalType = Args[i].Ty; 7212 if (Args[i].isByVal) 7213 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7214 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7215 FinalType, CLI.CallConv, CLI.IsVarArg); 7216 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7217 ++Value) { 7218 EVT VT = ValueVTs[Value]; 7219 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7220 SDValue Op = SDValue(Args[i].Node.getNode(), 7221 Args[i].Node.getResNo() + Value); 7222 ISD::ArgFlagsTy Flags; 7223 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7224 7225 if (Args[i].isZExt) 7226 Flags.setZExt(); 7227 if (Args[i].isSExt) 7228 Flags.setSExt(); 7229 if (Args[i].isInReg) 7230 Flags.setInReg(); 7231 if (Args[i].isSRet) 7232 Flags.setSRet(); 7233 if (Args[i].isByVal) 7234 Flags.setByVal(); 7235 if (Args[i].isInAlloca) { 7236 Flags.setInAlloca(); 7237 // Set the byval flag for CCAssignFn callbacks that don't know about 7238 // inalloca. This way we can know how many bytes we should've allocated 7239 // and how many bytes a callee cleanup function will pop. If we port 7240 // inalloca to more targets, we'll have to add custom inalloca handling 7241 // in the various CC lowering callbacks. 7242 Flags.setByVal(); 7243 } 7244 if (Args[i].isByVal || Args[i].isInAlloca) { 7245 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7246 Type *ElementTy = Ty->getElementType(); 7247 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7248 // For ByVal, alignment should come from FE. BE will guess if this 7249 // info is not there but there are cases it cannot get right. 7250 unsigned FrameAlign; 7251 if (Args[i].Alignment) 7252 FrameAlign = Args[i].Alignment; 7253 else 7254 FrameAlign = getByValTypeAlignment(ElementTy); 7255 Flags.setByValAlign(FrameAlign); 7256 } 7257 if (Args[i].isNest) 7258 Flags.setNest(); 7259 if (NeedsRegBlock) 7260 Flags.setInConsecutiveRegs(); 7261 Flags.setOrigAlign(OriginalAlignment); 7262 7263 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7264 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7265 SmallVector<SDValue, 4> Parts(NumParts); 7266 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7267 7268 if (Args[i].isSExt) 7269 ExtendKind = ISD::SIGN_EXTEND; 7270 else if (Args[i].isZExt) 7271 ExtendKind = ISD::ZERO_EXTEND; 7272 7273 // Conservatively only handle 'returned' on non-vectors for now 7274 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7275 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7276 "unexpected use of 'returned'"); 7277 // Before passing 'returned' to the target lowering code, ensure that 7278 // either the register MVT and the actual EVT are the same size or that 7279 // the return value and argument are extended in the same way; in these 7280 // cases it's safe to pass the argument register value unchanged as the 7281 // return register value (although it's at the target's option whether 7282 // to do so) 7283 // TODO: allow code generation to take advantage of partially preserved 7284 // registers rather than clobbering the entire register when the 7285 // parameter extension method is not compatible with the return 7286 // extension method 7287 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7288 (ExtendKind != ISD::ANY_EXTEND && 7289 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7290 Flags.setReturned(); 7291 } 7292 7293 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7294 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7295 7296 for (unsigned j = 0; j != NumParts; ++j) { 7297 // if it isn't first piece, alignment must be 1 7298 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7299 i < CLI.NumFixedArgs, 7300 i, j*Parts[j].getValueType().getStoreSize()); 7301 if (NumParts > 1 && j == 0) 7302 MyFlags.Flags.setSplit(); 7303 else if (j != 0) 7304 MyFlags.Flags.setOrigAlign(1); 7305 7306 // Only mark the end at the last register of the last value. 7307 if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1) 7308 MyFlags.Flags.setInConsecutiveRegsLast(); 7309 7310 CLI.Outs.push_back(MyFlags); 7311 CLI.OutVals.push_back(Parts[j]); 7312 } 7313 } 7314 } 7315 7316 SmallVector<SDValue, 4> InVals; 7317 CLI.Chain = LowerCall(CLI, InVals); 7318 7319 // Verify that the target's LowerCall behaved as expected. 