1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 IntermediateVT.isVector() 419 ? EVT::getVectorVT( 420 *DAG.getContext(), IntermediateVT.getScalarType(), 421 IntermediateVT.getVectorElementCount() * NumParts) 422 : EVT::getVectorVT(*DAG.getContext(), 423 IntermediateVT.getScalarType(), 424 NumIntermediates); 425 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 426 : ISD::BUILD_VECTOR, 427 DL, BuiltVectorTy, Ops); 428 } 429 430 // There is now one part, held in Val. Correct it to match ValueVT. 431 EVT PartEVT = Val.getValueType(); 432 433 if (PartEVT == ValueVT) 434 return Val; 435 436 if (PartEVT.isVector()) { 437 // If the element type of the source/dest vectors are the same, but the 438 // parts vector has more elements than the value vector, then we have a 439 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 440 // elements we want. 441 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 442 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 443 "Cannot narrow, it would be a lossy transformation"); 444 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 445 DAG.getVectorIdxConstant(0, DL)); 446 } 447 448 // Vector/Vector bitcast. 449 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 453 "Cannot handle this kind of promotion"); 454 // Promoted vector extract 455 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 456 457 } 458 459 // Trivial bitcast if the types are the same size and the destination 460 // vector type is legal. 461 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 462 TLI.isTypeLegal(ValueVT)) 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 465 if (ValueVT.getVectorNumElements() != 1) { 466 // Certain ABIs require that vectors are passed as integers. For vectors 467 // are the same size, this is an obvious bitcast. 468 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 469 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 470 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 471 // Bitcast Val back the original type and extract the corresponding 472 // vector we want. 473 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 474 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 475 ValueVT.getVectorElementType(), Elts); 476 Val = DAG.getBitcast(WiderVecType, Val); 477 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 478 DAG.getVectorIdxConstant(0, DL)); 479 } 480 481 diagnosePossiblyInvalidConstraint( 482 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 483 return DAG.getUNDEF(ValueVT); 484 } 485 486 // Handle cases such as i8 -> <1 x i1> 487 EVT ValueSVT = ValueVT.getVectorElementType(); 488 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 489 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 490 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 491 else 492 Val = ValueVT.isFloatingPoint() 493 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 494 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 495 } 496 497 return DAG.getBuildVector(ValueVT, DL, Val); 498 } 499 500 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 501 SDValue Val, SDValue *Parts, unsigned NumParts, 502 MVT PartVT, const Value *V, 503 Optional<CallingConv::ID> CallConv); 504 505 /// getCopyToParts - Create a series of nodes that contain the specified value 506 /// split into legal parts. If the parts contain more bits than Val, then, for 507 /// integers, ExtendKind can be used to specify how to generate the extra bits. 508 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 509 SDValue *Parts, unsigned NumParts, MVT PartVT, 510 const Value *V, 511 Optional<CallingConv::ID> CallConv = None, 512 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 513 EVT ValueVT = Val.getValueType(); 514 515 // Handle the vector case separately. 516 if (ValueVT.isVector()) 517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 518 CallConv); 519 520 unsigned PartBits = PartVT.getSizeInBits(); 521 unsigned OrigNumParts = NumParts; 522 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 523 "Copying to an illegal type!"); 524 525 if (NumParts == 0) 526 return; 527 528 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 529 EVT PartEVT = PartVT; 530 if (PartEVT == ValueVT) { 531 assert(NumParts == 1 && "No-op copy with multiple parts!"); 532 Parts[0] = Val; 533 return; 534 } 535 536 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 537 // If the parts cover more bits than the value has, promote the value. 538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 539 assert(NumParts == 1 && "Do not know what to promote to!"); 540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 541 } else { 542 if (ValueVT.isFloatingPoint()) { 543 // FP values need to be bitcast, then extended if they are being put 544 // into a larger container. 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 547 } 548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 549 ValueVT.isInteger() && 550 "Unknown mismatch!"); 551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 553 if (PartVT == MVT::x86mmx) 554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 555 } 556 } else if (PartBits == ValueVT.getSizeInBits()) { 557 // Different types of the same size. 558 assert(NumParts == 1 && PartEVT != ValueVT); 559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 561 // If the parts cover less bits than value has, truncate the value. 562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 563 ValueVT.isInteger() && 564 "Unknown mismatch!"); 565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 567 if (PartVT == MVT::x86mmx) 568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 569 } 570 571 // The value may have changed - recompute ValueVT. 572 ValueVT = Val.getValueType(); 573 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 574 "Failed to tile the value with PartVT!"); 575 576 if (NumParts == 1) { 577 if (PartEVT != ValueVT) { 578 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 579 "scalar-to-vector conversion failed"); 580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 581 } 582 583 Parts[0] = Val; 584 return; 585 } 586 587 // Expand the value into multiple parts. 588 if (NumParts & (NumParts - 1)) { 589 // The number of parts is not a power of 2. Split off and copy the tail. 590 assert(PartVT.isInteger() && ValueVT.isInteger() && 591 "Do not know what to expand to!"); 592 unsigned RoundParts = 1 << Log2_32(NumParts); 593 unsigned RoundBits = RoundParts * PartBits; 594 unsigned OddParts = NumParts - RoundParts; 595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 597 598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 599 CallConv); 600 601 if (DAG.getDataLayout().isBigEndian()) 602 // The odd parts were reversed by getCopyToParts - unreverse them. 603 std::reverse(Parts + RoundParts, Parts + NumParts); 604 605 NumParts = RoundParts; 606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 608 } 609 610 // The number of parts is a power of 2. Repeatedly bisect the value using 611 // EXTRACT_ELEMENT. 612 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 613 EVT::getIntegerVT(*DAG.getContext(), 614 ValueVT.getSizeInBits()), 615 Val); 616 617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 618 for (unsigned i = 0; i < NumParts; i += StepSize) { 619 unsigned ThisBits = StepSize * PartBits / 2; 620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 621 SDValue &Part0 = Parts[i]; 622 SDValue &Part1 = Parts[i+StepSize/2]; 623 624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 628 629 if (ThisBits == PartBits && ThisVT != PartVT) { 630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 632 } 633 } 634 } 635 636 if (DAG.getDataLayout().isBigEndian()) 637 std::reverse(Parts, Parts + OrigNumParts); 638 } 639 640 static SDValue widenVectorToPartType(SelectionDAG &DAG, 641 SDValue Val, const SDLoc &DL, EVT PartVT) { 642 if (!PartVT.isVector()) 643 return SDValue(); 644 645 EVT ValueVT = Val.getValueType(); 646 unsigned PartNumElts = PartVT.getVectorNumElements(); 647 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 648 if (PartNumElts > ValueNumElts && 649 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 650 EVT ElementVT = PartVT.getVectorElementType(); 651 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 652 // undef elements. 653 SmallVector<SDValue, 16> Ops; 654 DAG.ExtractVectorElements(Val, Ops); 655 SDValue EltUndef = DAG.getUNDEF(ElementVT); 656 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 657 Ops.push_back(EltUndef); 658 659 // FIXME: Use CONCAT for 2x -> 4x. 660 return DAG.getBuildVector(PartVT, DL, Ops); 661 } 662 663 return SDValue(); 664 } 665 666 /// getCopyToPartsVector - Create a series of nodes that contain the specified 667 /// value split into legal parts. 668 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 669 SDValue Val, SDValue *Parts, unsigned NumParts, 670 MVT PartVT, const Value *V, 671 Optional<CallingConv::ID> CallConv) { 672 EVT ValueVT = Val.getValueType(); 673 assert(ValueVT.isVector() && "Not a vector"); 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 const bool IsABIRegCopy = CallConv.hasValue(); 676 677 if (NumParts == 1) { 678 EVT PartEVT = PartVT; 679 if (PartEVT == ValueVT) { 680 // Nothing to do. 681 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 682 // Bitconvert vector->vector case. 683 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 684 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 685 Val = Widened; 686 } else if (PartVT.isVector() && 687 PartEVT.getVectorElementType().bitsGE( 688 ValueVT.getVectorElementType()) && 689 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 690 691 // Promoted vector extract 692 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 693 } else { 694 if (ValueVT.getVectorNumElements() == 1) { 695 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 696 DAG.getVectorIdxConstant(0, DL)); 697 } else { 698 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 699 "lossy conversion of vector to scalar type"); 700 EVT IntermediateType = 701 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 702 Val = DAG.getBitcast(IntermediateType, Val); 703 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 704 } 705 } 706 707 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 708 Parts[0] = Val; 709 return; 710 } 711 712 // Handle a multi-element vector. 713 EVT IntermediateVT; 714 MVT RegisterVT; 715 unsigned NumIntermediates; 716 unsigned NumRegs; 717 if (IsABIRegCopy) { 718 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 719 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 720 NumIntermediates, RegisterVT); 721 } else { 722 NumRegs = 723 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 724 NumIntermediates, RegisterVT); 725 } 726 727 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 728 NumParts = NumRegs; // Silence a compiler warning. 729 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 730 731 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 732 IntermediateVT.getVectorNumElements() : 1; 733 734 // Convert the vector to the appropriate type if necessary. 735 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 736 737 EVT BuiltVectorTy = EVT::getVectorVT( 738 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 739 if (ValueVT != BuiltVectorTy) { 740 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 741 Val = Widened; 742 743 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 744 } 745 746 // Split the vector into intermediate operands. 747 SmallVector<SDValue, 8> Ops(NumIntermediates); 748 for (unsigned i = 0; i != NumIntermediates; ++i) { 749 if (IntermediateVT.isVector()) { 750 Ops[i] = 751 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 752 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 753 } else { 754 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 755 DAG.getVectorIdxConstant(i, DL)); 756 } 757 } 758 759 // Split the intermediate operands into legal parts. 760 if (NumParts == NumIntermediates) { 761 // If the register was not expanded, promote or copy the value, 762 // as appropriate. 763 for (unsigned i = 0; i != NumParts; ++i) 764 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 765 } else if (NumParts > 0) { 766 // If the intermediate type was expanded, split each the value into 767 // legal parts. 768 assert(NumIntermediates != 0 && "division by zero"); 769 assert(NumParts % NumIntermediates == 0 && 770 "Must expand into a divisible number of parts!"); 771 unsigned Factor = NumParts / NumIntermediates; 772 for (unsigned i = 0; i != NumIntermediates; ++i) 773 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 774 CallConv); 775 } 776 } 777 778 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 779 EVT valuevt, Optional<CallingConv::ID> CC) 780 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 781 RegCount(1, regs.size()), CallConv(CC) {} 782 783 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 784 const DataLayout &DL, unsigned Reg, Type *Ty, 785 Optional<CallingConv::ID> CC) { 786 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 787 788 CallConv = CC; 789 790 for (EVT ValueVT : ValueVTs) { 791 unsigned NumRegs = 792 isABIMangled() 793 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getNumRegisters(Context, ValueVT); 795 MVT RegisterVT = 796 isABIMangled() 797 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 798 : TLI.getRegisterType(Context, ValueVT); 799 for (unsigned i = 0; i != NumRegs; ++i) 800 Regs.push_back(Reg + i); 801 RegVTs.push_back(RegisterVT); 802 RegCount.push_back(NumRegs); 803 Reg += NumRegs; 804 } 805 } 806 807 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 808 FunctionLoweringInfo &FuncInfo, 809 const SDLoc &dl, SDValue &Chain, 810 SDValue *Flag, const Value *V) const { 811 // A Value with type {} or [0 x %t] needs no registers. 812 if (ValueVTs.empty()) 813 return SDValue(); 814 815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 816 817 // Assemble the legal parts into the final values. 818 SmallVector<SDValue, 4> Values(ValueVTs.size()); 819 SmallVector<SDValue, 8> Parts; 820 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 821 // Copy the legal parts from the registers. 822 EVT ValueVT = ValueVTs[Value]; 823 unsigned NumRegs = RegCount[Value]; 824 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 825 *DAG.getContext(), 826 CallConv.getValue(), RegVTs[Value]) 827 : RegVTs[Value]; 828 829 Parts.resize(NumRegs); 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 SDValue P; 832 if (!Flag) { 833 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 834 } else { 835 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 836 *Flag = P.getValue(2); 837 } 838 839 Chain = P.getValue(1); 840 Parts[i] = P; 841 842 // If the source register was virtual and if we know something about it, 843 // add an assert node. 844 if (!Register::isVirtualRegister(Regs[Part + i]) || 845 !RegisterVT.isInteger()) 846 continue; 847 848 const FunctionLoweringInfo::LiveOutInfo *LOI = 849 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 850 if (!LOI) 851 continue; 852 853 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 854 unsigned NumSignBits = LOI->NumSignBits; 855 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 856 857 if (NumZeroBits == RegSize) { 858 // The current value is a zero. 859 // Explicitly express that as it would be easier for 860 // optimizations to kick in. 861 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 862 continue; 863 } 864 865 // FIXME: We capture more information than the dag can represent. For 866 // now, just use the tightest assertzext/assertsext possible. 867 bool isSExt; 868 EVT FromVT(MVT::Other); 869 if (NumZeroBits) { 870 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 871 isSExt = false; 872 } else if (NumSignBits > 1) { 873 FromVT = 874 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 875 isSExt = true; 876 } else { 877 continue; 878 } 879 // Add an assertion node. 880 assert(FromVT != MVT::Other); 881 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 882 RegisterVT, P, DAG.getValueType(FromVT)); 883 } 884 885 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 886 RegisterVT, ValueVT, V, CallConv); 887 Part += NumRegs; 888 Parts.clear(); 889 } 890 891 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 892 } 893 894 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 895 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 896 const Value *V, 897 ISD::NodeType PreferredExtendType) const { 898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 899 ISD::NodeType ExtendKind = PreferredExtendType; 900 901 // Get the list of the values's legal parts. 902 unsigned NumRegs = Regs.size(); 903 SmallVector<SDValue, 8> Parts(NumRegs); 904 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 905 unsigned NumParts = RegCount[Value]; 906 907 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 908 *DAG.getContext(), 909 CallConv.getValue(), RegVTs[Value]) 910 : RegVTs[Value]; 911 912 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 913 ExtendKind = ISD::ZERO_EXTEND; 914 915 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 916 NumParts, RegisterVT, V, CallConv, ExtendKind); 917 Part += NumParts; 918 } 919 920 // Copy the parts into the registers. 921 SmallVector<SDValue, 8> Chains(NumRegs); 922 for (unsigned i = 0; i != NumRegs; ++i) { 923 SDValue Part; 924 if (!Flag) { 925 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 926 } else { 927 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 928 *Flag = Part.getValue(1); 929 } 930 931 Chains[i] = Part.getValue(0); 932 } 933 934 if (NumRegs == 1 || Flag) 935 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 936 // flagged to it. That is the CopyToReg nodes and the user are considered 937 // a single scheduling unit. If we create a TokenFactor and return it as 938 // chain, then the TokenFactor is both a predecessor (operand) of the 939 // user as well as a successor (the TF operands are flagged to the user). 940 // c1, f1 = CopyToReg 941 // c2, f2 = CopyToReg 942 // c3 = TokenFactor c1, c2 943 // ... 944 // = op c3, ..., f2 945 Chain = Chains[NumRegs-1]; 946 else 947 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 948 } 949 950 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 951 unsigned MatchingIdx, const SDLoc &dl, 952 SelectionDAG &DAG, 953 std::vector<SDValue> &Ops) const { 954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 955 956 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 957 if (HasMatching) 958 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 959 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 960 // Put the register class of the virtual registers in the flag word. That 961 // way, later passes can recompute register class constraints for inline 962 // assembly as well as normal instructions. 963 // Don't do this for tied operands that can use the regclass information 964 // from the def. 965 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 966 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 967 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 968 } 969 970 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 971 Ops.push_back(Res); 972 973 if (Code == InlineAsm::Kind_Clobber) { 974 // Clobbers should always have a 1:1 mapping with registers, and may 975 // reference registers that have illegal (e.g. vector) types. Hence, we 976 // shouldn't try to apply any sort of splitting logic to them. 977 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 978 "No 1:1 mapping from clobbers to regs?"); 979 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 980 (void)SP; 981 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 982 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 983 assert( 984 (Regs[I] != SP || 985 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 986 "If we clobbered the stack pointer, MFI should know about it."); 987 } 988 return; 989 } 990 991 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 992 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 993 MVT RegisterVT = RegVTs[Value]; 994 for (unsigned i = 0; i != NumRegs; ++i) { 995 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 996 unsigned TheReg = Regs[Reg++]; 997 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 998 } 999 } 1000 } 1001 1002 SmallVector<std::pair<unsigned, unsigned>, 4> 1003 RegsForValue::getRegsAndSizes() const { 1004 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1005 unsigned I = 0; 1006 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1007 unsigned RegCount = std::get<0>(CountAndVT); 1008 MVT RegisterVT = std::get<1>(CountAndVT); 1009 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1010 for (unsigned E = I + RegCount; I != E; ++I) 1011 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1012 } 1013 return OutVec; 1014 } 1015 1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1017 const TargetLibraryInfo *li) { 1018 AA = aa; 1019 GFI = gfi; 1020 LibInfo = li; 1021 DL = &DAG.getDataLayout(); 1022 Context = DAG.getContext(); 1023 LPadToCallSiteMap.clear(); 1024 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1025 } 1026 1027 void SelectionDAGBuilder::clear() { 1028 NodeMap.clear(); 1029 UnusedArgNodeMap.clear(); 1030 PendingLoads.clear(); 1031 PendingExports.clear(); 1032 PendingConstrainedFP.clear(); 1033 PendingConstrainedFPStrict.clear(); 1034 CurInst = nullptr; 1035 HasTailCall = false; 1036 SDNodeOrder = LowestSDNodeOrder; 1037 StatepointLowering.clear(); 1038 } 1039 1040 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1041 DanglingDebugInfoMap.clear(); 1042 } 1043 1044 // Update DAG root to include dependencies on Pending chains. 1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1046 SDValue Root = DAG.getRoot(); 1047 1048 if (Pending.empty()) 1049 return Root; 1050 1051 // Add current root to PendingChains, unless we already indirectly 1052 // depend on it. 1053 if (Root.getOpcode() != ISD::EntryToken) { 1054 unsigned i = 0, e = Pending.size(); 1055 for (; i != e; ++i) { 1056 assert(Pending[i].getNode()->getNumOperands() > 1); 1057 if (Pending[i].getNode()->getOperand(0) == Root) 1058 break; // Don't add the root if we already indirectly depend on it. 1059 } 1060 1061 if (i == e) 1062 Pending.push_back(Root); 1063 } 1064 1065 if (Pending.size() == 1) 1066 Root = Pending[0]; 1067 else 1068 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1069 1070 DAG.setRoot(Root); 1071 Pending.clear(); 1072 return Root; 1073 } 1074 1075 SDValue SelectionDAGBuilder::getMemoryRoot() { 1076 return updateRoot(PendingLoads); 1077 } 1078 1079 SDValue SelectionDAGBuilder::getRoot() { 1080 // Chain up all pending constrained intrinsics together with all 1081 // pending loads, by simply appending them to PendingLoads and 1082 // then calling getMemoryRoot(). 1083 PendingLoads.reserve(PendingLoads.size() + 1084 PendingConstrainedFP.size() + 1085 PendingConstrainedFPStrict.size()); 1086 PendingLoads.append(PendingConstrainedFP.begin(), 1087 PendingConstrainedFP.end()); 1088 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1089 PendingConstrainedFPStrict.end()); 1090 PendingConstrainedFP.clear(); 1091 PendingConstrainedFPStrict.clear(); 1092 return getMemoryRoot(); 1093 } 1094 1095 SDValue SelectionDAGBuilder::getControlRoot() { 1096 // We need to emit pending fpexcept.strict constrained intrinsics, 1097 // so append them to the PendingExports list. 1098 PendingExports.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFPStrict.clear(); 1101 return updateRoot(PendingExports); 1102 } 1103 1104 void SelectionDAGBuilder::visit(const Instruction &I) { 1105 // Set up outgoing PHI node register values before emitting the terminator. 1106 if (I.isTerminator()) { 1107 HandlePHINodesInSuccessorBlocks(I.getParent()); 1108 } 1109 1110 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1111 if (!isa<DbgInfoIntrinsic>(I)) 1112 ++SDNodeOrder; 1113 1114 CurInst = &I; 1115 1116 visit(I.getOpcode(), I); 1117 1118 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1119 // ConstrainedFPIntrinsics handle their own FMF. 1120 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1121 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1122 // maps to this instruction. 1123 // TODO: We could handle all flags (nsw, etc) here. 1124 // TODO: If an IR instruction maps to >1 node, only the final node will have 1125 // flags set. 1126 if (SDNode *Node = getNodeForIRValue(&I)) { 1127 SDNodeFlags IncomingFlags; 1128 IncomingFlags.copyFMF(*FPMO); 1129 if (!Node->getFlags().isDefined()) 1130 Node->setFlags(IncomingFlags); 1131 else 1132 Node->intersectFlagsWith(IncomingFlags); 1133 } 1134 } 1135 } 1136 1137 if (!I.isTerminator() && !HasTailCall && 1138 !isStatepoint(&I)) // statepoints handle their exports internally 1139 CopyToExportRegsIfNeeded(&I); 1140 1141 CurInst = nullptr; 1142 } 1143 1144 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1145 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1146 } 1147 1148 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1149 // Note: this doesn't use InstVisitor, because it has to work with 1150 // ConstantExpr's in addition to instructions. 1151 switch (Opcode) { 1152 default: llvm_unreachable("Unknown instruction type encountered!"); 1153 // Build the switch statement using the Instruction.def file. 1154 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1155 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1156 #include "llvm/IR/Instruction.def" 1157 } 1158 } 1159 1160 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1161 const DIExpression *Expr) { 1162 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1163 const DbgValueInst *DI = DDI.getDI(); 1164 DIVariable *DanglingVariable = DI->getVariable(); 1165 DIExpression *DanglingExpr = DI->getExpression(); 1166 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1167 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1168 return true; 1169 } 1170 return false; 1171 }; 1172 1173 for (auto &DDIMI : DanglingDebugInfoMap) { 1174 DanglingDebugInfoVector &DDIV = DDIMI.second; 1175 1176 // If debug info is to be dropped, run it through final checks to see 1177 // whether it can be salvaged. 1178 for (auto &DDI : DDIV) 1179 if (isMatchingDbgValue(DDI)) 1180 salvageUnresolvedDbgValue(DDI); 1181 1182 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1183 } 1184 } 1185 1186 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1187 // generate the debug data structures now that we've seen its definition. 1188 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1189 SDValue Val) { 1190 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1191 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1192 return; 1193 1194 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1195 for (auto &DDI : DDIV) { 1196 const DbgValueInst *DI = DDI.getDI(); 1197 assert(DI && "Ill-formed DanglingDebugInfo"); 1198 DebugLoc dl = DDI.getdl(); 1199 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1200 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1201 DILocalVariable *Variable = DI->getVariable(); 1202 DIExpression *Expr = DI->getExpression(); 1203 assert(Variable->isValidLocationForIntrinsic(dl) && 1204 "Expected inlined-at fields to agree"); 1205 SDDbgValue *SDV; 1206 if (Val.getNode()) { 1207 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1208 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1209 // we couldn't resolve it directly when examining the DbgValue intrinsic 1210 // in the first place we should not be more successful here). Unless we 1211 // have some test case that prove this to be correct we should avoid 1212 // calling EmitFuncArgumentDbgValue here. 1213 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1214 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1215 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1216 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1217 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1218 // inserted after the definition of Val when emitting the instructions 1219 // after ISel. An alternative could be to teach 1220 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1221 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1222 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1223 << ValSDNodeOrder << "\n"); 1224 SDV = getDbgValue(Val, Variable, Expr, dl, 1225 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1226 DAG.AddDbgValue(SDV, Val.getNode(), false); 1227 } else 1228 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1229 << "in EmitFuncArgumentDbgValue\n"); 1230 } else { 1231 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1232 auto Undef = 1233 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1234 auto SDV = 1235 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1236 DAG.AddDbgValue(SDV, nullptr, false); 1237 } 1238 } 1239 DDIV.clear(); 1240 } 1241 1242 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1243 Value *V = DDI.getDI()->getValue(); 1244 DILocalVariable *Var = DDI.getDI()->getVariable(); 1245 DIExpression *Expr = DDI.getDI()->getExpression(); 1246 DebugLoc DL = DDI.getdl(); 1247 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1248 unsigned SDOrder = DDI.getSDNodeOrder(); 1249 1250 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1251 // that DW_OP_stack_value is desired. 1252 assert(isa<DbgValueInst>(DDI.getDI())); 1253 bool StackValue = true; 1254 1255 // Can this Value can be encoded without any further work? 1256 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1257 return; 1258 1259 // Attempt to salvage back through as many instructions as possible. Bail if 1260 // a non-instruction is seen, such as a constant expression or global 1261 // variable. FIXME: Further work could recover those too. 1262 while (isa<Instruction>(V)) { 1263 Instruction &VAsInst = *cast<Instruction>(V); 1264 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1265 1266 // If we cannot salvage any further, and haven't yet found a suitable debug 1267 // expression, bail out. 1268 if (!NewExpr) 1269 break; 1270 1271 // New value and expr now represent this debuginfo. 1272 V = VAsInst.getOperand(0); 1273 Expr = NewExpr; 1274 1275 // Some kind of simplification occurred: check whether the operand of the 1276 // salvaged debug expression can be encoded in this DAG. 1277 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1278 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1279 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1280 return; 1281 } 1282 } 1283 1284 // This was the final opportunity to salvage this debug information, and it 1285 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1286 // any earlier variable location. 1287 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1288 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1289 DAG.AddDbgValue(SDV, nullptr, false); 1290 1291 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1292 << "\n"); 1293 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1294 << "\n"); 1295 } 1296 1297 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1298 DIExpression *Expr, DebugLoc dl, 1299 DebugLoc InstDL, unsigned Order) { 1300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1301 SDDbgValue *SDV; 1302 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1303 isa<ConstantPointerNull>(V)) { 1304 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1305 DAG.AddDbgValue(SDV, nullptr, false); 1306 return true; 1307 } 1308 1309 // If the Value is a frame index, we can create a FrameIndex debug value 1310 // without relying on the DAG at all. 1311 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1312 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1313 if (SI != FuncInfo.StaticAllocaMap.end()) { 1314 auto SDV = 1315 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1316 /*IsIndirect*/ false, dl, SDNodeOrder); 1317 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1318 // is still available even if the SDNode gets optimized out. 1319 DAG.AddDbgValue(SDV, nullptr, false); 1320 return true; 1321 } 1322 } 1323 1324 // Do not use getValue() in here; we don't want to generate code at 1325 // this point if it hasn't been done yet. 1326 SDValue N = NodeMap[V]; 1327 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1328 N = UnusedArgNodeMap[V]; 1329 if (N.getNode()) { 1330 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1331 return true; 1332 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1333 DAG.AddDbgValue(SDV, N.getNode(), false); 1334 return true; 1335 } 1336 1337 // Special rules apply for the first dbg.values of parameter variables in a 1338 // function. Identify them by the fact they reference Argument Values, that 1339 // they're parameters, and they are parameters of the current function. We 1340 // need to let them dangle until they get an SDNode. 1341 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1342 !InstDL.getInlinedAt(); 1343 if (!IsParamOfFunc) { 1344 // The value is not used in this block yet (or it would have an SDNode). 1345 // We still want the value to appear for the user if possible -- if it has 1346 // an associated VReg, we can refer to that instead. 1347 auto VMI = FuncInfo.ValueMap.find(V); 1348 if (VMI != FuncInfo.ValueMap.end()) { 1349 unsigned Reg = VMI->second; 1350 // If this is a PHI node, it may be split up into several MI PHI nodes 1351 // (in FunctionLoweringInfo::set). 1352 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1353 V->getType(), None); 1354 if (RFV.occupiesMultipleRegs()) { 1355 unsigned Offset = 0; 1356 unsigned BitsToDescribe = 0; 1357 if (auto VarSize = Var->getSizeInBits()) 1358 BitsToDescribe = *VarSize; 1359 if (auto Fragment = Expr->getFragmentInfo()) 1360 BitsToDescribe = Fragment->SizeInBits; 1361 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1362 unsigned RegisterSize = RegAndSize.second; 1363 // Bail out if all bits are described already. 1364 if (Offset >= BitsToDescribe) 1365 break; 1366 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1367 ? BitsToDescribe - Offset 1368 : RegisterSize; 1369 auto FragmentExpr = DIExpression::createFragmentExpression( 1370 Expr, Offset, FragmentSize); 1371 if (!FragmentExpr) 1372 continue; 1373 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1374 false, dl, SDNodeOrder); 1375 DAG.AddDbgValue(SDV, nullptr, false); 1376 Offset += RegisterSize; 1377 } 1378 } else { 1379 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, nullptr, false); 1381 } 1382 return true; 1383 } 1384 } 1385 1386 return false; 1387 } 1388 1389 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1390 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1391 for (auto &Pair : DanglingDebugInfoMap) 1392 for (auto &DDI : Pair.second) 1393 salvageUnresolvedDbgValue(DDI); 1394 clearDanglingDebugInfo(); 1395 } 1396 1397 /// getCopyFromRegs - If there was virtual register allocated for the value V 1398 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1399 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1400 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1401 SDValue Result; 1402 1403 if (It != FuncInfo.ValueMap.end()) { 1404 Register InReg = It->second; 1405 1406 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1407 DAG.getDataLayout(), InReg, Ty, 1408 None); // This is not an ABI copy. 1409 SDValue Chain = DAG.getEntryNode(); 1410 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1411 V); 1412 resolveDanglingDebugInfo(V, Result); 1413 } 1414 1415 return Result; 1416 } 1417 1418 /// getValue - Return an SDValue for the given Value. 1419 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1420 // If we already have an SDValue for this value, use it. It's important 1421 // to do this first, so that we don't create a CopyFromReg if we already 1422 // have a regular SDValue. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) return N; 1425 1426 // If there's a virtual register allocated and initialized for this 1427 // value, use it. 1428 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1429 return copyFromReg; 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 // Return true if SDValue exists for the given Value 1439 bool SelectionDAGBuilder::findValue(const Value *V) const { 1440 return (NodeMap.find(V) != NodeMap.end()) || 1441 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1442 } 1443 1444 /// getNonRegisterValue - Return an SDValue for the given Value, but 1445 /// don't look in FuncInfo.ValueMap for a virtual register. 1446 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1447 // If we already have an SDValue for this value, use it. 1448 SDValue &N = NodeMap[V]; 1449 if (N.getNode()) { 1450 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1451 // Remove the debug location from the node as the node is about to be used 1452 // in a location which may differ from the original debug location. This 1453 // is relevant to Constant and ConstantFP nodes because they can appear 1454 // as constant expressions inside PHI nodes. 1455 N->setDebugLoc(DebugLoc()); 1456 } 1457 return N; 1458 } 1459 1460 // Otherwise create a new SDValue and remember it. 1461 SDValue Val = getValueImpl(V); 1462 NodeMap[V] = Val; 1463 resolveDanglingDebugInfo(V, Val); 1464 return Val; 1465 } 1466 1467 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1468 /// Create an SDValue for the given value. 1469 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1471 1472 if (const Constant *C = dyn_cast<Constant>(V)) { 1473 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1474 1475 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1476 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1477 1478 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1479 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1480 1481 if (isa<ConstantPointerNull>(C)) { 1482 unsigned AS = V->getType()->getPointerAddressSpace(); 1483 return DAG.getConstant(0, getCurSDLoc(), 1484 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1485 } 1486 1487 if (match(C, m_VScale(DAG.getDataLayout()))) 1488 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1489 1490 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1491 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1492 1493 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1494 return DAG.getUNDEF(VT); 1495 1496 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1497 visit(CE->getOpcode(), *CE); 1498 SDValue N1 = NodeMap[V]; 1499 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1500 return N1; 1501 } 1502 1503 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1504 SmallVector<SDValue, 4> Constants; 1505 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1506 OI != OE; ++OI) { 1507 SDNode *Val = getValue(*OI).getNode(); 1508 // If the operand is an empty aggregate, there are no values. 1509 if (!Val) continue; 1510 // Add each leaf value from the operand to the Constants list 1511 // to form a flattened list of all the values. 1512 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1513 Constants.push_back(SDValue(Val, i)); 1514 } 1515 1516 return DAG.getMergeValues(Constants, getCurSDLoc()); 1517 } 1518 1519 if (const ConstantDataSequential *CDS = 1520 dyn_cast<ConstantDataSequential>(C)) { 1521 SmallVector<SDValue, 4> Ops; 1522 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1523 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1524 // Add each leaf value from the operand to the Constants list 1525 // to form a flattened list of all the values. 1526 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1527 Ops.push_back(SDValue(Val, i)); 1528 } 1529 1530 if (isa<ArrayType>(CDS->getType())) 1531 return DAG.getMergeValues(Ops, getCurSDLoc()); 1532 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1533 } 1534 1535 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1536 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1537 "Unknown struct or array constant!"); 1538 1539 SmallVector<EVT, 4> ValueVTs; 1540 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1541 unsigned NumElts = ValueVTs.size(); 1542 if (NumElts == 0) 1543 return SDValue(); // empty struct 1544 SmallVector<SDValue, 4> Constants(NumElts); 1545 for (unsigned i = 0; i != NumElts; ++i) { 1546 EVT EltVT = ValueVTs[i]; 1547 if (isa<UndefValue>(C)) 1548 Constants[i] = DAG.getUNDEF(EltVT); 1549 else if (EltVT.isFloatingPoint()) 1550 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1551 else 1552 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1553 } 1554 1555 return DAG.getMergeValues(Constants, getCurSDLoc()); 1556 } 1557 1558 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1559 return DAG.getBlockAddress(BA, VT); 1560 1561 VectorType *VecTy = cast<VectorType>(V->getType()); 1562 unsigned NumElements = VecTy->getNumElements(); 1563 1564 // Now that we know the number and type of the elements, get that number of 1565 // elements into the Ops array based on what kind of constant it is. 1566 SmallVector<SDValue, 16> Ops; 1567 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1568 for (unsigned i = 0; i != NumElements; ++i) 1569 Ops.push_back(getValue(CV->getOperand(i))); 1570 } else { 1571 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1572 EVT EltVT = 1573 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1574 1575 SDValue Op; 1576 if (EltVT.isFloatingPoint()) 1577 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1578 else 1579 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1580 Ops.assign(NumElements, Op); 1581 } 1582 1583 // Create a BUILD_VECTOR node. 1584 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1585 } 1586 1587 // If this is a static alloca, generate it as the frameindex instead of 1588 // computation. 1589 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1590 DenseMap<const AllocaInst*, int>::iterator SI = 1591 FuncInfo.StaticAllocaMap.find(AI); 1592 if (SI != FuncInfo.StaticAllocaMap.end()) 1593 return DAG.getFrameIndex(SI->second, 1594 TLI.getFrameIndexTy(DAG.getDataLayout())); 1595 } 1596 1597 // If this is an instruction which fast-isel has deferred, select it now. 1598 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1599 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1600 1601 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1602 Inst->getType(), getABIRegCopyCC(V)); 1603 SDValue Chain = DAG.getEntryNode(); 1604 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1605 } 1606 1607 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1608 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1609 } 1610 llvm_unreachable("Can't get register for value!"); 1611 } 1612 1613 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1614 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1615 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1616 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1617 bool IsSEH = isAsynchronousEHPersonality(Pers); 1618 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1619 if (!IsSEH) 1620 CatchPadMBB->setIsEHScopeEntry(); 1621 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1622 if (IsMSVCCXX || IsCoreCLR) 1623 CatchPadMBB->setIsEHFuncletEntry(); 1624 } 1625 1626 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1627 // Update machine-CFG edge. 1628 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1629 FuncInfo.MBB->addSuccessor(TargetMBB); 1630 1631 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1632 bool IsSEH = isAsynchronousEHPersonality(Pers); 1633 if (IsSEH) { 1634 // If this is not a fall-through branch or optimizations are switched off, 1635 // emit the branch. 1636 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1637 TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1639 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1640 return; 1641 } 1642 1643 // Figure out the funclet membership for the catchret's successor. 1644 // This will be used by the FuncletLayout pass to determine how to order the 1645 // BB's. 1646 // A 'catchret' returns to the outer scope's color. 1647 Value *ParentPad = I.getCatchSwitchParentPad(); 1648 const BasicBlock *SuccessorColor; 1649 if (isa<ConstantTokenNone>(ParentPad)) 1650 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1651 else 1652 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1653 assert(SuccessorColor && "No parent funclet for catchret!"); 1654 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1655 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1656 1657 // Create the terminator node. 1658 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1659 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1660 DAG.getBasicBlock(SuccessorColorMBB)); 1661 DAG.setRoot(Ret); 1662 } 1663 1664 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1665 // Don't emit any special code for the cleanuppad instruction. It just marks 1666 // the start of an EH scope/funclet. 1667 FuncInfo.MBB->setIsEHScopeEntry(); 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 if (Pers != EHPersonality::Wasm_CXX) { 1670 FuncInfo.MBB->setIsEHFuncletEntry(); 1671 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1672 } 1673 } 1674 1675 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1676 // the control flow always stops at the single catch pad, as it does for a 1677 // cleanup pad. In case the exception caught is not of the types the catch pad 1678 // catches, it will be rethrown by a rethrow. 1679 static void findWasmUnwindDestinations( 1680 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1681 BranchProbability Prob, 1682 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1683 &UnwindDests) { 1684 while (EHPadBB) { 1685 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1686 if (isa<CleanupPadInst>(Pad)) { 1687 // Stop on cleanup pads. 1688 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1689 UnwindDests.back().first->setIsEHScopeEntry(); 1690 break; 1691 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1692 // Add the catchpad handlers to the possible destinations. We don't 1693 // continue to the unwind destination of the catchswitch for wasm. 1694 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1696 UnwindDests.back().first->setIsEHScopeEntry(); 1697 } 1698 break; 1699 } else { 1700 continue; 1701 } 1702 } 1703 } 1704 1705 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1706 /// many places it could ultimately go. In the IR, we have a single unwind 1707 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1708 /// This function skips over imaginary basic blocks that hold catchswitch 1709 /// instructions, and finds all the "real" machine 1710 /// basic block destinations. As those destinations may not be successors of 1711 /// EHPadBB, here we also calculate the edge probability to those destinations. 1712 /// The passed-in Prob is the edge probability to EHPadBB. 