1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 using namespace PatternMatch; 125 126 #define DEBUG_TYPE "isel" 127 128 /// LimitFloatPrecision - Generate low-precision inline sequences for 129 /// some float libcalls (6, 8 or 12 bits). 130 static unsigned LimitFloatPrecision; 131 132 static cl::opt<unsigned, true> 133 LimitFPPrecision("limit-float-precision", 134 cl::desc("Generate low-precision inline sequences " 135 "for some float libcalls"), 136 cl::location(LimitFloatPrecision), cl::Hidden, 137 cl::init(0)); 138 139 static cl::opt<unsigned> SwitchPeelThreshold( 140 "switch-peel-threshold", cl::Hidden, cl::init(66), 141 cl::desc("Set the case probability threshold for peeling the case from a " 142 "switch statement. A value greater than 100 will void this " 143 "optimization")); 144 145 // Limit the width of DAG chains. This is important in general to prevent 146 // DAG-based analysis from blowing up. For example, alias analysis and 147 // load clustering may not complete in reasonable time. It is difficult to 148 // recognize and avoid this situation within each individual analysis, and 149 // future analyses are likely to have the same behavior. Limiting DAG width is 150 // the safe approach and will be especially important with global DAGs. 151 // 152 // MaxParallelChains default is arbitrarily high to avoid affecting 153 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 154 // sequence over this should have been converted to llvm.memcpy by the 155 // frontend. It is easy to induce this behavior with .ll code such as: 156 // %buffer = alloca [4096 x i8] 157 // %data = load [4096 x i8]* %argPtr 158 // store [4096 x i8] %data, [4096 x i8]* %buffer 159 static const unsigned MaxParallelChains = 64; 160 161 // Return the calling convention if the Value passed requires ABI mangling as it 162 // is a parameter to a function or a return value from a function which is not 163 // an intrinsic. 164 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 165 if (auto *R = dyn_cast<ReturnInst>(V)) 166 return R->getParent()->getParent()->getCallingConv(); 167 168 if (auto *CI = dyn_cast<CallInst>(V)) { 169 const bool IsInlineAsm = CI->isInlineAsm(); 170 const bool IsIndirectFunctionCall = 171 !IsInlineAsm && !CI->getCalledFunction(); 172 173 // It is possible that the call instruction is an inline asm statement or an 174 // indirect function call in which case the return value of 175 // getCalledFunction() would be nullptr. 176 const bool IsInstrinsicCall = 177 !IsInlineAsm && !IsIndirectFunctionCall && 178 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 179 180 if (!IsInlineAsm && !IsInstrinsicCall) 181 return CI->getCallingConv(); 182 } 183 184 return None; 185 } 186 187 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 188 const SDValue *Parts, unsigned NumParts, 189 MVT PartVT, EVT ValueVT, const Value *V, 190 Optional<CallingConv::ID> CC); 191 192 /// getCopyFromParts - Create a value that contains the specified legal parts 193 /// combined into the value they represent. If the parts combine to a type 194 /// larger than ValueVT then AssertOp can be used to specify whether the extra 195 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 196 /// (ISD::AssertSext). 197 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 198 const SDValue *Parts, unsigned NumParts, 199 MVT PartVT, EVT ValueVT, const Value *V, 200 Optional<CallingConv::ID> CC = None, 201 Optional<ISD::NodeType> AssertOp = None) { 202 if (ValueVT.isVector()) 203 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 204 CC); 205 206 assert(NumParts > 0 && "No parts to assemble!"); 207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 208 SDValue Val = Parts[0]; 209 210 if (NumParts > 1) { 211 // Assemble the value from multiple parts. 212 if (ValueVT.isInteger()) { 213 unsigned PartBits = PartVT.getSizeInBits(); 214 unsigned ValueBits = ValueVT.getSizeInBits(); 215 216 // Assemble the power of 2 part. 217 unsigned RoundParts = NumParts & (NumParts - 1) ? 218 1 << Log2_32(NumParts) : NumParts; 219 unsigned RoundBits = PartBits * RoundParts; 220 EVT RoundVT = RoundBits == ValueBits ? 221 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 222 SDValue Lo, Hi; 223 224 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 225 226 if (RoundParts > 2) { 227 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 228 PartVT, HalfVT, V); 229 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 230 RoundParts / 2, PartVT, HalfVT, V); 231 } else { 232 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 233 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 234 } 235 236 if (DAG.getDataLayout().isBigEndian()) 237 std::swap(Lo, Hi); 238 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 240 241 if (RoundParts < NumParts) { 242 // Assemble the trailing non-power-of-2 part. 243 unsigned OddParts = NumParts - RoundParts; 244 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 245 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 246 OddVT, V, CC); 247 248 // Combine the round and odd parts. 249 Lo = Val; 250 if (DAG.getDataLayout().isBigEndian()) 251 std::swap(Lo, Hi); 252 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 253 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 254 Hi = 255 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 256 DAG.getConstant(Lo.getValueSizeInBits(), DL, 257 TLI.getPointerTy(DAG.getDataLayout()))); 258 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 259 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 260 } 261 } else if (PartVT.isFloatingPoint()) { 262 // FP split into multiple FP parts (for ppcf128) 263 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 264 "Unexpected split"); 265 SDValue Lo, Hi; 266 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 267 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 268 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 269 std::swap(Lo, Hi); 270 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 271 } else { 272 // FP split into integer parts (soft fp) 273 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 274 !PartVT.isVector() && "Unexpected split"); 275 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 276 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 277 } 278 } 279 280 // There is now one part, held in Val. Correct it to match ValueVT. 281 // PartEVT is the type of the register class that holds the value. 282 // ValueVT is the type of the inline asm operation. 283 EVT PartEVT = Val.getValueType(); 284 285 if (PartEVT == ValueVT) 286 return Val; 287 288 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 289 ValueVT.bitsLT(PartEVT)) { 290 // For an FP value in an integer part, we need to truncate to the right 291 // width first. 292 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 293 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 294 } 295 296 // Handle types that have the same size. 297 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 298 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 299 300 // Handle types with different sizes. 301 if (PartEVT.isInteger() && ValueVT.isInteger()) { 302 if (ValueVT.bitsLT(PartEVT)) { 303 // For a truncate, see if we have any information to 304 // indicate whether the truncated bits will always be 305 // zero or sign-extension. 306 if (AssertOp.hasValue()) 307 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 308 DAG.getValueType(ValueVT)); 309 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 310 } 311 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 312 } 313 314 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 315 // FP_ROUND's are always exact here. 316 if (ValueVT.bitsLT(Val.getValueType())) 317 return DAG.getNode( 318 ISD::FP_ROUND, DL, ValueVT, Val, 319 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 320 321 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 322 } 323 324 llvm_unreachable("Unknown mismatch!"); 325 } 326 327 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 328 const Twine &ErrMsg) { 329 const Instruction *I = dyn_cast_or_null<Instruction>(V); 330 if (!V) 331 return Ctx.emitError(ErrMsg); 332 333 const char *AsmError = ", possible invalid constraint for vector type"; 334 if (const CallInst *CI = dyn_cast<CallInst>(I)) 335 if (isa<InlineAsm>(CI->getCalledValue())) 336 return Ctx.emitError(I, ErrMsg + AsmError); 337 338 return Ctx.emitError(I, ErrMsg); 339 } 340 341 /// getCopyFromPartsVector - Create a value that contains the specified legal 342 /// parts combined into the value they represent. If the parts combine to a 343 /// type larger than ValueVT then AssertOp can be used to specify whether the 344 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 345 /// ValueVT (ISD::AssertSext). 346 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 347 const SDValue *Parts, unsigned NumParts, 348 MVT PartVT, EVT ValueVT, const Value *V, 349 Optional<CallingConv::ID> CallConv) { 350 assert(ValueVT.isVector() && "Not a vector value"); 351 assert(NumParts > 0 && "No parts to assemble!"); 352 const bool IsABIRegCopy = CallConv.hasValue(); 353 354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 355 SDValue Val = Parts[0]; 356 357 // Handle a multi-element vector. 358 if (NumParts > 1) { 359 EVT IntermediateVT; 360 MVT RegisterVT; 361 unsigned NumIntermediates; 362 unsigned NumRegs; 363 364 if (IsABIRegCopy) { 365 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 366 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 367 NumIntermediates, RegisterVT); 368 } else { 369 NumRegs = 370 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 371 NumIntermediates, RegisterVT); 372 } 373 374 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 375 NumParts = NumRegs; // Silence a compiler warning. 376 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 377 assert(RegisterVT.getSizeInBits() == 378 Parts[0].getSimpleValueType().getSizeInBits() && 379 "Part type sizes don't match!"); 380 381 // Assemble the parts into intermediate operands. 382 SmallVector<SDValue, 8> Ops(NumIntermediates); 383 if (NumIntermediates == NumParts) { 384 // If the register was not expanded, truncate or copy the value, 385 // as appropriate. 386 for (unsigned i = 0; i != NumParts; ++i) 387 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 388 PartVT, IntermediateVT, V); 389 } else if (NumParts > 0) { 390 // If the intermediate type was expanded, build the intermediate 391 // operands from the parts. 392 assert(NumParts % NumIntermediates == 0 && 393 "Must expand into a divisible number of parts!"); 394 unsigned Factor = NumParts / NumIntermediates; 395 for (unsigned i = 0; i != NumIntermediates; ++i) 396 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 397 PartVT, IntermediateVT, V); 398 } 399 400 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 401 // intermediate operands. 402 EVT BuiltVectorTy = 403 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 404 (IntermediateVT.isVector() 405 ? IntermediateVT.getVectorNumElements() * NumParts 406 : NumIntermediates)); 407 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 408 : ISD::BUILD_VECTOR, 409 DL, BuiltVectorTy, Ops); 410 } 411 412 // There is now one part, held in Val. Correct it to match ValueVT. 413 EVT PartEVT = Val.getValueType(); 414 415 if (PartEVT == ValueVT) 416 return Val; 417 418 if (PartEVT.isVector()) { 419 // If the element type of the source/dest vectors are the same, but the 420 // parts vector has more elements than the value vector, then we have a 421 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 422 // elements we want. 423 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 424 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 425 "Cannot narrow, it would be a lossy transformation"); 426 return DAG.getNode( 427 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 428 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 429 } 430 431 // Vector/Vector bitcast. 432 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 433 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 434 435 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 436 "Cannot handle this kind of promotion"); 437 // Promoted vector extract 438 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 439 440 } 441 442 // Trivial bitcast if the types are the same size and the destination 443 // vector type is legal. 444 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 445 TLI.isTypeLegal(ValueVT)) 446 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 447 448 if (ValueVT.getVectorNumElements() != 1) { 449 // Certain ABIs require that vectors are passed as integers. For vectors 450 // are the same size, this is an obvious bitcast. 451 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 452 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 453 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 454 // Bitcast Val back the original type and extract the corresponding 455 // vector we want. 456 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 457 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 458 ValueVT.getVectorElementType(), Elts); 459 Val = DAG.getBitcast(WiderVecType, Val); 460 return DAG.getNode( 461 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 462 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 463 } 464 465 diagnosePossiblyInvalidConstraint( 466 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 467 return DAG.getUNDEF(ValueVT); 468 } 469 470 // Handle cases such as i8 -> <1 x i1> 471 EVT ValueSVT = ValueVT.getVectorElementType(); 472 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 473 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 474 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 475 476 return DAG.getBuildVector(ValueVT, DL, Val); 477 } 478 479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 480 SDValue Val, SDValue *Parts, unsigned NumParts, 481 MVT PartVT, const Value *V, 482 Optional<CallingConv::ID> CallConv); 483 484 /// getCopyToParts - Create a series of nodes that contain the specified value 485 /// split into legal parts. If the parts contain more bits than Val, then, for 486 /// integers, ExtendKind can be used to specify how to generate the extra bits. 487 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 488 SDValue *Parts, unsigned NumParts, MVT PartVT, 489 const Value *V, 490 Optional<CallingConv::ID> CallConv = None, 491 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 492 EVT ValueVT = Val.getValueType(); 493 494 // Handle the vector case separately. 495 if (ValueVT.isVector()) 496 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 497 CallConv); 498 499 unsigned PartBits = PartVT.getSizeInBits(); 500 unsigned OrigNumParts = NumParts; 501 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 502 "Copying to an illegal type!"); 503 504 if (NumParts == 0) 505 return; 506 507 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 508 EVT PartEVT = PartVT; 509 if (PartEVT == ValueVT) { 510 assert(NumParts == 1 && "No-op copy with multiple parts!"); 511 Parts[0] = Val; 512 return; 513 } 514 515 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 516 // If the parts cover more bits than the value has, promote the value. 517 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 518 assert(NumParts == 1 && "Do not know what to promote to!"); 519 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 520 } else { 521 if (ValueVT.isFloatingPoint()) { 522 // FP values need to be bitcast, then extended if they are being put 523 // into a larger container. 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 525 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 526 } 527 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 528 ValueVT.isInteger() && 529 "Unknown mismatch!"); 530 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 531 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 532 if (PartVT == MVT::x86mmx) 533 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 534 } 535 } else if (PartBits == ValueVT.getSizeInBits()) { 536 // Different types of the same size. 537 assert(NumParts == 1 && PartEVT != ValueVT); 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 540 // If the parts cover less bits than value has, truncate the value. 541 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 542 ValueVT.isInteger() && 543 "Unknown mismatch!"); 544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 545 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 546 if (PartVT == MVT::x86mmx) 547 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 548 } 549 550 // The value may have changed - recompute ValueVT. 551 ValueVT = Val.getValueType(); 552 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 553 "Failed to tile the value with PartVT!"); 554 555 if (NumParts == 1) { 556 if (PartEVT != ValueVT) { 557 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 558 "scalar-to-vector conversion failed"); 559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 560 } 561 562 Parts[0] = Val; 563 return; 564 } 565 566 // Expand the value into multiple parts. 