7320 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7321 "LowerCall didn't return a valid chain!"); 7322 assert((!CLI.IsTailCall || InVals.empty()) && 7323 "LowerCall emitted a return value for a tail call!"); 7324 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7325 "LowerCall didn't emit the correct number of values!"); 7326 7327 // For a tail call, the return value is merely live-out and there aren't 7328 // any nodes in the DAG representing it. Return a special value to 7329 // indicate that a tail call has been emitted and no more Instructions 7330 // should be processed in the current block. 7331 if (CLI.IsTailCall) { 7332 CLI.DAG.setRoot(CLI.Chain); 7333 return std::make_pair(SDValue(), SDValue()); 7334 } 7335 7336 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7337 assert(InVals[i].getNode() && 7338 "LowerCall emitted a null value!"); 7339 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7340 "LowerCall emitted a value with the wrong type!"); 7341 }); 7342 7343 SmallVector<SDValue, 4> ReturnValues; 7344 if (!CanLowerReturn) { 7345 // The instruction result is the result of loading from the 7346 // hidden sret parameter. 7347 SmallVector<EVT, 1> PVTs; 7348 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7349 7350 ComputeValueVTs(*this, PtrRetTy, PVTs); 7351 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7352 EVT PtrVT = PVTs[0]; 7353 7354 unsigned NumValues = RetTys.size(); 7355 ReturnValues.resize(NumValues); 7356 SmallVector<SDValue, 4> Chains(NumValues); 7357 7358 for (unsigned i = 0; i < NumValues; ++i) { 7359 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7360 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7361 SDValue L = CLI.DAG.getLoad( 7362 RetTys[i], CLI.DL, CLI.Chain, Add, 7363 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7364 false, false, 1); 7365 ReturnValues[i] = L; 7366 Chains[i] = L.getValue(1); 7367 } 7368 7369 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7370 } else { 7371 // Collect the legal value parts into potentially illegal values 7372 // that correspond to the original function's return values. 7373 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7374 if (CLI.RetSExt) 7375 AssertOp = ISD::AssertSext; 7376 else if (CLI.RetZExt) 7377 AssertOp = ISD::AssertZext; 7378 unsigned CurReg = 0; 7379 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7380 EVT VT = RetTys[I]; 7381 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7382 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7383 7384 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7385 NumRegs, RegisterVT, VT, nullptr, 7386 AssertOp)); 7387 CurReg += NumRegs; 7388 } 7389 7390 // For a function returning void, there is no return value. We can't create 7391 // such a node, so we just return a null return value in that case. In 7392 // that case, nothing will actually look at the value. 7393 if (ReturnValues.empty()) 7394 return std::make_pair(SDValue(), CLI.Chain); 7395 } 7396 7397 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7398 CLI.DAG.getVTList(RetTys), ReturnValues); 7399 return std::make_pair(Res, CLI.Chain); 7400 } 7401 7402 void TargetLowering::LowerOperationWrapper(SDNode *N, 7403 SmallVectorImpl<SDValue> &Results, 7404 SelectionDAG &DAG) const { 7405 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7406 if (Res.getNode()) 7407 Results.push_back(Res); 7408 } 7409 7410 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7411 llvm_unreachable("LowerOperation not implemented for this target!"); 7412 } 7413 7414 void 7415 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7416 SDValue Op = getNonRegisterValue(V); 7417 assert((Op.getOpcode() != ISD::CopyFromReg || 7418 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7419 "Copy from a reg to the same reg!"); 7420 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7421 7422 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7423 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7424 SDValue Chain = DAG.getEntryNode(); 7425 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7426 PendingExports.push_back(Chain); 7427 } 7428 7429 #include "llvm/CodeGen/SelectionDAGISel.h" 7430 7431 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7432 /// entry block, return true. This includes arguments used by switches, since 7433 /// the switch may expand into multiple basic blocks. 7434 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7435 // With FastISel active, we may be splitting blocks, so force creation 7436 // of virtual registers for all non-dead arguments. 