1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallingConv.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfoMetadata.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstrTypes.h" 84 #include "llvm/IR/Instruction.h" 85 #include "llvm/IR/Instructions.h" 86 #include "llvm/IR/IntrinsicInst.h" 87 #include "llvm/IR/Intrinsics.h" 88 #include "llvm/IR/IntrinsicsAArch64.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PatternMatch.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/MC/MCContext.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/BranchProbability.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CodeGen.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/MachineValueType.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetIntrinsicInfo.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cstddef> 119 #include <cstdint> 120 #include <cstring> 121 #include <iterator> 122 #include <limits> 123 #include <numeric> 124 #include <tuple> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 using namespace PatternMatch; 130 using namespace SwitchCG; 131 132 #define DEBUG_TYPE "isel" 133 134 /// LimitFloatPrecision - Generate low-precision inline sequences for 135 /// some float libcalls (6, 8 or 12 bits). 136 static unsigned LimitFloatPrecision; 137 138 static cl::opt<unsigned, true> 139 LimitFPPrecision("limit-float-precision", 140 cl::desc("Generate low-precision inline sequences " 141 "for some float libcalls"), 142 cl::location(LimitFloatPrecision), cl::Hidden, 143 cl::init(0)); 144 145 static cl::opt<unsigned> SwitchPeelThreshold( 146 "switch-peel-threshold", cl::Hidden, cl::init(66), 147 cl::desc("Set the case probability threshold for peeling the case from a " 148 "switch statement. A value greater than 100 will void this " 149 "optimization")); 150 151 // Limit the width of DAG chains. This is important in general to prevent 152 // DAG-based analysis from blowing up. For example, alias analysis and 153 // load clustering may not complete in reasonable time. It is difficult to 154 // recognize and avoid this situation within each individual analysis, and 155 // future analyses are likely to have the same behavior. Limiting DAG width is 156 // the safe approach and will be especially important with global DAGs. 157 // 158 // MaxParallelChains default is arbitrarily high to avoid affecting 159 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 160 // sequence over this should have been converted to llvm.memcpy by the 161 // frontend. It is easy to induce this behavior with .ll code such as: 162 // %buffer = alloca [4096 x i8] 163 // %data = load [4096 x i8]* %argPtr 164 // store [4096 x i8] %data, [4096 x i8]* %buffer 165 static const unsigned MaxParallelChains = 64; 166 167 // Return the calling convention if the Value passed requires ABI mangling as it 168 // is a parameter to a function or a return value from a function which is not 169 // an intrinsic. 170 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 171 if (auto *R = dyn_cast<ReturnInst>(V)) 172 return R->getParent()->getParent()->getCallingConv(); 173 174 if (auto *CI = dyn_cast<CallInst>(V)) { 175 const bool IsInlineAsm = CI->isInlineAsm(); 176 const bool IsIndirectFunctionCall = 177 !IsInlineAsm && !CI->getCalledFunction(); 178 179 // It is possible that the call instruction is an inline asm statement or an 180 // indirect function call in which case the return value of 181 // getCalledFunction() would be nullptr. 182 const bool IsInstrinsicCall = 183 !IsInlineAsm && !IsIndirectFunctionCall && 184 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 185 186 if (!IsInlineAsm && !IsInstrinsicCall) 187 return CI->getCallingConv(); 188 } 189 190 return None; 191 } 192 193 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 194 const SDValue *Parts, unsigned NumParts, 195 MVT PartVT, EVT ValueVT, const Value *V, 196 Optional<CallingConv::ID> CC); 197 198 /// getCopyFromParts - Create a value that contains the specified legal parts 199 /// combined into the value they represent. If the parts combine to a type 200 /// larger than ValueVT then AssertOp can be used to specify whether the extra 201 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 202 /// (ISD::AssertSext). 203 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 204 const SDValue *Parts, unsigned NumParts, 205 MVT PartVT, EVT ValueVT, const Value *V, 206 Optional<CallingConv::ID> CC = None, 207 Optional<ISD::NodeType> AssertOp = None) { 208 if (ValueVT.isVector()) 209 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 210 CC); 211 212 assert(NumParts > 0 && "No parts to assemble!"); 213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 214 SDValue Val = Parts[0]; 215 216 if (NumParts > 1) { 217 // Assemble the value from multiple parts. 218 if (ValueVT.isInteger()) { 219 unsigned PartBits = PartVT.getSizeInBits(); 220 unsigned ValueBits = ValueVT.getSizeInBits(); 221 222 // Assemble the power of 2 part. 223 unsigned RoundParts = 224 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 225 unsigned RoundBits = PartBits * RoundParts; 226 EVT RoundVT = RoundBits == ValueBits ? 227 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 228 SDValue Lo, Hi; 229 230 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 231 232 if (RoundParts > 2) { 233 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 234 PartVT, HalfVT, V); 235 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 236 RoundParts / 2, PartVT, HalfVT, V); 237 } else { 238 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 240 } 241 242 if (DAG.getDataLayout().isBigEndian()) 243 std::swap(Lo, Hi); 244 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 246 247 if (RoundParts < NumParts) { 248 // Assemble the trailing non-power-of-2 part. 249 unsigned OddParts = NumParts - RoundParts; 250 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 251 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 252 OddVT, V, CC); 253 254 // Combine the round and odd parts. 255 Lo = Val; 256 if (DAG.getDataLayout().isBigEndian()) 257 std::swap(Lo, Hi); 258 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 259 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 260 Hi = 261 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 262 DAG.getConstant(Lo.getValueSizeInBits(), DL, 263 TLI.getPointerTy(DAG.getDataLayout()))); 264 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 265 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 266 } 267 } else if (PartVT.isFloatingPoint()) { 268 // FP split into multiple FP parts (for ppcf128) 269 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 270 "Unexpected split"); 271 SDValue Lo, Hi; 272 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 273 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 274 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 275 std::swap(Lo, Hi); 276 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 277 } else { 278 // FP split into integer parts (soft fp) 279 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 280 !PartVT.isVector() && "Unexpected split"); 281 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 282 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 283 } 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 // PartEVT is the type of the register class that holds the value. 288 // ValueVT is the type of the inline asm operation. 289 EVT PartEVT = Val.getValueType(); 290 291 if (PartEVT == ValueVT) 292 return Val; 293 294 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 295 ValueVT.bitsLT(PartEVT)) { 296 // For an FP value in an integer part, we need to truncate to the right 297 // width first. 298 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 299 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 300 } 301 302 // Handle types that have the same size. 303 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 // Handle types with different sizes. 307 if (PartEVT.isInteger() && ValueVT.isInteger()) { 308 if (ValueVT.bitsLT(PartEVT)) { 309 // For a truncate, see if we have any information to 310 // indicate whether the truncated bits will always be 311 // zero or sign-extension. 312 if (AssertOp.hasValue()) 313 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 314 DAG.getValueType(ValueVT)); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 318 } 319 320 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 321 // FP_ROUND's are always exact here. 322 if (ValueVT.bitsLT(Val.getValueType())) 323 return DAG.getNode( 324 ISD::FP_ROUND, DL, ValueVT, Val, 325 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 326 327 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 328 } 329 330 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 331 // then truncating. 332 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 333 ValueVT.bitsLT(PartEVT)) { 334 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 335 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 336 } 337 338 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 339 } 340 341 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 342 const Twine &ErrMsg) { 343 const Instruction *I = dyn_cast_or_null<Instruction>(V); 344 if (!V) 345 return Ctx.emitError(ErrMsg); 346 347 const char *AsmError = ", possible invalid constraint for vector type"; 348 if (const CallInst *CI = dyn_cast<CallInst>(I)) 349 if (CI->isInlineAsm()) 350 return Ctx.emitError(I, ErrMsg + AsmError); 351 352 return Ctx.emitError(I, ErrMsg); 353 } 354 355 /// getCopyFromPartsVector - Create a value that contains the specified legal 356 /// parts combined into the value they represent. If the parts combine to a 357 /// type larger than ValueVT then AssertOp can be used to specify whether the 358 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 359 /// ValueVT (ISD::AssertSext). 360 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 361 const SDValue *Parts, unsigned NumParts, 362 MVT PartVT, EVT ValueVT, const Value *V, 363 Optional<CallingConv::ID> CallConv) { 364 assert(ValueVT.isVector() && "Not a vector value"); 365 assert(NumParts > 0 && "No parts to assemble!"); 366 const bool IsABIRegCopy = CallConv.hasValue(); 367 368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 369 SDValue Val = Parts[0]; 370 371 // Handle a multi-element vector. 372 if (NumParts > 1) { 373 EVT IntermediateVT; 374 MVT RegisterVT; 375 unsigned NumIntermediates; 376 unsigned NumRegs; 377 378 if (IsABIRegCopy) { 379 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 380 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 381 NumIntermediates, RegisterVT); 382 } else { 383 NumRegs = 384 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 385 NumIntermediates, RegisterVT); 386 } 387 388 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 389 NumParts = NumRegs; // Silence a compiler warning. 390 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 391 assert(RegisterVT.getSizeInBits() == 392 Parts[0].getSimpleValueType().getSizeInBits() && 393 "Part type sizes don't match!"); 394 395 // Assemble the parts into intermediate operands. 396 SmallVector<SDValue, 8> Ops(NumIntermediates); 397 if (NumIntermediates == NumParts) { 398 // If the register was not expanded, truncate or copy the value, 399 // as appropriate. 400 for (unsigned i = 0; i != NumParts; ++i) 401 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 402 PartVT, IntermediateVT, V); 403 } else if (NumParts > 0) { 404 // If the intermediate type was expanded, build the intermediate 405 // operands from the parts. 406 assert(NumParts % NumIntermediates == 0 && 407 "Must expand into a divisible number of parts!"); 408 unsigned Factor = NumParts / NumIntermediates; 409 for (unsigned i = 0; i != NumIntermediates; ++i) 410 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 411 PartVT, IntermediateVT, V); 412 } 413 414 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 415 // intermediate operands. 416 EVT BuiltVectorTy = 417 IntermediateVT.isVector() 418 ? EVT::getVectorVT( 419 *DAG.getContext(), IntermediateVT.getScalarType(), 420 IntermediateVT.getVectorElementCount() * NumParts) 421 : EVT::getVectorVT(*DAG.getContext(), 422 IntermediateVT.getScalarType(), 423 NumIntermediates); 424 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 425 : ISD::BUILD_VECTOR, 426 DL, BuiltVectorTy, Ops); 427 } 428 429 // There is now one part, held in Val. Correct it to match ValueVT. 430 EVT PartEVT = Val.getValueType(); 431 432 if (PartEVT == ValueVT) 433 return Val; 434 435 if (PartEVT.isVector()) { 436 // If the element type of the source/dest vectors are the same, but the 437 // parts vector has more elements than the value vector, then we have a 438 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 439 // elements we want. 440 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 441 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 442 "Cannot narrow, it would be a lossy transformation"); 443 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 444 DAG.getVectorIdxConstant(0, DL)); 445 } 446 447 // Vector/Vector bitcast. 448 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 449 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 450 451 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 452 "Cannot handle this kind of promotion"); 453 // Promoted vector extract 454 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 455 456 } 457 458 // Trivial bitcast if the types are the same size and the destination 459 // vector type is legal. 460 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 461 TLI.isTypeLegal(ValueVT)) 462 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 463 464 if (ValueVT.getVectorNumElements() != 1) { 465 // Certain ABIs require that vectors are passed as integers. For vectors 466 // are the same size, this is an obvious bitcast. 467 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 468 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 469 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 470 // Bitcast Val back the original type and extract the corresponding 471 // vector we want. 472 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 473 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 474 ValueVT.getVectorElementType(), Elts); 475 Val = DAG.getBitcast(WiderVecType, Val); 476 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getVectorIdxConstant(0, DL)); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 488 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 489 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 490 else 491 Val = ValueVT.isFloatingPoint() 492 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 493 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 494 } 495 496 return DAG.getBuildVector(ValueVT, DL, Val); 497 } 498 499 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 500 SDValue Val, SDValue *Parts, unsigned NumParts, 501 MVT PartVT, const Value *V, 502 Optional<CallingConv::ID> CallConv); 503 504 /// getCopyToParts - Create a series of nodes that contain the specified value 505 /// split into legal parts. If the parts contain more bits than Val, then, for 506 /// integers, ExtendKind can be used to specify how to generate the extra bits. 507 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 508 SDValue *Parts, unsigned NumParts, MVT PartVT, 509 const Value *V, 510 Optional<CallingConv::ID> CallConv = None, 511 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 512 EVT ValueVT = Val.getValueType(); 513 514 // Handle the vector case separately. 515 if (ValueVT.isVector()) 516 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 517 CallConv); 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 unsigned OrigNumParts = NumParts; 521 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 522 "Copying to an illegal type!"); 523 524 if (NumParts == 0) 525 return; 526 527 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 528 EVT PartEVT = PartVT; 529 if (PartEVT == ValueVT) { 530 assert(NumParts == 1 && "No-op copy with multiple parts!"); 531 Parts[0] = Val; 532 return; 533 } 534 535 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 536 // If the parts cover more bits than the value has, promote the value. 537 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 538 assert(NumParts == 1 && "Do not know what to promote to!"); 539 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 540 } else { 541 if (ValueVT.isFloatingPoint()) { 542 // FP values need to be bitcast, then extended if they are being put 543 // into a larger container. 544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 545 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 546 } 547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 548 ValueVT.isInteger() && 549 "Unknown mismatch!"); 550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 551 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 552 if (PartVT == MVT::x86mmx) 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 } else if (PartBits == ValueVT.getSizeInBits()) { 556 // Different types of the same size. 557 assert(NumParts == 1 && PartEVT != ValueVT); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 560 // If the parts cover less bits than value has, truncate the value. 561 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 562 ValueVT.isInteger() && 563 "Unknown mismatch!"); 564 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 565 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 566 if (PartVT == MVT::x86mmx) 567 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 568 } 569 570 // The value may have changed - recompute ValueVT. 571 ValueVT = Val.getValueType(); 572 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 573 "Failed to tile the value with PartVT!"); 574 575 if (NumParts == 1) { 576 if (PartEVT != ValueVT) { 577 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 578 "scalar-to-vector conversion failed"); 579 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 580 } 581 582 Parts[0] = Val; 583 return; 584 } 585 586 // Expand the value into multiple parts. 587 if (NumParts & (NumParts - 1)) { 588 // The number of parts is not a power of 2. Split off and copy the tail. 589 assert(PartVT.isInteger() && ValueVT.isInteger() && 590 "Do not know what to expand to!"); 591 unsigned RoundParts = 1 << Log2_32(NumParts); 592 unsigned RoundBits = RoundParts * PartBits; 593 unsigned OddParts = NumParts - RoundParts; 594 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 595 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 596 597 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 598 CallConv); 599 600 if (DAG.getDataLayout().isBigEndian()) 601 // The odd parts were reversed by getCopyToParts - unreverse them. 602 std::reverse(Parts + RoundParts, Parts + NumParts); 603 604 NumParts = RoundParts; 605 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 606 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 607 } 608 609 // The number of parts is a power of 2. Repeatedly bisect the value using 610 // EXTRACT_ELEMENT. 611 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 612 EVT::getIntegerVT(*DAG.getContext(), 613 ValueVT.getSizeInBits()), 614 Val); 615 616 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 617 for (unsigned i = 0; i < NumParts; i += StepSize) { 618 unsigned ThisBits = StepSize * PartBits / 2; 619 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 620 SDValue &Part0 = Parts[i]; 621 SDValue &Part1 = Parts[i+StepSize/2]; 622 623 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 625 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 627 628 if (ThisBits == PartBits && ThisVT != PartVT) { 629 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 630 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 631 } 632 } 633 } 634 635 if (DAG.getDataLayout().isBigEndian()) 636 std::reverse(Parts, Parts + OrigNumParts); 637 } 638 639 static SDValue widenVectorToPartType(SelectionDAG &DAG, 640 SDValue Val, const SDLoc &DL, EVT PartVT) { 641 if (!PartVT.isVector()) 642 return SDValue(); 643 644 EVT ValueVT = Val.getValueType(); 645 unsigned PartNumElts = PartVT.getVectorNumElements(); 646 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 647 if (PartNumElts > ValueNumElts && 648 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 649 EVT ElementVT = PartVT.getVectorElementType(); 650 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 651 // undef elements. 652 SmallVector<SDValue, 16> Ops; 653 DAG.ExtractVectorElements(Val, Ops); 654 SDValue EltUndef = DAG.getUNDEF(ElementVT); 655 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 656 Ops.push_back(EltUndef); 657 658 // FIXME: Use CONCAT for 2x -> 4x. 659 return DAG.getBuildVector(PartVT, DL, Ops); 660 } 661 662 return SDValue(); 663 } 664 665 /// getCopyToPartsVector - Create a series of nodes that contain the specified 666 /// value split into legal parts. 667 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 668 SDValue Val, SDValue *Parts, unsigned NumParts, 669 MVT PartVT, const Value *V, 670 Optional<CallingConv::ID> CallConv) { 671 EVT ValueVT = Val.getValueType(); 672 assert(ValueVT.isVector() && "Not a vector"); 673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 674 const bool IsABIRegCopy = CallConv.hasValue(); 675 676 if (NumParts == 1) { 677 EVT PartEVT = PartVT; 678 if (PartEVT == ValueVT) { 679 // Nothing to do. 680 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 681 // Bitconvert vector->vector case. 682 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 683 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 684 Val = Widened; 685 } else if (PartVT.isVector() && 686 PartEVT.getVectorElementType().bitsGE( 687 ValueVT.getVectorElementType()) && 688 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 689 690 // Promoted vector extract 691 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 692 } else { 693 if (ValueVT.getVectorNumElements() == 1) { 694 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 695 DAG.getVectorIdxConstant(0, DL)); 696 } else { 697 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 698 "lossy conversion of vector to scalar type"); 699 EVT IntermediateType = 700 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 701 Val = DAG.getBitcast(IntermediateType, Val); 702 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 703 } 704 } 705 706 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 707 Parts[0] = Val; 708 return; 709 } 710 711 // Handle a multi-element vector. 712 EVT IntermediateVT; 713 MVT RegisterVT; 714 unsigned NumIntermediates; 715 unsigned NumRegs; 716 if (IsABIRegCopy) { 717 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 718 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } else { 721 NumRegs = 722 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 723 NumIntermediates, RegisterVT); 724 } 725 726 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 727 NumParts = NumRegs; // Silence a compiler warning. 728 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 729 730 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 731 IntermediateVT.getVectorNumElements() : 1; 732 733 // Convert the vector to the appropriate type if necessary. 734 auto DestEltCnt = ElementCount(NumIntermediates * IntermediateNumElts, 735 ValueVT.isScalableVector()); 736 EVT BuiltVectorTy = EVT::getVectorVT( 737 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt); 738 if (ValueVT != BuiltVectorTy) { 739 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 740 Val = Widened; 741 742 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 743 } 744 745 // Split the vector into intermediate operands. 746 SmallVector<SDValue, 8> Ops(NumIntermediates); 747 for (unsigned i = 0; i != NumIntermediates; ++i) { 748 if (IntermediateVT.isVector()) { 749 Ops[i] = 750 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 751 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 752 } else { 753 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 754 DAG.getVectorIdxConstant(i, DL)); 755 } 756 } 757 758 // Split the intermediate operands into legal parts. 759 if (NumParts == NumIntermediates) { 760 // If the register was not expanded, promote or copy the value, 761 // as appropriate. 762 for (unsigned i = 0; i != NumParts; ++i) 763 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 764 } else if (NumParts > 0) { 765 // If the intermediate type was expanded, split each the value into 766 // legal parts. 767 assert(NumIntermediates != 0 && "division by zero"); 768 assert(NumParts % NumIntermediates == 0 && 769 "Must expand into a divisible number of parts!"); 770 unsigned Factor = NumParts / NumIntermediates; 771 for (unsigned i = 0; i != NumIntermediates; ++i) 772 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 773 CallConv); 774 } 775 } 776 777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 778 EVT valuevt, Optional<CallingConv::ID> CC) 779 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 780 RegCount(1, regs.size()), CallConv(CC) {} 781 782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 783 const DataLayout &DL, unsigned Reg, Type *Ty, 784 Optional<CallingConv::ID> CC) { 785 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 786 787 CallConv = CC; 788 789 for (EVT ValueVT : ValueVTs) { 790 unsigned NumRegs = 791 isABIMangled() 792 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 793 : TLI.getNumRegisters(Context, ValueVT); 794 MVT RegisterVT = 795 isABIMangled() 796 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 797 : TLI.getRegisterType(Context, ValueVT); 798 for (unsigned i = 0; i != NumRegs; ++i) 799 Regs.push_back(Reg + i); 800 RegVTs.push_back(RegisterVT); 801 RegCount.push_back(NumRegs); 802 Reg += NumRegs; 803 } 804 } 805 806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 807 FunctionLoweringInfo &FuncInfo, 808 const SDLoc &dl, SDValue &Chain, 809 SDValue *Flag, const Value *V) const { 810 // A Value with type {} or [0 x %t] needs no registers. 811 if (ValueVTs.empty()) 812 return SDValue(); 813 814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 815 816 // Assemble the legal parts into the final values. 817 SmallVector<SDValue, 4> Values(ValueVTs.size()); 818 SmallVector<SDValue, 8> Parts; 819 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 820 // Copy the legal parts from the registers. 821 EVT ValueVT = ValueVTs[Value]; 822 unsigned NumRegs = RegCount[Value]; 823 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 824 *DAG.getContext(), 825 CallConv.getValue(), RegVTs[Value]) 826 : RegVTs[Value]; 827 828 Parts.resize(NumRegs); 829 for (unsigned i = 0; i != NumRegs; ++i) { 830 SDValue P; 831 if (!Flag) { 832 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 833 } else { 834 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 835 *Flag = P.getValue(2); 836 } 837 838 Chain = P.getValue(1); 839 Parts[i] = P; 840 841 // If the source register was virtual and if we know something about it, 842 // add an assert node. 843 if (!Register::isVirtualRegister(Regs[Part + i]) || 844 !RegisterVT.isInteger()) 845 continue; 846 847 const FunctionLoweringInfo::LiveOutInfo *LOI = 848 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 849 if (!LOI) 850 continue; 851 852 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 853 unsigned NumSignBits = LOI->NumSignBits; 854 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 855 856 if (NumZeroBits == RegSize) { 857 // The current value is a zero. 858 // Explicitly express that as it would be easier for 859 // optimizations to kick in. 860 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 861 continue; 862 } 863 864 // FIXME: We capture more information than the dag can represent. For 865 // now, just use the tightest assertzext/assertsext possible. 866 bool isSExt; 867 EVT FromVT(MVT::Other); 868 if (NumZeroBits) { 869 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 870 isSExt = false; 871 } else if (NumSignBits > 1) { 872 FromVT = 873 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 874 isSExt = true; 875 } else { 876 continue; 877 } 878 // Add an assertion node. 879 assert(FromVT != MVT::Other); 880 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 881 RegisterVT, P, DAG.getValueType(FromVT)); 882 } 883 884 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 885 RegisterVT, ValueVT, V, CallConv); 886 Part += NumRegs; 887 Parts.clear(); 888 } 889 890 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 891 } 892 893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 894 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 895 const Value *V, 896 ISD::NodeType PreferredExtendType) const { 897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 898 ISD::NodeType ExtendKind = PreferredExtendType; 899 900 // Get the list of the values's legal parts. 901 unsigned NumRegs = Regs.size(); 902 SmallVector<SDValue, 8> Parts(NumRegs); 903 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 904 unsigned NumParts = RegCount[Value]; 905 906 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 907 *DAG.getContext(), 908 CallConv.getValue(), RegVTs[Value]) 909 : RegVTs[Value]; 910 911 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 912 ExtendKind = ISD::ZERO_EXTEND; 913 914 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 915 NumParts, RegisterVT, V, CallConv, ExtendKind); 916 Part += NumParts; 917 } 918 919 // Copy the parts into the registers. 920 SmallVector<SDValue, 8> Chains(NumRegs); 921 for (unsigned i = 0; i != NumRegs; ++i) { 922 SDValue Part; 923 if (!Flag) { 924 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 925 } else { 926 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 927 *Flag = Part.getValue(1); 928 } 929 930 Chains[i] = Part.getValue(0); 931 } 932 933 if (NumRegs == 1 || Flag) 934 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 935 // flagged to it. That is the CopyToReg nodes and the user are considered 936 // a single scheduling unit. If we create a TokenFactor and return it as 937 // chain, then the TokenFactor is both a predecessor (operand) of the 938 // user as well as a successor (the TF operands are flagged to the user). 939 // c1, f1 = CopyToReg 940 // c2, f2 = CopyToReg 941 // c3 = TokenFactor c1, c2 942 // ... 943 // = op c3, ..., f2 944 Chain = Chains[NumRegs-1]; 945 else 946 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 947 } 948 949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 950 unsigned MatchingIdx, const SDLoc &dl, 951 SelectionDAG &DAG, 952 std::vector<SDValue> &Ops) const { 953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 954 955 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 956 if (HasMatching) 957 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 958 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 959 // Put the register class of the virtual registers in the flag word. That 960 // way, later passes can recompute register class constraints for inline 961 // assembly as well as normal instructions. 962 // Don't do this for tied operands that can use the regclass information 963 // from the def. 964 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 965 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 966 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 967 } 968 969 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 970 Ops.push_back(Res); 971 972 if (Code == InlineAsm::Kind_Clobber) { 973 // Clobbers should always have a 1:1 mapping with registers, and may 974 // reference registers that have illegal (e.g. vector) types. Hence, we 975 // shouldn't try to apply any sort of splitting logic to them. 976 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 977 "No 1:1 mapping from clobbers to regs?"); 978 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 979 (void)SP; 980 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 981 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 982 assert( 983 (Regs[I] != SP || 984 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 985 "If we clobbered the stack pointer, MFI should know about it."); 986 } 987 return; 988 } 989 990 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 991 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 992 MVT RegisterVT = RegVTs[Value]; 993 for (unsigned i = 0; i != NumRegs; ++i) { 994 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 995 unsigned TheReg = Regs[Reg++]; 996 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 997 } 998 } 999 } 1000 1001 SmallVector<std::pair<unsigned, unsigned>, 4> 1002 RegsForValue::getRegsAndSizes() const { 1003 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1004 unsigned I = 0; 1005 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1006 unsigned RegCount = std::get<0>(CountAndVT); 1007 MVT RegisterVT = std::get<1>(CountAndVT); 1008 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1009 for (unsigned E = I + RegCount; I != E; ++I) 1010 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1011 } 1012 return OutVec; 1013 } 1014 1015 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1016 const TargetLibraryInfo *li) { 1017 AA = aa; 1018 GFI = gfi; 1019 LibInfo = li; 1020 DL = &DAG.getDataLayout(); 1021 Context = DAG.getContext(); 1022 LPadToCallSiteMap.clear(); 1023 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1024 } 1025 1026 void SelectionDAGBuilder::clear() { 1027 NodeMap.clear(); 1028 UnusedArgNodeMap.clear(); 1029 PendingLoads.clear(); 1030 PendingExports.clear(); 1031 PendingConstrainedFP.clear(); 1032 PendingConstrainedFPStrict.clear(); 1033 CurInst = nullptr; 1034 HasTailCall = false; 1035 SDNodeOrder = LowestSDNodeOrder; 1036 StatepointLowering.clear(); 1037 } 1038 1039 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1040 DanglingDebugInfoMap.clear(); 1041 } 1042 1043 // Update DAG root to include dependencies on Pending chains. 1044 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1045 SDValue Root = DAG.getRoot(); 1046 1047 if (Pending.empty()) 1048 return Root; 1049 1050 // Add current root to PendingChains, unless we already indirectly 1051 // depend on it. 1052 if (Root.getOpcode() != ISD::EntryToken) { 1053 unsigned i = 0, e = Pending.size(); 1054 for (; i != e; ++i) { 1055 assert(Pending[i].getNode()->getNumOperands() > 1); 1056 if (Pending[i].getNode()->getOperand(0) == Root) 1057 break; // Don't add the root if we already indirectly depend on it. 1058 } 1059 1060 if (i == e) 1061 Pending.push_back(Root); 1062 } 1063 1064 if (Pending.size() == 1) 1065 Root = Pending[0]; 1066 else 1067 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1068 1069 DAG.setRoot(Root); 1070 Pending.clear(); 1071 return Root; 1072 } 1073 1074 SDValue SelectionDAGBuilder::getMemoryRoot() { 1075 return updateRoot(PendingLoads); 1076 } 1077 1078 SDValue SelectionDAGBuilder::getRoot() { 1079 // Chain up all pending constrained intrinsics together with all 1080 // pending loads, by simply appending them to PendingLoads and 1081 // then calling getMemoryRoot(). 1082 PendingLoads.reserve(PendingLoads.size() + 1083 PendingConstrainedFP.size() + 1084 PendingConstrainedFPStrict.size()); 1085 PendingLoads.append(PendingConstrainedFP.begin(), 1086 PendingConstrainedFP.end()); 1087 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1088 PendingConstrainedFPStrict.end()); 1089 PendingConstrainedFP.clear(); 1090 PendingConstrainedFPStrict.clear(); 1091 return getMemoryRoot(); 1092 } 1093 1094 SDValue SelectionDAGBuilder::getControlRoot() { 1095 // We need to emit pending fpexcept.strict constrained intrinsics, 1096 // so append them to the PendingExports list. 1097 PendingExports.append(PendingConstrainedFPStrict.begin(), 1098 PendingConstrainedFPStrict.end()); 1099 PendingConstrainedFPStrict.clear(); 1100 return updateRoot(PendingExports); 1101 } 1102 1103 void SelectionDAGBuilder::visit(const Instruction &I) { 1104 // Set up outgoing PHI node register values before emitting the terminator. 1105 if (I.isTerminator()) { 1106 HandlePHINodesInSuccessorBlocks(I.getParent()); 1107 } 1108 1109 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1110 if (!isa<DbgInfoIntrinsic>(I)) 1111 ++SDNodeOrder; 1112 1113 CurInst = &I; 1114 1115 visit(I.getOpcode(), I); 1116 1117 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1118 // ConstrainedFPIntrinsics handle their own FMF. 1119 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1120 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1121 // maps to this instruction. 1122 // TODO: We could handle all flags (nsw, etc) here. 1123 // TODO: If an IR instruction maps to >1 node, only the final node will have 1124 // flags set. 1125 if (SDNode *Node = getNodeForIRValue(&I)) { 1126 SDNodeFlags IncomingFlags; 1127 IncomingFlags.copyFMF(*FPMO); 1128 if (!Node->getFlags().isDefined()) 1129 Node->setFlags(IncomingFlags); 1130 else 1131 Node->intersectFlagsWith(IncomingFlags); 1132 } 1133 } 1134 } 1135 1136 if (!I.isTerminator() && !HasTailCall && 1137 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1138 CopyToExportRegsIfNeeded(&I); 1139 1140 CurInst = nullptr; 1141 } 1142 1143 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1144 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1145 } 1146 1147 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1148 // Note: this doesn't use InstVisitor, because it has to work with 1149 // ConstantExpr's in addition to instructions. 1150 switch (Opcode) { 1151 default: llvm_unreachable("Unknown instruction type encountered!"); 1152 // Build the switch statement using the Instruction.def file. 1153 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1154 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1155 #include "llvm/IR/Instruction.def" 1156 } 1157 } 1158 1159 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1160 const DIExpression *Expr) { 1161 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1162 const DbgValueInst *DI = DDI.getDI(); 1163 DIVariable *DanglingVariable = DI->getVariable(); 1164 DIExpression *DanglingExpr = DI->getExpression(); 1165 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1166 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1167 return true; 1168 } 1169 return false; 1170 }; 1171 1172 for (auto &DDIMI : DanglingDebugInfoMap) { 1173 DanglingDebugInfoVector &DDIV = DDIMI.second; 1174 1175 // If debug info is to be dropped, run it through final checks to see 1176 // whether it can be salvaged. 1177 for (auto &DDI : DDIV) 1178 if (isMatchingDbgValue(DDI)) 1179 salvageUnresolvedDbgValue(DDI); 1180 1181 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1182 } 1183 } 1184 1185 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1186 // generate the debug data structures now that we've seen its definition. 1187 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1188 SDValue Val) { 1189 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1190 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1191 return; 1192 1193 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1194 for (auto &DDI : DDIV) { 1195 const DbgValueInst *DI = DDI.getDI(); 1196 assert(DI && "Ill-formed DanglingDebugInfo"); 1197 DebugLoc dl = DDI.getdl(); 1198 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1199 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1200 DILocalVariable *Variable = DI->getVariable(); 1201 DIExpression *Expr = DI->getExpression(); 1202 assert(Variable->isValidLocationForIntrinsic(dl) && 1203 "Expected inlined-at fields to agree"); 1204 SDDbgValue *SDV; 1205 if (Val.getNode()) { 1206 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1207 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1208 // we couldn't resolve it directly when examining the DbgValue intrinsic 1209 // in the first place we should not be more successful here). Unless we 1210 // have some test case that prove this to be correct we should avoid 1211 // calling EmitFuncArgumentDbgValue here. 1212 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1213 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1214 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1215 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1216 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1217 // inserted after the definition of Val when emitting the instructions 1218 // after ISel. An alternative could be to teach 1219 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1220 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1221 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1222 << ValSDNodeOrder << "\n"); 1223 SDV = getDbgValue(Val, Variable, Expr, dl, 1224 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1225 DAG.AddDbgValue(SDV, Val.getNode(), false); 1226 } else 1227 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1228 << "in EmitFuncArgumentDbgValue\n"); 1229 } else { 1230 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1231 auto Undef = 1232 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1233 auto SDV = 1234 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1235 DAG.AddDbgValue(SDV, nullptr, false); 1236 } 1237 } 1238 DDIV.clear(); 1239 } 1240 1241 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1242 Value *V = DDI.getDI()->getValue(); 1243 DILocalVariable *Var = DDI.getDI()->getVariable(); 1244 DIExpression *Expr = DDI.getDI()->getExpression(); 1245 DebugLoc DL = DDI.getdl(); 1246 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1247 unsigned SDOrder = DDI.getSDNodeOrder(); 1248 1249 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1250 // that DW_OP_stack_value is desired. 1251 assert(isa<DbgValueInst>(DDI.getDI())); 1252 bool StackValue = true; 1253 1254 // Can this Value can be encoded without any further work? 1255 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1256 return; 1257 1258 // Attempt to salvage back through as many instructions as possible. Bail if 1259 // a non-instruction is seen, such as a constant expression or global 1260 // variable. FIXME: Further work could recover those too. 1261 while (isa<Instruction>(V)) { 1262 Instruction &VAsInst = *cast<Instruction>(V); 1263 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1264 1265 // If we cannot salvage any further, and haven't yet found a suitable debug 1266 // expression, bail out. 1267 if (!NewExpr) 1268 break; 1269 1270 // New value and expr now represent this debuginfo. 1271 V = VAsInst.getOperand(0); 1272 Expr = NewExpr; 1273 1274 // Some kind of simplification occurred: check whether the operand of the 1275 // salvaged debug expression can be encoded in this DAG. 1276 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1277 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1278 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1279 return; 1280 } 1281 } 1282 1283 // This was the final opportunity to salvage this debug information, and it 1284 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1285 // any earlier variable location. 1286 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1287 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1288 DAG.AddDbgValue(SDV, nullptr, false); 1289 1290 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1291 << "\n"); 1292 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1293 << "\n"); 1294 } 1295 1296 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1297 DIExpression *Expr, DebugLoc dl, 1298 DebugLoc InstDL, unsigned Order) { 1299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1300 SDDbgValue *SDV; 1301 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1302 isa<ConstantPointerNull>(V)) { 1303 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1304 DAG.AddDbgValue(SDV, nullptr, false); 1305 return true; 1306 } 1307 1308 // If the Value is a frame index, we can create a FrameIndex debug value 1309 // without relying on the DAG at all. 1310 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1311 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1312 if (SI != FuncInfo.StaticAllocaMap.end()) { 1313 auto SDV = 1314 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1315 /*IsIndirect*/ false, dl, SDNodeOrder); 1316 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1317 // is still available even if the SDNode gets optimized out. 1318 DAG.AddDbgValue(SDV, nullptr, false); 1319 return true; 1320 } 1321 } 1322 1323 // Do not use getValue() in here; we don't want to generate code at 1324 // this point if it hasn't been done yet. 1325 SDValue N = NodeMap[V]; 1326 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1327 N = UnusedArgNodeMap[V]; 1328 if (N.getNode()) { 1329 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1330 return true; 1331 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1332 DAG.AddDbgValue(SDV, N.getNode(), false); 1333 return true; 1334 } 1335 1336 // Special rules apply for the first dbg.values of parameter variables in a 1337 // function. Identify them by the fact they reference Argument Values, that 1338 // they're parameters, and they are parameters of the current function. We 1339 // need to let them dangle until they get an SDNode. 1340 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1341 !InstDL.getInlinedAt(); 1342 if (!IsParamOfFunc) { 1343 // The value is not used in this block yet (or it would have an SDNode). 1344 // We still want the value to appear for the user if possible -- if it has 1345 // an associated VReg, we can refer to that instead. 1346 auto VMI = FuncInfo.ValueMap.find(V); 1347 if (VMI != FuncInfo.ValueMap.end()) { 1348 unsigned Reg = VMI->second; 1349 // If this is a PHI node, it may be split up into several MI PHI nodes 1350 // (in FunctionLoweringInfo::set). 1351 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1352 V->getType(), None); 1353 if (RFV.occupiesMultipleRegs()) { 1354 unsigned Offset = 0; 1355 unsigned BitsToDescribe = 0; 1356 if (auto VarSize = Var->getSizeInBits()) 1357 BitsToDescribe = *VarSize; 1358 if (auto Fragment = Expr->getFragmentInfo()) 1359 BitsToDescribe = Fragment->SizeInBits; 1360 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1361 unsigned RegisterSize = RegAndSize.second; 1362 // Bail out if all bits are described already. 1363 if (Offset >= BitsToDescribe) 1364 break; 1365 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1366 ? BitsToDescribe - Offset 1367 : RegisterSize; 1368 auto FragmentExpr = DIExpression::createFragmentExpression( 1369 Expr, Offset, FragmentSize); 1370 if (!FragmentExpr) 1371 continue; 1372 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1373 false, dl, SDNodeOrder); 1374 DAG.AddDbgValue(SDV, nullptr, false); 1375 Offset += RegisterSize; 1376 } 1377 } else { 1378 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1379 DAG.AddDbgValue(SDV, nullptr, false); 1380 } 1381 return true; 1382 } 1383 } 1384 1385 return false; 1386 } 1387 1388 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1389 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1390 for (auto &Pair : DanglingDebugInfoMap) 1391 for (auto &DDI : Pair.second) 1392 salvageUnresolvedDbgValue(DDI); 1393 clearDanglingDebugInfo(); 1394 } 1395 1396 /// getCopyFromRegs - If there was virtual register allocated for the value V 1397 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1398 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1399 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1400 SDValue Result; 1401 1402 if (It != FuncInfo.ValueMap.end()) { 1403 Register InReg = It->second; 1404 1405 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1406 DAG.getDataLayout(), InReg, Ty, 1407 None); // This is not an ABI copy. 1408 SDValue Chain = DAG.getEntryNode(); 1409 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1410 V); 1411 resolveDanglingDebugInfo(V, Result); 1412 } 1413 1414 return Result; 1415 } 1416 1417 /// getValue - Return an SDValue for the given Value. 1418 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1419 // If we already have an SDValue for this value, use it. It's important 1420 // to do this first, so that we don't create a CopyFromReg if we already 1421 // have a regular SDValue. 1422 SDValue &N = NodeMap[V]; 1423 if (N.getNode()) return N; 1424 1425 // If there's a virtual register allocated and initialized for this 1426 // value, use it. 1427 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1428 return copyFromReg; 1429 1430 // Otherwise create a new SDValue and remember it. 1431 SDValue Val = getValueImpl(V); 1432 NodeMap[V] = Val; 1433 resolveDanglingDebugInfo(V, Val); 1434 return Val; 1435 } 1436 1437 /// getNonRegisterValue - Return an SDValue for the given Value, but 1438 /// don't look in FuncInfo.ValueMap for a virtual register. 