567 if (NumParts & (NumParts - 1)) { 568 // The number of parts is not a power of 2. Split off and copy the tail. 569 assert(PartVT.isInteger() && ValueVT.isInteger() && 570 "Do not know what to expand to!"); 571 unsigned RoundParts = 1 << Log2_32(NumParts); 572 unsigned RoundBits = RoundParts * PartBits; 573 unsigned OddParts = NumParts - RoundParts; 574 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 575 DAG.getIntPtrConstant(RoundBits, DL)); 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, 619 SDValue Val, const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 unsigned PartNumElts = PartVT.getVectorNumElements(); 625 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 626 if (PartNumElts > ValueNumElts && 627 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 628 EVT ElementVT = PartVT.getVectorElementType(); 629 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 630 // undef elements. 631 SmallVector<SDValue, 16> Ops; 632 DAG.ExtractVectorElements(Val, Ops); 633 SDValue EltUndef = DAG.getUNDEF(ElementVT); 634 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 635 Ops.push_back(EltUndef); 636 637 // FIXME: Use CONCAT for 2x -> 4x. 638 return DAG.getBuildVector(PartVT, DL, Ops); 639 } 640 641 return SDValue(); 642 } 643 644 /// getCopyToPartsVector - Create a series of nodes that contain the specified 645 /// value split into legal parts. 646 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 647 SDValue Val, SDValue *Parts, unsigned NumParts, 648 MVT PartVT, const Value *V, 649 Optional<CallingConv::ID> CallConv) { 650 EVT ValueVT = Val.getValueType(); 651 assert(ValueVT.isVector() && "Not a vector"); 652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 653 const bool IsABIRegCopy = CallConv.hasValue(); 654 655 if (NumParts == 1) { 656 EVT PartEVT = PartVT; 657 if (PartEVT == ValueVT) { 658 // Nothing to do. 659 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 660 // Bitconvert vector->vector case. 661 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 662 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 663 Val = Widened; 664 } else if (PartVT.isVector() && 665 PartEVT.getVectorElementType().bitsGE( 666 ValueVT.getVectorElementType()) && 667 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 668 669 // Promoted vector extract 670 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 671 } else { 672 if (ValueVT.getVectorNumElements() == 1) { 673 Val = DAG.getNode( 674 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 675 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 676 } else { 677 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 678 "lossy conversion of vector to scalar type"); 679 EVT IntermediateType = 680 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 681 Val = DAG.getBitcast(IntermediateType, Val); 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } 684 } 685 686 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 687 Parts[0] = Val; 688 return; 689 } 690 691 // Handle a multi-element vector. 692 EVT IntermediateVT; 693 MVT RegisterVT; 694 unsigned NumIntermediates; 695 unsigned NumRegs; 696 if (IsABIRegCopy) { 697 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 698 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 699 NumIntermediates, RegisterVT); 700 } else { 701 NumRegs = 702 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 703 NumIntermediates, RegisterVT); 704 } 705 706 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 707 NumParts = NumRegs; // Silence a compiler warning. 708 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 709 710 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 711 IntermediateVT.getVectorNumElements() : 1; 712 713 // Convert the vector to the appropiate type if necessary. 714 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 715 716 EVT BuiltVectorTy = EVT::getVectorVT( 717 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 718 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 719 if (ValueVT != BuiltVectorTy) { 720 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 721 Val = Widened; 722 723 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 724 } 725 726 // Split the vector into intermediate operands. 727 SmallVector<SDValue, 8> Ops(NumIntermediates); 728 for (unsigned i = 0; i != NumIntermediates; ++i) { 729 if (IntermediateVT.isVector()) { 730 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 731 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 732 } else { 733 Ops[i] = DAG.getNode( 734 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 735 DAG.getConstant(i, DL, IdxVT)); 736 } 737 } 738 739 // Split the intermediate operands into legal parts. 740 if (NumParts == NumIntermediates) { 741 // If the register was not expanded, promote or copy the value, 742 // as appropriate. 743 for (unsigned i = 0; i != NumParts; ++i) 744 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 745 } else if (NumParts > 0) { 746 // If the intermediate type was expanded, split each the value into 747 // legal parts. 748 assert(NumIntermediates != 0 && "division by zero"); 749 assert(NumParts % NumIntermediates == 0 && 750 "Must expand into a divisible number of parts!"); 751 unsigned Factor = NumParts / NumIntermediates; 752 for (unsigned i = 0; i != NumIntermediates; ++i) 753 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 754 CallConv); 755 } 756 } 757 758 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 759 EVT valuevt, Optional<CallingConv::ID> CC) 760 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 761 RegCount(1, regs.size()), CallConv(CC) {} 762 763 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 764 const DataLayout &DL, unsigned Reg, Type *Ty, 765 Optional<CallingConv::ID> CC) { 766 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 767 768 CallConv = CC; 769 770 for (EVT ValueVT : ValueVTs) { 771 unsigned NumRegs = 772 isABIMangled() 773 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 774 : TLI.getNumRegisters(Context, ValueVT); 775 MVT RegisterVT = 776 isABIMangled() 777 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 778 : TLI.getRegisterType(Context, ValueVT); 779 for (unsigned i = 0; i != NumRegs; ++i) 780 Regs.push_back(Reg + i); 781 RegVTs.push_back(RegisterVT); 782 RegCount.push_back(NumRegs); 783 Reg += NumRegs; 784 } 785 } 786 787 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 788 FunctionLoweringInfo &FuncInfo, 789 const SDLoc &dl, SDValue &Chain, 790 SDValue *Flag, const Value *V) const { 791 // A Value with type {} or [0 x %t] needs no registers. 792 if (ValueVTs.empty()) 793 return SDValue(); 794 795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 796 797 // Assemble the legal parts into the final values. 798 SmallVector<SDValue, 4> Values(ValueVTs.size()); 799 SmallVector<SDValue, 8> Parts; 800 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 801 // Copy the legal parts from the registers. 802 EVT ValueVT = ValueVTs[Value]; 803 unsigned NumRegs = RegCount[Value]; 804 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 805 *DAG.getContext(), 806 CallConv.getValue(), RegVTs[Value]) 807 : RegVTs[Value]; 808 809 Parts.resize(NumRegs); 810 for (unsigned i = 0; i != NumRegs; ++i) { 811 SDValue P; 812 if (!Flag) { 813 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 814 } else { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 816 *Flag = P.getValue(2); 817 } 818 819 Chain = P.getValue(1); 820 Parts[i] = P; 821 822 // If the source register was virtual and if we know something about it, 823 // add an assert node. 824 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 825 !RegisterVT.isInteger()) 826 continue; 827 828 const FunctionLoweringInfo::LiveOutInfo *LOI = 829 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 830 if (!LOI) 831 continue; 832 833 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 834 unsigned NumSignBits = LOI->NumSignBits; 835 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 836 837 if (NumZeroBits == RegSize) { 838 // The current value is a zero. 839 // Explicitly express that as it would be easier for 840 // optimizations to kick in. 841 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 842 continue; 843 } 844 845 // FIXME: We capture more information than the dag can represent. For 846 // now, just use the tightest assertzext/assertsext possible. 847 bool isSExt; 848 EVT FromVT(MVT::Other); 849 if (NumZeroBits) { 850 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 851 isSExt = false; 852 } else if (NumSignBits > 1) { 853 FromVT = 854 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 855 isSExt = true; 856 } else { 857 continue; 858 } 859 // Add an assertion node. 860 assert(FromVT != MVT::Other); 861 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 862 RegisterVT, P, DAG.getValueType(FromVT)); 863 } 864 865 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 866 RegisterVT, ValueVT, V, CallConv); 867 Part += NumRegs; 868 Parts.clear(); 869 } 870 871 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 872 } 873 874 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 875 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 876 const Value *V, 877 ISD::NodeType PreferredExtendType) const { 878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 879 ISD::NodeType ExtendKind = PreferredExtendType; 880 881 // Get the list of the values's legal parts. 882 unsigned NumRegs = Regs.size(); 883 SmallVector<SDValue, 8> Parts(NumRegs); 884 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 885 unsigned NumParts = RegCount[Value]; 886 887 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 888 *DAG.getContext(), 889 CallConv.getValue(), RegVTs[Value]) 890 : RegVTs[Value]; 891 892 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 893 ExtendKind = ISD::ZERO_EXTEND; 894 895 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 896 NumParts, RegisterVT, V, CallConv, ExtendKind); 897 Part += NumParts; 898 } 899 900 // Copy the parts into the registers. 901 SmallVector<SDValue, 8> Chains(NumRegs); 902 for (unsigned i = 0; i != NumRegs; ++i) { 903 SDValue Part; 904 if (!Flag) { 905 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 906 } else { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 908 *Flag = Part.getValue(1); 909 } 910 911 Chains[i] = Part.getValue(0); 912 } 913 914 if (NumRegs == 1 || Flag) 915 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 916 // flagged to it. That is the CopyToReg nodes and the user are considered 917 // a single scheduling unit. If we create a TokenFactor and return it as 918 // chain, then the TokenFactor is both a predecessor (operand) of the 919 // user as well as a successor (the TF operands are flagged to the user). 920 // c1, f1 = CopyToReg 921 // c2, f2 = CopyToReg 922 // c3 = TokenFactor c1, c2 923 // ... 924 // = op c3, ..., f2 925 Chain = Chains[NumRegs-1]; 926 else 927 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 928 } 929 930 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 931 unsigned MatchingIdx, const SDLoc &dl, 932 SelectionDAG &DAG, 933 std::vector<SDValue> &Ops) const { 934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 935 936 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 937 if (HasMatching) 938 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 939 else if (!Regs.empty() && 940 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 941 // Put the register class of the virtual registers in the flag word. That 942 // way, later passes can recompute register class constraints for inline 943 // assembly as well as normal instructions. 944 // Don't do this for tied operands that can use the regclass information 945 // from the def. 946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 949 } 950 951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 952 Ops.push_back(Res); 953 954 if (Code == InlineAsm::Kind_Clobber) { 955 // Clobbers should always have a 1:1 mapping with registers, and may 956 // reference registers that have illegal (e.g. vector) types. Hence, we 957 // shouldn't try to apply any sort of splitting logic to them. 958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 959 "No 1:1 mapping from clobbers to regs?"); 960 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 961 (void)SP; 962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 964 assert( 965 (Regs[I] != SP || 966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 967 "If we clobbered the stack pointer, MFI should know about it."); 968 } 969 return; 970 } 971 972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 974 MVT RegisterVT = RegVTs[Value]; 975 for (unsigned i = 0; i != NumRegs; ++i) { 976 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 977 unsigned TheReg = Regs[Reg++]; 978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 979 } 980 } 981 } 982 983 SmallVector<std::pair<unsigned, unsigned>, 4> 984 RegsForValue::getRegsAndSizes() const { 985 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 986 unsigned I = 0; 987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 988 unsigned RegCount = std::get<0>(CountAndVT); 989 MVT RegisterVT = std::get<1>(CountAndVT); 990 unsigned RegisterSize = RegisterVT.getSizeInBits(); 991 for (unsigned E = I + RegCount; I != E; ++I) 992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 993 } 994 return OutVec; 995 } 996 997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 998 const TargetLibraryInfo *li) { 999 AA = aa; 1000 GFI = gfi; 1001 LibInfo = li; 1002 DL = &DAG.getDataLayout(); 1003 Context = DAG.getContext(); 1004 LPadToCallSiteMap.clear(); 1005 } 1006 1007 void SelectionDAGBuilder::clear() { 1008 NodeMap.clear(); 1009 UnusedArgNodeMap.clear(); 1010 PendingLoads.clear(); 1011 PendingExports.clear(); 1012 CurInst = nullptr; 1013 HasTailCall = false; 1014 SDNodeOrder = LowestSDNodeOrder; 1015 StatepointLowering.clear(); 1016 } 1017 1018 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1019 DanglingDebugInfoMap.clear(); 1020 } 1021 1022 SDValue SelectionDAGBuilder::getRoot() { 1023 if (PendingLoads.empty()) 1024 return DAG.getRoot(); 1025 1026 if (PendingLoads.size() == 1) { 1027 SDValue Root = PendingLoads[0]; 1028 DAG.setRoot(Root); 1029 PendingLoads.clear(); 1030 return Root; 1031 } 1032 1033 // Otherwise, we have to make a token factor node. 1034 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1035 PendingLoads.clear(); 1036 DAG.setRoot(Root); 1037 return Root; 1038 } 1039 1040 SDValue SelectionDAGBuilder::getControlRoot() { 1041 SDValue Root = DAG.getRoot(); 1042 1043 if (PendingExports.empty()) 1044 return Root; 1045 1046 // Turn all of the CopyToReg chains into one factored node. 1047 if (Root.getOpcode() != ISD::EntryToken) { 1048 unsigned i = 0, e = PendingExports.size(); 1049 for (; i != e; ++i) { 1050 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1051 if (PendingExports[i].getNode()->getOperand(0) == Root) 1052 break; // Don't add the root if we already indirectly depend on it. 1053 } 1054 1055 if (i == e) 1056 PendingExports.push_back(Root); 1057 } 1058 1059 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1060 PendingExports); 1061 PendingExports.clear(); 1062 DAG.setRoot(Root); 1063 return Root; 1064 } 1065 1066 void SelectionDAGBuilder::visit(const Instruction &I) { 1067 // Set up outgoing PHI node register values before emitting the terminator. 1068 if (I.isTerminator()) { 1069 HandlePHINodesInSuccessorBlocks(I.getParent()); 1070 } 1071 1072 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1073 if (!isa<DbgInfoIntrinsic>(I)) 1074 ++SDNodeOrder; 1075 1076 CurInst = &I; 1077 1078 visit(I.getOpcode(), I); 1079 1080 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1081 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1082 // maps to this instruction. 1083 // TODO: We could handle all flags (nsw, etc) here. 1084 // TODO: If an IR instruction maps to >1 node, only the final node will have 1085 // flags set. 1086 if (SDNode *Node = getNodeForIRValue(&I)) { 1087 SDNodeFlags IncomingFlags; 1088 IncomingFlags.copyFMF(*FPMO); 1089 if (!Node->getFlags().isDefined()) 1090 Node->setFlags(IncomingFlags); 1091 else 1092 Node->intersectFlagsWith(IncomingFlags); 1093 } 1094 } 1095 1096 if (!I.isTerminator() && !HasTailCall && 1097 !isStatepoint(&I)) // statepoints handle their exports internally 1098 CopyToExportRegsIfNeeded(&I); 1099 1100 CurInst = nullptr; 1101 } 1102 1103 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1104 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1105 } 1106 1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1108 // Note: this doesn't use InstVisitor, because it has to work with 1109 // ConstantExpr's in addition to instructions. 