7437 if (FastISel) 7438 return A->use_empty(); 7439 7440 const BasicBlock *Entry = A->getParent()->begin(); 7441 for (const User *U : A->users()) 7442 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7443 return false; // Use not in entry block. 7444 7445 return true; 7446 } 7447 7448 void SelectionDAGISel::LowerArguments(const Function &F) { 7449 SelectionDAG &DAG = SDB->DAG; 7450 SDLoc dl = SDB->getCurSDLoc(); 7451 const TargetLowering *TLI = getTargetLowering(); 7452 const DataLayout *DL = TLI->getDataLayout(); 7453 SmallVector<ISD::InputArg, 16> Ins; 7454 7455 if (!FuncInfo->CanLowerReturn) { 7456 // Put in an sret pointer parameter before all the other parameters. 7457 SmallVector<EVT, 1> ValueVTs; 7458 ComputeValueVTs(*getTargetLowering(), 7459 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7460 7461 // NOTE: Assuming that a pointer will never break down to more than one VT 7462 // or one register. 7463 ISD::ArgFlagsTy Flags; 7464 Flags.setSRet(); 7465 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7466 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7467 Ins.push_back(RetArg); 7468 } 7469 7470 // Set up the incoming argument description vector. 7471 unsigned Idx = 1; 7472 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7473 I != E; ++I, ++Idx) { 7474 SmallVector<EVT, 4> ValueVTs; 7475 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7476 bool isArgValueUsed = !I->use_empty(); 7477 unsigned PartBase = 0; 7478 Type *FinalType = I->getType(); 7479 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7480 FinalType = cast<PointerType>(FinalType)->getElementType(); 7481 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7482 FinalType, F.getCallingConv(), F.isVarArg()); 7483 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7484 Value != NumValues; ++Value) { 7485 EVT VT = ValueVTs[Value]; 7486 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7487 ISD::ArgFlagsTy Flags; 7488 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7489 7490 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7491 Flags.setZExt(); 7492 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7493 Flags.setSExt(); 7494 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7495 Flags.setInReg(); 7496 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7497 Flags.setSRet(); 7498 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7499 Flags.setByVal(); 7500 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7501 Flags.setInAlloca(); 7502 // Set the byval flag for CCAssignFn callbacks that don't know about 7503 // inalloca. This way we can know how many bytes we should've allocated 7504 // and how many bytes a callee cleanup function will pop. If we port 7505 // inalloca to more targets, we'll have to add custom inalloca handling 7506 // in the various CC lowering callbacks. 7507 Flags.setByVal(); 7508 } 7509 if (Flags.isByVal() || Flags.isInAlloca()) { 7510 PointerType *Ty = cast<PointerType>(I->getType()); 7511 Type *ElementTy = Ty->getElementType(); 7512 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7513 // For ByVal, alignment should be passed from FE. BE will guess if 7514 // this info is not there but there are cases it cannot get right. 7515 unsigned FrameAlign; 7516 if (F.getParamAlignment(Idx)) 7517 FrameAlign = F.getParamAlignment(Idx); 7518 else 7519 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7520 Flags.setByValAlign(FrameAlign); 7521 } 7522 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7523 Flags.setNest(); 7524 if (NeedsRegBlock) 7525 Flags.setInConsecutiveRegs(); 7526 Flags.setOrigAlign(OriginalAlignment); 7527 7528 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7529 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7530 for (unsigned i = 0; i != NumRegs; ++i) { 7531 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7532 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7533 if (NumRegs > 1 && i == 0) 7534 MyFlags.Flags.setSplit(); 7535 // if it isn't first piece, alignment must be 1 7536 else if (i > 0) 7537 MyFlags.Flags.setOrigAlign(1); 7538 7539 // Only mark the end at the last register of the last value. 7540 if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1) 7541 MyFlags.Flags.setInConsecutiveRegsLast(); 7542 7543 Ins.push_back(MyFlags); 7544 } 7545 PartBase += VT.getStoreSize(); 7546 } 7547 } 7548 7549 // Call the target to set up the argument values. 