1439 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1440 // If we already have an SDValue for this value, use it. 1441 SDValue &N = NodeMap[V]; 1442 if (N.getNode()) { 1443 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1444 // Remove the debug location from the node as the node is about to be used 1445 // in a location which may differ from the original debug location. This 1446 // is relevant to Constant and ConstantFP nodes because they can appear 1447 // as constant expressions inside PHI nodes. 1448 N->setDebugLoc(DebugLoc()); 1449 } 1450 return N; 1451 } 1452 1453 // Otherwise create a new SDValue and remember it. 1454 SDValue Val = getValueImpl(V); 1455 NodeMap[V] = Val; 1456 resolveDanglingDebugInfo(V, Val); 1457 return Val; 1458 } 1459 1460 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1461 /// Create an SDValue for the given value. 1462 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1464 1465 if (const Constant *C = dyn_cast<Constant>(V)) { 1466 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1467 1468 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1469 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1470 1471 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1472 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1473 1474 if (isa<ConstantPointerNull>(C)) { 1475 unsigned AS = V->getType()->getPointerAddressSpace(); 1476 return DAG.getConstant(0, getCurSDLoc(), 1477 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1478 } 1479 1480 if (match(C, m_VScale(DAG.getDataLayout()))) 1481 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1482 1483 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1484 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1485 1486 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1487 return DAG.getUNDEF(VT); 1488 1489 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1490 visit(CE->getOpcode(), *CE); 1491 SDValue N1 = NodeMap[V]; 1492 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1493 return N1; 1494 } 1495 1496 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1497 SmallVector<SDValue, 4> Constants; 1498 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1499 OI != OE; ++OI) { 1500 SDNode *Val = getValue(*OI).getNode(); 1501 // If the operand is an empty aggregate, there are no values. 1502 if (!Val) continue; 1503 // Add each leaf value from the operand to the Constants list 1504 // to form a flattened list of all the values. 1505 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1506 Constants.push_back(SDValue(Val, i)); 1507 } 1508 1509 return DAG.getMergeValues(Constants, getCurSDLoc()); 1510 } 1511 1512 if (const ConstantDataSequential *CDS = 1513 dyn_cast<ConstantDataSequential>(C)) { 1514 SmallVector<SDValue, 4> Ops; 1515 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1516 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1517 // Add each leaf value from the operand to the Constants list 1518 // to form a flattened list of all the values. 1519 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1520 Ops.push_back(SDValue(Val, i)); 1521 } 1522 1523 if (isa<ArrayType>(CDS->getType())) 1524 return DAG.getMergeValues(Ops, getCurSDLoc()); 1525 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1526 } 1527 1528 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1529 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1530 "Unknown struct or array constant!"); 1531 1532 SmallVector<EVT, 4> ValueVTs; 1533 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1534 unsigned NumElts = ValueVTs.size(); 1535 if (NumElts == 0) 1536 return SDValue(); // empty struct 1537 SmallVector<SDValue, 4> Constants(NumElts); 1538 for (unsigned i = 0; i != NumElts; ++i) { 1539 EVT EltVT = ValueVTs[i]; 1540 if (isa<UndefValue>(C)) 1541 Constants[i] = DAG.getUNDEF(EltVT); 1542 else if (EltVT.isFloatingPoint()) 1543 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1544 else 1545 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1546 } 1547 1548 return DAG.getMergeValues(Constants, getCurSDLoc()); 1549 } 1550 1551 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1552 return DAG.getBlockAddress(BA, VT); 1553 1554 VectorType *VecTy = cast<VectorType>(V->getType()); 1555 1556 // Now that we know the number and type of the elements, get that number of 1557 // elements into the Ops array based on what kind of constant it is. 1558 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1559 SmallVector<SDValue, 16> Ops; 1560 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1561 for (unsigned i = 0; i != NumElements; ++i) 1562 Ops.push_back(getValue(CV->getOperand(i))); 1563 1564 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1565 } else if (isa<ConstantAggregateZero>(C)) { 1566 EVT EltVT = 1567 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1568 1569 SDValue Op; 1570 if (EltVT.isFloatingPoint()) 1571 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1572 else 1573 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1574 1575 if (isa<ScalableVectorType>(VecTy)) 1576 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1577 else { 1578 SmallVector<SDValue, 16> Ops; 1579 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1580 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1581 } 1582 } 1583 llvm_unreachable("Unknown vector constant"); 1584 } 1585 1586 // If this is a static alloca, generate it as the frameindex instead of 1587 // computation. 1588 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1589 DenseMap<const AllocaInst*, int>::iterator SI = 1590 FuncInfo.StaticAllocaMap.find(AI); 1591 if (SI != FuncInfo.StaticAllocaMap.end()) 1592 return DAG.getFrameIndex(SI->second, 1593 TLI.getFrameIndexTy(DAG.getDataLayout())); 1594 } 1595 1596 // If this is an instruction which fast-isel has deferred, select it now. 1597 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1598 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1599 1600 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1601 Inst->getType(), getABIRegCopyCC(V)); 1602 SDValue Chain = DAG.getEntryNode(); 1603 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1604 } 1605 1606 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1607 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1608 } 1609 llvm_unreachable("Can't get register for value!"); 1610 } 1611 1612 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1613 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1614 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1615 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1616 bool IsSEH = isAsynchronousEHPersonality(Pers); 1617 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1618 if (!IsSEH) 1619 CatchPadMBB->setIsEHScopeEntry(); 1620 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1621 if (IsMSVCCXX || IsCoreCLR) 1622 CatchPadMBB->setIsEHFuncletEntry(); 1623 } 1624 1625 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1626 // Update machine-CFG edge. 1627 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1628 FuncInfo.MBB->addSuccessor(TargetMBB); 1629 1630 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1631 bool IsSEH = isAsynchronousEHPersonality(Pers); 1632 if (IsSEH) { 1633 // If this is not a fall-through branch or optimizations are switched off, 1634 // emit the branch. 1635 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1636 TM.getOptLevel() == CodeGenOpt::None) 1637 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1638 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1639 return; 1640 } 1641 1642 // Figure out the funclet membership for the catchret's successor. 1643 // This will be used by the FuncletLayout pass to determine how to order the 1644 // BB's. 1645 // A 'catchret' returns to the outer scope's color. 1646 Value *ParentPad = I.getCatchSwitchParentPad(); 1647 const BasicBlock *SuccessorColor; 1648 if (isa<ConstantTokenNone>(ParentPad)) 1649 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1650 else 1651 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1652 assert(SuccessorColor && "No parent funclet for catchret!"); 1653 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1654 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1655 1656 // Create the terminator node. 1657 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1658 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1659 DAG.getBasicBlock(SuccessorColorMBB)); 1660 DAG.setRoot(Ret); 1661 } 1662 1663 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1664 // Don't emit any special code for the cleanuppad instruction. It just marks 1665 // the start of an EH scope/funclet. 1666 FuncInfo.MBB->setIsEHScopeEntry(); 1667 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1668 if (Pers != EHPersonality::Wasm_CXX) { 1669 FuncInfo.MBB->setIsEHFuncletEntry(); 1670 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1671 } 1672 } 1673 1674 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1675 // the control flow always stops at the single catch pad, as it does for a 1676 // cleanup pad. In case the exception caught is not of the types the catch pad 1677 // catches, it will be rethrown by a rethrow. 1678 static void findWasmUnwindDestinations( 1679 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1680 BranchProbability Prob, 1681 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1682 &UnwindDests) { 1683 while (EHPadBB) { 1684 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1685 if (isa<CleanupPadInst>(Pad)) { 1686 // Stop on cleanup pads. 1687 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1688 UnwindDests.back().first->setIsEHScopeEntry(); 1689 break; 1690 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1691 // Add the catchpad handlers to the possible destinations. We don't 1692 // continue to the unwind destination of the catchswitch for wasm. 1693 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1694 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1695 UnwindDests.back().first->setIsEHScopeEntry(); 1696 } 1697 break; 1698 } else { 1699 continue; 1700 } 1701 } 1702 } 1703 1704 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1705 /// many places it could ultimately go. In the IR, we have a single unwind 1706 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1707 /// This function skips over imaginary basic blocks that hold catchswitch 1708 /// instructions, and finds all the "real" machine 1709 /// basic block destinations. As those destinations may not be successors of 1710 /// EHPadBB, here we also calculate the edge probability to those destinations. 1711 /// The passed-in Prob is the edge probability to EHPadBB. 1712 static void findUnwindDestinations( 1713 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1714 BranchProbability Prob, 1715 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1716 &UnwindDests) { 1717 EHPersonality Personality = 1718 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1719 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1720 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1721 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1722 bool IsSEH = isAsynchronousEHPersonality(Personality); 1723 1724 if (IsWasmCXX) { 1725 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1726 assert(UnwindDests.size() <= 1 && 1727 "There should be at most one unwind destination for wasm"); 1728 return; 1729 } 1730 1731 while (EHPadBB) { 1732 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1733 BasicBlock *NewEHPadBB = nullptr; 1734 if (isa<LandingPadInst>(Pad)) { 1735 // Stop on landingpads. They are not funclets. 1736 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1737 break; 1738 } else if (isa<CleanupPadInst>(Pad)) { 1739 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1740 // personalities. 1741 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1742 UnwindDests.back().first->setIsEHScopeEntry(); 1743 UnwindDests.back().first->setIsEHFuncletEntry(); 1744 break; 1745 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1746 // Add the catchpad handlers to the possible destinations. 1747 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1748 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1749 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1750 if (IsMSVCCXX || IsCoreCLR) 1751 UnwindDests.back().first->setIsEHFuncletEntry(); 1752 if (!IsSEH) 1753 UnwindDests.back().first->setIsEHScopeEntry(); 1754 } 1755 NewEHPadBB = CatchSwitch->getUnwindDest(); 1756 } else { 1757 continue; 1758 } 1759 1760 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1761 if (BPI && NewEHPadBB) 1762 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1763 EHPadBB = NewEHPadBB; 1764 } 1765 } 1766 1767 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1768 // Update successor info. 1769 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1770 auto UnwindDest = I.getUnwindDest(); 1771 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1772 BranchProbability UnwindDestProb = 1773 (BPI && UnwindDest) 1774 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1775 : BranchProbability::getZero(); 1776 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1777 for (auto &UnwindDest : UnwindDests) { 1778 UnwindDest.first->setIsEHPad(); 1779 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1780 } 1781 FuncInfo.MBB->normalizeSuccProbs(); 1782 1783 // Create the terminator node. 1784 SDValue Ret = 1785 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1786 DAG.setRoot(Ret); 1787 } 1788 1789 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1790 report_fatal_error("visitCatchSwitch not yet implemented!"); 1791 } 1792 1793 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 auto &DL = DAG.getDataLayout(); 1796 SDValue Chain = getControlRoot(); 1797 SmallVector<ISD::OutputArg, 8> Outs; 1798 SmallVector<SDValue, 8> OutVals; 1799 1800 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1801 // lower 1802 // 1803 // %val = call <ty> @llvm.experimental.deoptimize() 1804 // ret <ty> %val 1805 // 1806 // differently. 1807 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1808 LowerDeoptimizingReturn(); 1809 return; 1810 } 1811 1812 if (!FuncInfo.CanLowerReturn) { 1813 unsigned DemoteReg = FuncInfo.DemoteRegister; 1814 const Function *F = I.getParent()->getParent(); 1815 1816 // Emit a store of the return value through the virtual register. 1817 // Leave Outs empty so that LowerReturn won't try to load return 1818 // registers the usual way. 1819 SmallVector<EVT, 1> PtrValueVTs; 1820 ComputeValueVTs(TLI, DL, 1821 F->getReturnType()->getPointerTo( 1822 DAG.getDataLayout().getAllocaAddrSpace()), 1823 PtrValueVTs); 1824 1825 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1826 DemoteReg, PtrValueVTs[0]); 1827 SDValue RetOp = getValue(I.getOperand(0)); 1828 1829 SmallVector<EVT, 4> ValueVTs, MemVTs; 1830 SmallVector<uint64_t, 4> Offsets; 1831 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1832 &Offsets); 1833 unsigned NumValues = ValueVTs.size(); 1834 1835 SmallVector<SDValue, 4> Chains(NumValues); 1836 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1837 for (unsigned i = 0; i != NumValues; ++i) { 1838 // An aggregate return value cannot wrap around the address space, so 1839 // offsets to its parts don't wrap either. 1840 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1841 1842 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1843 if (MemVTs[i] != ValueVTs[i]) 1844 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1845 Chains[i] = DAG.getStore( 1846 Chain, getCurSDLoc(), Val, 1847 // FIXME: better loc info would be nice. 1848 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1849 commonAlignment(BaseAlign, Offsets[i])); 1850 } 1851 1852 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1853 MVT::Other, Chains); 1854 } else if (I.getNumOperands() != 0) { 1855 SmallVector<EVT, 4> ValueVTs; 1856 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1857 unsigned NumValues = ValueVTs.size(); 1858 if (NumValues) { 1859 SDValue RetOp = getValue(I.getOperand(0)); 1860 1861 const Function *F = I.getParent()->getParent(); 1862 1863 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1864 I.getOperand(0)->getType(), F->getCallingConv(), 1865 /*IsVarArg*/ false); 1866 1867 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1868 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1869 Attribute::SExt)) 1870 ExtendKind = ISD::SIGN_EXTEND; 1871 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1872 Attribute::ZExt)) 1873 ExtendKind = ISD::ZERO_EXTEND; 1874 1875 LLVMContext &Context = F->getContext(); 1876 bool RetInReg = F->getAttributes().hasAttribute( 1877 AttributeList::ReturnIndex, Attribute::InReg); 1878 1879 for (unsigned j = 0; j != NumValues; ++j) { 1880 EVT VT = ValueVTs[j]; 1881 1882 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1883 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1884 1885 CallingConv::ID CC = F->getCallingConv(); 1886 1887 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1888 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1889 SmallVector<SDValue, 4> Parts(NumParts); 1890 getCopyToParts(DAG, getCurSDLoc(), 1891 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1892 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1893 1894 // 'inreg' on function refers to return value 1895 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1896 if (RetInReg) 1897 Flags.setInReg(); 1898 1899 if (I.getOperand(0)->getType()->isPointerTy()) { 1900 Flags.setPointer(); 1901 Flags.setPointerAddrSpace( 1902 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1903 } 1904 1905 if (NeedsRegBlock) { 1906 Flags.setInConsecutiveRegs(); 1907 if (j == NumValues - 1) 1908 Flags.setInConsecutiveRegsLast(); 1909 } 1910 1911 // Propagate extension type if any 1912 if (ExtendKind == ISD::SIGN_EXTEND) 1913 Flags.setSExt(); 1914 else if (ExtendKind == ISD::ZERO_EXTEND) 1915 Flags.setZExt(); 1916 1917 for (unsigned i = 0; i < NumParts; ++i) { 1918 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1919 VT, /*isfixed=*/true, 0, 0)); 1920 OutVals.push_back(Parts[i]); 1921 } 1922 } 1923 } 1924 } 1925 1926 // Push in swifterror virtual register as the last element of Outs. This makes 1927 // sure swifterror virtual register will be returned in the swifterror 1928 // physical register. 1929 const Function *F = I.getParent()->getParent(); 1930 if (TLI.supportSwiftError() && 1931 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1932 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1933 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1934 Flags.setSwiftError(); 1935 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1936 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1937 true /*isfixed*/, 1 /*origidx*/, 1938 0 /*partOffs*/)); 1939 // Create SDNode for the swifterror virtual register. 1940 OutVals.push_back( 1941 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1942 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1943 EVT(TLI.getPointerTy(DL)))); 1944 } 1945 1946 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1947 CallingConv::ID CallConv = 1948 DAG.getMachineFunction().getFunction().getCallingConv(); 1949 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1950 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1951 1952 // Verify that the target's LowerReturn behaved as expected. 1953 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1954 "LowerReturn didn't return a valid chain!"); 1955 1956 // Update the DAG with the new chain value resulting from return lowering. 1957 DAG.setRoot(Chain); 1958 } 1959 1960 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1961 /// created for it, emit nodes to copy the value into the virtual 1962 /// registers. 1963 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1964 // Skip empty types 1965 if (V->getType()->isEmptyTy()) 1966 return; 1967 1968 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1969 if (VMI != FuncInfo.ValueMap.end()) { 1970 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1971 CopyValueToVirtualRegister(V, VMI->second); 1972 } 1973 } 1974 1975 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1976 /// the current basic block, add it to ValueMap now so that we'll get a 1977 /// CopyTo/FromReg. 1978 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1979 // No need to export constants. 1980 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1981 1982 // Already exported? 1983 if (FuncInfo.isExportedInst(V)) return; 1984 1985 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1986 CopyValueToVirtualRegister(V, Reg); 1987 } 1988 1989 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1990 const BasicBlock *FromBB) { 1991 // The operands of the setcc have to be in this block. We don't know 1992 // how to export them from some other block. 1993 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1994 // Can export from current BB. 1995 if (VI->getParent() == FromBB) 1996 return true; 1997 1998 // Is already exported, noop. 1999 return FuncInfo.isExportedInst(V); 2000 } 2001 2002 // If this is an argument, we can export it if the BB is the entry block or 2003 // if it is already exported. 2004 if (isa<Argument>(V)) { 2005 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2006 return true; 2007 2008 // Otherwise, can only export this if it is already exported. 2009 return FuncInfo.isExportedInst(V); 2010 } 2011 2012 // Otherwise, constants can always be exported. 2013 return true; 2014 } 2015 2016 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2017 BranchProbability 2018 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2019 const MachineBasicBlock *Dst) const { 2020 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2021 const BasicBlock *SrcBB = Src->getBasicBlock(); 2022 const BasicBlock *DstBB = Dst->getBasicBlock(); 2023 if (!BPI) { 2024 // If BPI is not available, set the default probability as 1 / N, where N is 2025 // the number of successors. 2026 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2027 return BranchProbability(1, SuccSize); 2028 } 2029 return BPI->getEdgeProbability(SrcBB, DstBB); 2030 } 2031 2032 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2033 MachineBasicBlock *Dst, 2034 BranchProbability Prob) { 2035 if (!FuncInfo.BPI) 2036 Src->addSuccessorWithoutProb(Dst); 2037 else { 2038 if (Prob.isUnknown()) 2039 Prob = getEdgeProbability(Src, Dst); 2040 Src->addSuccessor(Dst, Prob); 2041 } 2042 } 2043 2044 static bool InBlock(const Value *V, const BasicBlock *BB) { 2045 if (const Instruction *I = dyn_cast<Instruction>(V)) 2046 return I->getParent() == BB; 2047 return true; 2048 } 2049 2050 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2051 /// This function emits a branch and is used at the leaves of an OR or an 2052 /// AND operator tree. 2053 void 2054 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2055 MachineBasicBlock *TBB, 2056 MachineBasicBlock *FBB, 2057 MachineBasicBlock *CurBB, 2058 MachineBasicBlock *SwitchBB, 2059 BranchProbability TProb, 2060 BranchProbability FProb, 2061 bool InvertCond) { 2062 const BasicBlock *BB = CurBB->getBasicBlock(); 2063 2064 // If the leaf of the tree is a comparison, merge the condition into 2065 // the caseblock. 2066 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2067 // The operands of the cmp have to be in this block. We don't know 2068 // how to export them from some other block. If this is the first block 2069 // of the sequence, no exporting is needed. 2070 if (CurBB == SwitchBB || 2071 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2072 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2073 ISD::CondCode Condition; 2074 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2075 ICmpInst::Predicate Pred = 2076 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2077 Condition = getICmpCondCode(Pred); 2078 } else { 2079 const FCmpInst *FC = cast<FCmpInst>(Cond); 2080 FCmpInst::Predicate Pred = 2081 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2082 Condition = getFCmpCondCode(Pred); 2083 if (TM.Options.NoNaNsFPMath) 2084 Condition = getFCmpCodeWithoutNaN(Condition); 2085 } 2086 2087 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2088 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2089 SL->SwitchCases.push_back(CB); 2090 return; 2091 } 2092 } 2093 2094 // Create a CaseBlock record representing this branch. 2095 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2096 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2097 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2098 SL->SwitchCases.push_back(CB); 2099 } 2100 2101 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2102 MachineBasicBlock *TBB, 2103 MachineBasicBlock *FBB, 2104 MachineBasicBlock *CurBB, 2105 MachineBasicBlock *SwitchBB, 2106 Instruction::BinaryOps Opc, 2107 BranchProbability TProb, 2108 BranchProbability FProb, 2109 bool InvertCond) { 2110 // Skip over not part of the tree and remember to invert op and operands at 2111 // next level. 2112 Value *NotCond; 2113 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2114 InBlock(NotCond, CurBB->getBasicBlock())) { 2115 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2116 !InvertCond); 2117 return; 2118 } 2119 2120 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2121 // Compute the effective opcode for Cond, taking into account whether it needs 2122 // to be inverted, e.g. 2123 // and (not (or A, B)), C 2124 // gets lowered as 2125 // and (and (not A, not B), C) 2126 unsigned BOpc = 0; 2127 if (BOp) { 2128 BOpc = BOp->getOpcode(); 2129 if (InvertCond) { 2130 if (BOpc == Instruction::And) 2131 BOpc = Instruction::Or; 2132 else if (BOpc == Instruction::Or) 2133 BOpc = Instruction::And; 2134 } 2135 } 2136 2137 // If this node is not part of the or/and tree, emit it as a branch. 2138 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2139 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2140 BOp->getParent() != CurBB->getBasicBlock() || 2141 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2142 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2143 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2144 TProb, FProb, InvertCond); 2145 return; 2146 } 2147 2148 // Create TmpBB after CurBB. 2149 MachineFunction::iterator BBI(CurBB); 2150 MachineFunction &MF = DAG.getMachineFunction(); 2151 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2152 CurBB->getParent()->insert(++BBI, TmpBB); 2153 2154 if (Opc == Instruction::Or) { 2155 // Codegen X | Y as: 2156 // BB1: 2157 // jmp_if_X TBB 2158 // jmp TmpBB 2159 // TmpBB: 2160 // jmp_if_Y TBB 2161 // jmp FBB 2162 // 2163 2164 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2165 // The requirement is that 2166 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2167 // = TrueProb for original BB. 2168 // Assuming the original probabilities are A and B, one choice is to set 2169 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2170 // A/(1+B) and 2B/(1+B). This choice assumes that 2171 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2172 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2173 // TmpBB, but the math is more complicated. 2174 2175 auto NewTrueProb = TProb / 2; 2176 auto NewFalseProb = TProb / 2 + FProb; 2177 // Emit the LHS condition. 2178 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2179 NewTrueProb, NewFalseProb, InvertCond); 2180 2181 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2182 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2183 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2184 // Emit the RHS condition into TmpBB. 2185 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2186 Probs[0], Probs[1], InvertCond); 2187 } else { 2188 assert(Opc == Instruction::And && "Unknown merge op!"); 2189 // Codegen X & Y as: 2190 // BB1: 2191 // jmp_if_X TmpBB 2192 // jmp FBB 2193 // TmpBB: 2194 // jmp_if_Y TBB 2195 // jmp FBB 2196 // 2197 // This requires creation of TmpBB after CurBB. 2198 2199 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2200 // The requirement is that 2201 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2202 // = FalseProb for original BB. 2203 // Assuming the original probabilities are A and B, one choice is to set 2204 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2205 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2206 // TrueProb for BB1 * FalseProb for TmpBB. 2207 2208 auto NewTrueProb = TProb + FProb / 2; 2209 auto NewFalseProb = FProb / 2; 2210 // Emit the LHS condition. 2211 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2212 NewTrueProb, NewFalseProb, InvertCond); 2213 2214 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2215 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2216 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2217 // Emit the RHS condition into TmpBB. 2218 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2219 Probs[0], Probs[1], InvertCond); 2220 } 2221 } 2222 2223 /// If the set of cases should be emitted as a series of branches, return true. 2224 /// If we should emit this as a bunch of and/or'd together conditions, return 2225 /// false. 2226 bool 2227 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2228 if (Cases.size() != 2) return true; 2229 2230 // If this is two comparisons of the same values or'd or and'd together, they 2231 // will get folded into a single comparison, so don't emit two blocks. 2232 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2233 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2234 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2235 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2236 return false; 2237 } 2238 2239 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2240 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2241 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2242 Cases[0].CC == Cases[1].CC && 2243 isa<Constant>(Cases[0].CmpRHS) && 2244 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2245 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2246 return false; 2247 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2248 return false; 2249 } 2250 2251 return true; 2252 } 2253 2254 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2255 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2256 2257 // Update machine-CFG edges. 2258 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2259 2260 if (I.isUnconditional()) { 2261 // Update machine-CFG edges. 2262 BrMBB->addSuccessor(Succ0MBB); 2263 2264 // If this is not a fall-through branch or optimizations are switched off, 2265 // emit the branch. 2266 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2267 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2268 MVT::Other, getControlRoot(), 2269 DAG.getBasicBlock(Succ0MBB))); 2270 2271 return; 2272 } 2273 2274 // If this condition is one of the special cases we handle, do special stuff 2275 // now. 2276 const Value *CondVal = I.getCondition(); 2277 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2278 2279 // If this is a series of conditions that are or'd or and'd together, emit 2280 // this as a sequence of branches instead of setcc's with and/or operations. 2281 // As long as jumps are not expensive, this should improve performance. 2282 // For example, instead of something like: 2283 // cmp A, B 2284 // C = seteq 2285 // cmp D, E 2286 // F = setle 2287 // or C, F 2288 // jnz foo 2289 // Emit: 2290 // cmp A, B 2291 // je foo 2292 // cmp D, E 2293 // jle foo 2294 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2295 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2296 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2297 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2298 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2299 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2300 Opcode, 2301 getEdgeProbability(BrMBB, Succ0MBB), 2302 getEdgeProbability(BrMBB, Succ1MBB), 2303 /*InvertCond=*/false); 2304 // If the compares in later blocks need to use values not currently 2305 // exported from this block, export them now. This block should always 2306 // be the first entry. 2307 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2308 2309 // Allow some cases to be rejected. 2310 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2311 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2312 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2313 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2314 } 2315 2316 // Emit the branch for this block. 2317 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2318 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2319 return; 2320 } 2321 2322 // Okay, we decided not to do this, remove any inserted MBB's and clear 2323 // SwitchCases. 2324 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2325 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2326 2327 SL->SwitchCases.clear(); 2328 } 2329 } 2330 2331 // Create a CaseBlock record representing this branch. 2332 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2333 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2334 2335 // Use visitSwitchCase to actually insert the fast branch sequence for this 2336 // cond branch. 2337 visitSwitchCase(CB, BrMBB); 2338 } 2339 2340 /// visitSwitchCase - Emits the necessary code to represent a single node in 2341 /// the binary search tree resulting from lowering a switch instruction. 2342 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2343 MachineBasicBlock *SwitchBB) { 2344 SDValue Cond; 2345 SDValue CondLHS = getValue(CB.CmpLHS); 2346 SDLoc dl = CB.DL; 2347 2348 if (CB.CC == ISD::SETTRUE) { 2349 // Branch or fall through to TrueBB. 2350 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2351 SwitchBB->normalizeSuccProbs(); 2352 if (CB.TrueBB != NextBlock(SwitchBB)) { 2353 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2354 DAG.getBasicBlock(CB.TrueBB))); 2355 } 2356 return; 2357 } 2358 2359 auto &TLI = DAG.getTargetLoweringInfo(); 2360 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2361 2362 // Build the setcc now. 2363 if (!CB.CmpMHS) { 2364 // Fold "(X == true)" to X and "(X == false)" to !X to 2365 // handle common cases produced by branch lowering. 2366 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2367 CB.CC == ISD::SETEQ) 2368 Cond = CondLHS; 2369 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2370 CB.CC == ISD::SETEQ) { 2371 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2372 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2373 } else { 2374 SDValue CondRHS = getValue(CB.CmpRHS); 2375 2376 // If a pointer's DAG type is larger than its memory type then the DAG 2377 // values are zero-extended. This breaks signed comparisons so truncate 2378 // back to the underlying type before doing the compare. 2379 if (CondLHS.getValueType() != MemVT) { 2380 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2381 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2382 } 2383 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2384 } 2385 } else { 2386 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2387 2388 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2389 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2390 2391 SDValue CmpOp = getValue(CB.CmpMHS); 2392 EVT VT = CmpOp.getValueType(); 2393 2394 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2395 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2396 ISD::SETLE); 2397 } else { 2398 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2399 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2400 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2401 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2402 } 2403 } 2404 2405 // Update successor info 2406 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2407 // TrueBB and FalseBB are always different unless the incoming IR is 2408 // degenerate. This only happens when running llc on weird IR. 2409 if (CB.TrueBB != CB.FalseBB) 2410 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2411 SwitchBB->normalizeSuccProbs(); 2412 2413 // If the lhs block is the next block, invert the condition so that we can 2414 // fall through to the lhs instead of the rhs block. 2415 if (CB.TrueBB == NextBlock(SwitchBB)) { 2416 std::swap(CB.TrueBB, CB.FalseBB); 2417 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2418 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2419 } 2420 2421 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2422 MVT::Other, getControlRoot(), Cond, 2423 DAG.getBasicBlock(CB.TrueBB)); 2424 2425 // Insert the false branch. Do this even if it's a fall through branch, 2426 // this makes it easier to do DAG optimizations which require inverting 2427 // the branch condition. 2428 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2429 DAG.getBasicBlock(CB.FalseBB)); 2430 2431 DAG.setRoot(BrCond); 2432 } 2433 2434 /// visitJumpTable - Emit JumpTable node in the current MBB 2435 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2436 // Emit the code for the jump table 2437 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2438 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2439 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2440 JT.Reg, PTy); 2441 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2442 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2443 MVT::Other, Index.getValue(1), 2444 Table, Index); 2445 DAG.setRoot(BrJumpTable); 2446 } 2447 2448 /// visitJumpTableHeader - This function emits necessary code to produce index 2449 /// in the JumpTable from switch case. 2450 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2451 JumpTableHeader &JTH, 2452 MachineBasicBlock *SwitchBB) { 2453 SDLoc dl = getCurSDLoc(); 2454 2455 // Subtract the lowest switch case value from the value being switched on. 2456 SDValue SwitchOp = getValue(JTH.SValue); 2457 EVT VT = SwitchOp.getValueType(); 2458 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2459 DAG.getConstant(JTH.First, dl, VT)); 2460 2461 // The SDNode we just created, which holds the value being switched on minus 2462 // the smallest case value, needs to be copied to a virtual register so it 2463 // can be used as an index into the jump table in a subsequent basic block. 2464 // This value may be smaller or larger than the target's pointer type, and 2465 // therefore require extension or truncating. 2466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2467 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2468 2469 unsigned JumpTableReg = 2470 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2471 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2472 JumpTableReg, SwitchOp); 2473 JT.Reg = JumpTableReg; 2474 2475 if (!JTH.OmitRangeCheck) { 2476 // Emit the range check for the jump table, and branch to the default block 2477 // for the switch statement if the value being switched on exceeds the 2478 // largest case in the switch. 2479 SDValue CMP = DAG.getSetCC( 2480 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2481 Sub.getValueType()), 2482 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2483 2484 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2485 MVT::Other, CopyTo, CMP, 2486 DAG.getBasicBlock(JT.Default)); 2487 2488 // Avoid emitting unnecessary branches to the next block. 2489 if (JT.MBB != NextBlock(SwitchBB)) 2490 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2491 DAG.getBasicBlock(JT.MBB)); 2492 2493 DAG.setRoot(BrCond); 2494 } else { 2495 // Avoid emitting unnecessary branches to the next block. 2496 if (JT.MBB != NextBlock(SwitchBB)) 2497 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2498 DAG.getBasicBlock(JT.MBB))); 2499 else 2500 DAG.setRoot(CopyTo); 2501 } 2502 } 2503 2504 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2505 /// variable if there exists one. 2506 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2507 SDValue &Chain) { 2508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2509 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2510 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2511 MachineFunction &MF = DAG.getMachineFunction(); 2512 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2513 MachineSDNode *Node = 2514 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2515 if (Global) { 2516 MachinePointerInfo MPInfo(Global); 2517 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2518 MachineMemOperand::MODereferenceable; 2519 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2520 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2521 DAG.setNodeMemRefs(Node, {MemRef}); 2522 } 2523 if (PtrTy != PtrMemTy) 2524 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2525 return SDValue(Node, 0); 2526 } 2527 2528 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2529 /// tail spliced into a stack protector check success bb. 2530 /// 2531 /// For a high level explanation of how this fits into the stack protector 2532 /// generation see the comment on the declaration of class 2533 /// StackProtectorDescriptor. 2534 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2535 MachineBasicBlock *ParentBB) { 2536 2537 // First create the loads to the guard/stack slot for the comparison. 2538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2539 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2540 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2541 2542 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2543 int FI = MFI.getStackProtectorIndex(); 2544 2545 SDValue Guard; 2546 SDLoc dl = getCurSDLoc(); 2547 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2548 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2549 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2550 2551 // Generate code to load the content of the guard slot. 2552 SDValue GuardVal = DAG.getLoad( 2553 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2554 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2555 MachineMemOperand::MOVolatile); 2556 2557 if (TLI.useStackGuardXorFP()) 2558 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2559 2560 // Retrieve guard check function, nullptr if instrumentation is inlined. 2561 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2562 // The target provides a guard check function to validate the guard value. 2563 // Generate a call to that function with the content of the guard slot as 2564 // argument. 2565 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2566 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2567 2568 TargetLowering::ArgListTy Args; 2569 TargetLowering::ArgListEntry Entry; 2570 Entry.Node = GuardVal; 2571 Entry.Ty = FnTy->getParamType(0); 2572 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2573 Entry.IsInReg = true; 2574 Args.push_back(Entry); 2575 2576 TargetLowering::CallLoweringInfo CLI(DAG); 2577 CLI.setDebugLoc(getCurSDLoc()) 2578 .setChain(DAG.getEntryNode()) 2579 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2580 getValue(GuardCheckFn), std::move(Args)); 2581 2582 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2583 DAG.setRoot(Result.second); 2584 return; 2585 } 2586 2587 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2588 // Otherwise, emit a volatile load to retrieve the stack guard value. 2589 SDValue Chain = DAG.getEntryNode(); 2590 if (TLI.useLoadStackGuardNode()) { 2591 Guard = getLoadStackGuard(DAG, dl, Chain); 2592 } else { 2593 const Value *IRGuard = TLI.getSDagStackGuard(M); 2594 SDValue GuardPtr = getValue(IRGuard); 2595 2596 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2597 MachinePointerInfo(IRGuard, 0), Align, 2598 MachineMemOperand::MOVolatile); 2599 } 2600 2601 // Perform the comparison via a getsetcc. 2602 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2603 *DAG.getContext(), 2604 Guard.getValueType()), 2605 Guard, GuardVal, ISD::SETNE); 2606 2607 // If the guard/stackslot do not equal, branch to failure MBB. 2608 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2609 MVT::Other, GuardVal.getOperand(0), 2610 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2611 // Otherwise branch to success MBB. 2612 SDValue Br = DAG.getNode(ISD::BR, dl, 2613 MVT::Other, BrCond, 2614 DAG.getBasicBlock(SPD.getSuccessMBB())); 2615 2616 DAG.setRoot(Br); 2617 } 2618 2619 /// Codegen the failure basic block for a stack protector check. 2620 /// 2621 /// A failure stack protector machine basic block consists simply of a call to 2622 /// __stack_chk_fail(). 2623 /// 2624 /// For a high level explanation of how this fits into the stack protector 2625 /// generation see the comment on the declaration of class 2626 /// StackProtectorDescriptor. 2627 void 2628 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2630 TargetLowering::MakeLibCallOptions CallOptions; 2631 CallOptions.setDiscardResult(true); 2632 SDValue Chain = 2633 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2634 None, CallOptions, getCurSDLoc()).second; 2635 // On PS4, the "return address" must still be within the calling function, 2636 // even if it's at the very end, so emit an explicit TRAP here. 2637 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2638 if (TM.getTargetTriple().isPS4CPU()) 2639 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2640 2641 DAG.setRoot(Chain); 2642 } 2643 2644 /// visitBitTestHeader - This function emits necessary code to produce value 2645 /// suitable for "bit tests" 2646 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2647 MachineBasicBlock *SwitchBB) { 2648 SDLoc dl = getCurSDLoc(); 2649 2650 // Subtract the minimum value. 2651 SDValue SwitchOp = getValue(B.SValue); 2652 EVT VT = SwitchOp.getValueType(); 2653 SDValue RangeSub = 2654 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2655 2656 // Determine the type of the test operands. 2657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2658 bool UsePtrType = false; 2659 if (!TLI.isTypeLegal(VT)) { 2660 UsePtrType = true; 2661 } else { 2662 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2663 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2664 // Switch table case range are encoded into series of masks. 2665 // Just use pointer type, it's guaranteed to fit. 2666 UsePtrType = true; 2667 break; 2668 } 2669 } 2670 SDValue Sub = RangeSub; 2671 if (UsePtrType) { 2672 VT = TLI.getPointerTy(DAG.getDataLayout()); 2673 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2674 } 2675 2676 B.RegVT = VT.getSimpleVT(); 2677 B.Reg = FuncInfo.CreateReg(B.RegVT); 2678 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2679 2680 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2681 2682 if (!B.OmitRangeCheck) 2683 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2684 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2685 SwitchBB->normalizeSuccProbs(); 2686 2687 SDValue Root = CopyTo; 2688 if (!B.OmitRangeCheck) { 2689 // Conditional branch to the default block. 2690 SDValue RangeCmp = DAG.getSetCC(dl, 2691 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2692 RangeSub.getValueType()), 2693 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2694 ISD::SETUGT); 2695 2696 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2697 DAG.getBasicBlock(B.Default)); 2698 } 2699 2700 // Avoid emitting unnecessary branches to the next block. 2701 if (MBB != NextBlock(SwitchBB)) 2702 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2703 2704 DAG.setRoot(Root); 2705 } 2706 2707 /// visitBitTestCase - this function produces one "bit test" 2708 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2709 MachineBasicBlock* NextMBB, 2710 BranchProbability BranchProbToNext, 2711 unsigned Reg, 2712 BitTestCase &B, 2713 MachineBasicBlock *SwitchBB) { 2714 SDLoc dl = getCurSDLoc(); 2715 MVT VT = BB.RegVT; 2716 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2717 SDValue Cmp; 2718 unsigned PopCount = countPopulation(B.Mask); 2719 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2720 if (PopCount == 1) { 2721 // Testing for a single bit; just compare the shift count with what it 2722 // would need to be to shift a 1 bit in that position. 2723 Cmp = DAG.getSetCC( 2724 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2725 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2726 ISD::SETEQ); 2727 } else if (PopCount == BB.Range) { 2728 // There is only one zero bit in the range, test for it directly. 2729 Cmp = DAG.getSetCC( 2730 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2731 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2732 ISD::SETNE); 2733 } else { 2734 // Make desired shift 2735 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2736 DAG.getConstant(1, dl, VT), ShiftOp); 2737 2738 // Emit bit tests and jumps 2739 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2740 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2741 Cmp = DAG.getSetCC( 2742 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2743 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2744 } 2745 2746 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2747 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2748 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2749 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2750 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2751 // one as they are relative probabilities (and thus work more like weights), 2752 // and hence we need to normalize them to let the sum of them become one. 2753 SwitchBB->normalizeSuccProbs(); 2754 2755 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2756 MVT::Other, getControlRoot(), 2757 Cmp, DAG.getBasicBlock(B.TargetBB)); 2758 2759 // Avoid emitting unnecessary branches to the next block. 