1110 switch (Opcode) { 1111 default: llvm_unreachable("Unknown instruction type encountered!"); 1112 // Build the switch statement using the Instruction.def file. 1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1114 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1115 #include "llvm/IR/Instruction.def" 1116 } 1117 } 1118 1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1120 const DIExpression *Expr) { 1121 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1122 const DbgValueInst *DI = DDI.getDI(); 1123 DIVariable *DanglingVariable = DI->getVariable(); 1124 DIExpression *DanglingExpr = DI->getExpression(); 1125 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1126 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1127 return true; 1128 } 1129 return false; 1130 }; 1131 1132 for (auto &DDIMI : DanglingDebugInfoMap) { 1133 DanglingDebugInfoVector &DDIV = DDIMI.second; 1134 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1135 } 1136 } 1137 1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1139 // generate the debug data structures now that we've seen its definition. 1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1141 SDValue Val) { 1142 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1143 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1144 return; 1145 1146 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1147 for (auto &DDI : DDIV) { 1148 const DbgValueInst *DI = DDI.getDI(); 1149 assert(DI && "Ill-formed DanglingDebugInfo"); 1150 DebugLoc dl = DDI.getdl(); 1151 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1152 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1153 DILocalVariable *Variable = DI->getVariable(); 1154 DIExpression *Expr = DI->getExpression(); 1155 assert(Variable->isValidLocationForIntrinsic(dl) && 1156 "Expected inlined-at fields to agree"); 1157 SDDbgValue *SDV; 1158 if (Val.getNode()) { 1159 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1160 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1161 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1162 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1163 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1164 // inserted after the definition of Val when emitting the instructions 1165 // after ISel. An alternative could be to teach 1166 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1167 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1168 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1169 << ValSDNodeOrder << "\n"); 1170 SDV = getDbgValue(Val, Variable, Expr, dl, 1171 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1172 DAG.AddDbgValue(SDV, Val.getNode(), false); 1173 } else 1174 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1175 << "in EmitFuncArgumentDbgValue\n"); 1176 } else 1177 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1178 } 1179 DDIV.clear(); 1180 } 1181 1182 /// getCopyFromRegs - If there was virtual register allocated for the value V 1183 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1184 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1185 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1186 SDValue Result; 1187 1188 if (It != FuncInfo.ValueMap.end()) { 1189 unsigned InReg = It->second; 1190 1191 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1192 DAG.getDataLayout(), InReg, Ty, 1193 None); // This is not an ABI copy. 1194 SDValue Chain = DAG.getEntryNode(); 1195 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1196 V); 1197 resolveDanglingDebugInfo(V, Result); 1198 } 1199 1200 return Result; 1201 } 1202 1203 /// getValue - Return an SDValue for the given Value. 1204 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1205 // If we already have an SDValue for this value, use it. It's important 1206 // to do this first, so that we don't create a CopyFromReg if we already 1207 // have a regular SDValue. 1208 SDValue &N = NodeMap[V]; 1209 if (N.getNode()) return N; 1210 1211 // If there's a virtual register allocated and initialized for this 1212 // value, use it. 1213 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1214 return copyFromReg; 1215 1216 // Otherwise create a new SDValue and remember it. 1217 SDValue Val = getValueImpl(V); 1218 NodeMap[V] = Val; 1219 resolveDanglingDebugInfo(V, Val); 1220 return Val; 1221 } 1222 1223 // Return true if SDValue exists for the given Value 1224 bool SelectionDAGBuilder::findValue(const Value *V) const { 1225 return (NodeMap.find(V) != NodeMap.end()) || 1226 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1227 } 1228 1229 /// getNonRegisterValue - Return an SDValue for the given Value, but 1230 /// don't look in FuncInfo.ValueMap for a virtual register. 1231 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1232 // If we already have an SDValue for this value, use it. 1233 SDValue &N = NodeMap[V]; 1234 if (N.getNode()) { 1235 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1236 // Remove the debug location from the node as the node is about to be used 1237 // in a location which may differ from the original debug location. This 1238 // is relevant to Constant and ConstantFP nodes because they can appear 1239 // as constant expressions inside PHI nodes. 1240 N->setDebugLoc(DebugLoc()); 1241 } 1242 return N; 1243 } 1244 1245 // Otherwise create a new SDValue and remember it. 1246 SDValue Val = getValueImpl(V); 1247 NodeMap[V] = Val; 1248 resolveDanglingDebugInfo(V, Val); 1249 return Val; 1250 } 1251 1252 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1253 /// Create an SDValue for the given value. 1254 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1256 1257 if (const Constant *C = dyn_cast<Constant>(V)) { 1258 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1259 1260 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1261 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1262 1263 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1264 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1265 1266 if (isa<ConstantPointerNull>(C)) { 1267 unsigned AS = V->getType()->getPointerAddressSpace(); 1268 return DAG.getConstant(0, getCurSDLoc(), 1269 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1270 } 1271 1272 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1273 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1274 1275 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1276 return DAG.getUNDEF(VT); 1277 1278 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1279 visit(CE->getOpcode(), *CE); 1280 SDValue N1 = NodeMap[V]; 1281 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1282 return N1; 1283 } 1284 1285 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1286 SmallVector<SDValue, 4> Constants; 1287 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1288 OI != OE; ++OI) { 1289 SDNode *Val = getValue(*OI).getNode(); 1290 // If the operand is an empty aggregate, there are no values. 1291 if (!Val) continue; 1292 // Add each leaf value from the operand to the Constants list 1293 // to form a flattened list of all the values. 1294 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1295 Constants.push_back(SDValue(Val, i)); 1296 } 1297 1298 return DAG.getMergeValues(Constants, getCurSDLoc()); 1299 } 1300 1301 if (const ConstantDataSequential *CDS = 1302 dyn_cast<ConstantDataSequential>(C)) { 1303 SmallVector<SDValue, 4> Ops; 1304 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1305 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1306 // Add each leaf value from the operand to the Constants list 1307 // to form a flattened list of all the values. 1308 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1309 Ops.push_back(SDValue(Val, i)); 1310 } 1311 1312 if (isa<ArrayType>(CDS->getType())) 1313 return DAG.getMergeValues(Ops, getCurSDLoc()); 1314 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1315 } 1316 1317 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1318 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1319 "Unknown struct or array constant!"); 1320 1321 SmallVector<EVT, 4> ValueVTs; 1322 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1323 unsigned NumElts = ValueVTs.size(); 1324 if (NumElts == 0) 1325 return SDValue(); // empty struct 1326 SmallVector<SDValue, 4> Constants(NumElts); 1327 for (unsigned i = 0; i != NumElts; ++i) { 1328 EVT EltVT = ValueVTs[i]; 1329 if (isa<UndefValue>(C)) 1330 Constants[i] = DAG.getUNDEF(EltVT); 1331 else if (EltVT.isFloatingPoint()) 1332 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1333 else 1334 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1335 } 1336 1337 return DAG.getMergeValues(Constants, getCurSDLoc()); 1338 } 1339 1340 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1341 return DAG.getBlockAddress(BA, VT); 1342 1343 VectorType *VecTy = cast<VectorType>(V->getType()); 1344 unsigned NumElements = VecTy->getNumElements(); 1345 1346 // Now that we know the number and type of the elements, get that number of 1347 // elements into the Ops array based on what kind of constant it is. 1348 SmallVector<SDValue, 16> Ops; 1349 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1350 for (unsigned i = 0; i != NumElements; ++i) 1351 Ops.push_back(getValue(CV->getOperand(i))); 1352 } else { 1353 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1354 EVT EltVT = 1355 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1356 1357 SDValue Op; 1358 if (EltVT.isFloatingPoint()) 1359 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1360 else 1361 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1362 Ops.assign(NumElements, Op); 1363 } 1364 1365 // Create a BUILD_VECTOR node. 1366 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1367 } 1368 1369 // If this is a static alloca, generate it as the frameindex instead of 1370 // computation. 1371 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1372 DenseMap<const AllocaInst*, int>::iterator SI = 1373 FuncInfo.StaticAllocaMap.find(AI); 1374 if (SI != FuncInfo.StaticAllocaMap.end()) 1375 return DAG.getFrameIndex(SI->second, 1376 TLI.getFrameIndexTy(DAG.getDataLayout())); 1377 } 1378 1379 // If this is an instruction which fast-isel has deferred, select it now. 1380 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1381 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1382 1383 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1384 Inst->getType(), getABIRegCopyCC(V)); 1385 SDValue Chain = DAG.getEntryNode(); 1386 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1387 } 1388 1389 llvm_unreachable("Can't get register for value!"); 1390 } 1391 1392 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1393 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1394 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1395 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1396 bool IsSEH = isAsynchronousEHPersonality(Pers); 1397 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1398 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1399 if (!IsSEH) 1400 CatchPadMBB->setIsEHScopeEntry(); 1401 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1402 if (IsMSVCCXX || IsCoreCLR) 1403 CatchPadMBB->setIsEHFuncletEntry(); 1404 // Wasm does not need catchpads anymore 1405 if (!IsWasmCXX) 1406 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1407 getControlRoot())); 1408 } 1409 1410 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1411 // Update machine-CFG edge. 1412 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1413 FuncInfo.MBB->addSuccessor(TargetMBB); 1414 1415 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1416 bool IsSEH = isAsynchronousEHPersonality(Pers); 1417 if (IsSEH) { 1418 // If this is not a fall-through branch or optimizations are switched off, 1419 // emit the branch. 1420 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1421 TM.getOptLevel() == CodeGenOpt::None) 1422 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1423 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1424 return; 1425 } 1426 1427 // Figure out the funclet membership for the catchret's successor. 1428 // This will be used by the FuncletLayout pass to determine how to order the 1429 // BB's. 1430 // A 'catchret' returns to the outer scope's color. 1431 Value *ParentPad = I.getCatchSwitchParentPad(); 1432 const BasicBlock *SuccessorColor; 1433 if (isa<ConstantTokenNone>(ParentPad)) 1434 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1435 else 1436 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1437 assert(SuccessorColor && "No parent funclet for catchret!"); 1438 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1439 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1440 1441 // Create the terminator node. 1442 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1443 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1444 DAG.getBasicBlock(SuccessorColorMBB)); 1445 DAG.setRoot(Ret); 1446 } 1447 1448 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1449 // Don't emit any special code for the cleanuppad instruction. It just marks 1450 // the start of an EH scope/funclet. 1451 FuncInfo.MBB->setIsEHScopeEntry(); 1452 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1453 if (Pers != EHPersonality::Wasm_CXX) { 1454 FuncInfo.MBB->setIsEHFuncletEntry(); 1455 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1456 } 1457 } 1458 1459 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1460 // the control flow always stops at the single catch pad, as it does for a 1461 // cleanup pad. In case the exception caught is not of the types the catch pad 1462 // catches, it will be rethrown by a rethrow. 1463 static void findWasmUnwindDestinations( 1464 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1465 BranchProbability Prob, 1466 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1467 &UnwindDests) { 1468 while (EHPadBB) { 1469 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1470 if (isa<CleanupPadInst>(Pad)) { 1471 // Stop on cleanup pads. 1472 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1473 UnwindDests.back().first->setIsEHScopeEntry(); 1474 break; 1475 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1476 // Add the catchpad handlers to the possible destinations. We don't 1477 // continue to the unwind destination of the catchswitch for wasm. 1478 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1479 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1480 UnwindDests.back().first->setIsEHScopeEntry(); 1481 } 1482 break; 1483 } else { 1484 continue; 1485 } 1486 } 1487 } 1488 1489 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1490 /// many places it could ultimately go. In the IR, we have a single unwind 1491 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1492 /// This function skips over imaginary basic blocks that hold catchswitch 1493 /// instructions, and finds all the "real" machine 1494 /// basic block destinations. As those destinations may not be successors of 1495 /// EHPadBB, here we also calculate the edge probability to those destinations. 1496 /// The passed-in Prob is the edge probability to EHPadBB. 1497 static void findUnwindDestinations( 1498 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1499 BranchProbability Prob, 1500 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1501 &UnwindDests) { 1502 EHPersonality Personality = 1503 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1504 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1505 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1506 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1507 bool IsSEH = isAsynchronousEHPersonality(Personality); 1508 1509 if (IsWasmCXX) { 1510 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1511 return; 1512 } 1513 1514 while (EHPadBB) { 1515 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1516 BasicBlock *NewEHPadBB = nullptr; 1517 if (isa<LandingPadInst>(Pad)) { 1518 // Stop on landingpads. They are not funclets. 1519 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1520 break; 1521 } else if (isa<CleanupPadInst>(Pad)) { 1522 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1523 // personalities. 1524 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1525 UnwindDests.back().first->setIsEHScopeEntry(); 1526 UnwindDests.back().first->setIsEHFuncletEntry(); 1527 break; 1528 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1529 // Add the catchpad handlers to the possible destinations. 