1713 static void findUnwindDestinations( 1714 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1715 BranchProbability Prob, 1716 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1717 &UnwindDests) { 1718 EHPersonality Personality = 1719 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1720 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1721 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1722 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1723 bool IsSEH = isAsynchronousEHPersonality(Personality); 1724 1725 if (IsWasmCXX) { 1726 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1727 assert(UnwindDests.size() <= 1 && 1728 "There should be at most one unwind destination for wasm"); 1729 return; 1730 } 1731 1732 while (EHPadBB) { 1733 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1734 BasicBlock *NewEHPadBB = nullptr; 1735 if (isa<LandingPadInst>(Pad)) { 1736 // Stop on landingpads. They are not funclets. 1737 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1738 break; 1739 } else if (isa<CleanupPadInst>(Pad)) { 1740 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1741 // personalities. 1742 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1743 UnwindDests.back().first->setIsEHScopeEntry(); 1744 UnwindDests.back().first->setIsEHFuncletEntry(); 1745 break; 1746 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1747 // Add the catchpad handlers to the possible destinations. 1748 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1750 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1751 if (IsMSVCCXX || IsCoreCLR) 1752 UnwindDests.back().first->setIsEHFuncletEntry(); 1753 if (!IsSEH) 1754 UnwindDests.back().first->setIsEHScopeEntry(); 1755 } 1756 NewEHPadBB = CatchSwitch->getUnwindDest(); 1757 } else { 1758 continue; 1759 } 1760 1761 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1762 if (BPI && NewEHPadBB) 1763 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1764 EHPadBB = NewEHPadBB; 1765 } 1766 } 1767 1768 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1769 // Update successor info. 1770 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1771 auto UnwindDest = I.getUnwindDest(); 1772 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1773 BranchProbability UnwindDestProb = 1774 (BPI && UnwindDest) 1775 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1776 : BranchProbability::getZero(); 1777 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1778 for (auto &UnwindDest : UnwindDests) { 1779 UnwindDest.first->setIsEHPad(); 1780 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1781 } 1782 FuncInfo.MBB->normalizeSuccProbs(); 1783 1784 // Create the terminator node. 1785 SDValue Ret = 1786 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1787 DAG.setRoot(Ret); 1788 } 1789 1790 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1791 report_fatal_error("visitCatchSwitch not yet implemented!"); 1792 } 1793 1794 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1796 auto &DL = DAG.getDataLayout(); 1797 SDValue Chain = getControlRoot(); 1798 SmallVector<ISD::OutputArg, 8> Outs; 1799 SmallVector<SDValue, 8> OutVals; 1800 1801 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1802 // lower 1803 // 1804 // %val = call <ty> @llvm.experimental.deoptimize() 1805 // ret <ty> %val 1806 // 1807 // differently. 1808 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1809 LowerDeoptimizingReturn(); 1810 return; 1811 } 1812 1813 if (!FuncInfo.CanLowerReturn) { 1814 unsigned DemoteReg = FuncInfo.DemoteRegister; 1815 const Function *F = I.getParent()->getParent(); 1816 1817 // Emit a store of the return value through the virtual register. 1818 // Leave Outs empty so that LowerReturn won't try to load return 1819 // registers the usual way. 1820 SmallVector<EVT, 1> PtrValueVTs; 1821 ComputeValueVTs(TLI, DL, 1822 F->getReturnType()->getPointerTo( 1823 DAG.getDataLayout().getAllocaAddrSpace()), 1824 PtrValueVTs); 1825 1826 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1827 DemoteReg, PtrValueVTs[0]); 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 SmallVector<EVT, 4> ValueVTs, MemVTs; 1831 SmallVector<uint64_t, 4> Offsets; 1832 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1833 &Offsets); 1834 unsigned NumValues = ValueVTs.size(); 1835 1836 SmallVector<SDValue, 4> Chains(NumValues); 1837 for (unsigned i = 0; i != NumValues; ++i) { 1838 // An aggregate return value cannot wrap around the address space, so 1839 // offsets to its parts don't wrap either. 1840 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1841 1842 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1843 if (MemVTs[i] != ValueVTs[i]) 1844 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1845 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1846 // FIXME: better loc info would be nice. 1847 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1848 } 1849 1850 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1851 MVT::Other, Chains); 1852 } else if (I.getNumOperands() != 0) { 1853 SmallVector<EVT, 4> ValueVTs; 1854 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1855 unsigned NumValues = ValueVTs.size(); 1856 if (NumValues) { 1857 SDValue RetOp = getValue(I.getOperand(0)); 1858 1859 const Function *F = I.getParent()->getParent(); 1860 1861 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1862 I.getOperand(0)->getType(), F->getCallingConv(), 1863 /*IsVarArg*/ false); 1864 1865 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1866 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1867 Attribute::SExt)) 1868 ExtendKind = ISD::SIGN_EXTEND; 1869 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1870 Attribute::ZExt)) 1871 ExtendKind = ISD::ZERO_EXTEND; 1872 1873 LLVMContext &Context = F->getContext(); 1874 bool RetInReg = F->getAttributes().hasAttribute( 1875 AttributeList::ReturnIndex, Attribute::InReg); 1876 1877 for (unsigned j = 0; j != NumValues; ++j) { 1878 EVT VT = ValueVTs[j]; 1879 1880 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1881 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1882 1883 CallingConv::ID CC = F->getCallingConv(); 1884 1885 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1886 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1887 SmallVector<SDValue, 4> Parts(NumParts); 1888 getCopyToParts(DAG, getCurSDLoc(), 1889 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1890 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1891 1892 // 'inreg' on function refers to return value 1893 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1894 if (RetInReg) 1895 Flags.setInReg(); 1896 1897 if (I.getOperand(0)->getType()->isPointerTy()) { 1898 Flags.setPointer(); 1899 Flags.setPointerAddrSpace( 1900 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1901 } 1902 1903 if (NeedsRegBlock) { 1904 Flags.setInConsecutiveRegs(); 1905 if (j == NumValues - 1) 1906 Flags.setInConsecutiveRegsLast(); 1907 } 1908 1909 // Propagate extension type if any 1910 if (ExtendKind == ISD::SIGN_EXTEND) 1911 Flags.setSExt(); 1912 else if (ExtendKind == ISD::ZERO_EXTEND) 1913 Flags.setZExt(); 1914 1915 for (unsigned i = 0; i < NumParts; ++i) { 1916 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1917 VT, /*isfixed=*/true, 0, 0)); 1918 OutVals.push_back(Parts[i]); 1919 } 1920 } 1921 } 1922 } 1923 1924 // Push in swifterror virtual register as the last element of Outs. This makes 1925 // sure swifterror virtual register will be returned in the swifterror 1926 // physical register. 1927 const Function *F = I.getParent()->getParent(); 1928 if (TLI.supportSwiftError() && 1929 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1930 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1931 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1932 Flags.setSwiftError(); 1933 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1934 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1935 true /*isfixed*/, 1 /*origidx*/, 1936 0 /*partOffs*/)); 1937 // Create SDNode for the swifterror virtual register. 1938 OutVals.push_back( 1939 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1940 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1941 EVT(TLI.getPointerTy(DL)))); 1942 } 1943 1944 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1945 CallingConv::ID CallConv = 1946 DAG.getMachineFunction().getFunction().getCallingConv(); 1947 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1948 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1949 1950 // Verify that the target's LowerReturn behaved as expected. 1951 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1952 "LowerReturn didn't return a valid chain!"); 1953 1954 // Update the DAG with the new chain value resulting from return lowering. 1955 DAG.setRoot(Chain); 1956 } 1957 1958 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1959 /// created for it, emit nodes to copy the value into the virtual 1960 /// registers. 1961 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1962 // Skip empty types 1963 if (V->getType()->isEmptyTy()) 1964 return; 1965 1966 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1967 if (VMI != FuncInfo.ValueMap.end()) { 1968 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1969 CopyValueToVirtualRegister(V, VMI->second); 1970 } 1971 } 1972 1973 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1974 /// the current basic block, add it to ValueMap now so that we'll get a 1975 /// CopyTo/FromReg. 1976 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1977 // No need to export constants. 1978 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1979 1980 // Already exported? 1981 if (FuncInfo.isExportedInst(V)) return; 1982 1983 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1984 CopyValueToVirtualRegister(V, Reg); 1985 } 1986 1987 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1988 const BasicBlock *FromBB) { 1989 // The operands of the setcc have to be in this block. We don't know 1990 // how to export them from some other block. 1991 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1992 // Can export from current BB. 1993 if (VI->getParent() == FromBB) 1994 return true; 1995 1996 // Is already exported, noop. 1997 return FuncInfo.isExportedInst(V); 1998 } 1999 2000 // If this is an argument, we can export it if the BB is the entry block or 2001 // if it is already exported. 2002 if (isa<Argument>(V)) { 2003 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2004 return true; 2005 2006 // Otherwise, can only export this if it is already exported. 2007 return FuncInfo.isExportedInst(V); 2008 } 2009 2010 // Otherwise, constants can always be exported. 2011 return true; 2012 } 2013 2014 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2015 BranchProbability 2016 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2017 const MachineBasicBlock *Dst) const { 2018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2019 const BasicBlock *SrcBB = Src->getBasicBlock(); 2020 const BasicBlock *DstBB = Dst->getBasicBlock(); 2021 if (!BPI) { 2022 // If BPI is not available, set the default probability as 1 / N, where N is 2023 // the number of successors. 2024 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2025 return BranchProbability(1, SuccSize); 2026 } 2027 return BPI->getEdgeProbability(SrcBB, DstBB); 2028 } 2029 2030 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2031 MachineBasicBlock *Dst, 2032 BranchProbability Prob) { 2033 if (!FuncInfo.BPI) 2034 Src->addSuccessorWithoutProb(Dst); 2035 else { 2036 if (Prob.isUnknown()) 2037 Prob = getEdgeProbability(Src, Dst); 2038 Src->addSuccessor(Dst, Prob); 2039 } 2040 } 2041 2042 static bool InBlock(const Value *V, const BasicBlock *BB) { 2043 if (const Instruction *I = dyn_cast<Instruction>(V)) 2044 return I->getParent() == BB; 2045 return true; 2046 } 2047 2048 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2049 /// This function emits a branch and is used at the leaves of an OR or an 2050 /// AND operator tree. 2051 void 2052 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2053 MachineBasicBlock *TBB, 2054 MachineBasicBlock *FBB, 2055 MachineBasicBlock *CurBB, 2056 MachineBasicBlock *SwitchBB, 2057 BranchProbability TProb, 2058 BranchProbability FProb, 2059 bool InvertCond) { 2060 const BasicBlock *BB = CurBB->getBasicBlock(); 2061 2062 // If the leaf of the tree is a comparison, merge the condition into 2063 // the caseblock. 2064 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2065 // The operands of the cmp have to be in this block. We don't know 2066 // how to export them from some other block. If this is the first block 2067 // of the sequence, no exporting is needed. 2068 if (CurBB == SwitchBB || 2069 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2070 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2071 ISD::CondCode Condition; 2072 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2073 ICmpInst::Predicate Pred = 2074 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2075 Condition = getICmpCondCode(Pred); 2076 } else { 2077 const FCmpInst *FC = cast<FCmpInst>(Cond); 2078 FCmpInst::Predicate Pred = 2079 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2080 Condition = getFCmpCondCode(Pred); 2081 if (TM.Options.NoNaNsFPMath) 2082 Condition = getFCmpCodeWithoutNaN(Condition); 2083 } 2084 2085 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2086 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2087 SL->SwitchCases.push_back(CB); 2088 return; 2089 } 2090 } 2091 2092 // Create a CaseBlock record representing this branch. 2093 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2094 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2095 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2096 SL->SwitchCases.push_back(CB); 2097 } 2098 2099 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2100 MachineBasicBlock *TBB, 2101 MachineBasicBlock *FBB, 2102 MachineBasicBlock *CurBB, 2103 MachineBasicBlock *SwitchBB, 2104 Instruction::BinaryOps Opc, 2105 BranchProbability TProb, 2106 BranchProbability FProb, 2107 bool InvertCond) { 2108 // Skip over not part of the tree and remember to invert op and operands at 2109 // next level. 2110 Value *NotCond; 2111 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2112 InBlock(NotCond, CurBB->getBasicBlock())) { 2113 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2114 !InvertCond); 2115 return; 2116 } 2117 2118 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2119 // Compute the effective opcode for Cond, taking into account whether it needs 2120 // to be inverted, e.g. 2121 // and (not (or A, B)), C 2122 // gets lowered as 2123 // and (and (not A, not B), C) 2124 unsigned BOpc = 0; 2125 if (BOp) { 2126 BOpc = BOp->getOpcode(); 2127 if (InvertCond) { 2128 if (BOpc == Instruction::And) 2129 BOpc = Instruction::Or; 2130 else if (BOpc == Instruction::Or) 2131 BOpc = Instruction::And; 2132 } 2133 } 2134 2135 // If this node is not part of the or/and tree, emit it as a branch. 2136 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2137 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2138 BOp->getParent() != CurBB->getBasicBlock() || 2139 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2140 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2141 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2142 TProb, FProb, InvertCond); 2143 return; 2144 } 2145 2146 // Create TmpBB after CurBB. 2147 MachineFunction::iterator BBI(CurBB); 2148 MachineFunction &MF = DAG.getMachineFunction(); 2149 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2150 CurBB->getParent()->insert(++BBI, TmpBB); 2151 2152 if (Opc == Instruction::Or) { 2153 // Codegen X | Y as: 2154 // BB1: 2155 // jmp_if_X TBB 2156 // jmp TmpBB 2157 // TmpBB: 2158 // jmp_if_Y TBB 2159 // jmp FBB 2160 // 2161 2162 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2163 // The requirement is that 2164 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2165 // = TrueProb for original BB. 2166 // Assuming the original probabilities are A and B, one choice is to set 2167 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2168 // A/(1+B) and 2B/(1+B). This choice assumes that 2169 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2170 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2171 // TmpBB, but the math is more complicated. 2172 2173 auto NewTrueProb = TProb / 2; 2174 auto NewFalseProb = TProb / 2 + FProb; 2175 // Emit the LHS condition. 2176 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2177 NewTrueProb, NewFalseProb, InvertCond); 2178 2179 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2180 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2181 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2182 // Emit the RHS condition into TmpBB. 2183 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2184 Probs[0], Probs[1], InvertCond); 2185 } else { 2186 assert(Opc == Instruction::And && "Unknown merge op!"); 2187 // Codegen X & Y as: 2188 // BB1: 2189 // jmp_if_X TmpBB 2190 // jmp FBB 2191 // TmpBB: 2192 // jmp_if_Y TBB 2193 // jmp FBB 2194 // 2195 // This requires creation of TmpBB after CurBB. 2196 2197 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2198 // The requirement is that 2199 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2200 // = FalseProb for original BB. 2201 // Assuming the original probabilities are A and B, one choice is to set 2202 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2203 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2204 // TrueProb for BB1 * FalseProb for TmpBB. 2205 2206 auto NewTrueProb = TProb + FProb / 2; 2207 auto NewFalseProb = FProb / 2; 2208 // Emit the LHS condition. 2209 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2210 NewTrueProb, NewFalseProb, InvertCond); 2211 2212 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2213 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2214 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2215 // Emit the RHS condition into TmpBB. 2216 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2217 Probs[0], Probs[1], InvertCond); 2218 } 2219 } 2220 2221 /// If the set of cases should be emitted as a series of branches, return true. 2222 /// If we should emit this as a bunch of and/or'd together conditions, return 2223 /// false. 2224 bool 2225 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2226 if (Cases.size() != 2) return true; 2227 2228 // If this is two comparisons of the same values or'd or and'd together, they 2229 // will get folded into a single comparison, so don't emit two blocks. 2230 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2231 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2232 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2233 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2234 return false; 2235 } 2236 2237 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2238 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2239 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2240 Cases[0].CC == Cases[1].CC && 2241 isa<Constant>(Cases[0].CmpRHS) && 2242 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2243 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2244 return false; 2245 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2246 return false; 2247 } 2248 2249 return true; 2250 } 2251 2252 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2253 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2254 2255 // Update machine-CFG edges. 2256 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2257 2258 if (I.isUnconditional()) { 2259 // Update machine-CFG edges. 2260 BrMBB->addSuccessor(Succ0MBB); 2261 2262 // If this is not a fall-through branch or optimizations are switched off, 2263 // emit the branch. 2264 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2265 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2266 MVT::Other, getControlRoot(), 2267 DAG.getBasicBlock(Succ0MBB))); 2268 2269 return; 2270 } 2271 2272 // If this condition is one of the special cases we handle, do special stuff 2273 // now. 2274 const Value *CondVal = I.getCondition(); 2275 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2276 2277 // If this is a series of conditions that are or'd or and'd together, emit 2278 // this as a sequence of branches instead of setcc's with and/or operations. 2279 // As long as jumps are not expensive, this should improve performance. 2280 // For example, instead of something like: 2281 // cmp A, B 2282 // C = seteq 2283 // cmp D, E 2284 // F = setle 2285 // or C, F 2286 // jnz foo 2287 // Emit: 2288 // cmp A, B 2289 // je foo 2290 // cmp D, E 2291 // jle foo 2292 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2293 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2294 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2295 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2296 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2297 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2298 Opcode, 2299 getEdgeProbability(BrMBB, Succ0MBB), 2300 getEdgeProbability(BrMBB, Succ1MBB), 2301 /*InvertCond=*/false); 2302 // If the compares in later blocks need to use values not currently 2303 // exported from this block, export them now. This block should always 2304 // be the first entry. 2305 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2306 2307 // Allow some cases to be rejected. 2308 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2309 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2310 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2311 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2312 } 2313 2314 // Emit the branch for this block. 2315 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2316 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2317 return; 2318 } 2319 2320 // Okay, we decided not to do this, remove any inserted MBB's and clear 2321 // SwitchCases. 2322 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2323 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2324 2325 SL->SwitchCases.clear(); 2326 } 2327 } 2328 2329 // Create a CaseBlock record representing this branch. 2330 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2331 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2332 2333 // Use visitSwitchCase to actually insert the fast branch sequence for this 2334 // cond branch. 2335 visitSwitchCase(CB, BrMBB); 2336 } 2337 2338 /// visitSwitchCase - Emits the necessary code to represent a single node in 2339 /// the binary search tree resulting from lowering a switch instruction. 2340 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2341 MachineBasicBlock *SwitchBB) { 2342 SDValue Cond; 2343 SDValue CondLHS = getValue(CB.CmpLHS); 2344 SDLoc dl = CB.DL; 2345 2346 if (CB.CC == ISD::SETTRUE) { 2347 // Branch or fall through to TrueBB. 2348 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2349 SwitchBB->normalizeSuccProbs(); 2350 if (CB.TrueBB != NextBlock(SwitchBB)) { 2351 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2352 DAG.getBasicBlock(CB.TrueBB))); 2353 } 2354 return; 2355 } 2356 2357 auto &TLI = DAG.getTargetLoweringInfo(); 2358 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2359 2360 // Build the setcc now. 2361 if (!CB.CmpMHS) { 2362 // Fold "(X == true)" to X and "(X == false)" to !X to 2363 // handle common cases produced by branch lowering. 2364 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2365 CB.CC == ISD::SETEQ) 2366 Cond = CondLHS; 2367 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2368 CB.CC == ISD::SETEQ) { 2369 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2370 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2371 } else { 2372 SDValue CondRHS = getValue(CB.CmpRHS); 2373 2374 // If a pointer's DAG type is larger than its memory type then the DAG 2375 // values are zero-extended. This breaks signed comparisons so truncate 2376 // back to the underlying type before doing the compare. 2377 if (CondLHS.getValueType() != MemVT) { 2378 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2379 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2380 } 2381 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2382 } 2383 } else { 2384 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2385 2386 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2387 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2388 2389 SDValue CmpOp = getValue(CB.CmpMHS); 2390 EVT VT = CmpOp.getValueType(); 2391 2392 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2393 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2394 ISD::SETLE); 2395 } else { 2396 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2397 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2398 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2399 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2400 } 2401 } 2402 2403 // Update successor info 2404 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2405 // TrueBB and FalseBB are always different unless the incoming IR is 2406 // degenerate. This only happens when running llc on weird IR. 2407 if (CB.TrueBB != CB.FalseBB) 2408 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2409 SwitchBB->normalizeSuccProbs(); 2410 2411 // If the lhs block is the next block, invert the condition so that we can 2412 // fall through to the lhs instead of the rhs block. 2413 if (CB.TrueBB == NextBlock(SwitchBB)) { 2414 std::swap(CB.TrueBB, CB.FalseBB); 2415 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2416 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2417 } 2418 2419 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2420 MVT::Other, getControlRoot(), Cond, 2421 DAG.getBasicBlock(CB.TrueBB)); 2422 2423 // Insert the false branch. Do this even if it's a fall through branch, 2424 // this makes it easier to do DAG optimizations which require inverting 2425 // the branch condition. 2426 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2427 DAG.getBasicBlock(CB.FalseBB)); 2428 2429 DAG.setRoot(BrCond); 2430 } 2431 2432 /// visitJumpTable - Emit JumpTable node in the current MBB 2433 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2434 // Emit the code for the jump table 2435 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2436 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2437 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2438 JT.Reg, PTy); 2439 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2440 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2441 MVT::Other, Index.getValue(1), 2442 Table, Index); 2443 DAG.setRoot(BrJumpTable); 2444 } 2445 2446 /// visitJumpTableHeader - This function emits necessary code to produce index 2447 /// in the JumpTable from switch case. 2448 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2449 JumpTableHeader &JTH, 2450 MachineBasicBlock *SwitchBB) { 2451 SDLoc dl = getCurSDLoc(); 2452 2453 // Subtract the lowest switch case value from the value being switched on. 2454 SDValue SwitchOp = getValue(JTH.SValue); 2455 EVT VT = SwitchOp.getValueType(); 2456 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2457 DAG.getConstant(JTH.First, dl, VT)); 2458 2459 // The SDNode we just created, which holds the value being switched on minus 2460 // the smallest case value, needs to be copied to a virtual register so it 2461 // can be used as an index into the jump table in a subsequent basic block. 2462 // This value may be smaller or larger than the target's pointer type, and 2463 // therefore require extension or truncating. 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2466 2467 unsigned JumpTableReg = 2468 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2469 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2470 JumpTableReg, SwitchOp); 2471 JT.Reg = JumpTableReg; 2472 2473 if (!JTH.OmitRangeCheck) { 2474 // Emit the range check for the jump table, and branch to the default block 2475 // for the switch statement if the value being switched on exceeds the 2476 // largest case in the switch. 2477 SDValue CMP = DAG.getSetCC( 2478 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2479 Sub.getValueType()), 2480 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2481 2482 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2483 MVT::Other, CopyTo, CMP, 2484 DAG.getBasicBlock(JT.Default)); 2485 2486 // Avoid emitting unnecessary branches to the next block. 2487 if (JT.MBB != NextBlock(SwitchBB)) 2488 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2489 DAG.getBasicBlock(JT.MBB)); 2490 2491 DAG.setRoot(BrCond); 2492 } else { 2493 // Avoid emitting unnecessary branches to the next block. 2494 if (JT.MBB != NextBlock(SwitchBB)) 2495 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2496 DAG.getBasicBlock(JT.MBB))); 2497 else 2498 DAG.setRoot(CopyTo); 2499 } 2500 } 2501 2502 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2503 /// variable if there exists one. 2504 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2505 SDValue &Chain) { 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 MachineFunction &MF = DAG.getMachineFunction(); 2510 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2511 MachineSDNode *Node = 2512 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2513 if (Global) { 2514 MachinePointerInfo MPInfo(Global); 2515 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2516 MachineMemOperand::MODereferenceable; 2517 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2518 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2519 DAG.setNodeMemRefs(Node, {MemRef}); 2520 } 2521 if (PtrTy != PtrMemTy) 2522 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2523 return SDValue(Node, 0); 2524 } 2525 2526 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2527 /// tail spliced into a stack protector check success bb. 2528 /// 2529 /// For a high level explanation of how this fits into the stack protector 2530 /// generation see the comment on the declaration of class 2531 /// StackProtectorDescriptor. 2532 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2533 MachineBasicBlock *ParentBB) { 2534 2535 // First create the loads to the guard/stack slot for the comparison. 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2538 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2539 2540 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2541 int FI = MFI.getStackProtectorIndex(); 2542 2543 SDValue Guard; 2544 SDLoc dl = getCurSDLoc(); 2545 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2546 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2547 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2548 2549 // Generate code to load the content of the guard slot. 2550 SDValue GuardVal = DAG.getLoad( 2551 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2553 MachineMemOperand::MOVolatile); 2554 2555 if (TLI.useStackGuardXorFP()) 2556 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2557 2558 // Retrieve guard check function, nullptr if instrumentation is inlined. 2559 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2560 // The target provides a guard check function to validate the guard value. 2561 // Generate a call to that function with the content of the guard slot as 2562 // argument. 2563 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2564 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2565 2566 TargetLowering::ArgListTy Args; 2567 TargetLowering::ArgListEntry Entry; 2568 Entry.Node = GuardVal; 2569 Entry.Ty = FnTy->getParamType(0); 2570 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2571 Entry.IsInReg = true; 2572 Args.push_back(Entry); 2573 2574 TargetLowering::CallLoweringInfo CLI(DAG); 2575 CLI.setDebugLoc(getCurSDLoc()) 2576 .setChain(DAG.getEntryNode()) 2577 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2578 getValue(GuardCheckFn), std::move(Args)); 2579 2580 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2581 DAG.setRoot(Result.second); 2582 return; 2583 } 2584 2585 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2586 // Otherwise, emit a volatile load to retrieve the stack guard value. 2587 SDValue Chain = DAG.getEntryNode(); 2588 if (TLI.useLoadStackGuardNode()) { 2589 Guard = getLoadStackGuard(DAG, dl, Chain); 2590 } else { 2591 const Value *IRGuard = TLI.getSDagStackGuard(M); 2592 SDValue GuardPtr = getValue(IRGuard); 2593 2594 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2595 MachinePointerInfo(IRGuard, 0), Align, 2596 MachineMemOperand::MOVolatile); 2597 } 2598 2599 // Perform the comparison via a getsetcc. 2600 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2601 *DAG.getContext(), 2602 Guard.getValueType()), 2603 Guard, GuardVal, ISD::SETNE); 2604 2605 // If the guard/stackslot do not equal, branch to failure MBB. 2606 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2607 MVT::Other, GuardVal.getOperand(0), 2608 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2609 // Otherwise branch to success MBB. 2610 SDValue Br = DAG.getNode(ISD::BR, dl, 2611 MVT::Other, BrCond, 2612 DAG.getBasicBlock(SPD.getSuccessMBB())); 2613 2614 DAG.setRoot(Br); 2615 } 2616 2617 /// Codegen the failure basic block for a stack protector check. 2618 /// 2619 /// A failure stack protector machine basic block consists simply of a call to 2620 /// __stack_chk_fail(). 2621 /// 2622 /// For a high level explanation of how this fits into the stack protector 2623 /// generation see the comment on the declaration of class 2624 /// StackProtectorDescriptor. 2625 void 2626 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2628 TargetLowering::MakeLibCallOptions CallOptions; 2629 CallOptions.setDiscardResult(true); 2630 SDValue Chain = 2631 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2632 None, CallOptions, getCurSDLoc()).second; 2633 // On PS4, the "return address" must still be within the calling function, 2634 // even if it's at the very end, so emit an explicit TRAP here. 2635 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2636 if (TM.getTargetTriple().isPS4CPU()) 2637 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2638 2639 DAG.setRoot(Chain); 2640 } 2641 2642 /// visitBitTestHeader - This function emits necessary code to produce value 2643 /// suitable for "bit tests" 2644 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2645 MachineBasicBlock *SwitchBB) { 2646 SDLoc dl = getCurSDLoc(); 2647 2648 // Subtract the minimum value. 2649 SDValue SwitchOp = getValue(B.SValue); 2650 EVT VT = SwitchOp.getValueType(); 2651 SDValue RangeSub = 2652 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2653 2654 // Determine the type of the test operands. 2655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2656 bool UsePtrType = false; 2657 if (!TLI.isTypeLegal(VT)) { 2658 UsePtrType = true; 2659 } else { 2660 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2661 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2662 // Switch table case range are encoded into series of masks. 2663 // Just use pointer type, it's guaranteed to fit. 2664 UsePtrType = true; 2665 break; 2666 } 2667 } 2668 SDValue Sub = RangeSub; 2669 if (UsePtrType) { 2670 VT = TLI.getPointerTy(DAG.getDataLayout()); 2671 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2672 } 2673 2674 B.RegVT = VT.getSimpleVT(); 2675 B.Reg = FuncInfo.CreateReg(B.RegVT); 2676 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2677 2678 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2679 2680 if (!B.OmitRangeCheck) 2681 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2682 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2683 SwitchBB->normalizeSuccProbs(); 2684 2685 SDValue Root = CopyTo; 2686 if (!B.OmitRangeCheck) { 2687 // Conditional branch to the default block. 2688 SDValue RangeCmp = DAG.getSetCC(dl, 2689 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2690 RangeSub.getValueType()), 2691 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2692 ISD::SETUGT); 2693 2694 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2695 DAG.getBasicBlock(B.Default)); 2696 } 2697 2698 // Avoid emitting unnecessary branches to the next block. 2699 if (MBB != NextBlock(SwitchBB)) 2700 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2701 2702 DAG.setRoot(Root); 2703 } 2704 2705 /// visitBitTestCase - this function produces one "bit test" 2706 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2707 MachineBasicBlock* NextMBB, 2708 BranchProbability BranchProbToNext, 2709 unsigned Reg, 2710 BitTestCase &B, 2711 MachineBasicBlock *SwitchBB) { 2712 SDLoc dl = getCurSDLoc(); 2713 MVT VT = BB.RegVT; 2714 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2715 SDValue Cmp; 2716 unsigned PopCount = countPopulation(B.Mask); 2717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2718 if (PopCount == 1) { 2719 // Testing for a single bit; just compare the shift count with what it 2720 // would need to be to shift a 1 bit in that position. 2721 Cmp = DAG.getSetCC( 2722 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2723 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2724 ISD::SETEQ); 2725 } else if (PopCount == BB.Range) { 2726 // There is only one zero bit in the range, test for it directly. 2727 Cmp = DAG.getSetCC( 2728 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2729 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2730 ISD::SETNE); 2731 } else { 2732 // Make desired shift 2733 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2734 DAG.getConstant(1, dl, VT), ShiftOp); 2735 2736 // Emit bit tests and jumps 2737 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2738 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2739 Cmp = DAG.getSetCC( 2740 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2741 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2742 } 2743 2744 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2745 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2746 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2747 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2748 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2749 // one as they are relative probabilities (and thus work more like weights), 2750 // and hence we need to normalize them to let the sum of them become one. 2751 SwitchBB->normalizeSuccProbs(); 2752 2753 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2754 MVT::Other, getControlRoot(), 2755 Cmp, DAG.getBasicBlock(B.TargetBB)); 2756 2757 // Avoid emitting unnecessary branches to the next block. 2758 if (NextMBB != NextBlock(SwitchBB)) 2759 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2760 DAG.getBasicBlock(NextMBB)); 2761 2762 DAG.setRoot(BrAnd); 2763 } 2764 2765 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2766 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2767 2768 // Retrieve successors. Look through artificial IR level blocks like 2769 // catchswitch for successors. 2770 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2771 const BasicBlock *EHPadBB = I.getSuccessor(1); 2772 2773 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2774 // have to do anything here to lower funclet bundles. 2775 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2776 LLVMContext::OB_funclet, 2777 LLVMContext::OB_cfguardtarget}) && 2778 "Cannot lower invokes with arbitrary operand bundles yet!"); 2779 2780 const Value *Callee(I.getCalledValue()); 2781 const Function *Fn = dyn_cast<Function>(Callee); 2782 if (isa<InlineAsm>(Callee)) 2783 visitInlineAsm(I); 2784 else if (Fn && Fn->isIntrinsic()) { 2785 switch (Fn->getIntrinsicID()) { 2786 default: 2787 llvm_unreachable("Cannot invoke this intrinsic"); 2788 case Intrinsic::donothing: 2789 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2790 break; 2791 case Intrinsic::experimental_patchpoint_void: 2792 case Intrinsic::experimental_patchpoint_i64: 2793 visitPatchpoint(I, EHPadBB); 2794 break; 2795 case Intrinsic::experimental_gc_statepoint: 2796 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2797 break; 2798 case Intrinsic::wasm_rethrow_in_catch: { 2799 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2800 // special because it can be invoked, so we manually lower it to a DAG 2801 // node here. 2802 SmallVector<SDValue, 8> Ops; 2803 Ops.push_back(getRoot()); // inchain 2804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2805 Ops.push_back( 2806 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2807 TLI.getPointerTy(DAG.getDataLayout()))); 2808 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2809 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2810 break; 2811 } 2812 } 2813 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2814 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2815 // Eventually we will support lowering the @llvm.experimental.deoptimize 2816 // intrinsic, and right now there are no plans to support other intrinsics 2817 // with deopt state. 2818 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2819 } else { 2820 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2821 } 2822 2823 // If the value of the invoke is used outside of its defining block, make it 2824 // available as a virtual register. 2825 // We already took care of the exported value for the statepoint instruction 2826 // during call to the LowerStatepoint. 2827 if (!isStatepoint(I)) { 2828 CopyToExportRegsIfNeeded(&I); 2829 } 2830 2831 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2832 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2833 BranchProbability EHPadBBProb = 2834 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2835 : BranchProbability::getZero(); 2836 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2837 2838 // Update successor info. 2839 addSuccessorWithProb(InvokeMBB, Return); 2840 for (auto &UnwindDest : UnwindDests) { 2841 UnwindDest.first->setIsEHPad(); 2842 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2843 } 2844 InvokeMBB->normalizeSuccProbs(); 2845 2846 // Drop into normal successor. 2847 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2848 DAG.getBasicBlock(Return))); 2849 } 2850 2851 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2852 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2853 2854 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2855 // have to do anything here to lower funclet bundles. 2856 assert(!I.hasOperandBundlesOtherThan( 2857 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2858 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2859 2860 assert(isa<InlineAsm>(I.getCalledValue()) && 2861 "Only know how to handle inlineasm callbr"); 2862 visitInlineAsm(I); 2863 CopyToExportRegsIfNeeded(&I); 2864 2865 // Retrieve successors. 2866 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2867 Return->setInlineAsmBrDefaultTarget(); 2868 2869 // Update successor info. 2870 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2871 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2872 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2873 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2874 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2875 } 2876 CallBrMBB->normalizeSuccProbs(); 2877 2878 // Drop into default successor. 2879 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2880 MVT::Other, getControlRoot(), 2881 DAG.getBasicBlock(Return))); 2882 } 2883 2884 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2885 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2886 } 2887 2888 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2889 assert(FuncInfo.MBB->isEHPad() && 2890 "Call to landingpad not in landing pad!"); 2891 2892 // If there aren't registers to copy the values into (e.g., during SjLj 2893 // exceptions), then don't bother to create these DAG nodes. 2894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2895 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2896 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2897 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2898 return; 2899 2900 // If landingpad's return type is token type, we don't create DAG nodes 2901 // for its exception pointer and selector value. The extraction of exception 2902 // pointer or selector value from token type landingpads is not currently 2903 // supported. 2904 if (LP.getType()->isTokenTy()) 2905 return; 2906 2907 SmallVector<EVT, 2> ValueVTs; 2908 SDLoc dl = getCurSDLoc(); 2909 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2910 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2911 2912 // Get the two live-in registers as SDValues. The physregs have already been 2913 // copied into virtual registers. 2914 SDValue Ops[2]; 2915 if (FuncInfo.ExceptionPointerVirtReg) { 2916 Ops[0] = DAG.getZExtOrTrunc( 2917 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2918 FuncInfo.ExceptionPointerVirtReg, 2919 TLI.getPointerTy(DAG.getDataLayout())), 2920 dl, ValueVTs[0]); 2921 } else { 2922 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2923 } 2924 Ops[1] = DAG.getZExtOrTrunc( 2925 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2926 FuncInfo.ExceptionSelectorVirtReg, 2927 TLI.getPointerTy(DAG.getDataLayout())), 2928 dl, ValueVTs[1]); 2929 2930 // Merge into one. 2931 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2932 DAG.getVTList(ValueVTs), Ops); 2933 setValue(&LP, Res); 2934 } 2935 2936 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2937 MachineBasicBlock *Last) { 2938 // Update JTCases. 2939 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2940 if (SL->JTCases[i].first.HeaderBB == First) 2941 SL->JTCases[i].first.HeaderBB = Last; 2942 2943 // Update BitTestCases. 2944 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2945 if (SL->BitTestCases[i].Parent == First) 2946 SL->BitTestCases[i].Parent = Last; 2947 2948 // SelectionDAGISel::FinishBasicBlock will add PHI operands for the 2949 // successors of the fallthrough block. Here, we add PHI operands for the 2950 // successors of the INLINEASM_BR block itself. 2951 if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR) 2952 for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate) 2953 if (First->isSuccessor(pair.first->getParent())) 2954 MachineInstrBuilder(*First->getParent(), pair.first) 2955 .addReg(pair.second) 2956 .addMBB(First); 2957 } 2958 2959 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2960 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2961 2962 // Update machine-CFG edges with unique successors. 