2760 if (NextMBB != NextBlock(SwitchBB)) 2761 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2762 DAG.getBasicBlock(NextMBB)); 2763 2764 DAG.setRoot(BrAnd); 2765 } 2766 2767 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2768 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2769 2770 // Retrieve successors. Look through artificial IR level blocks like 2771 // catchswitch for successors. 2772 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2773 const BasicBlock *EHPadBB = I.getSuccessor(1); 2774 2775 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2776 // have to do anything here to lower funclet bundles. 2777 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2778 LLVMContext::OB_gc_transition, 2779 LLVMContext::OB_funclet, 2780 LLVMContext::OB_cfguardtarget}) && 2781 "Cannot lower invokes with arbitrary operand bundles yet!"); 2782 2783 const Value *Callee(I.getCalledOperand()); 2784 const Function *Fn = dyn_cast<Function>(Callee); 2785 if (isa<InlineAsm>(Callee)) 2786 visitInlineAsm(I); 2787 else if (Fn && Fn->isIntrinsic()) { 2788 switch (Fn->getIntrinsicID()) { 2789 default: 2790 llvm_unreachable("Cannot invoke this intrinsic"); 2791 case Intrinsic::donothing: 2792 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2793 break; 2794 case Intrinsic::experimental_patchpoint_void: 2795 case Intrinsic::experimental_patchpoint_i64: 2796 visitPatchpoint(I, EHPadBB); 2797 break; 2798 case Intrinsic::experimental_gc_statepoint: 2799 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2800 break; 2801 case Intrinsic::wasm_rethrow_in_catch: { 2802 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2803 // special because it can be invoked, so we manually lower it to a DAG 2804 // node here. 2805 SmallVector<SDValue, 8> Ops; 2806 Ops.push_back(getRoot()); // inchain 2807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2808 Ops.push_back( 2809 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2810 TLI.getPointerTy(DAG.getDataLayout()))); 2811 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2812 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2813 break; 2814 } 2815 } 2816 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2817 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2818 // Eventually we will support lowering the @llvm.experimental.deoptimize 2819 // intrinsic, and right now there are no plans to support other intrinsics 2820 // with deopt state. 2821 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2822 } else { 2823 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2824 } 2825 2826 // If the value of the invoke is used outside of its defining block, make it 2827 // available as a virtual register. 2828 // We already took care of the exported value for the statepoint instruction 2829 // during call to the LowerStatepoint. 2830 if (!isa<GCStatepointInst>(I)) { 2831 CopyToExportRegsIfNeeded(&I); 2832 } 2833 2834 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2835 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2836 BranchProbability EHPadBBProb = 2837 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2838 : BranchProbability::getZero(); 2839 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2840 2841 // Update successor info. 2842 addSuccessorWithProb(InvokeMBB, Return); 2843 for (auto &UnwindDest : UnwindDests) { 2844 UnwindDest.first->setIsEHPad(); 2845 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2846 } 2847 InvokeMBB->normalizeSuccProbs(); 2848 2849 // Drop into normal successor. 2850 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2851 DAG.getBasicBlock(Return))); 2852 } 2853 2854 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2855 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2856 2857 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2858 // have to do anything here to lower funclet bundles. 2859 assert(!I.hasOperandBundlesOtherThan( 2860 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2861 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2862 2863 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2864 visitInlineAsm(I); 2865 CopyToExportRegsIfNeeded(&I); 2866 2867 // Retrieve successors. 2868 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2869 Return->setInlineAsmBrDefaultTarget(); 2870 2871 // Update successor info. 2872 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2873 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2874 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2875 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2876 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2877 } 2878 CallBrMBB->normalizeSuccProbs(); 2879 2880 // Drop into default successor. 2881 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2882 MVT::Other, getControlRoot(), 2883 DAG.getBasicBlock(Return))); 2884 } 2885 2886 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2887 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2888 } 2889 2890 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2891 assert(FuncInfo.MBB->isEHPad() && 2892 "Call to landingpad not in landing pad!"); 2893 2894 // If there aren't registers to copy the values into (e.g., during SjLj 2895 // exceptions), then don't bother to create these DAG nodes. 2896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2897 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2898 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2899 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2900 return; 2901 2902 // If landingpad's return type is token type, we don't create DAG nodes 2903 // for its exception pointer and selector value. The extraction of exception 2904 // pointer or selector value from token type landingpads is not currently 2905 // supported. 2906 if (LP.getType()->isTokenTy()) 2907 return; 2908 2909 SmallVector<EVT, 2> ValueVTs; 2910 SDLoc dl = getCurSDLoc(); 2911 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2912 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2913 2914 // Get the two live-in registers as SDValues. The physregs have already been 2915 // copied into virtual registers. 2916 SDValue Ops[2]; 2917 if (FuncInfo.ExceptionPointerVirtReg) { 2918 Ops[0] = DAG.getZExtOrTrunc( 2919 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2920 FuncInfo.ExceptionPointerVirtReg, 2921 TLI.getPointerTy(DAG.getDataLayout())), 2922 dl, ValueVTs[0]); 2923 } else { 2924 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2925 } 2926 Ops[1] = DAG.getZExtOrTrunc( 2927 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2928 FuncInfo.ExceptionSelectorVirtReg, 2929 TLI.getPointerTy(DAG.getDataLayout())), 2930 dl, ValueVTs[1]); 2931 2932 // Merge into one. 2933 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2934 DAG.getVTList(ValueVTs), Ops); 2935 setValue(&LP, Res); 2936 } 2937 2938 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2939 MachineBasicBlock *Last) { 2940 // Update JTCases. 2941 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2942 if (SL->JTCases[i].first.HeaderBB == First) 2943 SL->JTCases[i].first.HeaderBB = Last; 2944 2945 // Update BitTestCases. 2946 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2947 if (SL->BitTestCases[i].Parent == First) 2948 SL->BitTestCases[i].Parent = Last; 2949 2950 // SelectionDAGISel::FinishBasicBlock will add PHI operands for the 2951 // successors of the fallthrough block. Here, we add PHI operands for the 2952 // successors of the INLINEASM_BR block itself. 2953 if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR) 2954 for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate) 2955 if (First->isSuccessor(pair.first->getParent())) 2956 MachineInstrBuilder(*First->getParent(), pair.first) 2957 .addReg(pair.second) 2958 .addMBB(First); 2959 } 2960 2961 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2962 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2963 2964 // Update machine-CFG edges with unique successors. 2965 SmallSet<BasicBlock*, 32> Done; 2966 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2967 BasicBlock *BB = I.getSuccessor(i); 2968 bool Inserted = Done.insert(BB).second; 2969 if (!Inserted) 2970 continue; 2971 2972 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2973 addSuccessorWithProb(IndirectBrMBB, Succ); 2974 } 2975 IndirectBrMBB->normalizeSuccProbs(); 2976 2977 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2978 MVT::Other, getControlRoot(), 2979 getValue(I.getAddress()))); 2980 } 2981 2982 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2983 if (!DAG.getTarget().Options.TrapUnreachable) 2984 return; 2985 2986 // We may be able to ignore unreachable behind a noreturn call. 2987 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2988 const BasicBlock &BB = *I.getParent(); 2989 if (&I != &BB.front()) { 2990 BasicBlock::const_iterator PredI = 2991 std::prev(BasicBlock::const_iterator(&I)); 2992 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2993 if (Call->doesNotReturn()) 2994 return; 2995 } 2996 } 2997 } 2998 2999 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3000 } 3001 3002 void SelectionDAGBuilder::visitFSub(const User &I) { 3003 // -0.0 - X --> fneg 3004 Type *Ty = I.getType(); 3005 if (isa<Constant>(I.getOperand(0)) && 3006 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3007 SDValue Op2 = getValue(I.getOperand(1)); 3008 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3009 Op2.getValueType(), Op2)); 3010 return; 3011 } 3012 3013 visitBinary(I, ISD::FSUB); 3014 } 3015 3016 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3017 SDNodeFlags Flags; 3018 3019 SDValue Op = getValue(I.getOperand(0)); 3020 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3021 Op, Flags); 3022 setValue(&I, UnNodeValue); 3023 } 3024 3025 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3026 SDNodeFlags Flags; 3027 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3028 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3029 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3030 } 3031 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3032 Flags.setExact(ExactOp->isExact()); 3033 } 3034 3035 SDValue Op1 = getValue(I.getOperand(0)); 3036 SDValue Op2 = getValue(I.getOperand(1)); 3037 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3038 Op1, Op2, Flags); 3039 setValue(&I, BinNodeValue); 3040 } 3041 3042 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3043 SDValue Op1 = getValue(I.getOperand(0)); 3044 SDValue Op2 = getValue(I.getOperand(1)); 3045 3046 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3047 Op1.getValueType(), DAG.getDataLayout()); 3048 3049 // Coerce the shift amount to the right type if we can. 3050 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3051 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3052 unsigned Op2Size = Op2.getValueSizeInBits(); 3053 SDLoc DL = getCurSDLoc(); 3054 3055 // If the operand is smaller than the shift count type, promote it. 3056 if (ShiftSize > Op2Size) 3057 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3058 3059 // If the operand is larger than the shift count type but the shift 3060 // count type has enough bits to represent any shift value, truncate 3061 // it now. This is a common case and it exposes the truncate to 3062 // optimization early. 3063 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3064 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3065 // Otherwise we'll need to temporarily settle for some other convenient 3066 // type. Type legalization will make adjustments once the shiftee is split. 3067 else 3068 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3069 } 3070 3071 bool nuw = false; 3072 bool nsw = false; 3073 bool exact = false; 3074 3075 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3076 3077 if (const OverflowingBinaryOperator *OFBinOp = 3078 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3079 nuw = OFBinOp->hasNoUnsignedWrap(); 3080 nsw = OFBinOp->hasNoSignedWrap(); 3081 } 3082 if (const PossiblyExactOperator *ExactOp = 3083 dyn_cast<const PossiblyExactOperator>(&I)) 3084 exact = ExactOp->isExact(); 3085 } 3086 SDNodeFlags Flags; 3087 Flags.setExact(exact); 3088 Flags.setNoSignedWrap(nsw); 3089 Flags.setNoUnsignedWrap(nuw); 3090 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3091 Flags); 3092 setValue(&I, Res); 3093 } 3094 3095 void SelectionDAGBuilder::visitSDiv(const User &I) { 3096 SDValue Op1 = getValue(I.getOperand(0)); 3097 SDValue Op2 = getValue(I.getOperand(1)); 3098 3099 SDNodeFlags Flags; 3100 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3101 cast<PossiblyExactOperator>(&I)->isExact()); 3102 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3103 Op2, Flags)); 3104 } 3105 3106 void SelectionDAGBuilder::visitICmp(const User &I) { 3107 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3108 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3109 predicate = IC->getPredicate(); 3110 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3111 predicate = ICmpInst::Predicate(IC->getPredicate()); 3112 SDValue Op1 = getValue(I.getOperand(0)); 3113 SDValue Op2 = getValue(I.getOperand(1)); 3114 ISD::CondCode Opcode = getICmpCondCode(predicate); 3115 3116 auto &TLI = DAG.getTargetLoweringInfo(); 3117 EVT MemVT = 3118 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3119 3120 // If a pointer's DAG type is larger than its memory type then the DAG values 3121 // are zero-extended. This breaks signed comparisons so truncate back to the 3122 // underlying type before doing the compare. 3123 if (Op1.getValueType() != MemVT) { 3124 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3125 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3126 } 3127 3128 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3129 I.getType()); 3130 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3131 } 3132 3133 void SelectionDAGBuilder::visitFCmp(const User &I) { 3134 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3135 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3136 predicate = FC->getPredicate(); 3137 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3138 predicate = FCmpInst::Predicate(FC->getPredicate()); 3139 SDValue Op1 = getValue(I.getOperand(0)); 3140 SDValue Op2 = getValue(I.getOperand(1)); 3141 3142 ISD::CondCode Condition = getFCmpCondCode(predicate); 3143 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3144 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3145 Condition = getFCmpCodeWithoutNaN(Condition); 3146 3147 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3148 I.getType()); 3149 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3150 } 3151 3152 // Check if the condition of the select has one use or two users that are both 3153 // selects with the same condition. 3154 static bool hasOnlySelectUsers(const Value *Cond) { 3155 return llvm::all_of(Cond->users(), [](const Value *V) { 3156 return isa<SelectInst>(V); 3157 }); 3158 } 3159 3160 void SelectionDAGBuilder::visitSelect(const User &I) { 3161 SmallVector<EVT, 4> ValueVTs; 3162 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3163 ValueVTs); 3164 unsigned NumValues = ValueVTs.size(); 3165 if (NumValues == 0) return; 3166 3167 SmallVector<SDValue, 4> Values(NumValues); 3168 SDValue Cond = getValue(I.getOperand(0)); 3169 SDValue LHSVal = getValue(I.getOperand(1)); 3170 SDValue RHSVal = getValue(I.getOperand(2)); 3171 SmallVector<SDValue, 1> BaseOps(1, Cond); 3172 ISD::NodeType OpCode = 3173 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3174 3175 bool IsUnaryAbs = false; 3176 3177 // Min/max matching is only viable if all output VTs are the same. 3178 if (is_splat(ValueVTs)) { 3179 EVT VT = ValueVTs[0]; 3180 LLVMContext &Ctx = *DAG.getContext(); 3181 auto &TLI = DAG.getTargetLoweringInfo(); 3182 3183 // We care about the legality of the operation after it has been type 3184 // legalized. 3185 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3186 VT = TLI.getTypeToTransformTo(Ctx, VT); 3187 3188 // If the vselect is legal, assume we want to leave this as a vector setcc + 3189 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3190 // min/max is legal on the scalar type. 3191 bool UseScalarMinMax = VT.isVector() && 3192 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3193 3194 Value *LHS, *RHS; 3195 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3196 ISD::NodeType Opc = ISD::DELETED_NODE; 3197 switch (SPR.Flavor) { 3198 case SPF_UMAX: Opc = ISD::UMAX; break; 3199 case SPF_UMIN: Opc = ISD::UMIN; break; 3200 case SPF_SMAX: Opc = ISD::SMAX; break; 3201 case SPF_SMIN: Opc = ISD::SMIN; break; 3202 case SPF_FMINNUM: 3203 switch (SPR.NaNBehavior) { 3204 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3205 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3206 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3207 case SPNB_RETURNS_ANY: { 3208 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3209 Opc = ISD::FMINNUM; 3210 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3211 Opc = ISD::FMINIMUM; 3212 else if (UseScalarMinMax) 3213 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3214 ISD::FMINNUM : ISD::FMINIMUM; 3215 break; 3216 } 3217 } 3218 break; 3219 case SPF_FMAXNUM: 3220 switch (SPR.NaNBehavior) { 3221 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3222 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3223 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3224 case SPNB_RETURNS_ANY: 3225 3226 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3227 Opc = ISD::FMAXNUM; 3228 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3229 Opc = ISD::FMAXIMUM; 3230 else if (UseScalarMinMax) 3231 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3232 ISD::FMAXNUM : ISD::FMAXIMUM; 3233 break; 3234 } 3235 break; 3236 case SPF_ABS: 3237 IsUnaryAbs = true; 3238 Opc = ISD::ABS; 3239 break; 3240 case SPF_NABS: 3241 // TODO: we need to produce sub(0, abs(X)). 3242 default: break; 3243 } 3244 3245 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3246 (TLI.isOperationLegalOrCustom(Opc, VT) || 3247 (UseScalarMinMax && 3248 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3249 // If the underlying comparison instruction is used by any other 3250 // instruction, the consumed instructions won't be destroyed, so it is 3251 // not profitable to convert to a min/max. 3252 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3253 OpCode = Opc; 3254 LHSVal = getValue(LHS); 3255 RHSVal = getValue(RHS); 3256 BaseOps.clear(); 3257 } 3258 3259 if (IsUnaryAbs) { 3260 OpCode = Opc; 3261 LHSVal = getValue(LHS); 3262 BaseOps.clear(); 3263 } 3264 } 3265 3266 if (IsUnaryAbs) { 3267 for (unsigned i = 0; i != NumValues; ++i) { 3268 Values[i] = 3269 DAG.getNode(OpCode, getCurSDLoc(), 3270 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3271 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3272 } 3273 } else { 3274 for (unsigned i = 0; i != NumValues; ++i) { 3275 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3276 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3277 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3278 Values[i] = DAG.getNode( 3279 OpCode, getCurSDLoc(), 3280 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3281 } 3282 } 3283 3284 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3285 DAG.getVTList(ValueVTs), Values)); 3286 } 3287 3288 void SelectionDAGBuilder::visitTrunc(const User &I) { 3289 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3290 SDValue N = getValue(I.getOperand(0)); 3291 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3292 I.getType()); 3293 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3294 } 3295 3296 void SelectionDAGBuilder::visitZExt(const User &I) { 3297 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3298 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3299 SDValue N = getValue(I.getOperand(0)); 3300 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3301 I.getType()); 3302 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3303 } 3304 3305 void SelectionDAGBuilder::visitSExt(const User &I) { 3306 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3307 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3308 SDValue N = getValue(I.getOperand(0)); 3309 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3310 I.getType()); 3311 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3312 } 3313 3314 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3315 // FPTrunc is never a no-op cast, no need to check 3316 SDValue N = getValue(I.getOperand(0)); 3317 SDLoc dl = getCurSDLoc(); 3318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3319 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3320 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3321 DAG.getTargetConstant( 3322 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3323 } 3324 3325 void SelectionDAGBuilder::visitFPExt(const User &I) { 3326 // FPExt is never a no-op cast, no need to check 3327 SDValue N = getValue(I.getOperand(0)); 3328 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3329 I.getType()); 3330 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3331 } 3332 3333 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3334 // FPToUI is never a no-op cast, no need to check 3335 SDValue N = getValue(I.getOperand(0)); 3336 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3337 I.getType()); 3338 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3339 } 3340 3341 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3342 // FPToSI is never a no-op cast, no need to check 3343 SDValue N = getValue(I.getOperand(0)); 3344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3345 I.getType()); 3346 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3347 } 3348 3349 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3350 // UIToFP is never a no-op cast, no need to check 3351 SDValue N = getValue(I.getOperand(0)); 3352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3353 I.getType()); 3354 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3355 } 3356 3357 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3358 // SIToFP is never a no-op cast, no need to check 3359 SDValue N = getValue(I.getOperand(0)); 3360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3361 I.getType()); 3362 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3363 } 3364 3365 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3366 // What to do depends on the size of the integer and the size of the pointer. 3367 // We can either truncate, zero extend, or no-op, accordingly. 3368 SDValue N = getValue(I.getOperand(0)); 3369 auto &TLI = DAG.getTargetLoweringInfo(); 3370 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3371 I.getType()); 3372 EVT PtrMemVT = 3373 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3374 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3375 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3376 setValue(&I, N); 3377 } 3378 3379 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3380 // What to do depends on the size of the integer and the size of the pointer. 3381 // We can either truncate, zero extend, or no-op, accordingly. 3382 SDValue N = getValue(I.getOperand(0)); 3383 auto &TLI = DAG.getTargetLoweringInfo(); 3384 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3385 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3386 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3387 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3388 setValue(&I, N); 3389 } 3390 3391 void SelectionDAGBuilder::visitBitCast(const User &I) { 3392 SDValue N = getValue(I.getOperand(0)); 3393 SDLoc dl = getCurSDLoc(); 3394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3395 I.getType()); 3396 3397 // BitCast assures us that source and destination are the same size so this is 3398 // either a BITCAST or a no-op. 3399 if (DestVT != N.getValueType()) 3400 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3401 DestVT, N)); // convert types. 3402 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3403 // might fold any kind of constant expression to an integer constant and that 3404 // is not what we are looking for. Only recognize a bitcast of a genuine 3405 // constant integer as an opaque constant. 3406 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3407 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3408 /*isOpaque*/true)); 3409 else 3410 setValue(&I, N); // noop cast. 3411 } 3412 3413 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3415 const Value *SV = I.getOperand(0); 3416 SDValue N = getValue(SV); 3417 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3418 3419 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3420 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3421 3422 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3423 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3424 3425 setValue(&I, N); 3426 } 3427 3428 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3430 SDValue InVec = getValue(I.getOperand(0)); 3431 SDValue InVal = getValue(I.getOperand(1)); 3432 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3433 TLI.getVectorIdxTy(DAG.getDataLayout())); 3434 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3435 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3436 InVec, InVal, InIdx)); 3437 } 3438 3439 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3441 SDValue InVec = getValue(I.getOperand(0)); 3442 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3443 TLI.getVectorIdxTy(DAG.getDataLayout())); 3444 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3445 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3446 InVec, InIdx)); 3447 } 3448 3449 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3450 SDValue Src1 = getValue(I.getOperand(0)); 3451 SDValue Src2 = getValue(I.getOperand(1)); 3452 ArrayRef<int> Mask; 3453 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3454 Mask = SVI->getShuffleMask(); 3455 else 3456 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3457 SDLoc DL = getCurSDLoc(); 3458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3459 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3460 EVT SrcVT = Src1.getValueType(); 3461 3462 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3463 VT.isScalableVector()) { 3464 // Canonical splat form of first element of first input vector. 3465 SDValue FirstElt = 3466 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3467 DAG.getVectorIdxConstant(0, DL)); 3468 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3469 return; 3470 } 3471 3472 // For now, we only handle splats for scalable vectors. 3473 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3474 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3475 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3476 3477 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3478 unsigned MaskNumElts = Mask.size(); 3479 3480 if (SrcNumElts == MaskNumElts) { 3481 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3482 return; 3483 } 3484 3485 // Normalize the shuffle vector since mask and vector length don't match. 3486 if (SrcNumElts < MaskNumElts) { 3487 // Mask is longer than the source vectors. We can use concatenate vector to 3488 // make the mask and vectors lengths match. 3489 3490 if (MaskNumElts % SrcNumElts == 0) { 3491 // Mask length is a multiple of the source vector length. 3492 // Check if the shuffle is some kind of concatenation of the input 3493 // vectors. 3494 unsigned NumConcat = MaskNumElts / SrcNumElts; 3495 bool IsConcat = true; 3496 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3497 for (unsigned i = 0; i != MaskNumElts; ++i) { 3498 int Idx = Mask[i]; 3499 if (Idx < 0) 3500 continue; 3501 // Ensure the indices in each SrcVT sized piece are sequential and that 3502 // the same source is used for the whole piece. 3503 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3504 (ConcatSrcs[i / SrcNumElts] >= 0 && 3505 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3506 IsConcat = false; 3507 break; 3508 } 3509 // Remember which source this index came from. 3510 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3511 } 3512 3513 // The shuffle is concatenating multiple vectors together. Just emit 3514 // a CONCAT_VECTORS operation. 3515 if (IsConcat) { 3516 SmallVector<SDValue, 8> ConcatOps; 3517 for (auto Src : ConcatSrcs) { 3518 if (Src < 0) 3519 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3520 else if (Src == 0) 3521 ConcatOps.push_back(Src1); 3522 else 3523 ConcatOps.push_back(Src2); 3524 } 3525 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3526 return; 3527 } 3528 } 3529 3530 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3531 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3532 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3533 PaddedMaskNumElts); 3534 3535 // Pad both vectors with undefs to make them the same length as the mask. 3536 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3537 3538 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3539 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3540 MOps1[0] = Src1; 3541 MOps2[0] = Src2; 3542 3543 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3544 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3545 3546 // Readjust mask for new input vector length. 3547 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3548 for (unsigned i = 0; i != MaskNumElts; ++i) { 3549 int Idx = Mask[i]; 3550 if (Idx >= (int)SrcNumElts) 3551 Idx -= SrcNumElts - PaddedMaskNumElts; 3552 MappedOps[i] = Idx; 3553 } 3554 3555 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3556 3557 // If the concatenated vector was padded, extract a subvector with the 3558 // correct number of elements. 3559 if (MaskNumElts != PaddedMaskNumElts) 3560 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3561 DAG.getVectorIdxConstant(0, DL)); 3562 3563 setValue(&I, Result); 3564 return; 3565 } 3566 3567 if (SrcNumElts > MaskNumElts) { 3568 // Analyze the access pattern of the vector to see if we can extract 3569 // two subvectors and do the shuffle. 3570 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3571 bool CanExtract = true; 3572 for (int Idx : Mask) { 3573 unsigned Input = 0; 3574 if (Idx < 0) 3575 continue; 3576 3577 if (Idx >= (int)SrcNumElts) { 3578 Input = 1; 3579 Idx -= SrcNumElts; 3580 } 3581 3582 // If all the indices come from the same MaskNumElts sized portion of 3583 // the sources we can use extract. Also make sure the extract wouldn't 3584 // extract past the end of the source. 3585 int NewStartIdx = alignDown(Idx, MaskNumElts); 3586 if (NewStartIdx + MaskNumElts > SrcNumElts || 3587 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3588 CanExtract = false; 3589 // Make sure we always update StartIdx as we use it to track if all 3590 // elements are undef. 3591 StartIdx[Input] = NewStartIdx; 3592 } 3593 3594 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3595 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3596 return; 3597 } 3598 if (CanExtract) { 3599 // Extract appropriate subvector and generate a vector shuffle 3600 for (unsigned Input = 0; Input < 2; ++Input) { 3601 SDValue &Src = Input == 0 ? Src1 : Src2; 3602 if (StartIdx[Input] < 0) 3603 Src = DAG.getUNDEF(VT); 3604 else { 3605 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3606 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3607 } 3608 } 3609 3610 // Calculate new mask. 3611 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3612 for (int &Idx : MappedOps) { 3613 if (Idx >= (int)SrcNumElts) 3614 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3615 else if (Idx >= 0) 3616 Idx -= StartIdx[0]; 3617 } 3618 3619 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3620 return; 3621 } 3622 } 3623 3624 // We can't use either concat vectors or extract subvectors so fall back to 3625 // replacing the shuffle with extract and build vector. 3626 // to insert and build vector. 3627 EVT EltVT = VT.getVectorElementType(); 3628 SmallVector<SDValue,8> Ops; 3629 for (int Idx : Mask) { 3630 SDValue Res; 3631 3632 if (Idx < 0) { 3633 Res = DAG.getUNDEF(EltVT); 3634 } else { 3635 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3636 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3637 3638 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3639 DAG.getVectorIdxConstant(Idx, DL)); 3640 } 3641 3642 Ops.push_back(Res); 3643 } 3644 3645 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3646 } 3647 3648 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3649 ArrayRef<unsigned> Indices; 3650 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3651 Indices = IV->getIndices(); 3652 else 3653 Indices = cast<ConstantExpr>(&I)->getIndices(); 3654 3655 const Value *Op0 = I.getOperand(0); 3656 const Value *Op1 = I.getOperand(1); 3657 Type *AggTy = I.getType(); 3658 Type *ValTy = Op1->getType(); 3659 bool IntoUndef = isa<UndefValue>(Op0); 3660 bool FromUndef = isa<UndefValue>(Op1); 3661 3662 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3663 3664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3665 SmallVector<EVT, 4> AggValueVTs; 3666 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3667 SmallVector<EVT, 4> ValValueVTs; 3668 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3669 3670 unsigned NumAggValues = AggValueVTs.size(); 3671 unsigned NumValValues = ValValueVTs.size(); 3672 SmallVector<SDValue, 4> Values(NumAggValues); 3673 3674 // Ignore an insertvalue that produces an empty object 3675 if (!NumAggValues) { 3676 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3677 return; 3678 } 3679 3680 SDValue Agg = getValue(Op0); 3681 unsigned i = 0; 3682 // Copy the beginning value(s) from the original aggregate. 3683 for (; i != LinearIndex; ++i) 3684 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3685 SDValue(Agg.getNode(), Agg.getResNo() + i); 3686 // Copy values from the inserted value(s). 3687 if (NumValValues) { 3688 SDValue Val = getValue(Op1); 3689 for (; i != LinearIndex + NumValValues; ++i) 3690 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3691 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3692 } 3693 // Copy remaining value(s) from the original aggregate. 3694 for (; i != NumAggValues; ++i) 3695 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3696 SDValue(Agg.getNode(), Agg.getResNo() + i); 3697 3698 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3699 DAG.getVTList(AggValueVTs), Values)); 3700 } 3701 3702 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3703 ArrayRef<unsigned> Indices; 3704 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3705 Indices = EV->getIndices(); 3706 else 3707 Indices = cast<ConstantExpr>(&I)->getIndices(); 3708 3709 const Value *Op0 = I.getOperand(0); 3710 Type *AggTy = Op0->getType(); 3711 Type *ValTy = I.getType(); 3712 bool OutOfUndef = isa<UndefValue>(Op0); 3713 3714 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3715 3716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3717 SmallVector<EVT, 4> ValValueVTs; 3718 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3719 3720 unsigned NumValValues = ValValueVTs.size(); 3721 3722 // Ignore a extractvalue that produces an empty object 3723 if (!NumValValues) { 3724 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3725 return; 3726 } 3727 3728 SmallVector<SDValue, 4> Values(NumValValues); 3729 3730 SDValue Agg = getValue(Op0); 3731 // Copy out the selected value(s). 3732 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3733 Values[i - LinearIndex] = 3734 OutOfUndef ? 3735 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3736 SDValue(Agg.getNode(), Agg.getResNo() + i); 3737 3738 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3739 DAG.getVTList(ValValueVTs), Values)); 3740 } 3741 3742 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3743 Value *Op0 = I.getOperand(0); 3744 // Note that the pointer operand may be a vector of pointers. Take the scalar 3745 // element which holds a pointer. 3746 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3747 SDValue N = getValue(Op0); 3748 SDLoc dl = getCurSDLoc(); 3749 auto &TLI = DAG.getTargetLoweringInfo(); 3750 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3751 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3752 3753 // Normalize Vector GEP - all scalar operands should be converted to the 3754 // splat vector. 3755 bool IsVectorGEP = I.getType()->isVectorTy(); 3756 ElementCount VectorElementCount = 3757 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3758 : ElementCount(0, false); 3759 3760 if (IsVectorGEP && !N.getValueType().isVector()) { 3761 LLVMContext &Context = *DAG.getContext(); 3762 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3763 if (VectorElementCount.Scalable) 3764 N = DAG.getSplatVector(VT, dl, N); 3765 else 3766 N = DAG.getSplatBuildVector(VT, dl, N); 3767 } 3768 3769 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3770 GTI != E; ++GTI) { 3771 const Value *Idx = GTI.getOperand(); 3772 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3773 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3774 if (Field) { 3775 // N = N + Offset 3776 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3777 3778 // In an inbounds GEP with an offset that is nonnegative even when 3779 // interpreted as signed, assume there is no unsigned overflow. 3780 SDNodeFlags Flags; 3781 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3782 Flags.setNoUnsignedWrap(true); 3783 3784 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3785 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3786 } 3787 } else { 3788 // IdxSize is the width of the arithmetic according to IR semantics. 3789 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3790 // (and fix up the result later). 3791 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3792 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3793 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3794 // We intentionally mask away the high bits here; ElementSize may not 3795 // fit in IdxTy. 3796 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3797 bool ElementScalable = ElementSize.isScalable(); 3798 3799 // If this is a scalar constant or a splat vector of constants, 3800 // handle it quickly. 3801 const auto *C = dyn_cast<Constant>(Idx); 3802 if (C && isa<VectorType>(C->getType())) 3803 C = C->getSplatValue(); 3804 3805 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3806 if (CI && CI->isZero()) 3807 continue; 3808 if (CI && !ElementScalable) { 3809 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3810 LLVMContext &Context = *DAG.getContext(); 3811 SDValue OffsVal; 3812 if (IsVectorGEP) 3813 OffsVal = DAG.getConstant( 3814 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3815 else 3816 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3817 3818 // In an inbounds GEP with an offset that is nonnegative even when 3819 // interpreted as signed, assume there is no unsigned overflow. 3820 SDNodeFlags Flags; 3821 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3822 Flags.setNoUnsignedWrap(true); 3823 3824 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3825 3826 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3827 continue; 3828 } 3829 3830 // N = N + Idx * ElementMul; 3831 SDValue IdxN = getValue(Idx); 3832 3833 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3834 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3835 VectorElementCount); 3836 if (VectorElementCount.Scalable) 3837 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3838 else 3839 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3840 } 3841 3842 // If the index is smaller or larger than intptr_t, truncate or extend 3843 // it. 3844 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3845 3846 if (ElementScalable) { 3847 EVT VScaleTy = N.getValueType().getScalarType(); 3848 SDValue VScale = DAG.getNode( 3849 ISD::VSCALE, dl, VScaleTy, 3850 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3851 if (IsVectorGEP) 3852 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3853 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3854 } else { 3855 // If this is a multiply by a power of two, turn it into a shl 3856 // immediately. This is a very common case. 3857 if (ElementMul != 1) { 3858 if (ElementMul.isPowerOf2()) { 3859 unsigned Amt = ElementMul.logBase2(); 3860 IdxN = DAG.getNode(ISD::SHL, dl, 3861 N.getValueType(), IdxN, 3862 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3863 } else { 3864 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3865 IdxN.getValueType()); 3866 IdxN = DAG.getNode(ISD::MUL, dl, 3867 N.getValueType(), IdxN, Scale); 3868 } 3869 } 3870 } 3871 3872 N = DAG.getNode(ISD::ADD, dl, 3873 N.getValueType(), N, IdxN); 3874 } 3875 } 3876 3877 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3878 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3879 3880 setValue(&I, N); 3881 } 3882 3883 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3884 // If this is a fixed sized alloca in the entry block of the function, 3885 // allocate it statically on the stack. 3886 if (FuncInfo.StaticAllocaMap.count(&I)) 3887 return; // getValue will auto-populate this. 3888 3889 SDLoc dl = getCurSDLoc(); 3890 Type *Ty = I.getAllocatedType(); 3891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3892 auto &DL = DAG.getDataLayout(); 3893 uint64_t TySize = DL.getTypeAllocSize(Ty); 3894 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3895 3896 SDValue AllocSize = getValue(I.getArraySize()); 3897 3898 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3899 if (AllocSize.getValueType() != IntPtr) 3900 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3901 3902 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3903 AllocSize, 3904 DAG.getConstant(TySize, dl, IntPtr)); 3905 3906 // Handle alignment. If the requested alignment is less than or equal to 3907 // the stack alignment, ignore it. If the size is greater than or equal to 3908 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3909 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3910 if (*Alignment <= StackAlign) 3911 Alignment = None; 3912 3913 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3914 // Round the size of the allocation up to the stack alignment size 3915 // by add SA-1 to the size. This doesn't overflow because we're computing 3916 // an address inside an alloca. 3917 SDNodeFlags Flags; 3918 Flags.setNoUnsignedWrap(true); 3919 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3920 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3921 3922 // Mask out the low bits for alignment purposes. 3923 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3924 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3925 3926 SDValue Ops[] = { 3927 getRoot(), AllocSize, 3928 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3929 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3930 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3931 setValue(&I, DSA); 3932 DAG.setRoot(DSA.getValue(1)); 3933 3934 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3935 } 3936 3937 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3938 if (I.isAtomic()) 3939 return visitAtomicLoad(I); 3940 3941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3942 const Value *SV = I.getOperand(0); 3943 if (TLI.supportSwiftError()) { 3944 // Swifterror values can come from either a function parameter with 3945 // swifterror attribute or an alloca with swifterror attribute. 3946 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3947 if (Arg->hasSwiftErrorAttr()) 3948 return visitLoadFromSwiftError(I); 3949 } 3950 3951 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3952 if (Alloca->isSwiftError()) 3953 return visitLoadFromSwiftError(I); 3954 } 3955 } 3956 3957 SDValue Ptr = getValue(SV); 3958 3959 Type *Ty = I.getType(); 3960 Align Alignment = I.getAlign(); 3961 3962 AAMDNodes AAInfo; 3963 I.getAAMetadata(AAInfo); 3964 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3965 3966 SmallVector<EVT, 4> ValueVTs, MemVTs; 3967 SmallVector<uint64_t, 4> Offsets; 3968 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3969 unsigned NumValues = ValueVTs.size(); 3970 if (NumValues == 0) 3971 return; 3972 3973 bool isVolatile = I.isVolatile(); 3974 3975 SDValue Root; 3976 bool ConstantMemory = false; 3977 if (isVolatile) 3978 // Serialize volatile loads with other side effects. 3979 Root = getRoot(); 3980 else if (NumValues > MaxParallelChains) 3981 Root = getMemoryRoot(); 3982 else if (AA && 3983 AA->pointsToConstantMemory(MemoryLocation( 3984 SV, 3985 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3986 AAInfo))) { 3987 // Do not serialize (non-volatile) loads of constant memory with anything. 3988 Root = DAG.getEntryNode(); 3989 ConstantMemory = true; 3990 } else { 3991 // Do not serialize non-volatile loads against each other. 3992 Root = DAG.getRoot(); 3993 } 3994 3995 SDLoc dl = getCurSDLoc(); 3996 3997 if (isVolatile) 3998 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3999 4000 // An aggregate load cannot wrap around the address space, so offsets to its 4001 // parts don't wrap either. 4002 SDNodeFlags Flags; 4003 Flags.setNoUnsignedWrap(true); 4004 4005 SmallVector<SDValue, 4> Values(NumValues); 4006 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4007 EVT PtrVT = Ptr.getValueType(); 4008 4009 MachineMemOperand::Flags MMOFlags 4010 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4011 4012 unsigned ChainI = 0; 4013 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4014 // Serializing loads here may result in excessive register pressure, and 4015 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4016 // could recover a bit by hoisting nodes upward in the chain by recognizing 4017 // they are side-effect free or do not alias. The optimizer should really 4018 // avoid this case by converting large object/array copies to llvm.memcpy 4019 // (MaxParallelChains should always remain as failsafe). 4020 if (ChainI == MaxParallelChains) { 4021 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4022 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4023 makeArrayRef(Chains.data(), ChainI)); 4024 Root = Chain; 4025 ChainI = 0; 4026 } 4027 SDValue A = DAG.getNode(ISD::ADD, dl, 4028 PtrVT, Ptr, 4029 DAG.getConstant(Offsets[i], dl, PtrVT), 4030 Flags); 4031 4032 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4033 MachinePointerInfo(SV, Offsets[i]), Alignment, 4034 MMOFlags, AAInfo, Ranges); 4035 Chains[ChainI] = L.getValue(1); 4036 4037 if (MemVTs[i] != ValueVTs[i]) 4038 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4039 4040 Values[i] = L; 4041 } 4042 4043 if (!ConstantMemory) { 4044 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4045 makeArrayRef(Chains.data(), ChainI)); 4046 if (isVolatile) 4047 DAG.setRoot(Chain); 4048 else 4049 PendingLoads.push_back(Chain); 4050 } 4051 4052 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4053 DAG.getVTList(ValueVTs), Values)); 4054 } 4055 4056 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4057 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4058 "call visitStoreToSwiftError when backend supports swifterror"); 4059 4060 SmallVector<EVT, 4> ValueVTs; 4061 SmallVector<uint64_t, 4> Offsets; 4062 const Value *SrcV = I.getOperand(0); 4063 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4064 SrcV->getType(), ValueVTs, &Offsets); 4065 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4066 "expect a single EVT for swifterror"); 4067 4068 SDValue Src = getValue(SrcV); 4069 // Create a virtual register, then update the virtual register. 4070 Register VReg = 4071 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4072 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4073 // Chain can be getRoot or getControlRoot. 