1530 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1531 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1532 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1533 if (IsMSVCCXX || IsCoreCLR) 1534 UnwindDests.back().first->setIsEHFuncletEntry(); 1535 if (!IsSEH) 1536 UnwindDests.back().first->setIsEHScopeEntry(); 1537 } 1538 NewEHPadBB = CatchSwitch->getUnwindDest(); 1539 } else { 1540 continue; 1541 } 1542 1543 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1544 if (BPI && NewEHPadBB) 1545 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1546 EHPadBB = NewEHPadBB; 1547 } 1548 } 1549 1550 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1551 // Update successor info. 1552 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1553 auto UnwindDest = I.getUnwindDest(); 1554 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1555 BranchProbability UnwindDestProb = 1556 (BPI && UnwindDest) 1557 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1558 : BranchProbability::getZero(); 1559 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1560 for (auto &UnwindDest : UnwindDests) { 1561 UnwindDest.first->setIsEHPad(); 1562 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1563 } 1564 FuncInfo.MBB->normalizeSuccProbs(); 1565 1566 // Create the terminator node. 1567 SDValue Ret = 1568 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1569 DAG.setRoot(Ret); 1570 } 1571 1572 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1573 report_fatal_error("visitCatchSwitch not yet implemented!"); 1574 } 1575 1576 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1578 auto &DL = DAG.getDataLayout(); 1579 SDValue Chain = getControlRoot(); 1580 SmallVector<ISD::OutputArg, 8> Outs; 1581 SmallVector<SDValue, 8> OutVals; 1582 1583 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1584 // lower 1585 // 1586 // %val = call <ty> @llvm.experimental.deoptimize() 1587 // ret <ty> %val 1588 // 1589 // differently. 1590 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1591 LowerDeoptimizingReturn(); 1592 return; 1593 } 1594 1595 if (!FuncInfo.CanLowerReturn) { 1596 unsigned DemoteReg = FuncInfo.DemoteRegister; 1597 const Function *F = I.getParent()->getParent(); 1598 1599 // Emit a store of the return value through the virtual register. 1600 // Leave Outs empty so that LowerReturn won't try to load return 1601 // registers the usual way. 1602 SmallVector<EVT, 1> PtrValueVTs; 1603 ComputeValueVTs(TLI, DL, 1604 F->getReturnType()->getPointerTo( 1605 DAG.getDataLayout().getAllocaAddrSpace()), 1606 PtrValueVTs); 1607 1608 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1609 DemoteReg, PtrValueVTs[0]); 1610 SDValue RetOp = getValue(I.getOperand(0)); 1611 1612 SmallVector<EVT, 4> ValueVTs; 1613 SmallVector<uint64_t, 4> Offsets; 1614 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1615 unsigned NumValues = ValueVTs.size(); 1616 1617 SmallVector<SDValue, 4> Chains(NumValues); 1618 for (unsigned i = 0; i != NumValues; ++i) { 1619 // An aggregate return value cannot wrap around the address space, so 1620 // offsets to its parts don't wrap either. 1621 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1622 Chains[i] = DAG.getStore( 1623 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1624 // FIXME: better loc info would be nice. 1625 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1626 } 1627 1628 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1629 MVT::Other, Chains); 1630 } else if (I.getNumOperands() != 0) { 1631 SmallVector<EVT, 4> ValueVTs; 1632 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1633 unsigned NumValues = ValueVTs.size(); 1634 if (NumValues) { 1635 SDValue RetOp = getValue(I.getOperand(0)); 1636 1637 const Function *F = I.getParent()->getParent(); 1638 1639 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1640 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1641 Attribute::SExt)) 1642 ExtendKind = ISD::SIGN_EXTEND; 1643 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1644 Attribute::ZExt)) 1645 ExtendKind = ISD::ZERO_EXTEND; 1646 1647 LLVMContext &Context = F->getContext(); 1648 bool RetInReg = F->getAttributes().hasAttribute( 1649 AttributeList::ReturnIndex, Attribute::InReg); 1650 1651 for (unsigned j = 0; j != NumValues; ++j) { 1652 EVT VT = ValueVTs[j]; 1653 1654 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1655 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1656 1657 CallingConv::ID CC = F->getCallingConv(); 1658 1659 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1660 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1661 SmallVector<SDValue, 4> Parts(NumParts); 1662 getCopyToParts(DAG, getCurSDLoc(), 1663 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1664 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1665 1666 // 'inreg' on function refers to return value 1667 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1668 if (RetInReg) 1669 Flags.setInReg(); 1670 1671 // Propagate extension type if any 1672 if (ExtendKind == ISD::SIGN_EXTEND) 1673 Flags.setSExt(); 1674 else if (ExtendKind == ISD::ZERO_EXTEND) 1675 Flags.setZExt(); 1676 1677 for (unsigned i = 0; i < NumParts; ++i) { 1678 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1679 VT, /*isfixed=*/true, 0, 0)); 1680 OutVals.push_back(Parts[i]); 1681 } 1682 } 1683 } 1684 } 1685 1686 // Push in swifterror virtual register as the last element of Outs. This makes 1687 // sure swifterror virtual register will be returned in the swifterror 1688 // physical register. 1689 const Function *F = I.getParent()->getParent(); 1690 if (TLI.supportSwiftError() && 1691 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1692 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1693 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1694 Flags.setSwiftError(); 1695 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1696 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1697 true /*isfixed*/, 1 /*origidx*/, 1698 0 /*partOffs*/)); 1699 // Create SDNode for the swifterror virtual register. 1700 OutVals.push_back( 1701 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1702 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1703 EVT(TLI.getPointerTy(DL)))); 1704 } 1705 1706 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1707 CallingConv::ID CallConv = 1708 DAG.getMachineFunction().getFunction().getCallingConv(); 1709 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1710 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1711 1712 // Verify that the target's LowerReturn behaved as expected. 1713 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1714 "LowerReturn didn't return a valid chain!"); 1715 1716 // Update the DAG with the new chain value resulting from return lowering. 1717 DAG.setRoot(Chain); 1718 } 1719 1720 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1721 /// created for it, emit nodes to copy the value into the virtual 1722 /// registers. 1723 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1724 // Skip empty types 1725 if (V->getType()->isEmptyTy()) 1726 return; 1727 1728 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1729 if (VMI != FuncInfo.ValueMap.end()) { 1730 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1731 CopyValueToVirtualRegister(V, VMI->second); 1732 } 1733 } 1734 1735 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1736 /// the current basic block, add it to ValueMap now so that we'll get a 1737 /// CopyTo/FromReg. 1738 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1739 // No need to export constants. 1740 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1741 1742 // Already exported? 1743 if (FuncInfo.isExportedInst(V)) return; 1744 1745 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1746 CopyValueToVirtualRegister(V, Reg); 1747 } 1748 1749 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1750 const BasicBlock *FromBB) { 1751 // The operands of the setcc have to be in this block. We don't know 1752 // how to export them from some other block. 1753 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1754 // Can export from current BB. 1755 if (VI->getParent() == FromBB) 1756 return true; 1757 1758 // Is already exported, noop. 1759 return FuncInfo.isExportedInst(V); 1760 } 1761 1762 // If this is an argument, we can export it if the BB is the entry block or 1763 // if it is already exported. 1764 if (isa<Argument>(V)) { 1765 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1766 return true; 1767 1768 // Otherwise, can only export this if it is already exported. 1769 return FuncInfo.isExportedInst(V); 1770 } 1771 1772 // Otherwise, constants can always be exported. 1773 return true; 1774 } 1775 1776 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1777 BranchProbability 1778 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1779 const MachineBasicBlock *Dst) const { 1780 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1781 const BasicBlock *SrcBB = Src->getBasicBlock(); 1782 const BasicBlock *DstBB = Dst->getBasicBlock(); 1783 if (!BPI) { 1784 // If BPI is not available, set the default probability as 1 / N, where N is 1785 // the number of successors. 1786 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1787 return BranchProbability(1, SuccSize); 1788 } 1789 return BPI->getEdgeProbability(SrcBB, DstBB); 1790 } 1791 1792 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1793 MachineBasicBlock *Dst, 1794 BranchProbability Prob) { 1795 if (!FuncInfo.BPI) 1796 Src->addSuccessorWithoutProb(Dst); 1797 else { 1798 if (Prob.isUnknown()) 1799 Prob = getEdgeProbability(Src, Dst); 1800 Src->addSuccessor(Dst, Prob); 1801 } 1802 } 1803 1804 static bool InBlock(const Value *V, const BasicBlock *BB) { 1805 if (const Instruction *I = dyn_cast<Instruction>(V)) 1806 return I->getParent() == BB; 1807 return true; 1808 } 1809 1810 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1811 /// This function emits a branch and is used at the leaves of an OR or an 1812 /// AND operator tree. 1813 void 1814 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1815 MachineBasicBlock *TBB, 1816 MachineBasicBlock *FBB, 1817 MachineBasicBlock *CurBB, 1818 MachineBasicBlock *SwitchBB, 1819 BranchProbability TProb, 1820 BranchProbability FProb, 1821 bool InvertCond) { 1822 const BasicBlock *BB = CurBB->getBasicBlock(); 1823 1824 // If the leaf of the tree is a comparison, merge the condition into 1825 // the caseblock. 1826 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1827 // The operands of the cmp have to be in this block. We don't know 1828 // how to export them from some other block. If this is the first block 1829 // of the sequence, no exporting is needed. 1830 if (CurBB == SwitchBB || 1831 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1832 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1833 ISD::CondCode Condition; 1834 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1835 ICmpInst::Predicate Pred = 1836 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1837 Condition = getICmpCondCode(Pred); 1838 } else { 1839 const FCmpInst *FC = cast<FCmpInst>(Cond); 1840 FCmpInst::Predicate Pred = 1841 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1842 Condition = getFCmpCondCode(Pred); 1843 if (TM.Options.NoNaNsFPMath) 1844 Condition = getFCmpCodeWithoutNaN(Condition); 1845 } 1846 1847 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1848 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1849 SwitchCases.push_back(CB); 1850 return; 1851 } 1852 } 1853 1854 // Create a CaseBlock record representing this branch. 1855 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1856 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1857 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1858 SwitchCases.push_back(CB); 1859 } 1860 1861 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1862 MachineBasicBlock *TBB, 1863 MachineBasicBlock *FBB, 1864 MachineBasicBlock *CurBB, 1865 MachineBasicBlock *SwitchBB, 1866 Instruction::BinaryOps Opc, 1867 BranchProbability TProb, 1868 BranchProbability FProb, 1869 bool InvertCond) { 1870 // Skip over not part of the tree and remember to invert op and operands at 1871 // next level. 1872 Value *NotCond; 1873 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 1874 InBlock(NotCond, CurBB->getBasicBlock())) { 1875 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1876 !InvertCond); 1877 return; 1878 } 1879 1880 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1881 // Compute the effective opcode for Cond, taking into account whether it needs 1882 // to be inverted, e.g. 1883 // and (not (or A, B)), C 1884 // gets lowered as 1885 // and (and (not A, not B), C) 1886 unsigned BOpc = 0; 1887 if (BOp) { 1888 BOpc = BOp->getOpcode(); 1889 if (InvertCond) { 1890 if (BOpc == Instruction::And) 1891 BOpc = Instruction::Or; 1892 else if (BOpc == Instruction::Or) 1893 BOpc = Instruction::And; 1894 } 1895 } 1896 1897 // If this node is not part of the or/and tree, emit it as a branch. 1898 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1899 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1900 BOp->getParent() != CurBB->getBasicBlock() || 1901 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1902 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1903 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1904 TProb, FProb, InvertCond); 1905 return; 1906 } 1907 1908 // Create TmpBB after CurBB. 1909 MachineFunction::iterator BBI(CurBB); 1910 MachineFunction &MF = DAG.getMachineFunction(); 1911 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1912 CurBB->getParent()->insert(++BBI, TmpBB); 1913 1914 if (Opc == Instruction::Or) { 1915 // Codegen X | Y as: 1916 // BB1: 1917 // jmp_if_X TBB 1918 // jmp TmpBB 1919 // TmpBB: 1920 // jmp_if_Y TBB 1921 // jmp FBB 1922 // 1923 1924 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1925 // The requirement is that 1926 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1927 // = TrueProb for original BB. 1928 // Assuming the original probabilities are A and B, one choice is to set 1929 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1930 // A/(1+B) and 2B/(1+B). This choice assumes that 1931 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1932 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1933 // TmpBB, but the math is more complicated. 1934 1935 auto NewTrueProb = TProb / 2; 1936 auto NewFalseProb = TProb / 2 + FProb; 1937 // Emit the LHS condition. 1938 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1939 NewTrueProb, NewFalseProb, InvertCond); 1940 1941 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1942 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1943 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1944 // Emit the RHS condition into TmpBB. 1945 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1946 Probs[0], Probs[1], InvertCond); 1947 } else { 1948 assert(Opc == Instruction::And && "Unknown merge op!"); 1949 // Codegen X & Y as: 1950 // BB1: 1951 // jmp_if_X TmpBB 1952 // jmp FBB 1953 // TmpBB: 1954 // jmp_if_Y TBB 1955 // jmp FBB 1956 // 1957 // This requires creation of TmpBB after CurBB. 1958 1959 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1960 // The requirement is that 1961 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1962 // = FalseProb for original BB. 1963 // Assuming the original probabilities are A and B, one choice is to set 1964 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1965 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1966 // TrueProb for BB1 * FalseProb for TmpBB. 1967 1968 auto NewTrueProb = TProb + FProb / 2; 1969 auto NewFalseProb = FProb / 2; 1970 // Emit the LHS condition. 1971 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1972 NewTrueProb, NewFalseProb, InvertCond); 1973 1974 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1975 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1976 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1977 // Emit the RHS condition into TmpBB. 1978 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1979 Probs[0], Probs[1], InvertCond); 1980 } 1981 } 1982 1983 /// If the set of cases should be emitted as a series of branches, return true. 1984 /// If we should emit this as a bunch of and/or'd together conditions, return 1985 /// false. 1986 bool 1987 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1988 if (Cases.size() != 2) return true; 1989 1990 // If this is two comparisons of the same values or'd or and'd together, they 1991 // will get folded into a single comparison, so don't emit two blocks. 1992 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1993 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1994 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1995 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1996 return false; 1997 } 1998 1999 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2000 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2001 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2002 Cases[0].CC == Cases[1].CC && 2003 isa<Constant>(Cases[0].CmpRHS) && 2004 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2005 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2006 return false; 2007 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2008 return false; 2009 } 2010 2011 return true; 2012 } 2013 2014 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2015 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2016 2017 // Update machine-CFG edges. 