2963 SmallSet<BasicBlock*, 32> Done; 2964 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2965 BasicBlock *BB = I.getSuccessor(i); 2966 bool Inserted = Done.insert(BB).second; 2967 if (!Inserted) 2968 continue; 2969 2970 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2971 addSuccessorWithProb(IndirectBrMBB, Succ); 2972 } 2973 IndirectBrMBB->normalizeSuccProbs(); 2974 2975 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2976 MVT::Other, getControlRoot(), 2977 getValue(I.getAddress()))); 2978 } 2979 2980 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2981 if (!DAG.getTarget().Options.TrapUnreachable) 2982 return; 2983 2984 // We may be able to ignore unreachable behind a noreturn call. 2985 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2986 const BasicBlock &BB = *I.getParent(); 2987 if (&I != &BB.front()) { 2988 BasicBlock::const_iterator PredI = 2989 std::prev(BasicBlock::const_iterator(&I)); 2990 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2991 if (Call->doesNotReturn()) 2992 return; 2993 } 2994 } 2995 } 2996 2997 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2998 } 2999 3000 void SelectionDAGBuilder::visitFSub(const User &I) { 3001 // -0.0 - X --> fneg 3002 Type *Ty = I.getType(); 3003 if (isa<Constant>(I.getOperand(0)) && 3004 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3005 SDValue Op2 = getValue(I.getOperand(1)); 3006 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3007 Op2.getValueType(), Op2)); 3008 return; 3009 } 3010 3011 visitBinary(I, ISD::FSUB); 3012 } 3013 3014 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3015 SDNodeFlags Flags; 3016 3017 SDValue Op = getValue(I.getOperand(0)); 3018 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3019 Op, Flags); 3020 setValue(&I, UnNodeValue); 3021 } 3022 3023 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3024 SDNodeFlags Flags; 3025 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3026 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3027 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3028 } 3029 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3030 Flags.setExact(ExactOp->isExact()); 3031 } 3032 3033 SDValue Op1 = getValue(I.getOperand(0)); 3034 SDValue Op2 = getValue(I.getOperand(1)); 3035 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3036 Op1, Op2, Flags); 3037 setValue(&I, BinNodeValue); 3038 } 3039 3040 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3041 SDValue Op1 = getValue(I.getOperand(0)); 3042 SDValue Op2 = getValue(I.getOperand(1)); 3043 3044 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3045 Op1.getValueType(), DAG.getDataLayout()); 3046 3047 // Coerce the shift amount to the right type if we can. 3048 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3049 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3050 unsigned Op2Size = Op2.getValueSizeInBits(); 3051 SDLoc DL = getCurSDLoc(); 3052 3053 // If the operand is smaller than the shift count type, promote it. 3054 if (ShiftSize > Op2Size) 3055 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3056 3057 // If the operand is larger than the shift count type but the shift 3058 // count type has enough bits to represent any shift value, truncate 3059 // it now. This is a common case and it exposes the truncate to 3060 // optimization early. 3061 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3062 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3063 // Otherwise we'll need to temporarily settle for some other convenient 3064 // type. Type legalization will make adjustments once the shiftee is split. 3065 else 3066 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3067 } 3068 3069 bool nuw = false; 3070 bool nsw = false; 3071 bool exact = false; 3072 3073 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3074 3075 if (const OverflowingBinaryOperator *OFBinOp = 3076 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3077 nuw = OFBinOp->hasNoUnsignedWrap(); 3078 nsw = OFBinOp->hasNoSignedWrap(); 3079 } 3080 if (const PossiblyExactOperator *ExactOp = 3081 dyn_cast<const PossiblyExactOperator>(&I)) 3082 exact = ExactOp->isExact(); 3083 } 3084 SDNodeFlags Flags; 3085 Flags.setExact(exact); 3086 Flags.setNoSignedWrap(nsw); 3087 Flags.setNoUnsignedWrap(nuw); 3088 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3089 Flags); 3090 setValue(&I, Res); 3091 } 3092 3093 void SelectionDAGBuilder::visitSDiv(const User &I) { 3094 SDValue Op1 = getValue(I.getOperand(0)); 3095 SDValue Op2 = getValue(I.getOperand(1)); 3096 3097 SDNodeFlags Flags; 3098 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3099 cast<PossiblyExactOperator>(&I)->isExact()); 3100 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3101 Op2, Flags)); 3102 } 3103 3104 void SelectionDAGBuilder::visitICmp(const User &I) { 3105 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3106 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3107 predicate = IC->getPredicate(); 3108 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3109 predicate = ICmpInst::Predicate(IC->getPredicate()); 3110 SDValue Op1 = getValue(I.getOperand(0)); 3111 SDValue Op2 = getValue(I.getOperand(1)); 3112 ISD::CondCode Opcode = getICmpCondCode(predicate); 3113 3114 auto &TLI = DAG.getTargetLoweringInfo(); 3115 EVT MemVT = 3116 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3117 3118 // If a pointer's DAG type is larger than its memory type then the DAG values 3119 // are zero-extended. This breaks signed comparisons so truncate back to the 3120 // underlying type before doing the compare. 3121 if (Op1.getValueType() != MemVT) { 3122 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3123 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3124 } 3125 3126 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3127 I.getType()); 3128 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3129 } 3130 3131 void SelectionDAGBuilder::visitFCmp(const User &I) { 3132 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3133 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3134 predicate = FC->getPredicate(); 3135 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3136 predicate = FCmpInst::Predicate(FC->getPredicate()); 3137 SDValue Op1 = getValue(I.getOperand(0)); 3138 SDValue Op2 = getValue(I.getOperand(1)); 3139 3140 ISD::CondCode Condition = getFCmpCondCode(predicate); 3141 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3142 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3143 Condition = getFCmpCodeWithoutNaN(Condition); 3144 3145 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3146 I.getType()); 3147 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3148 } 3149 3150 // Check if the condition of the select has one use or two users that are both 3151 // selects with the same condition. 3152 static bool hasOnlySelectUsers(const Value *Cond) { 3153 return llvm::all_of(Cond->users(), [](const Value *V) { 3154 return isa<SelectInst>(V); 3155 }); 3156 } 3157 3158 void SelectionDAGBuilder::visitSelect(const User &I) { 3159 SmallVector<EVT, 4> ValueVTs; 3160 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3161 ValueVTs); 3162 unsigned NumValues = ValueVTs.size(); 3163 if (NumValues == 0) return; 3164 3165 SmallVector<SDValue, 4> Values(NumValues); 3166 SDValue Cond = getValue(I.getOperand(0)); 3167 SDValue LHSVal = getValue(I.getOperand(1)); 3168 SDValue RHSVal = getValue(I.getOperand(2)); 3169 SmallVector<SDValue, 1> BaseOps(1, Cond); 3170 ISD::NodeType OpCode = 3171 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3172 3173 bool IsUnaryAbs = false; 3174 3175 // Min/max matching is only viable if all output VTs are the same. 3176 if (is_splat(ValueVTs)) { 3177 EVT VT = ValueVTs[0]; 3178 LLVMContext &Ctx = *DAG.getContext(); 3179 auto &TLI = DAG.getTargetLoweringInfo(); 3180 3181 // We care about the legality of the operation after it has been type 3182 // legalized. 3183 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3184 VT = TLI.getTypeToTransformTo(Ctx, VT); 3185 3186 // If the vselect is legal, assume we want to leave this as a vector setcc + 3187 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3188 // min/max is legal on the scalar type. 3189 bool UseScalarMinMax = VT.isVector() && 3190 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3191 3192 Value *LHS, *RHS; 3193 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3194 ISD::NodeType Opc = ISD::DELETED_NODE; 3195 switch (SPR.Flavor) { 3196 case SPF_UMAX: Opc = ISD::UMAX; break; 3197 case SPF_UMIN: Opc = ISD::UMIN; break; 3198 case SPF_SMAX: Opc = ISD::SMAX; break; 3199 case SPF_SMIN: Opc = ISD::SMIN; break; 3200 case SPF_FMINNUM: 3201 switch (SPR.NaNBehavior) { 3202 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3203 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3204 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3205 case SPNB_RETURNS_ANY: { 3206 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3207 Opc = ISD::FMINNUM; 3208 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3209 Opc = ISD::FMINIMUM; 3210 else if (UseScalarMinMax) 3211 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3212 ISD::FMINNUM : ISD::FMINIMUM; 3213 break; 3214 } 3215 } 3216 break; 3217 case SPF_FMAXNUM: 3218 switch (SPR.NaNBehavior) { 3219 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3220 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3221 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3222 case SPNB_RETURNS_ANY: 3223 3224 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3225 Opc = ISD::FMAXNUM; 3226 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3227 Opc = ISD::FMAXIMUM; 3228 else if (UseScalarMinMax) 3229 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3230 ISD::FMAXNUM : ISD::FMAXIMUM; 3231 break; 3232 } 3233 break; 3234 case SPF_ABS: 3235 IsUnaryAbs = true; 3236 Opc = ISD::ABS; 3237 break; 3238 case SPF_NABS: 3239 // TODO: we need to produce sub(0, abs(X)). 3240 default: break; 3241 } 3242 3243 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3244 (TLI.isOperationLegalOrCustom(Opc, VT) || 3245 (UseScalarMinMax && 3246 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3247 // If the underlying comparison instruction is used by any other 3248 // instruction, the consumed instructions won't be destroyed, so it is 3249 // not profitable to convert to a min/max. 3250 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3251 OpCode = Opc; 3252 LHSVal = getValue(LHS); 3253 RHSVal = getValue(RHS); 3254 BaseOps.clear(); 3255 } 3256 3257 if (IsUnaryAbs) { 3258 OpCode = Opc; 3259 LHSVal = getValue(LHS); 3260 BaseOps.clear(); 3261 } 3262 } 3263 3264 if (IsUnaryAbs) { 3265 for (unsigned i = 0; i != NumValues; ++i) { 3266 Values[i] = 3267 DAG.getNode(OpCode, getCurSDLoc(), 3268 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3269 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3270 } 3271 } else { 3272 for (unsigned i = 0; i != NumValues; ++i) { 3273 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3274 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3275 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3276 Values[i] = DAG.getNode( 3277 OpCode, getCurSDLoc(), 3278 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3279 } 3280 } 3281 3282 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3283 DAG.getVTList(ValueVTs), Values)); 3284 } 3285 3286 void SelectionDAGBuilder::visitTrunc(const User &I) { 3287 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3288 SDValue N = getValue(I.getOperand(0)); 3289 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3290 I.getType()); 3291 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3292 } 3293 3294 void SelectionDAGBuilder::visitZExt(const User &I) { 3295 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3296 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3297 SDValue N = getValue(I.getOperand(0)); 3298 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3299 I.getType()); 3300 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3301 } 3302 3303 void SelectionDAGBuilder::visitSExt(const User &I) { 3304 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3305 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3306 SDValue N = getValue(I.getOperand(0)); 3307 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3308 I.getType()); 3309 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3310 } 3311 3312 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3313 // FPTrunc is never a no-op cast, no need to check 3314 SDValue N = getValue(I.getOperand(0)); 3315 SDLoc dl = getCurSDLoc(); 3316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3317 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3318 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3319 DAG.getTargetConstant( 3320 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3321 } 3322 3323 void SelectionDAGBuilder::visitFPExt(const User &I) { 3324 // FPExt is never a no-op cast, no need to check 3325 SDValue N = getValue(I.getOperand(0)); 3326 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3327 I.getType()); 3328 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3329 } 3330 3331 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3332 // FPToUI is never a no-op cast, no need to check 3333 SDValue N = getValue(I.getOperand(0)); 3334 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3335 I.getType()); 3336 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3337 } 3338 3339 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3340 // FPToSI is never a no-op cast, no need to check 3341 SDValue N = getValue(I.getOperand(0)); 3342 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3343 I.getType()); 3344 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3345 } 3346 3347 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3348 // UIToFP is never a no-op cast, no need to check 3349 SDValue N = getValue(I.getOperand(0)); 3350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3351 I.getType()); 3352 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3353 } 3354 3355 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3356 // SIToFP is never a no-op cast, no need to check 3357 SDValue N = getValue(I.getOperand(0)); 3358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3359 I.getType()); 3360 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3361 } 3362 3363 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3364 // What to do depends on the size of the integer and the size of the pointer. 3365 // We can either truncate, zero extend, or no-op, accordingly. 3366 SDValue N = getValue(I.getOperand(0)); 3367 auto &TLI = DAG.getTargetLoweringInfo(); 3368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3369 I.getType()); 3370 EVT PtrMemVT = 3371 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3372 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3373 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3374 setValue(&I, N); 3375 } 3376 3377 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3378 // What to do depends on the size of the integer and the size of the pointer. 3379 // We can either truncate, zero extend, or no-op, accordingly. 3380 SDValue N = getValue(I.getOperand(0)); 3381 auto &TLI = DAG.getTargetLoweringInfo(); 3382 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3383 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3384 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3385 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3386 setValue(&I, N); 3387 } 3388 3389 void SelectionDAGBuilder::visitBitCast(const User &I) { 3390 SDValue N = getValue(I.getOperand(0)); 3391 SDLoc dl = getCurSDLoc(); 3392 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3393 I.getType()); 3394 3395 // BitCast assures us that source and destination are the same size so this is 3396 // either a BITCAST or a no-op. 3397 if (DestVT != N.getValueType()) 3398 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3399 DestVT, N)); // convert types. 3400 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3401 // might fold any kind of constant expression to an integer constant and that 3402 // is not what we are looking for. Only recognize a bitcast of a genuine 3403 // constant integer as an opaque constant. 3404 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3405 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3406 /*isOpaque*/true)); 3407 else 3408 setValue(&I, N); // noop cast. 3409 } 3410 3411 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3413 const Value *SV = I.getOperand(0); 3414 SDValue N = getValue(SV); 3415 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3416 3417 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3418 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3419 3420 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3421 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3422 3423 setValue(&I, N); 3424 } 3425 3426 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3428 SDValue InVec = getValue(I.getOperand(0)); 3429 SDValue InVal = getValue(I.getOperand(1)); 3430 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3431 TLI.getVectorIdxTy(DAG.getDataLayout())); 3432 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3433 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3434 InVec, InVal, InIdx)); 3435 } 3436 3437 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3439 SDValue InVec = getValue(I.getOperand(0)); 3440 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3441 TLI.getVectorIdxTy(DAG.getDataLayout())); 3442 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3443 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3444 InVec, InIdx)); 3445 } 3446 3447 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3448 SDValue Src1 = getValue(I.getOperand(0)); 3449 SDValue Src2 = getValue(I.getOperand(1)); 3450 ArrayRef<int> Mask; 3451 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3452 Mask = SVI->getShuffleMask(); 3453 else 3454 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3455 SDLoc DL = getCurSDLoc(); 3456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3457 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3458 EVT SrcVT = Src1.getValueType(); 3459 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3460 3461 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3462 VT.isScalableVector()) { 3463 // Canonical splat form of first element of first input vector. 3464 SDValue FirstElt = 3465 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3466 DAG.getVectorIdxConstant(0, DL)); 3467 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3468 return; 3469 } 3470 3471 // For now, we only handle splats for scalable vectors. 3472 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3473 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3474 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3475 3476 unsigned MaskNumElts = Mask.size(); 3477 3478 if (SrcNumElts == MaskNumElts) { 3479 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3480 return; 3481 } 3482 3483 // Normalize the shuffle vector since mask and vector length don't match. 3484 if (SrcNumElts < MaskNumElts) { 3485 // Mask is longer than the source vectors. We can use concatenate vector to 3486 // make the mask and vectors lengths match. 3487 3488 if (MaskNumElts % SrcNumElts == 0) { 3489 // Mask length is a multiple of the source vector length. 3490 // Check if the shuffle is some kind of concatenation of the input 3491 // vectors. 3492 unsigned NumConcat = MaskNumElts / SrcNumElts; 3493 bool IsConcat = true; 3494 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3495 for (unsigned i = 0; i != MaskNumElts; ++i) { 3496 int Idx = Mask[i]; 3497 if (Idx < 0) 3498 continue; 3499 // Ensure the indices in each SrcVT sized piece are sequential and that 3500 // the same source is used for the whole piece. 3501 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3502 (ConcatSrcs[i / SrcNumElts] >= 0 && 3503 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3504 IsConcat = false; 3505 break; 3506 } 3507 // Remember which source this index came from. 3508 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3509 } 3510 3511 // The shuffle is concatenating multiple vectors together. Just emit 3512 // a CONCAT_VECTORS operation. 3513 if (IsConcat) { 3514 SmallVector<SDValue, 8> ConcatOps; 3515 for (auto Src : ConcatSrcs) { 3516 if (Src < 0) 3517 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3518 else if (Src == 0) 3519 ConcatOps.push_back(Src1); 3520 else 3521 ConcatOps.push_back(Src2); 3522 } 3523 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3524 return; 3525 } 3526 } 3527 3528 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3529 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3530 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3531 PaddedMaskNumElts); 3532 3533 // Pad both vectors with undefs to make them the same length as the mask. 3534 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3535 3536 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3537 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3538 MOps1[0] = Src1; 3539 MOps2[0] = Src2; 3540 3541 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3542 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3543 3544 // Readjust mask for new input vector length. 3545 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3546 for (unsigned i = 0; i != MaskNumElts; ++i) { 3547 int Idx = Mask[i]; 3548 if (Idx >= (int)SrcNumElts) 3549 Idx -= SrcNumElts - PaddedMaskNumElts; 3550 MappedOps[i] = Idx; 3551 } 3552 3553 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3554 3555 // If the concatenated vector was padded, extract a subvector with the 3556 // correct number of elements. 3557 if (MaskNumElts != PaddedMaskNumElts) 3558 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3559 DAG.getVectorIdxConstant(0, DL)); 3560 3561 setValue(&I, Result); 3562 return; 3563 } 3564 3565 if (SrcNumElts > MaskNumElts) { 3566 // Analyze the access pattern of the vector to see if we can extract 3567 // two subvectors and do the shuffle. 3568 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3569 bool CanExtract = true; 3570 for (int Idx : Mask) { 3571 unsigned Input = 0; 3572 if (Idx < 0) 3573 continue; 3574 3575 if (Idx >= (int)SrcNumElts) { 3576 Input = 1; 3577 Idx -= SrcNumElts; 3578 } 3579 3580 // If all the indices come from the same MaskNumElts sized portion of 3581 // the sources we can use extract. Also make sure the extract wouldn't 3582 // extract past the end of the source. 3583 int NewStartIdx = alignDown(Idx, MaskNumElts); 3584 if (NewStartIdx + MaskNumElts > SrcNumElts || 3585 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3586 CanExtract = false; 3587 // Make sure we always update StartIdx as we use it to track if all 3588 // elements are undef. 3589 StartIdx[Input] = NewStartIdx; 3590 } 3591 3592 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3593 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3594 return; 3595 } 3596 if (CanExtract) { 3597 // Extract appropriate subvector and generate a vector shuffle 3598 for (unsigned Input = 0; Input < 2; ++Input) { 3599 SDValue &Src = Input == 0 ? Src1 : Src2; 3600 if (StartIdx[Input] < 0) 3601 Src = DAG.getUNDEF(VT); 3602 else { 3603 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3604 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3605 } 3606 } 3607 3608 // Calculate new mask. 3609 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3610 for (int &Idx : MappedOps) { 3611 if (Idx >= (int)SrcNumElts) 3612 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3613 else if (Idx >= 0) 3614 Idx -= StartIdx[0]; 3615 } 3616 3617 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3618 return; 3619 } 3620 } 3621 3622 // We can't use either concat vectors or extract subvectors so fall back to 3623 // replacing the shuffle with extract and build vector. 3624 // to insert and build vector. 3625 EVT EltVT = VT.getVectorElementType(); 3626 SmallVector<SDValue,8> Ops; 3627 for (int Idx : Mask) { 3628 SDValue Res; 3629 3630 if (Idx < 0) { 3631 Res = DAG.getUNDEF(EltVT); 3632 } else { 3633 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3634 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3635 3636 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3637 DAG.getVectorIdxConstant(Idx, DL)); 3638 } 3639 3640 Ops.push_back(Res); 3641 } 3642 3643 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3644 } 3645 3646 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3647 ArrayRef<unsigned> Indices; 3648 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3649 Indices = IV->getIndices(); 3650 else 3651 Indices = cast<ConstantExpr>(&I)->getIndices(); 3652 3653 const Value *Op0 = I.getOperand(0); 3654 const Value *Op1 = I.getOperand(1); 3655 Type *AggTy = I.getType(); 3656 Type *ValTy = Op1->getType(); 3657 bool IntoUndef = isa<UndefValue>(Op0); 3658 bool FromUndef = isa<UndefValue>(Op1); 3659 3660 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3661 3662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3663 SmallVector<EVT, 4> AggValueVTs; 3664 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3665 SmallVector<EVT, 4> ValValueVTs; 3666 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3667 3668 unsigned NumAggValues = AggValueVTs.size(); 3669 unsigned NumValValues = ValValueVTs.size(); 3670 SmallVector<SDValue, 4> Values(NumAggValues); 3671 3672 // Ignore an insertvalue that produces an empty object 3673 if (!NumAggValues) { 3674 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3675 return; 3676 } 3677 3678 SDValue Agg = getValue(Op0); 3679 unsigned i = 0; 3680 // Copy the beginning value(s) from the original aggregate. 3681 for (; i != LinearIndex; ++i) 3682 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3683 SDValue(Agg.getNode(), Agg.getResNo() + i); 3684 // Copy values from the inserted value(s). 3685 if (NumValValues) { 3686 SDValue Val = getValue(Op1); 3687 for (; i != LinearIndex + NumValValues; ++i) 3688 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3689 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3690 } 3691 // Copy remaining value(s) from the original aggregate. 3692 for (; i != NumAggValues; ++i) 3693 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3694 SDValue(Agg.getNode(), Agg.getResNo() + i); 3695 3696 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3697 DAG.getVTList(AggValueVTs), Values)); 3698 } 3699 3700 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3701 ArrayRef<unsigned> Indices; 3702 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3703 Indices = EV->getIndices(); 3704 else 3705 Indices = cast<ConstantExpr>(&I)->getIndices(); 3706 3707 const Value *Op0 = I.getOperand(0); 3708 Type *AggTy = Op0->getType(); 3709 Type *ValTy = I.getType(); 3710 bool OutOfUndef = isa<UndefValue>(Op0); 3711 3712 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3713 3714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3715 SmallVector<EVT, 4> ValValueVTs; 3716 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3717 3718 unsigned NumValValues = ValValueVTs.size(); 3719 3720 // Ignore a extractvalue that produces an empty object 3721 if (!NumValValues) { 3722 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3723 return; 3724 } 3725 3726 SmallVector<SDValue, 4> Values(NumValValues); 3727 3728 SDValue Agg = getValue(Op0); 3729 // Copy out the selected value(s). 3730 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3731 Values[i - LinearIndex] = 3732 OutOfUndef ? 3733 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3734 SDValue(Agg.getNode(), Agg.getResNo() + i); 3735 3736 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3737 DAG.getVTList(ValValueVTs), Values)); 3738 } 3739 3740 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3741 Value *Op0 = I.getOperand(0); 3742 // Note that the pointer operand may be a vector of pointers. Take the scalar 3743 // element which holds a pointer. 3744 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3745 SDValue N = getValue(Op0); 3746 SDLoc dl = getCurSDLoc(); 3747 auto &TLI = DAG.getTargetLoweringInfo(); 3748 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3749 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3750 3751 // Normalize Vector GEP - all scalar operands should be converted to the 3752 // splat vector. 3753 bool IsVectorGEP = I.getType()->isVectorTy(); 3754 ElementCount VectorElementCount = 3755 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3756 : ElementCount(0, false); 3757 3758 if (IsVectorGEP && !N.getValueType().isVector()) { 3759 LLVMContext &Context = *DAG.getContext(); 3760 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3761 if (VectorElementCount.Scalable) 3762 N = DAG.getSplatVector(VT, dl, N); 3763 else 3764 N = DAG.getSplatBuildVector(VT, dl, N); 3765 } 3766 3767 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3768 GTI != E; ++GTI) { 3769 const Value *Idx = GTI.getOperand(); 3770 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3771 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3772 if (Field) { 3773 // N = N + Offset 3774 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3775 3776 // In an inbounds GEP with an offset that is nonnegative even when 3777 // interpreted as signed, assume there is no unsigned overflow. 3778 SDNodeFlags Flags; 3779 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3780 Flags.setNoUnsignedWrap(true); 3781 3782 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3783 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3784 } 3785 } else { 3786 // IdxSize is the width of the arithmetic according to IR semantics. 3787 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3788 // (and fix up the result later). 3789 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3790 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3791 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3792 // We intentionally mask away the high bits here; ElementSize may not 3793 // fit in IdxTy. 3794 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3795 bool ElementScalable = ElementSize.isScalable(); 3796 3797 // If this is a scalar constant or a splat vector of constants, 3798 // handle it quickly. 3799 const auto *C = dyn_cast<Constant>(Idx); 3800 if (C && isa<VectorType>(C->getType())) 3801 C = C->getSplatValue(); 3802 3803 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3804 if (CI && CI->isZero()) 3805 continue; 3806 if (CI && !ElementScalable) { 3807 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3808 LLVMContext &Context = *DAG.getContext(); 3809 SDValue OffsVal; 3810 if (IsVectorGEP) 3811 OffsVal = DAG.getConstant( 3812 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3813 else 3814 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3815 3816 // In an inbounds GEP with an offset that is nonnegative even when 3817 // interpreted as signed, assume there is no unsigned overflow. 3818 SDNodeFlags Flags; 3819 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3820 Flags.setNoUnsignedWrap(true); 3821 3822 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3823 3824 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3825 continue; 3826 } 3827 3828 // N = N + Idx * ElementMul; 3829 SDValue IdxN = getValue(Idx); 3830 3831 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3832 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3833 VectorElementCount); 3834 if (VectorElementCount.Scalable) 3835 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3836 else 3837 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3838 } 3839 3840 // If the index is smaller or larger than intptr_t, truncate or extend 3841 // it. 3842 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3843 3844 if (ElementScalable) { 3845 EVT VScaleTy = N.getValueType().getScalarType(); 3846 SDValue VScale = DAG.getNode( 3847 ISD::VSCALE, dl, VScaleTy, 3848 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3849 if (IsVectorGEP) 3850 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3851 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3852 } else { 3853 // If this is a multiply by a power of two, turn it into a shl 3854 // immediately. This is a very common case. 3855 if (ElementMul != 1) { 3856 if (ElementMul.isPowerOf2()) { 3857 unsigned Amt = ElementMul.logBase2(); 3858 IdxN = DAG.getNode(ISD::SHL, dl, 3859 N.getValueType(), IdxN, 3860 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3861 } else { 3862 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3863 IdxN.getValueType()); 3864 IdxN = DAG.getNode(ISD::MUL, dl, 3865 N.getValueType(), IdxN, Scale); 3866 } 3867 } 3868 } 3869 3870 N = DAG.getNode(ISD::ADD, dl, 3871 N.getValueType(), N, IdxN); 3872 } 3873 } 3874 3875 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3876 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3877 3878 setValue(&I, N); 3879 } 3880 3881 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3882 // If this is a fixed sized alloca in the entry block of the function, 3883 // allocate it statically on the stack. 3884 if (FuncInfo.StaticAllocaMap.count(&I)) 3885 return; // getValue will auto-populate this. 3886 3887 SDLoc dl = getCurSDLoc(); 3888 Type *Ty = I.getAllocatedType(); 3889 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3890 auto &DL = DAG.getDataLayout(); 3891 uint64_t TySize = DL.getTypeAllocSize(Ty); 3892 MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3893 3894 SDValue AllocSize = getValue(I.getArraySize()); 3895 3896 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3897 if (AllocSize.getValueType() != IntPtr) 3898 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3899 3900 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3901 AllocSize, 3902 DAG.getConstant(TySize, dl, IntPtr)); 3903 3904 // Handle alignment. If the requested alignment is less than or equal to 3905 // the stack alignment, ignore it. If the size is greater than or equal to 3906 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3907 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3908 if (Alignment <= StackAlign) 3909 Alignment = None; 3910 3911 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3912 // Round the size of the allocation up to the stack alignment size 3913 // by add SA-1 to the size. This doesn't overflow because we're computing 3914 // an address inside an alloca. 3915 SDNodeFlags Flags; 3916 Flags.setNoUnsignedWrap(true); 3917 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3918 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3919 3920 // Mask out the low bits for alignment purposes. 3921 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3922 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3923 3924 SDValue Ops[] = { 3925 getRoot(), AllocSize, 3926 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3927 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3928 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3929 setValue(&I, DSA); 3930 DAG.setRoot(DSA.getValue(1)); 3931 3932 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3933 } 3934 3935 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3936 if (I.isAtomic()) 3937 return visitAtomicLoad(I); 3938 3939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3940 const Value *SV = I.getOperand(0); 3941 if (TLI.supportSwiftError()) { 3942 // Swifterror values can come from either a function parameter with 3943 // swifterror attribute or an alloca with swifterror attribute. 3944 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3945 if (Arg->hasSwiftErrorAttr()) 3946 return visitLoadFromSwiftError(I); 3947 } 3948 3949 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3950 if (Alloca->isSwiftError()) 3951 return visitLoadFromSwiftError(I); 3952 } 3953 } 3954 3955 SDValue Ptr = getValue(SV); 3956 3957 Type *Ty = I.getType(); 3958 unsigned Alignment = I.getAlignment(); 3959 3960 AAMDNodes AAInfo; 3961 I.getAAMetadata(AAInfo); 3962 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3963 3964 SmallVector<EVT, 4> ValueVTs, MemVTs; 3965 SmallVector<uint64_t, 4> Offsets; 3966 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3967 unsigned NumValues = ValueVTs.size(); 3968 if (NumValues == 0) 3969 return; 3970 3971 bool isVolatile = I.isVolatile(); 3972 3973 SDValue Root; 3974 bool ConstantMemory = false; 3975 if (isVolatile) 3976 // Serialize volatile loads with other side effects. 3977 Root = getRoot(); 3978 else if (NumValues > MaxParallelChains) 3979 Root = getMemoryRoot(); 3980 else if (AA && 3981 AA->pointsToConstantMemory(MemoryLocation( 3982 SV, 3983 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3984 AAInfo))) { 3985 // Do not serialize (non-volatile) loads of constant memory with anything. 3986 Root = DAG.getEntryNode(); 3987 ConstantMemory = true; 3988 } else { 3989 // Do not serialize non-volatile loads against each other. 3990 Root = DAG.getRoot(); 3991 } 3992 3993 SDLoc dl = getCurSDLoc(); 3994 3995 if (isVolatile) 3996 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3997 3998 // An aggregate load cannot wrap around the address space, so offsets to its 3999 // parts don't wrap either. 4000 SDNodeFlags Flags; 4001 Flags.setNoUnsignedWrap(true); 4002 4003 SmallVector<SDValue, 4> Values(NumValues); 4004 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4005 EVT PtrVT = Ptr.getValueType(); 4006 4007 MachineMemOperand::Flags MMOFlags 4008 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4009 4010 unsigned ChainI = 0; 4011 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4012 // Serializing loads here may result in excessive register pressure, and 4013 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4014 // could recover a bit by hoisting nodes upward in the chain by recognizing 4015 // they are side-effect free or do not alias. The optimizer should really 4016 // avoid this case by converting large object/array copies to llvm.memcpy 4017 // (MaxParallelChains should always remain as failsafe). 4018 if (ChainI == MaxParallelChains) { 4019 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4020 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4021 makeArrayRef(Chains.data(), ChainI)); 4022 Root = Chain; 4023 ChainI = 0; 4024 } 4025 SDValue A = DAG.getNode(ISD::ADD, dl, 4026 PtrVT, Ptr, 4027 DAG.getConstant(Offsets[i], dl, PtrVT), 4028 Flags); 4029 4030 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4031 MachinePointerInfo(SV, Offsets[i]), Alignment, 4032 MMOFlags, AAInfo, Ranges); 4033 Chains[ChainI] = L.getValue(1); 4034 4035 if (MemVTs[i] != ValueVTs[i]) 4036 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4037 4038 Values[i] = L; 4039 } 4040 4041 if (!ConstantMemory) { 4042 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4043 makeArrayRef(Chains.data(), ChainI)); 4044 if (isVolatile) 4045 DAG.setRoot(Chain); 4046 else 4047 PendingLoads.push_back(Chain); 4048 } 4049 4050 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4051 DAG.getVTList(ValueVTs), Values)); 4052 } 4053 4054 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4055 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4056 "call visitStoreToSwiftError when backend supports swifterror"); 4057 4058 SmallVector<EVT, 4> ValueVTs; 4059 SmallVector<uint64_t, 4> Offsets; 4060 const Value *SrcV = I.getOperand(0); 4061 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4062 SrcV->getType(), ValueVTs, &Offsets); 4063 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4064 "expect a single EVT for swifterror"); 4065 4066 SDValue Src = getValue(SrcV); 4067 // Create a virtual register, then update the virtual register. 4068 Register VReg = 4069 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4070 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4071 // Chain can be getRoot or getControlRoot. 4072 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4073 SDValue(Src.getNode(), Src.getResNo())); 4074 DAG.setRoot(CopyNode); 4075 } 4076 4077 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4078 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4079 "call visitLoadFromSwiftError when backend supports swifterror"); 4080 4081 assert(!I.isVolatile() && 4082 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4083 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4084 "Support volatile, non temporal, invariant for load_from_swift_error"); 4085 4086 const Value *SV = I.getOperand(0); 4087 Type *Ty = I.getType(); 4088 AAMDNodes AAInfo; 4089 I.getAAMetadata(AAInfo); 4090 assert( 4091 (!AA || 4092 !AA->pointsToConstantMemory(MemoryLocation( 4093 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4094 AAInfo))) && 4095 "load_from_swift_error should not be constant memory"); 4096 4097 SmallVector<EVT, 4> ValueVTs; 4098 SmallVector<uint64_t, 4> Offsets; 4099 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4100 ValueVTs, &Offsets); 4101 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4102 "expect a single EVT for swifterror"); 4103 4104 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4105 SDValue L = DAG.getCopyFromReg( 4106 getRoot(), getCurSDLoc(), 4107 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4108 4109 setValue(&I, L); 4110 } 4111 4112 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4113 if (I.isAtomic()) 4114 return visitAtomicStore(I); 4115 4116 const Value *SrcV = I.getOperand(0); 4117 const Value *PtrV = I.getOperand(1); 4118 4119 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4120 if (TLI.supportSwiftError()) { 4121 // Swifterror values can come from either a function parameter with 4122 // swifterror attribute or an alloca with swifterror attribute. 4123 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4124 if (Arg->hasSwiftErrorAttr()) 4125 return visitStoreToSwiftError(I); 4126 } 4127 4128 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4129 if (Alloca->isSwiftError()) 4130 return visitStoreToSwiftError(I); 4131 } 4132 } 4133 4134 SmallVector<EVT, 4> ValueVTs, MemVTs; 4135 SmallVector<uint64_t, 4> Offsets; 4136 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4137 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4138 unsigned NumValues = ValueVTs.size(); 4139 if (NumValues == 0) 4140 return; 4141 4142 // Get the lowered operands. Note that we do this after 4143 // checking if NumResults is zero, because with zero results 4144 // the operands won't have values in the map. 4145 SDValue Src = getValue(SrcV); 4146 SDValue Ptr = getValue(PtrV); 4147 4148 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4149 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4150 SDLoc dl = getCurSDLoc(); 4151 unsigned Alignment = I.getAlignment(); 4152 AAMDNodes AAInfo; 4153 I.getAAMetadata(AAInfo); 4154 4155 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4156 4157 // An aggregate load cannot wrap around the address space, so offsets to its 4158 // parts don't wrap either. 4159 SDNodeFlags Flags; 4160 Flags.setNoUnsignedWrap(true); 4161 4162 unsigned ChainI = 0; 4163 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4164 // See visitLoad comments. 4165 if (ChainI == MaxParallelChains) { 4166 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4167 makeArrayRef(Chains.data(), ChainI)); 4168 Root = Chain; 4169 ChainI = 0; 4170 } 4171 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4172 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4173 if (MemVTs[i] != ValueVTs[i]) 4174 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4175 SDValue St = 4176 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4177 Alignment, MMOFlags, AAInfo); 4178 Chains[ChainI] = St; 4179 } 4180 4181 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4182 makeArrayRef(Chains.data(), ChainI)); 4183 DAG.setRoot(StoreNode); 4184 } 4185 4186 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4187 bool IsCompressing) { 4188 SDLoc sdl = getCurSDLoc(); 4189 4190 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4191 MaybeAlign &Alignment) { 4192 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4193 Src0 = I.getArgOperand(0); 4194 Ptr = I.getArgOperand(1); 4195 Alignment = 4196 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4197 Mask = I.getArgOperand(3); 4198 }; 4199 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4200 MaybeAlign &Alignment) { 4201 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4202 Src0 = I.getArgOperand(0); 4203 Ptr = I.getArgOperand(1); 4204 Mask = I.getArgOperand(2); 4205 Alignment = None; 4206 }; 4207 4208 Value *PtrOperand, *MaskOperand, *Src0Operand; 4209 MaybeAlign Alignment; 4210 if (IsCompressing) 4211 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4212 else 4213 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4214 4215 SDValue Ptr = getValue(PtrOperand); 4216 SDValue Src0 = getValue(Src0Operand); 4217 SDValue Mask = getValue(MaskOperand); 4218 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4219 4220 EVT VT = Src0.getValueType(); 4221 if (!Alignment) 4222 Alignment = DAG.getEVTAlign(VT); 4223 4224 AAMDNodes AAInfo; 4225 I.getAAMetadata(AAInfo); 4226 4227 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4228 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4229 // TODO: Make MachineMemOperands aware of scalable 4230 // vectors. 4231 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4232 SDValue StoreNode = 4233 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4234 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4235 DAG.setRoot(StoreNode); 4236 setValue(&I, StoreNode); 4237 } 4238 4239 // Get a uniform base for the Gather/Scatter intrinsic. 4240 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4241 // We try to represent it as a base pointer + vector of indices. 4242 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4243 // The first operand of the GEP may be a single pointer or a vector of pointers 4244 // Example: 4245 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4246 // or 4247 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4248 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4249 // 4250 // When the first GEP operand is a single pointer - it is the uniform base we 4251 // are looking for. If first operand of the GEP is a splat vector - we 4252 // extract the splat value and use it as a uniform base. 4253 // In all other cases the function returns 'false'. 4254 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4255 ISD::MemIndexType &IndexType, SDValue &Scale, 4256 SelectionDAGBuilder *SDB) { 4257 SelectionDAG& DAG = SDB->DAG; 4258 LLVMContext &Context = *DAG.getContext(); 4259 4260 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4261 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4262 if (!GEP) 4263 return false; 4264 4265 const Value *BasePtr = GEP->getPointerOperand(); 4266 if (BasePtr->getType()->isVectorTy()) { 4267 BasePtr = getSplatValue(BasePtr); 4268 if (!BasePtr) 4269 return false; 4270 } 4271 4272 unsigned FinalIndex = GEP->getNumOperands() - 1; 4273 Value *IndexVal = GEP->getOperand(FinalIndex); 4274 gep_type_iterator GTI = gep_type_begin(*GEP); 4275 4276 // Ensure all the other indices are 0. 4277 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4278 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4279 if (!C) 4280 return false; 4281 if (isa<VectorType>(C->getType())) 4282 C = C->getSplatValue(); 4283 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4284 if (!CI || !CI->isZero()) 4285 return false; 4286 } 4287 4288 // The operands of the GEP may be defined in another basic block. 4289 // In this case we'll not find nodes for the operands. 