4074 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4075 SDValue(Src.getNode(), Src.getResNo())); 4076 DAG.setRoot(CopyNode); 4077 } 4078 4079 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4080 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4081 "call visitLoadFromSwiftError when backend supports swifterror"); 4082 4083 assert(!I.isVolatile() && 4084 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4085 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4086 "Support volatile, non temporal, invariant for load_from_swift_error"); 4087 4088 const Value *SV = I.getOperand(0); 4089 Type *Ty = I.getType(); 4090 AAMDNodes AAInfo; 4091 I.getAAMetadata(AAInfo); 4092 assert( 4093 (!AA || 4094 !AA->pointsToConstantMemory(MemoryLocation( 4095 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4096 AAInfo))) && 4097 "load_from_swift_error should not be constant memory"); 4098 4099 SmallVector<EVT, 4> ValueVTs; 4100 SmallVector<uint64_t, 4> Offsets; 4101 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4102 ValueVTs, &Offsets); 4103 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4104 "expect a single EVT for swifterror"); 4105 4106 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4107 SDValue L = DAG.getCopyFromReg( 4108 getRoot(), getCurSDLoc(), 4109 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4110 4111 setValue(&I, L); 4112 } 4113 4114 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4115 if (I.isAtomic()) 4116 return visitAtomicStore(I); 4117 4118 const Value *SrcV = I.getOperand(0); 4119 const Value *PtrV = I.getOperand(1); 4120 4121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4122 if (TLI.supportSwiftError()) { 4123 // Swifterror values can come from either a function parameter with 4124 // swifterror attribute or an alloca with swifterror attribute. 4125 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4126 if (Arg->hasSwiftErrorAttr()) 4127 return visitStoreToSwiftError(I); 4128 } 4129 4130 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4131 if (Alloca->isSwiftError()) 4132 return visitStoreToSwiftError(I); 4133 } 4134 } 4135 4136 SmallVector<EVT, 4> ValueVTs, MemVTs; 4137 SmallVector<uint64_t, 4> Offsets; 4138 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4139 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4140 unsigned NumValues = ValueVTs.size(); 4141 if (NumValues == 0) 4142 return; 4143 4144 // Get the lowered operands. Note that we do this after 4145 // checking if NumResults is zero, because with zero results 4146 // the operands won't have values in the map. 4147 SDValue Src = getValue(SrcV); 4148 SDValue Ptr = getValue(PtrV); 4149 4150 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4151 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4152 SDLoc dl = getCurSDLoc(); 4153 Align Alignment = I.getAlign(); 4154 AAMDNodes AAInfo; 4155 I.getAAMetadata(AAInfo); 4156 4157 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4158 4159 // An aggregate load cannot wrap around the address space, so offsets to its 4160 // parts don't wrap either. 4161 SDNodeFlags Flags; 4162 Flags.setNoUnsignedWrap(true); 4163 4164 unsigned ChainI = 0; 4165 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4166 // See visitLoad comments. 4167 if (ChainI == MaxParallelChains) { 4168 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4169 makeArrayRef(Chains.data(), ChainI)); 4170 Root = Chain; 4171 ChainI = 0; 4172 } 4173 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4174 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4175 if (MemVTs[i] != ValueVTs[i]) 4176 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4177 SDValue St = 4178 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4179 Alignment, MMOFlags, AAInfo); 4180 Chains[ChainI] = St; 4181 } 4182 4183 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4184 makeArrayRef(Chains.data(), ChainI)); 4185 DAG.setRoot(StoreNode); 4186 } 4187 4188 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4189 bool IsCompressing) { 4190 SDLoc sdl = getCurSDLoc(); 4191 4192 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4193 MaybeAlign &Alignment) { 4194 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4195 Src0 = I.getArgOperand(0); 4196 Ptr = I.getArgOperand(1); 4197 Alignment = 4198 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4199 Mask = I.getArgOperand(3); 4200 }; 4201 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4202 MaybeAlign &Alignment) { 4203 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4204 Src0 = I.getArgOperand(0); 4205 Ptr = I.getArgOperand(1); 4206 Mask = I.getArgOperand(2); 4207 Alignment = None; 4208 }; 4209 4210 Value *PtrOperand, *MaskOperand, *Src0Operand; 4211 MaybeAlign Alignment; 4212 if (IsCompressing) 4213 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4214 else 4215 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4216 4217 SDValue Ptr = getValue(PtrOperand); 4218 SDValue Src0 = getValue(Src0Operand); 4219 SDValue Mask = getValue(MaskOperand); 4220 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4221 4222 EVT VT = Src0.getValueType(); 4223 if (!Alignment) 4224 Alignment = DAG.getEVTAlign(VT); 4225 4226 AAMDNodes AAInfo; 4227 I.getAAMetadata(AAInfo); 4228 4229 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4230 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4231 // TODO: Make MachineMemOperands aware of scalable 4232 // vectors. 4233 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4234 SDValue StoreNode = 4235 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4236 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4237 DAG.setRoot(StoreNode); 4238 setValue(&I, StoreNode); 4239 } 4240 4241 // Get a uniform base for the Gather/Scatter intrinsic. 4242 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4243 // We try to represent it as a base pointer + vector of indices. 4244 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4245 // The first operand of the GEP may be a single pointer or a vector of pointers 4246 // Example: 4247 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4248 // or 4249 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4250 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4251 // 4252 // When the first GEP operand is a single pointer - it is the uniform base we 4253 // are looking for. If first operand of the GEP is a splat vector - we 4254 // extract the splat value and use it as a uniform base. 4255 // In all other cases the function returns 'false'. 4256 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4257 ISD::MemIndexType &IndexType, SDValue &Scale, 4258 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4259 SelectionDAG& DAG = SDB->DAG; 4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4261 const DataLayout &DL = DAG.getDataLayout(); 4262 4263 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4264 4265 // Handle splat constant pointer. 4266 if (auto *C = dyn_cast<Constant>(Ptr)) { 4267 C = C->getSplatValue(); 4268 if (!C) 4269 return false; 4270 4271 Base = SDB->getValue(C); 4272 4273 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 4274 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4275 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4276 IndexType = ISD::SIGNED_SCALED; 4277 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4278 return true; 4279 } 4280 4281 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4282 if (!GEP || GEP->getParent() != CurBB) 4283 return false; 4284 4285 if (GEP->getNumOperands() != 2) 4286 return false; 4287 4288 const Value *BasePtr = GEP->getPointerOperand(); 4289 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4290 4291 // Make sure the base is scalar and the index is a vector. 4292 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4293 return false; 4294 4295 Base = SDB->getValue(BasePtr); 4296 Index = SDB->getValue(IndexVal); 4297 IndexType = ISD::SIGNED_SCALED; 4298 Scale = DAG.getTargetConstant( 4299 DL.getTypeAllocSize(GEP->getResultElementType()), 4300 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4301 return true; 4302 } 4303 4304 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4305 SDLoc sdl = getCurSDLoc(); 4306 4307 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4308 const Value *Ptr = I.getArgOperand(1); 4309 SDValue Src0 = getValue(I.getArgOperand(0)); 4310 SDValue Mask = getValue(I.getArgOperand(3)); 4311 EVT VT = Src0.getValueType(); 4312 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4313 if (!Alignment) 4314 Alignment = DAG.getEVTAlign(VT); 4315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4316 4317 AAMDNodes AAInfo; 4318 I.getAAMetadata(AAInfo); 4319 4320 SDValue Base; 4321 SDValue Index; 4322 ISD::MemIndexType IndexType; 4323 SDValue Scale; 4324 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4325 I.getParent()); 4326 4327 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4328 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4329 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4330 // TODO: Make MachineMemOperands aware of scalable 4331 // vectors. 4332 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4333 if (!UniformBase) { 4334 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4335 Index = getValue(Ptr); 4336 IndexType = ISD::SIGNED_SCALED; 4337 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4338 } 4339 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4340 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4341 Ops, MMO, IndexType); 4342 DAG.setRoot(Scatter); 4343 setValue(&I, Scatter); 4344 } 4345 4346 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4347 SDLoc sdl = getCurSDLoc(); 4348 4349 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4350 MaybeAlign &Alignment) { 4351 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4352 Ptr = I.getArgOperand(0); 4353 Alignment = 4354 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4355 Mask = I.getArgOperand(2); 4356 Src0 = I.getArgOperand(3); 4357 }; 4358 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4359 MaybeAlign &Alignment) { 4360 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4361 Ptr = I.getArgOperand(0); 4362 Alignment = None; 4363 Mask = I.getArgOperand(1); 4364 Src0 = I.getArgOperand(2); 4365 }; 4366 4367 Value *PtrOperand, *MaskOperand, *Src0Operand; 4368 MaybeAlign Alignment; 4369 if (IsExpanding) 4370 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4371 else 4372 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4373 4374 SDValue Ptr = getValue(PtrOperand); 4375 SDValue Src0 = getValue(Src0Operand); 4376 SDValue Mask = getValue(MaskOperand); 4377 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4378 4379 EVT VT = Src0.getValueType(); 4380 if (!Alignment) 4381 Alignment = DAG.getEVTAlign(VT); 4382 4383 AAMDNodes AAInfo; 4384 I.getAAMetadata(AAInfo); 4385 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4386 4387 // Do not serialize masked loads of constant memory with anything. 4388 MemoryLocation ML; 4389 if (VT.isScalableVector()) 4390 ML = MemoryLocation(PtrOperand); 4391 else 4392 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4393 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4394 AAInfo); 4395 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4396 4397 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4398 4399 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4400 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4401 // TODO: Make MachineMemOperands aware of scalable 4402 // vectors. 4403 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4404 4405 SDValue Load = 4406 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4407 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4408 if (AddToChain) 4409 PendingLoads.push_back(Load.getValue(1)); 4410 setValue(&I, Load); 4411 } 4412 4413 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4414 SDLoc sdl = getCurSDLoc(); 4415 4416 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4417 const Value *Ptr = I.getArgOperand(0); 4418 SDValue Src0 = getValue(I.getArgOperand(3)); 4419 SDValue Mask = getValue(I.getArgOperand(2)); 4420 4421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4422 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4423 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4424 if (!Alignment) 4425 Alignment = DAG.getEVTAlign(VT); 4426 4427 AAMDNodes AAInfo; 4428 I.getAAMetadata(AAInfo); 4429 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4430 4431 SDValue Root = DAG.getRoot(); 4432 SDValue Base; 4433 SDValue Index; 4434 ISD::MemIndexType IndexType; 4435 SDValue Scale; 4436 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4437 I.getParent()); 4438 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4439 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4440 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4441 // TODO: Make MachineMemOperands aware of scalable 4442 // vectors. 4443 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4444 4445 if (!UniformBase) { 4446 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4447 Index = getValue(Ptr); 4448 IndexType = ISD::SIGNED_SCALED; 4449 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4450 } 4451 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4452 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4453 Ops, MMO, IndexType); 4454 4455 PendingLoads.push_back(Gather.getValue(1)); 4456 setValue(&I, Gather); 4457 } 4458 4459 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4460 SDLoc dl = getCurSDLoc(); 4461 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4462 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4463 SyncScope::ID SSID = I.getSyncScopeID(); 4464 4465 SDValue InChain = getRoot(); 4466 4467 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4468 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4469 4470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4471 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4472 4473 MachineFunction &MF = DAG.getMachineFunction(); 4474 MachineMemOperand *MMO = MF.getMachineMemOperand( 4475 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4476 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4477 FailureOrdering); 4478 4479 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4480 dl, MemVT, VTs, InChain, 4481 getValue(I.getPointerOperand()), 4482 getValue(I.getCompareOperand()), 4483 getValue(I.getNewValOperand()), MMO); 4484 4485 SDValue OutChain = L.getValue(2); 4486 4487 setValue(&I, L); 4488 DAG.setRoot(OutChain); 4489 } 4490 4491 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4492 SDLoc dl = getCurSDLoc(); 4493 ISD::NodeType NT; 4494 switch (I.getOperation()) { 4495 default: llvm_unreachable("Unknown atomicrmw operation"); 4496 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4497 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4498 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4499 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4500 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4501 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4502 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4503 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4504 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4505 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4506 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4507 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4508 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4509 } 4510 AtomicOrdering Ordering = I.getOrdering(); 4511 SyncScope::ID SSID = I.getSyncScopeID(); 4512 4513 SDValue InChain = getRoot(); 4514 4515 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4517 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4518 4519 MachineFunction &MF = DAG.getMachineFunction(); 4520 MachineMemOperand *MMO = MF.getMachineMemOperand( 4521 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4522 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4523 4524 SDValue L = 4525 DAG.getAtomic(NT, dl, MemVT, InChain, 4526 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4527 MMO); 4528 4529 SDValue OutChain = L.getValue(1); 4530 4531 setValue(&I, L); 4532 DAG.setRoot(OutChain); 4533 } 4534 4535 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4536 SDLoc dl = getCurSDLoc(); 4537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4538 SDValue Ops[3]; 4539 Ops[0] = getRoot(); 4540 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4541 TLI.getFenceOperandTy(DAG.getDataLayout())); 4542 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4543 TLI.getFenceOperandTy(DAG.getDataLayout())); 4544 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4545 } 4546 4547 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4548 SDLoc dl = getCurSDLoc(); 4549 AtomicOrdering Order = I.getOrdering(); 4550 SyncScope::ID SSID = I.getSyncScopeID(); 4551 4552 SDValue InChain = getRoot(); 4553 4554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4555 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4556 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4557 4558 if (!TLI.supportsUnalignedAtomics() && 4559 I.getAlignment() < MemVT.getSizeInBits() / 8) 4560 report_fatal_error("Cannot generate unaligned atomic load"); 4561 4562 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4563 4564 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4565 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4566 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4567 4568 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4569 4570 SDValue Ptr = getValue(I.getPointerOperand()); 4571 4572 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4573 // TODO: Once this is better exercised by tests, it should be merged with 4574 // the normal path for loads to prevent future divergence. 4575 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4576 if (MemVT != VT) 4577 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4578 4579 setValue(&I, L); 4580 SDValue OutChain = L.getValue(1); 4581 if (!I.isUnordered()) 4582 DAG.setRoot(OutChain); 4583 else 4584 PendingLoads.push_back(OutChain); 4585 return; 4586 } 4587 4588 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4589 Ptr, MMO); 4590 4591 SDValue OutChain = L.getValue(1); 4592 if (MemVT != VT) 4593 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4594 4595 setValue(&I, L); 4596 DAG.setRoot(OutChain); 4597 } 4598 4599 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4600 SDLoc dl = getCurSDLoc(); 4601 4602 AtomicOrdering Ordering = I.getOrdering(); 4603 SyncScope::ID SSID = I.getSyncScopeID(); 4604 4605 SDValue InChain = getRoot(); 4606 4607 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4608 EVT MemVT = 4609 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4610 4611 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4612 report_fatal_error("Cannot generate unaligned atomic store"); 4613 4614 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4615 4616 MachineFunction &MF = DAG.getMachineFunction(); 4617 MachineMemOperand *MMO = MF.getMachineMemOperand( 4618 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4619 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4620 4621 SDValue Val = getValue(I.getValueOperand()); 4622 if (Val.getValueType() != MemVT) 4623 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4624 SDValue Ptr = getValue(I.getPointerOperand()); 4625 4626 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4627 // TODO: Once this is better exercised by tests, it should be merged with 4628 // the normal path for stores to prevent future divergence. 4629 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4630 DAG.setRoot(S); 4631 return; 4632 } 4633 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4634 Ptr, Val, MMO); 4635 4636 4637 DAG.setRoot(OutChain); 4638 } 4639 4640 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4641 /// node. 4642 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4643 unsigned Intrinsic) { 4644 // Ignore the callsite's attributes. A specific call site may be marked with 4645 // readnone, but the lowering code will expect the chain based on the 4646 // definition. 4647 const Function *F = I.getCalledFunction(); 4648 bool HasChain = !F->doesNotAccessMemory(); 4649 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4650 4651 // Build the operand list. 4652 SmallVector<SDValue, 8> Ops; 4653 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4654 if (OnlyLoad) { 4655 // We don't need to serialize loads against other loads. 4656 Ops.push_back(DAG.getRoot()); 4657 } else { 4658 Ops.push_back(getRoot()); 4659 } 4660 } 4661 4662 // Info is set by getTgtMemInstrinsic 4663 TargetLowering::IntrinsicInfo Info; 4664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4665 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4666 DAG.getMachineFunction(), 4667 Intrinsic); 4668 4669 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4670 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4671 Info.opc == ISD::INTRINSIC_W_CHAIN) 4672 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4673 TLI.getPointerTy(DAG.getDataLayout()))); 4674 4675 // Add all operands of the call to the operand list. 4676 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4677 const Value *Arg = I.getArgOperand(i); 4678 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4679 Ops.push_back(getValue(Arg)); 4680 continue; 4681 } 4682 4683 // Use TargetConstant instead of a regular constant for immarg. 4684 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4685 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4686 assert(CI->getBitWidth() <= 64 && 4687 "large intrinsic immediates not handled"); 4688 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4689 } else { 4690 Ops.push_back( 4691 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4692 } 4693 } 4694 4695 SmallVector<EVT, 4> ValueVTs; 4696 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4697 4698 if (HasChain) 4699 ValueVTs.push_back(MVT::Other); 4700 4701 SDVTList VTs = DAG.getVTList(ValueVTs); 4702 4703 // Create the node. 4704 SDValue Result; 4705 if (IsTgtIntrinsic) { 4706 // This is target intrinsic that touches memory 4707 AAMDNodes AAInfo; 4708 I.getAAMetadata(AAInfo); 4709 Result = 4710 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4711 MachinePointerInfo(Info.ptrVal, Info.offset), 4712 Info.align, Info.flags, Info.size, AAInfo); 4713 } else if (!HasChain) { 4714 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4715 } else if (!I.getType()->isVoidTy()) { 4716 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4717 } else { 4718 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4719 } 4720 4721 if (HasChain) { 4722 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4723 if (OnlyLoad) 4724 PendingLoads.push_back(Chain); 4725 else 4726 DAG.setRoot(Chain); 4727 } 4728 4729 if (!I.getType()->isVoidTy()) { 4730 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4731 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4732 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4733 } else 4734 Result = lowerRangeToAssertZExt(DAG, I, Result); 4735 4736 setValue(&I, Result); 4737 } 4738 } 4739 4740 /// GetSignificand - Get the significand and build it into a floating-point 4741 /// number with exponent of 1: 4742 /// 4743 /// Op = (Op & 0x007fffff) | 0x3f800000; 4744 /// 4745 /// where Op is the hexadecimal representation of floating point value. 4746 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4747 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4748 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4749 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4750 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4751 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4752 } 4753 4754 /// GetExponent - Get the exponent: 4755 /// 4756 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4757 /// 4758 /// where Op is the hexadecimal representation of floating point value. 4759 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4760 const TargetLowering &TLI, const SDLoc &dl) { 4761 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4762 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4763 SDValue t1 = DAG.getNode( 4764 ISD::SRL, dl, MVT::i32, t0, 4765 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4766 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4767 DAG.getConstant(127, dl, MVT::i32)); 4768 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4769 } 4770 4771 /// getF32Constant - Get 32-bit floating point constant. 4772 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4773 const SDLoc &dl) { 4774 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4775 MVT::f32); 4776 } 4777 4778 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4779 SelectionDAG &DAG) { 4780 // TODO: What fast-math-flags should be set on the floating-point nodes? 4781 4782 // IntegerPartOfX = ((int32_t)(t0); 4783 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4784 4785 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4786 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4787 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4788 4789 // IntegerPartOfX <<= 23; 4790 IntegerPartOfX = DAG.getNode( 4791 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4792 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4793 DAG.getDataLayout()))); 4794 4795 SDValue TwoToFractionalPartOfX; 4796 if (LimitFloatPrecision <= 6) { 4797 // For floating-point precision of 6: 4798 // 4799 // TwoToFractionalPartOfX = 4800 // 0.997535578f + 4801 // (0.735607626f + 0.252464424f * x) * x; 4802 // 4803 // error 0.0144103317, which is 6 bits 4804 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4805 getF32Constant(DAG, 0x3e814304, dl)); 4806 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4807 getF32Constant(DAG, 0x3f3c50c8, dl)); 4808 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4809 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4810 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4811 } else if (LimitFloatPrecision <= 12) { 4812 // For floating-point precision of 12: 4813 // 4814 // TwoToFractionalPartOfX = 4815 // 0.999892986f + 4816 // (0.696457318f + 4817 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4818 // 4819 // error 0.000107046256, which is 13 to 14 bits 4820 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4821 getF32Constant(DAG, 0x3da235e3, dl)); 4822 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4823 getF32Constant(DAG, 0x3e65b8f3, dl)); 4824 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4825 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4826 getF32Constant(DAG, 0x3f324b07, dl)); 4827 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4828 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4829 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4830 } else { // LimitFloatPrecision <= 18 4831 // For floating-point precision of 18: 4832 // 4833 // TwoToFractionalPartOfX = 4834 // 0.999999982f + 4835 // (0.693148872f + 4836 // (0.240227044f + 4837 // (0.554906021e-1f + 4838 // (0.961591928e-2f + 4839 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4840 // error 2.47208000*10^(-7), which is better than 18 bits 4841 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4842 getF32Constant(DAG, 0x3924b03e, dl)); 4843 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4844 getF32Constant(DAG, 0x3ab24b87, dl)); 4845 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4846 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4847 getF32Constant(DAG, 0x3c1d8c17, dl)); 4848 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4849 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4850 getF32Constant(DAG, 0x3d634a1d, dl)); 4851 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4852 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4853 getF32Constant(DAG, 0x3e75fe14, dl)); 4854 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4855 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4856 getF32Constant(DAG, 0x3f317234, dl)); 4857 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4858 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4859 getF32Constant(DAG, 0x3f800000, dl)); 4860 } 4861 4862 // Add the exponent into the result in integer domain. 4863 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4864 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4865 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4866 } 4867 4868 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4869 /// limited-precision mode. 4870 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4871 const TargetLowering &TLI) { 4872 if (Op.getValueType() == MVT::f32 && 4873 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4874 4875 // Put the exponent in the right bit position for later addition to the 4876 // final result: 4877 // 4878 // t0 = Op * log2(e) 4879 4880 // TODO: What fast-math-flags should be set here? 4881 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4882 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4883 return getLimitedPrecisionExp2(t0, dl, DAG); 4884 } 4885 4886 // No special expansion. 4887 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4888 } 4889 4890 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4891 /// limited-precision mode. 4892 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4893 const TargetLowering &TLI) { 4894 // TODO: What fast-math-flags should be set on the floating-point nodes? 4895 4896 if (Op.getValueType() == MVT::f32 && 4897 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4898 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4899 4900 // Scale the exponent by log(2). 4901 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4902 SDValue LogOfExponent = 4903 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4904 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4905 4906 // Get the significand and build it into a floating-point number with 4907 // exponent of 1. 4908 SDValue X = GetSignificand(DAG, Op1, dl); 4909 4910 SDValue LogOfMantissa; 4911 if (LimitFloatPrecision <= 6) { 4912 // For floating-point precision of 6: 4913 // 4914 // LogofMantissa = 4915 // -1.1609546f + 4916 // (1.4034025f - 0.23903021f * x) * x; 4917 // 4918 // error 0.0034276066, which is better than 8 bits 4919 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4920 getF32Constant(DAG, 0xbe74c456, dl)); 4921 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4922 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4923 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4924 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4925 getF32Constant(DAG, 0x3f949a29, dl)); 4926 } else if (LimitFloatPrecision <= 12) { 4927 // For floating-point precision of 12: 4928 // 4929 // LogOfMantissa = 4930 // -1.7417939f + 4931 // (2.8212026f + 4932 // (-1.4699568f + 4933 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4934 // 4935 // error 0.000061011436, which is 14 bits 4936 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4937 getF32Constant(DAG, 0xbd67b6d6, dl)); 4938 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4939 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4940 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4941 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4942 getF32Constant(DAG, 0x3fbc278b, dl)); 4943 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4944 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4945 getF32Constant(DAG, 0x40348e95, dl)); 4946 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4947 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4948 getF32Constant(DAG, 0x3fdef31a, dl)); 4949 } else { // LimitFloatPrecision <= 18 4950 // For floating-point precision of 18: 4951 // 4952 // LogOfMantissa = 4953 // -2.1072184f + 4954 // (4.2372794f + 4955 // (-3.7029485f + 4956 // (2.2781945f + 4957 // (-0.87823314f + 4958 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4959 // 4960 // error 0.0000023660568, which is better than 18 bits 4961 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4962 getF32Constant(DAG, 0xbc91e5ac, dl)); 4963 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4964 getF32Constant(DAG, 0x3e4350aa, dl)); 4965 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4966 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4967 getF32Constant(DAG, 0x3f60d3e3, dl)); 4968 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4969 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4970 getF32Constant(DAG, 0x4011cdf0, dl)); 4971 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4972 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4973 getF32Constant(DAG, 0x406cfd1c, dl)); 4974 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4975 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4976 getF32Constant(DAG, 0x408797cb, dl)); 4977 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4978 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4979 getF32Constant(DAG, 0x4006dcab, dl)); 4980 } 4981 4982 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4983 } 4984 4985 // No special expansion. 4986 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4987 } 4988 4989 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4990 /// limited-precision mode. 4991 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4992 const TargetLowering &TLI) { 4993 // TODO: What fast-math-flags should be set on the floating-point nodes? 4994 4995 if (Op.getValueType() == MVT::f32 && 4996 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4997 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4998 4999 // Get the exponent. 5000 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5001 5002 // Get the significand and build it into a floating-point number with 5003 // exponent of 1. 5004 SDValue X = GetSignificand(DAG, Op1, dl); 5005 5006 // Different possible minimax approximations of significand in 5007 // floating-point for various degrees of accuracy over [1,2]. 5008 SDValue Log2ofMantissa; 5009 if (LimitFloatPrecision <= 6) { 5010 // For floating-point precision of 6: 5011 // 5012 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5013 // 5014 // error 0.0049451742, which is more than 7 bits 5015 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5016 getF32Constant(DAG, 0xbeb08fe0, dl)); 5017 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5018 getF32Constant(DAG, 0x40019463, dl)); 5019 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5020 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5021 getF32Constant(DAG, 0x3fd6633d, dl)); 5022 } else if (LimitFloatPrecision <= 12) { 5023 // For floating-point precision of 12: 5024 // 5025 // Log2ofMantissa = 5026 // -2.51285454f + 5027 // (4.07009056f + 5028 // (-2.12067489f + 5029 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5030 // 5031 // error 0.0000876136000, which is better than 13 bits 5032 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5033 getF32Constant(DAG, 0xbda7262e, dl)); 5034 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5035 getF32Constant(DAG, 0x3f25280b, dl)); 5036 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5037 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5038 getF32Constant(DAG, 0x4007b923, dl)); 5039 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5040 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5041 getF32Constant(DAG, 0x40823e2f, dl)); 5042 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5043 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5044 getF32Constant(DAG, 0x4020d29c, dl)); 5045 } else { // LimitFloatPrecision <= 18 5046 // For floating-point precision of 18: 5047 // 5048 // Log2ofMantissa = 5049 // -3.0400495f + 5050 // (6.1129976f + 5051 // (-5.3420409f + 5052 // (3.2865683f + 5053 // (-1.2669343f + 5054 // (0.27515199f - 5055 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5056 // 5057 // error 0.0000018516, which is better than 18 bits 5058 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5059 getF32Constant(DAG, 0xbcd2769e, dl)); 5060 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5061 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5062 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5063 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5064 getF32Constant(DAG, 0x3fa22ae7, dl)); 5065 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5066 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5067 getF32Constant(DAG, 0x40525723, dl)); 5068 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5069 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5070 getF32Constant(DAG, 0x40aaf200, dl)); 5071 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5072 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5073 getF32Constant(DAG, 0x40c39dad, dl)); 5074 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5075 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5076 getF32Constant(DAG, 0x4042902c, dl)); 5077 } 5078 5079 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5080 } 5081 5082 // No special expansion. 5083 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5084 } 5085 5086 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5087 /// limited-precision mode. 5088 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5089 const TargetLowering &TLI) { 5090 // TODO: What fast-math-flags should be set on the floating-point nodes? 5091 5092 if (Op.getValueType() == MVT::f32 && 5093 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5094 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5095 5096 // Scale the exponent by log10(2) [0.30102999f]. 5097 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5098 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5099 getF32Constant(DAG, 0x3e9a209a, dl)); 5100 5101 // Get the significand and build it into a floating-point number with 5102 // exponent of 1. 5103 SDValue X = GetSignificand(DAG, Op1, dl); 5104 5105 SDValue Log10ofMantissa; 5106 if (LimitFloatPrecision <= 6) { 5107 // For floating-point precision of 6: 5108 // 5109 // Log10ofMantissa = 5110 // -0.50419619f + 5111 // (0.60948995f - 0.10380950f * x) * x; 5112 // 5113 // error 0.0014886165, which is 6 bits 5114 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5115 getF32Constant(DAG, 0xbdd49a13, dl)); 5116 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5117 getF32Constant(DAG, 0x3f1c0789, dl)); 5118 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5119 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5120 getF32Constant(DAG, 0x3f011300, dl)); 5121 } else if (LimitFloatPrecision <= 12) { 5122 // For floating-point precision of 12: 5123 // 5124 // Log10ofMantissa = 5125 // -0.64831180f + 5126 // (0.91751397f + 5127 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5128 // 5129 // error 0.00019228036, which is better than 12 bits 5130 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5131 getF32Constant(DAG, 0x3d431f31, dl)); 5132 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5133 getF32Constant(DAG, 0x3ea21fb2, dl)); 5134 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5135 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5136 getF32Constant(DAG, 0x3f6ae232, dl)); 5137 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5138 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5139 getF32Constant(DAG, 0x3f25f7c3, dl)); 5140 } else { // LimitFloatPrecision <= 18 5141 // For floating-point precision of 18: 5142 // 5143 // Log10ofMantissa = 5144 // -0.84299375f + 5145 // (1.5327582f + 5146 // (-1.0688956f + 5147 // (0.49102474f + 5148 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5149 // 5150 // error 0.0000037995730, which is better than 18 bits 5151 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5152 getF32Constant(DAG, 0x3c5d51ce, dl)); 5153 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5154 getF32Constant(DAG, 0x3e00685a, dl)); 5155 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5156 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5157 getF32Constant(DAG, 0x3efb6798, dl)); 5158 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5159 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5160 getF32Constant(DAG, 0x3f88d192, dl)); 5161 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5162 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5163 getF32Constant(DAG, 0x3fc4316c, dl)); 5164 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5165 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5166 getF32Constant(DAG, 0x3f57ce70, dl)); 5167 } 5168 5169 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5170 } 5171 5172 // No special expansion. 5173 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5174 } 5175 5176 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5177 /// limited-precision mode. 5178 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5179 const TargetLowering &TLI) { 5180 if (Op.getValueType() == MVT::f32 && 5181 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5182 return getLimitedPrecisionExp2(Op, dl, DAG); 5183 5184 // No special expansion. 5185 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5186 } 5187 5188 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5189 /// limited-precision mode with x == 10.0f. 5190 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5191 SelectionDAG &DAG, const TargetLowering &TLI) { 5192 bool IsExp10 = false; 5193 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5194 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5195 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5196 APFloat Ten(10.0f); 5197 IsExp10 = LHSC->isExactlyValue(Ten); 5198 } 5199 } 5200 5201 // TODO: What fast-math-flags should be set on the FMUL node? 5202 if (IsExp10) { 5203 // Put the exponent in the right bit position for later addition to the 5204 // final result: 5205 // 5206 // #define LOG2OF10 3.3219281f 5207 // t0 = Op * LOG2OF10; 5208 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5209 getF32Constant(DAG, 0x40549a78, dl)); 5210 return getLimitedPrecisionExp2(t0, dl, DAG); 5211 } 5212 5213 // No special expansion. 5214 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5215 } 5216 5217 /// ExpandPowI - Expand a llvm.powi intrinsic. 5218 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5219 SelectionDAG &DAG) { 5220 // If RHS is a constant, we can expand this out to a multiplication tree, 5221 // otherwise we end up lowering to a call to __powidf2 (for example). When 5222 // optimizing for size, we only want to do this if the expansion would produce 5223 // a small number of multiplies, otherwise we do the full expansion. 5224 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5225 // Get the exponent as a positive value. 5226 unsigned Val = RHSC->getSExtValue(); 5227 if ((int)Val < 0) Val = -Val; 5228 5229 // powi(x, 0) -> 1.0 5230 if (Val == 0) 5231 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5232 5233 bool OptForSize = DAG.shouldOptForSize(); 5234 if (!OptForSize || 5235 // If optimizing for size, don't insert too many multiplies. 5236 // This inserts up to 5 multiplies. 5237 countPopulation(Val) + Log2_32(Val) < 7) { 5238 // We use the simple binary decomposition method to generate the multiply 5239 // sequence. There are more optimal ways to do this (for example, 5240 // powi(x,15) generates one more multiply than it should), but this has 5241 // the benefit of being both really simple and much better than a libcall. 5242 SDValue Res; // Logically starts equal to 1.0 5243 SDValue CurSquare = LHS; 5244 // TODO: Intrinsics should have fast-math-flags that propagate to these 5245 // nodes. 5246 while (Val) { 5247 if (Val & 1) { 5248 if (Res.getNode()) 5249 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5250 else 5251 Res = CurSquare; // 1.0*CurSquare. 5252 } 5253 5254 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5255 CurSquare, CurSquare); 5256 Val >>= 1; 5257 } 5258 5259 // If the original was negative, invert the result, producing 1/(x*x*x). 5260 if (RHSC->getSExtValue() < 0) 5261 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5262 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5263 return Res; 5264 } 5265 } 5266 5267 // Otherwise, expand to a libcall. 5268 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5269 } 5270 5271 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5272 SDValue LHS, SDValue RHS, SDValue Scale, 5273 SelectionDAG &DAG, const TargetLowering &TLI) { 5274 EVT VT = LHS.getValueType(); 5275 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5276 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5277 LLVMContext &Ctx = *DAG.getContext(); 5278 5279 // If the type is legal but the operation isn't, this node might survive all 5280 // the way to operation legalization. If we end up there and we do not have 5281 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5282 // node. 5283 5284 // Coax the legalizer into expanding the node during type legalization instead 5285 // by bumping the size by one bit. This will force it to Promote, enabling the 5286 // early expansion and avoiding the need to expand later. 5287 5288 // We don't have to do this if Scale is 0; that can always be expanded, unless 5289 // it's a saturating signed operation. Those can experience true integer 5290 // division overflow, a case which we must avoid. 5291 5292 // FIXME: We wouldn't have to do this (or any of the early 5293 // expansion/promotion) if it was possible to expand a libcall of an 5294 // illegal type during operation legalization. But it's not, so things 5295 // get a bit hacky. 5296 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5297 if ((ScaleInt > 0 || (Saturating && Signed)) && 5298 (TLI.isTypeLegal(VT) || 5299 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5300 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5301 Opcode, VT, ScaleInt); 5302 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5303 EVT PromVT; 5304 if (VT.isScalarInteger()) 5305 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5306 else if (VT.isVector()) { 5307 PromVT = VT.getVectorElementType(); 5308 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5309 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5310 } else 5311 llvm_unreachable("Wrong VT for DIVFIX?"); 5312 if (Signed) { 5313 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5314 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5315 } else { 5316 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5317 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5318 } 5319 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5320 // For saturating operations, we need to shift up the LHS to get the 5321 // proper saturation width, and then shift down again afterwards. 5322 if (Saturating) 5323 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5324 DAG.getConstant(1, DL, ShiftTy)); 5325 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5326 if (Saturating) 5327 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5328 DAG.getConstant(1, DL, ShiftTy)); 5329 return DAG.getZExtOrTrunc(Res, DL, VT); 5330 } 5331 } 5332 5333 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5334 } 5335 5336 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5337 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5338 static void 5339 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5340 const SDValue &N) { 5341 switch (N.getOpcode()) { 5342 case ISD::CopyFromReg: { 5343 SDValue Op = N.getOperand(1); 5344 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5345 Op.getValueType().getSizeInBits()); 5346 return; 5347 } 5348 case ISD::BITCAST: 5349 case ISD::AssertZext: 5350 case ISD::AssertSext: 5351 case ISD::TRUNCATE: 5352 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5353 return; 5354 case ISD::BUILD_PAIR: 5355 case ISD::BUILD_VECTOR: 5356 case ISD::CONCAT_VECTORS: 5357 for (SDValue Op : N->op_values()) 5358 getUnderlyingArgRegs(Regs, Op); 5359 return; 5360 default: 5361 return; 5362 } 5363 } 5364 5365 /// If the DbgValueInst is a dbg_value of a function argument, create the 5366 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5367 /// instruction selection, they will be inserted to the entry BB. 5368 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5369 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5370 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5371 const Argument *Arg = dyn_cast<Argument>(V); 5372 if (!Arg) 5373 return false; 5374 5375 if (!IsDbgDeclare) { 5376 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5377 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5378 // the entry block. 5379 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5380 if (!IsInEntryBlock) 5381 return false; 5382 5383 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5384 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5385 // variable that also is a param. 5386 // 5387 // Although, if we are at the top of the entry block already, we can still 5388 // emit using ArgDbgValue. This might catch some situations when the 5389 // dbg.value refers to an argument that isn't used in the entry block, so 5390 // any CopyToReg node would be optimized out and the only way to express 5391 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5392 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5393 // we should only emit as ArgDbgValue if the Variable is an argument to the 5394 // current function, and the dbg.value intrinsic is found in the entry 5395 // block. 