2018 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2019 2020 if (I.isUnconditional()) { 2021 // Update machine-CFG edges. 2022 BrMBB->addSuccessor(Succ0MBB); 2023 2024 // If this is not a fall-through branch or optimizations are switched off, 2025 // emit the branch. 2026 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2027 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2028 MVT::Other, getControlRoot(), 2029 DAG.getBasicBlock(Succ0MBB))); 2030 2031 return; 2032 } 2033 2034 // If this condition is one of the special cases we handle, do special stuff 2035 // now. 2036 const Value *CondVal = I.getCondition(); 2037 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2038 2039 // If this is a series of conditions that are or'd or and'd together, emit 2040 // this as a sequence of branches instead of setcc's with and/or operations. 2041 // As long as jumps are not expensive, this should improve performance. 2042 // For example, instead of something like: 2043 // cmp A, B 2044 // C = seteq 2045 // cmp D, E 2046 // F = setle 2047 // or C, F 2048 // jnz foo 2049 // Emit: 2050 // cmp A, B 2051 // je foo 2052 // cmp D, E 2053 // jle foo 2054 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2055 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2056 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2057 !I.getMetadata(LLVMContext::MD_unpredictable) && 2058 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2059 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2060 Opcode, 2061 getEdgeProbability(BrMBB, Succ0MBB), 2062 getEdgeProbability(BrMBB, Succ1MBB), 2063 /*InvertCond=*/false); 2064 // If the compares in later blocks need to use values not currently 2065 // exported from this block, export them now. This block should always 2066 // be the first entry. 2067 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2068 2069 // Allow some cases to be rejected. 2070 if (ShouldEmitAsBranches(SwitchCases)) { 2071 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2072 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2073 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2074 } 2075 2076 // Emit the branch for this block. 2077 visitSwitchCase(SwitchCases[0], BrMBB); 2078 SwitchCases.erase(SwitchCases.begin()); 2079 return; 2080 } 2081 2082 // Okay, we decided not to do this, remove any inserted MBB's and clear 2083 // SwitchCases. 2084 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2085 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2086 2087 SwitchCases.clear(); 2088 } 2089 } 2090 2091 // Create a CaseBlock record representing this branch. 2092 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2093 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2094 2095 // Use visitSwitchCase to actually insert the fast branch sequence for this 2096 // cond branch. 2097 visitSwitchCase(CB, BrMBB); 2098 } 2099 2100 /// visitSwitchCase - Emits the necessary code to represent a single node in 2101 /// the binary search tree resulting from lowering a switch instruction. 2102 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2103 MachineBasicBlock *SwitchBB) { 2104 SDValue Cond; 2105 SDValue CondLHS = getValue(CB.CmpLHS); 2106 SDLoc dl = CB.DL; 2107 2108 // Build the setcc now. 2109 if (!CB.CmpMHS) { 2110 // Fold "(X == true)" to X and "(X == false)" to !X to 2111 // handle common cases produced by branch lowering. 2112 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2113 CB.CC == ISD::SETEQ) 2114 Cond = CondLHS; 2115 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2116 CB.CC == ISD::SETEQ) { 2117 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2118 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2119 } else 2120 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2121 } else { 2122 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2123 2124 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2125 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2126 2127 SDValue CmpOp = getValue(CB.CmpMHS); 2128 EVT VT = CmpOp.getValueType(); 2129 2130 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2131 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2132 ISD::SETLE); 2133 } else { 2134 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2135 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2136 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2137 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2138 } 2139 } 2140 2141 // Update successor info 2142 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2143 // TrueBB and FalseBB are always different unless the incoming IR is 2144 // degenerate. This only happens when running llc on weird IR. 2145 if (CB.TrueBB != CB.FalseBB) 2146 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2147 SwitchBB->normalizeSuccProbs(); 2148 2149 // If the lhs block is the next block, invert the condition so that we can 2150 // fall through to the lhs instead of the rhs block. 2151 if (CB.TrueBB == NextBlock(SwitchBB)) { 2152 std::swap(CB.TrueBB, CB.FalseBB); 2153 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2154 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2155 } 2156 2157 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2158 MVT::Other, getControlRoot(), Cond, 2159 DAG.getBasicBlock(CB.TrueBB)); 2160 2161 // Insert the false branch. Do this even if it's a fall through branch, 2162 // this makes it easier to do DAG optimizations which require inverting 2163 // the branch condition. 2164 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2165 DAG.getBasicBlock(CB.FalseBB)); 2166 2167 DAG.setRoot(BrCond); 2168 } 2169 2170 /// visitJumpTable - Emit JumpTable node in the current MBB 2171 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2172 // Emit the code for the jump table 2173 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2174 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2175 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2176 JT.Reg, PTy); 2177 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2178 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2179 MVT::Other, Index.getValue(1), 2180 Table, Index); 2181 DAG.setRoot(BrJumpTable); 2182 } 2183 2184 /// visitJumpTableHeader - This function emits necessary code to produce index 2185 /// in the JumpTable from switch case. 2186 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2187 JumpTableHeader &JTH, 2188 MachineBasicBlock *SwitchBB) { 2189 SDLoc dl = getCurSDLoc(); 2190 2191 // Subtract the lowest switch case value from the value being switched on and 2192 // conditional branch to default mbb if the result is greater than the 2193 // difference between smallest and largest cases. 2194 SDValue SwitchOp = getValue(JTH.SValue); 2195 EVT VT = SwitchOp.getValueType(); 2196 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2197 DAG.getConstant(JTH.First, dl, VT)); 2198 2199 // The SDNode we just created, which holds the value being switched on minus 2200 // the smallest case value, needs to be copied to a virtual register so it 2201 // can be used as an index into the jump table in a subsequent basic block. 2202 // This value may be smaller or larger than the target's pointer type, and 2203 // therefore require extension or truncating. 2204 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2205 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2206 2207 unsigned JumpTableReg = 2208 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2209 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2210 JumpTableReg, SwitchOp); 2211 JT.Reg = JumpTableReg; 2212 2213 // Emit the range check for the jump table, and branch to the default block 2214 // for the switch statement if the value being switched on exceeds the largest 2215 // case in the switch. 2216 SDValue CMP = DAG.getSetCC( 2217 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2218 Sub.getValueType()), 2219 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2220 2221 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2222 MVT::Other, CopyTo, CMP, 2223 DAG.getBasicBlock(JT.Default)); 2224 2225 // Avoid emitting unnecessary branches to the next block. 2226 if (JT.MBB != NextBlock(SwitchBB)) 2227 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2228 DAG.getBasicBlock(JT.MBB)); 2229 2230 DAG.setRoot(BrCond); 2231 } 2232 2233 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2234 /// variable if there exists one. 2235 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2236 SDValue &Chain) { 2237 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2238 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2239 MachineFunction &MF = DAG.getMachineFunction(); 2240 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2241 MachineSDNode *Node = 2242 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2243 if (Global) { 2244 MachinePointerInfo MPInfo(Global); 2245 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2246 MachineMemOperand::MODereferenceable; 2247 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2248 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2249 DAG.setNodeMemRefs(Node, {MemRef}); 2250 } 2251 return SDValue(Node, 0); 2252 } 2253 2254 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2255 /// tail spliced into a stack protector check success bb. 2256 /// 2257 /// For a high level explanation of how this fits into the stack protector 2258 /// generation see the comment on the declaration of class 2259 /// StackProtectorDescriptor. 2260 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2261 MachineBasicBlock *ParentBB) { 2262 2263 // First create the loads to the guard/stack slot for the comparison. 2264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2265 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2266 2267 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2268 int FI = MFI.getStackProtectorIndex(); 2269 2270 SDValue Guard; 2271 SDLoc dl = getCurSDLoc(); 2272 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2273 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2274 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2275 2276 // Generate code to load the content of the guard slot. 2277 SDValue GuardVal = DAG.getLoad( 2278 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2279 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2280 MachineMemOperand::MOVolatile); 2281 2282 if (TLI.useStackGuardXorFP()) 2283 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2284 2285 // Retrieve guard check function, nullptr if instrumentation is inlined. 2286 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2287 // The target provides a guard check function to validate the guard value. 2288 // Generate a call to that function with the content of the guard slot as 2289 // argument. 2290 auto *Fn = cast<Function>(GuardCheck); 2291 FunctionType *FnTy = Fn->getFunctionType(); 2292 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2293 2294 TargetLowering::ArgListTy Args; 2295 TargetLowering::ArgListEntry Entry; 2296 Entry.Node = GuardVal; 2297 Entry.Ty = FnTy->getParamType(0); 2298 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2299 Entry.IsInReg = true; 2300 Args.push_back(Entry); 2301 2302 TargetLowering::CallLoweringInfo CLI(DAG); 2303 CLI.setDebugLoc(getCurSDLoc()) 2304 .setChain(DAG.getEntryNode()) 2305 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2306 getValue(GuardCheck), std::move(Args)); 2307 2308 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2309 DAG.setRoot(Result.second); 2310 return; 2311 } 2312 2313 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2314 // Otherwise, emit a volatile load to retrieve the stack guard value. 2315 SDValue Chain = DAG.getEntryNode(); 2316 if (TLI.useLoadStackGuardNode()) { 2317 Guard = getLoadStackGuard(DAG, dl, Chain); 2318 } else { 2319 const Value *IRGuard = TLI.getSDagStackGuard(M); 2320 SDValue GuardPtr = getValue(IRGuard); 2321 2322 Guard = 2323 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2324 Align, MachineMemOperand::MOVolatile); 2325 } 2326 2327 // Perform the comparison via a subtract/getsetcc. 2328 EVT VT = Guard.getValueType(); 2329 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2330 2331 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2332 *DAG.getContext(), 2333 Sub.getValueType()), 2334 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2335 2336 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2337 // branch to failure MBB. 2338 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2339 MVT::Other, GuardVal.getOperand(0), 2340 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2341 // Otherwise branch to success MBB. 2342 SDValue Br = DAG.getNode(ISD::BR, dl, 2343 MVT::Other, BrCond, 2344 DAG.getBasicBlock(SPD.getSuccessMBB())); 2345 2346 DAG.setRoot(Br); 2347 } 2348 2349 /// Codegen the failure basic block for a stack protector check. 2350 /// 2351 /// A failure stack protector machine basic block consists simply of a call to 2352 /// __stack_chk_fail(). 2353 /// 2354 /// For a high level explanation of how this fits into the stack protector 2355 /// generation see the comment on the declaration of class 2356 /// StackProtectorDescriptor. 2357 void 2358 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2360 SDValue Chain = 2361 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2362 None, false, getCurSDLoc(), false, false).second; 2363 DAG.setRoot(Chain); 2364 } 2365 2366 /// visitBitTestHeader - This function emits necessary code to produce value 2367 /// suitable for "bit tests" 2368 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2369 MachineBasicBlock *SwitchBB) { 2370 SDLoc dl = getCurSDLoc(); 2371 2372 // Subtract the minimum value 2373 SDValue SwitchOp = getValue(B.SValue); 2374 EVT VT = SwitchOp.getValueType(); 2375 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2376 DAG.getConstant(B.First, dl, VT)); 2377 2378 // Check range 2379 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2380 SDValue RangeCmp = DAG.getSetCC( 2381 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2382 Sub.getValueType()), 2383 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2384 2385 // Determine the type of the test operands. 2386 bool UsePtrType = false; 2387 if (!TLI.isTypeLegal(VT)) 2388 UsePtrType = true; 2389 else { 2390 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2391 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2392 // Switch table case range are encoded into series of masks. 2393 // Just use pointer type, it's guaranteed to fit. 2394 UsePtrType = true; 2395 break; 2396 } 2397 } 2398 if (UsePtrType) { 2399 VT = TLI.getPointerTy(DAG.getDataLayout()); 2400 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2401 } 2402 2403 B.RegVT = VT.getSimpleVT(); 2404 B.Reg = FuncInfo.CreateReg(B.RegVT); 2405 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2406 2407 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2408 2409 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2410 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2411 SwitchBB->normalizeSuccProbs(); 2412 2413 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2414 MVT::Other, CopyTo, RangeCmp, 2415 DAG.getBasicBlock(B.Default)); 2416 2417 // Avoid emitting unnecessary branches to the next block. 2418 if (MBB != NextBlock(SwitchBB)) 2419 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2420 DAG.getBasicBlock(MBB)); 2421 2422 DAG.setRoot(BrRange); 2423 } 2424 2425 /// visitBitTestCase - this function produces one "bit test" 2426 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2427 MachineBasicBlock* NextMBB, 2428 BranchProbability BranchProbToNext, 2429 unsigned Reg, 2430 BitTestCase &B, 2431 MachineBasicBlock *SwitchBB) { 2432 SDLoc dl = getCurSDLoc(); 2433 MVT VT = BB.RegVT; 2434 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2435 SDValue Cmp; 2436 unsigned PopCount = countPopulation(B.Mask); 2437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2438 if (PopCount == 1) { 2439 // Testing for a single bit; just compare the shift count with what it 2440 // would need to be to shift a 1 bit in that position. 2441 Cmp = DAG.getSetCC( 2442 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2443 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2444 ISD::SETEQ); 2445 } else if (PopCount == BB.Range) { 2446 // There is only one zero bit in the range, test for it directly. 