7550 SmallVector<SDValue, 8> InVals; 7551 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7552 F.isVarArg(), Ins, 7553 dl, DAG, InVals); 7554 7555 // Verify that the target's LowerFormalArguments behaved as expected. 7556 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7557 "LowerFormalArguments didn't return a valid chain!"); 7558 assert(InVals.size() == Ins.size() && 7559 "LowerFormalArguments didn't emit the correct number of values!"); 7560 DEBUG({ 7561 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7562 assert(InVals[i].getNode() && 7563 "LowerFormalArguments emitted a null value!"); 7564 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7565 "LowerFormalArguments emitted a value with the wrong type!"); 7566 } 7567 }); 7568 7569 // Update the DAG with the new chain value resulting from argument lowering. 7570 DAG.setRoot(NewRoot); 7571 7572 // Set up the argument values. 7573 unsigned i = 0; 7574 Idx = 1; 7575 if (!FuncInfo->CanLowerReturn) { 7576 // Create a virtual register for the sret pointer, and put in a copy 7577 // from the sret argument into it. 7578 SmallVector<EVT, 1> ValueVTs; 7579 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7580 MVT VT = ValueVTs[0].getSimpleVT(); 7581 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7582 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7583 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7584 RegVT, VT, nullptr, AssertOp); 7585 7586 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7587 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7588 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7589 FuncInfo->DemoteRegister = SRetReg; 7590 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7591 SRetReg, ArgValue); 7592 DAG.setRoot(NewRoot); 7593 7594 // i indexes lowered arguments. Bump it past the hidden sret argument. 7595 // Idx indexes LLVM arguments. Don't touch it. 7596 ++i; 7597 } 7598 7599 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7600 ++I, ++Idx) { 7601 SmallVector<SDValue, 4> ArgValues; 7602 SmallVector<EVT, 4> ValueVTs; 7603 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7604 unsigned NumValues = ValueVTs.size(); 7605 7606 // If this argument is unused then remember its value. It is used to generate 7607 // debugging information. 7608 if (I->use_empty() && NumValues) { 7609 SDB->setUnusedArgValue(I, InVals[i]); 7610 7611 // Also remember any frame index for use in FastISel. 7612 if (FrameIndexSDNode *FI = 7613 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7614 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7615 } 7616 7617 for (unsigned Val = 0; Val != NumValues; ++Val) { 7618 EVT VT = ValueVTs[Val]; 7619 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7620 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7621 7622 if (!I->use_empty()) { 7623 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7624 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7625 AssertOp = ISD::AssertSext; 7626 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7627 AssertOp = ISD::AssertZext; 7628 7629 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7630 NumParts, PartVT, VT, 7631 nullptr, AssertOp)); 7632 } 7633 7634 i += NumParts; 7635 } 7636 7637 // We don't need to do anything else for unused arguments. 7638 if (ArgValues.empty()) 7639 continue; 7640 7641 // Note down frame index. 7642 if (FrameIndexSDNode *FI = 7643 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7644 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7645 7646 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7647 SDB->getCurSDLoc()); 7648 7649 SDB->setValue(I, Res); 7650 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7651 if (LoadSDNode *LNode = 7652 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7653 if (FrameIndexSDNode *FI = 7654 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7655 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7656 } 7657 7658 // If this argument is live outside of the entry block, insert a copy from 7659 // wherever we got it to the vreg that other BB's will reference it as. 7660 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7661 // If we can, though, try to skip creating an unnecessary vreg. 7662 // FIXME: This isn't very clean... it would be nice to make this more 7663 // general. It's also subtly incompatible with the hacks FastISel 7664 // uses with vregs. 