5396 bool VariableIsFunctionInputArg = Variable->isParameter() && 5397 !DL->getInlinedAt(); 5398 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5399 if (!IsInPrologue && !VariableIsFunctionInputArg) 5400 return false; 5401 5402 // Here we assume that a function argument on IR level only can be used to 5403 // describe one input parameter on source level. If we for example have 5404 // source code like this 5405 // 5406 // struct A { long x, y; }; 5407 // void foo(struct A a, long b) { 5408 // ... 5409 // b = a.x; 5410 // ... 5411 // } 5412 // 5413 // and IR like this 5414 // 5415 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5416 // entry: 5417 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5418 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5419 // call void @llvm.dbg.value(metadata i32 %b, "b", 5420 // ... 5421 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5422 // ... 5423 // 5424 // then the last dbg.value is describing a parameter "b" using a value that 5425 // is an argument. But since we already has used %a1 to describe a parameter 5426 // we should not handle that last dbg.value here (that would result in an 5427 // incorrect hoisting of the DBG_VALUE to the function entry). 5428 // Notice that we allow one dbg.value per IR level argument, to accommodate 5429 // for the situation with fragments above. 5430 if (VariableIsFunctionInputArg) { 5431 unsigned ArgNo = Arg->getArgNo(); 5432 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5433 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5434 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5435 return false; 5436 FuncInfo.DescribedArgs.set(ArgNo); 5437 } 5438 } 5439 5440 MachineFunction &MF = DAG.getMachineFunction(); 5441 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5442 5443 bool IsIndirect = false; 5444 Optional<MachineOperand> Op; 5445 // Some arguments' frame index is recorded during argument lowering. 5446 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5447 if (FI != std::numeric_limits<int>::max()) 5448 Op = MachineOperand::CreateFI(FI); 5449 5450 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5451 if (!Op && N.getNode()) { 5452 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5453 Register Reg; 5454 if (ArgRegsAndSizes.size() == 1) 5455 Reg = ArgRegsAndSizes.front().first; 5456 5457 if (Reg && Reg.isVirtual()) { 5458 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5459 Register PR = RegInfo.getLiveInPhysReg(Reg); 5460 if (PR) 5461 Reg = PR; 5462 } 5463 if (Reg) { 5464 Op = MachineOperand::CreateReg(Reg, false); 5465 IsIndirect = IsDbgDeclare; 5466 } 5467 } 5468 5469 if (!Op && N.getNode()) { 5470 // Check if frame index is available. 5471 SDValue LCandidate = peekThroughBitcasts(N); 5472 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5473 if (FrameIndexSDNode *FINode = 5474 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5475 Op = MachineOperand::CreateFI(FINode->getIndex()); 5476 } 5477 5478 if (!Op) { 5479 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5480 auto splitMultiRegDbgValue 5481 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5482 unsigned Offset = 0; 5483 for (auto RegAndSize : SplitRegs) { 5484 // If the expression is already a fragment, the current register 5485 // offset+size might extend beyond the fragment. In this case, only 5486 // the register bits that are inside the fragment are relevant. 5487 int RegFragmentSizeInBits = RegAndSize.second; 5488 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5489 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5490 // The register is entirely outside the expression fragment, 5491 // so is irrelevant for debug info. 5492 if (Offset >= ExprFragmentSizeInBits) 5493 break; 5494 // The register is partially outside the expression fragment, only 5495 // the low bits within the fragment are relevant for debug info. 5496 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5497 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5498 } 5499 } 5500 5501 auto FragmentExpr = DIExpression::createFragmentExpression( 5502 Expr, Offset, RegFragmentSizeInBits); 5503 Offset += RegAndSize.second; 5504 // If a valid fragment expression cannot be created, the variable's 5505 // correct value cannot be determined and so it is set as Undef. 5506 if (!FragmentExpr) { 5507 SDDbgValue *SDV = DAG.getConstantDbgValue( 5508 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5509 DAG.AddDbgValue(SDV, nullptr, false); 5510 continue; 5511 } 5512 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5513 FuncInfo.ArgDbgValues.push_back( 5514 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5515 RegAndSize.first, Variable, *FragmentExpr)); 5516 } 5517 }; 5518 5519 // Check if ValueMap has reg number. 5520 DenseMap<const Value *, Register>::const_iterator 5521 VMI = FuncInfo.ValueMap.find(V); 5522 if (VMI != FuncInfo.ValueMap.end()) { 5523 const auto &TLI = DAG.getTargetLoweringInfo(); 5524 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5525 V->getType(), getABIRegCopyCC(V)); 5526 if (RFV.occupiesMultipleRegs()) { 5527 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5528 return true; 5529 } 5530 5531 Op = MachineOperand::CreateReg(VMI->second, false); 5532 IsIndirect = IsDbgDeclare; 5533 } else if (ArgRegsAndSizes.size() > 1) { 5534 // This was split due to the calling convention, and no virtual register 5535 // mapping exists for the value. 5536 splitMultiRegDbgValue(ArgRegsAndSizes); 5537 return true; 5538 } 5539 } 5540 5541 if (!Op) 5542 return false; 5543 5544 assert(Variable->isValidLocationForIntrinsic(DL) && 5545 "Expected inlined-at fields to agree"); 5546 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5547 FuncInfo.ArgDbgValues.push_back( 5548 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5549 *Op, Variable, Expr)); 5550 5551 return true; 5552 } 5553 5554 /// Return the appropriate SDDbgValue based on N. 5555 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5556 DILocalVariable *Variable, 5557 DIExpression *Expr, 5558 const DebugLoc &dl, 5559 unsigned DbgSDNodeOrder) { 5560 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5561 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5562 // stack slot locations. 5563 // 5564 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5565 // debug values here after optimization: 5566 // 5567 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5568 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5569 // 5570 // Both describe the direct values of their associated variables. 5571 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5572 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5573 } 5574 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5575 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5576 } 5577 5578 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5579 switch (Intrinsic) { 5580 case Intrinsic::smul_fix: 5581 return ISD::SMULFIX; 5582 case Intrinsic::umul_fix: 5583 return ISD::UMULFIX; 5584 case Intrinsic::smul_fix_sat: 5585 return ISD::SMULFIXSAT; 5586 case Intrinsic::umul_fix_sat: 5587 return ISD::UMULFIXSAT; 5588 case Intrinsic::sdiv_fix: 5589 return ISD::SDIVFIX; 5590 case Intrinsic::udiv_fix: 5591 return ISD::UDIVFIX; 5592 case Intrinsic::sdiv_fix_sat: 5593 return ISD::SDIVFIXSAT; 5594 case Intrinsic::udiv_fix_sat: 5595 return ISD::UDIVFIXSAT; 5596 default: 5597 llvm_unreachable("Unhandled fixed point intrinsic"); 5598 } 5599 } 5600 5601 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5602 const char *FunctionName) { 5603 assert(FunctionName && "FunctionName must not be nullptr"); 5604 SDValue Callee = DAG.getExternalSymbol( 5605 FunctionName, 5606 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5607 LowerCallTo(I, Callee, I.isTailCall()); 5608 } 5609 5610 /// Given a @llvm.call.preallocated.setup, return the corresponding 5611 /// preallocated call. 5612 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5613 assert(cast<CallBase>(PreallocatedSetup) 5614 ->getCalledFunction() 5615 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5616 "expected call_preallocated_setup Value"); 5617 for (auto *U : PreallocatedSetup->users()) { 5618 auto *UseCall = cast<CallBase>(U); 5619 const Function *Fn = UseCall->getCalledFunction(); 5620 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5621 return UseCall; 5622 } 5623 } 5624 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5625 } 5626 5627 /// Lower the call to the specified intrinsic function. 5628 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5629 unsigned Intrinsic) { 5630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5631 SDLoc sdl = getCurSDLoc(); 5632 DebugLoc dl = getCurDebugLoc(); 5633 SDValue Res; 5634 5635 switch (Intrinsic) { 5636 default: 5637 // By default, turn this into a target intrinsic node. 5638 visitTargetIntrinsic(I, Intrinsic); 5639 return; 5640 case Intrinsic::vscale: { 5641 match(&I, m_VScale(DAG.getDataLayout())); 5642 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5643 setValue(&I, 5644 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5645 return; 5646 } 5647 case Intrinsic::vastart: visitVAStart(I); return; 5648 case Intrinsic::vaend: visitVAEnd(I); return; 5649 case Intrinsic::vacopy: visitVACopy(I); return; 5650 case Intrinsic::returnaddress: 5651 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5652 TLI.getPointerTy(DAG.getDataLayout()), 5653 getValue(I.getArgOperand(0)))); 5654 return; 5655 case Intrinsic::addressofreturnaddress: 5656 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5657 TLI.getPointerTy(DAG.getDataLayout()))); 5658 return; 5659 case Intrinsic::sponentry: 5660 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5661 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5662 return; 5663 case Intrinsic::frameaddress: 5664 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5665 TLI.getFrameIndexTy(DAG.getDataLayout()), 5666 getValue(I.getArgOperand(0)))); 5667 return; 5668 case Intrinsic::read_register: { 5669 Value *Reg = I.getArgOperand(0); 5670 SDValue Chain = getRoot(); 5671 SDValue RegName = 5672 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5673 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5674 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5675 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5676 setValue(&I, Res); 5677 DAG.setRoot(Res.getValue(1)); 5678 return; 5679 } 5680 case Intrinsic::write_register: { 5681 Value *Reg = I.getArgOperand(0); 5682 Value *RegValue = I.getArgOperand(1); 5683 SDValue Chain = getRoot(); 5684 SDValue RegName = 5685 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5686 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5687 RegName, getValue(RegValue))); 5688 return; 5689 } 5690 case Intrinsic::memcpy: { 5691 const auto &MCI = cast<MemCpyInst>(I); 5692 SDValue Op1 = getValue(I.getArgOperand(0)); 5693 SDValue Op2 = getValue(I.getArgOperand(1)); 5694 SDValue Op3 = getValue(I.getArgOperand(2)); 5695 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5696 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5697 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5698 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5699 bool isVol = MCI.isVolatile(); 5700 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5701 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5702 // node. 5703 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5704 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5705 /* AlwaysInline */ false, isTC, 5706 MachinePointerInfo(I.getArgOperand(0)), 5707 MachinePointerInfo(I.getArgOperand(1))); 5708 updateDAGForMaybeTailCall(MC); 5709 return; 5710 } 5711 case Intrinsic::memcpy_inline: { 5712 const auto &MCI = cast<MemCpyInlineInst>(I); 5713 SDValue Dst = getValue(I.getArgOperand(0)); 5714 SDValue Src = getValue(I.getArgOperand(1)); 5715 SDValue Size = getValue(I.getArgOperand(2)); 5716 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5717 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5718 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5719 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5720 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5721 bool isVol = MCI.isVolatile(); 5722 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5723 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5724 // node. 5725 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5726 /* AlwaysInline */ true, isTC, 5727 MachinePointerInfo(I.getArgOperand(0)), 5728 MachinePointerInfo(I.getArgOperand(1))); 5729 updateDAGForMaybeTailCall(MC); 5730 return; 5731 } 5732 case Intrinsic::memset: { 5733 const auto &MSI = cast<MemSetInst>(I); 5734 SDValue Op1 = getValue(I.getArgOperand(0)); 5735 SDValue Op2 = getValue(I.getArgOperand(1)); 5736 SDValue Op3 = getValue(I.getArgOperand(2)); 5737 // @llvm.memset defines 0 and 1 to both mean no alignment. 5738 Align Alignment = MSI.getDestAlign().valueOrOne(); 5739 bool isVol = MSI.isVolatile(); 5740 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5741 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5742 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5743 MachinePointerInfo(I.getArgOperand(0))); 5744 updateDAGForMaybeTailCall(MS); 5745 return; 5746 } 5747 case Intrinsic::memmove: { 5748 const auto &MMI = cast<MemMoveInst>(I); 5749 SDValue Op1 = getValue(I.getArgOperand(0)); 5750 SDValue Op2 = getValue(I.getArgOperand(1)); 5751 SDValue Op3 = getValue(I.getArgOperand(2)); 5752 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5753 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5754 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5755 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5756 bool isVol = MMI.isVolatile(); 5757 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5758 // FIXME: Support passing different dest/src alignments to the memmove DAG 5759 // node. 5760 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5761 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5762 isTC, MachinePointerInfo(I.getArgOperand(0)), 5763 MachinePointerInfo(I.getArgOperand(1))); 5764 updateDAGForMaybeTailCall(MM); 5765 return; 5766 } 5767 case Intrinsic::memcpy_element_unordered_atomic: { 5768 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5769 SDValue Dst = getValue(MI.getRawDest()); 5770 SDValue Src = getValue(MI.getRawSource()); 5771 SDValue Length = getValue(MI.getLength()); 5772 5773 unsigned DstAlign = MI.getDestAlignment(); 5774 unsigned SrcAlign = MI.getSourceAlignment(); 5775 Type *LengthTy = MI.getLength()->getType(); 5776 unsigned ElemSz = MI.getElementSizeInBytes(); 5777 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5778 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5779 SrcAlign, Length, LengthTy, ElemSz, isTC, 5780 MachinePointerInfo(MI.getRawDest()), 5781 MachinePointerInfo(MI.getRawSource())); 5782 updateDAGForMaybeTailCall(MC); 5783 return; 5784 } 5785 case Intrinsic::memmove_element_unordered_atomic: { 5786 auto &MI = cast<AtomicMemMoveInst>(I); 5787 SDValue Dst = getValue(MI.getRawDest()); 5788 SDValue Src = getValue(MI.getRawSource()); 5789 SDValue Length = getValue(MI.getLength()); 5790 5791 unsigned DstAlign = MI.getDestAlignment(); 5792 unsigned SrcAlign = MI.getSourceAlignment(); 5793 Type *LengthTy = MI.getLength()->getType(); 5794 unsigned ElemSz = MI.getElementSizeInBytes(); 5795 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5796 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5797 SrcAlign, Length, LengthTy, ElemSz, isTC, 5798 MachinePointerInfo(MI.getRawDest()), 5799 MachinePointerInfo(MI.getRawSource())); 5800 updateDAGForMaybeTailCall(MC); 5801 return; 5802 } 5803 case Intrinsic::memset_element_unordered_atomic: { 5804 auto &MI = cast<AtomicMemSetInst>(I); 5805 SDValue Dst = getValue(MI.getRawDest()); 5806 SDValue Val = getValue(MI.getValue()); 5807 SDValue Length = getValue(MI.getLength()); 5808 5809 unsigned DstAlign = MI.getDestAlignment(); 5810 Type *LengthTy = MI.getLength()->getType(); 5811 unsigned ElemSz = MI.getElementSizeInBytes(); 5812 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5813 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5814 LengthTy, ElemSz, isTC, 5815 MachinePointerInfo(MI.getRawDest())); 5816 updateDAGForMaybeTailCall(MC); 5817 return; 5818 } 5819 case Intrinsic::call_preallocated_setup: { 5820 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5821 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5822 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5823 getRoot(), SrcValue); 5824 setValue(&I, Res); 5825 DAG.setRoot(Res); 5826 return; 5827 } 5828 case Intrinsic::call_preallocated_arg: { 5829 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5830 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5831 SDValue Ops[3]; 5832 Ops[0] = getRoot(); 5833 Ops[1] = SrcValue; 5834 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5835 MVT::i32); // arg index 5836 SDValue Res = DAG.getNode( 5837 ISD::PREALLOCATED_ARG, sdl, 5838 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5839 setValue(&I, Res); 5840 DAG.setRoot(Res.getValue(1)); 5841 return; 5842 } 5843 case Intrinsic::dbg_addr: 5844 case Intrinsic::dbg_declare: { 5845 const auto &DI = cast<DbgVariableIntrinsic>(I); 5846 DILocalVariable *Variable = DI.getVariable(); 5847 DIExpression *Expression = DI.getExpression(); 5848 dropDanglingDebugInfo(Variable, Expression); 5849 assert(Variable && "Missing variable"); 5850 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5851 << "\n"); 5852 // Check if address has undef value. 5853 const Value *Address = DI.getVariableLocation(); 5854 if (!Address || isa<UndefValue>(Address) || 5855 (Address->use_empty() && !isa<Argument>(Address))) { 5856 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5857 << " (bad/undef/unused-arg address)\n"); 5858 return; 5859 } 5860 5861 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5862 5863 // Check if this variable can be described by a frame index, typically 5864 // either as a static alloca or a byval parameter. 5865 int FI = std::numeric_limits<int>::max(); 5866 if (const auto *AI = 5867 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5868 if (AI->isStaticAlloca()) { 5869 auto I = FuncInfo.StaticAllocaMap.find(AI); 5870 if (I != FuncInfo.StaticAllocaMap.end()) 5871 FI = I->second; 5872 } 5873 } else if (const auto *Arg = dyn_cast<Argument>( 5874 Address->stripInBoundsConstantOffsets())) { 5875 FI = FuncInfo.getArgumentFrameIndex(Arg); 5876 } 5877 5878 // llvm.dbg.addr is control dependent and always generates indirect 5879 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5880 // the MachineFunction variable table. 5881 if (FI != std::numeric_limits<int>::max()) { 5882 if (Intrinsic == Intrinsic::dbg_addr) { 5883 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5884 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5885 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5886 } else { 5887 LLVM_DEBUG(dbgs() << "Skipping " << DI 5888 << " (variable info stashed in MF side table)\n"); 5889 } 5890 return; 5891 } 5892 5893 SDValue &N = NodeMap[Address]; 5894 if (!N.getNode() && isa<Argument>(Address)) 5895 // Check unused arguments map. 5896 N = UnusedArgNodeMap[Address]; 5897 SDDbgValue *SDV; 5898 if (N.getNode()) { 5899 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5900 Address = BCI->getOperand(0); 5901 // Parameters are handled specially. 5902 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5903 if (isParameter && FINode) { 5904 // Byval parameter. We have a frame index at this point. 5905 SDV = 5906 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5907 /*IsIndirect*/ true, dl, SDNodeOrder); 5908 } else if (isa<Argument>(Address)) { 5909 // Address is an argument, so try to emit its dbg value using 5910 // virtual register info from the FuncInfo.ValueMap. 5911 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5912 return; 5913 } else { 5914 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5915 true, dl, SDNodeOrder); 5916 } 5917 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5918 } else { 5919 // If Address is an argument then try to emit its dbg value using 5920 // virtual register info from the FuncInfo.ValueMap. 5921 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5922 N)) { 5923 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5924 << " (could not emit func-arg dbg_value)\n"); 5925 } 5926 } 5927 return; 5928 } 5929 case Intrinsic::dbg_label: { 5930 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5931 DILabel *Label = DI.getLabel(); 5932 assert(Label && "Missing label"); 5933 5934 SDDbgLabel *SDV; 5935 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5936 DAG.AddDbgLabel(SDV); 5937 return; 5938 } 5939 case Intrinsic::dbg_value: { 5940 const DbgValueInst &DI = cast<DbgValueInst>(I); 5941 assert(DI.getVariable() && "Missing variable"); 5942 5943 DILocalVariable *Variable = DI.getVariable(); 5944 DIExpression *Expression = DI.getExpression(); 5945 dropDanglingDebugInfo(Variable, Expression); 5946 const Value *V = DI.getValue(); 5947 if (!V) 5948 return; 5949 5950 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5951 SDNodeOrder)) 5952 return; 5953 5954 // TODO: Dangling debug info will eventually either be resolved or produce 5955 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5956 // between the original dbg.value location and its resolved DBG_VALUE, which 5957 // we should ideally fill with an extra Undef DBG_VALUE. 5958 5959 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5960 return; 5961 } 5962 5963 case Intrinsic::eh_typeid_for: { 5964 // Find the type id for the given typeinfo. 5965 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5966 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5967 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5968 setValue(&I, Res); 5969 return; 5970 } 5971 5972 case Intrinsic::eh_return_i32: 5973 case Intrinsic::eh_return_i64: 5974 DAG.getMachineFunction().setCallsEHReturn(true); 5975 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5976 MVT::Other, 5977 getControlRoot(), 5978 getValue(I.getArgOperand(0)), 5979 getValue(I.getArgOperand(1)))); 5980 return; 5981 case Intrinsic::eh_unwind_init: 5982 DAG.getMachineFunction().setCallsUnwindInit(true); 5983 return; 5984 case Intrinsic::eh_dwarf_cfa: 5985 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5986 TLI.getPointerTy(DAG.getDataLayout()), 5987 getValue(I.getArgOperand(0)))); 5988 return; 5989 case Intrinsic::eh_sjlj_callsite: { 5990 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5991 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5992 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5993 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5994 5995 MMI.setCurrentCallSite(CI->getZExtValue()); 5996 return; 5997 } 5998 case Intrinsic::eh_sjlj_functioncontext: { 5999 // Get and store the index of the function context. 6000 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6001 AllocaInst *FnCtx = 6002 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6003 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6004 MFI.setFunctionContextIndex(FI); 6005 return; 6006 } 6007 case Intrinsic::eh_sjlj_setjmp: { 6008 SDValue Ops[2]; 6009 Ops[0] = getRoot(); 6010 Ops[1] = getValue(I.getArgOperand(0)); 6011 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6012 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6013 setValue(&I, Op.getValue(0)); 6014 DAG.setRoot(Op.getValue(1)); 6015 return; 6016 } 6017 case Intrinsic::eh_sjlj_longjmp: 6018 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6019 getRoot(), getValue(I.getArgOperand(0)))); 6020 return; 6021 case Intrinsic::eh_sjlj_setup_dispatch: 6022 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6023 getRoot())); 6024 return; 6025 case Intrinsic::masked_gather: 6026 visitMaskedGather(I); 6027 return; 6028 case Intrinsic::masked_load: 6029 visitMaskedLoad(I); 6030 return; 6031 case Intrinsic::masked_scatter: 6032 visitMaskedScatter(I); 6033 return; 6034 case Intrinsic::masked_store: 6035 visitMaskedStore(I); 6036 return; 6037 case Intrinsic::masked_expandload: 6038 visitMaskedLoad(I, true /* IsExpanding */); 6039 return; 6040 case Intrinsic::masked_compressstore: 6041 visitMaskedStore(I, true /* IsCompressing */); 6042 return; 6043 case Intrinsic::powi: 6044 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6045 getValue(I.getArgOperand(1)), DAG)); 6046 return; 6047 case Intrinsic::log: 6048 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6049 return; 6050 case Intrinsic::log2: 6051 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6052 return; 6053 case Intrinsic::log10: 6054 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6055 return; 6056 case Intrinsic::exp: 6057 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6058 return; 6059 case Intrinsic::exp2: 6060 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6061 return; 6062 case Intrinsic::pow: 6063 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6064 getValue(I.getArgOperand(1)), DAG, TLI)); 6065 return; 6066 case Intrinsic::sqrt: 6067 case Intrinsic::fabs: 6068 case Intrinsic::sin: 6069 case Intrinsic::cos: 6070 case Intrinsic::floor: 6071 case Intrinsic::ceil: 6072 case Intrinsic::trunc: 6073 case Intrinsic::rint: 6074 case Intrinsic::nearbyint: 6075 case Intrinsic::round: 6076 case Intrinsic::roundeven: 6077 case Intrinsic::canonicalize: { 6078 unsigned Opcode; 6079 switch (Intrinsic) { 6080 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6081 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6082 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6083 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6084 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6085 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6086 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6087 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6088 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6089 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6090 case Intrinsic::round: Opcode = ISD::FROUND; break; 6091 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6092 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6093 } 6094 6095 setValue(&I, DAG.getNode(Opcode, sdl, 6096 getValue(I.getArgOperand(0)).getValueType(), 6097 getValue(I.getArgOperand(0)))); 6098 return; 6099 } 6100 case Intrinsic::lround: 6101 case Intrinsic::llround: 6102 case Intrinsic::lrint: 6103 case Intrinsic::llrint: { 6104 unsigned Opcode; 6105 switch (Intrinsic) { 6106 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6107 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6108 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6109 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6110 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6111 } 6112 6113 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6114 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6115 getValue(I.getArgOperand(0)))); 6116 return; 6117 } 6118 case Intrinsic::minnum: 6119 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6120 getValue(I.getArgOperand(0)).getValueType(), 6121 getValue(I.getArgOperand(0)), 6122 getValue(I.getArgOperand(1)))); 6123 return; 6124 case Intrinsic::maxnum: 6125 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6126 getValue(I.getArgOperand(0)).getValueType(), 6127 getValue(I.getArgOperand(0)), 6128 getValue(I.getArgOperand(1)))); 6129 return; 6130 case Intrinsic::minimum: 6131 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6132 getValue(I.getArgOperand(0)).getValueType(), 6133 getValue(I.getArgOperand(0)), 6134 getValue(I.getArgOperand(1)))); 6135 return; 6136 case Intrinsic::maximum: 6137 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6138 getValue(I.getArgOperand(0)).getValueType(), 6139 getValue(I.getArgOperand(0)), 6140 getValue(I.getArgOperand(1)))); 6141 return; 6142 case Intrinsic::copysign: 6143 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6144 getValue(I.getArgOperand(0)).getValueType(), 6145 getValue(I.getArgOperand(0)), 6146 getValue(I.getArgOperand(1)))); 6147 return; 6148 case Intrinsic::fma: 6149 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6150 getValue(I.getArgOperand(0)).getValueType(), 6151 getValue(I.getArgOperand(0)), 6152 getValue(I.getArgOperand(1)), 6153 getValue(I.getArgOperand(2)))); 6154 return; 6155 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6156 case Intrinsic::INTRINSIC: 6157 #include "llvm/IR/ConstrainedOps.def" 6158 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6159 return; 6160 case Intrinsic::fmuladd: { 6161 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6162 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6163 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6164 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6165 getValue(I.getArgOperand(0)).getValueType(), 6166 getValue(I.getArgOperand(0)), 6167 getValue(I.getArgOperand(1)), 6168 getValue(I.getArgOperand(2)))); 6169 } else { 6170 // TODO: Intrinsic calls should have fast-math-flags. 6171 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6172 getValue(I.getArgOperand(0)).getValueType(), 6173 getValue(I.getArgOperand(0)), 6174 getValue(I.getArgOperand(1))); 6175 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6176 getValue(I.getArgOperand(0)).getValueType(), 6177 Mul, 6178 getValue(I.getArgOperand(2))); 6179 setValue(&I, Add); 6180 } 6181 return; 6182 } 6183 case Intrinsic::convert_to_fp16: 6184 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6185 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6186 getValue(I.getArgOperand(0)), 6187 DAG.getTargetConstant(0, sdl, 6188 MVT::i32)))); 6189 return; 6190 case Intrinsic::convert_from_fp16: 6191 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6192 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6193 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6194 getValue(I.getArgOperand(0))))); 6195 return; 6196 case Intrinsic::pcmarker: { 6197 SDValue Tmp = getValue(I.getArgOperand(0)); 6198 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6199 return; 6200 } 6201 case Intrinsic::readcyclecounter: { 6202 SDValue Op = getRoot(); 6203 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6204 DAG.getVTList(MVT::i64, MVT::Other), Op); 6205 setValue(&I, Res); 6206 DAG.setRoot(Res.getValue(1)); 6207 return; 6208 } 6209 case Intrinsic::bitreverse: 6210 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6211 getValue(I.getArgOperand(0)).getValueType(), 6212 getValue(I.getArgOperand(0)))); 6213 return; 6214 case Intrinsic::bswap: 6215 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6216 getValue(I.getArgOperand(0)).getValueType(), 6217 getValue(I.getArgOperand(0)))); 6218 return; 6219 case Intrinsic::cttz: { 6220 SDValue Arg = getValue(I.getArgOperand(0)); 6221 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6222 EVT Ty = Arg.getValueType(); 6223 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6224 sdl, Ty, Arg)); 6225 return; 6226 } 6227 case Intrinsic::ctlz: { 6228 SDValue Arg = getValue(I.getArgOperand(0)); 6229 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6230 EVT Ty = Arg.getValueType(); 6231 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6232 sdl, Ty, Arg)); 6233 return; 6234 } 6235 case Intrinsic::ctpop: { 6236 SDValue Arg = getValue(I.getArgOperand(0)); 6237 EVT Ty = Arg.getValueType(); 6238 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6239 return; 6240 } 6241 case Intrinsic::fshl: 6242 case Intrinsic::fshr: { 6243 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6244 SDValue X = getValue(I.getArgOperand(0)); 6245 SDValue Y = getValue(I.getArgOperand(1)); 6246 SDValue Z = getValue(I.getArgOperand(2)); 6247 EVT VT = X.getValueType(); 6248 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6249 SDValue Zero = DAG.getConstant(0, sdl, VT); 6250 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6251 6252 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6253 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6254 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6255 return; 6256 } 6257 6258 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6259 // avoid the select that is necessary in the general case to filter out 6260 // the 0-shift possibility that leads to UB. 6261 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6262 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6263 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6264 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6265 return; 6266 } 6267 6268 // Some targets only rotate one way. Try the opposite direction. 6269 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6270 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6271 // Negate the shift amount because it is safe to ignore the high bits. 6272 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6273 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6274 return; 6275 } 6276 6277 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6278 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6279 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6280 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6281 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6282 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6283 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6284 return; 6285 } 6286 6287 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6288 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6289 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6290 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6291 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6292 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6293 6294 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6295 // and that is undefined. We must compare and select to avoid UB. 6296 EVT CCVT = MVT::i1; 6297 if (VT.isVector()) 6298 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6299 6300 // For fshl, 0-shift returns the 1st arg (X). 6301 // For fshr, 0-shift returns the 2nd arg (Y). 6302 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6303 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6304 return; 6305 } 6306 case Intrinsic::sadd_sat: { 6307 SDValue Op1 = getValue(I.getArgOperand(0)); 6308 SDValue Op2 = getValue(I.getArgOperand(1)); 6309 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6310 return; 6311 } 6312 case Intrinsic::uadd_sat: { 6313 SDValue Op1 = getValue(I.getArgOperand(0)); 6314 SDValue Op2 = getValue(I.getArgOperand(1)); 6315 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6316 return; 6317 } 6318 case Intrinsic::ssub_sat: { 6319 SDValue Op1 = getValue(I.getArgOperand(0)); 6320 SDValue Op2 = getValue(I.getArgOperand(1)); 6321 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6322 return; 6323 } 6324 case Intrinsic::usub_sat: { 6325 SDValue Op1 = getValue(I.getArgOperand(0)); 6326 SDValue Op2 = getValue(I.getArgOperand(1)); 6327 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6328 return; 6329 } 6330 case Intrinsic::smul_fix: 6331 case Intrinsic::umul_fix: 6332 case Intrinsic::smul_fix_sat: 6333 case Intrinsic::umul_fix_sat: { 6334 SDValue Op1 = getValue(I.getArgOperand(0)); 6335 SDValue Op2 = getValue(I.getArgOperand(1)); 6336 SDValue Op3 = getValue(I.getArgOperand(2)); 6337 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6338 Op1.getValueType(), Op1, Op2, Op3)); 6339 return; 6340 } 6341 case Intrinsic::sdiv_fix: 6342 case Intrinsic::udiv_fix: 6343 case Intrinsic::sdiv_fix_sat: 6344 case Intrinsic::udiv_fix_sat: { 6345 SDValue Op1 = getValue(I.getArgOperand(0)); 6346 SDValue Op2 = getValue(I.getArgOperand(1)); 6347 SDValue Op3 = getValue(I.getArgOperand(2)); 6348 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6349 Op1, Op2, Op3, DAG, TLI)); 6350 return; 6351 } 6352 case Intrinsic::stacksave: { 6353 SDValue Op = getRoot(); 6354 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6355 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6356 setValue(&I, Res); 6357 DAG.setRoot(Res.getValue(1)); 6358 return; 6359 } 6360 case Intrinsic::stackrestore: 6361 Res = getValue(I.getArgOperand(0)); 6362 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6363 return; 6364 case Intrinsic::get_dynamic_area_offset: { 6365 SDValue Op = getRoot(); 6366 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6367 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6368 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6369 // target. 6370 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6371 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6372 " intrinsic!"); 6373 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6374 Op); 6375 DAG.setRoot(Op); 6376 setValue(&I, Res); 6377 return; 6378 } 6379 case Intrinsic::stackguard: { 6380 MachineFunction &MF = DAG.getMachineFunction(); 6381 const Module &M = *MF.getFunction().getParent(); 6382 SDValue Chain = getRoot(); 6383 if (TLI.useLoadStackGuardNode()) { 6384 Res = getLoadStackGuard(DAG, sdl, Chain); 6385 } else { 6386 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6387 const Value *Global = TLI.getSDagStackGuard(M); 6388 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6389 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6390 MachinePointerInfo(Global, 0), Align, 6391 MachineMemOperand::MOVolatile); 6392 } 6393 if (TLI.useStackGuardXorFP()) 6394 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6395 DAG.setRoot(Chain); 6396 setValue(&I, Res); 6397 return; 6398 } 6399 case Intrinsic::stackprotector: { 6400 // Emit code into the DAG to store the stack guard onto the stack. 6401 MachineFunction &MF = DAG.getMachineFunction(); 6402 MachineFrameInfo &MFI = MF.getFrameInfo(); 6403 SDValue Src, Chain = getRoot(); 6404 6405 if (TLI.useLoadStackGuardNode()) 6406 Src = getLoadStackGuard(DAG, sdl, Chain); 6407 else 6408 Src = getValue(I.getArgOperand(0)); // The guard's value. 6409 6410 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6411 6412 int FI = FuncInfo.StaticAllocaMap[Slot]; 6413 MFI.setStackProtectorIndex(FI); 6414 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6415 6416 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6417 6418 // Store the stack protector onto the stack. 6419 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6420 DAG.getMachineFunction(), FI), 6421 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6422 setValue(&I, Res); 6423 DAG.setRoot(Res); 6424 return; 6425 } 6426 case Intrinsic::objectsize: 6427 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6428 6429 case Intrinsic::is_constant: 6430 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6431 6432 case Intrinsic::annotation: 6433 case Intrinsic::ptr_annotation: 6434 case Intrinsic::launder_invariant_group: 6435 case Intrinsic::strip_invariant_group: 6436 // Drop the intrinsic, but forward the value 6437 setValue(&I, getValue(I.getOperand(0))); 6438 return; 6439 case Intrinsic::assume: 6440 case Intrinsic::var_annotation: 6441 case Intrinsic::sideeffect: 6442 // Discard annotate attributes, assumptions, and artificial side-effects. 6443 return; 6444 6445 case Intrinsic::codeview_annotation: { 6446 // Emit a label associated with this metadata. 6447 MachineFunction &MF = DAG.getMachineFunction(); 6448 MCSymbol *Label = 6449 MF.getMMI().getContext().createTempSymbol("annotation", true); 6450 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6451 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6452 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6453 DAG.setRoot(Res); 6454 return; 6455 } 6456 6457 case Intrinsic::init_trampoline: { 6458 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6459 6460 SDValue Ops[6]; 6461 Ops[0] = getRoot(); 6462 Ops[1] = getValue(I.getArgOperand(0)); 6463 Ops[2] = getValue(I.getArgOperand(1)); 6464 Ops[3] = getValue(I.getArgOperand(2)); 6465 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6466 Ops[5] = DAG.getSrcValue(F); 6467 6468 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6469 6470 DAG.setRoot(Res); 6471 return; 6472 } 6473 case Intrinsic::adjust_trampoline: 6474 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6475 TLI.getPointerTy(DAG.getDataLayout()), 6476 getValue(I.getArgOperand(0)))); 6477 return; 6478 case Intrinsic::gcroot: { 6479 assert(DAG.getMachineFunction().getFunction().hasGC() && 6480 "only valid in functions with gc specified, enforced by Verifier"); 6481 assert(GFI && "implied by previous"); 6482 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6483 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6484 6485 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6486 GFI->addStackRoot(FI->getIndex(), TypeMap); 6487 return; 6488 } 6489 case Intrinsic::gcread: 6490 case Intrinsic::gcwrite: 6491 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6492 case Intrinsic::flt_rounds: 6493 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6494 setValue(&I, Res); 6495 DAG.setRoot(Res.getValue(1)); 6496 return; 6497 6498 case Intrinsic::expect: 6499 // Just replace __builtin_expect(exp, c) with EXP. 6500 setValue(&I, getValue(I.getArgOperand(0))); 6501 return; 6502 6503 case Intrinsic::debugtrap: 6504 case Intrinsic::trap: { 6505 StringRef TrapFuncName = 6506 I.getAttributes() 6507 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6508 .getValueAsString(); 6509 if (TrapFuncName.empty()) { 6510 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6511 ISD::TRAP : ISD::DEBUGTRAP; 6512 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6513 return; 6514 } 6515 TargetLowering::ArgListTy Args; 6516 6517 TargetLowering::CallLoweringInfo CLI(DAG); 6518 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6519 CallingConv::C, I.getType(), 6520 DAG.getExternalSymbol(TrapFuncName.data(), 6521 TLI.getPointerTy(DAG.getDataLayout())), 6522 std::move(Args)); 6523 6524 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6525 DAG.setRoot(Result.second); 6526 return; 6527 } 6528 6529 case Intrinsic::uadd_with_overflow: 6530 case Intrinsic::sadd_with_overflow: 6531 case Intrinsic::usub_with_overflow: 6532 case Intrinsic::ssub_with_overflow: 6533 case Intrinsic::umul_with_overflow: 6534 case Intrinsic::smul_with_overflow: { 6535 ISD::NodeType Op; 6536 switch (Intrinsic) { 6537 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6538 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6539 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6540 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6541 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6542 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6543 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6544 } 6545 SDValue Op1 = getValue(I.getArgOperand(0)); 6546 SDValue Op2 = getValue(I.getArgOperand(1)); 6547 6548 EVT ResultVT = Op1.getValueType(); 6549 EVT OverflowVT = MVT::i1; 6550 if (ResultVT.isVector()) 6551 OverflowVT = EVT::getVectorVT( 6552 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6553 6554 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6555 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6556 return; 6557 } 6558 case Intrinsic::prefetch: { 6559 SDValue Ops[5]; 6560 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6561 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6562 Ops[0] = DAG.getRoot(); 6563 Ops[1] = getValue(I.getArgOperand(0)); 6564 Ops[2] = getValue(I.getArgOperand(1)); 6565 Ops[3] = getValue(I.getArgOperand(2)); 6566 Ops[4] = getValue(I.getArgOperand(3)); 6567 SDValue Result = DAG.getMemIntrinsicNode( 6568 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6569 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6570 /* align */ None, Flags); 6571 6572 // Chain the prefetch in parallell with any pending loads, to stay out of 6573 // the way of later optimizations. 6574 PendingLoads.push_back(Result); 6575 Result = getRoot(); 6576 DAG.setRoot(Result); 6577 return; 6578 } 6579 case Intrinsic::lifetime_start: 6580 case Intrinsic::lifetime_end: { 6581 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6582 // Stack coloring is not enabled in O0, discard region information. 6583 if (TM.getOptLevel() == CodeGenOpt::None) 6584 return; 6585 6586 const int64_t ObjectSize = 6587 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6588 Value *const ObjectPtr = I.getArgOperand(1); 6589 SmallVector<const Value *, 4> Allocas; 6590 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6591 6592 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6593 E = Allocas.end(); Object != E; ++Object) { 6594 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6595 6596 // Could not find an Alloca. 6597 if (!LifetimeObject) 6598 continue; 6599 6600 // First check that the Alloca is static, otherwise it won't have a 6601 // valid frame index. 6602 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6603 if (SI == FuncInfo.StaticAllocaMap.end()) 6604 return; 6605 6606 const int FrameIndex = SI->second; 6607 int64_t Offset; 6608 if (GetPointerBaseWithConstantOffset( 6609 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6610 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6611 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6612 Offset); 6613 DAG.setRoot(Res); 6614 } 6615 return; 6616 } 6617 case Intrinsic::invariant_start: 6618 // Discard region information. 6619 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6620 return; 6621 case Intrinsic::invariant_end: 6622 // Discard region information. 6623 return; 6624 case Intrinsic::clear_cache: 6625 /// FunctionName may be null. 6626 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6627 lowerCallToExternalSymbol(I, FunctionName); 6628 return; 6629 case Intrinsic::donothing: 6630 // ignore 6631 return; 6632 case Intrinsic::experimental_stackmap: 6633 visitStackmap(I); 6634 return; 6635 case Intrinsic::experimental_patchpoint_void: 6636 case Intrinsic::experimental_patchpoint_i64: 6637 visitPatchpoint(I); 6638 return; 6639 case Intrinsic::experimental_gc_statepoint: 6640 LowerStatepoint(cast<GCStatepointInst>(I)); 6641 return; 6642 case Intrinsic::experimental_gc_result: 6643 visitGCResult(cast<GCResultInst>(I)); 6644 return; 6645 case Intrinsic::experimental_gc_relocate: 6646 visitGCRelocate(cast<GCRelocateInst>(I)); 6647 return; 6648 case Intrinsic::instrprof_increment: 6649 llvm_unreachable("instrprof failed to lower an increment"); 6650 case Intrinsic::instrprof_value_profile: 6651 llvm_unreachable("instrprof failed to lower a value profiling call"); 6652 case Intrinsic::localescape: { 6653 MachineFunction &MF = DAG.getMachineFunction(); 6654 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6655 6656 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6657 // is the same on all targets. 6658 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6659 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6660 if (isa<ConstantPointerNull>(Arg)) 6661 continue; // Skip null pointers. They represent a hole in index space. 6662 AllocaInst *Slot = cast<AllocaInst>(Arg); 6663 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6664 "can only escape static allocas"); 6665 int FI = FuncInfo.StaticAllocaMap[Slot]; 6666 MCSymbol *FrameAllocSym = 6667 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6668 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6669 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6670 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6671 .addSym(FrameAllocSym) 6672 .addFrameIndex(FI); 6673 } 6674 6675 return; 6676 } 6677 6678 case Intrinsic::localrecover: { 6679 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6680 MachineFunction &MF = DAG.getMachineFunction(); 6681 6682 // Get the symbol that defines the frame offset. 6683 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6684 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6685 unsigned IdxVal = 6686 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6687 MCSymbol *FrameAllocSym = 6688 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6689 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6690 6691 Value *FP = I.getArgOperand(1); 6692 SDValue FPVal = getValue(FP); 6693 EVT PtrVT = FPVal.getValueType(); 6694 6695 // Create a MCSymbol for the label to avoid any target lowering 6696 // that would make this PC relative. 