2447 Cmp = DAG.getSetCC( 2448 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2449 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2450 ISD::SETNE); 2451 } else { 2452 // Make desired shift 2453 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2454 DAG.getConstant(1, dl, VT), ShiftOp); 2455 2456 // Emit bit tests and jumps 2457 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2458 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2459 Cmp = DAG.getSetCC( 2460 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2461 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2462 } 2463 2464 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2465 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2466 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2467 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2468 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2469 // one as they are relative probabilities (and thus work more like weights), 2470 // and hence we need to normalize them to let the sum of them become one. 2471 SwitchBB->normalizeSuccProbs(); 2472 2473 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2474 MVT::Other, getControlRoot(), 2475 Cmp, DAG.getBasicBlock(B.TargetBB)); 2476 2477 // Avoid emitting unnecessary branches to the next block. 2478 if (NextMBB != NextBlock(SwitchBB)) 2479 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2480 DAG.getBasicBlock(NextMBB)); 2481 2482 DAG.setRoot(BrAnd); 2483 } 2484 2485 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2486 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2487 2488 // Retrieve successors. Look through artificial IR level blocks like 2489 // catchswitch for successors. 2490 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2491 const BasicBlock *EHPadBB = I.getSuccessor(1); 2492 2493 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2494 // have to do anything here to lower funclet bundles. 2495 assert(!I.hasOperandBundlesOtherThan( 2496 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2497 "Cannot lower invokes with arbitrary operand bundles yet!"); 2498 2499 const Value *Callee(I.getCalledValue()); 2500 const Function *Fn = dyn_cast<Function>(Callee); 2501 if (isa<InlineAsm>(Callee)) 2502 visitInlineAsm(&I); 2503 else if (Fn && Fn->isIntrinsic()) { 2504 switch (Fn->getIntrinsicID()) { 2505 default: 2506 llvm_unreachable("Cannot invoke this intrinsic"); 2507 case Intrinsic::donothing: 2508 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2509 break; 2510 case Intrinsic::experimental_patchpoint_void: 2511 case Intrinsic::experimental_patchpoint_i64: 2512 visitPatchpoint(&I, EHPadBB); 2513 break; 2514 case Intrinsic::experimental_gc_statepoint: 2515 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2516 break; 2517 } 2518 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2519 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2520 // Eventually we will support lowering the @llvm.experimental.deoptimize 2521 // intrinsic, and right now there are no plans to support other intrinsics 2522 // with deopt state. 2523 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2524 } else { 2525 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2526 } 2527 2528 // If the value of the invoke is used outside of its defining block, make it 2529 // available as a virtual register. 2530 // We already took care of the exported value for the statepoint instruction 2531 // during call to the LowerStatepoint. 2532 if (!isStatepoint(I)) { 2533 CopyToExportRegsIfNeeded(&I); 2534 } 2535 2536 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2537 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2538 BranchProbability EHPadBBProb = 2539 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2540 : BranchProbability::getZero(); 2541 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2542 2543 // Update successor info. 2544 addSuccessorWithProb(InvokeMBB, Return); 2545 for (auto &UnwindDest : UnwindDests) { 2546 UnwindDest.first->setIsEHPad(); 2547 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2548 } 2549 InvokeMBB->normalizeSuccProbs(); 2550 2551 // Drop into normal successor. 2552 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2553 MVT::Other, getControlRoot(), 2554 DAG.getBasicBlock(Return))); 2555 } 2556 2557 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2558 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2559 } 2560 2561 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2562 assert(FuncInfo.MBB->isEHPad() && 2563 "Call to landingpad not in landing pad!"); 2564 2565 // If there aren't registers to copy the values into (e.g., during SjLj 2566 // exceptions), then don't bother to create these DAG nodes. 2567 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2568 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2569 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2570 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2571 return; 2572 2573 // If landingpad's return type is token type, we don't create DAG nodes 2574 // for its exception pointer and selector value. The extraction of exception 2575 // pointer or selector value from token type landingpads is not currently 2576 // supported. 2577 if (LP.getType()->isTokenTy()) 2578 return; 2579 2580 SmallVector<EVT, 2> ValueVTs; 2581 SDLoc dl = getCurSDLoc(); 2582 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2583 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2584 2585 // Get the two live-in registers as SDValues. The physregs have already been 2586 // copied into virtual registers. 2587 SDValue Ops[2]; 2588 if (FuncInfo.ExceptionPointerVirtReg) { 2589 Ops[0] = DAG.getZExtOrTrunc( 2590 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2591 FuncInfo.ExceptionPointerVirtReg, 2592 TLI.getPointerTy(DAG.getDataLayout())), 2593 dl, ValueVTs[0]); 2594 } else { 2595 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2596 } 2597 Ops[1] = DAG.getZExtOrTrunc( 2598 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2599 FuncInfo.ExceptionSelectorVirtReg, 2600 TLI.getPointerTy(DAG.getDataLayout())), 2601 dl, ValueVTs[1]); 2602 2603 // Merge into one. 2604 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2605 DAG.getVTList(ValueVTs), Ops); 2606 setValue(&LP, Res); 2607 } 2608 2609 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2610 #ifndef NDEBUG 2611 for (const CaseCluster &CC : Clusters) 2612 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2613 #endif 2614 2615 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2616 return a.Low->getValue().slt(b.Low->getValue()); 2617 }); 2618 2619 // Merge adjacent clusters with the same destination. 2620 const unsigned N = Clusters.size(); 2621 unsigned DstIndex = 0; 2622 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2623 CaseCluster &CC = Clusters[SrcIndex]; 2624 const ConstantInt *CaseVal = CC.Low; 2625 MachineBasicBlock *Succ = CC.MBB; 2626 2627 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2628 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2629 // If this case has the same successor and is a neighbour, merge it into 2630 // the previous cluster. 2631 Clusters[DstIndex - 1].High = CaseVal; 2632 Clusters[DstIndex - 1].Prob += CC.Prob; 2633 } else { 2634 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2635 sizeof(Clusters[SrcIndex])); 2636 } 2637 } 2638 Clusters.resize(DstIndex); 2639 } 2640 2641 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2642 MachineBasicBlock *Last) { 2643 // Update JTCases. 2644 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2645 if (JTCases[i].first.HeaderBB == First) 2646 JTCases[i].first.HeaderBB = Last; 2647 2648 // Update BitTestCases. 2649 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2650 if (BitTestCases[i].Parent == First) 2651 BitTestCases[i].Parent = Last; 2652 } 2653 2654 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2655 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2656 2657 // Update machine-CFG edges with unique successors. 2658 SmallSet<BasicBlock*, 32> Done; 2659 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2660 BasicBlock *BB = I.getSuccessor(i); 2661 bool Inserted = Done.insert(BB).second; 2662 if (!Inserted) 2663 continue; 2664 2665 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2666 addSuccessorWithProb(IndirectBrMBB, Succ); 2667 } 2668 IndirectBrMBB->normalizeSuccProbs(); 2669 2670 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2671 MVT::Other, getControlRoot(), 2672 getValue(I.getAddress()))); 2673 } 2674 2675 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2676 if (!DAG.getTarget().Options.TrapUnreachable) 2677 return; 2678 2679 // We may be able to ignore unreachable behind a noreturn call. 2680 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2681 const BasicBlock &BB = *I.getParent(); 2682 if (&I != &BB.front()) { 2683 BasicBlock::const_iterator PredI = 2684 std::prev(BasicBlock::const_iterator(&I)); 2685 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2686 if (Call->doesNotReturn()) 2687 return; 2688 } 2689 } 2690 } 2691 2692 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2693 } 2694 2695 void SelectionDAGBuilder::visitFSub(const User &I) { 2696 // -0.0 - X --> fneg 2697 Type *Ty = I.getType(); 2698 if (isa<Constant>(I.getOperand(0)) && 2699 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2700 SDValue Op2 = getValue(I.getOperand(1)); 2701 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2702 Op2.getValueType(), Op2)); 2703 return; 2704 } 2705 2706 visitBinary(I, ISD::FSUB); 2707 } 2708 2709 /// Checks if the given instruction performs a vector reduction, in which case 2710 /// we have the freedom to alter the elements in the result as long as the 2711 /// reduction of them stays unchanged. 2712 static bool isVectorReductionOp(const User *I) { 2713 const Instruction *Inst = dyn_cast<Instruction>(I); 2714 if (!Inst || !Inst->getType()->isVectorTy()) 2715 return false; 2716 2717 auto OpCode = Inst->getOpcode(); 2718 switch (OpCode) { 2719 case Instruction::Add: 2720 case Instruction::Mul: 2721 case Instruction::And: 2722 case Instruction::Or: 2723 case Instruction::Xor: 2724 break; 2725 case Instruction::FAdd: 2726 case Instruction::FMul: 2727 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2728 if (FPOp->getFastMathFlags().isFast()) 2729 break; 2730 LLVM_FALLTHROUGH; 2731 default: 2732 return false; 2733 } 2734 2735 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2736 // Ensure the reduction size is a power of 2. 2737 if (!isPowerOf2_32(ElemNum)) 2738 return false; 2739 2740 unsigned ElemNumToReduce = ElemNum; 2741 2742 // Do DFS search on the def-use chain from the given instruction. We only 2743 // allow four kinds of operations during the search until we reach the 2744 // instruction that extracts the first element from the vector: 2745 // 2746 // 1. The reduction operation of the same opcode as the given instruction. 2747 // 2748 // 2. PHI node. 2749 // 2750 // 3. ShuffleVector instruction together with a reduction operation that 2751 // does a partial reduction. 2752 // 2753 // 4. ExtractElement that extracts the first element from the vector, and we 2754 // stop searching the def-use chain here. 2755 // 2756 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2757 // from 1-3 to the stack to continue the DFS. The given instruction is not 2758 // a reduction operation if we meet any other instructions other than those 2759 // listed above. 2760 2761 SmallVector<const User *, 16> UsersToVisit{Inst}; 2762 SmallPtrSet<const User *, 16> Visited; 2763 bool ReduxExtracted = false; 2764 2765 while (!UsersToVisit.empty()) { 2766 auto User = UsersToVisit.back(); 2767 UsersToVisit.pop_back(); 2768 if (!Visited.insert(User).second) 2769 continue; 2770 2771 for (const auto &U : User->users()) { 2772 auto Inst = dyn_cast<Instruction>(U); 2773 if (!Inst) 2774 return false; 2775 2776 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2777 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2778 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2779 return false; 2780 UsersToVisit.push_back(U); 2781 } else if (const ShuffleVectorInst *ShufInst = 2782 dyn_cast<ShuffleVectorInst>(U)) { 2783 // Detect the following pattern: A ShuffleVector instruction together 2784 // with a reduction that do partial reduction on the first and second 2785 // ElemNumToReduce / 2 elements, and store the result in 2786 // ElemNumToReduce / 2 elements in another vector. 2787 2788 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2789 if (ResultElements < ElemNum) 2790 return false; 2791 2792 if (ElemNumToReduce == 1) 2793 return false; 2794 if (!isa<UndefValue>(U->getOperand(1))) 2795 return false; 2796 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2797 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2798 return false; 2799 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2800 if (ShufInst->getMaskValue(i) != -1) 2801 return false; 2802 2803 // There is only one user of this ShuffleVector instruction, which 2804 // must be a reduction operation. 2805 if (!U->hasOneUse()) 2806 return false; 2807 2808 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2809 if (!U2 || U2->getOpcode() != OpCode) 2810 return false; 2811 2812 // Check operands of the reduction operation. 2813 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2814 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2815 UsersToVisit.push_back(U2); 2816 ElemNumToReduce /= 2; 2817 } else 2818 return false; 2819 } else if (isa<ExtractElementInst>(U)) { 2820 // At this moment we should have reduced all elements in the vector. 2821 if (ElemNumToReduce != 1) 2822 return false; 2823 2824 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2825 if (!Val || !Val->isZero()) 2826 return false; 2827 2828 ReduxExtracted = true; 2829 } else 2830 return false; 2831 } 2832 } 2833 return ReduxExtracted; 2834 } 2835 2836 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 2837 SDNodeFlags Flags; 2838 2839 SDValue Op = getValue(I.getOperand(0)); 2840 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 2841 Op, Flags); 2842 setValue(&I, UnNodeValue); 2843 } 2844 2845 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2846 SDNodeFlags Flags; 2847 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2848 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2849 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2850 } 2851 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2852 Flags.setExact(ExactOp->isExact()); 2853 } 2854 if (isVectorReductionOp(&I)) { 2855 Flags.setVectorReduction(true); 2856 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2857 } 2858 2859 SDValue Op1 = getValue(I.getOperand(0)); 2860 SDValue Op2 = getValue(I.getOperand(1)); 2861 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2862 Op1, Op2, Flags); 2863 setValue(&I, BinNodeValue); 2864 } 2865 2866 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2867 SDValue Op1 = getValue(I.getOperand(0)); 2868 SDValue Op2 = getValue(I.getOperand(1)); 2869 2870 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2871 Op1.getValueType(), DAG.getDataLayout()); 2872 2873 // Coerce the shift amount to the right type if we can. 2874 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2875 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2876 unsigned Op2Size = Op2.getValueSizeInBits(); 2877 SDLoc DL = getCurSDLoc(); 2878 2879 // If the operand is smaller than the shift count type, promote it. 2880 if (ShiftSize > Op2Size) 2881 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2882 2883 // If the operand is larger than the shift count type but the shift 2884 // count type has enough bits to represent any shift value, truncate 2885 // it now. This is a common case and it exposes the truncate to 2886 // optimization early. 2887 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2888 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2889 // Otherwise we'll need to temporarily settle for some other convenient 2890 // type. Type legalization will make adjustments once the shiftee is split. 