4290 if (!SDB->findValue(BasePtr)) 4291 return false; 4292 Constant *C = dyn_cast<Constant>(IndexVal); 4293 if (!C && !SDB->findValue(IndexVal)) 4294 return false; 4295 4296 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4297 const DataLayout &DL = DAG.getDataLayout(); 4298 StructType *STy = GTI.getStructTypeOrNull(); 4299 4300 if (STy) { 4301 const StructLayout *SL = DL.getStructLayout(STy); 4302 unsigned Field = cast<Constant>(IndexVal)->getUniqueInteger().getZExtValue(); 4303 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4304 Index = DAG.getConstant(SL->getElementOffset(Field), 4305 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4306 } else { 4307 Scale = DAG.getTargetConstant( 4308 DL.getTypeAllocSize(GEP->getResultElementType()), 4309 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4310 Index = SDB->getValue(IndexVal); 4311 } 4312 Base = SDB->getValue(BasePtr); 4313 IndexType = ISD::SIGNED_SCALED; 4314 4315 if (STy || !Index.getValueType().isVector()) { 4316 unsigned GEPWidth = cast<VectorType>(GEP->getType())->getNumElements(); 4317 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4318 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4319 } 4320 return true; 4321 } 4322 4323 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4324 SDLoc sdl = getCurSDLoc(); 4325 4326 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4327 const Value *Ptr = I.getArgOperand(1); 4328 SDValue Src0 = getValue(I.getArgOperand(0)); 4329 SDValue Mask = getValue(I.getArgOperand(3)); 4330 EVT VT = Src0.getValueType(); 4331 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4332 if (!Alignment) 4333 Alignment = DAG.getEVTAlign(VT); 4334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4335 4336 AAMDNodes AAInfo; 4337 I.getAAMetadata(AAInfo); 4338 4339 SDValue Base; 4340 SDValue Index; 4341 ISD::MemIndexType IndexType; 4342 SDValue Scale; 4343 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4344 4345 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4346 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4347 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4348 // TODO: Make MachineMemOperands aware of scalable 4349 // vectors. 4350 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4351 if (!UniformBase) { 4352 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4353 Index = getValue(Ptr); 4354 IndexType = ISD::SIGNED_SCALED; 4355 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4356 } 4357 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4358 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4359 Ops, MMO, IndexType); 4360 DAG.setRoot(Scatter); 4361 setValue(&I, Scatter); 4362 } 4363 4364 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4365 SDLoc sdl = getCurSDLoc(); 4366 4367 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4368 MaybeAlign &Alignment) { 4369 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4370 Ptr = I.getArgOperand(0); 4371 Alignment = 4372 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4373 Mask = I.getArgOperand(2); 4374 Src0 = I.getArgOperand(3); 4375 }; 4376 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4377 MaybeAlign &Alignment) { 4378 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4379 Ptr = I.getArgOperand(0); 4380 Alignment = None; 4381 Mask = I.getArgOperand(1); 4382 Src0 = I.getArgOperand(2); 4383 }; 4384 4385 Value *PtrOperand, *MaskOperand, *Src0Operand; 4386 MaybeAlign Alignment; 4387 if (IsExpanding) 4388 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4389 else 4390 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4391 4392 SDValue Ptr = getValue(PtrOperand); 4393 SDValue Src0 = getValue(Src0Operand); 4394 SDValue Mask = getValue(MaskOperand); 4395 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4396 4397 EVT VT = Src0.getValueType(); 4398 if (!Alignment) 4399 Alignment = DAG.getEVTAlign(VT); 4400 4401 AAMDNodes AAInfo; 4402 I.getAAMetadata(AAInfo); 4403 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4404 4405 // Do not serialize masked loads of constant memory with anything. 4406 MemoryLocation ML; 4407 if (VT.isScalableVector()) 4408 ML = MemoryLocation(PtrOperand); 4409 else 4410 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4411 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4412 AAInfo); 4413 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4414 4415 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4416 4417 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4418 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4419 // TODO: Make MachineMemOperands aware of scalable 4420 // vectors. 4421 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4422 4423 SDValue Load = 4424 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4425 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4426 if (AddToChain) 4427 PendingLoads.push_back(Load.getValue(1)); 4428 setValue(&I, Load); 4429 } 4430 4431 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4432 SDLoc sdl = getCurSDLoc(); 4433 4434 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4435 const Value *Ptr = I.getArgOperand(0); 4436 SDValue Src0 = getValue(I.getArgOperand(3)); 4437 SDValue Mask = getValue(I.getArgOperand(2)); 4438 4439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4440 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4441 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4442 if (!Alignment) 4443 Alignment = DAG.getEVTAlign(VT); 4444 4445 AAMDNodes AAInfo; 4446 I.getAAMetadata(AAInfo); 4447 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4448 4449 SDValue Root = DAG.getRoot(); 4450 SDValue Base; 4451 SDValue Index; 4452 ISD::MemIndexType IndexType; 4453 SDValue Scale; 4454 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4455 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4456 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4457 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4458 // TODO: Make MachineMemOperands aware of scalable 4459 // vectors. 4460 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4461 4462 if (!UniformBase) { 4463 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4464 Index = getValue(Ptr); 4465 IndexType = ISD::SIGNED_SCALED; 4466 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4467 } 4468 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4469 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4470 Ops, MMO, IndexType); 4471 4472 PendingLoads.push_back(Gather.getValue(1)); 4473 setValue(&I, Gather); 4474 } 4475 4476 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4477 SDLoc dl = getCurSDLoc(); 4478 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4479 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4480 SyncScope::ID SSID = I.getSyncScopeID(); 4481 4482 SDValue InChain = getRoot(); 4483 4484 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4485 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4486 4487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4488 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4489 4490 MachineFunction &MF = DAG.getMachineFunction(); 4491 MachineMemOperand *MMO = MF.getMachineMemOperand( 4492 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4493 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4494 FailureOrdering); 4495 4496 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4497 dl, MemVT, VTs, InChain, 4498 getValue(I.getPointerOperand()), 4499 getValue(I.getCompareOperand()), 4500 getValue(I.getNewValOperand()), MMO); 4501 4502 SDValue OutChain = L.getValue(2); 4503 4504 setValue(&I, L); 4505 DAG.setRoot(OutChain); 4506 } 4507 4508 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4509 SDLoc dl = getCurSDLoc(); 4510 ISD::NodeType NT; 4511 switch (I.getOperation()) { 4512 default: llvm_unreachable("Unknown atomicrmw operation"); 4513 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4514 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4515 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4516 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4517 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4518 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4519 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4520 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4521 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4522 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4523 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4524 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4525 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4526 } 4527 AtomicOrdering Ordering = I.getOrdering(); 4528 SyncScope::ID SSID = I.getSyncScopeID(); 4529 4530 SDValue InChain = getRoot(); 4531 4532 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4534 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4535 4536 MachineFunction &MF = DAG.getMachineFunction(); 4537 MachineMemOperand *MMO = MF.getMachineMemOperand( 4538 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4539 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4540 4541 SDValue L = 4542 DAG.getAtomic(NT, dl, MemVT, InChain, 4543 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4544 MMO); 4545 4546 SDValue OutChain = L.getValue(1); 4547 4548 setValue(&I, L); 4549 DAG.setRoot(OutChain); 4550 } 4551 4552 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4553 SDLoc dl = getCurSDLoc(); 4554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4555 SDValue Ops[3]; 4556 Ops[0] = getRoot(); 4557 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4558 TLI.getFenceOperandTy(DAG.getDataLayout())); 4559 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4560 TLI.getFenceOperandTy(DAG.getDataLayout())); 4561 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4562 } 4563 4564 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4565 SDLoc dl = getCurSDLoc(); 4566 AtomicOrdering Order = I.getOrdering(); 4567 SyncScope::ID SSID = I.getSyncScopeID(); 4568 4569 SDValue InChain = getRoot(); 4570 4571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4572 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4573 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4574 4575 if (!TLI.supportsUnalignedAtomics() && 4576 I.getAlignment() < MemVT.getSizeInBits() / 8) 4577 report_fatal_error("Cannot generate unaligned atomic load"); 4578 4579 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4580 4581 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4582 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4583 I.getAlign().getValueOr(DAG.getEVTAlign(MemVT)), AAMDNodes(), nullptr, 4584 SSID, Order); 4585 4586 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4587 4588 SDValue Ptr = getValue(I.getPointerOperand()); 4589 4590 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4591 // TODO: Once this is better exercised by tests, it should be merged with 4592 // the normal path for loads to prevent future divergence. 4593 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4594 if (MemVT != VT) 4595 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4596 4597 setValue(&I, L); 4598 SDValue OutChain = L.getValue(1); 4599 if (!I.isUnordered()) 4600 DAG.setRoot(OutChain); 4601 else 4602 PendingLoads.push_back(OutChain); 4603 return; 4604 } 4605 4606 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4607 Ptr, MMO); 4608 4609 SDValue OutChain = L.getValue(1); 4610 if (MemVT != VT) 4611 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4612 4613 setValue(&I, L); 4614 DAG.setRoot(OutChain); 4615 } 4616 4617 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4618 SDLoc dl = getCurSDLoc(); 4619 4620 AtomicOrdering Ordering = I.getOrdering(); 4621 SyncScope::ID SSID = I.getSyncScopeID(); 4622 4623 SDValue InChain = getRoot(); 4624 4625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4626 EVT MemVT = 4627 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4628 4629 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4630 report_fatal_error("Cannot generate unaligned atomic store"); 4631 4632 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4633 4634 MachineFunction &MF = DAG.getMachineFunction(); 4635 MachineMemOperand *MMO = MF.getMachineMemOperand( 4636 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4637 *I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4638 4639 SDValue Val = getValue(I.getValueOperand()); 4640 if (Val.getValueType() != MemVT) 4641 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4642 SDValue Ptr = getValue(I.getPointerOperand()); 4643 4644 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4645 // TODO: Once this is better exercised by tests, it should be merged with 4646 // the normal path for stores to prevent future divergence. 4647 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4648 DAG.setRoot(S); 4649 return; 4650 } 4651 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4652 Ptr, Val, MMO); 4653 4654 4655 DAG.setRoot(OutChain); 4656 } 4657 4658 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4659 /// node. 4660 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4661 unsigned Intrinsic) { 4662 // Ignore the callsite's attributes. A specific call site may be marked with 4663 // readnone, but the lowering code will expect the chain based on the 4664 // definition. 4665 const Function *F = I.getCalledFunction(); 4666 bool HasChain = !F->doesNotAccessMemory(); 4667 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4668 4669 // Build the operand list. 4670 SmallVector<SDValue, 8> Ops; 4671 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4672 if (OnlyLoad) { 4673 // We don't need to serialize loads against other loads. 4674 Ops.push_back(DAG.getRoot()); 4675 } else { 4676 Ops.push_back(getRoot()); 4677 } 4678 } 4679 4680 // Info is set by getTgtMemInstrinsic 4681 TargetLowering::IntrinsicInfo Info; 4682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4683 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4684 DAG.getMachineFunction(), 4685 Intrinsic); 4686 4687 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4688 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4689 Info.opc == ISD::INTRINSIC_W_CHAIN) 4690 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4691 TLI.getPointerTy(DAG.getDataLayout()))); 4692 4693 // Add all operands of the call to the operand list. 4694 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4695 const Value *Arg = I.getArgOperand(i); 4696 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4697 Ops.push_back(getValue(Arg)); 4698 continue; 4699 } 4700 4701 // Use TargetConstant instead of a regular constant for immarg. 4702 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4703 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4704 assert(CI->getBitWidth() <= 64 && 4705 "large intrinsic immediates not handled"); 4706 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4707 } else { 4708 Ops.push_back( 4709 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4710 } 4711 } 4712 4713 SmallVector<EVT, 4> ValueVTs; 4714 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4715 4716 if (HasChain) 4717 ValueVTs.push_back(MVT::Other); 4718 4719 SDVTList VTs = DAG.getVTList(ValueVTs); 4720 4721 // Create the node. 4722 SDValue Result; 4723 if (IsTgtIntrinsic) { 4724 // This is target intrinsic that touches memory 4725 AAMDNodes AAInfo; 4726 I.getAAMetadata(AAInfo); 4727 Result = 4728 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4729 MachinePointerInfo(Info.ptrVal, Info.offset), 4730 Info.align, Info.flags, Info.size, AAInfo); 4731 } else if (!HasChain) { 4732 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4733 } else if (!I.getType()->isVoidTy()) { 4734 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4735 } else { 4736 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4737 } 4738 4739 if (HasChain) { 4740 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4741 if (OnlyLoad) 4742 PendingLoads.push_back(Chain); 4743 else 4744 DAG.setRoot(Chain); 4745 } 4746 4747 if (!I.getType()->isVoidTy()) { 4748 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4749 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4750 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4751 } else 4752 Result = lowerRangeToAssertZExt(DAG, I, Result); 4753 4754 setValue(&I, Result); 4755 } 4756 } 4757 4758 /// GetSignificand - Get the significand and build it into a floating-point 4759 /// number with exponent of 1: 4760 /// 4761 /// Op = (Op & 0x007fffff) | 0x3f800000; 4762 /// 4763 /// where Op is the hexadecimal representation of floating point value. 4764 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4765 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4766 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4767 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4768 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4769 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4770 } 4771 4772 /// GetExponent - Get the exponent: 4773 /// 4774 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4775 /// 4776 /// where Op is the hexadecimal representation of floating point value. 4777 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4778 const TargetLowering &TLI, const SDLoc &dl) { 4779 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4780 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4781 SDValue t1 = DAG.getNode( 4782 ISD::SRL, dl, MVT::i32, t0, 4783 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4784 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4785 DAG.getConstant(127, dl, MVT::i32)); 4786 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4787 } 4788 4789 /// getF32Constant - Get 32-bit floating point constant. 4790 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4791 const SDLoc &dl) { 4792 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4793 MVT::f32); 4794 } 4795 4796 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4797 SelectionDAG &DAG) { 4798 // TODO: What fast-math-flags should be set on the floating-point nodes? 4799 4800 // IntegerPartOfX = ((int32_t)(t0); 4801 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4802 4803 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4804 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4805 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4806 4807 // IntegerPartOfX <<= 23; 4808 IntegerPartOfX = DAG.getNode( 4809 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4810 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4811 DAG.getDataLayout()))); 4812 4813 SDValue TwoToFractionalPartOfX; 4814 if (LimitFloatPrecision <= 6) { 4815 // For floating-point precision of 6: 4816 // 4817 // TwoToFractionalPartOfX = 4818 // 0.997535578f + 4819 // (0.735607626f + 0.252464424f * x) * x; 4820 // 4821 // error 0.0144103317, which is 6 bits 4822 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4823 getF32Constant(DAG, 0x3e814304, dl)); 4824 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4825 getF32Constant(DAG, 0x3f3c50c8, dl)); 4826 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4827 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4828 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4829 } else if (LimitFloatPrecision <= 12) { 4830 // For floating-point precision of 12: 4831 // 4832 // TwoToFractionalPartOfX = 4833 // 0.999892986f + 4834 // (0.696457318f + 4835 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4836 // 4837 // error 0.000107046256, which is 13 to 14 bits 4838 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4839 getF32Constant(DAG, 0x3da235e3, dl)); 4840 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4841 getF32Constant(DAG, 0x3e65b8f3, dl)); 4842 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4843 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4844 getF32Constant(DAG, 0x3f324b07, dl)); 4845 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4846 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4847 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4848 } else { // LimitFloatPrecision <= 18 4849 // For floating-point precision of 18: 4850 // 4851 // TwoToFractionalPartOfX = 4852 // 0.999999982f + 4853 // (0.693148872f + 4854 // (0.240227044f + 4855 // (0.554906021e-1f + 4856 // (0.961591928e-2f + 4857 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4858 // error 2.47208000*10^(-7), which is better than 18 bits 4859 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4860 getF32Constant(DAG, 0x3924b03e, dl)); 4861 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4862 getF32Constant(DAG, 0x3ab24b87, dl)); 4863 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4864 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4865 getF32Constant(DAG, 0x3c1d8c17, dl)); 4866 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4867 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4868 getF32Constant(DAG, 0x3d634a1d, dl)); 4869 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4870 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4871 getF32Constant(DAG, 0x3e75fe14, dl)); 4872 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4873 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4874 getF32Constant(DAG, 0x3f317234, dl)); 4875 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4876 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4877 getF32Constant(DAG, 0x3f800000, dl)); 4878 } 4879 4880 // Add the exponent into the result in integer domain. 4881 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4882 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4883 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4884 } 4885 4886 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4887 /// limited-precision mode. 4888 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4889 const TargetLowering &TLI) { 4890 if (Op.getValueType() == MVT::f32 && 4891 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4892 4893 // Put the exponent in the right bit position for later addition to the 4894 // final result: 4895 // 4896 // t0 = Op * log2(e) 4897 4898 // TODO: What fast-math-flags should be set here? 4899 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4900 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4901 return getLimitedPrecisionExp2(t0, dl, DAG); 4902 } 4903 4904 // No special expansion. 4905 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4906 } 4907 4908 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4909 /// limited-precision mode. 4910 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4911 const TargetLowering &TLI) { 4912 // TODO: What fast-math-flags should be set on the floating-point nodes? 4913 4914 if (Op.getValueType() == MVT::f32 && 4915 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4916 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4917 4918 // Scale the exponent by log(2). 4919 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4920 SDValue LogOfExponent = 4921 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4922 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4923 4924 // Get the significand and build it into a floating-point number with 4925 // exponent of 1. 4926 SDValue X = GetSignificand(DAG, Op1, dl); 4927 4928 SDValue LogOfMantissa; 4929 if (LimitFloatPrecision <= 6) { 4930 // For floating-point precision of 6: 4931 // 4932 // LogofMantissa = 4933 // -1.1609546f + 4934 // (1.4034025f - 0.23903021f * x) * x; 4935 // 4936 // error 0.0034276066, which is better than 8 bits 4937 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4938 getF32Constant(DAG, 0xbe74c456, dl)); 4939 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4940 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4941 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4942 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4943 getF32Constant(DAG, 0x3f949a29, dl)); 4944 } else if (LimitFloatPrecision <= 12) { 4945 // For floating-point precision of 12: 4946 // 4947 // LogOfMantissa = 4948 // -1.7417939f + 4949 // (2.8212026f + 4950 // (-1.4699568f + 4951 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4952 // 4953 // error 0.000061011436, which is 14 bits 4954 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4955 getF32Constant(DAG, 0xbd67b6d6, dl)); 4956 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4957 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4958 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4959 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4960 getF32Constant(DAG, 0x3fbc278b, dl)); 4961 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4962 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4963 getF32Constant(DAG, 0x40348e95, dl)); 4964 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4965 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4966 getF32Constant(DAG, 0x3fdef31a, dl)); 4967 } else { // LimitFloatPrecision <= 18 4968 // For floating-point precision of 18: 4969 // 4970 // LogOfMantissa = 4971 // -2.1072184f + 4972 // (4.2372794f + 4973 // (-3.7029485f + 4974 // (2.2781945f + 4975 // (-0.87823314f + 4976 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4977 // 4978 // error 0.0000023660568, which is better than 18 bits 4979 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4980 getF32Constant(DAG, 0xbc91e5ac, dl)); 4981 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4982 getF32Constant(DAG, 0x3e4350aa, dl)); 4983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4984 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4985 getF32Constant(DAG, 0x3f60d3e3, dl)); 4986 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4987 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4988 getF32Constant(DAG, 0x4011cdf0, dl)); 4989 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4990 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4991 getF32Constant(DAG, 0x406cfd1c, dl)); 4992 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4993 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4994 getF32Constant(DAG, 0x408797cb, dl)); 4995 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4996 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4997 getF32Constant(DAG, 0x4006dcab, dl)); 4998 } 4999 5000 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5001 } 5002 5003 // No special expansion. 5004 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5005 } 5006 5007 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5008 /// limited-precision mode. 5009 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5010 const TargetLowering &TLI) { 5011 // TODO: What fast-math-flags should be set on the floating-point nodes? 5012 5013 if (Op.getValueType() == MVT::f32 && 5014 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5015 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5016 5017 // Get the exponent. 5018 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5019 5020 // Get the significand and build it into a floating-point number with 5021 // exponent of 1. 5022 SDValue X = GetSignificand(DAG, Op1, dl); 5023 5024 // Different possible minimax approximations of significand in 5025 // floating-point for various degrees of accuracy over [1,2]. 5026 SDValue Log2ofMantissa; 5027 if (LimitFloatPrecision <= 6) { 5028 // For floating-point precision of 6: 5029 // 5030 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5031 // 5032 // error 0.0049451742, which is more than 7 bits 5033 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5034 getF32Constant(DAG, 0xbeb08fe0, dl)); 5035 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5036 getF32Constant(DAG, 0x40019463, dl)); 5037 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5038 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5039 getF32Constant(DAG, 0x3fd6633d, dl)); 5040 } else if (LimitFloatPrecision <= 12) { 5041 // For floating-point precision of 12: 5042 // 5043 // Log2ofMantissa = 5044 // -2.51285454f + 5045 // (4.07009056f + 5046 // (-2.12067489f + 5047 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5048 // 5049 // error 0.0000876136000, which is better than 13 bits 5050 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5051 getF32Constant(DAG, 0xbda7262e, dl)); 5052 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5053 getF32Constant(DAG, 0x3f25280b, dl)); 5054 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5055 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5056 getF32Constant(DAG, 0x4007b923, dl)); 5057 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5058 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5059 getF32Constant(DAG, 0x40823e2f, dl)); 5060 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5061 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5062 getF32Constant(DAG, 0x4020d29c, dl)); 5063 } else { // LimitFloatPrecision <= 18 5064 // For floating-point precision of 18: 5065 // 5066 // Log2ofMantissa = 5067 // -3.0400495f + 5068 // (6.1129976f + 5069 // (-5.3420409f + 5070 // (3.2865683f + 5071 // (-1.2669343f + 5072 // (0.27515199f - 5073 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5074 // 5075 // error 0.0000018516, which is better than 18 bits 5076 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5077 getF32Constant(DAG, 0xbcd2769e, dl)); 5078 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5079 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5080 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5081 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5082 getF32Constant(DAG, 0x3fa22ae7, dl)); 5083 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5084 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5085 getF32Constant(DAG, 0x40525723, dl)); 5086 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5087 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5088 getF32Constant(DAG, 0x40aaf200, dl)); 5089 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5090 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5091 getF32Constant(DAG, 0x40c39dad, dl)); 5092 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5093 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5094 getF32Constant(DAG, 0x4042902c, dl)); 5095 } 5096 5097 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5098 } 5099 5100 // No special expansion. 5101 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5102 } 5103 5104 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5105 /// limited-precision mode. 5106 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5107 const TargetLowering &TLI) { 5108 // TODO: What fast-math-flags should be set on the floating-point nodes? 5109 5110 if (Op.getValueType() == MVT::f32 && 5111 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5112 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5113 5114 // Scale the exponent by log10(2) [0.30102999f]. 5115 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5116 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5117 getF32Constant(DAG, 0x3e9a209a, dl)); 5118 5119 // Get the significand and build it into a floating-point number with 5120 // exponent of 1. 5121 SDValue X = GetSignificand(DAG, Op1, dl); 5122 5123 SDValue Log10ofMantissa; 5124 if (LimitFloatPrecision <= 6) { 5125 // For floating-point precision of 6: 5126 // 5127 // Log10ofMantissa = 5128 // -0.50419619f + 5129 // (0.60948995f - 0.10380950f * x) * x; 5130 // 5131 // error 0.0014886165, which is 6 bits 5132 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5133 getF32Constant(DAG, 0xbdd49a13, dl)); 5134 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5135 getF32Constant(DAG, 0x3f1c0789, dl)); 5136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5137 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5138 getF32Constant(DAG, 0x3f011300, dl)); 5139 } else if (LimitFloatPrecision <= 12) { 5140 // For floating-point precision of 12: 5141 // 5142 // Log10ofMantissa = 5143 // -0.64831180f + 5144 // (0.91751397f + 5145 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5146 // 5147 // error 0.00019228036, which is better than 12 bits 5148 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5149 getF32Constant(DAG, 0x3d431f31, dl)); 5150 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5151 getF32Constant(DAG, 0x3ea21fb2, dl)); 5152 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5153 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5154 getF32Constant(DAG, 0x3f6ae232, dl)); 5155 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5156 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5157 getF32Constant(DAG, 0x3f25f7c3, dl)); 5158 } else { // LimitFloatPrecision <= 18 5159 // For floating-point precision of 18: 5160 // 5161 // Log10ofMantissa = 5162 // -0.84299375f + 5163 // (1.5327582f + 5164 // (-1.0688956f + 5165 // (0.49102474f + 5166 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5167 // 5168 // error 0.0000037995730, which is better than 18 bits 5169 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5170 getF32Constant(DAG, 0x3c5d51ce, dl)); 5171 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5172 getF32Constant(DAG, 0x3e00685a, dl)); 5173 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5174 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5175 getF32Constant(DAG, 0x3efb6798, dl)); 5176 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5177 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5178 getF32Constant(DAG, 0x3f88d192, dl)); 5179 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5180 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5181 getF32Constant(DAG, 0x3fc4316c, dl)); 5182 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5183 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5184 getF32Constant(DAG, 0x3f57ce70, dl)); 5185 } 5186 5187 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5188 } 5189 5190 // No special expansion. 5191 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5192 } 5193 5194 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5195 /// limited-precision mode. 5196 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5197 const TargetLowering &TLI) { 5198 if (Op.getValueType() == MVT::f32 && 5199 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5200 return getLimitedPrecisionExp2(Op, dl, DAG); 5201 5202 // No special expansion. 5203 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5204 } 5205 5206 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5207 /// limited-precision mode with x == 10.0f. 5208 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5209 SelectionDAG &DAG, const TargetLowering &TLI) { 5210 bool IsExp10 = false; 5211 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5212 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5213 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5214 APFloat Ten(10.0f); 5215 IsExp10 = LHSC->isExactlyValue(Ten); 5216 } 5217 } 5218 5219 // TODO: What fast-math-flags should be set on the FMUL node? 5220 if (IsExp10) { 5221 // Put the exponent in the right bit position for later addition to the 5222 // final result: 5223 // 5224 // #define LOG2OF10 3.3219281f 5225 // t0 = Op * LOG2OF10; 5226 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5227 getF32Constant(DAG, 0x40549a78, dl)); 5228 return getLimitedPrecisionExp2(t0, dl, DAG); 5229 } 5230 5231 // No special expansion. 5232 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5233 } 5234 5235 /// ExpandPowI - Expand a llvm.powi intrinsic. 5236 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5237 SelectionDAG &DAG) { 5238 // If RHS is a constant, we can expand this out to a multiplication tree, 5239 // otherwise we end up lowering to a call to __powidf2 (for example). When 5240 // optimizing for size, we only want to do this if the expansion would produce 5241 // a small number of multiplies, otherwise we do the full expansion. 5242 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5243 // Get the exponent as a positive value. 5244 unsigned Val = RHSC->getSExtValue(); 5245 if ((int)Val < 0) Val = -Val; 5246 5247 // powi(x, 0) -> 1.0 5248 if (Val == 0) 5249 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5250 5251 bool OptForSize = DAG.shouldOptForSize(); 5252 if (!OptForSize || 5253 // If optimizing for size, don't insert too many multiplies. 5254 // This inserts up to 5 multiplies. 5255 countPopulation(Val) + Log2_32(Val) < 7) { 5256 // We use the simple binary decomposition method to generate the multiply 5257 // sequence. There are more optimal ways to do this (for example, 5258 // powi(x,15) generates one more multiply than it should), but this has 5259 // the benefit of being both really simple and much better than a libcall. 5260 SDValue Res; // Logically starts equal to 1.0 5261 SDValue CurSquare = LHS; 5262 // TODO: Intrinsics should have fast-math-flags that propagate to these 5263 // nodes. 5264 while (Val) { 5265 if (Val & 1) { 5266 if (Res.getNode()) 5267 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5268 else 5269 Res = CurSquare; // 1.0*CurSquare. 5270 } 5271 5272 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5273 CurSquare, CurSquare); 5274 Val >>= 1; 5275 } 5276 5277 // If the original was negative, invert the result, producing 1/(x*x*x). 5278 if (RHSC->getSExtValue() < 0) 5279 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5280 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5281 return Res; 5282 } 5283 } 5284 5285 // Otherwise, expand to a libcall. 5286 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5287 } 5288 5289 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5290 SDValue LHS, SDValue RHS, SDValue Scale, 5291 SelectionDAG &DAG, const TargetLowering &TLI) { 5292 EVT VT = LHS.getValueType(); 5293 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5294 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5295 LLVMContext &Ctx = *DAG.getContext(); 5296 5297 // If the type is legal but the operation isn't, this node might survive all 5298 // the way to operation legalization. If we end up there and we do not have 5299 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5300 // node. 5301 5302 // Coax the legalizer into expanding the node during type legalization instead 5303 // by bumping the size by one bit. This will force it to Promote, enabling the 5304 // early expansion and avoiding the need to expand later. 5305 5306 // We don't have to do this if Scale is 0; that can always be expanded, unless 5307 // it's a saturating signed operation. Those can experience true integer 5308 // division overflow, a case which we must avoid. 5309 5310 // FIXME: We wouldn't have to do this (or any of the early 5311 // expansion/promotion) if it was possible to expand a libcall of an 5312 // illegal type during operation legalization. But it's not, so things 5313 // get a bit hacky. 5314 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5315 if ((ScaleInt > 0 || (Saturating && Signed)) && 5316 (TLI.isTypeLegal(VT) || 5317 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5318 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5319 Opcode, VT, ScaleInt); 5320 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5321 EVT PromVT; 5322 if (VT.isScalarInteger()) 5323 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5324 else if (VT.isVector()) { 5325 PromVT = VT.getVectorElementType(); 5326 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5327 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5328 } else 5329 llvm_unreachable("Wrong VT for DIVFIX?"); 5330 if (Signed) { 5331 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5332 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5333 } else { 5334 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5335 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5336 } 5337 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5338 // For saturating operations, we need to shift up the LHS to get the 5339 // proper saturation width, and then shift down again afterwards. 5340 if (Saturating) 5341 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5342 DAG.getConstant(1, DL, ShiftTy)); 5343 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5344 if (Saturating) 5345 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5346 DAG.getConstant(1, DL, ShiftTy)); 5347 return DAG.getZExtOrTrunc(Res, DL, VT); 5348 } 5349 } 5350 5351 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5352 } 5353 5354 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5355 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5356 static void 5357 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5358 const SDValue &N) { 5359 switch (N.getOpcode()) { 5360 case ISD::CopyFromReg: { 5361 SDValue Op = N.getOperand(1); 5362 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5363 Op.getValueType().getSizeInBits()); 5364 return; 5365 } 5366 case ISD::BITCAST: 5367 case ISD::AssertZext: 5368 case ISD::AssertSext: 5369 case ISD::TRUNCATE: 5370 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5371 return; 5372 case ISD::BUILD_PAIR: 5373 case ISD::BUILD_VECTOR: 5374 case ISD::CONCAT_VECTORS: 5375 for (SDValue Op : N->op_values()) 5376 getUnderlyingArgRegs(Regs, Op); 5377 return; 5378 default: 5379 return; 5380 } 5381 } 5382 5383 /// If the DbgValueInst is a dbg_value of a function argument, create the 5384 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5385 /// instruction selection, they will be inserted to the entry BB. 5386 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5387 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5388 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5389 const Argument *Arg = dyn_cast<Argument>(V); 5390 if (!Arg) 5391 return false; 5392 5393 if (!IsDbgDeclare) { 5394 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5395 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5396 // the entry block. 5397 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5398 if (!IsInEntryBlock) 5399 return false; 5400 5401 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5402 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5403 // variable that also is a param. 5404 // 5405 // Although, if we are at the top of the entry block already, we can still 5406 // emit using ArgDbgValue. This might catch some situations when the 5407 // dbg.value refers to an argument that isn't used in the entry block, so 5408 // any CopyToReg node would be optimized out and the only way to express 5409 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5410 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5411 // we should only emit as ArgDbgValue if the Variable is an argument to the 5412 // current function, and the dbg.value intrinsic is found in the entry 5413 // block. 5414 bool VariableIsFunctionInputArg = Variable->isParameter() && 5415 !DL->getInlinedAt(); 5416 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5417 if (!IsInPrologue && !VariableIsFunctionInputArg) 5418 return false; 5419 5420 // Here we assume that a function argument on IR level only can be used to 5421 // describe one input parameter on source level. If we for example have 5422 // source code like this 5423 // 5424 // struct A { long x, y; }; 5425 // void foo(struct A a, long b) { 5426 // ... 5427 // b = a.x; 5428 // ... 5429 // } 5430 // 5431 // and IR like this 5432 // 5433 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5434 // entry: 5435 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5436 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5437 // call void @llvm.dbg.value(metadata i32 %b, "b", 5438 // ... 5439 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5440 // ... 5441 // 5442 // then the last dbg.value is describing a parameter "b" using a value that 5443 // is an argument. But since we already has used %a1 to describe a parameter 5444 // we should not handle that last dbg.value here (that would result in an 5445 // incorrect hoisting of the DBG_VALUE to the function entry). 5446 // Notice that we allow one dbg.value per IR level argument, to accommodate 5447 // for the situation with fragments above. 5448 if (VariableIsFunctionInputArg) { 5449 unsigned ArgNo = Arg->getArgNo(); 5450 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5451 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5452 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5453 return false; 5454 FuncInfo.DescribedArgs.set(ArgNo); 5455 } 5456 } 5457 5458 MachineFunction &MF = DAG.getMachineFunction(); 5459 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5460 5461 bool IsIndirect = false; 5462 Optional<MachineOperand> Op; 5463 // Some arguments' frame index is recorded during argument lowering. 5464 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5465 if (FI != std::numeric_limits<int>::max()) 5466 Op = MachineOperand::CreateFI(FI); 5467 5468 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5469 if (!Op && N.getNode()) { 5470 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5471 Register Reg; 5472 if (ArgRegsAndSizes.size() == 1) 5473 Reg = ArgRegsAndSizes.front().first; 5474 5475 if (Reg && Reg.isVirtual()) { 5476 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5477 Register PR = RegInfo.getLiveInPhysReg(Reg); 5478 if (PR) 5479 Reg = PR; 5480 } 5481 if (Reg) { 5482 Op = MachineOperand::CreateReg(Reg, false); 5483 IsIndirect = IsDbgDeclare; 5484 } 5485 } 5486 5487 if (!Op && N.getNode()) { 5488 // Check if frame index is available. 5489 SDValue LCandidate = peekThroughBitcasts(N); 5490 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5491 if (FrameIndexSDNode *FINode = 5492 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5493 Op = MachineOperand::CreateFI(FINode->getIndex()); 5494 } 5495 5496 if (!Op) { 5497 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5498 auto splitMultiRegDbgValue 5499 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5500 unsigned Offset = 0; 5501 for (auto RegAndSize : SplitRegs) { 5502 // If the expression is already a fragment, the current register 5503 // offset+size might extend beyond the fragment. In this case, only 5504 // the register bits that are inside the fragment are relevant. 5505 int RegFragmentSizeInBits = RegAndSize.second; 5506 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5507 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5508 // The register is entirely outside the expression fragment, 5509 // so is irrelevant for debug info. 5510 if (Offset >= ExprFragmentSizeInBits) 5511 break; 5512 // The register is partially outside the expression fragment, only 5513 // the low bits within the fragment are relevant for debug info. 5514 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5515 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5516 } 5517 } 5518 5519 auto FragmentExpr = DIExpression::createFragmentExpression( 5520 Expr, Offset, RegFragmentSizeInBits); 5521 Offset += RegAndSize.second; 5522 // If a valid fragment expression cannot be created, the variable's 5523 // correct value cannot be determined and so it is set as Undef. 