6697 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6698 SDValue OffsetVal = 6699 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6700 6701 // Add the offset to the FP. 6702 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6703 setValue(&I, Add); 6704 6705 return; 6706 } 6707 6708 case Intrinsic::eh_exceptionpointer: 6709 case Intrinsic::eh_exceptioncode: { 6710 // Get the exception pointer vreg, copy from it, and resize it to fit. 6711 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6712 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6713 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6714 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6715 SDValue N = 6716 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6717 if (Intrinsic == Intrinsic::eh_exceptioncode) 6718 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6719 setValue(&I, N); 6720 return; 6721 } 6722 case Intrinsic::xray_customevent: { 6723 // Here we want to make sure that the intrinsic behaves as if it has a 6724 // specific calling convention, and only for x86_64. 6725 // FIXME: Support other platforms later. 6726 const auto &Triple = DAG.getTarget().getTargetTriple(); 6727 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6728 return; 6729 6730 SDLoc DL = getCurSDLoc(); 6731 SmallVector<SDValue, 8> Ops; 6732 6733 // We want to say that we always want the arguments in registers. 6734 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6735 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6736 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6737 SDValue Chain = getRoot(); 6738 Ops.push_back(LogEntryVal); 6739 Ops.push_back(StrSizeVal); 6740 Ops.push_back(Chain); 6741 6742 // We need to enforce the calling convention for the callsite, so that 6743 // argument ordering is enforced correctly, and that register allocation can 6744 // see that some registers may be assumed clobbered and have to preserve 6745 // them across calls to the intrinsic. 6746 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6747 DL, NodeTys, Ops); 6748 SDValue patchableNode = SDValue(MN, 0); 6749 DAG.setRoot(patchableNode); 6750 setValue(&I, patchableNode); 6751 return; 6752 } 6753 case Intrinsic::xray_typedevent: { 6754 // Here we want to make sure that the intrinsic behaves as if it has a 6755 // specific calling convention, and only for x86_64. 6756 // FIXME: Support other platforms later. 6757 const auto &Triple = DAG.getTarget().getTargetTriple(); 6758 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6759 return; 6760 6761 SDLoc DL = getCurSDLoc(); 6762 SmallVector<SDValue, 8> Ops; 6763 6764 // We want to say that we always want the arguments in registers. 6765 // It's unclear to me how manipulating the selection DAG here forces callers 6766 // to provide arguments in registers instead of on the stack. 6767 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6768 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6769 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6770 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6771 SDValue Chain = getRoot(); 6772 Ops.push_back(LogTypeId); 6773 Ops.push_back(LogEntryVal); 6774 Ops.push_back(StrSizeVal); 6775 Ops.push_back(Chain); 6776 6777 // We need to enforce the calling convention for the callsite, so that 6778 // argument ordering is enforced correctly, and that register allocation can 6779 // see that some registers may be assumed clobbered and have to preserve 6780 // them across calls to the intrinsic. 6781 MachineSDNode *MN = DAG.getMachineNode( 6782 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6783 SDValue patchableNode = SDValue(MN, 0); 6784 DAG.setRoot(patchableNode); 6785 setValue(&I, patchableNode); 6786 return; 6787 } 6788 case Intrinsic::experimental_deoptimize: 6789 LowerDeoptimizeCall(&I); 6790 return; 6791 6792 case Intrinsic::experimental_vector_reduce_v2_fadd: 6793 case Intrinsic::experimental_vector_reduce_v2_fmul: 6794 case Intrinsic::experimental_vector_reduce_add: 6795 case Intrinsic::experimental_vector_reduce_mul: 6796 case Intrinsic::experimental_vector_reduce_and: 6797 case Intrinsic::experimental_vector_reduce_or: 6798 case Intrinsic::experimental_vector_reduce_xor: 6799 case Intrinsic::experimental_vector_reduce_smax: 6800 case Intrinsic::experimental_vector_reduce_smin: 6801 case Intrinsic::experimental_vector_reduce_umax: 6802 case Intrinsic::experimental_vector_reduce_umin: 6803 case Intrinsic::experimental_vector_reduce_fmax: 6804 case Intrinsic::experimental_vector_reduce_fmin: 6805 visitVectorReduce(I, Intrinsic); 6806 return; 6807 6808 case Intrinsic::icall_branch_funnel: { 6809 SmallVector<SDValue, 16> Ops; 6810 Ops.push_back(getValue(I.getArgOperand(0))); 6811 6812 int64_t Offset; 6813 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6814 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6815 if (!Base) 6816 report_fatal_error( 6817 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6818 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6819 6820 struct BranchFunnelTarget { 6821 int64_t Offset; 6822 SDValue Target; 6823 }; 6824 SmallVector<BranchFunnelTarget, 8> Targets; 6825 6826 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6827 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6828 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6829 if (ElemBase != Base) 6830 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6831 "to the same GlobalValue"); 6832 6833 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6834 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6835 if (!GA) 6836 report_fatal_error( 6837 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6838 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6839 GA->getGlobal(), getCurSDLoc(), 6840 Val.getValueType(), GA->getOffset())}); 6841 } 6842 llvm::sort(Targets, 6843 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6844 return T1.Offset < T2.Offset; 6845 }); 6846 6847 for (auto &T : Targets) { 6848 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6849 Ops.push_back(T.Target); 6850 } 6851 6852 Ops.push_back(DAG.getRoot()); // Chain 6853 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6854 getCurSDLoc(), MVT::Other, Ops), 6855 0); 6856 DAG.setRoot(N); 6857 setValue(&I, N); 6858 HasTailCall = true; 6859 return; 6860 } 6861 6862 case Intrinsic::wasm_landingpad_index: 6863 // Information this intrinsic contained has been transferred to 6864 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6865 // delete it now. 6866 return; 6867 6868 case Intrinsic::aarch64_settag: 6869 case Intrinsic::aarch64_settag_zero: { 6870 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6871 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6872 SDValue Val = TSI.EmitTargetCodeForSetTag( 6873 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6874 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6875 ZeroMemory); 6876 DAG.setRoot(Val); 6877 setValue(&I, Val); 6878 return; 6879 } 6880 case Intrinsic::ptrmask: { 6881 SDValue Ptr = getValue(I.getOperand(0)); 6882 SDValue Const = getValue(I.getOperand(1)); 6883 6884 EVT PtrVT = Ptr.getValueType(); 6885 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6886 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6887 return; 6888 } 6889 } 6890 } 6891 6892 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6893 const ConstrainedFPIntrinsic &FPI) { 6894 SDLoc sdl = getCurSDLoc(); 6895 6896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6897 SmallVector<EVT, 4> ValueVTs; 6898 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6899 ValueVTs.push_back(MVT::Other); // Out chain 6900 6901 // We do not need to serialize constrained FP intrinsics against 6902 // each other or against (nonvolatile) loads, so they can be 6903 // chained like loads. 6904 SDValue Chain = DAG.getRoot(); 6905 SmallVector<SDValue, 4> Opers; 6906 Opers.push_back(Chain); 6907 if (FPI.isUnaryOp()) { 6908 Opers.push_back(getValue(FPI.getArgOperand(0))); 6909 } else if (FPI.isTernaryOp()) { 6910 Opers.push_back(getValue(FPI.getArgOperand(0))); 6911 Opers.push_back(getValue(FPI.getArgOperand(1))); 6912 Opers.push_back(getValue(FPI.getArgOperand(2))); 6913 } else { 6914 Opers.push_back(getValue(FPI.getArgOperand(0))); 6915 Opers.push_back(getValue(FPI.getArgOperand(1))); 6916 } 6917 6918 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6919 assert(Result.getNode()->getNumValues() == 2); 6920 6921 // Push node to the appropriate list so that future instructions can be 6922 // chained up correctly. 6923 SDValue OutChain = Result.getValue(1); 6924 switch (EB) { 6925 case fp::ExceptionBehavior::ebIgnore: 6926 // The only reason why ebIgnore nodes still need to be chained is that 6927 // they might depend on the current rounding mode, and therefore must 6928 // not be moved across instruction that may change that mode. 6929 LLVM_FALLTHROUGH; 6930 case fp::ExceptionBehavior::ebMayTrap: 6931 // These must not be moved across calls or instructions that may change 6932 // floating-point exception masks. 6933 PendingConstrainedFP.push_back(OutChain); 6934 break; 6935 case fp::ExceptionBehavior::ebStrict: 6936 // These must not be moved across calls or instructions that may change 6937 // floating-point exception masks or read floating-point exception flags. 6938 // In addition, they cannot be optimized out even if unused. 6939 PendingConstrainedFPStrict.push_back(OutChain); 6940 break; 6941 } 6942 }; 6943 6944 SDVTList VTs = DAG.getVTList(ValueVTs); 6945 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6946 6947 SDNodeFlags Flags; 6948 if (EB == fp::ExceptionBehavior::ebIgnore) 6949 Flags.setNoFPExcept(true); 6950 6951 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6952 Flags.copyFMF(*FPOp); 6953 6954 unsigned Opcode; 6955 switch (FPI.getIntrinsicID()) { 6956 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6957 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6958 case Intrinsic::INTRINSIC: \ 6959 Opcode = ISD::STRICT_##DAGN; \ 6960 break; 6961 #include "llvm/IR/ConstrainedOps.def" 6962 case Intrinsic::experimental_constrained_fmuladd: { 6963 Opcode = ISD::STRICT_FMA; 6964 // Break fmuladd into fmul and fadd. 6965 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6966 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6967 ValueVTs[0])) { 6968 Opers.pop_back(); 6969 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6970 pushOutChain(Mul, EB); 6971 Opcode = ISD::STRICT_FADD; 6972 Opers.clear(); 6973 Opers.push_back(Mul.getValue(1)); 6974 Opers.push_back(Mul.getValue(0)); 6975 Opers.push_back(getValue(FPI.getArgOperand(2))); 6976 } 6977 break; 6978 } 6979 } 6980 6981 // A few strict DAG nodes carry additional operands that are not 6982 // set up by the default code above. 6983 switch (Opcode) { 6984 default: break; 6985 case ISD::STRICT_FP_ROUND: 6986 Opers.push_back( 6987 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6988 break; 6989 case ISD::STRICT_FSETCC: 6990 case ISD::STRICT_FSETCCS: { 6991 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6992 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6993 break; 6994 } 6995 } 6996 6997 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 6998 pushOutChain(Result, EB); 6999 7000 SDValue FPResult = Result.getValue(0); 7001 setValue(&FPI, FPResult); 7002 } 7003 7004 std::pair<SDValue, SDValue> 7005 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7006 const BasicBlock *EHPadBB) { 7007 MachineFunction &MF = DAG.getMachineFunction(); 7008 MachineModuleInfo &MMI = MF.getMMI(); 7009 MCSymbol *BeginLabel = nullptr; 7010 7011 if (EHPadBB) { 7012 // Insert a label before the invoke call to mark the try range. This can be 7013 // used to detect deletion of the invoke via the MachineModuleInfo. 7014 BeginLabel = MMI.getContext().createTempSymbol(); 7015 7016 // For SjLj, keep track of which landing pads go with which invokes 7017 // so as to maintain the ordering of pads in the LSDA. 7018 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7019 if (CallSiteIndex) { 7020 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7021 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7022 7023 // Now that the call site is handled, stop tracking it. 7024 MMI.setCurrentCallSite(0); 7025 } 7026 7027 // Both PendingLoads and PendingExports must be flushed here; 7028 // this call might not return. 7029 (void)getRoot(); 7030 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7031 7032 CLI.setChain(getRoot()); 7033 } 7034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7035 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7036 7037 assert((CLI.IsTailCall || Result.second.getNode()) && 7038 "Non-null chain expected with non-tail call!"); 7039 assert((Result.second.getNode() || !Result.first.getNode()) && 7040 "Null value expected with tail call!"); 7041 7042 if (!Result.second.getNode()) { 7043 // As a special case, a null chain means that a tail call has been emitted 7044 // and the DAG root is already updated. 7045 HasTailCall = true; 7046 7047 // Since there's no actual continuation from this block, nothing can be 7048 // relying on us setting vregs for them. 7049 PendingExports.clear(); 7050 } else { 7051 DAG.setRoot(Result.second); 7052 } 7053 7054 if (EHPadBB) { 7055 // Insert a label at the end of the invoke call to mark the try range. This 7056 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7057 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7058 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7059 7060 // Inform MachineModuleInfo of range. 7061 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7062 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7063 // actually use outlined funclets and their LSDA info style. 7064 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7065 assert(CLI.CB); 7066 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7067 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7068 } else if (!isScopedEHPersonality(Pers)) { 7069 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7070 } 7071 } 7072 7073 return Result; 7074 } 7075 7076 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7077 bool isTailCall, 7078 const BasicBlock *EHPadBB) { 7079 auto &DL = DAG.getDataLayout(); 7080 FunctionType *FTy = CB.getFunctionType(); 7081 Type *RetTy = CB.getType(); 7082 7083 TargetLowering::ArgListTy Args; 7084 Args.reserve(CB.arg_size()); 7085 7086 const Value *SwiftErrorVal = nullptr; 7087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7088 7089 if (isTailCall) { 7090 // Avoid emitting tail calls in functions with the disable-tail-calls 7091 // attribute. 7092 auto *Caller = CB.getParent()->getParent(); 7093 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7094 "true") 7095 isTailCall = false; 7096 7097 // We can't tail call inside a function with a swifterror argument. Lowering 7098 // does not support this yet. It would have to move into the swifterror 7099 // register before the call. 7100 if (TLI.supportSwiftError() && 7101 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7102 isTailCall = false; 7103 } 7104 7105 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7106 TargetLowering::ArgListEntry Entry; 7107 const Value *V = *I; 7108 7109 // Skip empty types 7110 if (V->getType()->isEmptyTy()) 7111 continue; 7112 7113 SDValue ArgNode = getValue(V); 7114 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7115 7116 Entry.setAttributes(&CB, I - CB.arg_begin()); 7117 7118 // Use swifterror virtual register as input to the call. 7119 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7120 SwiftErrorVal = V; 7121 // We find the virtual register for the actual swifterror argument. 7122 // Instead of using the Value, we use the virtual register instead. 7123 Entry.Node = 7124 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7125 EVT(TLI.getPointerTy(DL))); 7126 } 7127 7128 Args.push_back(Entry); 7129 7130 // If we have an explicit sret argument that is an Instruction, (i.e., it 7131 // might point to function-local memory), we can't meaningfully tail-call. 7132 if (Entry.IsSRet && isa<Instruction>(V)) 7133 isTailCall = false; 7134 } 7135 7136 // If call site has a cfguardtarget operand bundle, create and add an 7137 // additional ArgListEntry. 7138 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7139 TargetLowering::ArgListEntry Entry; 7140 Value *V = Bundle->Inputs[0]; 7141 SDValue ArgNode = getValue(V); 7142 Entry.Node = ArgNode; 7143 Entry.Ty = V->getType(); 7144 Entry.IsCFGuardTarget = true; 7145 Args.push_back(Entry); 7146 } 7147 7148 // Check if target-independent constraints permit a tail call here. 7149 // Target-dependent constraints are checked within TLI->LowerCallTo. 7150 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7151 isTailCall = false; 7152 7153 // Disable tail calls if there is an swifterror argument. Targets have not 7154 // been updated to support tail calls. 7155 if (TLI.supportSwiftError() && SwiftErrorVal) 7156 isTailCall = false; 7157 7158 TargetLowering::CallLoweringInfo CLI(DAG); 7159 CLI.setDebugLoc(getCurSDLoc()) 7160 .setChain(getRoot()) 7161 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7162 .setTailCall(isTailCall) 7163 .setConvergent(CB.isConvergent()) 7164 .setIsPreallocated( 7165 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7166 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7167 7168 if (Result.first.getNode()) { 7169 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7170 setValue(&CB, Result.first); 7171 } 7172 7173 // The last element of CLI.InVals has the SDValue for swifterror return. 7174 // Here we copy it to a virtual register and update SwiftErrorMap for 7175 // book-keeping. 7176 if (SwiftErrorVal && TLI.supportSwiftError()) { 7177 // Get the last element of InVals. 7178 SDValue Src = CLI.InVals.back(); 7179 Register VReg = 7180 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7181 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7182 DAG.setRoot(CopyNode); 7183 } 7184 } 7185 7186 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7187 SelectionDAGBuilder &Builder) { 7188 // Check to see if this load can be trivially constant folded, e.g. if the 7189 // input is from a string literal. 7190 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7191 // Cast pointer to the type we really want to load. 7192 Type *LoadTy = 7193 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7194 if (LoadVT.isVector()) 7195 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7196 7197 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7198 PointerType::getUnqual(LoadTy)); 7199 7200 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7201 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7202 return Builder.getValue(LoadCst); 7203 } 7204 7205 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7206 // still constant memory, the input chain can be the entry node. 7207 SDValue Root; 7208 bool ConstantMemory = false; 7209 7210 // Do not serialize (non-volatile) loads of constant memory with anything. 7211 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7212 Root = Builder.DAG.getEntryNode(); 7213 ConstantMemory = true; 7214 } else { 7215 // Do not serialize non-volatile loads against each other. 7216 Root = Builder.DAG.getRoot(); 7217 } 7218 7219 SDValue Ptr = Builder.getValue(PtrVal); 7220 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7221 Ptr, MachinePointerInfo(PtrVal), 7222 /* Alignment = */ 1); 7223 7224 if (!ConstantMemory) 7225 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7226 return LoadVal; 7227 } 7228 7229 /// Record the value for an instruction that produces an integer result, 7230 /// converting the type where necessary. 7231 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7232 SDValue Value, 7233 bool IsSigned) { 7234 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7235 I.getType(), true); 7236 if (IsSigned) 7237 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7238 else 7239 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7240 setValue(&I, Value); 7241 } 7242 7243 /// See if we can lower a memcmp call into an optimized form. If so, return 7244 /// true and lower it. Otherwise return false, and it will be lowered like a 7245 /// normal call. 7246 /// The caller already checked that \p I calls the appropriate LibFunc with a 7247 /// correct prototype. 7248 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7249 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7250 const Value *Size = I.getArgOperand(2); 7251 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7252 if (CSize && CSize->getZExtValue() == 0) { 7253 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7254 I.getType(), true); 7255 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7256 return true; 7257 } 7258 7259 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7260 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7261 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7262 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7263 if (Res.first.getNode()) { 7264 processIntegerCallValue(I, Res.first, true); 7265 PendingLoads.push_back(Res.second); 7266 return true; 7267 } 7268 7269 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7270 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7271 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7272 return false; 7273 7274 // If the target has a fast compare for the given size, it will return a 7275 // preferred load type for that size. Require that the load VT is legal and 7276 // that the target supports unaligned loads of that type. Otherwise, return 7277 // INVALID. 7278 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7280 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7281 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7282 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7283 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7284 // TODO: Check alignment of src and dest ptrs. 7285 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7286 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7287 if (!TLI.isTypeLegal(LVT) || 7288 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7289 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7290 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7291 } 7292 7293 return LVT; 7294 }; 7295 7296 // This turns into unaligned loads. We only do this if the target natively 7297 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7298 // we'll only produce a small number of byte loads. 7299 MVT LoadVT; 7300 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7301 switch (NumBitsToCompare) { 7302 default: 7303 return false; 7304 case 16: 7305 LoadVT = MVT::i16; 7306 break; 7307 case 32: 7308 LoadVT = MVT::i32; 7309 break; 7310 case 64: 7311 case 128: 7312 case 256: 7313 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7314 break; 7315 } 7316 7317 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7318 return false; 7319 7320 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7321 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7322 7323 // Bitcast to a wide integer type if the loads are vectors. 7324 if (LoadVT.isVector()) { 7325 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7326 LoadL = DAG.getBitcast(CmpVT, LoadL); 7327 LoadR = DAG.getBitcast(CmpVT, LoadR); 7328 } 7329 7330 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7331 processIntegerCallValue(I, Cmp, false); 7332 return true; 7333 } 7334 7335 /// See if we can lower a memchr call into an optimized form. If so, return 7336 /// true and lower it. Otherwise return false, and it will be lowered like a 7337 /// normal call. 7338 /// The caller already checked that \p I calls the appropriate LibFunc with a 7339 /// correct prototype. 7340 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7341 const Value *Src = I.getArgOperand(0); 7342 const Value *Char = I.getArgOperand(1); 7343 const Value *Length = I.getArgOperand(2); 7344 7345 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7346 std::pair<SDValue, SDValue> Res = 7347 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7348 getValue(Src), getValue(Char), getValue(Length), 7349 MachinePointerInfo(Src)); 7350 if (Res.first.getNode()) { 7351 setValue(&I, Res.first); 7352 PendingLoads.push_back(Res.second); 7353 return true; 7354 } 7355 7356 return false; 7357 } 7358 7359 /// See if we can lower a mempcpy call into an optimized form. If so, return 7360 /// true and lower it. Otherwise return false, and it will be lowered like a 7361 /// normal call. 7362 /// The caller already checked that \p I calls the appropriate LibFunc with a 7363 /// correct prototype. 7364 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7365 SDValue Dst = getValue(I.getArgOperand(0)); 7366 SDValue Src = getValue(I.getArgOperand(1)); 7367 SDValue Size = getValue(I.getArgOperand(2)); 7368 7369 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7370 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7371 // DAG::getMemcpy needs Alignment to be defined. 7372 Align Alignment = std::min(DstAlign, SrcAlign); 7373 7374 bool isVol = false; 7375 SDLoc sdl = getCurSDLoc(); 7376 7377 // In the mempcpy context we need to pass in a false value for isTailCall 7378 // because the return pointer needs to be adjusted by the size of 7379 // the copied memory. 7380 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7381 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7382 /*isTailCall=*/false, 7383 MachinePointerInfo(I.getArgOperand(0)), 7384 MachinePointerInfo(I.getArgOperand(1))); 7385 assert(MC.getNode() != nullptr && 7386 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7387 DAG.setRoot(MC); 7388 7389 // Check if Size needs to be truncated or extended. 7390 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7391 7392 // Adjust return pointer to point just past the last dst byte. 7393 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7394 Dst, Size); 7395 setValue(&I, DstPlusSize); 7396 return true; 7397 } 7398 7399 /// See if we can lower a strcpy call into an optimized form. If so, return 7400 /// true and lower it, otherwise return false and it will be lowered like a 7401 /// normal call. 7402 /// The caller already checked that \p I calls the appropriate LibFunc with a 7403 /// correct prototype. 7404 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7405 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7406 7407 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7408 std::pair<SDValue, SDValue> Res = 7409 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7410 getValue(Arg0), getValue(Arg1), 7411 MachinePointerInfo(Arg0), 7412 MachinePointerInfo(Arg1), isStpcpy); 7413 if (Res.first.getNode()) { 7414 setValue(&I, Res.first); 7415 DAG.setRoot(Res.second); 7416 return true; 7417 } 7418 7419 return false; 7420 } 7421 7422 /// See if we can lower a strcmp call into an optimized form. If so, return 7423 /// true and lower it, otherwise return false and it will be lowered like a 7424 /// normal call. 7425 /// The caller already checked that \p I calls the appropriate LibFunc with a 7426 /// correct prototype. 7427 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7428 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7429 7430 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7431 std::pair<SDValue, SDValue> Res = 7432 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7433 getValue(Arg0), getValue(Arg1), 7434 MachinePointerInfo(Arg0), 7435 MachinePointerInfo(Arg1)); 7436 if (Res.first.getNode()) { 7437 processIntegerCallValue(I, Res.first, true); 7438 PendingLoads.push_back(Res.second); 7439 return true; 7440 } 7441 7442 return false; 7443 } 7444 7445 /// See if we can lower a strlen call into an optimized form. If so, return 7446 /// true and lower it, otherwise return false and it will be lowered like a 7447 /// normal call. 7448 /// The caller already checked that \p I calls the appropriate LibFunc with a 7449 /// correct prototype. 7450 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7451 const Value *Arg0 = I.getArgOperand(0); 7452 7453 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7454 std::pair<SDValue, SDValue> Res = 7455 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7456 getValue(Arg0), MachinePointerInfo(Arg0)); 7457 if (Res.first.getNode()) { 7458 processIntegerCallValue(I, Res.first, false); 7459 PendingLoads.push_back(Res.second); 7460 return true; 7461 } 7462 7463 return false; 7464 } 7465 7466 /// See if we can lower a strnlen call into an optimized form. If so, return 7467 /// true and lower it, otherwise return false and it will be lowered like a 7468 /// normal call. 7469 /// The caller already checked that \p I calls the appropriate LibFunc with a 7470 /// correct prototype. 7471 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7472 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7473 7474 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7475 std::pair<SDValue, SDValue> Res = 7476 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7477 getValue(Arg0), getValue(Arg1), 7478 MachinePointerInfo(Arg0)); 7479 if (Res.first.getNode()) { 7480 processIntegerCallValue(I, Res.first, false); 7481 PendingLoads.push_back(Res.second); 7482 return true; 7483 } 7484 7485 return false; 7486 } 7487 7488 /// See if we can lower a unary floating-point operation into an SDNode with 7489 /// the specified Opcode. If so, return true and lower it, otherwise return 7490 /// false and it will be lowered like a normal call. 7491 /// The caller already checked that \p I calls the appropriate LibFunc with a 7492 /// correct prototype. 7493 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7494 unsigned Opcode) { 7495 // We already checked this call's prototype; verify it doesn't modify errno. 7496 if (!I.onlyReadsMemory()) 7497 return false; 7498 7499 SDValue Tmp = getValue(I.getArgOperand(0)); 7500 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7501 return true; 7502 } 7503 7504 /// See if we can lower a binary floating-point operation into an SDNode with 7505 /// the specified Opcode. If so, return true and lower it. Otherwise return 7506 /// false, and it will be lowered like a normal call. 7507 /// The caller already checked that \p I calls the appropriate LibFunc with a 7508 /// correct prototype. 7509 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7510 unsigned Opcode) { 7511 // We already checked this call's prototype; verify it doesn't modify errno. 7512 if (!I.onlyReadsMemory()) 7513 return false; 7514 7515 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7516 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7517 EVT VT = Tmp0.getValueType(); 7518 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7519 return true; 7520 } 7521 7522 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7523 // Handle inline assembly differently. 7524 if (I.isInlineAsm()) { 7525 visitInlineAsm(I); 7526 return; 7527 } 7528 7529 if (Function *F = I.getCalledFunction()) { 7530 if (F->isDeclaration()) { 7531 // Is this an LLVM intrinsic or a target-specific intrinsic? 7532 unsigned IID = F->getIntrinsicID(); 7533 if (!IID) 7534 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7535 IID = II->getIntrinsicID(F); 7536 7537 if (IID) { 7538 visitIntrinsicCall(I, IID); 7539 return; 7540 } 7541 } 7542 7543 // Check for well-known libc/libm calls. If the function is internal, it 7544 // can't be a library call. Don't do the check if marked as nobuiltin for 7545 // some reason or the call site requires strict floating point semantics. 7546 LibFunc Func; 7547 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7548 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7549 LibInfo->hasOptimizedCodeGen(Func)) { 7550 switch (Func) { 7551 default: break; 7552 case LibFunc_copysign: 7553 case LibFunc_copysignf: 7554 case LibFunc_copysignl: 7555 // We already checked this call's prototype; verify it doesn't modify 7556 // errno. 7557 if (I.onlyReadsMemory()) { 7558 SDValue LHS = getValue(I.getArgOperand(0)); 7559 SDValue RHS = getValue(I.getArgOperand(1)); 7560 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7561 LHS.getValueType(), LHS, RHS)); 7562 return; 7563 } 7564 break; 7565 case LibFunc_fabs: 7566 case LibFunc_fabsf: 7567 case LibFunc_fabsl: 7568 if (visitUnaryFloatCall(I, ISD::FABS)) 7569 return; 7570 break; 7571 case LibFunc_fmin: 7572 case LibFunc_fminf: 7573 case LibFunc_fminl: 7574 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7575 return; 7576 break; 7577 case LibFunc_fmax: 7578 case LibFunc_fmaxf: 7579 case LibFunc_fmaxl: 7580 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7581 return; 7582 break; 7583 case LibFunc_sin: 7584 case LibFunc_sinf: 7585 case LibFunc_sinl: 7586 if (visitUnaryFloatCall(I, ISD::FSIN)) 7587 return; 7588 break; 7589 case LibFunc_cos: 7590 case LibFunc_cosf: 7591 case LibFunc_cosl: 7592 if (visitUnaryFloatCall(I, ISD::FCOS)) 7593 return; 7594 break; 7595 case LibFunc_sqrt: 7596 case LibFunc_sqrtf: 7597 case LibFunc_sqrtl: 7598 case LibFunc_sqrt_finite: 7599 case LibFunc_sqrtf_finite: 7600 case LibFunc_sqrtl_finite: 7601 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7602 return; 7603 break; 7604 case LibFunc_floor: 7605 case LibFunc_floorf: 7606 case LibFunc_floorl: 7607 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7608 return; 7609 break; 7610 case LibFunc_nearbyint: 7611 case LibFunc_nearbyintf: 7612 case LibFunc_nearbyintl: 7613 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7614 return; 7615 break; 7616 case LibFunc_ceil: 7617 case LibFunc_ceilf: 7618 case LibFunc_ceill: 7619 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7620 return; 7621 break; 7622 case LibFunc_rint: 7623 case LibFunc_rintf: 7624 case LibFunc_rintl: 7625 if (visitUnaryFloatCall(I, ISD::FRINT)) 7626 return; 7627 break; 7628 case LibFunc_round: 7629 case LibFunc_roundf: 7630 case LibFunc_roundl: 7631 if (visitUnaryFloatCall(I, ISD::FROUND)) 7632 return; 7633 break; 7634 case LibFunc_trunc: 7635 case LibFunc_truncf: 7636 case LibFunc_truncl: 7637 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7638 return; 7639 break; 7640 case LibFunc_log2: 7641 case LibFunc_log2f: 7642 case LibFunc_log2l: 7643 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7644 return; 7645 break; 7646 case LibFunc_exp2: 7647 case LibFunc_exp2f: 7648 case LibFunc_exp2l: 7649 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7650 return; 7651 break; 7652 case LibFunc_memcmp: 7653 if (visitMemCmpCall(I)) 7654 return; 7655 break; 7656 case LibFunc_mempcpy: 7657 if (visitMemPCpyCall(I)) 7658 return; 7659 break; 7660 case LibFunc_memchr: 7661 if (visitMemChrCall(I)) 7662 return; 7663 break; 7664 case LibFunc_strcpy: 7665 if (visitStrCpyCall(I, false)) 7666 return; 7667 break; 7668 case LibFunc_stpcpy: 7669 if (visitStrCpyCall(I, true)) 7670 return; 7671 break; 7672 case LibFunc_strcmp: 7673 if (visitStrCmpCall(I)) 7674 return; 7675 break; 7676 case LibFunc_strlen: 7677 if (visitStrLenCall(I)) 7678 return; 7679 break; 7680 case LibFunc_strnlen: 7681 if (visitStrNLenCall(I)) 7682 return; 7683 break; 7684 } 7685 } 7686 } 7687 7688 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7689 // have to do anything here to lower funclet bundles. 7690 // CFGuardTarget bundles are lowered in LowerCallTo. 7691 assert(!I.hasOperandBundlesOtherThan( 7692 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7693 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7694 "Cannot lower calls with arbitrary operand bundles!"); 7695 7696 SDValue Callee = getValue(I.getCalledOperand()); 7697 7698 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7699 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7700 else 7701 // Check if we can potentially perform a tail call. More detailed checking 7702 // is be done within LowerCallTo, after more information about the call is 7703 // known. 7704 LowerCallTo(I, Callee, I.isTailCall()); 7705 } 7706 7707 namespace { 7708 7709 /// AsmOperandInfo - This contains information for each constraint that we are 7710 /// lowering. 7711 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7712 public: 7713 /// CallOperand - If this is the result output operand or a clobber 7714 /// this is null, otherwise it is the incoming operand to the CallInst. 7715 /// This gets modified as the asm is processed. 7716 SDValue CallOperand; 7717 7718 /// AssignedRegs - If this is a register or register class operand, this 7719 /// contains the set of register corresponding to the operand. 7720 RegsForValue AssignedRegs; 7721 7722 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7723 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7724 } 7725 7726 /// Whether or not this operand accesses memory 7727 bool hasMemory(const TargetLowering &TLI) const { 7728 // Indirect operand accesses access memory. 7729 if (isIndirect) 7730 return true; 7731 7732 for (const auto &Code : Codes) 7733 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7734 return true; 7735 7736 return false; 7737 } 7738 7739 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7740 /// corresponds to. If there is no Value* for this operand, it returns 7741 /// MVT::Other. 7742 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7743 const DataLayout &DL) const { 7744 if (!CallOperandVal) return MVT::Other; 7745 7746 if (isa<BasicBlock>(CallOperandVal)) 7747 return TLI.getProgramPointerTy(DL); 7748 7749 llvm::Type *OpTy = CallOperandVal->getType(); 7750 7751 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7752 // If this is an indirect operand, the operand is a pointer to the 7753 // accessed type. 7754 if (isIndirect) { 7755 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7756 if (!PtrTy) 7757 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7758 OpTy = PtrTy->getElementType(); 7759 } 7760 7761 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7762 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7763 if (STy->getNumElements() == 1) 7764 OpTy = STy->getElementType(0); 7765 7766 // If OpTy is not a single value, it may be a struct/union that we 7767 // can tile with integers. 7768 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7769 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7770 switch (BitSize) { 7771 default: break; 7772 case 1: 7773 case 8: 7774 case 16: 7775 case 32: 7776 case 64: 7777 case 128: 7778 OpTy = IntegerType::get(Context, BitSize); 7779 break; 7780 } 7781 } 7782 7783 return TLI.getValueType(DL, OpTy, true); 7784 } 7785 }; 7786 7787 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7788 7789 } // end anonymous namespace 7790 7791 /// Make sure that the output operand \p OpInfo and its corresponding input 7792 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7793 /// out). 7794 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7795 SDISelAsmOperandInfo &MatchingOpInfo, 7796 SelectionDAG &DAG) { 7797 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7798 return; 7799 7800 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7801 const auto &TLI = DAG.getTargetLoweringInfo(); 7802 7803 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7804 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7805 OpInfo.ConstraintVT); 7806 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7807 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7808 MatchingOpInfo.ConstraintVT); 7809 if ((OpInfo.ConstraintVT.isInteger() != 7810 MatchingOpInfo.ConstraintVT.isInteger()) || 7811 (MatchRC.second != InputRC.second)) { 7812 // FIXME: error out in a more elegant fashion 7813 report_fatal_error("Unsupported asm: input constraint" 7814 " with a matching output constraint of" 7815 " incompatible type!"); 7816 } 7817 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7818 } 7819 7820 /// Get a direct memory input to behave well as an indirect operand. 7821 /// This may introduce stores, hence the need for a \p Chain. 7822 /// \return The (possibly updated) chain. 7823 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7824 SDISelAsmOperandInfo &OpInfo, 7825 SelectionDAG &DAG) { 7826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7827 7828 // If we don't have an indirect input, put it in the constpool if we can, 7829 // otherwise spill it to a stack slot. 7830 // TODO: This isn't quite right. We need to handle these according to 7831 // the addressing mode that the constraint wants. Also, this may take 7832 // an additional register for the computation and we don't want that 7833 // either. 7834 7835 // If the operand is a float, integer, or vector constant, spill to a 7836 // constant pool entry to get its address. 7837 const Value *OpVal = OpInfo.CallOperandVal; 7838 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7839 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7840 OpInfo.CallOperand = DAG.getConstantPool( 7841 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7842 return Chain; 7843 } 7844 7845 // Otherwise, create a stack slot and emit a store to it before the asm. 7846 Type *Ty = OpVal->getType(); 7847 auto &DL = DAG.getDataLayout(); 7848 uint64_t TySize = DL.getTypeAllocSize(Ty); 7849 unsigned Align = DL.getPrefTypeAlignment(Ty); 7850 MachineFunction &MF = DAG.getMachineFunction(); 7851 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7852 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7853 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7854 MachinePointerInfo::getFixedStack(MF, SSFI), 7855 TLI.getMemValueType(DL, Ty)); 7856 OpInfo.CallOperand = StackSlot; 7857 7858 return Chain; 7859 } 7860 7861 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7862 /// specified operand. We prefer to assign virtual registers, to allow the 7863 /// register allocator to handle the assignment process. However, if the asm 7864 /// uses features that we can't model on machineinstrs, we have SDISel do the 7865 /// allocation. This produces generally horrible, but correct, code. 7866 /// 7867 /// OpInfo describes the operand 7868 /// RefOpInfo describes the matching operand if any, the operand otherwise 7869 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7870 SDISelAsmOperandInfo &OpInfo, 7871 SDISelAsmOperandInfo &RefOpInfo) { 7872 LLVMContext &Context = *DAG.getContext(); 7873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7874 7875 MachineFunction &MF = DAG.getMachineFunction(); 7876 SmallVector<unsigned, 4> Regs; 7877 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7878 7879 // No work to do for memory operations. 7880 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7881 return; 7882 7883 // If this is a constraint for a single physreg, or a constraint for a 7884 // register class, find it. 7885 unsigned AssignedReg; 7886 const TargetRegisterClass *RC; 7887 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7888 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7889 // RC is unset only on failure. Return immediately. 7890 if (!RC) 7891 return; 7892 7893 // Get the actual register value type. This is important, because the user 7894 // may have asked for (e.g.) the AX register in i32 type. We need to 7895 // remember that AX is actually i16 to get the right extension. 7896 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7897 7898 if (OpInfo.ConstraintVT != MVT::Other) { 7899 // If this is an FP operand in an integer register (or visa versa), or more 7900 // generally if the operand value disagrees with the register class we plan 7901 // to stick it in, fix the operand type. 7902 // 7903 // If this is an input value, the bitcast to the new type is done now. 7904 // Bitcast for output value is done at the end of visitInlineAsm(). 7905 if ((OpInfo.Type == InlineAsm::isOutput || 7906 OpInfo.Type == InlineAsm::isInput) && 7907 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7908 // Try to convert to the first EVT that the reg class contains. If the 7909 // types are identical size, use a bitcast to convert (e.g. two differing 7910 // vector types). Note: output bitcast is done at the end of 7911 // visitInlineAsm(). 7912 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7913 // Exclude indirect inputs while they are unsupported because the code 7914 // to perform the load is missing and thus OpInfo.CallOperand still 7915 // refers to the input address rather than the pointed-to value. 7916 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7917 OpInfo.CallOperand = 7918 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7919 OpInfo.ConstraintVT = RegVT; 7920 // If the operand is an FP value and we want it in integer registers, 7921 // use the corresponding integer type. This turns an f64 value into 7922 // i64, which can be passed with two i32 values on a 32-bit machine. 7923 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7924 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7925 if (OpInfo.Type == InlineAsm::isInput) 7926 OpInfo.CallOperand = 7927 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7928 OpInfo.ConstraintVT = VT; 7929 } 7930 } 7931 } 7932 7933 // No need to allocate a matching input constraint since the constraint it's 7934 // matching to has already been allocated. 7935 if (OpInfo.isMatchingInputConstraint()) 7936 return; 7937 7938 EVT ValueVT = OpInfo.ConstraintVT; 7939 if (OpInfo.ConstraintVT == MVT::Other) 7940 ValueVT = RegVT; 7941 7942 // Initialize NumRegs. 7943 unsigned NumRegs = 1; 7944 if (OpInfo.ConstraintVT != MVT::Other) 7945 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7946 7947 // If this is a constraint for a specific physical register, like {r17}, 7948 // assign it now. 7949 7950 // If this associated to a specific register, initialize iterator to correct 7951 // place. If virtual, make sure we have enough registers 7952 7953 // Initialize iterator if necessary 7954 TargetRegisterClass::iterator I = RC->begin(); 7955 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7956 7957 // Do not check for single registers. 7958 if (AssignedReg) { 7959 for (; *I != AssignedReg; ++I) 7960 assert(I != RC->end() && "AssignedReg should be member of RC"); 7961 } 7962 7963 for (; NumRegs; --NumRegs, ++I) { 7964 assert(I != RC->end() && "Ran out of registers to allocate!"); 7965 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7966 Regs.push_back(R); 7967 } 7968 7969 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7970 } 7971 7972 static unsigned 7973 findMatchingInlineAsmOperand(unsigned OperandNo, 7974 const std::vector<SDValue> &AsmNodeOperands) { 7975 // Scan until we find the definition we already emitted of this operand. 7976 unsigned CurOp = InlineAsm::Op_FirstOperand; 7977 for (; OperandNo; --OperandNo) { 7978 // Advance to the next operand. 7979 unsigned OpFlag = 7980 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7981 assert((InlineAsm::isRegDefKind(OpFlag) || 7982 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7983 InlineAsm::isMemKind(OpFlag)) && 7984 "Skipped past definitions?"); 7985 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7986 } 7987 return CurOp; 7988 } 7989 7990 namespace { 7991 7992 class ExtraFlags { 7993 unsigned Flags = 0; 7994 7995 public: 7996 explicit ExtraFlags(const CallBase &Call) { 7997 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 7998 if (IA->hasSideEffects()) 7999 Flags |= InlineAsm::Extra_HasSideEffects; 8000 if (IA->isAlignStack()) 8001 Flags |= InlineAsm::Extra_IsAlignStack; 8002 if (Call.isConvergent()) 8003 Flags |= InlineAsm::Extra_IsConvergent; 8004 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8005 } 8006 8007 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8008 // Ideally, we would only check against memory constraints. However, the 8009 // meaning of an Other constraint can be target-specific and we can't easily 8010 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8011 // for Other constraints as well. 8012 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8013 OpInfo.ConstraintType == TargetLowering::C_Other) { 8014 if (OpInfo.Type == InlineAsm::isInput) 8015 Flags |= InlineAsm::Extra_MayLoad; 8016 else if (OpInfo.Type == InlineAsm::isOutput) 8017 Flags |= InlineAsm::Extra_MayStore; 8018 else if (OpInfo.Type == InlineAsm::isClobber) 8019 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8020 } 8021 } 8022 8023 unsigned get() const { return Flags; } 8024 }; 8025 8026 } // end anonymous namespace 8027 8028 /// visitInlineAsm - Handle a call to an InlineAsm object. 8029 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8030 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8031 8032 /// ConstraintOperands - Information about all of the constraints. 8033 SDISelAsmOperandInfoVector ConstraintOperands; 8034 8035 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8036 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8037 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8038 8039 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8040 // AsmDialect, MayLoad, MayStore). 8041 bool HasSideEffect = IA->hasSideEffects(); 8042 ExtraFlags ExtraInfo(Call); 8043 8044 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8045 unsigned ResNo = 0; // ResNo - The result number of the next output. 