2891 else 2892 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2893 } 2894 2895 bool nuw = false; 2896 bool nsw = false; 2897 bool exact = false; 2898 2899 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2900 2901 if (const OverflowingBinaryOperator *OFBinOp = 2902 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2903 nuw = OFBinOp->hasNoUnsignedWrap(); 2904 nsw = OFBinOp->hasNoSignedWrap(); 2905 } 2906 if (const PossiblyExactOperator *ExactOp = 2907 dyn_cast<const PossiblyExactOperator>(&I)) 2908 exact = ExactOp->isExact(); 2909 } 2910 SDNodeFlags Flags; 2911 Flags.setExact(exact); 2912 Flags.setNoSignedWrap(nsw); 2913 Flags.setNoUnsignedWrap(nuw); 2914 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2915 Flags); 2916 setValue(&I, Res); 2917 } 2918 2919 void SelectionDAGBuilder::visitSDiv(const User &I) { 2920 SDValue Op1 = getValue(I.getOperand(0)); 2921 SDValue Op2 = getValue(I.getOperand(1)); 2922 2923 SDNodeFlags Flags; 2924 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2925 cast<PossiblyExactOperator>(&I)->isExact()); 2926 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2927 Op2, Flags)); 2928 } 2929 2930 void SelectionDAGBuilder::visitICmp(const User &I) { 2931 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2932 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2933 predicate = IC->getPredicate(); 2934 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2935 predicate = ICmpInst::Predicate(IC->getPredicate()); 2936 SDValue Op1 = getValue(I.getOperand(0)); 2937 SDValue Op2 = getValue(I.getOperand(1)); 2938 ISD::CondCode Opcode = getICmpCondCode(predicate); 2939 2940 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2941 I.getType()); 2942 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2943 } 2944 2945 void SelectionDAGBuilder::visitFCmp(const User &I) { 2946 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2947 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2948 predicate = FC->getPredicate(); 2949 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2950 predicate = FCmpInst::Predicate(FC->getPredicate()); 2951 SDValue Op1 = getValue(I.getOperand(0)); 2952 SDValue Op2 = getValue(I.getOperand(1)); 2953 2954 ISD::CondCode Condition = getFCmpCondCode(predicate); 2955 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2956 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2957 Condition = getFCmpCodeWithoutNaN(Condition); 2958 2959 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2960 I.getType()); 2961 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2962 } 2963 2964 // Check if the condition of the select has one use or two users that are both 2965 // selects with the same condition. 2966 static bool hasOnlySelectUsers(const Value *Cond) { 2967 return llvm::all_of(Cond->users(), [](const Value *V) { 2968 return isa<SelectInst>(V); 2969 }); 2970 } 2971 2972 void SelectionDAGBuilder::visitSelect(const User &I) { 2973 SmallVector<EVT, 4> ValueVTs; 2974 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2975 ValueVTs); 2976 unsigned NumValues = ValueVTs.size(); 2977 if (NumValues == 0) return; 2978 2979 SmallVector<SDValue, 4> Values(NumValues); 2980 SDValue Cond = getValue(I.getOperand(0)); 2981 SDValue LHSVal = getValue(I.getOperand(1)); 2982 SDValue RHSVal = getValue(I.getOperand(2)); 2983 auto BaseOps = {Cond}; 2984 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2985 ISD::VSELECT : ISD::SELECT; 2986 2987 // Min/max matching is only viable if all output VTs are the same. 2988 if (is_splat(ValueVTs)) { 2989 EVT VT = ValueVTs[0]; 2990 LLVMContext &Ctx = *DAG.getContext(); 2991 auto &TLI = DAG.getTargetLoweringInfo(); 2992 2993 // We care about the legality of the operation after it has been type 2994 // legalized. 2995 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2996 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2997 VT = TLI.getTypeToTransformTo(Ctx, VT); 2998 2999 // If the vselect is legal, assume we want to leave this as a vector setcc + 3000 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3001 // min/max is legal on the scalar type. 3002 bool UseScalarMinMax = VT.isVector() && 3003 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3004 3005 Value *LHS, *RHS; 3006 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3007 ISD::NodeType Opc = ISD::DELETED_NODE; 3008 switch (SPR.Flavor) { 3009 case SPF_UMAX: Opc = ISD::UMAX; break; 3010 case SPF_UMIN: Opc = ISD::UMIN; break; 3011 case SPF_SMAX: Opc = ISD::SMAX; break; 3012 case SPF_SMIN: Opc = ISD::SMIN; break; 3013 case SPF_FMINNUM: 3014 switch (SPR.NaNBehavior) { 3015 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3016 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3017 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3018 case SPNB_RETURNS_ANY: { 3019 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3020 Opc = ISD::FMINNUM; 3021 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3022 Opc = ISD::FMINIMUM; 3023 else if (UseScalarMinMax) 3024 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3025 ISD::FMINNUM : ISD::FMINIMUM; 3026 break; 3027 } 3028 } 3029 break; 3030 case SPF_FMAXNUM: 3031 switch (SPR.NaNBehavior) { 3032 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3033 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3034 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3035 case SPNB_RETURNS_ANY: 3036 3037 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3038 Opc = ISD::FMAXNUM; 3039 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3040 Opc = ISD::FMAXIMUM; 3041 else if (UseScalarMinMax) 3042 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3043 ISD::FMAXNUM : ISD::FMAXIMUM; 3044 break; 3045 } 3046 break; 3047 default: break; 3048 } 3049 3050 if (Opc != ISD::DELETED_NODE && 3051 (TLI.isOperationLegalOrCustom(Opc, VT) || 3052 (UseScalarMinMax && 3053 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3054 // If the underlying comparison instruction is used by any other 3055 // instruction, the consumed instructions won't be destroyed, so it is 3056 // not profitable to convert to a min/max. 3057 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3058 OpCode = Opc; 3059 LHSVal = getValue(LHS); 3060 RHSVal = getValue(RHS); 3061 BaseOps = {}; 3062 } 3063 } 3064 3065 for (unsigned i = 0; i != NumValues; ++i) { 3066 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3067 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3068 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3069 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3070 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3071 Ops); 3072 } 3073 3074 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3075 DAG.getVTList(ValueVTs), Values)); 3076 } 3077 3078 void SelectionDAGBuilder::visitTrunc(const User &I) { 3079 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3080 SDValue N = getValue(I.getOperand(0)); 3081 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3082 I.getType()); 3083 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3084 } 3085 3086 void SelectionDAGBuilder::visitZExt(const User &I) { 3087 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3088 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3089 SDValue N = getValue(I.getOperand(0)); 3090 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3091 I.getType()); 3092 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3093 } 3094 3095 void SelectionDAGBuilder::visitSExt(const User &I) { 3096 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3097 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3098 SDValue N = getValue(I.getOperand(0)); 3099 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3100 I.getType()); 3101 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3102 } 3103 3104 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3105 // FPTrunc is never a no-op cast, no need to check 3106 SDValue N = getValue(I.getOperand(0)); 3107 SDLoc dl = getCurSDLoc(); 3108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3109 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3110 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3111 DAG.getTargetConstant( 3112 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3113 } 3114 3115 void SelectionDAGBuilder::visitFPExt(const User &I) { 3116 // FPExt is never a no-op cast, no need to check 3117 SDValue N = getValue(I.getOperand(0)); 3118 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3119 I.getType()); 3120 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3121 } 3122 3123 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3124 // FPToUI is never a no-op cast, no need to check 3125 SDValue N = getValue(I.getOperand(0)); 3126 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3127 I.getType()); 3128 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3129 } 3130 3131 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3132 // FPToSI is never a no-op cast, no need to check 3133 SDValue N = getValue(I.getOperand(0)); 3134 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3135 I.getType()); 3136 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3137 } 3138 3139 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3140 // UIToFP is never a no-op cast, no need to check 3141 SDValue N = getValue(I.getOperand(0)); 3142 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3143 I.getType()); 3144 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3145 } 3146 3147 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3148 // SIToFP is never a no-op cast, no need to check 3149 SDValue N = getValue(I.getOperand(0)); 3150 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3151 I.getType()); 3152 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3153 } 3154 3155 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3156 // What to do depends on the size of the integer and the size of the pointer. 3157 // We can either truncate, zero extend, or no-op, accordingly. 3158 SDValue N = getValue(I.getOperand(0)); 3159 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3160 I.getType()); 3161 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3162 } 3163 3164 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3165 // What to do depends on the size of the integer and the size of the pointer. 3166 // We can either truncate, zero extend, or no-op, accordingly. 3167 SDValue N = getValue(I.getOperand(0)); 3168 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3169 I.getType()); 3170 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3171 } 3172 3173 void SelectionDAGBuilder::visitBitCast(const User &I) { 3174 SDValue N = getValue(I.getOperand(0)); 3175 SDLoc dl = getCurSDLoc(); 3176 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3177 I.getType()); 3178 3179 // BitCast assures us that source and destination are the same size so this is 3180 // either a BITCAST or a no-op. 3181 if (DestVT != N.getValueType()) 3182 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3183 DestVT, N)); // convert types. 3184 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3185 // might fold any kind of constant expression to an integer constant and that 3186 // is not what we are looking for. Only recognize a bitcast of a genuine 3187 // constant integer as an opaque constant. 3188 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3189 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3190 /*isOpaque*/true)); 3191 else 3192 setValue(&I, N); // noop cast. 3193 } 3194 3195 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3196 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3197 const Value *SV = I.getOperand(0); 3198 SDValue N = getValue(SV); 3199 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3200 3201 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3202 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3203 3204 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3205 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3206 3207 setValue(&I, N); 3208 } 3209 3210 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3211 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3212 SDValue InVec = getValue(I.getOperand(0)); 3213 SDValue InVal = getValue(I.getOperand(1)); 3214 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3215 TLI.getVectorIdxTy(DAG.getDataLayout())); 3216 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3217 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3218 InVec, InVal, InIdx)); 3219 } 3220 3221 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3223 SDValue InVec = getValue(I.getOperand(0)); 3224 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3225 TLI.getVectorIdxTy(DAG.getDataLayout())); 3226 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3227 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3228 InVec, InIdx)); 3229 } 3230 3231 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3232 SDValue Src1 = getValue(I.getOperand(0)); 3233 SDValue Src2 = getValue(I.getOperand(1)); 3234 SDLoc DL = getCurSDLoc(); 3235 3236 SmallVector<int, 8> Mask; 3237 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3238 unsigned MaskNumElts = Mask.size(); 3239 3240 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3241 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3242 EVT SrcVT = Src1.getValueType(); 3243 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3244 3245 if (SrcNumElts == MaskNumElts) { 3246 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3247 return; 3248 } 3249 3250 // Normalize the shuffle vector since mask and vector length don't match. 3251 if (SrcNumElts < MaskNumElts) { 3252 // Mask is longer than the source vectors. We can use concatenate vector to 3253 // make the mask and vectors lengths match. 3254 3255 if (MaskNumElts % SrcNumElts == 0) { 3256 // Mask length is a multiple of the source vector length. 3257 // Check if the shuffle is some kind of concatenation of the input 3258 // vectors. 3259 unsigned NumConcat = MaskNumElts / SrcNumElts; 3260 bool IsConcat = true; 3261 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3262 for (unsigned i = 0; i != MaskNumElts; ++i) { 3263 int Idx = Mask[i]; 3264 if (Idx < 0) 3265 continue; 3266 // Ensure the indices in each SrcVT sized piece are sequential and that 3267 // the same source is used for the whole piece. 3268 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3269 (ConcatSrcs[i / SrcNumElts] >= 0 && 3270 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3271 IsConcat = false; 3272 break; 3273 } 3274 // Remember which source this index came from. 3275 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3276 } 3277 3278 // The shuffle is concatenating multiple vectors together. Just emit 3279 // a CONCAT_VECTORS operation. 3280 if (IsConcat) { 3281 SmallVector<SDValue, 8> ConcatOps; 3282 for (auto Src : ConcatSrcs) { 3283 if (Src < 0) 3284 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3285 else if (Src == 0) 3286 ConcatOps.push_back(Src1); 3287 else 3288 ConcatOps.push_back(Src2); 3289 } 3290 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3291 return; 3292 } 3293 } 3294 3295 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3296 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3297 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3298 PaddedMaskNumElts); 3299 3300 // Pad both vectors with undefs to make them the same length as the mask. 3301 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3302 3303 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3304 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3305 MOps1[0] = Src1; 3306 MOps2[0] = Src2; 3307 3308 Src1 = Src1.isUndef() 3309 ? DAG.getUNDEF(PaddedVT) 3310 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3311 Src2 = Src2.isUndef() 3312 ? DAG.getUNDEF(PaddedVT) 3313 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3314 3315 // Readjust mask for new input vector length. 3316 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3317 for (unsigned i = 0; i != MaskNumElts; ++i) { 3318 int Idx = Mask[i]; 3319 if (Idx >= (int)SrcNumElts) 3320 Idx -= SrcNumElts - PaddedMaskNumElts; 3321 MappedOps[i] = Idx; 3322 } 3323 3324 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3325 3326 // If the concatenated vector was padded, extract a subvector with the 3327 // correct number of elements. 3328 if (MaskNumElts != PaddedMaskNumElts) 3329 Result = DAG.getNode( 3330 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3331 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3332 3333 setValue(&I, Result); 3334 return; 3335 } 3336 3337 if (SrcNumElts > MaskNumElts) { 3338 // Analyze the access pattern of the vector to see if we can extract 3339 // two subvectors and do the shuffle. 3340 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3341 bool CanExtract = true; 3342 for (int Idx : Mask) { 3343 unsigned Input = 0; 3344 if (Idx < 0) 3345 continue; 3346 3347 if (Idx >= (int)SrcNumElts) { 3348 Input = 1; 3349 Idx -= SrcNumElts; 3350 } 3351 3352 // If all the indices come from the same MaskNumElts sized portion of 3353 // the sources we can use extract. Also make sure the extract wouldn't 3354 // extract past the end of the source. 3355 int NewStartIdx = alignDown(Idx, MaskNumElts); 3356 if (NewStartIdx + MaskNumElts > SrcNumElts || 3357 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3358 CanExtract = false; 3359 // Make sure we always update StartIdx as we use it to track if all 3360 // elements are undef. 3361 StartIdx[Input] = NewStartIdx; 3362 } 3363 3364 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3365 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3366 return; 3367 } 3368 if (CanExtract) { 3369 // Extract appropriate subvector and generate a vector shuffle 3370 for (unsigned Input = 0; Input < 2; ++Input) { 3371 SDValue &Src = Input == 0 ? Src1 : Src2; 3372 if (StartIdx[Input] < 0) 3373 Src = DAG.getUNDEF(VT); 3374 else { 3375 Src = DAG.getNode( 3376 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3377 DAG.getConstant(StartIdx[Input], DL, 3378 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3379 } 3380 } 3381 3382 // Calculate new mask. 3383 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3384 for (int &Idx : MappedOps) { 3385 if (Idx >= (int)SrcNumElts) 3386 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3387 else if (Idx >= 0) 3388 Idx -= StartIdx[0]; 3389 } 3390 3391 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3392 return; 3393 } 3394 } 3395 3396 // We can't use either concat vectors or extract subvectors so fall back to 3397 // replacing the shuffle with extract and build vector. 