5524 if (!FragmentExpr) { 5525 SDDbgValue *SDV = DAG.getConstantDbgValue( 5526 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5527 DAG.AddDbgValue(SDV, nullptr, false); 5528 continue; 5529 } 5530 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5531 FuncInfo.ArgDbgValues.push_back( 5532 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5533 RegAndSize.first, Variable, *FragmentExpr)); 5534 } 5535 }; 5536 5537 // Check if ValueMap has reg number. 5538 DenseMap<const Value *, Register>::const_iterator 5539 VMI = FuncInfo.ValueMap.find(V); 5540 if (VMI != FuncInfo.ValueMap.end()) { 5541 const auto &TLI = DAG.getTargetLoweringInfo(); 5542 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5543 V->getType(), getABIRegCopyCC(V)); 5544 if (RFV.occupiesMultipleRegs()) { 5545 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5546 return true; 5547 } 5548 5549 Op = MachineOperand::CreateReg(VMI->second, false); 5550 IsIndirect = IsDbgDeclare; 5551 } else if (ArgRegsAndSizes.size() > 1) { 5552 // This was split due to the calling convention, and no virtual register 5553 // mapping exists for the value. 5554 splitMultiRegDbgValue(ArgRegsAndSizes); 5555 return true; 5556 } 5557 } 5558 5559 if (!Op) 5560 return false; 5561 5562 assert(Variable->isValidLocationForIntrinsic(DL) && 5563 "Expected inlined-at fields to agree"); 5564 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5565 FuncInfo.ArgDbgValues.push_back( 5566 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5567 *Op, Variable, Expr)); 5568 5569 return true; 5570 } 5571 5572 /// Return the appropriate SDDbgValue based on N. 5573 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5574 DILocalVariable *Variable, 5575 DIExpression *Expr, 5576 const DebugLoc &dl, 5577 unsigned DbgSDNodeOrder) { 5578 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5579 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5580 // stack slot locations. 5581 // 5582 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5583 // debug values here after optimization: 5584 // 5585 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5586 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5587 // 5588 // Both describe the direct values of their associated variables. 5589 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5590 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5591 } 5592 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5593 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5594 } 5595 5596 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5597 switch (Intrinsic) { 5598 case Intrinsic::smul_fix: 5599 return ISD::SMULFIX; 5600 case Intrinsic::umul_fix: 5601 return ISD::UMULFIX; 5602 case Intrinsic::smul_fix_sat: 5603 return ISD::SMULFIXSAT; 5604 case Intrinsic::umul_fix_sat: 5605 return ISD::UMULFIXSAT; 5606 case Intrinsic::sdiv_fix: 5607 return ISD::SDIVFIX; 5608 case Intrinsic::udiv_fix: 5609 return ISD::UDIVFIX; 5610 case Intrinsic::sdiv_fix_sat: 5611 return ISD::SDIVFIXSAT; 5612 case Intrinsic::udiv_fix_sat: 5613 return ISD::UDIVFIXSAT; 5614 default: 5615 llvm_unreachable("Unhandled fixed point intrinsic"); 5616 } 5617 } 5618 5619 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5620 const char *FunctionName) { 5621 assert(FunctionName && "FunctionName must not be nullptr"); 5622 SDValue Callee = DAG.getExternalSymbol( 5623 FunctionName, 5624 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5625 LowerCallTo(I, Callee, I.isTailCall()); 5626 } 5627 5628 /// Lower the call to the specified intrinsic function. 5629 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5630 unsigned Intrinsic) { 5631 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5632 SDLoc sdl = getCurSDLoc(); 5633 DebugLoc dl = getCurDebugLoc(); 5634 SDValue Res; 5635 5636 switch (Intrinsic) { 5637 default: 5638 // By default, turn this into a target intrinsic node. 5639 visitTargetIntrinsic(I, Intrinsic); 5640 return; 5641 case Intrinsic::vscale: { 5642 match(&I, m_VScale(DAG.getDataLayout())); 5643 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5644 setValue(&I, 5645 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5646 return; 5647 } 5648 case Intrinsic::vastart: visitVAStart(I); return; 5649 case Intrinsic::vaend: visitVAEnd(I); return; 5650 case Intrinsic::vacopy: visitVACopy(I); return; 5651 case Intrinsic::returnaddress: 5652 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5653 TLI.getPointerTy(DAG.getDataLayout()), 5654 getValue(I.getArgOperand(0)))); 5655 return; 5656 case Intrinsic::addressofreturnaddress: 5657 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5658 TLI.getPointerTy(DAG.getDataLayout()))); 5659 return; 5660 case Intrinsic::sponentry: 5661 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5662 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5663 return; 5664 case Intrinsic::frameaddress: 5665 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5666 TLI.getFrameIndexTy(DAG.getDataLayout()), 5667 getValue(I.getArgOperand(0)))); 5668 return; 5669 case Intrinsic::read_register: { 5670 Value *Reg = I.getArgOperand(0); 5671 SDValue Chain = getRoot(); 5672 SDValue RegName = 5673 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5674 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5675 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5676 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5677 setValue(&I, Res); 5678 DAG.setRoot(Res.getValue(1)); 5679 return; 5680 } 5681 case Intrinsic::write_register: { 5682 Value *Reg = I.getArgOperand(0); 5683 Value *RegValue = I.getArgOperand(1); 5684 SDValue Chain = getRoot(); 5685 SDValue RegName = 5686 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5687 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5688 RegName, getValue(RegValue))); 5689 return; 5690 } 5691 case Intrinsic::memcpy: { 5692 const auto &MCI = cast<MemCpyInst>(I); 5693 SDValue Op1 = getValue(I.getArgOperand(0)); 5694 SDValue Op2 = getValue(I.getArgOperand(1)); 5695 SDValue Op3 = getValue(I.getArgOperand(2)); 5696 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5697 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5698 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5699 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5700 bool isVol = MCI.isVolatile(); 5701 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5702 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5703 // node. 5704 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5705 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5706 /* AlwaysInline */ false, isTC, 5707 MachinePointerInfo(I.getArgOperand(0)), 5708 MachinePointerInfo(I.getArgOperand(1))); 5709 updateDAGForMaybeTailCall(MC); 5710 return; 5711 } 5712 case Intrinsic::memcpy_inline: { 5713 const auto &MCI = cast<MemCpyInlineInst>(I); 5714 SDValue Dst = getValue(I.getArgOperand(0)); 5715 SDValue Src = getValue(I.getArgOperand(1)); 5716 SDValue Size = getValue(I.getArgOperand(2)); 5717 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5718 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5719 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5720 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5721 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5722 bool isVol = MCI.isVolatile(); 5723 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5724 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5725 // node. 5726 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5727 /* AlwaysInline */ true, isTC, 5728 MachinePointerInfo(I.getArgOperand(0)), 5729 MachinePointerInfo(I.getArgOperand(1))); 5730 updateDAGForMaybeTailCall(MC); 5731 return; 5732 } 5733 case Intrinsic::memset: { 5734 const auto &MSI = cast<MemSetInst>(I); 5735 SDValue Op1 = getValue(I.getArgOperand(0)); 5736 SDValue Op2 = getValue(I.getArgOperand(1)); 5737 SDValue Op3 = getValue(I.getArgOperand(2)); 5738 // @llvm.memset defines 0 and 1 to both mean no alignment. 5739 Align Alignment = MSI.getDestAlign().valueOrOne(); 5740 bool isVol = MSI.isVolatile(); 5741 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5742 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5743 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5744 MachinePointerInfo(I.getArgOperand(0))); 5745 updateDAGForMaybeTailCall(MS); 5746 return; 5747 } 5748 case Intrinsic::memmove: { 5749 const auto &MMI = cast<MemMoveInst>(I); 5750 SDValue Op1 = getValue(I.getArgOperand(0)); 5751 SDValue Op2 = getValue(I.getArgOperand(1)); 5752 SDValue Op3 = getValue(I.getArgOperand(2)); 5753 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5754 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5755 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5756 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5757 bool isVol = MMI.isVolatile(); 5758 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5759 // FIXME: Support passing different dest/src alignments to the memmove DAG 5760 // node. 5761 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5762 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5763 isTC, MachinePointerInfo(I.getArgOperand(0)), 5764 MachinePointerInfo(I.getArgOperand(1))); 5765 updateDAGForMaybeTailCall(MM); 5766 return; 5767 } 5768 case Intrinsic::memcpy_element_unordered_atomic: { 5769 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5770 SDValue Dst = getValue(MI.getRawDest()); 5771 SDValue Src = getValue(MI.getRawSource()); 5772 SDValue Length = getValue(MI.getLength()); 5773 5774 unsigned DstAlign = MI.getDestAlignment(); 5775 unsigned SrcAlign = MI.getSourceAlignment(); 5776 Type *LengthTy = MI.getLength()->getType(); 5777 unsigned ElemSz = MI.getElementSizeInBytes(); 5778 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5779 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5780 SrcAlign, Length, LengthTy, ElemSz, isTC, 5781 MachinePointerInfo(MI.getRawDest()), 5782 MachinePointerInfo(MI.getRawSource())); 5783 updateDAGForMaybeTailCall(MC); 5784 return; 5785 } 5786 case Intrinsic::memmove_element_unordered_atomic: { 5787 auto &MI = cast<AtomicMemMoveInst>(I); 5788 SDValue Dst = getValue(MI.getRawDest()); 5789 SDValue Src = getValue(MI.getRawSource()); 5790 SDValue Length = getValue(MI.getLength()); 5791 5792 unsigned DstAlign = MI.getDestAlignment(); 5793 unsigned SrcAlign = MI.getSourceAlignment(); 5794 Type *LengthTy = MI.getLength()->getType(); 5795 unsigned ElemSz = MI.getElementSizeInBytes(); 5796 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5797 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5798 SrcAlign, Length, LengthTy, ElemSz, isTC, 5799 MachinePointerInfo(MI.getRawDest()), 5800 MachinePointerInfo(MI.getRawSource())); 5801 updateDAGForMaybeTailCall(MC); 5802 return; 5803 } 5804 case Intrinsic::memset_element_unordered_atomic: { 5805 auto &MI = cast<AtomicMemSetInst>(I); 5806 SDValue Dst = getValue(MI.getRawDest()); 5807 SDValue Val = getValue(MI.getValue()); 5808 SDValue Length = getValue(MI.getLength()); 5809 5810 unsigned DstAlign = MI.getDestAlignment(); 5811 Type *LengthTy = MI.getLength()->getType(); 5812 unsigned ElemSz = MI.getElementSizeInBytes(); 5813 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5814 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5815 LengthTy, ElemSz, isTC, 5816 MachinePointerInfo(MI.getRawDest())); 5817 updateDAGForMaybeTailCall(MC); 5818 return; 5819 } 5820 case Intrinsic::dbg_addr: 5821 case Intrinsic::dbg_declare: { 5822 const auto &DI = cast<DbgVariableIntrinsic>(I); 5823 DILocalVariable *Variable = DI.getVariable(); 5824 DIExpression *Expression = DI.getExpression(); 5825 dropDanglingDebugInfo(Variable, Expression); 5826 assert(Variable && "Missing variable"); 5827 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5828 << "\n"); 5829 // Check if address has undef value. 5830 const Value *Address = DI.getVariableLocation(); 5831 if (!Address || isa<UndefValue>(Address) || 5832 (Address->use_empty() && !isa<Argument>(Address))) { 5833 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5834 << " (bad/undef/unused-arg address)\n"); 5835 return; 5836 } 5837 5838 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5839 5840 // Check if this variable can be described by a frame index, typically 5841 // either as a static alloca or a byval parameter. 5842 int FI = std::numeric_limits<int>::max(); 5843 if (const auto *AI = 5844 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5845 if (AI->isStaticAlloca()) { 5846 auto I = FuncInfo.StaticAllocaMap.find(AI); 5847 if (I != FuncInfo.StaticAllocaMap.end()) 5848 FI = I->second; 5849 } 5850 } else if (const auto *Arg = dyn_cast<Argument>( 5851 Address->stripInBoundsConstantOffsets())) { 5852 FI = FuncInfo.getArgumentFrameIndex(Arg); 5853 } 5854 5855 // llvm.dbg.addr is control dependent and always generates indirect 5856 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5857 // the MachineFunction variable table. 5858 if (FI != std::numeric_limits<int>::max()) { 5859 if (Intrinsic == Intrinsic::dbg_addr) { 5860 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5861 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5862 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5863 } else { 5864 LLVM_DEBUG(dbgs() << "Skipping " << DI 5865 << " (variable info stashed in MF side table)\n"); 5866 } 5867 return; 5868 } 5869 5870 SDValue &N = NodeMap[Address]; 5871 if (!N.getNode() && isa<Argument>(Address)) 5872 // Check unused arguments map. 5873 N = UnusedArgNodeMap[Address]; 5874 SDDbgValue *SDV; 5875 if (N.getNode()) { 5876 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5877 Address = BCI->getOperand(0); 5878 // Parameters are handled specially. 5879 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5880 if (isParameter && FINode) { 5881 // Byval parameter. We have a frame index at this point. 5882 SDV = 5883 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5884 /*IsIndirect*/ true, dl, SDNodeOrder); 5885 } else if (isa<Argument>(Address)) { 5886 // Address is an argument, so try to emit its dbg value using 5887 // virtual register info from the FuncInfo.ValueMap. 5888 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5889 return; 5890 } else { 5891 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5892 true, dl, SDNodeOrder); 5893 } 5894 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5895 } else { 5896 // If Address is an argument then try to emit its dbg value using 5897 // virtual register info from the FuncInfo.ValueMap. 5898 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5899 N)) { 5900 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5901 << " (could not emit func-arg dbg_value)\n"); 5902 } 5903 } 5904 return; 5905 } 5906 case Intrinsic::dbg_label: { 5907 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5908 DILabel *Label = DI.getLabel(); 5909 assert(Label && "Missing label"); 5910 5911 SDDbgLabel *SDV; 5912 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5913 DAG.AddDbgLabel(SDV); 5914 return; 5915 } 5916 case Intrinsic::dbg_value: { 5917 const DbgValueInst &DI = cast<DbgValueInst>(I); 5918 assert(DI.getVariable() && "Missing variable"); 5919 5920 DILocalVariable *Variable = DI.getVariable(); 5921 DIExpression *Expression = DI.getExpression(); 5922 dropDanglingDebugInfo(Variable, Expression); 5923 const Value *V = DI.getValue(); 5924 if (!V) 5925 return; 5926 5927 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5928 SDNodeOrder)) 5929 return; 5930 5931 // TODO: Dangling debug info will eventually either be resolved or produce 5932 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5933 // between the original dbg.value location and its resolved DBG_VALUE, which 5934 // we should ideally fill with an extra Undef DBG_VALUE. 5935 5936 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5937 return; 5938 } 5939 5940 case Intrinsic::eh_typeid_for: { 5941 // Find the type id for the given typeinfo. 5942 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5943 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5944 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5945 setValue(&I, Res); 5946 return; 5947 } 5948 5949 case Intrinsic::eh_return_i32: 5950 case Intrinsic::eh_return_i64: 5951 DAG.getMachineFunction().setCallsEHReturn(true); 5952 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5953 MVT::Other, 5954 getControlRoot(), 5955 getValue(I.getArgOperand(0)), 5956 getValue(I.getArgOperand(1)))); 5957 return; 5958 case Intrinsic::eh_unwind_init: 5959 DAG.getMachineFunction().setCallsUnwindInit(true); 5960 return; 5961 case Intrinsic::eh_dwarf_cfa: 5962 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5963 TLI.getPointerTy(DAG.getDataLayout()), 5964 getValue(I.getArgOperand(0)))); 5965 return; 5966 case Intrinsic::eh_sjlj_callsite: { 5967 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5968 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5969 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5970 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5971 5972 MMI.setCurrentCallSite(CI->getZExtValue()); 5973 return; 5974 } 5975 case Intrinsic::eh_sjlj_functioncontext: { 5976 // Get and store the index of the function context. 5977 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5978 AllocaInst *FnCtx = 5979 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5980 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5981 MFI.setFunctionContextIndex(FI); 5982 return; 5983 } 5984 case Intrinsic::eh_sjlj_setjmp: { 5985 SDValue Ops[2]; 5986 Ops[0] = getRoot(); 5987 Ops[1] = getValue(I.getArgOperand(0)); 5988 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5989 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5990 setValue(&I, Op.getValue(0)); 5991 DAG.setRoot(Op.getValue(1)); 5992 return; 5993 } 5994 case Intrinsic::eh_sjlj_longjmp: 5995 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5996 getRoot(), getValue(I.getArgOperand(0)))); 5997 return; 5998 case Intrinsic::eh_sjlj_setup_dispatch: 5999 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6000 getRoot())); 6001 return; 6002 case Intrinsic::masked_gather: 6003 visitMaskedGather(I); 6004 return; 6005 case Intrinsic::masked_load: 6006 visitMaskedLoad(I); 6007 return; 6008 case Intrinsic::masked_scatter: 6009 visitMaskedScatter(I); 6010 return; 6011 case Intrinsic::masked_store: 6012 visitMaskedStore(I); 6013 return; 6014 case Intrinsic::masked_expandload: 6015 visitMaskedLoad(I, true /* IsExpanding */); 6016 return; 6017 case Intrinsic::masked_compressstore: 6018 visitMaskedStore(I, true /* IsCompressing */); 6019 return; 6020 case Intrinsic::powi: 6021 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6022 getValue(I.getArgOperand(1)), DAG)); 6023 return; 6024 case Intrinsic::log: 6025 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6026 return; 6027 case Intrinsic::log2: 6028 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6029 return; 6030 case Intrinsic::log10: 6031 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6032 return; 6033 case Intrinsic::exp: 6034 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6035 return; 6036 case Intrinsic::exp2: 6037 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6038 return; 6039 case Intrinsic::pow: 6040 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6041 getValue(I.getArgOperand(1)), DAG, TLI)); 6042 return; 6043 case Intrinsic::sqrt: 6044 case Intrinsic::fabs: 6045 case Intrinsic::sin: 6046 case Intrinsic::cos: 6047 case Intrinsic::floor: 6048 case Intrinsic::ceil: 6049 case Intrinsic::trunc: 6050 case Intrinsic::rint: 6051 case Intrinsic::nearbyint: 6052 case Intrinsic::round: 6053 case Intrinsic::canonicalize: { 6054 unsigned Opcode; 6055 switch (Intrinsic) { 6056 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6057 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6058 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6059 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6060 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6061 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6062 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6063 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6064 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6065 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6066 case Intrinsic::round: Opcode = ISD::FROUND; break; 6067 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6068 } 6069 6070 setValue(&I, DAG.getNode(Opcode, sdl, 6071 getValue(I.getArgOperand(0)).getValueType(), 6072 getValue(I.getArgOperand(0)))); 6073 return; 6074 } 6075 case Intrinsic::lround: 6076 case Intrinsic::llround: 6077 case Intrinsic::lrint: 6078 case Intrinsic::llrint: { 6079 unsigned Opcode; 6080 switch (Intrinsic) { 6081 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6082 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6083 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6084 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6085 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6086 } 6087 6088 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6089 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6090 getValue(I.getArgOperand(0)))); 6091 return; 6092 } 6093 case Intrinsic::minnum: 6094 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6095 getValue(I.getArgOperand(0)).getValueType(), 6096 getValue(I.getArgOperand(0)), 6097 getValue(I.getArgOperand(1)))); 6098 return; 6099 case Intrinsic::maxnum: 6100 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6101 getValue(I.getArgOperand(0)).getValueType(), 6102 getValue(I.getArgOperand(0)), 6103 getValue(I.getArgOperand(1)))); 6104 return; 6105 case Intrinsic::minimum: 6106 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6107 getValue(I.getArgOperand(0)).getValueType(), 6108 getValue(I.getArgOperand(0)), 6109 getValue(I.getArgOperand(1)))); 6110 return; 6111 case Intrinsic::maximum: 6112 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6113 getValue(I.getArgOperand(0)).getValueType(), 6114 getValue(I.getArgOperand(0)), 6115 getValue(I.getArgOperand(1)))); 6116 return; 6117 case Intrinsic::copysign: 6118 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6119 getValue(I.getArgOperand(0)).getValueType(), 6120 getValue(I.getArgOperand(0)), 6121 getValue(I.getArgOperand(1)))); 6122 return; 6123 case Intrinsic::fma: 6124 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6125 getValue(I.getArgOperand(0)).getValueType(), 6126 getValue(I.getArgOperand(0)), 6127 getValue(I.getArgOperand(1)), 6128 getValue(I.getArgOperand(2)))); 6129 return; 6130 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6131 case Intrinsic::INTRINSIC: 6132 #include "llvm/IR/ConstrainedOps.def" 6133 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6134 return; 6135 case Intrinsic::fmuladd: { 6136 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6137 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6138 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6139 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6140 getValue(I.getArgOperand(0)).getValueType(), 6141 getValue(I.getArgOperand(0)), 6142 getValue(I.getArgOperand(1)), 6143 getValue(I.getArgOperand(2)))); 6144 } else { 6145 // TODO: Intrinsic calls should have fast-math-flags. 6146 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6147 getValue(I.getArgOperand(0)).getValueType(), 6148 getValue(I.getArgOperand(0)), 6149 getValue(I.getArgOperand(1))); 6150 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6151 getValue(I.getArgOperand(0)).getValueType(), 6152 Mul, 6153 getValue(I.getArgOperand(2))); 6154 setValue(&I, Add); 6155 } 6156 return; 6157 } 6158 case Intrinsic::convert_to_fp16: 6159 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6160 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6161 getValue(I.getArgOperand(0)), 6162 DAG.getTargetConstant(0, sdl, 6163 MVT::i32)))); 6164 return; 6165 case Intrinsic::convert_from_fp16: 6166 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6167 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6168 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6169 getValue(I.getArgOperand(0))))); 6170 return; 6171 case Intrinsic::pcmarker: { 6172 SDValue Tmp = getValue(I.getArgOperand(0)); 6173 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6174 return; 6175 } 6176 case Intrinsic::readcyclecounter: { 6177 SDValue Op = getRoot(); 6178 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6179 DAG.getVTList(MVT::i64, MVT::Other), Op); 6180 setValue(&I, Res); 6181 DAG.setRoot(Res.getValue(1)); 6182 return; 6183 } 6184 case Intrinsic::bitreverse: 6185 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6186 getValue(I.getArgOperand(0)).getValueType(), 6187 getValue(I.getArgOperand(0)))); 6188 return; 6189 case Intrinsic::bswap: 6190 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6191 getValue(I.getArgOperand(0)).getValueType(), 6192 getValue(I.getArgOperand(0)))); 6193 return; 6194 case Intrinsic::cttz: { 6195 SDValue Arg = getValue(I.getArgOperand(0)); 6196 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6197 EVT Ty = Arg.getValueType(); 6198 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6199 sdl, Ty, Arg)); 6200 return; 6201 } 6202 case Intrinsic::ctlz: { 6203 SDValue Arg = getValue(I.getArgOperand(0)); 6204 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6205 EVT Ty = Arg.getValueType(); 6206 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6207 sdl, Ty, Arg)); 6208 return; 6209 } 6210 case Intrinsic::ctpop: { 6211 SDValue Arg = getValue(I.getArgOperand(0)); 6212 EVT Ty = Arg.getValueType(); 6213 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6214 return; 6215 } 6216 case Intrinsic::fshl: 6217 case Intrinsic::fshr: { 6218 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6219 SDValue X = getValue(I.getArgOperand(0)); 6220 SDValue Y = getValue(I.getArgOperand(1)); 6221 SDValue Z = getValue(I.getArgOperand(2)); 6222 EVT VT = X.getValueType(); 6223 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6224 SDValue Zero = DAG.getConstant(0, sdl, VT); 6225 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6226 6227 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6228 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6229 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6230 return; 6231 } 6232 6233 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6234 // avoid the select that is necessary in the general case to filter out 6235 // the 0-shift possibility that leads to UB. 6236 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6237 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6238 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6239 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6240 return; 6241 } 6242 6243 // Some targets only rotate one way. Try the opposite direction. 6244 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6245 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6246 // Negate the shift amount because it is safe to ignore the high bits. 6247 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6248 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6249 return; 6250 } 6251 6252 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6253 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6254 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6255 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6256 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6257 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6258 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6259 return; 6260 } 6261 6262 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6263 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6264 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6265 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6266 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6267 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6268 6269 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6270 // and that is undefined. We must compare and select to avoid UB. 6271 EVT CCVT = MVT::i1; 6272 if (VT.isVector()) 6273 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6274 6275 // For fshl, 0-shift returns the 1st arg (X). 6276 // For fshr, 0-shift returns the 2nd arg (Y). 6277 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6278 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6279 return; 6280 } 6281 case Intrinsic::sadd_sat: { 6282 SDValue Op1 = getValue(I.getArgOperand(0)); 6283 SDValue Op2 = getValue(I.getArgOperand(1)); 6284 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6285 return; 6286 } 6287 case Intrinsic::uadd_sat: { 6288 SDValue Op1 = getValue(I.getArgOperand(0)); 6289 SDValue Op2 = getValue(I.getArgOperand(1)); 6290 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6291 return; 6292 } 6293 case Intrinsic::ssub_sat: { 6294 SDValue Op1 = getValue(I.getArgOperand(0)); 6295 SDValue Op2 = getValue(I.getArgOperand(1)); 6296 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6297 return; 6298 } 6299 case Intrinsic::usub_sat: { 6300 SDValue Op1 = getValue(I.getArgOperand(0)); 6301 SDValue Op2 = getValue(I.getArgOperand(1)); 6302 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6303 return; 6304 } 6305 case Intrinsic::smul_fix: 6306 case Intrinsic::umul_fix: 6307 case Intrinsic::smul_fix_sat: 6308 case Intrinsic::umul_fix_sat: { 6309 SDValue Op1 = getValue(I.getArgOperand(0)); 6310 SDValue Op2 = getValue(I.getArgOperand(1)); 6311 SDValue Op3 = getValue(I.getArgOperand(2)); 6312 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6313 Op1.getValueType(), Op1, Op2, Op3)); 6314 return; 6315 } 6316 case Intrinsic::sdiv_fix: 6317 case Intrinsic::udiv_fix: 6318 case Intrinsic::sdiv_fix_sat: 6319 case Intrinsic::udiv_fix_sat: { 6320 SDValue Op1 = getValue(I.getArgOperand(0)); 6321 SDValue Op2 = getValue(I.getArgOperand(1)); 6322 SDValue Op3 = getValue(I.getArgOperand(2)); 6323 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6324 Op1, Op2, Op3, DAG, TLI)); 6325 return; 6326 } 6327 case Intrinsic::stacksave: { 6328 SDValue Op = getRoot(); 6329 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6330 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6331 setValue(&I, Res); 6332 DAG.setRoot(Res.getValue(1)); 6333 return; 6334 } 6335 case Intrinsic::stackrestore: 6336 Res = getValue(I.getArgOperand(0)); 6337 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6338 return; 6339 case Intrinsic::get_dynamic_area_offset: { 6340 SDValue Op = getRoot(); 6341 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6342 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6343 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6344 // target. 6345 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6346 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6347 " intrinsic!"); 6348 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6349 Op); 6350 DAG.setRoot(Op); 6351 setValue(&I, Res); 6352 return; 6353 } 6354 case Intrinsic::stackguard: { 6355 MachineFunction &MF = DAG.getMachineFunction(); 6356 const Module &M = *MF.getFunction().getParent(); 6357 SDValue Chain = getRoot(); 6358 if (TLI.useLoadStackGuardNode()) { 6359 Res = getLoadStackGuard(DAG, sdl, Chain); 6360 } else { 6361 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6362 const Value *Global = TLI.getSDagStackGuard(M); 6363 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6364 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6365 MachinePointerInfo(Global, 0), Align, 6366 MachineMemOperand::MOVolatile); 6367 } 6368 if (TLI.useStackGuardXorFP()) 6369 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6370 DAG.setRoot(Chain); 6371 setValue(&I, Res); 6372 return; 6373 } 6374 case Intrinsic::stackprotector: { 6375 // Emit code into the DAG to store the stack guard onto the stack. 6376 MachineFunction &MF = DAG.getMachineFunction(); 6377 MachineFrameInfo &MFI = MF.getFrameInfo(); 6378 SDValue Src, Chain = getRoot(); 6379 6380 if (TLI.useLoadStackGuardNode()) 6381 Src = getLoadStackGuard(DAG, sdl, Chain); 6382 else 6383 Src = getValue(I.getArgOperand(0)); // The guard's value. 6384 6385 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6386 6387 int FI = FuncInfo.StaticAllocaMap[Slot]; 6388 MFI.setStackProtectorIndex(FI); 6389 EVT PtrTy = Src.getValueType(); 6390 6391 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6392 6393 // Store the stack protector onto the stack. 6394 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6395 DAG.getMachineFunction(), FI), 6396 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6397 setValue(&I, Res); 6398 DAG.setRoot(Res); 6399 return; 6400 } 6401 case Intrinsic::objectsize: 6402 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6403 6404 case Intrinsic::is_constant: 6405 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6406 6407 case Intrinsic::annotation: 6408 case Intrinsic::ptr_annotation: 6409 case Intrinsic::launder_invariant_group: 6410 case Intrinsic::strip_invariant_group: 6411 // Drop the intrinsic, but forward the value 6412 setValue(&I, getValue(I.getOperand(0))); 6413 return; 6414 case Intrinsic::assume: 6415 case Intrinsic::var_annotation: 6416 case Intrinsic::sideeffect: 6417 // Discard annotate attributes, assumptions, and artificial side-effects. 6418 return; 6419 6420 case Intrinsic::codeview_annotation: { 6421 // Emit a label associated with this metadata. 6422 MachineFunction &MF = DAG.getMachineFunction(); 6423 MCSymbol *Label = 6424 MF.getMMI().getContext().createTempSymbol("annotation", true); 6425 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6426 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6427 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6428 DAG.setRoot(Res); 6429 return; 6430 } 6431 6432 case Intrinsic::init_trampoline: { 6433 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6434 6435 SDValue Ops[6]; 6436 Ops[0] = getRoot(); 6437 Ops[1] = getValue(I.getArgOperand(0)); 6438 Ops[2] = getValue(I.getArgOperand(1)); 6439 Ops[3] = getValue(I.getArgOperand(2)); 6440 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6441 Ops[5] = DAG.getSrcValue(F); 6442 6443 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6444 6445 DAG.setRoot(Res); 6446 return; 6447 } 6448 case Intrinsic::adjust_trampoline: 6449 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6450 TLI.getPointerTy(DAG.getDataLayout()), 6451 getValue(I.getArgOperand(0)))); 6452 return; 6453 case Intrinsic::gcroot: { 6454 assert(DAG.getMachineFunction().getFunction().hasGC() && 6455 "only valid in functions with gc specified, enforced by Verifier"); 6456 assert(GFI && "implied by previous"); 6457 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6458 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6459 6460 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6461 GFI->addStackRoot(FI->getIndex(), TypeMap); 6462 return; 6463 } 6464 case Intrinsic::gcread: 6465 case Intrinsic::gcwrite: 6466 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6467 case Intrinsic::flt_rounds: 6468 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6469 setValue(&I, Res); 6470 DAG.setRoot(Res.getValue(1)); 6471 return; 6472 6473 case Intrinsic::expect: 6474 // Just replace __builtin_expect(exp, c) with EXP. 6475 setValue(&I, getValue(I.getArgOperand(0))); 6476 return; 6477 6478 case Intrinsic::debugtrap: 6479 case Intrinsic::trap: { 6480 StringRef TrapFuncName = 6481 I.getAttributes() 6482 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6483 .getValueAsString(); 6484 if (TrapFuncName.empty()) { 6485 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6486 ISD::TRAP : ISD::DEBUGTRAP; 6487 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6488 return; 6489 } 6490 TargetLowering::ArgListTy Args; 6491 6492 TargetLowering::CallLoweringInfo CLI(DAG); 6493 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6494 CallingConv::C, I.getType(), 6495 DAG.getExternalSymbol(TrapFuncName.data(), 6496 TLI.getPointerTy(DAG.getDataLayout())), 6497 std::move(Args)); 6498 6499 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6500 DAG.setRoot(Result.second); 6501 return; 6502 } 6503 6504 case Intrinsic::uadd_with_overflow: 6505 case Intrinsic::sadd_with_overflow: 6506 case Intrinsic::usub_with_overflow: 6507 case Intrinsic::ssub_with_overflow: 6508 case Intrinsic::umul_with_overflow: 6509 case Intrinsic::smul_with_overflow: { 6510 ISD::NodeType Op; 6511 switch (Intrinsic) { 6512 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6513 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6514 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6515 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6516 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6517 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6518 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6519 } 6520 SDValue Op1 = getValue(I.getArgOperand(0)); 6521 SDValue Op2 = getValue(I.getArgOperand(1)); 6522 6523 EVT ResultVT = Op1.getValueType(); 6524 EVT OverflowVT = MVT::i1; 6525 if (ResultVT.isVector()) 6526 OverflowVT = EVT::getVectorVT( 6527 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6528 6529 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6530 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6531 return; 6532 } 6533 case Intrinsic::prefetch: { 6534 SDValue Ops[5]; 6535 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6536 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6537 Ops[0] = DAG.getRoot(); 6538 Ops[1] = getValue(I.getArgOperand(0)); 6539 Ops[2] = getValue(I.getArgOperand(1)); 6540 Ops[3] = getValue(I.getArgOperand(2)); 6541 Ops[4] = getValue(I.getArgOperand(3)); 6542 SDValue Result = DAG.getMemIntrinsicNode( 6543 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6544 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6545 /* align */ None, Flags); 6546 6547 // Chain the prefetch in parallell with any pending loads, to stay out of 6548 // the way of later optimizations. 6549 PendingLoads.push_back(Result); 6550 Result = getRoot(); 6551 DAG.setRoot(Result); 6552 return; 6553 } 6554 case Intrinsic::lifetime_start: 6555 case Intrinsic::lifetime_end: { 6556 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6557 // Stack coloring is not enabled in O0, discard region information. 6558 if (TM.getOptLevel() == CodeGenOpt::None) 6559 return; 6560 6561 const int64_t ObjectSize = 6562 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6563 Value *const ObjectPtr = I.getArgOperand(1); 6564 SmallVector<const Value *, 4> Allocas; 6565 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6566 6567 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6568 E = Allocas.end(); Object != E; ++Object) { 6569 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6570 6571 // Could not find an Alloca. 6572 if (!LifetimeObject) 6573 continue; 6574 6575 // First check that the Alloca is static, otherwise it won't have a 6576 // valid frame index. 6577 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6578 if (SI == FuncInfo.StaticAllocaMap.end()) 6579 return; 6580 6581 const int FrameIndex = SI->second; 6582 int64_t Offset; 6583 if (GetPointerBaseWithConstantOffset( 6584 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6585 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6586 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6587 Offset); 6588 DAG.setRoot(Res); 6589 } 6590 return; 6591 } 6592 case Intrinsic::invariant_start: 6593 // Discard region information. 6594 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6595 return; 6596 case Intrinsic::invariant_end: 6597 // Discard region information. 6598 return; 6599 case Intrinsic::clear_cache: 6600 /// FunctionName may be null. 6601 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6602 lowerCallToExternalSymbol(I, FunctionName); 6603 return; 6604 case Intrinsic::donothing: 6605 // ignore 6606 return; 6607 case Intrinsic::experimental_stackmap: 6608 visitStackmap(I); 6609 return; 6610 case Intrinsic::experimental_patchpoint_void: 6611 case Intrinsic::experimental_patchpoint_i64: 6612 visitPatchpoint(I); 6613 return; 6614 case Intrinsic::experimental_gc_statepoint: 6615 LowerStatepoint(ImmutableStatepoint(&I)); 6616 return; 6617 case Intrinsic::experimental_gc_result: 6618 visitGCResult(cast<GCResultInst>(I)); 6619 return; 6620 case Intrinsic::experimental_gc_relocate: 6621 visitGCRelocate(cast<GCRelocateInst>(I)); 6622 return; 6623 case Intrinsic::instrprof_increment: 6624 llvm_unreachable("instrprof failed to lower an increment"); 6625 case Intrinsic::instrprof_value_profile: 6626 llvm_unreachable("instrprof failed to lower a value profiling call"); 6627 case Intrinsic::localescape: { 6628 MachineFunction &MF = DAG.getMachineFunction(); 6629 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6630 6631 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6632 // is the same on all targets. 6633 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6634 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6635 if (isa<ConstantPointerNull>(Arg)) 6636 continue; // Skip null pointers. They represent a hole in index space. 6637 AllocaInst *Slot = cast<AllocaInst>(Arg); 6638 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6639 "can only escape static allocas"); 6640 int FI = FuncInfo.StaticAllocaMap[Slot]; 6641 MCSymbol *FrameAllocSym = 6642 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6643 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6645 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6646 .addSym(FrameAllocSym) 6647 .addFrameIndex(FI); 6648 } 6649 6650 return; 6651 } 6652 6653 case Intrinsic::localrecover: { 6654 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6655 MachineFunction &MF = DAG.getMachineFunction(); 6656 6657 // Get the symbol that defines the frame offset. 6658 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6659 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6660 unsigned IdxVal = 6661 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6662 MCSymbol *FrameAllocSym = 6663 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6664 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6665 6666 Value *FP = I.getArgOperand(1); 6667 SDValue FPVal = getValue(FP); 6668 EVT PtrVT = FPVal.getValueType(); 6669 6670 // Create a MCSymbol for the label to avoid any target lowering 6671 // that would make this PC relative. 6672 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6673 SDValue OffsetVal = 6674 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6675 6676 // Add the offset to the FP. 6677 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6678 setValue(&I, Add); 6679 6680 return; 6681 } 6682 6683 case Intrinsic::eh_exceptionpointer: 6684 case Intrinsic::eh_exceptioncode: { 6685 // Get the exception pointer vreg, copy from it, and resize it to fit. 6686 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6687 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6688 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6689 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6690 SDValue N = 6691 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6692 if (Intrinsic == Intrinsic::eh_exceptioncode) 6693 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6694 setValue(&I, N); 6695 return; 6696 } 6697 case Intrinsic::xray_customevent: { 6698 // Here we want to make sure that the intrinsic behaves as if it has a 6699 // specific calling convention, and only for x86_64. 6700 // FIXME: Support other platforms later. 6701 const auto &Triple = DAG.getTarget().getTargetTriple(); 6702 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6703 return; 6704 6705 SDLoc DL = getCurSDLoc(); 6706 SmallVector<SDValue, 8> Ops; 6707 6708 // We want to say that we always want the arguments in registers. 6709 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6710 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6711 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6712 SDValue Chain = getRoot(); 6713 Ops.push_back(LogEntryVal); 6714 Ops.push_back(StrSizeVal); 6715 Ops.push_back(Chain); 6716 6717 // We need to enforce the calling convention for the callsite, so that 6718 // argument ordering is enforced correctly, and that register allocation can 6719 // see that some registers may be assumed clobbered and have to preserve 6720 // them across calls to the intrinsic. 6721 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6722 DL, NodeTys, Ops); 6723 SDValue patchableNode = SDValue(MN, 0); 6724 DAG.setRoot(patchableNode); 6725 setValue(&I, patchableNode); 6726 return; 6727 } 6728 case Intrinsic::xray_typedevent: { 6729 // Here we want to make sure that the intrinsic behaves as if it has a 6730 // specific calling convention, and only for x86_64. 6731 // FIXME: Support other platforms later. 6732 const auto &Triple = DAG.getTarget().getTargetTriple(); 6733 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6734 return; 6735 6736 SDLoc DL = getCurSDLoc(); 6737 SmallVector<SDValue, 8> Ops; 6738 6739 // We want to say that we always want the arguments in registers. 6740 // It's unclear to me how manipulating the selection DAG here forces callers 6741 // to provide arguments in registers instead of on the stack. 6742 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6743 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6744 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6745 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6746 SDValue Chain = getRoot(); 6747 Ops.push_back(LogTypeId); 6748 Ops.push_back(LogEntryVal); 6749 Ops.push_back(StrSizeVal); 6750 Ops.push_back(Chain); 6751 6752 // We need to enforce the calling convention for the callsite, so that 6753 // argument ordering is enforced correctly, and that register allocation can 6754 // see that some registers may be assumed clobbered and have to preserve 6755 // them across calls to the intrinsic. 