8046 unsigned NumMatchingOps = 0; 8047 for (auto &T : TargetConstraints) { 8048 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8049 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8050 8051 // Compute the value type for each operand. 8052 if (OpInfo.Type == InlineAsm::isInput || 8053 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8054 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8055 8056 // Process the call argument. BasicBlocks are labels, currently appearing 8057 // only in asm's. 8058 if (isa<CallBrInst>(Call) && 8059 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8060 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8061 NumMatchingOps) && 8062 (NumMatchingOps == 0 || 8063 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8064 NumMatchingOps))) { 8065 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8066 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8067 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8068 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8069 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8070 } else { 8071 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8072 } 8073 8074 OpInfo.ConstraintVT = 8075 OpInfo 8076 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8077 .getSimpleVT(); 8078 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8079 // The return value of the call is this value. As such, there is no 8080 // corresponding argument. 8081 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8082 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8083 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8084 DAG.getDataLayout(), STy->getElementType(ResNo)); 8085 } else { 8086 assert(ResNo == 0 && "Asm only has one result!"); 8087 OpInfo.ConstraintVT = 8088 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8089 } 8090 ++ResNo; 8091 } else { 8092 OpInfo.ConstraintVT = MVT::Other; 8093 } 8094 8095 if (OpInfo.hasMatchingInput()) 8096 ++NumMatchingOps; 8097 8098 if (!HasSideEffect) 8099 HasSideEffect = OpInfo.hasMemory(TLI); 8100 8101 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8102 // FIXME: Could we compute this on OpInfo rather than T? 8103 8104 // Compute the constraint code and ConstraintType to use. 8105 TLI.ComputeConstraintToUse(T, SDValue()); 8106 8107 if (T.ConstraintType == TargetLowering::C_Immediate && 8108 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8109 // We've delayed emitting a diagnostic like the "n" constraint because 8110 // inlining could cause an integer showing up. 8111 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8112 "' expects an integer constant " 8113 "expression"); 8114 8115 ExtraInfo.update(T); 8116 } 8117 8118 8119 // We won't need to flush pending loads if this asm doesn't touch 8120 // memory and is nonvolatile. 8121 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8122 8123 bool IsCallBr = isa<CallBrInst>(Call); 8124 if (IsCallBr) { 8125 // If this is a callbr we need to flush pending exports since inlineasm_br 8126 // is a terminator. We need to do this before nodes are glued to 8127 // the inlineasm_br node. 8128 Chain = getControlRoot(); 8129 } 8130 8131 // Second pass over the constraints: compute which constraint option to use. 8132 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8133 // If this is an output operand with a matching input operand, look up the 8134 // matching input. If their types mismatch, e.g. one is an integer, the 8135 // other is floating point, or their sizes are different, flag it as an 8136 // error. 8137 if (OpInfo.hasMatchingInput()) { 8138 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8139 patchMatchingInput(OpInfo, Input, DAG); 8140 } 8141 8142 // Compute the constraint code and ConstraintType to use. 8143 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8144 8145 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8146 OpInfo.Type == InlineAsm::isClobber) 8147 continue; 8148 8149 // If this is a memory input, and if the operand is not indirect, do what we 8150 // need to provide an address for the memory input. 8151 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8152 !OpInfo.isIndirect) { 8153 assert((OpInfo.isMultipleAlternative || 8154 (OpInfo.Type == InlineAsm::isInput)) && 8155 "Can only indirectify direct input operands!"); 8156 8157 // Memory operands really want the address of the value. 8158 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8159 8160 // There is no longer a Value* corresponding to this operand. 8161 OpInfo.CallOperandVal = nullptr; 8162 8163 // It is now an indirect operand. 8164 OpInfo.isIndirect = true; 8165 } 8166 8167 } 8168 8169 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8170 std::vector<SDValue> AsmNodeOperands; 8171 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8172 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8173 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8174 8175 // If we have a !srcloc metadata node associated with it, we want to attach 8176 // this to the ultimately generated inline asm machineinstr. To do this, we 8177 // pass in the third operand as this (potentially null) inline asm MDNode. 8178 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8179 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8180 8181 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8182 // bits as operand 3. 8183 AsmNodeOperands.push_back(DAG.getTargetConstant( 8184 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8185 8186 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8187 // this, assign virtual and physical registers for inputs and otput. 8188 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8189 // Assign Registers. 8190 SDISelAsmOperandInfo &RefOpInfo = 8191 OpInfo.isMatchingInputConstraint() 8192 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8193 : OpInfo; 8194 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8195 8196 auto DetectWriteToReservedRegister = [&]() { 8197 const MachineFunction &MF = DAG.getMachineFunction(); 8198 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8199 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8200 if (Register::isPhysicalRegister(Reg) && 8201 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8202 const char *RegName = TRI.getName(Reg); 8203 emitInlineAsmError(Call, "write to reserved register '" + 8204 Twine(RegName) + "'"); 8205 return true; 8206 } 8207 } 8208 return false; 8209 }; 8210 8211 switch (OpInfo.Type) { 8212 case InlineAsm::isOutput: 8213 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8214 unsigned ConstraintID = 8215 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8216 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8217 "Failed to convert memory constraint code to constraint id."); 8218 8219 // Add information to the INLINEASM node to know about this output. 8220 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8221 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8222 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8223 MVT::i32)); 8224 AsmNodeOperands.push_back(OpInfo.CallOperand); 8225 } else { 8226 // Otherwise, this outputs to a register (directly for C_Register / 8227 // C_RegisterClass, and a target-defined fashion for 8228 // C_Immediate/C_Other). Find a register that we can use. 8229 if (OpInfo.AssignedRegs.Regs.empty()) { 8230 emitInlineAsmError( 8231 Call, "couldn't allocate output register for constraint '" + 8232 Twine(OpInfo.ConstraintCode) + "'"); 8233 return; 8234 } 8235 8236 if (DetectWriteToReservedRegister()) 8237 return; 8238 8239 // Add information to the INLINEASM node to know that this register is 8240 // set. 8241 OpInfo.AssignedRegs.AddInlineAsmOperands( 8242 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8243 : InlineAsm::Kind_RegDef, 8244 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8245 } 8246 break; 8247 8248 case InlineAsm::isInput: { 8249 SDValue InOperandVal = OpInfo.CallOperand; 8250 8251 if (OpInfo.isMatchingInputConstraint()) { 8252 // If this is required to match an output register we have already set, 8253 // just use its register. 8254 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8255 AsmNodeOperands); 8256 unsigned OpFlag = 8257 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8258 if (InlineAsm::isRegDefKind(OpFlag) || 8259 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8260 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8261 if (OpInfo.isIndirect) { 8262 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8263 emitInlineAsmError(Call, "inline asm not supported yet: " 8264 "don't know how to handle tied " 8265 "indirect register inputs"); 8266 return; 8267 } 8268 8269 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8270 SmallVector<unsigned, 4> Regs; 8271 8272 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8273 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8274 MachineRegisterInfo &RegInfo = 8275 DAG.getMachineFunction().getRegInfo(); 8276 for (unsigned i = 0; i != NumRegs; ++i) 8277 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8278 } else { 8279 emitInlineAsmError(Call, 8280 "inline asm error: This value type register " 8281 "class is not natively supported!"); 8282 return; 8283 } 8284 8285 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8286 8287 SDLoc dl = getCurSDLoc(); 8288 // Use the produced MatchedRegs object to 8289 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8290 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8291 true, OpInfo.getMatchedOperand(), dl, 8292 DAG, AsmNodeOperands); 8293 break; 8294 } 8295 8296 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8297 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8298 "Unexpected number of operands"); 8299 // Add information to the INLINEASM node to know about this input. 8300 // See InlineAsm.h isUseOperandTiedToDef. 8301 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8302 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8303 OpInfo.getMatchedOperand()); 8304 AsmNodeOperands.push_back(DAG.getTargetConstant( 8305 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8306 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8307 break; 8308 } 8309 8310 // Treat indirect 'X' constraint as memory. 8311 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8312 OpInfo.isIndirect) 8313 OpInfo.ConstraintType = TargetLowering::C_Memory; 8314 8315 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8316 OpInfo.ConstraintType == TargetLowering::C_Other) { 8317 std::vector<SDValue> Ops; 8318 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8319 Ops, DAG); 8320 if (Ops.empty()) { 8321 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8322 if (isa<ConstantSDNode>(InOperandVal)) { 8323 emitInlineAsmError(Call, "value out of range for constraint '" + 8324 Twine(OpInfo.ConstraintCode) + "'"); 8325 return; 8326 } 8327 8328 emitInlineAsmError(Call, 8329 "invalid operand for inline asm constraint '" + 8330 Twine(OpInfo.ConstraintCode) + "'"); 8331 return; 8332 } 8333 8334 // Add information to the INLINEASM node to know about this input. 8335 unsigned ResOpType = 8336 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8337 AsmNodeOperands.push_back(DAG.getTargetConstant( 8338 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8339 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8340 break; 8341 } 8342 8343 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8344 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8345 assert(InOperandVal.getValueType() == 8346 TLI.getPointerTy(DAG.getDataLayout()) && 8347 "Memory operands expect pointer values"); 8348 8349 unsigned ConstraintID = 8350 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8351 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8352 "Failed to convert memory constraint code to constraint id."); 8353 8354 // Add information to the INLINEASM node to know about this input. 8355 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8356 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8357 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8358 getCurSDLoc(), 8359 MVT::i32)); 8360 AsmNodeOperands.push_back(InOperandVal); 8361 break; 8362 } 8363 8364 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8365 OpInfo.ConstraintType == TargetLowering::C_Register) && 8366 "Unknown constraint type!"); 8367 8368 // TODO: Support this. 8369 if (OpInfo.isIndirect) { 8370 emitInlineAsmError( 8371 Call, "Don't know how to handle indirect register inputs yet " 8372 "for constraint '" + 8373 Twine(OpInfo.ConstraintCode) + "'"); 8374 return; 8375 } 8376 8377 // Copy the input into the appropriate registers. 8378 if (OpInfo.AssignedRegs.Regs.empty()) { 8379 emitInlineAsmError(Call, 8380 "couldn't allocate input reg for constraint '" + 8381 Twine(OpInfo.ConstraintCode) + "'"); 8382 return; 8383 } 8384 8385 if (DetectWriteToReservedRegister()) 8386 return; 8387 8388 SDLoc dl = getCurSDLoc(); 8389 8390 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8391 &Call); 8392 8393 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8394 dl, DAG, AsmNodeOperands); 8395 break; 8396 } 8397 case InlineAsm::isClobber: 8398 // Add the clobbered value to the operand list, so that the register 8399 // allocator is aware that the physreg got clobbered. 8400 if (!OpInfo.AssignedRegs.Regs.empty()) 8401 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8402 false, 0, getCurSDLoc(), DAG, 8403 AsmNodeOperands); 8404 break; 8405 } 8406 } 8407 8408 // Finish up input operands. Set the input chain and add the flag last. 8409 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8410 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8411 8412 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8413 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8414 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8415 Flag = Chain.getValue(1); 8416 8417 // Do additional work to generate outputs. 8418 8419 SmallVector<EVT, 1> ResultVTs; 8420 SmallVector<SDValue, 1> ResultValues; 8421 SmallVector<SDValue, 8> OutChains; 8422 8423 llvm::Type *CallResultType = Call.getType(); 8424 ArrayRef<Type *> ResultTypes; 8425 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8426 ResultTypes = StructResult->elements(); 8427 else if (!CallResultType->isVoidTy()) 8428 ResultTypes = makeArrayRef(CallResultType); 8429 8430 auto CurResultType = ResultTypes.begin(); 8431 auto handleRegAssign = [&](SDValue V) { 8432 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8433 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8434 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8435 ++CurResultType; 8436 // If the type of the inline asm call site return value is different but has 8437 // same size as the type of the asm output bitcast it. One example of this 8438 // is for vectors with different width / number of elements. This can 8439 // happen for register classes that can contain multiple different value 8440 // types. The preg or vreg allocated may not have the same VT as was 8441 // expected. 8442 // 8443 // This can also happen for a return value that disagrees with the register 8444 // class it is put in, eg. a double in a general-purpose register on a 8445 // 32-bit machine. 8446 if (ResultVT != V.getValueType() && 8447 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8448 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8449 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8450 V.getValueType().isInteger()) { 8451 // If a result value was tied to an input value, the computed result 8452 // may have a wider width than the expected result. Extract the 8453 // relevant portion. 8454 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8455 } 8456 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8457 ResultVTs.push_back(ResultVT); 8458 ResultValues.push_back(V); 8459 }; 8460 8461 // Deal with output operands. 8462 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8463 if (OpInfo.Type == InlineAsm::isOutput) { 8464 SDValue Val; 8465 // Skip trivial output operands. 8466 if (OpInfo.AssignedRegs.Regs.empty()) 8467 continue; 8468 8469 switch (OpInfo.ConstraintType) { 8470 case TargetLowering::C_Register: 8471 case TargetLowering::C_RegisterClass: 8472 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8473 Chain, &Flag, &Call); 8474 break; 8475 case TargetLowering::C_Immediate: 8476 case TargetLowering::C_Other: 8477 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8478 OpInfo, DAG); 8479 break; 8480 case TargetLowering::C_Memory: 8481 break; // Already handled. 8482 case TargetLowering::C_Unknown: 8483 assert(false && "Unexpected unknown constraint"); 8484 } 8485 8486 // Indirect output manifest as stores. Record output chains. 8487 if (OpInfo.isIndirect) { 8488 const Value *Ptr = OpInfo.CallOperandVal; 8489 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8490 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8491 MachinePointerInfo(Ptr)); 8492 OutChains.push_back(Store); 8493 } else { 8494 // generate CopyFromRegs to associated registers. 8495 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8496 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8497 for (const SDValue &V : Val->op_values()) 8498 handleRegAssign(V); 8499 } else 8500 handleRegAssign(Val); 8501 } 8502 } 8503 } 8504 8505 // Set results. 8506 if (!ResultValues.empty()) { 8507 assert(CurResultType == ResultTypes.end() && 8508 "Mismatch in number of ResultTypes"); 8509 assert(ResultValues.size() == ResultTypes.size() && 8510 "Mismatch in number of output operands in asm result"); 8511 8512 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8513 DAG.getVTList(ResultVTs), ResultValues); 8514 setValue(&Call, V); 8515 } 8516 8517 // Collect store chains. 8518 if (!OutChains.empty()) 8519 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8520 8521 // Only Update Root if inline assembly has a memory effect. 8522 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8523 DAG.setRoot(Chain); 8524 } 8525 8526 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8527 const Twine &Message) { 8528 LLVMContext &Ctx = *DAG.getContext(); 8529 Ctx.emitError(&Call, Message); 8530 8531 // Make sure we leave the DAG in a valid state 8532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8533 SmallVector<EVT, 1> ValueVTs; 8534 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8535 8536 if (ValueVTs.empty()) 8537 return; 8538 8539 SmallVector<SDValue, 1> Ops; 8540 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8541 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8542 8543 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8544 } 8545 8546 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8547 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8548 MVT::Other, getRoot(), 8549 getValue(I.getArgOperand(0)), 8550 DAG.getSrcValue(I.getArgOperand(0)))); 8551 } 8552 8553 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8555 const DataLayout &DL = DAG.getDataLayout(); 8556 SDValue V = DAG.getVAArg( 8557 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8558 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8559 DL.getABITypeAlignment(I.getType())); 8560 DAG.setRoot(V.getValue(1)); 8561 8562 if (I.getType()->isPointerTy()) 8563 V = DAG.getPtrExtOrTrunc( 8564 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8565 setValue(&I, V); 8566 } 8567 8568 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8569 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8570 MVT::Other, getRoot(), 8571 getValue(I.getArgOperand(0)), 8572 DAG.getSrcValue(I.getArgOperand(0)))); 8573 } 8574 8575 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8576 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8577 MVT::Other, getRoot(), 8578 getValue(I.getArgOperand(0)), 8579 getValue(I.getArgOperand(1)), 8580 DAG.getSrcValue(I.getArgOperand(0)), 8581 DAG.getSrcValue(I.getArgOperand(1)))); 8582 } 8583 8584 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8585 const Instruction &I, 8586 SDValue Op) { 8587 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8588 if (!Range) 8589 return Op; 8590 8591 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8592 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8593 return Op; 8594 8595 APInt Lo = CR.getUnsignedMin(); 8596 if (!Lo.isMinValue()) 8597 return Op; 8598 8599 APInt Hi = CR.getUnsignedMax(); 8600 unsigned Bits = std::max(Hi.getActiveBits(), 8601 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8602 8603 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8604 8605 SDLoc SL = getCurSDLoc(); 8606 8607 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8608 DAG.getValueType(SmallVT)); 8609 unsigned NumVals = Op.getNode()->getNumValues(); 8610 if (NumVals == 1) 8611 return ZExt; 8612 8613 SmallVector<SDValue, 4> Ops; 8614 8615 Ops.push_back(ZExt); 8616 for (unsigned I = 1; I != NumVals; ++I) 8617 Ops.push_back(Op.getValue(I)); 8618 8619 return DAG.getMergeValues(Ops, SL); 8620 } 8621 8622 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8623 /// the call being lowered. 8624 /// 8625 /// This is a helper for lowering intrinsics that follow a target calling 8626 /// convention or require stack pointer adjustment. Only a subset of the 8627 /// intrinsic's operands need to participate in the calling convention. 8628 void SelectionDAGBuilder::populateCallLoweringInfo( 8629 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8630 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8631 bool IsPatchPoint) { 8632 TargetLowering::ArgListTy Args; 8633 Args.reserve(NumArgs); 8634 8635 // Populate the argument list. 8636 // Attributes for args start at offset 1, after the return attribute. 8637 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8638 ArgI != ArgE; ++ArgI) { 8639 const Value *V = Call->getOperand(ArgI); 8640 8641 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8642 8643 TargetLowering::ArgListEntry Entry; 8644 Entry.Node = getValue(V); 8645 Entry.Ty = V->getType(); 8646 Entry.setAttributes(Call, ArgI); 8647 Args.push_back(Entry); 8648 } 8649 8650 CLI.setDebugLoc(getCurSDLoc()) 8651 .setChain(getRoot()) 8652 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8653 .setDiscardResult(Call->use_empty()) 8654 .setIsPatchPoint(IsPatchPoint) 8655 .setIsPreallocated( 8656 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8657 } 8658 8659 /// Add a stack map intrinsic call's live variable operands to a stackmap 8660 /// or patchpoint target node's operand list. 8661 /// 8662 /// Constants are converted to TargetConstants purely as an optimization to 8663 /// avoid constant materialization and register allocation. 8664 /// 8665 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8666 /// generate addess computation nodes, and so FinalizeISel can convert the 8667 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8668 /// address materialization and register allocation, but may also be required 8669 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8670 /// alloca in the entry block, then the runtime may assume that the alloca's 8671 /// StackMap location can be read immediately after compilation and that the 8672 /// location is valid at any point during execution (this is similar to the 8673 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8674 /// only available in a register, then the runtime would need to trap when 8675 /// execution reaches the StackMap in order to read the alloca's location. 8676 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8677 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8678 SelectionDAGBuilder &Builder) { 8679 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8680 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8681 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8682 Ops.push_back( 8683 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8684 Ops.push_back( 8685 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8686 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8687 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8688 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8689 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8690 } else 8691 Ops.push_back(OpVal); 8692 } 8693 } 8694 8695 /// Lower llvm.experimental.stackmap directly to its target opcode. 8696 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8697 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8698 // [live variables...]) 8699 8700 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8701 8702 SDValue Chain, InFlag, Callee, NullPtr; 8703 SmallVector<SDValue, 32> Ops; 8704 8705 SDLoc DL = getCurSDLoc(); 8706 Callee = getValue(CI.getCalledOperand()); 8707 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8708 8709 // The stackmap intrinsic only records the live variables (the arguments 8710 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8711 // intrinsic, this won't be lowered to a function call. This means we don't 8712 // have to worry about calling conventions and target specific lowering code. 8713 // Instead we perform the call lowering right here. 8714 // 8715 // chain, flag = CALLSEQ_START(chain, 0, 0) 8716 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8717 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8718 // 8719 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8720 InFlag = Chain.getValue(1); 8721 8722 // Add the <id> and <numBytes> constants. 8723 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8724 Ops.push_back(DAG.getTargetConstant( 8725 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8726 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8727 Ops.push_back(DAG.getTargetConstant( 8728 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8729 MVT::i32)); 8730 8731 // Push live variables for the stack map. 8732 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8733 8734 // We are not pushing any register mask info here on the operands list, 8735 // because the stackmap doesn't clobber anything. 8736 8737 // Push the chain and the glue flag. 8738 Ops.push_back(Chain); 8739 Ops.push_back(InFlag); 8740 8741 // Create the STACKMAP node. 8742 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8743 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8744 Chain = SDValue(SM, 0); 8745 InFlag = Chain.getValue(1); 8746 8747 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8748 8749 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8750 8751 // Set the root to the target-lowered call chain. 8752 DAG.setRoot(Chain); 8753 8754 // Inform the Frame Information that we have a stackmap in this function. 8755 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8756 } 8757 8758 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8759 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8760 const BasicBlock *EHPadBB) { 8761 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8762 // i32 <numBytes>, 8763 // i8* <target>, 8764 // i32 <numArgs>, 8765 // [Args...], 8766 // [live variables...]) 8767 8768 CallingConv::ID CC = CB.getCallingConv(); 8769 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8770 bool HasDef = !CB.getType()->isVoidTy(); 8771 SDLoc dl = getCurSDLoc(); 8772 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8773 8774 // Handle immediate and symbolic callees. 8775 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8776 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8777 /*isTarget=*/true); 8778 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8779 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8780 SDLoc(SymbolicCallee), 8781 SymbolicCallee->getValueType(0)); 8782 8783 // Get the real number of arguments participating in the call <numArgs> 8784 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8785 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8786 8787 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8788 // Intrinsics include all meta-operands up to but not including CC. 8789 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8790 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8791 "Not enough arguments provided to the patchpoint intrinsic"); 8792 8793 // For AnyRegCC the arguments are lowered later on manually. 8794 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8795 Type *ReturnTy = 8796 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8797 8798 TargetLowering::CallLoweringInfo CLI(DAG); 8799 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8800 ReturnTy, true); 8801 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8802 8803 SDNode *CallEnd = Result.second.getNode(); 8804 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8805 CallEnd = CallEnd->getOperand(0).getNode(); 8806 8807 /// Get a call instruction from the call sequence chain. 8808 /// Tail calls are not allowed. 8809 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8810 "Expected a callseq node."); 8811 SDNode *Call = CallEnd->getOperand(0).getNode(); 8812 bool HasGlue = Call->getGluedNode(); 8813 8814 // Replace the target specific call node with the patchable intrinsic. 8815 SmallVector<SDValue, 8> Ops; 8816 8817 // Add the <id> and <numBytes> constants. 8818 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8819 Ops.push_back(DAG.getTargetConstant( 8820 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8821 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8822 Ops.push_back(DAG.getTargetConstant( 8823 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8824 MVT::i32)); 8825 8826 // Add the callee. 8827 Ops.push_back(Callee); 8828 8829 // Adjust <numArgs> to account for any arguments that have been passed on the 8830 // stack instead. 8831 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8832 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8833 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8834 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8835 8836 // Add the calling convention 8837 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8838 8839 // Add the arguments we omitted previously. The register allocator should 8840 // place these in any free register. 8841 if (IsAnyRegCC) 8842 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8843 Ops.push_back(getValue(CB.getArgOperand(i))); 8844 8845 // Push the arguments from the call instruction up to the register mask. 8846 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8847 Ops.append(Call->op_begin() + 2, e); 8848 8849 // Push live variables for the stack map. 8850 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8851 8852 // Push the register mask info. 8853 if (HasGlue) 8854 Ops.push_back(*(Call->op_end()-2)); 8855 else 8856 Ops.push_back(*(Call->op_end()-1)); 8857 8858 // Push the chain (this is originally the first operand of the call, but 8859 // becomes now the last or second to last operand). 8860 Ops.push_back(*(Call->op_begin())); 8861 8862 // Push the glue flag (last operand). 8863 if (HasGlue) 8864 Ops.push_back(*(Call->op_end()-1)); 8865 8866 SDVTList NodeTys; 8867 if (IsAnyRegCC && HasDef) { 8868 // Create the return types based on the intrinsic definition 8869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8870 SmallVector<EVT, 3> ValueVTs; 8871 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8872 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8873 8874 // There is always a chain and a glue type at the end 8875 ValueVTs.push_back(MVT::Other); 8876 ValueVTs.push_back(MVT::Glue); 8877 NodeTys = DAG.getVTList(ValueVTs); 8878 } else 8879 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8880 8881 // Replace the target specific call node with a PATCHPOINT node. 8882 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8883 dl, NodeTys, Ops); 8884 8885 // Update the NodeMap. 8886 if (HasDef) { 8887 if (IsAnyRegCC) 8888 setValue(&CB, SDValue(MN, 0)); 8889 else 8890 setValue(&CB, Result.first); 8891 } 8892 8893 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8894 // call sequence. Furthermore the location of the chain and glue can change 8895 // when the AnyReg calling convention is used and the intrinsic returns a 8896 // value. 8897 if (IsAnyRegCC && HasDef) { 8898 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8899 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8900 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8901 } else 8902 DAG.ReplaceAllUsesWith(Call, MN); 8903 DAG.DeleteNode(Call); 8904 8905 // Inform the Frame Information that we have a patchpoint in this function. 8906 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8907 } 8908 8909 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8910 unsigned Intrinsic) { 8911 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8912 SDValue Op1 = getValue(I.getArgOperand(0)); 8913 SDValue Op2; 8914 if (I.getNumArgOperands() > 1) 8915 Op2 = getValue(I.getArgOperand(1)); 8916 SDLoc dl = getCurSDLoc(); 8917 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8918 SDValue Res; 8919 FastMathFlags FMF; 8920 if (isa<FPMathOperator>(I)) 8921 FMF = I.getFastMathFlags(); 8922 8923 switch (Intrinsic) { 8924 case Intrinsic::experimental_vector_reduce_v2_fadd: 8925 if (FMF.allowReassoc()) 8926 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8927 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8928 else 8929 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8930 break; 8931 case Intrinsic::experimental_vector_reduce_v2_fmul: 8932 if (FMF.allowReassoc()) 8933 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8934 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8935 else 8936 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8937 break; 8938 case Intrinsic::experimental_vector_reduce_add: 8939 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8940 break; 8941 case Intrinsic::experimental_vector_reduce_mul: 8942 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8943 break; 8944 case Intrinsic::experimental_vector_reduce_and: 8945 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8946 break; 8947 case Intrinsic::experimental_vector_reduce_or: 8948 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8949 break; 8950 case Intrinsic::experimental_vector_reduce_xor: 8951 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8952 break; 8953 case Intrinsic::experimental_vector_reduce_smax: 8954 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8955 break; 8956 case Intrinsic::experimental_vector_reduce_smin: 8957 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8958 break; 8959 case Intrinsic::experimental_vector_reduce_umax: 8960 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8961 break; 8962 case Intrinsic::experimental_vector_reduce_umin: 8963 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8964 break; 8965 case Intrinsic::experimental_vector_reduce_fmax: 8966 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8967 break; 8968 case Intrinsic::experimental_vector_reduce_fmin: 8969 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8970 break; 8971 default: 8972 llvm_unreachable("Unhandled vector reduce intrinsic"); 8973 } 8974 setValue(&I, Res); 8975 } 8976 8977 /// Returns an AttributeList representing the attributes applied to the return 8978 /// value of the given call. 8979 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8980 SmallVector<Attribute::AttrKind, 2> Attrs; 8981 if (CLI.RetSExt) 8982 Attrs.push_back(Attribute::SExt); 8983 if (CLI.RetZExt) 8984 Attrs.push_back(Attribute::ZExt); 8985 if (CLI.IsInReg) 8986 Attrs.push_back(Attribute::InReg); 8987 8988 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8989 Attrs); 8990 } 8991 8992 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8993 /// implementation, which just calls LowerCall. 8994 /// FIXME: When all targets are 8995 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8996 std::pair<SDValue, SDValue> 8997 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8998 // Handle the incoming return values from the call. 8999 CLI.Ins.clear(); 9000 Type *OrigRetTy = CLI.RetTy; 9001 SmallVector<EVT, 4> RetTys; 9002 SmallVector<uint64_t, 4> Offsets; 9003 auto &DL = CLI.DAG.getDataLayout(); 9004 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9005 9006 if (CLI.IsPostTypeLegalization) { 9007 // If we are lowering a libcall after legalization, split the return type. 9008 SmallVector<EVT, 4> OldRetTys; 9009 SmallVector<uint64_t, 4> OldOffsets; 9010 RetTys.swap(OldRetTys); 9011 Offsets.swap(OldOffsets); 9012 9013 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9014 EVT RetVT = OldRetTys[i]; 9015 uint64_t Offset = OldOffsets[i]; 9016 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9017 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9018 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9019 RetTys.append(NumRegs, RegisterVT); 9020 for (unsigned j = 0; j != NumRegs; ++j) 9021 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9022 } 9023 } 9024 9025 SmallVector<ISD::OutputArg, 4> Outs; 9026 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9027 9028 bool CanLowerReturn = 9029 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9030 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9031 9032 SDValue DemoteStackSlot; 9033 int DemoteStackIdx = -100; 9034 if (!CanLowerReturn) { 9035 // FIXME: equivalent assert? 9036 // assert(!CS.hasInAllocaArgument() && 9037 // "sret demotion is incompatible with inalloca"); 9038 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9039 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9040 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9041 DemoteStackIdx = 9042 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9043 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9044 DL.getAllocaAddrSpace()); 9045 9046 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9047 ArgListEntry Entry; 9048 Entry.Node = DemoteStackSlot; 9049 Entry.Ty = StackSlotPtrType; 9050 Entry.IsSExt = false; 9051 Entry.IsZExt = false; 9052 Entry.IsInReg = false; 9053 Entry.IsSRet = true; 9054 Entry.IsNest = false; 9055 Entry.IsByVal = false; 9056 Entry.IsReturned = false; 9057 Entry.IsSwiftSelf = false; 9058 Entry.IsSwiftError = false; 9059 Entry.IsCFGuardTarget = false; 9060 Entry.Alignment = Alignment; 9061 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9062 CLI.NumFixedArgs += 1; 9063 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9064 9065 // sret demotion isn't compatible with tail-calls, since the sret argument 9066 // points into the callers stack frame. 9067 CLI.IsTailCall = false; 9068 } else { 9069 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9070 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9071 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9072 ISD::ArgFlagsTy Flags; 9073 if (NeedsRegBlock) { 9074 Flags.setInConsecutiveRegs(); 9075 if (I == RetTys.size() - 1) 9076 Flags.setInConsecutiveRegsLast(); 9077 } 9078 EVT VT = RetTys[I]; 9079 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9080 CLI.CallConv, VT); 9081 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9082 CLI.CallConv, VT); 9083 for (unsigned i = 0; i != NumRegs; ++i) { 9084 ISD::InputArg MyFlags; 9085 MyFlags.Flags = Flags; 9086 MyFlags.VT = RegisterVT; 9087 MyFlags.ArgVT = VT; 9088 MyFlags.Used = CLI.IsReturnValueUsed; 9089 if (CLI.RetTy->isPointerTy()) { 9090 MyFlags.Flags.setPointer(); 9091 MyFlags.Flags.setPointerAddrSpace( 9092 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9093 } 9094 if (CLI.RetSExt) 9095 MyFlags.Flags.setSExt(); 9096 if (CLI.RetZExt) 9097 MyFlags.Flags.setZExt(); 9098 if (CLI.IsInReg) 9099 MyFlags.Flags.setInReg(); 9100 CLI.Ins.push_back(MyFlags); 9101 } 9102 } 9103 } 9104 9105 // We push in swifterror return as the last element of CLI.Ins. 9106 ArgListTy &Args = CLI.getArgs(); 9107 if (supportSwiftError()) { 9108 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9109 if (Args[i].IsSwiftError) { 9110 ISD::InputArg MyFlags; 9111 MyFlags.VT = getPointerTy(DL); 9112 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9113 MyFlags.Flags.setSwiftError(); 9114 CLI.Ins.push_back(MyFlags); 9115 } 9116 } 9117 } 9118 9119 // Handle all of the outgoing arguments. 9120 CLI.Outs.clear(); 9121 CLI.OutVals.clear(); 9122 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9123 SmallVector<EVT, 4> ValueVTs; 9124 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9125 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9126 Type *FinalType = Args[i].Ty; 9127 if (Args[i].IsByVal) 9128 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9129 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9130 FinalType, CLI.CallConv, CLI.IsVarArg); 9131 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9132 ++Value) { 9133 EVT VT = ValueVTs[Value]; 9134 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9135 SDValue Op = SDValue(Args[i].Node.getNode(), 9136 Args[i].Node.getResNo() + Value); 9137 ISD::ArgFlagsTy Flags; 9138 9139 // Certain targets (such as MIPS), may have a different ABI alignment 9140 // for a type depending on the context. Give the target a chance to 9141 // specify the alignment it wants. 9142 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9143 9144 if (Args[i].Ty->isPointerTy()) { 9145 Flags.setPointer(); 9146 Flags.setPointerAddrSpace( 9147 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9148 } 9149 if (Args[i].IsZExt) 9150 Flags.setZExt(); 9151 if (Args[i].IsSExt) 9152 Flags.setSExt(); 9153 if (Args[i].IsInReg) { 9154 // If we are using vectorcall calling convention, a structure that is 9155 // passed InReg - is surely an HVA 9156 if (CLI.CallConv == CallingConv::X86_VectorCall && 9157 isa<StructType>(FinalType)) { 9158 // The first value of a structure is marked 9159 if (0 == Value) 9160 Flags.setHvaStart(); 9161 Flags.setHva(); 9162 } 9163 // Set InReg Flag 9164 Flags.setInReg(); 9165 } 9166 if (Args[i].IsSRet) 9167 Flags.setSRet(); 9168 if (Args[i].IsSwiftSelf) 9169 Flags.setSwiftSelf(); 9170 if (Args[i].IsSwiftError) 9171 Flags.setSwiftError(); 9172 if (Args[i].IsCFGuardTarget) 9173 Flags.setCFGuardTarget(); 9174 if (Args[i].IsByVal) 9175 Flags.setByVal(); 9176 if (Args[i].IsPreallocated) { 9177 Flags.setPreallocated(); 9178 // Set the byval flag for CCAssignFn callbacks that don't know about 9179 // preallocated. This way we can know how many bytes we should've 9180 // allocated and how many bytes a callee cleanup function will pop. If 9181 // we port preallocated to more targets, we'll have to add custom 9182 // preallocated handling in the various CC lowering callbacks. 9183 Flags.setByVal(); 9184 } 9185 if (Args[i].IsInAlloca) { 9186 Flags.setInAlloca(); 9187 // Set the byval flag for CCAssignFn callbacks that don't know about 9188 // inalloca. This way we can know how many bytes we should've allocated 9189 // and how many bytes a callee cleanup function will pop. If we port 9190 // inalloca to more targets, we'll have to add custom inalloca handling 9191 // in the various CC lowering callbacks. 9192 Flags.setByVal(); 9193 } 9194 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9195 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9196 Type *ElementTy = Ty->getElementType(); 9197 9198 unsigned FrameSize = DL.getTypeAllocSize( 9199 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9200 Flags.setByValSize(FrameSize); 9201 9202 // info is not there but there are cases it cannot get right. 9203 Align FrameAlign; 9204 if (auto MA = Args[i].Alignment) 9205 FrameAlign = *MA; 9206 else 9207 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9208 Flags.setByValAlign(FrameAlign); 9209 } 9210 if (Args[i].IsNest) 9211 Flags.setNest(); 9212 if (NeedsRegBlock) 9213 Flags.setInConsecutiveRegs(); 9214 Flags.setOrigAlign(OriginalAlignment); 9215 9216 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9217 CLI.CallConv, VT); 9218 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9219 CLI.CallConv, VT); 9220 SmallVector<SDValue, 4> Parts(NumParts); 9221 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9222 9223 if (Args[i].IsSExt) 9224 ExtendKind = ISD::SIGN_EXTEND; 9225 else if (Args[i].IsZExt) 9226 ExtendKind = ISD::ZERO_EXTEND; 9227 9228 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9229 // for now. 9230 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9231 CanLowerReturn) { 9232 assert((CLI.RetTy == Args[i].Ty || 9233 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9234 CLI.RetTy->getPointerAddressSpace() == 9235 Args[i].Ty->getPointerAddressSpace())) && 9236 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9237 // Before passing 'returned' to the target lowering code, ensure that 9238 // either the register MVT and the actual EVT are the same size or that 9239 // the return value and argument are extended in the same way; in these 9240 // cases it's safe to pass the argument register value unchanged as the 9241 // return register value (although it's at the target's option whether 9242 // to do so) 9243 // TODO: allow code generation to take advantage of partially preserved 9244 // registers rather than clobbering the entire register when the 9245 // parameter extension method is not compatible with the return 9246 // extension method 9247 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9248 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9249 CLI.RetZExt == Args[i].IsZExt)) 9250 Flags.setReturned(); 9251 } 9252 9253 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9254 CLI.CallConv, ExtendKind); 9255 9256 for (unsigned j = 0; j != NumParts; ++j) { 9257 // if it isn't first piece, alignment must be 1 9258 // For scalable vectors the scalable part is currently handled 9259 // by individual targets, so we just use the known minimum size here. 9260 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9261 i < CLI.NumFixedArgs, i, 9262 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9263 if (NumParts > 1 && j == 0) 9264 MyFlags.Flags.setSplit(); 9265 else if (j != 0) { 9266 MyFlags.Flags.setOrigAlign(Align(1)); 9267 if (j == NumParts - 1) 9268 MyFlags.Flags.setSplitEnd(); 9269 } 9270 9271 CLI.Outs.push_back(MyFlags); 9272 CLI.OutVals.push_back(Parts[j]); 9273 } 9274 9275 if (NeedsRegBlock && Value == NumValues - 1) 9276 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9277 } 9278 } 9279 9280 SmallVector<SDValue, 4> InVals; 9281 CLI.Chain = LowerCall(CLI, InVals); 9282 9283 // Update CLI.InVals to use outside of this function. 9284 CLI.InVals = InVals; 9285 9286 // Verify that the target's LowerCall behaved as expected. 9287 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9288 "LowerCall didn't return a valid chain!"); 9289 assert((!CLI.IsTailCall || InVals.empty()) && 9290 "LowerCall emitted a return value for a tail call!"); 9291 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9292 "LowerCall didn't emit the correct number of values!"); 9293 9294 // For a tail call, the return value is merely live-out and there aren't 9295 // any nodes in the DAG representing it. Return a special value to 9296 // indicate that a tail call has been emitted and no more Instructions 9297 // should be processed in the current block. 9298 if (CLI.IsTailCall) { 9299 CLI.DAG.setRoot(CLI.Chain); 9300 return std::make_pair(SDValue(), SDValue()); 9301 } 9302 9303 #ifndef NDEBUG 9304 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9305 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9306 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9307 "LowerCall emitted a value with the wrong type!"); 9308 } 9309 #endif 9310 9311 SmallVector<SDValue, 4> ReturnValues; 9312 if (!CanLowerReturn) { 9313 // The instruction result is the result of loading from the 9314 // hidden sret parameter. 9315 SmallVector<EVT, 1> PVTs; 9316 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9317 9318 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9319 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9320 EVT PtrVT = PVTs[0]; 9321 9322 unsigned NumValues = RetTys.size(); 9323 ReturnValues.resize(NumValues); 9324 SmallVector<SDValue, 4> Chains(NumValues); 9325 9326 // An aggregate return value cannot wrap around the address space, so 9327 // offsets to its parts don't wrap either. 9328 SDNodeFlags Flags; 9329 Flags.setNoUnsignedWrap(true); 9330 9331 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9332 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9333 for (unsigned i = 0; i < NumValues; ++i) { 9334 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9335 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9336 PtrVT), Flags); 9337 SDValue L = CLI.DAG.getLoad( 9338 RetTys[i], CLI.DL, CLI.Chain, Add, 9339 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9340 DemoteStackIdx, Offsets[i]), 9341 HiddenSRetAlign); 9342 ReturnValues[i] = L; 9343 Chains[i] = L.getValue(1); 9344 } 9345 9346 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9347 } else { 9348 // Collect the legal value parts into potentially illegal values 9349 // that correspond to the original function's return values. 