7665 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7666 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7667 FuncInfo->ValueMap[I] = Reg; 7668 continue; 7669 } 7670 } 7671 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7672 FuncInfo->InitializeRegForValue(I); 7673 SDB->CopyToExportRegsIfNeeded(I); 7674 } 7675 } 7676 7677 assert(i == InVals.size() && "Argument register count mismatch!"); 7678 7679 // Finally, if the target has anything special to do, allow it to do so. 7680 // FIXME: this should insert code into the DAG! 7681 EmitFunctionEntryCode(); 7682 } 7683 7684 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7685 /// ensure constants are generated when needed. Remember the virtual registers 7686 /// that need to be added to the Machine PHI nodes as input. We cannot just 7687 /// directly add them, because expansion might result in multiple MBB's for one 7688 /// BB. As such, the start of the BB might correspond to a different MBB than 7689 /// the end. 7690 /// 7691 void 7692 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7693 const TerminatorInst *TI = LLVMBB->getTerminator(); 7694 7695 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7696 7697 // Check successor nodes' PHI nodes that expect a constant to be available 7698 // from this block. 7699 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7700 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7701 if (!isa<PHINode>(SuccBB->begin())) continue; 7702 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7703 7704 // If this terminator has multiple identical successors (common for 7705 // switches), only handle each succ once. 7706 if (!SuccsHandled.insert(SuccMBB)) continue; 7707 7708 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7709 7710 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7711 // nodes and Machine PHI nodes, but the incoming operands have not been 7712 // emitted yet. 7713 for (BasicBlock::const_iterator I = SuccBB->begin(); 7714 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7715 // Ignore dead phi's. 7716 if (PN->use_empty()) continue; 7717 7718 // Skip empty types 7719 if (PN->getType()->isEmptyTy()) 7720 continue; 7721 7722 unsigned Reg; 7723 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7724 7725 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7726 unsigned &RegOut = ConstantsOut[C]; 7727 if (RegOut == 0) { 7728 RegOut = FuncInfo.CreateRegs(C->getType()); 7729 CopyValueToVirtualRegister(C, RegOut); 7730 } 7731 Reg = RegOut; 7732 } else { 7733 DenseMap<const Value *, unsigned>::iterator I = 7734 FuncInfo.ValueMap.find(PHIOp); 7735 if (I != FuncInfo.ValueMap.end()) 7736 Reg = I->second; 7737 else { 7738 assert(isa<AllocaInst>(PHIOp) && 7739 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7740 "Didn't codegen value into a register!??"); 7741 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7742 CopyValueToVirtualRegister(PHIOp, Reg); 7743 } 7744 } 7745 7746 // Remember that this register needs to added to the machine PHI node as 7747 // the input for this MBB. 7748 SmallVector<EVT, 4> ValueVTs; 7749 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7750 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7751 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7752 EVT VT = ValueVTs[vti]; 7753 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7754 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7755 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7756 Reg += NumRegisters; 7757 } 7758 } 7759 } 7760 7761 ConstantsOut.clear(); 7762 } 7763 7764 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7765 /// is 0. 7766 MachineBasicBlock * 7767 SelectionDAGBuilder::StackProtectorDescriptor:: 7768 AddSuccessorMBB(const BasicBlock *BB, 7769 MachineBasicBlock *ParentMBB, 7770 MachineBasicBlock *SuccMBB) { 7771 // If SuccBB has not been created yet, create it. 7772 if (!SuccMBB) { 7773 MachineFunction *MF = ParentMBB->getParent(); 7774 MachineFunction::iterator BBI = ParentMBB; 7775 SuccMBB = MF->CreateMachineBasicBlock(BB); 7776 MF->insert(++BBI, SuccMBB); 7777 } 7778 // Add it as a successor of ParentMBB. 7779 ParentMBB->addSuccessor(SuccMBB); 7780 return SuccMBB; 7781 } 7782