6756 MachineSDNode *MN = DAG.getMachineNode( 6757 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6758 SDValue patchableNode = SDValue(MN, 0); 6759 DAG.setRoot(patchableNode); 6760 setValue(&I, patchableNode); 6761 return; 6762 } 6763 case Intrinsic::experimental_deoptimize: 6764 LowerDeoptimizeCall(&I); 6765 return; 6766 6767 case Intrinsic::experimental_vector_reduce_v2_fadd: 6768 case Intrinsic::experimental_vector_reduce_v2_fmul: 6769 case Intrinsic::experimental_vector_reduce_add: 6770 case Intrinsic::experimental_vector_reduce_mul: 6771 case Intrinsic::experimental_vector_reduce_and: 6772 case Intrinsic::experimental_vector_reduce_or: 6773 case Intrinsic::experimental_vector_reduce_xor: 6774 case Intrinsic::experimental_vector_reduce_smax: 6775 case Intrinsic::experimental_vector_reduce_smin: 6776 case Intrinsic::experimental_vector_reduce_umax: 6777 case Intrinsic::experimental_vector_reduce_umin: 6778 case Intrinsic::experimental_vector_reduce_fmax: 6779 case Intrinsic::experimental_vector_reduce_fmin: 6780 visitVectorReduce(I, Intrinsic); 6781 return; 6782 6783 case Intrinsic::icall_branch_funnel: { 6784 SmallVector<SDValue, 16> Ops; 6785 Ops.push_back(getValue(I.getArgOperand(0))); 6786 6787 int64_t Offset; 6788 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6789 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6790 if (!Base) 6791 report_fatal_error( 6792 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6793 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6794 6795 struct BranchFunnelTarget { 6796 int64_t Offset; 6797 SDValue Target; 6798 }; 6799 SmallVector<BranchFunnelTarget, 8> Targets; 6800 6801 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6802 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6803 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6804 if (ElemBase != Base) 6805 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6806 "to the same GlobalValue"); 6807 6808 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6809 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6810 if (!GA) 6811 report_fatal_error( 6812 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6813 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6814 GA->getGlobal(), getCurSDLoc(), 6815 Val.getValueType(), GA->getOffset())}); 6816 } 6817 llvm::sort(Targets, 6818 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6819 return T1.Offset < T2.Offset; 6820 }); 6821 6822 for (auto &T : Targets) { 6823 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6824 Ops.push_back(T.Target); 6825 } 6826 6827 Ops.push_back(DAG.getRoot()); // Chain 6828 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6829 getCurSDLoc(), MVT::Other, Ops), 6830 0); 6831 DAG.setRoot(N); 6832 setValue(&I, N); 6833 HasTailCall = true; 6834 return; 6835 } 6836 6837 case Intrinsic::wasm_landingpad_index: 6838 // Information this intrinsic contained has been transferred to 6839 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6840 // delete it now. 6841 return; 6842 6843 case Intrinsic::aarch64_settag: 6844 case Intrinsic::aarch64_settag_zero: { 6845 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6846 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6847 SDValue Val = TSI.EmitTargetCodeForSetTag( 6848 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6849 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6850 ZeroMemory); 6851 DAG.setRoot(Val); 6852 setValue(&I, Val); 6853 return; 6854 } 6855 case Intrinsic::ptrmask: { 6856 SDValue Ptr = getValue(I.getOperand(0)); 6857 SDValue Const = getValue(I.getOperand(1)); 6858 6859 EVT DestVT = 6860 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6861 6862 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6863 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6864 return; 6865 } 6866 } 6867 } 6868 6869 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6870 const ConstrainedFPIntrinsic &FPI) { 6871 SDLoc sdl = getCurSDLoc(); 6872 6873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6874 SmallVector<EVT, 4> ValueVTs; 6875 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6876 ValueVTs.push_back(MVT::Other); // Out chain 6877 6878 // We do not need to serialize constrained FP intrinsics against 6879 // each other or against (nonvolatile) loads, so they can be 6880 // chained like loads. 6881 SDValue Chain = DAG.getRoot(); 6882 SmallVector<SDValue, 4> Opers; 6883 Opers.push_back(Chain); 6884 if (FPI.isUnaryOp()) { 6885 Opers.push_back(getValue(FPI.getArgOperand(0))); 6886 } else if (FPI.isTernaryOp()) { 6887 Opers.push_back(getValue(FPI.getArgOperand(0))); 6888 Opers.push_back(getValue(FPI.getArgOperand(1))); 6889 Opers.push_back(getValue(FPI.getArgOperand(2))); 6890 } else { 6891 Opers.push_back(getValue(FPI.getArgOperand(0))); 6892 Opers.push_back(getValue(FPI.getArgOperand(1))); 6893 } 6894 6895 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6896 assert(Result.getNode()->getNumValues() == 2); 6897 6898 // Push node to the appropriate list so that future instructions can be 6899 // chained up correctly. 6900 SDValue OutChain = Result.getValue(1); 6901 switch (EB) { 6902 case fp::ExceptionBehavior::ebIgnore: 6903 // The only reason why ebIgnore nodes still need to be chained is that 6904 // they might depend on the current rounding mode, and therefore must 6905 // not be moved across instruction that may change that mode. 6906 LLVM_FALLTHROUGH; 6907 case fp::ExceptionBehavior::ebMayTrap: 6908 // These must not be moved across calls or instructions that may change 6909 // floating-point exception masks. 6910 PendingConstrainedFP.push_back(OutChain); 6911 break; 6912 case fp::ExceptionBehavior::ebStrict: 6913 // These must not be moved across calls or instructions that may change 6914 // floating-point exception masks or read floating-point exception flags. 6915 // In addition, they cannot be optimized out even if unused. 6916 PendingConstrainedFPStrict.push_back(OutChain); 6917 break; 6918 } 6919 }; 6920 6921 SDVTList VTs = DAG.getVTList(ValueVTs); 6922 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6923 6924 SDNodeFlags Flags; 6925 if (EB == fp::ExceptionBehavior::ebIgnore) 6926 Flags.setNoFPExcept(true); 6927 6928 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6929 Flags.copyFMF(*FPOp); 6930 6931 unsigned Opcode; 6932 switch (FPI.getIntrinsicID()) { 6933 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6934 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6935 case Intrinsic::INTRINSIC: \ 6936 Opcode = ISD::STRICT_##DAGN; \ 6937 break; 6938 #include "llvm/IR/ConstrainedOps.def" 6939 case Intrinsic::experimental_constrained_fmuladd: { 6940 Opcode = ISD::STRICT_FMA; 6941 // Break fmuladd into fmul and fadd. 6942 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6943 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6944 ValueVTs[0])) { 6945 Opers.pop_back(); 6946 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6947 pushOutChain(Mul, EB); 6948 Opcode = ISD::STRICT_FADD; 6949 Opers.clear(); 6950 Opers.push_back(Mul.getValue(1)); 6951 Opers.push_back(Mul.getValue(0)); 6952 Opers.push_back(getValue(FPI.getArgOperand(2))); 6953 } 6954 break; 6955 } 6956 } 6957 6958 // A few strict DAG nodes carry additional operands that are not 6959 // set up by the default code above. 6960 switch (Opcode) { 6961 default: break; 6962 case ISD::STRICT_FP_ROUND: 6963 Opers.push_back( 6964 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6965 break; 6966 case ISD::STRICT_FSETCC: 6967 case ISD::STRICT_FSETCCS: { 6968 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6969 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6970 break; 6971 } 6972 } 6973 6974 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 6975 pushOutChain(Result, EB); 6976 6977 SDValue FPResult = Result.getValue(0); 6978 setValue(&FPI, FPResult); 6979 } 6980 6981 std::pair<SDValue, SDValue> 6982 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6983 const BasicBlock *EHPadBB) { 6984 MachineFunction &MF = DAG.getMachineFunction(); 6985 MachineModuleInfo &MMI = MF.getMMI(); 6986 MCSymbol *BeginLabel = nullptr; 6987 6988 if (EHPadBB) { 6989 // Insert a label before the invoke call to mark the try range. This can be 6990 // used to detect deletion of the invoke via the MachineModuleInfo. 6991 BeginLabel = MMI.getContext().createTempSymbol(); 6992 6993 // For SjLj, keep track of which landing pads go with which invokes 6994 // so as to maintain the ordering of pads in the LSDA. 6995 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6996 if (CallSiteIndex) { 6997 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6998 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6999 7000 // Now that the call site is handled, stop tracking it. 7001 MMI.setCurrentCallSite(0); 7002 } 7003 7004 // Both PendingLoads and PendingExports must be flushed here; 7005 // this call might not return. 7006 (void)getRoot(); 7007 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7008 7009 CLI.setChain(getRoot()); 7010 } 7011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7012 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7013 7014 assert((CLI.IsTailCall || Result.second.getNode()) && 7015 "Non-null chain expected with non-tail call!"); 7016 assert((Result.second.getNode() || !Result.first.getNode()) && 7017 "Null value expected with tail call!"); 7018 7019 if (!Result.second.getNode()) { 7020 // As a special case, a null chain means that a tail call has been emitted 7021 // and the DAG root is already updated. 7022 HasTailCall = true; 7023 7024 // Since there's no actual continuation from this block, nothing can be 7025 // relying on us setting vregs for them. 7026 PendingExports.clear(); 7027 } else { 7028 DAG.setRoot(Result.second); 7029 } 7030 7031 if (EHPadBB) { 7032 // Insert a label at the end of the invoke call to mark the try range. This 7033 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7034 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7035 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7036 7037 // Inform MachineModuleInfo of range. 7038 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7039 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7040 // actually use outlined funclets and their LSDA info style. 7041 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7042 assert(CLI.CB); 7043 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7044 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7045 } else if (!isScopedEHPersonality(Pers)) { 7046 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7047 } 7048 } 7049 7050 return Result; 7051 } 7052 7053 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7054 bool isTailCall, 7055 const BasicBlock *EHPadBB) { 7056 auto &DL = DAG.getDataLayout(); 7057 FunctionType *FTy = CB.getFunctionType(); 7058 Type *RetTy = CB.getType(); 7059 7060 TargetLowering::ArgListTy Args; 7061 Args.reserve(CB.arg_size()); 7062 7063 const Value *SwiftErrorVal = nullptr; 7064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7065 7066 if (isTailCall) { 7067 // Avoid emitting tail calls in functions with the disable-tail-calls 7068 // attribute. 7069 auto *Caller = CB.getParent()->getParent(); 7070 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7071 "true") 7072 isTailCall = false; 7073 7074 // We can't tail call inside a function with a swifterror argument. Lowering 7075 // does not support this yet. It would have to move into the swifterror 7076 // register before the call. 7077 if (TLI.supportSwiftError() && 7078 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7079 isTailCall = false; 7080 } 7081 7082 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7083 TargetLowering::ArgListEntry Entry; 7084 const Value *V = *I; 7085 7086 // Skip empty types 7087 if (V->getType()->isEmptyTy()) 7088 continue; 7089 7090 SDValue ArgNode = getValue(V); 7091 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7092 7093 Entry.setAttributes(&CB, I - CB.arg_begin()); 7094 7095 // Use swifterror virtual register as input to the call. 7096 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7097 SwiftErrorVal = V; 7098 // We find the virtual register for the actual swifterror argument. 7099 // Instead of using the Value, we use the virtual register instead. 7100 Entry.Node = 7101 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7102 EVT(TLI.getPointerTy(DL))); 7103 } 7104 7105 Args.push_back(Entry); 7106 7107 // If we have an explicit sret argument that is an Instruction, (i.e., it 7108 // might point to function-local memory), we can't meaningfully tail-call. 7109 if (Entry.IsSRet && isa<Instruction>(V)) 7110 isTailCall = false; 7111 } 7112 7113 // If call site has a cfguardtarget operand bundle, create and add an 7114 // additional ArgListEntry. 7115 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7116 TargetLowering::ArgListEntry Entry; 7117 Value *V = Bundle->Inputs[0]; 7118 SDValue ArgNode = getValue(V); 7119 Entry.Node = ArgNode; 7120 Entry.Ty = V->getType(); 7121 Entry.IsCFGuardTarget = true; 7122 Args.push_back(Entry); 7123 } 7124 7125 // Check if target-independent constraints permit a tail call here. 7126 // Target-dependent constraints are checked within TLI->LowerCallTo. 7127 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7128 isTailCall = false; 7129 7130 // Disable tail calls if there is an swifterror argument. Targets have not 7131 // been updated to support tail calls. 7132 if (TLI.supportSwiftError() && SwiftErrorVal) 7133 isTailCall = false; 7134 7135 TargetLowering::CallLoweringInfo CLI(DAG); 7136 CLI.setDebugLoc(getCurSDLoc()) 7137 .setChain(getRoot()) 7138 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7139 .setTailCall(isTailCall) 7140 .setConvergent(CB.isConvergent()); 7141 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7142 7143 if (Result.first.getNode()) { 7144 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7145 setValue(&CB, Result.first); 7146 } 7147 7148 // The last element of CLI.InVals has the SDValue for swifterror return. 7149 // Here we copy it to a virtual register and update SwiftErrorMap for 7150 // book-keeping. 7151 if (SwiftErrorVal && TLI.supportSwiftError()) { 7152 // Get the last element of InVals. 7153 SDValue Src = CLI.InVals.back(); 7154 Register VReg = 7155 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7156 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7157 DAG.setRoot(CopyNode); 7158 } 7159 } 7160 7161 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7162 SelectionDAGBuilder &Builder) { 7163 // Check to see if this load can be trivially constant folded, e.g. if the 7164 // input is from a string literal. 7165 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7166 // Cast pointer to the type we really want to load. 7167 Type *LoadTy = 7168 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7169 if (LoadVT.isVector()) 7170 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7171 7172 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7173 PointerType::getUnqual(LoadTy)); 7174 7175 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7176 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7177 return Builder.getValue(LoadCst); 7178 } 7179 7180 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7181 // still constant memory, the input chain can be the entry node. 7182 SDValue Root; 7183 bool ConstantMemory = false; 7184 7185 // Do not serialize (non-volatile) loads of constant memory with anything. 7186 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7187 Root = Builder.DAG.getEntryNode(); 7188 ConstantMemory = true; 7189 } else { 7190 // Do not serialize non-volatile loads against each other. 7191 Root = Builder.DAG.getRoot(); 7192 } 7193 7194 SDValue Ptr = Builder.getValue(PtrVal); 7195 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7196 Ptr, MachinePointerInfo(PtrVal), 7197 /* Alignment = */ 1); 7198 7199 if (!ConstantMemory) 7200 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7201 return LoadVal; 7202 } 7203 7204 /// Record the value for an instruction that produces an integer result, 7205 /// converting the type where necessary. 7206 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7207 SDValue Value, 7208 bool IsSigned) { 7209 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7210 I.getType(), true); 7211 if (IsSigned) 7212 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7213 else 7214 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7215 setValue(&I, Value); 7216 } 7217 7218 /// See if we can lower a memcmp call into an optimized form. If so, return 7219 /// true and lower it. Otherwise return false, and it will be lowered like a 7220 /// normal call. 7221 /// The caller already checked that \p I calls the appropriate LibFunc with a 7222 /// correct prototype. 7223 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7224 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7225 const Value *Size = I.getArgOperand(2); 7226 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7227 if (CSize && CSize->getZExtValue() == 0) { 7228 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7229 I.getType(), true); 7230 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7231 return true; 7232 } 7233 7234 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7235 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7236 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7237 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7238 if (Res.first.getNode()) { 7239 processIntegerCallValue(I, Res.first, true); 7240 PendingLoads.push_back(Res.second); 7241 return true; 7242 } 7243 7244 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7245 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7246 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7247 return false; 7248 7249 // If the target has a fast compare for the given size, it will return a 7250 // preferred load type for that size. Require that the load VT is legal and 7251 // that the target supports unaligned loads of that type. Otherwise, return 7252 // INVALID. 7253 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7255 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7256 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7257 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7258 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7259 // TODO: Check alignment of src and dest ptrs. 7260 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7261 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7262 if (!TLI.isTypeLegal(LVT) || 7263 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7264 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7265 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7266 } 7267 7268 return LVT; 7269 }; 7270 7271 // This turns into unaligned loads. We only do this if the target natively 7272 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7273 // we'll only produce a small number of byte loads. 7274 MVT LoadVT; 7275 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7276 switch (NumBitsToCompare) { 7277 default: 7278 return false; 7279 case 16: 7280 LoadVT = MVT::i16; 7281 break; 7282 case 32: 7283 LoadVT = MVT::i32; 7284 break; 7285 case 64: 7286 case 128: 7287 case 256: 7288 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7289 break; 7290 } 7291 7292 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7293 return false; 7294 7295 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7296 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7297 7298 // Bitcast to a wide integer type if the loads are vectors. 7299 if (LoadVT.isVector()) { 7300 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7301 LoadL = DAG.getBitcast(CmpVT, LoadL); 7302 LoadR = DAG.getBitcast(CmpVT, LoadR); 7303 } 7304 7305 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7306 processIntegerCallValue(I, Cmp, false); 7307 return true; 7308 } 7309 7310 /// See if we can lower a memchr call into an optimized form. If so, return 7311 /// true and lower it. Otherwise return false, and it will be lowered like a 7312 /// normal call. 7313 /// The caller already checked that \p I calls the appropriate LibFunc with a 7314 /// correct prototype. 7315 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7316 const Value *Src = I.getArgOperand(0); 7317 const Value *Char = I.getArgOperand(1); 7318 const Value *Length = I.getArgOperand(2); 7319 7320 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7321 std::pair<SDValue, SDValue> Res = 7322 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7323 getValue(Src), getValue(Char), getValue(Length), 7324 MachinePointerInfo(Src)); 7325 if (Res.first.getNode()) { 7326 setValue(&I, Res.first); 7327 PendingLoads.push_back(Res.second); 7328 return true; 7329 } 7330 7331 return false; 7332 } 7333 7334 /// See if we can lower a mempcpy call into an optimized form. If so, return 7335 /// true and lower it. Otherwise return false, and it will be lowered like a 7336 /// normal call. 7337 /// The caller already checked that \p I calls the appropriate LibFunc with a 7338 /// correct prototype. 7339 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7340 SDValue Dst = getValue(I.getArgOperand(0)); 7341 SDValue Src = getValue(I.getArgOperand(1)); 7342 SDValue Size = getValue(I.getArgOperand(2)); 7343 7344 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7345 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7346 // DAG::getMemcpy needs Alignment to be defined. 7347 Align Alignment = std::min(DstAlign, SrcAlign); 7348 7349 bool isVol = false; 7350 SDLoc sdl = getCurSDLoc(); 7351 7352 // In the mempcpy context we need to pass in a false value for isTailCall 7353 // because the return pointer needs to be adjusted by the size of 7354 // the copied memory. 7355 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7356 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7357 /*isTailCall=*/false, 7358 MachinePointerInfo(I.getArgOperand(0)), 7359 MachinePointerInfo(I.getArgOperand(1))); 7360 assert(MC.getNode() != nullptr && 7361 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7362 DAG.setRoot(MC); 7363 7364 // Check if Size needs to be truncated or extended. 7365 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7366 7367 // Adjust return pointer to point just past the last dst byte. 7368 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7369 Dst, Size); 7370 setValue(&I, DstPlusSize); 7371 return true; 7372 } 7373 7374 /// See if we can lower a strcpy call into an optimized form. If so, return 7375 /// true and lower it, otherwise return false and it will be lowered like a 7376 /// normal call. 7377 /// The caller already checked that \p I calls the appropriate LibFunc with a 7378 /// correct prototype. 7379 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7380 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7381 7382 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7383 std::pair<SDValue, SDValue> Res = 7384 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7385 getValue(Arg0), getValue(Arg1), 7386 MachinePointerInfo(Arg0), 7387 MachinePointerInfo(Arg1), isStpcpy); 7388 if (Res.first.getNode()) { 7389 setValue(&I, Res.first); 7390 DAG.setRoot(Res.second); 7391 return true; 7392 } 7393 7394 return false; 7395 } 7396 7397 /// See if we can lower a strcmp call into an optimized form. If so, return 7398 /// true and lower it, otherwise return false and it will be lowered like a 7399 /// normal call. 7400 /// The caller already checked that \p I calls the appropriate LibFunc with a 7401 /// correct prototype. 7402 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7403 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7404 7405 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7406 std::pair<SDValue, SDValue> Res = 7407 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7408 getValue(Arg0), getValue(Arg1), 7409 MachinePointerInfo(Arg0), 7410 MachinePointerInfo(Arg1)); 7411 if (Res.first.getNode()) { 7412 processIntegerCallValue(I, Res.first, true); 7413 PendingLoads.push_back(Res.second); 7414 return true; 7415 } 7416 7417 return false; 7418 } 7419 7420 /// See if we can lower a strlen call into an optimized form. If so, return 7421 /// true and lower it, otherwise return false and it will be lowered like a 7422 /// normal call. 7423 /// The caller already checked that \p I calls the appropriate LibFunc with a 7424 /// correct prototype. 7425 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7426 const Value *Arg0 = I.getArgOperand(0); 7427 7428 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7429 std::pair<SDValue, SDValue> Res = 7430 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7431 getValue(Arg0), MachinePointerInfo(Arg0)); 7432 if (Res.first.getNode()) { 7433 processIntegerCallValue(I, Res.first, false); 7434 PendingLoads.push_back(Res.second); 7435 return true; 7436 } 7437 7438 return false; 7439 } 7440 7441 /// See if we can lower a strnlen call into an optimized form. If so, return 7442 /// true and lower it, otherwise return false and it will be lowered like a 7443 /// normal call. 7444 /// The caller already checked that \p I calls the appropriate LibFunc with a 7445 /// correct prototype. 7446 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7447 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7448 7449 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7450 std::pair<SDValue, SDValue> Res = 7451 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7452 getValue(Arg0), getValue(Arg1), 7453 MachinePointerInfo(Arg0)); 7454 if (Res.first.getNode()) { 7455 processIntegerCallValue(I, Res.first, false); 7456 PendingLoads.push_back(Res.second); 7457 return true; 7458 } 7459 7460 return false; 7461 } 7462 7463 /// See if we can lower a unary floating-point operation into an SDNode with 7464 /// the specified Opcode. If so, return true and lower it, otherwise return 7465 /// false and it will be lowered like a normal call. 7466 /// The caller already checked that \p I calls the appropriate LibFunc with a 7467 /// correct prototype. 7468 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7469 unsigned Opcode) { 7470 // We already checked this call's prototype; verify it doesn't modify errno. 7471 if (!I.onlyReadsMemory()) 7472 return false; 7473 7474 SDValue Tmp = getValue(I.getArgOperand(0)); 7475 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7476 return true; 7477 } 7478 7479 /// See if we can lower a binary floating-point operation into an SDNode with 7480 /// the specified Opcode. If so, return true and lower it. Otherwise return 7481 /// false, and it will be lowered like a normal call. 7482 /// The caller already checked that \p I calls the appropriate LibFunc with a 7483 /// correct prototype. 7484 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7485 unsigned Opcode) { 7486 // We already checked this call's prototype; verify it doesn't modify errno. 7487 if (!I.onlyReadsMemory()) 7488 return false; 7489 7490 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7491 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7492 EVT VT = Tmp0.getValueType(); 7493 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7494 return true; 7495 } 7496 7497 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7498 // Handle inline assembly differently. 7499 if (isa<InlineAsm>(I.getCalledValue())) { 7500 visitInlineAsm(I); 7501 return; 7502 } 7503 7504 if (Function *F = I.getCalledFunction()) { 7505 if (F->isDeclaration()) { 7506 // Is this an LLVM intrinsic or a target-specific intrinsic? 7507 unsigned IID = F->getIntrinsicID(); 7508 if (!IID) 7509 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7510 IID = II->getIntrinsicID(F); 7511 7512 if (IID) { 7513 visitIntrinsicCall(I, IID); 7514 return; 7515 } 7516 } 7517 7518 // Check for well-known libc/libm calls. If the function is internal, it 7519 // can't be a library call. Don't do the check if marked as nobuiltin for 7520 // some reason or the call site requires strict floating point semantics. 7521 LibFunc Func; 7522 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7523 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7524 LibInfo->hasOptimizedCodeGen(Func)) { 7525 switch (Func) { 7526 default: break; 7527 case LibFunc_copysign: 7528 case LibFunc_copysignf: 7529 case LibFunc_copysignl: 7530 // We already checked this call's prototype; verify it doesn't modify 7531 // errno. 7532 if (I.onlyReadsMemory()) { 7533 SDValue LHS = getValue(I.getArgOperand(0)); 7534 SDValue RHS = getValue(I.getArgOperand(1)); 7535 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7536 LHS.getValueType(), LHS, RHS)); 7537 return; 7538 } 7539 break; 7540 case LibFunc_fabs: 7541 case LibFunc_fabsf: 7542 case LibFunc_fabsl: 7543 if (visitUnaryFloatCall(I, ISD::FABS)) 7544 return; 7545 break; 7546 case LibFunc_fmin: 7547 case LibFunc_fminf: 7548 case LibFunc_fminl: 7549 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7550 return; 7551 break; 7552 case LibFunc_fmax: 7553 case LibFunc_fmaxf: 7554 case LibFunc_fmaxl: 7555 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7556 return; 7557 break; 7558 case LibFunc_sin: 7559 case LibFunc_sinf: 7560 case LibFunc_sinl: 7561 if (visitUnaryFloatCall(I, ISD::FSIN)) 7562 return; 7563 break; 7564 case LibFunc_cos: 7565 case LibFunc_cosf: 7566 case LibFunc_cosl: 7567 if (visitUnaryFloatCall(I, ISD::FCOS)) 7568 return; 7569 break; 7570 case LibFunc_sqrt: 7571 case LibFunc_sqrtf: 7572 case LibFunc_sqrtl: 7573 case LibFunc_sqrt_finite: 7574 case LibFunc_sqrtf_finite: 7575 case LibFunc_sqrtl_finite: 7576 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7577 return; 7578 break; 7579 case LibFunc_floor: 7580 case LibFunc_floorf: 7581 case LibFunc_floorl: 7582 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7583 return; 7584 break; 7585 case LibFunc_nearbyint: 7586 case LibFunc_nearbyintf: 7587 case LibFunc_nearbyintl: 7588 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7589 return; 7590 break; 7591 case LibFunc_ceil: 7592 case LibFunc_ceilf: 7593 case LibFunc_ceill: 7594 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7595 return; 7596 break; 7597 case LibFunc_rint: 7598 case LibFunc_rintf: 7599 case LibFunc_rintl: 7600 if (visitUnaryFloatCall(I, ISD::FRINT)) 7601 return; 7602 break; 7603 case LibFunc_round: 7604 case LibFunc_roundf: 7605 case LibFunc_roundl: 7606 if (visitUnaryFloatCall(I, ISD::FROUND)) 7607 return; 7608 break; 7609 case LibFunc_trunc: 7610 case LibFunc_truncf: 7611 case LibFunc_truncl: 7612 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7613 return; 7614 break; 7615 case LibFunc_log2: 7616 case LibFunc_log2f: 7617 case LibFunc_log2l: 7618 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7619 return; 7620 break; 7621 case LibFunc_exp2: 7622 case LibFunc_exp2f: 7623 case LibFunc_exp2l: 7624 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7625 return; 7626 break; 7627 case LibFunc_memcmp: 7628 if (visitMemCmpCall(I)) 7629 return; 7630 break; 7631 case LibFunc_mempcpy: 7632 if (visitMemPCpyCall(I)) 7633 return; 7634 break; 7635 case LibFunc_memchr: 7636 if (visitMemChrCall(I)) 7637 return; 7638 break; 7639 case LibFunc_strcpy: 7640 if (visitStrCpyCall(I, false)) 7641 return; 7642 break; 7643 case LibFunc_stpcpy: 7644 if (visitStrCpyCall(I, true)) 7645 return; 7646 break; 7647 case LibFunc_strcmp: 7648 if (visitStrCmpCall(I)) 7649 return; 7650 break; 7651 case LibFunc_strlen: 7652 if (visitStrLenCall(I)) 7653 return; 7654 break; 7655 case LibFunc_strnlen: 7656 if (visitStrNLenCall(I)) 7657 return; 7658 break; 7659 } 7660 } 7661 } 7662 7663 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7664 // have to do anything here to lower funclet bundles. 7665 // CFGuardTarget bundles are lowered in LowerCallTo. 7666 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7667 LLVMContext::OB_funclet, 7668 LLVMContext::OB_cfguardtarget}) && 7669 "Cannot lower calls with arbitrary operand bundles!"); 7670 7671 SDValue Callee = getValue(I.getCalledValue()); 7672 7673 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7674 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7675 else 7676 // Check if we can potentially perform a tail call. More detailed checking 7677 // is be done within LowerCallTo, after more information about the call is 7678 // known. 7679 LowerCallTo(I, Callee, I.isTailCall()); 7680 } 7681 7682 namespace { 7683 7684 /// AsmOperandInfo - This contains information for each constraint that we are 7685 /// lowering. 7686 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7687 public: 7688 /// CallOperand - If this is the result output operand or a clobber 7689 /// this is null, otherwise it is the incoming operand to the CallInst. 7690 /// This gets modified as the asm is processed. 7691 SDValue CallOperand; 7692 7693 /// AssignedRegs - If this is a register or register class operand, this 7694 /// contains the set of register corresponding to the operand. 7695 RegsForValue AssignedRegs; 7696 7697 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7698 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7699 } 7700 7701 /// Whether or not this operand accesses memory 7702 bool hasMemory(const TargetLowering &TLI) const { 7703 // Indirect operand accesses access memory. 7704 if (isIndirect) 7705 return true; 7706 7707 for (const auto &Code : Codes) 7708 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7709 return true; 7710 7711 return false; 7712 } 7713 7714 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7715 /// corresponds to. If there is no Value* for this operand, it returns 7716 /// MVT::Other. 7717 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7718 const DataLayout &DL) const { 7719 if (!CallOperandVal) return MVT::Other; 7720 7721 if (isa<BasicBlock>(CallOperandVal)) 7722 return TLI.getProgramPointerTy(DL); 7723 7724 llvm::Type *OpTy = CallOperandVal->getType(); 7725 7726 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7727 // If this is an indirect operand, the operand is a pointer to the 7728 // accessed type. 7729 if (isIndirect) { 7730 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7731 if (!PtrTy) 7732 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7733 OpTy = PtrTy->getElementType(); 7734 } 7735 7736 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7737 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7738 if (STy->getNumElements() == 1) 7739 OpTy = STy->getElementType(0); 7740 7741 // If OpTy is not a single value, it may be a struct/union that we 7742 // can tile with integers. 7743 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7744 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7745 switch (BitSize) { 7746 default: break; 7747 case 1: 7748 case 8: 7749 case 16: 7750 case 32: 7751 case 64: 7752 case 128: 7753 OpTy = IntegerType::get(Context, BitSize); 7754 break; 7755 } 7756 } 7757 7758 return TLI.getValueType(DL, OpTy, true); 7759 } 7760 }; 7761 7762 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7763 7764 } // end anonymous namespace 7765 7766 /// Make sure that the output operand \p OpInfo and its corresponding input 7767 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7768 /// out). 7769 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7770 SDISelAsmOperandInfo &MatchingOpInfo, 7771 SelectionDAG &DAG) { 7772 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7773 return; 7774 7775 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7776 const auto &TLI = DAG.getTargetLoweringInfo(); 7777 7778 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7779 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7780 OpInfo.ConstraintVT); 7781 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7782 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7783 MatchingOpInfo.ConstraintVT); 7784 if ((OpInfo.ConstraintVT.isInteger() != 7785 MatchingOpInfo.ConstraintVT.isInteger()) || 7786 (MatchRC.second != InputRC.second)) { 7787 // FIXME: error out in a more elegant fashion 7788 report_fatal_error("Unsupported asm: input constraint" 7789 " with a matching output constraint of" 7790 " incompatible type!"); 7791 } 7792 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7793 } 7794 7795 /// Get a direct memory input to behave well as an indirect operand. 7796 /// This may introduce stores, hence the need for a \p Chain. 7797 /// \return The (possibly updated) chain. 7798 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7799 SDISelAsmOperandInfo &OpInfo, 7800 SelectionDAG &DAG) { 7801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7802 7803 // If we don't have an indirect input, put it in the constpool if we can, 7804 // otherwise spill it to a stack slot. 7805 // TODO: This isn't quite right. We need to handle these according to 7806 // the addressing mode that the constraint wants. Also, this may take 7807 // an additional register for the computation and we don't want that 7808 // either. 7809 7810 // If the operand is a float, integer, or vector constant, spill to a 7811 // constant pool entry to get its address. 7812 const Value *OpVal = OpInfo.CallOperandVal; 7813 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7814 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7815 OpInfo.CallOperand = DAG.getConstantPool( 7816 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7817 return Chain; 7818 } 7819 7820 // Otherwise, create a stack slot and emit a store to it before the asm. 7821 Type *Ty = OpVal->getType(); 7822 auto &DL = DAG.getDataLayout(); 7823 uint64_t TySize = DL.getTypeAllocSize(Ty); 7824 unsigned Align = DL.getPrefTypeAlignment(Ty); 7825 MachineFunction &MF = DAG.getMachineFunction(); 7826 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7827 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7828 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7829 MachinePointerInfo::getFixedStack(MF, SSFI), 7830 TLI.getMemValueType(DL, Ty)); 7831 OpInfo.CallOperand = StackSlot; 7832 7833 return Chain; 7834 } 7835 7836 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7837 /// specified operand. We prefer to assign virtual registers, to allow the 7838 /// register allocator to handle the assignment process. However, if the asm 7839 /// uses features that we can't model on machineinstrs, we have SDISel do the 7840 /// allocation. This produces generally horrible, but correct, code. 7841 /// 7842 /// OpInfo describes the operand 7843 /// RefOpInfo describes the matching operand if any, the operand otherwise 7844 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7845 SDISelAsmOperandInfo &OpInfo, 7846 SDISelAsmOperandInfo &RefOpInfo) { 7847 LLVMContext &Context = *DAG.getContext(); 7848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7849 7850 MachineFunction &MF = DAG.getMachineFunction(); 7851 SmallVector<unsigned, 4> Regs; 7852 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7853 7854 // No work to do for memory operations. 7855 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7856 return; 7857 7858 // If this is a constraint for a single physreg, or a constraint for a 7859 // register class, find it. 7860 unsigned AssignedReg; 7861 const TargetRegisterClass *RC; 7862 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7863 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7864 // RC is unset only on failure. Return immediately. 7865 if (!RC) 7866 return; 7867 7868 // Get the actual register value type. This is important, because the user 7869 // may have asked for (e.g.) the AX register in i32 type. We need to 7870 // remember that AX is actually i16 to get the right extension. 7871 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7872 7873 if (OpInfo.ConstraintVT != MVT::Other) { 7874 // If this is an FP operand in an integer register (or visa versa), or more 7875 // generally if the operand value disagrees with the register class we plan 7876 // to stick it in, fix the operand type. 7877 // 7878 // If this is an input value, the bitcast to the new type is done now. 7879 // Bitcast for output value is done at the end of visitInlineAsm(). 7880 if ((OpInfo.Type == InlineAsm::isOutput || 7881 OpInfo.Type == InlineAsm::isInput) && 7882 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7883 // Try to convert to the first EVT that the reg class contains. If the 7884 // types are identical size, use a bitcast to convert (e.g. two differing 7885 // vector types). Note: output bitcast is done at the end of 7886 // visitInlineAsm(). 7887 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7888 // Exclude indirect inputs while they are unsupported because the code 7889 // to perform the load is missing and thus OpInfo.CallOperand still 7890 // refers to the input address rather than the pointed-to value. 7891 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7892 OpInfo.CallOperand = 7893 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7894 OpInfo.ConstraintVT = RegVT; 7895 // If the operand is an FP value and we want it in integer registers, 7896 // use the corresponding integer type. This turns an f64 value into 7897 // i64, which can be passed with two i32 values on a 32-bit machine. 7898 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7899 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7900 if (OpInfo.Type == InlineAsm::isInput) 7901 OpInfo.CallOperand = 7902 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7903 OpInfo.ConstraintVT = VT; 7904 } 7905 } 7906 } 7907 7908 // No need to allocate a matching input constraint since the constraint it's 7909 // matching to has already been allocated. 7910 if (OpInfo.isMatchingInputConstraint()) 7911 return; 7912 7913 EVT ValueVT = OpInfo.ConstraintVT; 7914 if (OpInfo.ConstraintVT == MVT::Other) 7915 ValueVT = RegVT; 7916 7917 // Initialize NumRegs. 7918 unsigned NumRegs = 1; 7919 if (OpInfo.ConstraintVT != MVT::Other) 7920 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7921 7922 // If this is a constraint for a specific physical register, like {r17}, 7923 // assign it now. 7924 7925 // If this associated to a specific register, initialize iterator to correct 7926 // place. If virtual, make sure we have enough registers 7927 7928 // Initialize iterator if necessary 7929 TargetRegisterClass::iterator I = RC->begin(); 7930 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7931 7932 // Do not check for single registers. 7933 if (AssignedReg) { 7934 for (; *I != AssignedReg; ++I) 7935 assert(I != RC->end() && "AssignedReg should be member of RC"); 7936 } 7937 7938 for (; NumRegs; --NumRegs, ++I) { 7939 assert(I != RC->end() && "Ran out of registers to allocate!"); 7940 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7941 Regs.push_back(R); 7942 } 7943 7944 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7945 } 7946 7947 static unsigned 7948 findMatchingInlineAsmOperand(unsigned OperandNo, 7949 const std::vector<SDValue> &AsmNodeOperands) { 7950 // Scan until we find the definition we already emitted of this operand. 7951 unsigned CurOp = InlineAsm::Op_FirstOperand; 7952 for (; OperandNo; --OperandNo) { 7953 // Advance to the next operand. 7954 unsigned OpFlag = 7955 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7956 assert((InlineAsm::isRegDefKind(OpFlag) || 7957 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7958 InlineAsm::isMemKind(OpFlag)) && 7959 "Skipped past definitions?"); 7960 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7961 } 7962 return CurOp; 7963 } 7964 7965 namespace { 7966 7967 class ExtraFlags { 7968 unsigned Flags = 0; 7969 7970 public: 7971 explicit ExtraFlags(const CallBase &Call) { 7972 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue()); 7973 if (IA->hasSideEffects()) 7974 Flags |= InlineAsm::Extra_HasSideEffects; 7975 if (IA->isAlignStack()) 7976 Flags |= InlineAsm::Extra_IsAlignStack; 7977 if (Call.isConvergent()) 7978 Flags |= InlineAsm::Extra_IsConvergent; 7979 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7980 } 7981 7982 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7983 // Ideally, we would only check against memory constraints. However, the 7984 // meaning of an Other constraint can be target-specific and we can't easily 7985 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7986 // for Other constraints as well. 7987 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7988 OpInfo.ConstraintType == TargetLowering::C_Other) { 7989 if (OpInfo.Type == InlineAsm::isInput) 7990 Flags |= InlineAsm::Extra_MayLoad; 7991 else if (OpInfo.Type == InlineAsm::isOutput) 7992 Flags |= InlineAsm::Extra_MayStore; 7993 else if (OpInfo.Type == InlineAsm::isClobber) 7994 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7995 } 7996 } 7997 7998 unsigned get() const { return Flags; } 7999 }; 8000 8001 } // end anonymous namespace 8002 8003 /// visitInlineAsm - Handle a call to an InlineAsm object. 8004 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8005 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue()); 8006 8007 /// ConstraintOperands - Information about all of the constraints. 8008 SDISelAsmOperandInfoVector ConstraintOperands; 8009 8010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8011 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8012 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8013 8014 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8015 // AsmDialect, MayLoad, MayStore). 8016 bool HasSideEffect = IA->hasSideEffects(); 8017 ExtraFlags ExtraInfo(Call); 8018 8019 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8020 unsigned ResNo = 0; // ResNo - The result number of the next output. 8021 unsigned NumMatchingOps = 0; 8022 for (auto &T : TargetConstraints) { 8023 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8024 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8025 8026 // Compute the value type for each operand. 8027 if (OpInfo.Type == InlineAsm::isInput || 8028 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8029 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8030 8031 // Process the call argument. BasicBlocks are labels, currently appearing 8032 // only in asm's. 8033 if (isa<CallBrInst>(Call) && 8034 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8035 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8036 NumMatchingOps) && 8037 (NumMatchingOps == 0 || 8038 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8039 NumMatchingOps))) { 8040 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8041 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8042 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8043 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8044 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8045 } else { 8046 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8047 } 8048 8049 OpInfo.ConstraintVT = 8050 OpInfo 8051 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8052 .getSimpleVT(); 8053 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8054 // The return value of the call is this value. As such, there is no 8055 // corresponding argument. 8056 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8057 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8058 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8059 DAG.getDataLayout(), STy->getElementType(ResNo)); 8060 } else { 8061 assert(ResNo == 0 && "Asm only has one result!"); 8062 OpInfo.ConstraintVT = 8063 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8064 } 8065 ++ResNo; 8066 } else { 8067 OpInfo.ConstraintVT = MVT::Other; 8068 } 8069 8070 if (OpInfo.hasMatchingInput()) 8071 ++NumMatchingOps; 8072 8073 if (!HasSideEffect) 8074 HasSideEffect = OpInfo.hasMemory(TLI); 8075 8076 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8077 // FIXME: Could we compute this on OpInfo rather than T? 8078 8079 // Compute the constraint code and ConstraintType to use. 8080 TLI.ComputeConstraintToUse(T, SDValue()); 8081 8082 if (T.ConstraintType == TargetLowering::C_Immediate && 8083 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8084 // We've delayed emitting a diagnostic like the "n" constraint because 8085 // inlining could cause an integer showing up. 8086 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8087 "' expects an integer constant " 8088 "expression"); 8089 8090 ExtraInfo.update(T); 8091 } 8092 8093 8094 // We won't need to flush pending loads if this asm doesn't touch 8095 // memory and is nonvolatile. 