9350 Optional<ISD::NodeType> AssertOp; 9351 if (CLI.RetSExt) 9352 AssertOp = ISD::AssertSext; 9353 else if (CLI.RetZExt) 9354 AssertOp = ISD::AssertZext; 9355 unsigned CurReg = 0; 9356 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9357 EVT VT = RetTys[I]; 9358 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9359 CLI.CallConv, VT); 9360 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9361 CLI.CallConv, VT); 9362 9363 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9364 NumRegs, RegisterVT, VT, nullptr, 9365 CLI.CallConv, AssertOp)); 9366 CurReg += NumRegs; 9367 } 9368 9369 // For a function returning void, there is no return value. We can't create 9370 // such a node, so we just return a null return value in that case. In 9371 // that case, nothing will actually look at the value. 9372 if (ReturnValues.empty()) 9373 return std::make_pair(SDValue(), CLI.Chain); 9374 } 9375 9376 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9377 CLI.DAG.getVTList(RetTys), ReturnValues); 9378 return std::make_pair(Res, CLI.Chain); 9379 } 9380 9381 void TargetLowering::LowerOperationWrapper(SDNode *N, 9382 SmallVectorImpl<SDValue> &Results, 9383 SelectionDAG &DAG) const { 9384 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9385 Results.push_back(Res); 9386 } 9387 9388 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9389 llvm_unreachable("LowerOperation not implemented for this target!"); 9390 } 9391 9392 void 9393 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9394 SDValue Op = getNonRegisterValue(V); 9395 assert((Op.getOpcode() != ISD::CopyFromReg || 9396 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9397 "Copy from a reg to the same reg!"); 9398 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9399 9400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9401 // If this is an InlineAsm we have to match the registers required, not the 9402 // notional registers required by the type. 9403 9404 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9405 None); // This is not an ABI copy. 9406 SDValue Chain = DAG.getEntryNode(); 9407 9408 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9409 FuncInfo.PreferredExtendType.end()) 9410 ? ISD::ANY_EXTEND 9411 : FuncInfo.PreferredExtendType[V]; 9412 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9413 PendingExports.push_back(Chain); 9414 } 9415 9416 #include "llvm/CodeGen/SelectionDAGISel.h" 9417 9418 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9419 /// entry block, return true. This includes arguments used by switches, since 9420 /// the switch may expand into multiple basic blocks. 9421 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9422 // With FastISel active, we may be splitting blocks, so force creation 9423 // of virtual registers for all non-dead arguments. 9424 if (FastISel) 9425 return A->use_empty(); 9426 9427 const BasicBlock &Entry = A->getParent()->front(); 9428 for (const User *U : A->users()) 9429 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9430 return false; // Use not in entry block. 9431 9432 return true; 9433 } 9434 9435 using ArgCopyElisionMapTy = 9436 DenseMap<const Argument *, 9437 std::pair<const AllocaInst *, const StoreInst *>>; 9438 9439 /// Scan the entry block of the function in FuncInfo for arguments that look 9440 /// like copies into a local alloca. Record any copied arguments in 9441 /// ArgCopyElisionCandidates. 9442 static void 9443 findArgumentCopyElisionCandidates(const DataLayout &DL, 9444 FunctionLoweringInfo *FuncInfo, 9445 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9446 // Record the state of every static alloca used in the entry block. Argument 9447 // allocas are all used in the entry block, so we need approximately as many 9448 // entries as we have arguments. 9449 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9450 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9451 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9452 StaticAllocas.reserve(NumArgs * 2); 9453 9454 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9455 if (!V) 9456 return nullptr; 9457 V = V->stripPointerCasts(); 9458 const auto *AI = dyn_cast<AllocaInst>(V); 9459 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9460 return nullptr; 9461 auto Iter = StaticAllocas.insert({AI, Unknown}); 9462 return &Iter.first->second; 9463 }; 9464 9465 // Look for stores of arguments to static allocas. Look through bitcasts and 9466 // GEPs to handle type coercions, as long as the alloca is fully initialized 9467 // by the store. Any non-store use of an alloca escapes it and any subsequent 9468 // unanalyzed store might write it. 9469 // FIXME: Handle structs initialized with multiple stores. 9470 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9471 // Look for stores, and handle non-store uses conservatively. 9472 const auto *SI = dyn_cast<StoreInst>(&I); 9473 if (!SI) { 9474 // We will look through cast uses, so ignore them completely. 9475 if (I.isCast()) 9476 continue; 9477 // Ignore debug info intrinsics, they don't escape or store to allocas. 9478 if (isa<DbgInfoIntrinsic>(I)) 9479 continue; 9480 // This is an unknown instruction. Assume it escapes or writes to all 9481 // static alloca operands. 9482 for (const Use &U : I.operands()) { 9483 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9484 *Info = StaticAllocaInfo::Clobbered; 9485 } 9486 continue; 9487 } 9488 9489 // If the stored value is a static alloca, mark it as escaped. 9490 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9491 *Info = StaticAllocaInfo::Clobbered; 9492 9493 // Check if the destination is a static alloca. 9494 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9495 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9496 if (!Info) 9497 continue; 9498 const AllocaInst *AI = cast<AllocaInst>(Dst); 9499 9500 // Skip allocas that have been initialized or clobbered. 9501 if (*Info != StaticAllocaInfo::Unknown) 9502 continue; 9503 9504 // Check if the stored value is an argument, and that this store fully 9505 // initializes the alloca. Don't elide copies from the same argument twice. 9506 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9507 const auto *Arg = dyn_cast<Argument>(Val); 9508 if (!Arg || Arg->hasPassPointeeByValueAttr() || 9509 Arg->getType()->isEmptyTy() || 9510 DL.getTypeStoreSize(Arg->getType()) != 9511 DL.getTypeAllocSize(AI->getAllocatedType()) || 9512 ArgCopyElisionCandidates.count(Arg)) { 9513 *Info = StaticAllocaInfo::Clobbered; 9514 continue; 9515 } 9516 9517 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9518 << '\n'); 9519 9520 // Mark this alloca and store for argument copy elision. 9521 *Info = StaticAllocaInfo::Elidable; 9522 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9523 9524 // Stop scanning if we've seen all arguments. This will happen early in -O0 9525 // builds, which is useful, because -O0 builds have large entry blocks and 9526 // many allocas. 9527 if (ArgCopyElisionCandidates.size() == NumArgs) 9528 break; 9529 } 9530 } 9531 9532 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9533 /// ArgVal is a load from a suitable fixed stack object. 9534 static void tryToElideArgumentCopy( 9535 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9536 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9537 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9538 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9539 SDValue ArgVal, bool &ArgHasUses) { 9540 // Check if this is a load from a fixed stack object. 9541 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9542 if (!LNode) 9543 return; 9544 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9545 if (!FINode) 9546 return; 9547 9548 // Check that the fixed stack object is the right size and alignment. 9549 // Look at the alignment that the user wrote on the alloca instead of looking 9550 // at the stack object. 9551 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9552 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9553 const AllocaInst *AI = ArgCopyIter->second.first; 9554 int FixedIndex = FINode->getIndex(); 9555 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9556 int OldIndex = AllocaIndex; 9557 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9558 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9559 LLVM_DEBUG( 9560 dbgs() << " argument copy elision failed due to bad fixed stack " 9561 "object size\n"); 9562 return; 9563 } 9564 Align RequiredAlignment = AI->getAlign(); 9565 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9566 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9567 "greater than stack argument alignment (" 9568 << DebugStr(RequiredAlignment) << " vs " 9569 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9570 return; 9571 } 9572 9573 // Perform the elision. Delete the old stack object and replace its only use 9574 // in the variable info map. Mark the stack object as mutable. 9575 LLVM_DEBUG({ 9576 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9577 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9578 << '\n'; 9579 }); 9580 MFI.RemoveStackObject(OldIndex); 9581 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9582 AllocaIndex = FixedIndex; 9583 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9584 Chains.push_back(ArgVal.getValue(1)); 9585 9586 // Avoid emitting code for the store implementing the copy. 9587 const StoreInst *SI = ArgCopyIter->second.second; 9588 ElidedArgCopyInstrs.insert(SI); 9589 9590 // Check for uses of the argument again so that we can avoid exporting ArgVal 9591 // if it is't used by anything other than the store. 9592 for (const Value *U : Arg.users()) { 9593 if (U != SI) { 9594 ArgHasUses = true; 9595 break; 9596 } 9597 } 9598 } 9599 9600 void SelectionDAGISel::LowerArguments(const Function &F) { 9601 SelectionDAG &DAG = SDB->DAG; 9602 SDLoc dl = SDB->getCurSDLoc(); 9603 const DataLayout &DL = DAG.getDataLayout(); 9604 SmallVector<ISD::InputArg, 16> Ins; 9605 9606 if (!FuncInfo->CanLowerReturn) { 9607 // Put in an sret pointer parameter before all the other parameters. 9608 SmallVector<EVT, 1> ValueVTs; 9609 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9610 F.getReturnType()->getPointerTo( 9611 DAG.getDataLayout().getAllocaAddrSpace()), 9612 ValueVTs); 9613 9614 // NOTE: Assuming that a pointer will never break down to more than one VT 9615 // or one register. 9616 ISD::ArgFlagsTy Flags; 9617 Flags.setSRet(); 9618 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9619 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9620 ISD::InputArg::NoArgIndex, 0); 9621 Ins.push_back(RetArg); 9622 } 9623 9624 // Look for stores of arguments to static allocas. Mark such arguments with a 9625 // flag to ask the target to give us the memory location of that argument if 9626 // available. 9627 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9628 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9629 ArgCopyElisionCandidates); 9630 9631 // Set up the incoming argument description vector. 9632 for (const Argument &Arg : F.args()) { 9633 unsigned ArgNo = Arg.getArgNo(); 9634 SmallVector<EVT, 4> ValueVTs; 9635 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9636 bool isArgValueUsed = !Arg.use_empty(); 9637 unsigned PartBase = 0; 9638 Type *FinalType = Arg.getType(); 9639 if (Arg.hasAttribute(Attribute::ByVal)) 9640 FinalType = Arg.getParamByValType(); 9641 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9642 FinalType, F.getCallingConv(), F.isVarArg()); 9643 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9644 Value != NumValues; ++Value) { 9645 EVT VT = ValueVTs[Value]; 9646 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9647 ISD::ArgFlagsTy Flags; 9648 9649 // Certain targets (such as MIPS), may have a different ABI alignment 9650 // for a type depending on the context. Give the target a chance to 9651 // specify the alignment it wants. 9652 const Align OriginalAlignment( 9653 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9654 9655 if (Arg.getType()->isPointerTy()) { 9656 Flags.setPointer(); 9657 Flags.setPointerAddrSpace( 9658 cast<PointerType>(Arg.getType())->getAddressSpace()); 9659 } 9660 if (Arg.hasAttribute(Attribute::ZExt)) 9661 Flags.setZExt(); 9662 if (Arg.hasAttribute(Attribute::SExt)) 9663 Flags.setSExt(); 9664 if (Arg.hasAttribute(Attribute::InReg)) { 9665 // If we are using vectorcall calling convention, a structure that is 9666 // passed InReg - is surely an HVA 9667 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9668 isa<StructType>(Arg.getType())) { 9669 // The first value of a structure is marked 9670 if (0 == Value) 9671 Flags.setHvaStart(); 9672 Flags.setHva(); 9673 } 9674 // Set InReg Flag 9675 Flags.setInReg(); 9676 } 9677 if (Arg.hasAttribute(Attribute::StructRet)) 9678 Flags.setSRet(); 9679 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9680 Flags.setSwiftSelf(); 9681 if (Arg.hasAttribute(Attribute::SwiftError)) 9682 Flags.setSwiftError(); 9683 if (Arg.hasAttribute(Attribute::ByVal)) 9684 Flags.setByVal(); 9685 if (Arg.hasAttribute(Attribute::InAlloca)) { 9686 Flags.setInAlloca(); 9687 // Set the byval flag for CCAssignFn callbacks that don't know about 9688 // inalloca. This way we can know how many bytes we should've allocated 9689 // and how many bytes a callee cleanup function will pop. If we port 9690 // inalloca to more targets, we'll have to add custom inalloca handling 9691 // in the various CC lowering callbacks. 9692 Flags.setByVal(); 9693 } 9694 if (Arg.hasAttribute(Attribute::Preallocated)) { 9695 Flags.setPreallocated(); 9696 // Set the byval flag for CCAssignFn callbacks that don't know about 9697 // preallocated. This way we can know how many bytes we should've 9698 // allocated and how many bytes a callee cleanup function will pop. If 9699 // we port preallocated to more targets, we'll have to add custom 9700 // preallocated handling in the various CC lowering callbacks. 9701 Flags.setByVal(); 9702 } 9703 if (F.getCallingConv() == CallingConv::X86_INTR) { 9704 // IA Interrupt passes frame (1st parameter) by value in the stack. 9705 if (ArgNo == 0) 9706 Flags.setByVal(); 9707 } 9708 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 9709 Type *ElementTy = Arg.getParamByValType(); 9710 9711 // For ByVal, size and alignment should be passed from FE. BE will 9712 // guess if this info is not there but there are cases it cannot get 9713 // right. 9714 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9715 Flags.setByValSize(FrameSize); 9716 9717 unsigned FrameAlign; 9718 if (Arg.getParamAlignment()) 9719 FrameAlign = Arg.getParamAlignment(); 9720 else 9721 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9722 Flags.setByValAlign(Align(FrameAlign)); 9723 } 9724 if (Arg.hasAttribute(Attribute::Nest)) 9725 Flags.setNest(); 9726 if (NeedsRegBlock) 9727 Flags.setInConsecutiveRegs(); 9728 Flags.setOrigAlign(OriginalAlignment); 9729 if (ArgCopyElisionCandidates.count(&Arg)) 9730 Flags.setCopyElisionCandidate(); 9731 if (Arg.hasAttribute(Attribute::Returned)) 9732 Flags.setReturned(); 9733 9734 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9735 *CurDAG->getContext(), F.getCallingConv(), VT); 9736 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9737 *CurDAG->getContext(), F.getCallingConv(), VT); 9738 for (unsigned i = 0; i != NumRegs; ++i) { 9739 // For scalable vectors, use the minimum size; individual targets 9740 // are responsible for handling scalable vector arguments and 9741 // return values. 9742 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9743 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9744 if (NumRegs > 1 && i == 0) 9745 MyFlags.Flags.setSplit(); 9746 // if it isn't first piece, alignment must be 1 9747 else if (i > 0) { 9748 MyFlags.Flags.setOrigAlign(Align(1)); 9749 if (i == NumRegs - 1) 9750 MyFlags.Flags.setSplitEnd(); 9751 } 9752 Ins.push_back(MyFlags); 9753 } 9754 if (NeedsRegBlock && Value == NumValues - 1) 9755 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9756 PartBase += VT.getStoreSize().getKnownMinSize(); 9757 } 9758 } 9759 9760 // Call the target to set up the argument values. 9761 SmallVector<SDValue, 8> InVals; 9762 SDValue NewRoot = TLI->LowerFormalArguments( 9763 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9764 9765 // Verify that the target's LowerFormalArguments behaved as expected. 9766 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9767 "LowerFormalArguments didn't return a valid chain!"); 9768 assert(InVals.size() == Ins.size() && 9769 "LowerFormalArguments didn't emit the correct number of values!"); 9770 LLVM_DEBUG({ 9771 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9772 assert(InVals[i].getNode() && 9773 "LowerFormalArguments emitted a null value!"); 9774 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9775 "LowerFormalArguments emitted a value with the wrong type!"); 9776 } 9777 }); 9778 9779 // Update the DAG with the new chain value resulting from argument lowering. 9780 DAG.setRoot(NewRoot); 9781 9782 // Set up the argument values. 9783 unsigned i = 0; 9784 if (!FuncInfo->CanLowerReturn) { 9785 // Create a virtual register for the sret pointer, and put in a copy 9786 // from the sret argument into it. 9787 SmallVector<EVT, 1> ValueVTs; 9788 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9789 F.getReturnType()->getPointerTo( 9790 DAG.getDataLayout().getAllocaAddrSpace()), 9791 ValueVTs); 9792 MVT VT = ValueVTs[0].getSimpleVT(); 9793 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9794 Optional<ISD::NodeType> AssertOp = None; 9795 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9796 nullptr, F.getCallingConv(), AssertOp); 9797 9798 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9799 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9800 Register SRetReg = 9801 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9802 FuncInfo->DemoteRegister = SRetReg; 9803 NewRoot = 9804 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9805 DAG.setRoot(NewRoot); 9806 9807 // i indexes lowered arguments. Bump it past the hidden sret argument. 9808 ++i; 9809 } 9810 9811 SmallVector<SDValue, 4> Chains; 9812 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9813 for (const Argument &Arg : F.args()) { 9814 SmallVector<SDValue, 4> ArgValues; 9815 SmallVector<EVT, 4> ValueVTs; 9816 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9817 unsigned NumValues = ValueVTs.size(); 9818 if (NumValues == 0) 9819 continue; 9820 9821 bool ArgHasUses = !Arg.use_empty(); 9822 9823 // Elide the copying store if the target loaded this argument from a 9824 // suitable fixed stack object. 9825 if (Ins[i].Flags.isCopyElisionCandidate()) { 9826 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9827 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9828 InVals[i], ArgHasUses); 9829 } 9830 9831 // If this argument is unused then remember its value. It is used to generate 9832 // debugging information. 9833 bool isSwiftErrorArg = 9834 TLI->supportSwiftError() && 9835 Arg.hasAttribute(Attribute::SwiftError); 9836 if (!ArgHasUses && !isSwiftErrorArg) { 9837 SDB->setUnusedArgValue(&Arg, InVals[i]); 9838 9839 // Also remember any frame index for use in FastISel. 9840 if (FrameIndexSDNode *FI = 9841 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9842 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9843 } 9844 9845 for (unsigned Val = 0; Val != NumValues; ++Val) { 9846 EVT VT = ValueVTs[Val]; 9847 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9848 F.getCallingConv(), VT); 9849 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9850 *CurDAG->getContext(), F.getCallingConv(), VT); 9851 9852 // Even an apparent 'unused' swifterror argument needs to be returned. So 9853 // we do generate a copy for it that can be used on return from the 9854 // function. 9855 if (ArgHasUses || isSwiftErrorArg) { 9856 Optional<ISD::NodeType> AssertOp; 9857 if (Arg.hasAttribute(Attribute::SExt)) 9858 AssertOp = ISD::AssertSext; 9859 else if (Arg.hasAttribute(Attribute::ZExt)) 9860 AssertOp = ISD::AssertZext; 9861 9862 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9863 PartVT, VT, nullptr, 9864 F.getCallingConv(), AssertOp)); 9865 } 9866 9867 i += NumParts; 9868 } 9869 9870 // We don't need to do anything else for unused arguments. 9871 if (ArgValues.empty()) 9872 continue; 9873 9874 // Note down frame index. 9875 if (FrameIndexSDNode *FI = 9876 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9877 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9878 9879 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9880 SDB->getCurSDLoc()); 9881 9882 SDB->setValue(&Arg, Res); 9883 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9884 // We want to associate the argument with the frame index, among 9885 // involved operands, that correspond to the lowest address. The 9886 // getCopyFromParts function, called earlier, is swapping the order of 9887 // the operands to BUILD_PAIR depending on endianness. The result of 9888 // that swapping is that the least significant bits of the argument will 9889 // be in the first operand of the BUILD_PAIR node, and the most 9890 // significant bits will be in the second operand. 9891 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9892 if (LoadSDNode *LNode = 9893 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9894 if (FrameIndexSDNode *FI = 9895 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9896 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9897 } 9898 9899 // Analyses past this point are naive and don't expect an assertion. 9900 if (Res.getOpcode() == ISD::AssertZext) 9901 Res = Res.getOperand(0); 9902 9903 // Update the SwiftErrorVRegDefMap. 9904 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9905 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9906 if (Register::isVirtualRegister(Reg)) 9907 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9908 Reg); 9909 } 9910 9911 // If this argument is live outside of the entry block, insert a copy from 9912 // wherever we got it to the vreg that other BB's will reference it as. 9913 if (Res.getOpcode() == ISD::CopyFromReg) { 9914 // If we can, though, try to skip creating an unnecessary vreg. 9915 // FIXME: This isn't very clean... it would be nice to make this more 9916 // general. 9917 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9918 if (Register::isVirtualRegister(Reg)) { 9919 FuncInfo->ValueMap[&Arg] = Reg; 9920 continue; 9921 } 9922 } 9923 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9924 FuncInfo->InitializeRegForValue(&Arg); 9925 SDB->CopyToExportRegsIfNeeded(&Arg); 9926 } 9927 } 9928 9929 if (!Chains.empty()) { 9930 Chains.push_back(NewRoot); 9931 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9932 } 9933 9934 DAG.setRoot(NewRoot); 9935 9936 assert(i == InVals.size() && "Argument register count mismatch!"); 9937 9938 // If any argument copy elisions occurred and we have debug info, update the 9939 // stale frame indices used in the dbg.declare variable info table. 9940 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9941 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9942 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9943 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9944 if (I != ArgCopyElisionFrameIndexMap.end()) 9945 VI.Slot = I->second; 9946 } 9947 } 9948 9949 // Finally, if the target has anything special to do, allow it to do so. 9950 emitFunctionEntryCode(); 9951 } 9952 9953 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9954 /// ensure constants are generated when needed. Remember the virtual registers 9955 /// that need to be added to the Machine PHI nodes as input. We cannot just 9956 /// directly add them, because expansion might result in multiple MBB's for one 9957 /// BB. As such, the start of the BB might correspond to a different MBB than 9958 /// the end. 9959 void 9960 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9961 const Instruction *TI = LLVMBB->getTerminator(); 9962 9963 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9964 9965 // Check PHI nodes in successors that expect a value to be available from this 9966 // block. 9967 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9968 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9969 if (!isa<PHINode>(SuccBB->begin())) continue; 9970 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9971 9972 // If this terminator has multiple identical successors (common for 9973 // switches), only handle each succ once. 9974 if (!SuccsHandled.insert(SuccMBB).second) 9975 continue; 9976 9977 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9978 9979 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9980 // nodes and Machine PHI nodes, but the incoming operands have not been 9981 // emitted yet. 9982 for (const PHINode &PN : SuccBB->phis()) { 9983 // Ignore dead phi's. 9984 if (PN.use_empty()) 9985 continue; 9986 9987 // Skip empty types 9988 if (PN.getType()->isEmptyTy()) 9989 continue; 9990 9991 unsigned Reg; 9992 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9993 9994 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9995 unsigned &RegOut = ConstantsOut[C]; 9996 if (RegOut == 0) { 9997 RegOut = FuncInfo.CreateRegs(C); 9998 CopyValueToVirtualRegister(C, RegOut); 9999 } 10000 Reg = RegOut; 10001 } else { 10002 DenseMap<const Value *, Register>::iterator I = 10003 FuncInfo.ValueMap.find(PHIOp); 10004 if (I != FuncInfo.ValueMap.end()) 10005 Reg = I->second; 10006 else { 10007 assert(isa<AllocaInst>(PHIOp) && 10008 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10009 "Didn't codegen value into a register!??"); 10010 Reg = FuncInfo.CreateRegs(PHIOp); 10011 CopyValueToVirtualRegister(PHIOp, Reg); 10012 } 10013 } 10014 10015 // Remember that this register needs to added to the machine PHI node as 10016 // the input for this MBB. 10017 SmallVector<EVT, 4> ValueVTs; 10018 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10019 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10020 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10021 EVT VT = ValueVTs[vti]; 10022 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10023 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10024 FuncInfo.PHINodesToUpdate.push_back( 10025 std::make_pair(&*MBBI++, Reg + i)); 10026 Reg += NumRegisters; 10027 } 10028 } 10029 } 10030 10031 ConstantsOut.clear(); 10032 } 10033 10034 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10035 /// is 0. 10036 MachineBasicBlock * 10037 SelectionDAGBuilder::StackProtectorDescriptor:: 10038 AddSuccessorMBB(const BasicBlock *BB, 10039 MachineBasicBlock *ParentMBB, 10040 bool IsLikely, 10041 MachineBasicBlock *SuccMBB) { 10042 // If SuccBB has not been created yet, create it. 10043 if (!SuccMBB) { 10044 MachineFunction *MF = ParentMBB->getParent(); 10045 MachineFunction::iterator BBI(ParentMBB); 10046 SuccMBB = MF->CreateMachineBasicBlock(BB); 10047 MF->insert(++BBI, SuccMBB); 10048 } 10049 // Add it as a successor of ParentMBB. 10050 ParentMBB->addSuccessor( 10051 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10052 return SuccMBB; 10053 } 10054 10055 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10056 MachineFunction::iterator I(MBB); 10057 if (++I == FuncInfo.MF->end()) 10058 return nullptr; 10059 return &*I; 10060 } 10061 10062 /// During lowering new call nodes can be created (such as memset, etc.). 10063 /// Those will become new roots of the current DAG, but complications arise 10064 /// when they are tail calls. In such cases, the call lowering will update 10065 /// the root, but the builder still needs to know that a tail call has been 10066 /// lowered in order to avoid generating an additional return. 10067 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10068 // If the node is null, we do have a tail call. 10069 if (MaybeTC.getNode() != nullptr) 10070 DAG.setRoot(MaybeTC); 10071 else 10072 HasTailCall = true; 10073 } 10074 10075 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10076 MachineBasicBlock *SwitchMBB, 10077 MachineBasicBlock *DefaultMBB) { 10078 MachineFunction *CurMF = FuncInfo.MF; 10079 MachineBasicBlock *NextMBB = nullptr; 10080 MachineFunction::iterator BBI(W.MBB); 10081 if (++BBI != FuncInfo.MF->end()) 10082 NextMBB = &*BBI; 10083 10084 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10085 10086 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10087 10088 if (Size == 2 && W.MBB == SwitchMBB) { 10089 // If any two of the cases has the same destination, and if one value 10090 // is the same as the other, but has one bit unset that the other has set, 10091 // use bit manipulation to do two compares at once. For example: 10092 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10093 // TODO: This could be extended to merge any 2 cases in switches with 3 10094 // cases. 10095 // TODO: Handle cases where W.CaseBB != SwitchBB. 10096 CaseCluster &Small = *W.FirstCluster; 10097 CaseCluster &Big = *W.LastCluster; 10098 10099 if (Small.Low == Small.High && Big.Low == Big.High && 10100 Small.MBB == Big.MBB) { 10101 const APInt &SmallValue = Small.Low->getValue(); 10102 const APInt &BigValue = Big.Low->getValue(); 10103 10104 // Check that there is only one bit different. 10105 APInt CommonBit = BigValue ^ SmallValue; 10106 if (CommonBit.isPowerOf2()) { 10107 SDValue CondLHS = getValue(Cond); 10108 EVT VT = CondLHS.getValueType(); 10109 SDLoc DL = getCurSDLoc(); 10110 10111 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10112 DAG.getConstant(CommonBit, DL, VT)); 10113 SDValue Cond = DAG.getSetCC( 10114 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10115 ISD::SETEQ); 10116 10117 // Update successor info. 10118 // Both Small and Big will jump to Small.BB, so we sum up the 10119 // probabilities. 10120 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10121 if (BPI) 10122 addSuccessorWithProb( 10123 SwitchMBB, DefaultMBB, 10124 // The default destination is the first successor in IR. 10125 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10126 else 10127 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10128 10129 // Insert the true branch. 10130 SDValue BrCond = 10131 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10132 DAG.getBasicBlock(Small.MBB)); 10133 // Insert the false branch. 10134 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10135 DAG.getBasicBlock(DefaultMBB)); 10136 10137 DAG.setRoot(BrCond); 10138 return; 10139 } 10140 } 10141 } 10142 10143 if (TM.getOptLevel() != CodeGenOpt::None) { 10144 // Here, we order cases by probability so the most likely case will be 10145 // checked first. However, two clusters can have the same probability in 10146 // which case their relative ordering is non-deterministic. So we use Low 10147 // as a tie-breaker as clusters are guaranteed to never overlap. 10148 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10149 [](const CaseCluster &a, const CaseCluster &b) { 10150 return a.Prob != b.Prob ? 10151 a.Prob > b.Prob : 10152 a.Low->getValue().slt(b.Low->getValue()); 10153 }); 10154 10155 // Rearrange the case blocks so that the last one falls through if possible 10156 // without changing the order of probabilities. 10157 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10158 --I; 10159 if (I->Prob > W.LastCluster->Prob) 10160 break; 10161 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10162 std::swap(*I, *W.LastCluster); 10163 break; 10164 } 10165 } 10166 } 10167 10168 // Compute total probability. 10169 BranchProbability DefaultProb = W.DefaultProb; 10170 BranchProbability UnhandledProbs = DefaultProb; 10171 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10172 UnhandledProbs += I->Prob; 10173 10174 MachineBasicBlock *CurMBB = W.MBB; 10175 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10176 bool FallthroughUnreachable = false; 10177 MachineBasicBlock *Fallthrough; 10178 if (I == W.LastCluster) { 10179 // For the last cluster, fall through to the default destination. 10180 Fallthrough = DefaultMBB; 10181 FallthroughUnreachable = isa<UnreachableInst>( 10182 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10183 } else { 10184 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10185 CurMF->insert(BBI, Fallthrough); 10186 // Put Cond in a virtual register to make it available from the new blocks. 10187 ExportFromCurrentBlock(Cond); 10188 } 10189 UnhandledProbs -= I->Prob; 10190 10191 switch (I->Kind) { 10192 case CC_JumpTable: { 10193 // FIXME: Optimize away range check based on pivot comparisons. 10194 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10195 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10196 10197 // The jump block hasn't been inserted yet; insert it here. 10198 MachineBasicBlock *JumpMBB = JT->MBB; 10199 CurMF->insert(BBI, JumpMBB); 10200 10201 auto JumpProb = I->Prob; 10202 auto FallthroughProb = UnhandledProbs; 10203 10204 // If the default statement is a target of the jump table, we evenly 10205 // distribute the default probability to successors of CurMBB. Also 10206 // update the probability on the edge from JumpMBB to Fallthrough. 10207 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10208 SE = JumpMBB->succ_end(); 10209 SI != SE; ++SI) { 10210 if (*SI == DefaultMBB) { 10211 JumpProb += DefaultProb / 2; 10212 FallthroughProb -= DefaultProb / 2; 10213 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10214 JumpMBB->normalizeSuccProbs(); 10215 break; 10216 } 10217 } 10218 10219 if (FallthroughUnreachable) { 10220 // Skip the range check if the fallthrough block is unreachable. 10221 JTH->OmitRangeCheck = true; 10222 } 10223 10224 if (!JTH->OmitRangeCheck) 10225 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10226 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10227 CurMBB->normalizeSuccProbs(); 10228 10229 // The jump table header will be inserted in our current block, do the 10230 // range check, and fall through to our fallthrough block. 10231 JTH->HeaderBB = CurMBB; 10232 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10233 10234 // If we're in the right place, emit the jump table header right now. 10235 if (CurMBB == SwitchMBB) { 10236 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10237 JTH->Emitted = true; 10238 } 10239 break; 10240 } 10241 case CC_BitTests: { 10242 // FIXME: Optimize away range check based on pivot comparisons. 10243 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10244 10245 // The bit test blocks haven't been inserted yet; insert them here. 10246 for (BitTestCase &BTC : BTB->Cases) 10247 CurMF->insert(BBI, BTC.ThisBB); 10248 10249 // Fill in fields of the BitTestBlock. 10250 BTB->Parent = CurMBB; 10251 BTB->Default = Fallthrough; 10252 10253 BTB->DefaultProb = UnhandledProbs; 10254 // If the cases in bit test don't form a contiguous range, we evenly 10255 // distribute the probability on the edge to Fallthrough to two 10256 // successors of CurMBB. 10257 if (!BTB->ContiguousRange) { 10258 BTB->Prob += DefaultProb / 2; 10259 BTB->DefaultProb -= DefaultProb / 2; 10260 } 10261 10262 if (FallthroughUnreachable) { 10263 // Skip the range check if the fallthrough block is unreachable. 10264 BTB->OmitRangeCheck = true; 10265 } 10266 10267 // If we're in the right place, emit the bit test header right now. 10268 if (CurMBB == SwitchMBB) { 10269 visitBitTestHeader(*BTB, SwitchMBB); 10270 BTB->Emitted = true; 10271 } 10272 break; 10273 } 10274 case CC_Range: { 10275 const Value *RHS, *LHS, *MHS; 10276 ISD::CondCode CC; 10277 if (I->Low == I->High) { 10278 // Check Cond == I->Low. 10279 CC = ISD::SETEQ; 10280 LHS = Cond; 10281 RHS=I->Low; 10282 MHS = nullptr; 10283 } else { 10284 // Check I->Low <= Cond <= I->High. 10285 CC = ISD::SETLE; 10286 LHS = I->Low; 10287 MHS = Cond; 10288 RHS = I->High; 10289 } 10290 10291 // If Fallthrough is unreachable, fold away the comparison. 10292 if (FallthroughUnreachable) 10293 CC = ISD::SETTRUE; 10294 10295 // The false probability is the sum of all unhandled cases. 10296 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10297 getCurSDLoc(), I->Prob, UnhandledProbs); 10298 10299 if (CurMBB == SwitchMBB) 10300 visitSwitchCase(CB, SwitchMBB); 10301 else 10302 SL->SwitchCases.push_back(CB); 10303 10304 break; 10305 } 10306 } 10307 CurMBB = Fallthrough; 10308 } 10309 } 10310 10311 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10312 CaseClusterIt First, 10313 CaseClusterIt Last) { 10314 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10315 if (X.Prob != CC.Prob) 10316 return X.Prob > CC.Prob; 10317 10318 // Ties are broken by comparing the case value. 10319 return X.Low->getValue().slt(CC.Low->getValue()); 10320 }); 10321 } 10322 10323 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10324 const SwitchWorkListItem &W, 10325 Value *Cond, 10326 MachineBasicBlock *SwitchMBB) { 10327 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10328 "Clusters not sorted?"); 10329 10330 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10331 10332 // Balance the tree based on branch probabilities to create a near-optimal (in 10333 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10334 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10335 CaseClusterIt LastLeft = W.FirstCluster; 10336 CaseClusterIt FirstRight = W.LastCluster; 10337 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10338 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10339 10340 // Move LastLeft and FirstRight towards each other from opposite directions to 10341 // find a partitioning of the clusters which balances the probability on both 10342 // sides. If LeftProb and RightProb are equal, alternate which side is 10343 // taken to ensure 0-probability nodes are distributed evenly. 10344 unsigned I = 0; 10345 while (LastLeft + 1 < FirstRight) { 10346 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10347 LeftProb += (++LastLeft)->Prob; 10348 else 10349 RightProb += (--FirstRight)->Prob; 10350 I++; 10351 } 10352 10353 while (true) { 10354 // Our binary search tree differs from a typical BST in that ours can have up 10355 // to three values in each leaf. The pivot selection above doesn't take that 10356 // into account, which means the tree might require more nodes and be less 10357 // efficient. We compensate for this here. 10358 10359 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10360 unsigned NumRight = W.LastCluster - FirstRight + 1; 10361 10362 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10363 // If one side has less than 3 clusters, and the other has more than 3, 10364 // consider taking a cluster from the other side. 10365 10366 if (NumLeft < NumRight) { 10367 // Consider moving the first cluster on the right to the left side. 10368 CaseCluster &CC = *FirstRight; 10369 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10370 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10371 if (LeftSideRank <= RightSideRank) { 10372 // Moving the cluster to the left does not demote it. 10373 ++LastLeft; 10374 ++FirstRight; 10375 continue; 10376 } 10377 } else { 10378 assert(NumRight < NumLeft); 10379 // Consider moving the last element on the left to the right side. 10380 CaseCluster &CC = *LastLeft; 10381 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10382 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10383 if (RightSideRank <= LeftSideRank) { 10384 // Moving the cluster to the right does not demot it. 10385 --LastLeft; 10386 --FirstRight; 10387 continue; 10388 } 10389 } 10390 } 10391 break; 10392 } 10393 10394 assert(LastLeft + 1 == FirstRight); 10395 assert(LastLeft >= W.FirstCluster); 10396 assert(FirstRight <= W.LastCluster); 10397 10398 // Use the first element on the right as pivot since we will make less-than 10399 // comparisons against it. 10400 CaseClusterIt PivotCluster = FirstRight; 10401 assert(PivotCluster > W.FirstCluster); 10402 assert(PivotCluster <= W.LastCluster); 10403 10404 CaseClusterIt FirstLeft = W.FirstCluster; 10405 CaseClusterIt LastRight = W.LastCluster; 10406 10407 const ConstantInt *Pivot = PivotCluster->Low; 10408 10409 // New blocks will be inserted immediately after the current one. 10410 MachineFunction::iterator BBI(W.MBB); 10411 ++BBI; 10412 10413 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10414 // we can branch to its destination directly if it's squeezed exactly in 10415 // between the known lower bound and Pivot - 1. 10416 MachineBasicBlock *LeftMBB; 10417 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10418 FirstLeft->Low == W.GE && 10419 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10420 LeftMBB = FirstLeft->MBB; 10421 } else { 10422 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10423 FuncInfo.MF->insert(BBI, LeftMBB); 10424 WorkList.push_back( 10425 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10426 // Put Cond in a virtual register to make it available from the new blocks. 10427 ExportFromCurrentBlock(Cond); 10428 } 10429 10430 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10431 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10432 // directly if RHS.High equals the current upper bound. 10433 MachineBasicBlock *RightMBB; 10434 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10435 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10436 RightMBB = FirstRight->MBB; 10437 } else { 10438 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10439 FuncInfo.MF->insert(BBI, RightMBB); 10440 WorkList.push_back( 10441 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10442 // Put Cond in a virtual register to make it available from the new blocks. 10443 ExportFromCurrentBlock(Cond); 10444 } 10445 10446 // Create the CaseBlock record that will be used to lower the branch. 10447 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10448 getCurSDLoc(), LeftProb, RightProb); 10449 10450 if (W.MBB == SwitchMBB) 10451 visitSwitchCase(CB, SwitchMBB); 10452 else 10453 SL->SwitchCases.push_back(CB); 10454 } 10455 10456 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10457 // from the swith statement. 10458 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10459 BranchProbability PeeledCaseProb) { 10460 if (PeeledCaseProb == BranchProbability::getOne()) 10461 return BranchProbability::getZero(); 10462 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10463 10464 uint32_t Numerator = CaseProb.getNumerator(); 10465 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10466 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10467 } 10468 10469 // Try to peel the top probability case if it exceeds the threshold. 10470 // Return current MachineBasicBlock for the switch statement if the peeling 10471 // does not occur. 10472 // If the peeling is performed, return the newly created MachineBasicBlock 10473 // for the peeled switch statement. Also update Clusters to remove the peeled 10474 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10475 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10476 const SwitchInst &SI, CaseClusterVector &Clusters, 10477 BranchProbability &PeeledCaseProb) { 10478 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10479 // Don't perform if there is only one cluster or optimizing for size. 10480 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10481 TM.getOptLevel() == CodeGenOpt::None || 10482 SwitchMBB->getParent()->getFunction().hasMinSize()) 10483 return SwitchMBB; 10484 10485 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10486 unsigned PeeledCaseIndex = 0; 10487 bool SwitchPeeled = false; 10488 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10489 CaseCluster &CC = Clusters[Index]; 10490 if (CC.Prob < TopCaseProb) 10491 continue; 10492 TopCaseProb = CC.Prob; 10493 PeeledCaseIndex = Index; 10494 SwitchPeeled = true; 10495 } 10496 if (!SwitchPeeled) 10497 return SwitchMBB; 10498 10499 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10500 << TopCaseProb << "\n"); 10501 10502 // Record the MBB for the peeled switch statement. 10503 MachineFunction::iterator BBI(SwitchMBB); 10504 ++BBI; 10505 MachineBasicBlock *PeeledSwitchMBB = 10506 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10507 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10508 10509 ExportFromCurrentBlock(SI.getCondition()); 10510 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10511 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10512 nullptr, nullptr, TopCaseProb.getCompl()}; 10513 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10514 10515 Clusters.erase(PeeledCaseIt); 10516 for (CaseCluster &CC : Clusters) { 10517 LLVM_DEBUG( 10518 dbgs() << "Scale the probablity for one cluster, before scaling: " 10519 << CC.Prob << "\n"); 10520 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10521 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10522 } 10523 PeeledCaseProb = TopCaseProb; 10524 return PeeledSwitchMBB; 10525 } 10526 10527 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10528 // Extract cases from the switch. 10529 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10530 CaseClusterVector Clusters; 10531 Clusters.reserve(SI.getNumCases()); 10532 for (auto I : SI.cases()) { 10533 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10534 const ConstantInt *CaseVal = I.getCaseValue(); 10535 BranchProbability Prob = 10536 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10537 : BranchProbability(1, SI.getNumCases() + 1); 10538 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10539 } 10540 10541 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10542 10543 // Cluster adjacent cases with the same destination. We do this at all 10544 // optimization levels because it's cheap to do and will make codegen faster 10545 // if there are many clusters. 10546 sortAndRangeify(Clusters); 10547 10548 // The branch probablity of the peeled case. 10549 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10550 MachineBasicBlock *PeeledSwitchMBB = 10551 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10552 10553 // If there is only the default destination, jump there directly. 10554 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10555 if (Clusters.empty()) { 10556 assert(PeeledSwitchMBB == SwitchMBB); 10557 SwitchMBB->addSuccessor(DefaultMBB); 10558 if (DefaultMBB != NextBlock(SwitchMBB)) { 10559 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10560 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10561 } 10562 return; 10563 } 10564 10565 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10566 SL->findBitTestClusters(Clusters, &SI); 10567 10568 LLVM_DEBUG({ 10569 dbgs() << "Case clusters: "; 10570 for (const CaseCluster &C : Clusters) { 10571 if (C.Kind == CC_JumpTable) 10572 dbgs() << "JT:"; 10573 if (C.Kind == CC_BitTests) 10574 dbgs() << "BT:"; 10575 10576 C.Low->getValue().print(dbgs(), true); 10577 if (C.Low != C.High) { 10578 dbgs() << '-'; 10579 C.High->getValue().print(dbgs(), true); 10580 } 10581 dbgs() << ' '; 10582 } 10583 dbgs() << '\n'; 10584 }); 10585 10586 assert(!Clusters.empty()); 10587 SwitchWorkList WorkList; 10588 CaseClusterIt First = Clusters.begin(); 10589 CaseClusterIt Last = Clusters.end() - 1; 10590 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10591 // Scale the branchprobability for DefaultMBB if the peel occurs and 10592 // DefaultMBB is not replaced. 10593 if (PeeledCaseProb != BranchProbability::getZero() && 10594 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10595 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10596 WorkList.push_back( 10597 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10598 10599 while (!WorkList.empty()) { 10600 SwitchWorkListItem W = WorkList.back(); 10601 WorkList.pop_back(); 10602 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10603 10604 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10605 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10606 // For optimized builds, lower large range as a balanced binary tree. 10607 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10608 continue; 10609 } 10610 10611 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10612 } 10613 } 10614 10615 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10616 SmallVector<EVT, 4> ValueVTs; 10617 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10618 ValueVTs); 10619 unsigned NumValues = ValueVTs.size(); 10620 if (NumValues == 0) return; 10621 10622 SmallVector<SDValue, 4> Values(NumValues); 10623 SDValue Op = getValue(I.getOperand(0)); 10624 10625 for (unsigned i = 0; i != NumValues; ++i) 10626 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10627 SDValue(Op.getNode(), Op.getResNo() + i)); 10628 10629 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10630 DAG.getVTList(ValueVTs), Values)); 10631 } 10632