8096 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8097 8098 bool IsCallBr = isa<CallBrInst>(Call); 8099 if (IsCallBr) { 8100 // If this is a callbr we need to flush pending exports since inlineasm_br 8101 // is a terminator. We need to do this before nodes are glued to 8102 // the inlineasm_br node. 8103 Chain = getControlRoot(); 8104 } 8105 8106 // Second pass over the constraints: compute which constraint option to use. 8107 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8108 // If this is an output operand with a matching input operand, look up the 8109 // matching input. If their types mismatch, e.g. one is an integer, the 8110 // other is floating point, or their sizes are different, flag it as an 8111 // error. 8112 if (OpInfo.hasMatchingInput()) { 8113 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8114 patchMatchingInput(OpInfo, Input, DAG); 8115 } 8116 8117 // Compute the constraint code and ConstraintType to use. 8118 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8119 8120 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8121 OpInfo.Type == InlineAsm::isClobber) 8122 continue; 8123 8124 // If this is a memory input, and if the operand is not indirect, do what we 8125 // need to provide an address for the memory input. 8126 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8127 !OpInfo.isIndirect) { 8128 assert((OpInfo.isMultipleAlternative || 8129 (OpInfo.Type == InlineAsm::isInput)) && 8130 "Can only indirectify direct input operands!"); 8131 8132 // Memory operands really want the address of the value. 8133 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8134 8135 // There is no longer a Value* corresponding to this operand. 8136 OpInfo.CallOperandVal = nullptr; 8137 8138 // It is now an indirect operand. 8139 OpInfo.isIndirect = true; 8140 } 8141 8142 } 8143 8144 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8145 std::vector<SDValue> AsmNodeOperands; 8146 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8147 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8148 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8149 8150 // If we have a !srcloc metadata node associated with it, we want to attach 8151 // this to the ultimately generated inline asm machineinstr. To do this, we 8152 // pass in the third operand as this (potentially null) inline asm MDNode. 8153 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8154 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8155 8156 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8157 // bits as operand 3. 8158 AsmNodeOperands.push_back(DAG.getTargetConstant( 8159 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8160 8161 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8162 // this, assign virtual and physical registers for inputs and otput. 8163 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8164 // Assign Registers. 8165 SDISelAsmOperandInfo &RefOpInfo = 8166 OpInfo.isMatchingInputConstraint() 8167 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8168 : OpInfo; 8169 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8170 8171 auto DetectWriteToReservedRegister = [&]() { 8172 const MachineFunction &MF = DAG.getMachineFunction(); 8173 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8174 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8175 if (Register::isPhysicalRegister(Reg) && 8176 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8177 const char *RegName = TRI.getName(Reg); 8178 emitInlineAsmError(CS, "write to reserved register '" + 8179 Twine(RegName) + "'"); 8180 return true; 8181 } 8182 } 8183 return false; 8184 }; 8185 8186 switch (OpInfo.Type) { 8187 case InlineAsm::isOutput: 8188 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8189 unsigned ConstraintID = 8190 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8191 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8192 "Failed to convert memory constraint code to constraint id."); 8193 8194 // Add information to the INLINEASM node to know about this output. 8195 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8196 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8197 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8198 MVT::i32)); 8199 AsmNodeOperands.push_back(OpInfo.CallOperand); 8200 } else { 8201 // Otherwise, this outputs to a register (directly for C_Register / 8202 // C_RegisterClass, and a target-defined fashion for 8203 // C_Immediate/C_Other). Find a register that we can use. 8204 if (OpInfo.AssignedRegs.Regs.empty()) { 8205 emitInlineAsmError( 8206 Call, "couldn't allocate output register for constraint '" + 8207 Twine(OpInfo.ConstraintCode) + "'"); 8208 return; 8209 } 8210 8211 if (DetectWriteToReservedRegister()) 8212 return; 8213 8214 // Add information to the INLINEASM node to know that this register is 8215 // set. 8216 OpInfo.AssignedRegs.AddInlineAsmOperands( 8217 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8218 : InlineAsm::Kind_RegDef, 8219 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8220 } 8221 break; 8222 8223 case InlineAsm::isInput: { 8224 SDValue InOperandVal = OpInfo.CallOperand; 8225 8226 if (OpInfo.isMatchingInputConstraint()) { 8227 // If this is required to match an output register we have already set, 8228 // just use its register. 8229 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8230 AsmNodeOperands); 8231 unsigned OpFlag = 8232 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8233 if (InlineAsm::isRegDefKind(OpFlag) || 8234 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8235 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8236 if (OpInfo.isIndirect) { 8237 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8238 emitInlineAsmError(Call, "inline asm not supported yet: " 8239 "don't know how to handle tied " 8240 "indirect register inputs"); 8241 return; 8242 } 8243 8244 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8245 SmallVector<unsigned, 4> Regs; 8246 8247 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8248 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8249 MachineRegisterInfo &RegInfo = 8250 DAG.getMachineFunction().getRegInfo(); 8251 for (unsigned i = 0; i != NumRegs; ++i) 8252 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8253 } else { 8254 emitInlineAsmError(Call, 8255 "inline asm error: This value type register " 8256 "class is not natively supported!"); 8257 return; 8258 } 8259 8260 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8261 8262 SDLoc dl = getCurSDLoc(); 8263 // Use the produced MatchedRegs object to 8264 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8265 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8266 true, OpInfo.getMatchedOperand(), dl, 8267 DAG, AsmNodeOperands); 8268 break; 8269 } 8270 8271 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8272 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8273 "Unexpected number of operands"); 8274 // Add information to the INLINEASM node to know about this input. 8275 // See InlineAsm.h isUseOperandTiedToDef. 8276 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8277 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8278 OpInfo.getMatchedOperand()); 8279 AsmNodeOperands.push_back(DAG.getTargetConstant( 8280 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8281 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8282 break; 8283 } 8284 8285 // Treat indirect 'X' constraint as memory. 8286 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8287 OpInfo.isIndirect) 8288 OpInfo.ConstraintType = TargetLowering::C_Memory; 8289 8290 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8291 OpInfo.ConstraintType == TargetLowering::C_Other) { 8292 std::vector<SDValue> Ops; 8293 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8294 Ops, DAG); 8295 if (Ops.empty()) { 8296 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8297 if (isa<ConstantSDNode>(InOperandVal)) { 8298 emitInlineAsmError(Call, "value out of range for constraint '" + 8299 Twine(OpInfo.ConstraintCode) + "'"); 8300 return; 8301 } 8302 8303 emitInlineAsmError(Call, 8304 "invalid operand for inline asm constraint '" + 8305 Twine(OpInfo.ConstraintCode) + "'"); 8306 return; 8307 } 8308 8309 // Add information to the INLINEASM node to know about this input. 8310 unsigned ResOpType = 8311 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8312 AsmNodeOperands.push_back(DAG.getTargetConstant( 8313 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8314 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8315 break; 8316 } 8317 8318 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8319 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8320 assert(InOperandVal.getValueType() == 8321 TLI.getPointerTy(DAG.getDataLayout()) && 8322 "Memory operands expect pointer values"); 8323 8324 unsigned ConstraintID = 8325 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8326 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8327 "Failed to convert memory constraint code to constraint id."); 8328 8329 // Add information to the INLINEASM node to know about this input. 8330 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8331 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8332 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8333 getCurSDLoc(), 8334 MVT::i32)); 8335 AsmNodeOperands.push_back(InOperandVal); 8336 break; 8337 } 8338 8339 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8340 OpInfo.ConstraintType == TargetLowering::C_Register) && 8341 "Unknown constraint type!"); 8342 8343 // TODO: Support this. 8344 if (OpInfo.isIndirect) { 8345 emitInlineAsmError( 8346 Call, "Don't know how to handle indirect register inputs yet " 8347 "for constraint '" + 8348 Twine(OpInfo.ConstraintCode) + "'"); 8349 return; 8350 } 8351 8352 // Copy the input into the appropriate registers. 8353 if (OpInfo.AssignedRegs.Regs.empty()) { 8354 emitInlineAsmError(Call, 8355 "couldn't allocate input reg for constraint '" + 8356 Twine(OpInfo.ConstraintCode) + "'"); 8357 return; 8358 } 8359 8360 if (DetectWriteToReservedRegister()) 8361 return; 8362 8363 SDLoc dl = getCurSDLoc(); 8364 8365 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8366 &Call); 8367 8368 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8369 dl, DAG, AsmNodeOperands); 8370 break; 8371 } 8372 case InlineAsm::isClobber: 8373 // Add the clobbered value to the operand list, so that the register 8374 // allocator is aware that the physreg got clobbered. 8375 if (!OpInfo.AssignedRegs.Regs.empty()) 8376 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8377 false, 0, getCurSDLoc(), DAG, 8378 AsmNodeOperands); 8379 break; 8380 } 8381 } 8382 8383 // Finish up input operands. Set the input chain and add the flag last. 8384 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8385 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8386 8387 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8388 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8389 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8390 Flag = Chain.getValue(1); 8391 8392 // Do additional work to generate outputs. 8393 8394 SmallVector<EVT, 1> ResultVTs; 8395 SmallVector<SDValue, 1> ResultValues; 8396 SmallVector<SDValue, 8> OutChains; 8397 8398 llvm::Type *CallResultType = Call.getType(); 8399 ArrayRef<Type *> ResultTypes; 8400 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8401 ResultTypes = StructResult->elements(); 8402 else if (!CallResultType->isVoidTy()) 8403 ResultTypes = makeArrayRef(CallResultType); 8404 8405 auto CurResultType = ResultTypes.begin(); 8406 auto handleRegAssign = [&](SDValue V) { 8407 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8408 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8409 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8410 ++CurResultType; 8411 // If the type of the inline asm call site return value is different but has 8412 // same size as the type of the asm output bitcast it. One example of this 8413 // is for vectors with different width / number of elements. This can 8414 // happen for register classes that can contain multiple different value 8415 // types. The preg or vreg allocated may not have the same VT as was 8416 // expected. 8417 // 8418 // This can also happen for a return value that disagrees with the register 8419 // class it is put in, eg. a double in a general-purpose register on a 8420 // 32-bit machine. 8421 if (ResultVT != V.getValueType() && 8422 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8423 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8424 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8425 V.getValueType().isInteger()) { 8426 // If a result value was tied to an input value, the computed result 8427 // may have a wider width than the expected result. Extract the 8428 // relevant portion. 8429 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8430 } 8431 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8432 ResultVTs.push_back(ResultVT); 8433 ResultValues.push_back(V); 8434 }; 8435 8436 // Deal with output operands. 8437 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8438 if (OpInfo.Type == InlineAsm::isOutput) { 8439 SDValue Val; 8440 // Skip trivial output operands. 8441 if (OpInfo.AssignedRegs.Regs.empty()) 8442 continue; 8443 8444 switch (OpInfo.ConstraintType) { 8445 case TargetLowering::C_Register: 8446 case TargetLowering::C_RegisterClass: 8447 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8448 Chain, &Flag, &Call); 8449 break; 8450 case TargetLowering::C_Immediate: 8451 case TargetLowering::C_Other: 8452 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8453 OpInfo, DAG); 8454 break; 8455 case TargetLowering::C_Memory: 8456 break; // Already handled. 8457 case TargetLowering::C_Unknown: 8458 assert(false && "Unexpected unknown constraint"); 8459 } 8460 8461 // Indirect output manifest as stores. Record output chains. 8462 if (OpInfo.isIndirect) { 8463 const Value *Ptr = OpInfo.CallOperandVal; 8464 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8465 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8466 MachinePointerInfo(Ptr)); 8467 OutChains.push_back(Store); 8468 } else { 8469 // generate CopyFromRegs to associated registers. 8470 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8471 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8472 for (const SDValue &V : Val->op_values()) 8473 handleRegAssign(V); 8474 } else 8475 handleRegAssign(Val); 8476 } 8477 } 8478 } 8479 8480 // Set results. 8481 if (!ResultValues.empty()) { 8482 assert(CurResultType == ResultTypes.end() && 8483 "Mismatch in number of ResultTypes"); 8484 assert(ResultValues.size() == ResultTypes.size() && 8485 "Mismatch in number of output operands in asm result"); 8486 8487 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8488 DAG.getVTList(ResultVTs), ResultValues); 8489 setValue(&Call, V); 8490 } 8491 8492 // Collect store chains. 8493 if (!OutChains.empty()) 8494 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8495 8496 // Only Update Root if inline assembly has a memory effect. 8497 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8498 DAG.setRoot(Chain); 8499 } 8500 8501 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8502 const Twine &Message) { 8503 LLVMContext &Ctx = *DAG.getContext(); 8504 Ctx.emitError(&Call, Message); 8505 8506 // Make sure we leave the DAG in a valid state 8507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8508 SmallVector<EVT, 1> ValueVTs; 8509 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8510 8511 if (ValueVTs.empty()) 8512 return; 8513 8514 SmallVector<SDValue, 1> Ops; 8515 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8516 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8517 8518 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8519 } 8520 8521 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8522 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8523 MVT::Other, getRoot(), 8524 getValue(I.getArgOperand(0)), 8525 DAG.getSrcValue(I.getArgOperand(0)))); 8526 } 8527 8528 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8530 const DataLayout &DL = DAG.getDataLayout(); 8531 SDValue V = DAG.getVAArg( 8532 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8533 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8534 DL.getABITypeAlignment(I.getType())); 8535 DAG.setRoot(V.getValue(1)); 8536 8537 if (I.getType()->isPointerTy()) 8538 V = DAG.getPtrExtOrTrunc( 8539 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8540 setValue(&I, V); 8541 } 8542 8543 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8544 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8545 MVT::Other, getRoot(), 8546 getValue(I.getArgOperand(0)), 8547 DAG.getSrcValue(I.getArgOperand(0)))); 8548 } 8549 8550 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8551 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8552 MVT::Other, getRoot(), 8553 getValue(I.getArgOperand(0)), 8554 getValue(I.getArgOperand(1)), 8555 DAG.getSrcValue(I.getArgOperand(0)), 8556 DAG.getSrcValue(I.getArgOperand(1)))); 8557 } 8558 8559 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8560 const Instruction &I, 8561 SDValue Op) { 8562 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8563 if (!Range) 8564 return Op; 8565 8566 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8567 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8568 return Op; 8569 8570 APInt Lo = CR.getUnsignedMin(); 8571 if (!Lo.isMinValue()) 8572 return Op; 8573 8574 APInt Hi = CR.getUnsignedMax(); 8575 unsigned Bits = std::max(Hi.getActiveBits(), 8576 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8577 8578 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8579 8580 SDLoc SL = getCurSDLoc(); 8581 8582 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8583 DAG.getValueType(SmallVT)); 8584 unsigned NumVals = Op.getNode()->getNumValues(); 8585 if (NumVals == 1) 8586 return ZExt; 8587 8588 SmallVector<SDValue, 4> Ops; 8589 8590 Ops.push_back(ZExt); 8591 for (unsigned I = 1; I != NumVals; ++I) 8592 Ops.push_back(Op.getValue(I)); 8593 8594 return DAG.getMergeValues(Ops, SL); 8595 } 8596 8597 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8598 /// the call being lowered. 8599 /// 8600 /// This is a helper for lowering intrinsics that follow a target calling 8601 /// convention or require stack pointer adjustment. Only a subset of the 8602 /// intrinsic's operands need to participate in the calling convention. 8603 void SelectionDAGBuilder::populateCallLoweringInfo( 8604 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8605 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8606 bool IsPatchPoint) { 8607 TargetLowering::ArgListTy Args; 8608 Args.reserve(NumArgs); 8609 8610 // Populate the argument list. 8611 // Attributes for args start at offset 1, after the return attribute. 8612 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8613 ArgI != ArgE; ++ArgI) { 8614 const Value *V = Call->getOperand(ArgI); 8615 8616 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8617 8618 TargetLowering::ArgListEntry Entry; 8619 Entry.Node = getValue(V); 8620 Entry.Ty = V->getType(); 8621 Entry.setAttributes(Call, ArgI); 8622 Args.push_back(Entry); 8623 } 8624 8625 CLI.setDebugLoc(getCurSDLoc()) 8626 .setChain(getRoot()) 8627 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8628 .setDiscardResult(Call->use_empty()) 8629 .setIsPatchPoint(IsPatchPoint); 8630 } 8631 8632 /// Add a stack map intrinsic call's live variable operands to a stackmap 8633 /// or patchpoint target node's operand list. 8634 /// 8635 /// Constants are converted to TargetConstants purely as an optimization to 8636 /// avoid constant materialization and register allocation. 8637 /// 8638 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8639 /// generate addess computation nodes, and so FinalizeISel can convert the 8640 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8641 /// address materialization and register allocation, but may also be required 8642 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8643 /// alloca in the entry block, then the runtime may assume that the alloca's 8644 /// StackMap location can be read immediately after compilation and that the 8645 /// location is valid at any point during execution (this is similar to the 8646 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8647 /// only available in a register, then the runtime would need to trap when 8648 /// execution reaches the StackMap in order to read the alloca's location. 8649 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8650 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8651 SelectionDAGBuilder &Builder) { 8652 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8653 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8654 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8655 Ops.push_back( 8656 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8657 Ops.push_back( 8658 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8659 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8660 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8661 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8662 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8663 } else 8664 Ops.push_back(OpVal); 8665 } 8666 } 8667 8668 /// Lower llvm.experimental.stackmap directly to its target opcode. 8669 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8670 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8671 // [live variables...]) 8672 8673 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8674 8675 SDValue Chain, InFlag, Callee, NullPtr; 8676 SmallVector<SDValue, 32> Ops; 8677 8678 SDLoc DL = getCurSDLoc(); 8679 Callee = getValue(CI.getCalledValue()); 8680 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8681 8682 // The stackmap intrinsic only records the live variables (the arguments 8683 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8684 // intrinsic, this won't be lowered to a function call. This means we don't 8685 // have to worry about calling conventions and target specific lowering code. 8686 // Instead we perform the call lowering right here. 8687 // 8688 // chain, flag = CALLSEQ_START(chain, 0, 0) 8689 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8690 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8691 // 8692 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8693 InFlag = Chain.getValue(1); 8694 8695 // Add the <id> and <numBytes> constants. 8696 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8697 Ops.push_back(DAG.getTargetConstant( 8698 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8699 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8700 Ops.push_back(DAG.getTargetConstant( 8701 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8702 MVT::i32)); 8703 8704 // Push live variables for the stack map. 8705 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8706 8707 // We are not pushing any register mask info here on the operands list, 8708 // because the stackmap doesn't clobber anything. 8709 8710 // Push the chain and the glue flag. 8711 Ops.push_back(Chain); 8712 Ops.push_back(InFlag); 8713 8714 // Create the STACKMAP node. 8715 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8716 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8717 Chain = SDValue(SM, 0); 8718 InFlag = Chain.getValue(1); 8719 8720 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8721 8722 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8723 8724 // Set the root to the target-lowered call chain. 8725 DAG.setRoot(Chain); 8726 8727 // Inform the Frame Information that we have a stackmap in this function. 8728 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8729 } 8730 8731 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8732 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8733 const BasicBlock *EHPadBB) { 8734 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8735 // i32 <numBytes>, 8736 // i8* <target>, 8737 // i32 <numArgs>, 8738 // [Args...], 8739 // [live variables...]) 8740 8741 CallingConv::ID CC = CB.getCallingConv(); 8742 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8743 bool HasDef = !CB.getType()->isVoidTy(); 8744 SDLoc dl = getCurSDLoc(); 8745 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8746 8747 // Handle immediate and symbolic callees. 8748 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8749 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8750 /*isTarget=*/true); 8751 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8752 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8753 SDLoc(SymbolicCallee), 8754 SymbolicCallee->getValueType(0)); 8755 8756 // Get the real number of arguments participating in the call <numArgs> 8757 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8758 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8759 8760 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8761 // Intrinsics include all meta-operands up to but not including CC. 8762 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8763 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8764 "Not enough arguments provided to the patchpoint intrinsic"); 8765 8766 // For AnyRegCC the arguments are lowered later on manually. 8767 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8768 Type *ReturnTy = 8769 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8770 8771 TargetLowering::CallLoweringInfo CLI(DAG); 8772 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8773 ReturnTy, true); 8774 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8775 8776 SDNode *CallEnd = Result.second.getNode(); 8777 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8778 CallEnd = CallEnd->getOperand(0).getNode(); 8779 8780 /// Get a call instruction from the call sequence chain. 8781 /// Tail calls are not allowed. 8782 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8783 "Expected a callseq node."); 8784 SDNode *Call = CallEnd->getOperand(0).getNode(); 8785 bool HasGlue = Call->getGluedNode(); 8786 8787 // Replace the target specific call node with the patchable intrinsic. 8788 SmallVector<SDValue, 8> Ops; 8789 8790 // Add the <id> and <numBytes> constants. 8791 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8792 Ops.push_back(DAG.getTargetConstant( 8793 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8794 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8795 Ops.push_back(DAG.getTargetConstant( 8796 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8797 MVT::i32)); 8798 8799 // Add the callee. 8800 Ops.push_back(Callee); 8801 8802 // Adjust <numArgs> to account for any arguments that have been passed on the 8803 // stack instead. 8804 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8805 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8806 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8807 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8808 8809 // Add the calling convention 8810 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8811 8812 // Add the arguments we omitted previously. The register allocator should 8813 // place these in any free register. 8814 if (IsAnyRegCC) 8815 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8816 Ops.push_back(getValue(CB.getArgOperand(i))); 8817 8818 // Push the arguments from the call instruction up to the register mask. 8819 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8820 Ops.append(Call->op_begin() + 2, e); 8821 8822 // Push live variables for the stack map. 8823 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8824 8825 // Push the register mask info. 8826 if (HasGlue) 8827 Ops.push_back(*(Call->op_end()-2)); 8828 else 8829 Ops.push_back(*(Call->op_end()-1)); 8830 8831 // Push the chain (this is originally the first operand of the call, but 8832 // becomes now the last or second to last operand). 8833 Ops.push_back(*(Call->op_begin())); 8834 8835 // Push the glue flag (last operand). 8836 if (HasGlue) 8837 Ops.push_back(*(Call->op_end()-1)); 8838 8839 SDVTList NodeTys; 8840 if (IsAnyRegCC && HasDef) { 8841 // Create the return types based on the intrinsic definition 8842 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8843 SmallVector<EVT, 3> ValueVTs; 8844 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8845 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8846 8847 // There is always a chain and a glue type at the end 8848 ValueVTs.push_back(MVT::Other); 8849 ValueVTs.push_back(MVT::Glue); 8850 NodeTys = DAG.getVTList(ValueVTs); 8851 } else 8852 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8853 8854 // Replace the target specific call node with a PATCHPOINT node. 8855 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8856 dl, NodeTys, Ops); 8857 8858 // Update the NodeMap. 8859 if (HasDef) { 8860 if (IsAnyRegCC) 8861 setValue(&CB, SDValue(MN, 0)); 8862 else 8863 setValue(&CB, Result.first); 8864 } 8865 8866 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8867 // call sequence. Furthermore the location of the chain and glue can change 8868 // when the AnyReg calling convention is used and the intrinsic returns a 8869 // value. 8870 if (IsAnyRegCC && HasDef) { 8871 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8872 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8873 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8874 } else 8875 DAG.ReplaceAllUsesWith(Call, MN); 8876 DAG.DeleteNode(Call); 8877 8878 // Inform the Frame Information that we have a patchpoint in this function. 8879 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8880 } 8881 8882 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8883 unsigned Intrinsic) { 8884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8885 SDValue Op1 = getValue(I.getArgOperand(0)); 8886 SDValue Op2; 8887 if (I.getNumArgOperands() > 1) 8888 Op2 = getValue(I.getArgOperand(1)); 8889 SDLoc dl = getCurSDLoc(); 8890 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8891 SDValue Res; 8892 FastMathFlags FMF; 8893 if (isa<FPMathOperator>(I)) 8894 FMF = I.getFastMathFlags(); 8895 8896 switch (Intrinsic) { 8897 case Intrinsic::experimental_vector_reduce_v2_fadd: 8898 if (FMF.allowReassoc()) 8899 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8900 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8901 else 8902 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8903 break; 8904 case Intrinsic::experimental_vector_reduce_v2_fmul: 8905 if (FMF.allowReassoc()) 8906 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8907 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8908 else 8909 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8910 break; 8911 case Intrinsic::experimental_vector_reduce_add: 8912 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8913 break; 8914 case Intrinsic::experimental_vector_reduce_mul: 8915 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8916 break; 8917 case Intrinsic::experimental_vector_reduce_and: 8918 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8919 break; 8920 case Intrinsic::experimental_vector_reduce_or: 8921 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8922 break; 8923 case Intrinsic::experimental_vector_reduce_xor: 8924 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8925 break; 8926 case Intrinsic::experimental_vector_reduce_smax: 8927 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8928 break; 8929 case Intrinsic::experimental_vector_reduce_smin: 8930 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8931 break; 8932 case Intrinsic::experimental_vector_reduce_umax: 8933 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8934 break; 8935 case Intrinsic::experimental_vector_reduce_umin: 8936 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8937 break; 8938 case Intrinsic::experimental_vector_reduce_fmax: 8939 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8940 break; 8941 case Intrinsic::experimental_vector_reduce_fmin: 8942 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8943 break; 8944 default: 8945 llvm_unreachable("Unhandled vector reduce intrinsic"); 8946 } 8947 setValue(&I, Res); 8948 } 8949 8950 /// Returns an AttributeList representing the attributes applied to the return 8951 /// value of the given call. 8952 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8953 SmallVector<Attribute::AttrKind, 2> Attrs; 8954 if (CLI.RetSExt) 8955 Attrs.push_back(Attribute::SExt); 8956 if (CLI.RetZExt) 8957 Attrs.push_back(Attribute::ZExt); 8958 if (CLI.IsInReg) 8959 Attrs.push_back(Attribute::InReg); 8960 8961 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8962 Attrs); 8963 } 8964 8965 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8966 /// implementation, which just calls LowerCall. 8967 /// FIXME: When all targets are 8968 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8969 std::pair<SDValue, SDValue> 8970 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8971 // Handle the incoming return values from the call. 8972 CLI.Ins.clear(); 8973 Type *OrigRetTy = CLI.RetTy; 8974 SmallVector<EVT, 4> RetTys; 8975 SmallVector<uint64_t, 4> Offsets; 8976 auto &DL = CLI.DAG.getDataLayout(); 8977 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8978 8979 if (CLI.IsPostTypeLegalization) { 8980 // If we are lowering a libcall after legalization, split the return type. 8981 SmallVector<EVT, 4> OldRetTys; 8982 SmallVector<uint64_t, 4> OldOffsets; 8983 RetTys.swap(OldRetTys); 8984 Offsets.swap(OldOffsets); 8985 8986 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8987 EVT RetVT = OldRetTys[i]; 8988 uint64_t Offset = OldOffsets[i]; 8989 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8990 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8991 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8992 RetTys.append(NumRegs, RegisterVT); 8993 for (unsigned j = 0; j != NumRegs; ++j) 8994 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8995 } 8996 } 8997 8998 SmallVector<ISD::OutputArg, 4> Outs; 8999 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9000 9001 bool CanLowerReturn = 9002 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9003 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9004 9005 SDValue DemoteStackSlot; 9006 int DemoteStackIdx = -100; 9007 if (!CanLowerReturn) { 9008 // FIXME: equivalent assert? 9009 // assert(!CS.hasInAllocaArgument() && 9010 // "sret demotion is incompatible with inalloca"); 9011 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9012 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9013 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9014 DemoteStackIdx = 9015 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9016 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9017 DL.getAllocaAddrSpace()); 9018 9019 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9020 ArgListEntry Entry; 9021 Entry.Node = DemoteStackSlot; 9022 Entry.Ty = StackSlotPtrType; 9023 Entry.IsSExt = false; 9024 Entry.IsZExt = false; 9025 Entry.IsInReg = false; 9026 Entry.IsSRet = true; 9027 Entry.IsNest = false; 9028 Entry.IsByVal = false; 9029 Entry.IsReturned = false; 9030 Entry.IsSwiftSelf = false; 9031 Entry.IsSwiftError = false; 9032 Entry.IsCFGuardTarget = false; 9033 Entry.Alignment = Alignment; 9034 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9035 CLI.NumFixedArgs += 1; 9036 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9037 9038 // sret demotion isn't compatible with tail-calls, since the sret argument 9039 // points into the callers stack frame. 9040 CLI.IsTailCall = false; 9041 } else { 9042 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9043 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9044 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9045 ISD::ArgFlagsTy Flags; 9046 if (NeedsRegBlock) { 9047 Flags.setInConsecutiveRegs(); 9048 if (I == RetTys.size() - 1) 9049 Flags.setInConsecutiveRegsLast(); 9050 } 9051 EVT VT = RetTys[I]; 9052 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9053 CLI.CallConv, VT); 9054 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9055 CLI.CallConv, VT); 9056 for (unsigned i = 0; i != NumRegs; ++i) { 9057 ISD::InputArg MyFlags; 9058 MyFlags.Flags = Flags; 9059 MyFlags.VT = RegisterVT; 9060 MyFlags.ArgVT = VT; 9061 MyFlags.Used = CLI.IsReturnValueUsed; 9062 if (CLI.RetTy->isPointerTy()) { 9063 MyFlags.Flags.setPointer(); 9064 MyFlags.Flags.setPointerAddrSpace( 9065 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9066 } 9067 if (CLI.RetSExt) 9068 MyFlags.Flags.setSExt(); 9069 if (CLI.RetZExt) 9070 MyFlags.Flags.setZExt(); 9071 if (CLI.IsInReg) 9072 MyFlags.Flags.setInReg(); 9073 CLI.Ins.push_back(MyFlags); 9074 } 9075 } 9076 } 9077 9078 // We push in swifterror return as the last element of CLI.Ins. 9079 ArgListTy &Args = CLI.getArgs(); 9080 if (supportSwiftError()) { 9081 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9082 if (Args[i].IsSwiftError) { 9083 ISD::InputArg MyFlags; 9084 MyFlags.VT = getPointerTy(DL); 9085 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9086 MyFlags.Flags.setSwiftError(); 9087 CLI.Ins.push_back(MyFlags); 9088 } 9089 } 9090 } 9091 9092 // Handle all of the outgoing arguments. 9093 CLI.Outs.clear(); 9094 CLI.OutVals.clear(); 9095 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9096 SmallVector<EVT, 4> ValueVTs; 9097 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9098 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9099 Type *FinalType = Args[i].Ty; 9100 if (Args[i].IsByVal) 9101 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9102 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9103 FinalType, CLI.CallConv, CLI.IsVarArg); 9104 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9105 ++Value) { 9106 EVT VT = ValueVTs[Value]; 9107 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9108 SDValue Op = SDValue(Args[i].Node.getNode(), 9109 Args[i].Node.getResNo() + Value); 9110 ISD::ArgFlagsTy Flags; 9111 9112 // Certain targets (such as MIPS), may have a different ABI alignment 9113 // for a type depending on the context. Give the target a chance to 9114 // specify the alignment it wants. 9115 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9116 9117 if (Args[i].Ty->isPointerTy()) { 9118 Flags.setPointer(); 9119 Flags.setPointerAddrSpace( 9120 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9121 } 9122 if (Args[i].IsZExt) 9123 Flags.setZExt(); 9124 if (Args[i].IsSExt) 9125 Flags.setSExt(); 9126 if (Args[i].IsInReg) { 9127 // If we are using vectorcall calling convention, a structure that is 9128 // passed InReg - is surely an HVA 9129 if (CLI.CallConv == CallingConv::X86_VectorCall && 9130 isa<StructType>(FinalType)) { 9131 // The first value of a structure is marked 9132 if (0 == Value) 9133 Flags.setHvaStart(); 9134 Flags.setHva(); 9135 } 9136 // Set InReg Flag 9137 Flags.setInReg(); 9138 } 9139 if (Args[i].IsSRet) 9140 Flags.setSRet(); 9141 if (Args[i].IsSwiftSelf) 9142 Flags.setSwiftSelf(); 9143 if (Args[i].IsSwiftError) 9144 Flags.setSwiftError(); 9145 if (Args[i].IsCFGuardTarget) 9146 Flags.setCFGuardTarget(); 9147 if (Args[i].IsByVal) 9148 Flags.setByVal(); 9149 if (Args[i].IsInAlloca) { 9150 Flags.setInAlloca(); 9151 // Set the byval flag for CCAssignFn callbacks that don't know about 9152 // inalloca. This way we can know how many bytes we should've allocated 9153 // and how many bytes a callee cleanup function will pop. If we port 9154 // inalloca to more targets, we'll have to add custom inalloca handling 9155 // in the various CC lowering callbacks. 9156 Flags.setByVal(); 9157 } 9158 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9159 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9160 Type *ElementTy = Ty->getElementType(); 9161 9162 unsigned FrameSize = DL.getTypeAllocSize( 9163 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9164 Flags.setByValSize(FrameSize); 9165 9166 // info is not there but there are cases it cannot get right. 9167 Align FrameAlign; 9168 if (auto MA = Args[i].Alignment) 9169 FrameAlign = *MA; 9170 else 9171 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9172 Flags.setByValAlign(FrameAlign); 9173 } 9174 if (Args[i].IsNest) 9175 Flags.setNest(); 9176 if (NeedsRegBlock) 9177 Flags.setInConsecutiveRegs(); 9178 Flags.setOrigAlign(OriginalAlignment); 9179 9180 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9181 CLI.CallConv, VT); 9182 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9183 CLI.CallConv, VT); 9184 SmallVector<SDValue, 4> Parts(NumParts); 9185 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9186 9187 if (Args[i].IsSExt) 9188 ExtendKind = ISD::SIGN_EXTEND; 9189 else if (Args[i].IsZExt) 9190 ExtendKind = ISD::ZERO_EXTEND; 9191 9192 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9193 // for now. 9194 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9195 CanLowerReturn) { 9196 assert((CLI.RetTy == Args[i].Ty || 9197 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9198 CLI.RetTy->getPointerAddressSpace() == 9199 Args[i].Ty->getPointerAddressSpace())) && 9200 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9201 // Before passing 'returned' to the target lowering code, ensure that 9202 // either the register MVT and the actual EVT are the same size or that 9203 // the return value and argument are extended in the same way; in these 9204 // cases it's safe to pass the argument register value unchanged as the 9205 // return register value (although it's at the target's option whether 9206 // to do so) 9207 // TODO: allow code generation to take advantage of partially preserved 9208 // registers rather than clobbering the entire register when the 9209 // parameter extension method is not compatible with the return 9210 // extension method 9211 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9212 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9213 CLI.RetZExt == Args[i].IsZExt)) 9214 Flags.setReturned(); 9215 } 9216 9217 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9218 CLI.CallConv, ExtendKind); 9219 9220 for (unsigned j = 0; j != NumParts; ++j) { 9221 // if it isn't first piece, alignment must be 1 9222 // For scalable vectors the scalable part is currently handled 9223 // by individual targets, so we just use the known minimum size here. 9224 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9225 i < CLI.NumFixedArgs, i, 9226 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9227 if (NumParts > 1 && j == 0) 9228 MyFlags.Flags.setSplit(); 9229 else if (j != 0) { 9230 MyFlags.Flags.setOrigAlign(Align(1)); 9231 if (j == NumParts - 1) 9232 MyFlags.Flags.setSplitEnd(); 9233 } 9234 9235 CLI.Outs.push_back(MyFlags); 9236 CLI.OutVals.push_back(Parts[j]); 9237 } 9238 9239 if (NeedsRegBlock && Value == NumValues - 1) 9240 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9241 } 9242 } 9243 9244 SmallVector<SDValue, 4> InVals; 9245 CLI.Chain = LowerCall(CLI, InVals); 9246 9247 // Update CLI.InVals to use outside of this function. 9248 CLI.InVals = InVals; 9249 9250 // Verify that the target's LowerCall behaved as expected. 9251 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9252 "LowerCall didn't return a valid chain!"); 9253 assert((!CLI.IsTailCall || InVals.empty()) && 9254 "LowerCall emitted a return value for a tail call!"); 9255 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9256 "LowerCall didn't emit the correct number of values!"); 9257 9258 // For a tail call, the return value is merely live-out and there aren't 9259 // any nodes in the DAG representing it. Return a special value to 9260 // indicate that a tail call has been emitted and no more Instructions 9261 // should be processed in the current block. 9262 if (CLI.IsTailCall) { 9263 CLI.DAG.setRoot(CLI.Chain); 9264 return std::make_pair(SDValue(), SDValue()); 9265 } 9266 9267 #ifndef NDEBUG 9268 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9269 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9270 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9271 "LowerCall emitted a value with the wrong type!"); 9272 } 9273 #endif 9274 9275 SmallVector<SDValue, 4> ReturnValues; 9276 if (!CanLowerReturn) { 9277 // The instruction result is the result of loading from the 9278 // hidden sret parameter. 9279 SmallVector<EVT, 1> PVTs; 9280 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9281 9282 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9283 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9284 EVT PtrVT = PVTs[0]; 9285 9286 unsigned NumValues = RetTys.size(); 9287 ReturnValues.resize(NumValues); 9288 SmallVector<SDValue, 4> Chains(NumValues); 9289 9290 // An aggregate return value cannot wrap around the address space, so 9291 // offsets to its parts don't wrap either. 9292 SDNodeFlags Flags; 9293 Flags.setNoUnsignedWrap(true); 9294 9295 for (unsigned i = 0; i < NumValues; ++i) { 9296 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9297 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9298 PtrVT), Flags); 9299 SDValue L = CLI.DAG.getLoad( 9300 RetTys[i], CLI.DL, CLI.Chain, Add, 9301 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9302 DemoteStackIdx, Offsets[i]), 9303 /* Alignment = */ 1); 9304 ReturnValues[i] = L; 9305 Chains[i] = L.getValue(1); 9306 } 9307 9308 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9309 } else { 9310 // Collect the legal value parts into potentially illegal values 9311 // that correspond to the original function's return values. 9312 Optional<ISD::NodeType> AssertOp; 9313 if (CLI.RetSExt) 9314 AssertOp = ISD::AssertSext; 9315 else if (CLI.RetZExt) 9316 AssertOp = ISD::AssertZext; 9317 unsigned CurReg = 0; 9318 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9319 EVT VT = RetTys[I]; 9320 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9321 CLI.CallConv, VT); 9322 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9323 CLI.CallConv, VT); 9324 9325 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9326 NumRegs, RegisterVT, VT, nullptr, 9327 CLI.CallConv, AssertOp)); 9328 CurReg += NumRegs; 9329 } 9330 9331 // For a function returning void, there is no return value. We can't create 9332 // such a node, so we just return a null return value in that case. In 9333 // that case, nothing will actually look at the value. 9334 if (ReturnValues.empty()) 9335 return std::make_pair(SDValue(), CLI.Chain); 9336 } 9337 9338 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9339 CLI.DAG.getVTList(RetTys), ReturnValues); 9340 return std::make_pair(Res, CLI.Chain); 9341 } 9342 9343 void TargetLowering::LowerOperationWrapper(SDNode *N, 9344 SmallVectorImpl<SDValue> &Results, 9345 SelectionDAG &DAG) const { 9346 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9347 Results.push_back(Res); 9348 } 9349 9350 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9351 llvm_unreachable("LowerOperation not implemented for this target!"); 9352 } 9353 9354 void 9355 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9356 SDValue Op = getNonRegisterValue(V); 9357 assert((Op.getOpcode() != ISD::CopyFromReg || 9358 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9359 "Copy from a reg to the same reg!"); 9360 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9361 9362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9363 // If this is an InlineAsm we have to match the registers required, not the 9364 // notional registers required by the type. 9365 9366 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9367 None); // This is not an ABI copy. 9368 SDValue Chain = DAG.getEntryNode(); 9369 9370 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9371 FuncInfo.PreferredExtendType.end()) 9372 ? ISD::ANY_EXTEND 9373 : FuncInfo.PreferredExtendType[V]; 9374 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9375 PendingExports.push_back(Chain); 9376 } 9377 9378 #include "llvm/CodeGen/SelectionDAGISel.h" 9379 9380 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9381 /// entry block, return true. This includes arguments used by switches, since 9382 /// the switch may expand into multiple basic blocks. 9383 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9384 // With FastISel active, we may be splitting blocks, so force creation 9385 // of virtual registers for all non-dead arguments. 9386 if (FastISel) 9387 return A->use_empty(); 9388 9389 const BasicBlock &Entry = A->getParent()->front(); 9390 for (const User *U : A->users()) 9391 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9392 return false; // Use not in entry block. 9393 9394 return true; 9395 } 9396 9397 using ArgCopyElisionMapTy = 9398 DenseMap<const Argument *, 9399 std::pair<const AllocaInst *, const StoreInst *>>; 9400 9401 /// Scan the entry block of the function in FuncInfo for arguments that look 9402 /// like copies into a local alloca. Record any copied arguments in 9403 /// ArgCopyElisionCandidates. 9404 static void 9405 findArgumentCopyElisionCandidates(const DataLayout &DL, 9406 FunctionLoweringInfo *FuncInfo, 9407 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9408 // Record the state of every static alloca used in the entry block. Argument 9409 // allocas are all used in the entry block, so we need approximately as many 9410 // entries as we have arguments. 9411 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9412 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9413 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9414 StaticAllocas.reserve(NumArgs * 2); 9415 9416 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9417 if (!V) 9418 return nullptr; 9419 V = V->stripPointerCasts(); 9420 const auto *AI = dyn_cast<AllocaInst>(V); 9421 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9422 return nullptr; 9423 auto Iter = StaticAllocas.insert({AI, Unknown}); 9424 return &Iter.first->second; 9425 }; 9426 9427 // Look for stores of arguments to static allocas. Look through bitcasts and 9428 // GEPs to handle type coercions, as long as the alloca is fully initialized 9429 // by the store. Any non-store use of an alloca escapes it and any subsequent 9430 // unanalyzed store might write it. 9431 // FIXME: Handle structs initialized with multiple stores. 9432 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9433 // Look for stores, and handle non-store uses conservatively. 9434 const auto *SI = dyn_cast<StoreInst>(&I); 9435 if (!SI) { 9436 // We will look through cast uses, so ignore them completely. 9437 if (I.isCast()) 9438 continue; 9439 // Ignore debug info intrinsics, they don't escape or store to allocas. 9440 if (isa<DbgInfoIntrinsic>(I)) 9441 continue; 9442 // This is an unknown instruction. Assume it escapes or writes to all 9443 // static alloca operands. 9444 for (const Use &U : I.operands()) { 9445 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9446 *Info = StaticAllocaInfo::Clobbered; 9447 } 9448 continue; 9449 } 9450 9451 // If the stored value is a static alloca, mark it as escaped. 9452 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9453 *Info = StaticAllocaInfo::Clobbered; 9454 9455 // Check if the destination is a static alloca. 9456 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9457 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9458 if (!Info) 9459 continue; 9460 const AllocaInst *AI = cast<AllocaInst>(Dst); 9461 9462 // Skip allocas that have been initialized or clobbered. 9463 if (*Info != StaticAllocaInfo::Unknown) 9464 continue; 9465 9466 // Check if the stored value is an argument, and that this store fully 9467 // initializes the alloca. Don't elide copies from the same argument twice. 9468 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9469 const auto *Arg = dyn_cast<Argument>(Val); 9470 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9471 Arg->getType()->isEmptyTy() || 9472 DL.getTypeStoreSize(Arg->getType()) != 9473 DL.getTypeAllocSize(AI->getAllocatedType()) || 9474 ArgCopyElisionCandidates.count(Arg)) { 9475 *Info = StaticAllocaInfo::Clobbered; 9476 continue; 9477 } 9478 9479 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9480 << '\n'); 9481 9482 // Mark this alloca and store for argument copy elision. 9483 *Info = StaticAllocaInfo::Elidable; 9484 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9485 9486 // Stop scanning if we've seen all arguments. This will happen early in -O0 9487 // builds, which is useful, because -O0 builds have large entry blocks and 9488 // many allocas. 9489 if (ArgCopyElisionCandidates.size() == NumArgs) 9490 break; 9491 } 9492 } 9493 9494 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9495 /// ArgVal is a load from a suitable fixed stack object. 9496 static void tryToElideArgumentCopy( 9497 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9498 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9499 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9500 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9501 SDValue ArgVal, bool &ArgHasUses) { 9502 // Check if this is a load from a fixed stack object. 9503 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9504 if (!LNode) 9505 return; 9506 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9507 if (!FINode) 9508 return; 9509 9510 // Check that the fixed stack object is the right size and alignment. 9511 // Look at the alignment that the user wrote on the alloca instead of looking 9512 // at the stack object. 9513 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9514 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9515 const AllocaInst *AI = ArgCopyIter->second.first; 9516 int FixedIndex = FINode->getIndex(); 9517 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9518 int OldIndex = AllocaIndex; 9519 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9520 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9521 LLVM_DEBUG( 9522 dbgs() << " argument copy elision failed due to bad fixed stack " 9523 "object size\n"); 9524 return; 9525 } 9526 Align RequiredAlignment = AI->getAlign().getValueOr( 9527 FuncInfo.MF->getDataLayout().getABITypeAlign(AI->getAllocatedType())); 9528 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9529 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9530 "greater than stack argument alignment (" 9531 << DebugStr(RequiredAlignment) << " vs " 9532 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9533 return; 9534 } 9535 9536 // Perform the elision. Delete the old stack object and replace its only use 9537 // in the variable info map. Mark the stack object as mutable. 9538 LLVM_DEBUG({ 9539 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9540 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9541 << '\n'; 9542 }); 9543 MFI.RemoveStackObject(OldIndex); 9544 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9545 AllocaIndex = FixedIndex; 9546 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9547 Chains.push_back(ArgVal.getValue(1)); 9548 9549 // Avoid emitting code for the store implementing the copy. 9550 const StoreInst *SI = ArgCopyIter->second.second; 9551 ElidedArgCopyInstrs.insert(SI); 9552 9553 // Check for uses of the argument again so that we can avoid exporting ArgVal 9554 // if it is't used by anything other than the store. 9555 for (const Value *U : Arg.users()) { 9556 if (U != SI) { 9557 ArgHasUses = true; 9558 break; 9559 } 9560 } 9561 } 9562 9563 void SelectionDAGISel::LowerArguments(const Function &F) { 9564 SelectionDAG &DAG = SDB->DAG; 9565 SDLoc dl = SDB->getCurSDLoc(); 9566 const DataLayout &DL = DAG.getDataLayout(); 9567 SmallVector<ISD::InputArg, 16> Ins; 9568 9569 if (!FuncInfo->CanLowerReturn) { 9570 // Put in an sret pointer parameter before all the other parameters. 9571 SmallVector<EVT, 1> ValueVTs; 9572 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9573 F.getReturnType()->getPointerTo( 9574 DAG.getDataLayout().getAllocaAddrSpace()), 9575 ValueVTs); 9576 9577 // NOTE: Assuming that a pointer will never break down to more than one VT 9578 // or one register. 9579 ISD::ArgFlagsTy Flags; 9580 Flags.setSRet(); 9581 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9582 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9583 ISD::InputArg::NoArgIndex, 0); 9584 Ins.push_back(RetArg); 9585 } 9586 9587 // Look for stores of arguments to static allocas. Mark such arguments with a 9588 // flag to ask the target to give us the memory location of that argument if 9589 // available. 9590 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9591 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9592 ArgCopyElisionCandidates); 9593 9594 // Set up the incoming argument description vector. 9595 for (const Argument &Arg : F.args()) { 9596 unsigned ArgNo = Arg.getArgNo(); 9597 SmallVector<EVT, 4> ValueVTs; 9598 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9599 bool isArgValueUsed = !Arg.use_empty(); 9600 unsigned PartBase = 0; 9601 Type *FinalType = Arg.getType(); 9602 if (Arg.hasAttribute(Attribute::ByVal)) 9603 FinalType = Arg.getParamByValType(); 9604 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9605 FinalType, F.getCallingConv(), F.isVarArg()); 9606 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9607 Value != NumValues; ++Value) { 9608 EVT VT = ValueVTs[Value]; 9609 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9610 ISD::ArgFlagsTy Flags; 9611 9612 // Certain targets (such as MIPS), may have a different ABI alignment 9613 // for a type depending on the context. Give the target a chance to 9614 // specify the alignment it wants. 9615 const Align OriginalAlignment( 9616 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9617 9618 if (Arg.getType()->isPointerTy()) { 9619 Flags.setPointer(); 9620 Flags.setPointerAddrSpace( 9621 cast<PointerType>(Arg.getType())->getAddressSpace()); 9622 } 9623 if (Arg.hasAttribute(Attribute::ZExt)) 9624 Flags.setZExt(); 9625 if (Arg.hasAttribute(Attribute::SExt)) 9626 Flags.setSExt(); 9627 if (Arg.hasAttribute(Attribute::InReg)) { 9628 // If we are using vectorcall calling convention, a structure that is 9629 // passed InReg - is surely an HVA 9630 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9631 isa<StructType>(Arg.getType())) { 9632 // The first value of a structure is marked 9633 if (0 == Value) 9634 Flags.setHvaStart(); 9635 Flags.setHva(); 9636 } 9637 // Set InReg Flag 9638 Flags.setInReg(); 9639 } 9640 if (Arg.hasAttribute(Attribute::StructRet)) 9641 Flags.setSRet(); 9642 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9643 Flags.setSwiftSelf(); 9644 if (Arg.hasAttribute(Attribute::SwiftError)) 9645 Flags.setSwiftError(); 9646 if (Arg.hasAttribute(Attribute::ByVal)) 9647 Flags.setByVal(); 9648 if (Arg.hasAttribute(Attribute::InAlloca)) { 9649 Flags.setInAlloca(); 9650 // Set the byval flag for CCAssignFn callbacks that don't know about 9651 // inalloca. This way we can know how many bytes we should've allocated 9652 // and how many bytes a callee cleanup function will pop. If we port 9653 // inalloca to more targets, we'll have to add custom inalloca handling 9654 // in the various CC lowering callbacks. 9655 Flags.setByVal(); 9656 } 9657 if (F.getCallingConv() == CallingConv::X86_INTR) { 9658 // IA Interrupt passes frame (1st parameter) by value in the stack. 9659 if (ArgNo == 0) 9660 Flags.setByVal(); 9661 } 9662 if (Flags.isByVal() || Flags.isInAlloca()) { 9663 Type *ElementTy = Arg.getParamByValType(); 9664 9665 // For ByVal, size and alignment should be passed from FE. BE will 9666 // guess if this info is not there but there are cases it cannot get 9667 // right. 9668 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9669 Flags.setByValSize(FrameSize); 9670 9671 unsigned FrameAlign; 9672 if (Arg.getParamAlignment()) 9673 FrameAlign = Arg.getParamAlignment(); 9674 else 9675 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9676 Flags.setByValAlign(Align(FrameAlign)); 9677 } 9678 if (Arg.hasAttribute(Attribute::Nest)) 9679 Flags.setNest(); 9680 if (NeedsRegBlock) 9681 Flags.setInConsecutiveRegs(); 9682 Flags.setOrigAlign(OriginalAlignment); 9683 if (ArgCopyElisionCandidates.count(&Arg)) 9684 Flags.setCopyElisionCandidate(); 9685 if (Arg.hasAttribute(Attribute::Returned)) 9686 Flags.setReturned(); 9687 9688 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9689 *CurDAG->getContext(), F.getCallingConv(), VT); 9690 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9691 *CurDAG->getContext(), F.getCallingConv(), VT); 9692 for (unsigned i = 0; i != NumRegs; ++i) { 9693 // For scalable vectors, use the minimum size; individual targets 9694 // are responsible for handling scalable vector arguments and 9695 // return values. 9696 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9697 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9698 if (NumRegs > 1 && i == 0) 9699 MyFlags.Flags.setSplit(); 9700 // if it isn't first piece, alignment must be 1 9701 else if (i > 0) { 9702 MyFlags.Flags.setOrigAlign(Align(1)); 9703 if (i == NumRegs - 1) 9704 MyFlags.Flags.setSplitEnd(); 9705 } 9706 Ins.push_back(MyFlags); 9707 } 9708 if (NeedsRegBlock && Value == NumValues - 1) 9709 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9710 PartBase += VT.getStoreSize().getKnownMinSize(); 9711 } 9712 } 9713 9714 // Call the target to set up the argument values. 9715 SmallVector<SDValue, 8> InVals; 9716 SDValue NewRoot = TLI->LowerFormalArguments( 9717 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9718 9719 // Verify that the target's LowerFormalArguments behaved as expected. 9720 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9721 "LowerFormalArguments didn't return a valid chain!"); 9722 assert(InVals.size() == Ins.size() && 9723 "LowerFormalArguments didn't emit the correct number of values!"); 9724 LLVM_DEBUG({ 9725 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9726 assert(InVals[i].getNode() && 9727 "LowerFormalArguments emitted a null value!"); 9728 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9729 "LowerFormalArguments emitted a value with the wrong type!"); 9730 } 9731 }); 9732 9733 // Update the DAG with the new chain value resulting from argument lowering. 9734 DAG.setRoot(NewRoot); 9735 9736 // Set up the argument values. 9737 unsigned i = 0; 9738 if (!FuncInfo->CanLowerReturn) { 9739 // Create a virtual register for the sret pointer, and put in a copy 9740 // from the sret argument into it. 9741 SmallVector<EVT, 1> ValueVTs; 9742 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9743 F.getReturnType()->getPointerTo( 9744 DAG.getDataLayout().getAllocaAddrSpace()), 9745 ValueVTs); 9746 MVT VT = ValueVTs[0].getSimpleVT(); 9747 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9748 Optional<ISD::NodeType> AssertOp = None; 9749 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9750 nullptr, F.getCallingConv(), AssertOp); 9751 9752 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9753 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9754 Register SRetReg = 9755 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9756 FuncInfo->DemoteRegister = SRetReg; 9757 NewRoot = 9758 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9759 DAG.setRoot(NewRoot); 9760 9761 // i indexes lowered arguments. Bump it past the hidden sret argument. 9762 ++i; 9763 } 9764 9765 SmallVector<SDValue, 4> Chains; 9766 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9767 for (const Argument &Arg : F.args()) { 9768 SmallVector<SDValue, 4> ArgValues; 9769 SmallVector<EVT, 4> ValueVTs; 9770 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9771 unsigned NumValues = ValueVTs.size(); 9772 if (NumValues == 0) 9773 continue; 9774 9775 bool ArgHasUses = !Arg.use_empty(); 9776 9777 // Elide the copying store if the target loaded this argument from a 9778 // suitable fixed stack object. 9779 if (Ins[i].Flags.isCopyElisionCandidate()) { 9780 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9781 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9782 InVals[i], ArgHasUses); 9783 } 9784 9785 // If this argument is unused then remember its value. It is used to generate 9786 // debugging information. 9787 bool isSwiftErrorArg = 9788 TLI->supportSwiftError() && 9789 Arg.hasAttribute(Attribute::SwiftError); 9790 if (!ArgHasUses && !isSwiftErrorArg) { 9791 SDB->setUnusedArgValue(&Arg, InVals[i]); 9792 9793 // Also remember any frame index for use in FastISel. 9794 if (FrameIndexSDNode *FI = 9795 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9796 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9797 } 9798 9799 for (unsigned Val = 0; Val != NumValues; ++Val) { 9800 EVT VT = ValueVTs[Val]; 9801 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9802 F.getCallingConv(), VT); 9803 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9804 *CurDAG->getContext(), F.getCallingConv(), VT); 9805 9806 // Even an apparent 'unused' swifterror argument needs to be returned. So 9807 // we do generate a copy for it that can be used on return from the 9808 // function. 9809 if (ArgHasUses || isSwiftErrorArg) { 9810 Optional<ISD::NodeType> AssertOp; 9811 if (Arg.hasAttribute(Attribute::SExt)) 9812 AssertOp = ISD::AssertSext; 9813 else if (Arg.hasAttribute(Attribute::ZExt)) 9814 AssertOp = ISD::AssertZext; 9815 9816 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9817 PartVT, VT, nullptr, 9818 F.getCallingConv(), AssertOp)); 9819 } 9820 9821 i += NumParts; 9822 } 9823 9824 // We don't need to do anything else for unused arguments. 9825 if (ArgValues.empty()) 9826 continue; 9827 9828 // Note down frame index. 9829 if (FrameIndexSDNode *FI = 9830 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9831 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9832 9833 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9834 SDB->getCurSDLoc()); 9835 9836 SDB->setValue(&Arg, Res); 9837 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9838 // We want to associate the argument with the frame index, among 9839 // involved operands, that correspond to the lowest address. The 9840 // getCopyFromParts function, called earlier, is swapping the order of 9841 // the operands to BUILD_PAIR depending on endianness. The result of 9842 // that swapping is that the least significant bits of the argument will 9843 // be in the first operand of the BUILD_PAIR node, and the most 9844 // significant bits will be in the second operand. 9845 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9846 if (LoadSDNode *LNode = 9847 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9848 if (FrameIndexSDNode *FI = 9849 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9850 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9851 } 9852 9853 // Analyses past this point are naive and don't expect an assertion. 9854 if (Res.getOpcode() == ISD::AssertZext) 9855 Res = Res.getOperand(0); 9856 9857 // Update the SwiftErrorVRegDefMap. 9858 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9859 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9860 if (Register::isVirtualRegister(Reg)) 9861 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9862 Reg); 9863 } 9864 9865 // If this argument is live outside of the entry block, insert a copy from 9866 // wherever we got it to the vreg that other BB's will reference it as. 9867 if (Res.getOpcode() == ISD::CopyFromReg) { 9868 // If we can, though, try to skip creating an unnecessary vreg. 9869 // FIXME: This isn't very clean... it would be nice to make this more 9870 // general. 9871 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9872 if (Register::isVirtualRegister(Reg)) { 9873 FuncInfo->ValueMap[&Arg] = Reg; 9874 continue; 9875 } 9876 } 9877 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9878 FuncInfo->InitializeRegForValue(&Arg); 9879 SDB->CopyToExportRegsIfNeeded(&Arg); 9880 } 9881 } 9882 9883 if (!Chains.empty()) { 9884 Chains.push_back(NewRoot); 9885 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9886 } 9887 9888 DAG.setRoot(NewRoot); 9889 9890 assert(i == InVals.size() && "Argument register count mismatch!"); 9891 9892 // If any argument copy elisions occurred and we have debug info, update the 9893 // stale frame indices used in the dbg.declare variable info table. 9894 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9895 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9896 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9897 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9898 if (I != ArgCopyElisionFrameIndexMap.end()) 9899 VI.Slot = I->second; 9900 } 9901 } 9902 9903 // Finally, if the target has anything special to do, allow it to do so. 9904 emitFunctionEntryCode(); 9905 } 9906 9907 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9908 /// ensure constants are generated when needed. Remember the virtual registers 9909 /// that need to be added to the Machine PHI nodes as input. We cannot just 9910 /// directly add them, because expansion might result in multiple MBB's for one 9911 /// BB. As such, the start of the BB might correspond to a different MBB than 9912 /// the end. 9913 void 9914 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9915 const Instruction *TI = LLVMBB->getTerminator(); 9916 9917 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9918 9919 // Check PHI nodes in successors that expect a value to be available from this 9920 // block. 9921 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9922 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9923 if (!isa<PHINode>(SuccBB->begin())) continue; 9924 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9925 9926 // If this terminator has multiple identical successors (common for 9927 // switches), only handle each succ once. 9928 if (!SuccsHandled.insert(SuccMBB).second) 9929 continue; 9930 9931 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9932 9933 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9934 // nodes and Machine PHI nodes, but the incoming operands have not been 9935 // emitted yet. 9936 for (const PHINode &PN : SuccBB->phis()) { 9937 // Ignore dead phi's. 9938 if (PN.use_empty()) 9939 continue; 9940 9941 // Skip empty types 9942 if (PN.getType()->isEmptyTy()) 9943 continue; 9944 9945 unsigned Reg; 9946 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9947 9948 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9949 unsigned &RegOut = ConstantsOut[C]; 9950 if (RegOut == 0) { 9951 RegOut = FuncInfo.CreateRegs(C); 9952 CopyValueToVirtualRegister(C, RegOut); 9953 } 9954 Reg = RegOut; 9955 } else { 9956 DenseMap<const Value *, Register>::iterator I = 9957 FuncInfo.ValueMap.find(PHIOp); 9958 if (I != FuncInfo.ValueMap.end()) 9959 Reg = I->second; 9960 else { 9961 assert(isa<AllocaInst>(PHIOp) && 9962 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9963 "Didn't codegen value into a register!??"); 9964 Reg = FuncInfo.CreateRegs(PHIOp); 9965 CopyValueToVirtualRegister(PHIOp, Reg); 9966 } 9967 } 9968 9969 // Remember that this register needs to added to the machine PHI node as 9970 // the input for this MBB. 9971 SmallVector<EVT, 4> ValueVTs; 9972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9973 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9974 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9975 EVT VT = ValueVTs[vti]; 9976 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9977 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9978 FuncInfo.PHINodesToUpdate.push_back( 9979 std::make_pair(&*MBBI++, Reg + i)); 9980 Reg += NumRegisters; 9981 } 9982 } 9983 } 9984 9985 ConstantsOut.clear(); 9986 } 9987 9988 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9989 /// is 0. 9990 MachineBasicBlock * 9991 SelectionDAGBuilder::StackProtectorDescriptor:: 9992 AddSuccessorMBB(const BasicBlock *BB, 9993 MachineBasicBlock *ParentMBB, 9994 bool IsLikely, 9995 MachineBasicBlock *SuccMBB) { 9996 // If SuccBB has not been created yet, create it. 9997 if (!SuccMBB) { 9998 MachineFunction *MF = ParentMBB->getParent(); 9999 MachineFunction::iterator BBI(ParentMBB); 10000 SuccMBB = MF->CreateMachineBasicBlock(BB); 10001 MF->insert(++BBI, SuccMBB); 10002 } 10003 // Add it as a successor of ParentMBB. 10004 ParentMBB->addSuccessor( 10005 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10006 return SuccMBB; 10007 } 10008 10009 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10010 MachineFunction::iterator I(MBB); 10011 if (++I == FuncInfo.MF->end()) 10012 return nullptr; 10013 return &*I; 10014 } 10015 10016 /// During lowering new call nodes can be created (such as memset, etc.). 10017 /// Those will become new roots of the current DAG, but complications arise 10018 /// when they are tail calls. In such cases, the call lowering will update 10019 /// the root, but the builder still needs to know that a tail call has been 10020 /// lowered in order to avoid generating an additional return. 10021 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10022 // If the node is null, we do have a tail call. 10023 if (MaybeTC.getNode() != nullptr) 10024 DAG.setRoot(MaybeTC); 10025 else 10026 HasTailCall = true; 10027 } 10028 10029 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10030 MachineBasicBlock *SwitchMBB, 10031 MachineBasicBlock *DefaultMBB) { 10032 MachineFunction *CurMF = FuncInfo.MF; 10033 MachineBasicBlock *NextMBB = nullptr; 10034 MachineFunction::iterator BBI(W.MBB); 10035 if (++BBI != FuncInfo.MF->end()) 10036 NextMBB = &*BBI; 10037 10038 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10039 10040 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10041 10042 if (Size == 2 && W.MBB == SwitchMBB) { 10043 // If any two of the cases has the same destination, and if one value 10044 // is the same as the other, but has one bit unset that the other has set, 10045 // use bit manipulation to do two compares at once. For example: 10046 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10047 // TODO: This could be extended to merge any 2 cases in switches with 3 10048 // cases. 10049 // TODO: Handle cases where W.CaseBB != SwitchBB. 10050 CaseCluster &Small = *W.FirstCluster; 10051 CaseCluster &Big = *W.LastCluster; 10052 10053 if (Small.Low == Small.High && Big.Low == Big.High && 10054 Small.MBB == Big.MBB) { 10055 const APInt &SmallValue = Small.Low->getValue(); 10056 const APInt &BigValue = Big.Low->getValue(); 10057 10058 // Check that there is only one bit different. 10059 APInt CommonBit = BigValue ^ SmallValue; 10060 if (CommonBit.isPowerOf2()) { 10061 SDValue CondLHS = getValue(Cond); 10062 EVT VT = CondLHS.getValueType(); 10063 SDLoc DL = getCurSDLoc(); 10064 10065 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10066 DAG.getConstant(CommonBit, DL, VT)); 10067 SDValue Cond = DAG.getSetCC( 10068 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10069 ISD::SETEQ); 10070 10071 // Update successor info. 10072 // Both Small and Big will jump to Small.BB, so we sum up the 10073 // probabilities. 10074 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10075 if (BPI) 10076 addSuccessorWithProb( 10077 SwitchMBB, DefaultMBB, 10078 // The default destination is the first successor in IR. 10079 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10080 else 10081 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10082 10083 // Insert the true branch. 10084 SDValue BrCond = 10085 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10086 DAG.getBasicBlock(Small.MBB)); 10087 // Insert the false branch. 10088 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10089 DAG.getBasicBlock(DefaultMBB)); 10090 10091 DAG.setRoot(BrCond); 10092 return; 10093 } 10094 } 10095 } 10096 10097 if (TM.getOptLevel() != CodeGenOpt::None) { 10098 // Here, we order cases by probability so the most likely case will be 10099 // checked first. However, two clusters can have the same probability in 10100 // which case their relative ordering is non-deterministic. So we use Low 10101 // as a tie-breaker as clusters are guaranteed to never overlap. 10102 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10103 [](const CaseCluster &a, const CaseCluster &b) { 10104 return a.Prob != b.Prob ? 10105 a.Prob > b.Prob : 10106 a.Low->getValue().slt(b.Low->getValue()); 10107 }); 10108 10109 // Rearrange the case blocks so that the last one falls through if possible 10110 // without changing the order of probabilities. 10111 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10112 --I; 10113 if (I->Prob > W.LastCluster->Prob) 10114 break; 10115 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10116 std::swap(*I, *W.LastCluster); 10117 break; 10118 } 10119 } 10120 } 10121 10122 // Compute total probability. 10123 BranchProbability DefaultProb = W.DefaultProb; 10124 BranchProbability UnhandledProbs = DefaultProb; 10125 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10126 UnhandledProbs += I->Prob; 10127 10128 MachineBasicBlock *CurMBB = W.MBB; 10129 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10130 bool FallthroughUnreachable = false; 10131 MachineBasicBlock *Fallthrough; 10132 if (I == W.LastCluster) { 10133 // For the last cluster, fall through to the default destination. 10134 Fallthrough = DefaultMBB; 10135 FallthroughUnreachable = isa<UnreachableInst>( 10136 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10137 } else { 10138 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10139 CurMF->insert(BBI, Fallthrough); 10140 // Put Cond in a virtual register to make it available from the new blocks. 10141 ExportFromCurrentBlock(Cond); 10142 } 10143 UnhandledProbs -= I->Prob; 10144 10145 switch (I->Kind) { 10146 case CC_JumpTable: { 10147 // FIXME: Optimize away range check based on pivot comparisons. 10148 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10149 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10150 10151 // The jump block hasn't been inserted yet; insert it here. 10152 MachineBasicBlock *JumpMBB = JT->MBB; 10153 CurMF->insert(BBI, JumpMBB); 10154 10155 auto JumpProb = I->Prob; 10156 auto FallthroughProb = UnhandledProbs; 10157 10158 // If the default statement is a target of the jump table, we evenly 10159 // distribute the default probability to successors of CurMBB. Also 10160 // update the probability on the edge from JumpMBB to Fallthrough. 10161 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10162 SE = JumpMBB->succ_end(); 10163 SI != SE; ++SI) { 10164 if (*SI == DefaultMBB) { 10165 JumpProb += DefaultProb / 2; 10166 FallthroughProb -= DefaultProb / 2; 10167 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10168 JumpMBB->normalizeSuccProbs(); 10169 break; 10170 } 10171 } 10172 10173 if (FallthroughUnreachable) { 10174 // Skip the range check if the fallthrough block is unreachable. 10175 JTH->OmitRangeCheck = true; 10176 } 10177 10178 if (!JTH->OmitRangeCheck) 10179 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10180 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10181 CurMBB->normalizeSuccProbs(); 10182 10183 // The jump table header will be inserted in our current block, do the 10184 // range check, and fall through to our fallthrough block. 10185 JTH->HeaderBB = CurMBB; 10186 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10187 10188 // If we're in the right place, emit the jump table header right now. 10189 if (CurMBB == SwitchMBB) { 10190 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10191 JTH->Emitted = true; 10192 } 10193 break; 10194 } 10195 case CC_BitTests: { 10196 // FIXME: Optimize away range check based on pivot comparisons. 10197 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10198 10199 // The bit test blocks haven't been inserted yet; insert them here. 10200 for (BitTestCase &BTC : BTB->Cases) 10201 CurMF->insert(BBI, BTC.ThisBB); 10202 10203 // Fill in fields of the BitTestBlock. 10204 BTB->Parent = CurMBB; 10205 BTB->Default = Fallthrough; 10206 10207 BTB->DefaultProb = UnhandledProbs; 10208 // If the cases in bit test don't form a contiguous range, we evenly 10209 // distribute the probability on the edge to Fallthrough to two 10210 // successors of CurMBB. 10211 if (!BTB->ContiguousRange) { 10212 BTB->Prob += DefaultProb / 2; 10213 BTB->DefaultProb -= DefaultProb / 2; 10214 } 10215 10216 if (FallthroughUnreachable) { 10217 // Skip the range check if the fallthrough block is unreachable. 10218 BTB->OmitRangeCheck = true; 10219 } 10220 10221 // If we're in the right place, emit the bit test header right now. 10222 if (CurMBB == SwitchMBB) { 10223 visitBitTestHeader(*BTB, SwitchMBB); 10224 BTB->Emitted = true; 10225 } 10226 break; 10227 } 10228 case CC_Range: { 10229 const Value *RHS, *LHS, *MHS; 10230 ISD::CondCode CC; 10231 if (I->Low == I->High) { 10232 // Check Cond == I->Low. 10233 CC = ISD::SETEQ; 10234 LHS = Cond; 10235 RHS=I->Low; 10236 MHS = nullptr; 10237 } else { 10238 // Check I->Low <= Cond <= I->High. 10239 CC = ISD::SETLE; 10240 LHS = I->Low; 10241 MHS = Cond; 10242 RHS = I->High; 10243 } 10244 10245 // If Fallthrough is unreachable, fold away the comparison. 10246 if (FallthroughUnreachable) 10247 CC = ISD::SETTRUE; 10248 10249 // The false probability is the sum of all unhandled cases. 10250 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10251 getCurSDLoc(), I->Prob, UnhandledProbs); 10252 10253 if (CurMBB == SwitchMBB) 10254 visitSwitchCase(CB, SwitchMBB); 10255 else 10256 SL->SwitchCases.push_back(CB); 10257 10258 break; 10259 } 10260 } 10261 CurMBB = Fallthrough; 10262 } 10263 } 10264 10265 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10266 CaseClusterIt First, 10267 CaseClusterIt Last) { 10268 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10269 if (X.Prob != CC.Prob) 10270 return X.Prob > CC.Prob; 10271 10272 // Ties are broken by comparing the case value. 10273 return X.Low->getValue().slt(CC.Low->getValue()); 10274 }); 10275 } 10276 10277 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10278 const SwitchWorkListItem &W, 10279 Value *Cond, 10280 MachineBasicBlock *SwitchMBB) { 10281 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10282 "Clusters not sorted?"); 10283 10284 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10285 10286 // Balance the tree based on branch probabilities to create a near-optimal (in 10287 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10288 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10289 CaseClusterIt LastLeft = W.FirstCluster; 10290 CaseClusterIt FirstRight = W.LastCluster; 10291 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10292 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10293 10294 // Move LastLeft and FirstRight towards each other from opposite directions to 10295 // find a partitioning of the clusters which balances the probability on both 10296 // sides. If LeftProb and RightProb are equal, alternate which side is 10297 // taken to ensure 0-probability nodes are distributed evenly. 10298 unsigned I = 0; 10299 while (LastLeft + 1 < FirstRight) { 10300 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10301 LeftProb += (++LastLeft)->Prob; 10302 else 10303 RightProb += (--FirstRight)->Prob; 10304 I++; 10305 } 10306 10307 while (true) { 10308 // Our binary search tree differs from a typical BST in that ours can have up 10309 // to three values in each leaf. The pivot selection above doesn't take that 10310 // into account, which means the tree might require more nodes and be less 10311 // efficient. We compensate for this here. 10312 10313 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10314 unsigned NumRight = W.LastCluster - FirstRight + 1; 10315 10316 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10317 // If one side has less than 3 clusters, and the other has more than 3, 10318 // consider taking a cluster from the other side. 10319 10320 if (NumLeft < NumRight) { 10321 // Consider moving the first cluster on the right to the left side. 10322 CaseCluster &CC = *FirstRight; 10323 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10324 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10325 if (LeftSideRank <= RightSideRank) { 10326 // Moving the cluster to the left does not demote it. 10327 ++LastLeft; 10328 ++FirstRight; 10329 continue; 10330 } 10331 } else { 10332 assert(NumRight < NumLeft); 10333 // Consider moving the last element on the left to the right side. 10334 CaseCluster &CC = *LastLeft; 10335 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10336 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10337 if (RightSideRank <= LeftSideRank) { 10338 // Moving the cluster to the right does not demot it. 10339 --LastLeft; 10340 --FirstRight; 10341 continue; 10342 } 10343 } 10344 } 10345 break; 10346 } 10347 10348 assert(LastLeft + 1 == FirstRight); 10349 assert(LastLeft >= W.FirstCluster); 10350 assert(FirstRight <= W.LastCluster); 10351 10352 // Use the first element on the right as pivot since we will make less-than 10353 // comparisons against it. 10354 CaseClusterIt PivotCluster = FirstRight; 10355 assert(PivotCluster > W.FirstCluster); 10356 assert(PivotCluster <= W.LastCluster); 10357 10358 CaseClusterIt FirstLeft = W.FirstCluster; 10359 CaseClusterIt LastRight = W.LastCluster; 10360 10361 const ConstantInt *Pivot = PivotCluster->Low; 10362 10363 // New blocks will be inserted immediately after the current one. 10364 MachineFunction::iterator BBI(W.MBB); 10365 ++BBI; 10366 10367 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10368 // we can branch to its destination directly if it's squeezed exactly in 10369 // between the known lower bound and Pivot - 1. 10370 MachineBasicBlock *LeftMBB; 10371 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10372 FirstLeft->Low == W.GE && 10373 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10374 LeftMBB = FirstLeft->MBB; 10375 } else { 10376 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10377 FuncInfo.MF->insert(BBI, LeftMBB); 10378 WorkList.push_back( 10379 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10380 // Put Cond in a virtual register to make it available from the new blocks. 10381 ExportFromCurrentBlock(Cond); 10382 } 10383 10384 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10385 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10386 // directly if RHS.High equals the current upper bound. 10387 MachineBasicBlock *RightMBB; 10388 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10389 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10390 RightMBB = FirstRight->MBB; 10391 } else { 10392 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10393 FuncInfo.MF->insert(BBI, RightMBB); 10394 WorkList.push_back( 10395 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10396 // Put Cond in a virtual register to make it available from the new blocks. 10397 ExportFromCurrentBlock(Cond); 10398 } 10399 10400 // Create the CaseBlock record that will be used to lower the branch. 10401 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10402 getCurSDLoc(), LeftProb, RightProb); 10403 10404 if (W.MBB == SwitchMBB) 10405 visitSwitchCase(CB, SwitchMBB); 10406 else 10407 SL->SwitchCases.push_back(CB); 10408 } 10409 10410 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10411 // from the swith statement. 10412 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10413 BranchProbability PeeledCaseProb) { 10414 if (PeeledCaseProb == BranchProbability::getOne()) 10415 return BranchProbability::getZero(); 10416 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10417 10418 uint32_t Numerator = CaseProb.getNumerator(); 10419 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10420 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10421 } 10422 10423 // Try to peel the top probability case if it exceeds the threshold. 10424 // Return current MachineBasicBlock for the switch statement if the peeling 10425 // does not occur. 10426 // If the peeling is performed, return the newly created MachineBasicBlock 10427 // for the peeled switch statement. Also update Clusters to remove the peeled 10428 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10429 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10430 const SwitchInst &SI, CaseClusterVector &Clusters, 10431 BranchProbability &PeeledCaseProb) { 10432 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10433 // Don't perform if there is only one cluster or optimizing for size. 10434 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10435 TM.getOptLevel() == CodeGenOpt::None || 10436 SwitchMBB->getParent()->getFunction().hasMinSize()) 10437 return SwitchMBB; 10438 10439 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10440 unsigned PeeledCaseIndex = 0; 10441 bool SwitchPeeled = false; 10442 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10443 CaseCluster &CC = Clusters[Index]; 10444 if (CC.Prob < TopCaseProb) 10445 continue; 10446 TopCaseProb = CC.Prob; 10447 PeeledCaseIndex = Index; 10448 SwitchPeeled = true; 10449 } 10450 if (!SwitchPeeled) 10451 return SwitchMBB; 10452 10453 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10454 << TopCaseProb << "\n"); 10455 10456 // Record the MBB for the peeled switch statement. 10457 MachineFunction::iterator BBI(SwitchMBB); 10458 ++BBI; 10459 MachineBasicBlock *PeeledSwitchMBB = 10460 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10461 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10462 10463 ExportFromCurrentBlock(SI.getCondition()); 10464 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10465 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10466 nullptr, nullptr, TopCaseProb.getCompl()}; 10467 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10468 10469 Clusters.erase(PeeledCaseIt); 10470 for (CaseCluster &CC : Clusters) { 10471 LLVM_DEBUG( 10472 dbgs() << "Scale the probablity for one cluster, before scaling: " 10473 << CC.Prob << "\n"); 10474 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10475 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10476 } 10477 PeeledCaseProb = TopCaseProb; 10478 return PeeledSwitchMBB; 10479 } 10480 10481 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10482 // Extract cases from the switch. 10483 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10484 CaseClusterVector Clusters; 10485 Clusters.reserve(SI.getNumCases()); 10486 for (auto I : SI.cases()) { 10487 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10488 const ConstantInt *CaseVal = I.getCaseValue(); 10489 BranchProbability Prob = 10490 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10491 : BranchProbability(1, SI.getNumCases() + 1); 10492 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10493 } 10494 10495 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10496 10497 // Cluster adjacent cases with the same destination. We do this at all 10498 // optimization levels because it's cheap to do and will make codegen faster 10499 // if there are many clusters. 10500 sortAndRangeify(Clusters); 10501 10502 // The branch probablity of the peeled case. 10503 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10504 MachineBasicBlock *PeeledSwitchMBB = 10505 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10506 10507 // If there is only the default destination, jump there directly. 10508 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10509 if (Clusters.empty()) { 10510 assert(PeeledSwitchMBB == SwitchMBB); 10511 SwitchMBB->addSuccessor(DefaultMBB); 10512 if (DefaultMBB != NextBlock(SwitchMBB)) { 10513 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10514 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10515 } 10516 return; 10517 } 10518 10519 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10520 SL->findBitTestClusters(Clusters, &SI); 10521 10522 LLVM_DEBUG({ 10523 dbgs() << "Case clusters: "; 10524 for (const CaseCluster &C : Clusters) { 10525 if (C.Kind == CC_JumpTable) 10526 dbgs() << "JT:"; 10527 if (C.Kind == CC_BitTests) 10528 dbgs() << "BT:"; 10529 10530 C.Low->getValue().print(dbgs(), true); 10531 if (C.Low != C.High) { 10532 dbgs() << '-'; 10533 C.High->getValue().print(dbgs(), true); 10534 } 10535 dbgs() << ' '; 10536 } 10537 dbgs() << '\n'; 10538 }); 10539 10540 assert(!Clusters.empty()); 10541 SwitchWorkList WorkList; 10542 CaseClusterIt First = Clusters.begin(); 10543 CaseClusterIt Last = Clusters.end() - 1; 10544 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10545 // Scale the branchprobability for DefaultMBB if the peel occurs and 10546 // DefaultMBB is not replaced. 10547 if (PeeledCaseProb != BranchProbability::getZero() && 10548 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10549 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10550 WorkList.push_back( 10551 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10552 10553 while (!WorkList.empty()) { 10554 SwitchWorkListItem W = WorkList.back(); 10555 WorkList.pop_back(); 10556 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10557 10558 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10559 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10560 // For optimized builds, lower large range as a balanced binary tree. 10561 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10562 continue; 10563 } 10564 10565 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10566 } 10567 } 10568 10569 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10570 SmallVector<EVT, 4> ValueVTs; 10571 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10572 ValueVTs); 10573 unsigned NumValues = ValueVTs.size(); 10574 if (NumValues == 0) return; 10575 10576 SmallVector<SDValue, 4> Values(NumValues); 10577 SDValue Op = getValue(I.getOperand(0)); 10578 10579 for (unsigned i = 0; i != NumValues; ++i) 10580 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10581 SDValue(Op.getNode(), Op.getResNo() + i)); 10582 10583 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10584 DAG.getVTList(ValueVTs), Values)); 10585 } 10586