3398 // to insert and build vector. 3399 EVT EltVT = VT.getVectorElementType(); 3400 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3401 SmallVector<SDValue,8> Ops; 3402 for (int Idx : Mask) { 3403 SDValue Res; 3404 3405 if (Idx < 0) { 3406 Res = DAG.getUNDEF(EltVT); 3407 } else { 3408 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3409 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3410 3411 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3412 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3413 } 3414 3415 Ops.push_back(Res); 3416 } 3417 3418 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3419 } 3420 3421 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3422 ArrayRef<unsigned> Indices; 3423 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3424 Indices = IV->getIndices(); 3425 else 3426 Indices = cast<ConstantExpr>(&I)->getIndices(); 3427 3428 const Value *Op0 = I.getOperand(0); 3429 const Value *Op1 = I.getOperand(1); 3430 Type *AggTy = I.getType(); 3431 Type *ValTy = Op1->getType(); 3432 bool IntoUndef = isa<UndefValue>(Op0); 3433 bool FromUndef = isa<UndefValue>(Op1); 3434 3435 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3436 3437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3438 SmallVector<EVT, 4> AggValueVTs; 3439 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3440 SmallVector<EVT, 4> ValValueVTs; 3441 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3442 3443 unsigned NumAggValues = AggValueVTs.size(); 3444 unsigned NumValValues = ValValueVTs.size(); 3445 SmallVector<SDValue, 4> Values(NumAggValues); 3446 3447 // Ignore an insertvalue that produces an empty object 3448 if (!NumAggValues) { 3449 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3450 return; 3451 } 3452 3453 SDValue Agg = getValue(Op0); 3454 unsigned i = 0; 3455 // Copy the beginning value(s) from the original aggregate. 3456 for (; i != LinearIndex; ++i) 3457 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3458 SDValue(Agg.getNode(), Agg.getResNo() + i); 3459 // Copy values from the inserted value(s). 3460 if (NumValValues) { 3461 SDValue Val = getValue(Op1); 3462 for (; i != LinearIndex + NumValValues; ++i) 3463 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3464 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3465 } 3466 // Copy remaining value(s) from the original aggregate. 3467 for (; i != NumAggValues; ++i) 3468 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3469 SDValue(Agg.getNode(), Agg.getResNo() + i); 3470 3471 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3472 DAG.getVTList(AggValueVTs), Values)); 3473 } 3474 3475 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3476 ArrayRef<unsigned> Indices; 3477 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3478 Indices = EV->getIndices(); 3479 else 3480 Indices = cast<ConstantExpr>(&I)->getIndices(); 3481 3482 const Value *Op0 = I.getOperand(0); 3483 Type *AggTy = Op0->getType(); 3484 Type *ValTy = I.getType(); 3485 bool OutOfUndef = isa<UndefValue>(Op0); 3486 3487 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3488 3489 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3490 SmallVector<EVT, 4> ValValueVTs; 3491 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3492 3493 unsigned NumValValues = ValValueVTs.size(); 3494 3495 // Ignore a extractvalue that produces an empty object 3496 if (!NumValValues) { 3497 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3498 return; 3499 } 3500 3501 SmallVector<SDValue, 4> Values(NumValValues); 3502 3503 SDValue Agg = getValue(Op0); 3504 // Copy out the selected value(s). 3505 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3506 Values[i - LinearIndex] = 3507 OutOfUndef ? 3508 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3509 SDValue(Agg.getNode(), Agg.getResNo() + i); 3510 3511 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3512 DAG.getVTList(ValValueVTs), Values)); 3513 } 3514 3515 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3516 Value *Op0 = I.getOperand(0); 3517 // Note that the pointer operand may be a vector of pointers. Take the scalar 3518 // element which holds a pointer. 3519 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3520 SDValue N = getValue(Op0); 3521 SDLoc dl = getCurSDLoc(); 3522 3523 // Normalize Vector GEP - all scalar operands should be converted to the 3524 // splat vector. 3525 unsigned VectorWidth = I.getType()->isVectorTy() ? 3526 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3527 3528 if (VectorWidth && !N.getValueType().isVector()) { 3529 LLVMContext &Context = *DAG.getContext(); 3530 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3531 N = DAG.getSplatBuildVector(VT, dl, N); 3532 } 3533 3534 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3535 GTI != E; ++GTI) { 3536 const Value *Idx = GTI.getOperand(); 3537 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3538 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3539 if (Field) { 3540 // N = N + Offset 3541 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3542 3543 // In an inbounds GEP with an offset that is nonnegative even when 3544 // interpreted as signed, assume there is no unsigned overflow. 3545 SDNodeFlags Flags; 3546 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3547 Flags.setNoUnsignedWrap(true); 3548 3549 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3550 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3551 } 3552 } else { 3553 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3554 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3555 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3556 3557 // If this is a scalar constant or a splat vector of constants, 3558 // handle it quickly. 3559 const auto *CI = dyn_cast<ConstantInt>(Idx); 3560 if (!CI && isa<ConstantDataVector>(Idx) && 3561 cast<ConstantDataVector>(Idx)->getSplatValue()) 3562 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3563 3564 if (CI) { 3565 if (CI->isZero()) 3566 continue; 3567 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3568 LLVMContext &Context = *DAG.getContext(); 3569 SDValue OffsVal = VectorWidth ? 3570 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3571 DAG.getConstant(Offs, dl, IdxTy); 3572 3573 // In an inbouds GEP with an offset that is nonnegative even when 3574 // interpreted as signed, assume there is no unsigned overflow. 3575 SDNodeFlags Flags; 3576 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3577 Flags.setNoUnsignedWrap(true); 3578 3579 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3580 continue; 3581 } 3582 3583 // N = N + Idx * ElementSize; 3584 SDValue IdxN = getValue(Idx); 3585 3586 if (!IdxN.getValueType().isVector() && VectorWidth) { 3587 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3588 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3589 } 3590 3591 // If the index is smaller or larger than intptr_t, truncate or extend 3592 // it. 3593 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3594 3595 // If this is a multiply by a power of two, turn it into a shl 3596 // immediately. This is a very common case. 3597 if (ElementSize != 1) { 3598 if (ElementSize.isPowerOf2()) { 3599 unsigned Amt = ElementSize.logBase2(); 3600 IdxN = DAG.getNode(ISD::SHL, dl, 3601 N.getValueType(), IdxN, 3602 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3603 } else { 3604 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3605 IdxN = DAG.getNode(ISD::MUL, dl, 3606 N.getValueType(), IdxN, Scale); 3607 } 3608 } 3609 3610 N = DAG.getNode(ISD::ADD, dl, 3611 N.getValueType(), N, IdxN); 3612 } 3613 } 3614 3615 setValue(&I, N); 3616 } 3617 3618 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3619 // If this is a fixed sized alloca in the entry block of the function, 3620 // allocate it statically on the stack. 3621 if (FuncInfo.StaticAllocaMap.count(&I)) 3622 return; // getValue will auto-populate this. 3623 3624 SDLoc dl = getCurSDLoc(); 3625 Type *Ty = I.getAllocatedType(); 3626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3627 auto &DL = DAG.getDataLayout(); 3628 uint64_t TySize = DL.getTypeAllocSize(Ty); 3629 unsigned Align = 3630 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3631 3632 SDValue AllocSize = getValue(I.getArraySize()); 3633 3634 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3635 if (AllocSize.getValueType() != IntPtr) 3636 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3637 3638 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3639 AllocSize, 3640 DAG.getConstant(TySize, dl, IntPtr)); 3641 3642 // Handle alignment. If the requested alignment is less than or equal to 3643 // the stack alignment, ignore it. If the size is greater than or equal to 3644 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3645 unsigned StackAlign = 3646 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3647 if (Align <= StackAlign) 3648 Align = 0; 3649 3650 // Round the size of the allocation up to the stack alignment size 3651 // by add SA-1 to the size. This doesn't overflow because we're computing 3652 // an address inside an alloca. 3653 SDNodeFlags Flags; 3654 Flags.setNoUnsignedWrap(true); 3655 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3656 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3657 3658 // Mask out the low bits for alignment purposes. 3659 AllocSize = 3660 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3661 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3662 3663 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3664 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3665 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3666 setValue(&I, DSA); 3667 DAG.setRoot(DSA.getValue(1)); 3668 3669 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3670 } 3671 3672 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3673 if (I.isAtomic()) 3674 return visitAtomicLoad(I); 3675 3676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3677 const Value *SV = I.getOperand(0); 3678 if (TLI.supportSwiftError()) { 3679 // Swifterror values can come from either a function parameter with 3680 // swifterror attribute or an alloca with swifterror attribute. 3681 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3682 if (Arg->hasSwiftErrorAttr()) 3683 return visitLoadFromSwiftError(I); 3684 } 3685 3686 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3687 if (Alloca->isSwiftError()) 3688 return visitLoadFromSwiftError(I); 3689 } 3690 } 3691 3692 SDValue Ptr = getValue(SV); 3693 3694 Type *Ty = I.getType(); 3695 3696 bool isVolatile = I.isVolatile(); 3697 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3698 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3699 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3700 unsigned Alignment = I.getAlignment(); 3701 3702 AAMDNodes AAInfo; 3703 I.getAAMetadata(AAInfo); 3704 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3705 3706 SmallVector<EVT, 4> ValueVTs; 3707 SmallVector<uint64_t, 4> Offsets; 3708 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3709 unsigned NumValues = ValueVTs.size(); 3710 if (NumValues == 0) 3711 return; 3712 3713 SDValue Root; 3714 bool ConstantMemory = false; 3715 if (isVolatile || NumValues > MaxParallelChains) 3716 // Serialize volatile loads with other side effects. 3717 Root = getRoot(); 3718 else if (AA && 3719 AA->pointsToConstantMemory(MemoryLocation( 3720 SV, 3721 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3722 AAInfo))) { 3723 // Do not serialize (non-volatile) loads of constant memory with anything. 3724 Root = DAG.getEntryNode(); 3725 ConstantMemory = true; 3726 } else { 3727 // Do not serialize non-volatile loads against each other. 3728 Root = DAG.getRoot(); 3729 } 3730 3731 SDLoc dl = getCurSDLoc(); 3732 3733 if (isVolatile) 3734 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3735 3736 // An aggregate load cannot wrap around the address space, so offsets to its 3737 // parts don't wrap either. 3738 SDNodeFlags Flags; 3739 Flags.setNoUnsignedWrap(true); 3740 3741 SmallVector<SDValue, 4> Values(NumValues); 3742 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3743 EVT PtrVT = Ptr.getValueType(); 3744 unsigned ChainI = 0; 3745 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3746 // Serializing loads here may result in excessive register pressure, and 3747 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3748 // could recover a bit by hoisting nodes upward in the chain by recognizing 3749 // they are side-effect free or do not alias. The optimizer should really 3750 // avoid this case by converting large object/array copies to llvm.memcpy 3751 // (MaxParallelChains should always remain as failsafe). 3752 if (ChainI == MaxParallelChains) { 3753 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3754 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3755 makeArrayRef(Chains.data(), ChainI)); 3756 Root = Chain; 3757 ChainI = 0; 3758 } 3759 SDValue A = DAG.getNode(ISD::ADD, dl, 3760 PtrVT, Ptr, 3761 DAG.getConstant(Offsets[i], dl, PtrVT), 3762 Flags); 3763 auto MMOFlags = MachineMemOperand::MONone; 3764 if (isVolatile) 3765 MMOFlags |= MachineMemOperand::MOVolatile; 3766 if (isNonTemporal) 3767 MMOFlags |= MachineMemOperand::MONonTemporal; 3768 if (isInvariant) 3769 MMOFlags |= MachineMemOperand::MOInvariant; 3770 if (isDereferenceable) 3771 MMOFlags |= MachineMemOperand::MODereferenceable; 3772 MMOFlags |= TLI.getMMOFlags(I); 3773 3774 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3775 MachinePointerInfo(SV, Offsets[i]), Alignment, 3776 MMOFlags, AAInfo, Ranges); 3777 3778 Values[i] = L; 3779 Chains[ChainI] = L.getValue(1); 3780 } 3781 3782 if (!ConstantMemory) { 3783 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3784 makeArrayRef(Chains.data(), ChainI)); 3785 if (isVolatile) 3786 DAG.setRoot(Chain); 3787 else 3788 PendingLoads.push_back(Chain); 3789 } 3790 3791 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3792 DAG.getVTList(ValueVTs), Values)); 3793 } 3794 3795 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3796 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3797 "call visitStoreToSwiftError when backend supports swifterror"); 3798 3799 SmallVector<EVT, 4> ValueVTs; 3800 SmallVector<uint64_t, 4> Offsets; 3801 const Value *SrcV = I.getOperand(0); 3802 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3803 SrcV->getType(), ValueVTs, &Offsets); 3804 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3805 "expect a single EVT for swifterror"); 3806 3807 SDValue Src = getValue(SrcV); 3808 // Create a virtual register, then update the virtual register. 3809 unsigned VReg; bool CreatedVReg; 3810 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3811 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3812 // Chain can be getRoot or getControlRoot. 3813 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3814 SDValue(Src.getNode(), Src.getResNo())); 3815 DAG.setRoot(CopyNode); 3816 if (CreatedVReg) 3817 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3818 } 3819 3820 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3821 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3822 "call visitLoadFromSwiftError when backend supports swifterror"); 3823 3824 assert(!I.isVolatile() && 3825 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3826 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3827 "Support volatile, non temporal, invariant for load_from_swift_error"); 3828 3829 const Value *SV = I.getOperand(0); 3830 Type *Ty = I.getType(); 3831 AAMDNodes AAInfo; 3832 I.getAAMetadata(AAInfo); 3833 assert( 3834 (!AA || 3835 !AA->pointsToConstantMemory(MemoryLocation( 3836 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3837 AAInfo))) && 3838 "load_from_swift_error should not be constant memory"); 3839 3840 SmallVector<EVT, 4> ValueVTs; 3841 SmallVector<uint64_t, 4> Offsets; 3842 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3843 ValueVTs, &Offsets); 3844 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3845 "expect a single EVT for swifterror"); 3846 3847 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3848 SDValue L = DAG.getCopyFromReg( 3849 getRoot(), getCurSDLoc(), 3850 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3851 ValueVTs[0]); 3852 3853 setValue(&I, L); 3854 } 3855 3856 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3857 if (I.isAtomic()) 3858 return visitAtomicStore(I); 3859 3860 const Value *SrcV = I.getOperand(0); 3861 const Value *PtrV = I.getOperand(1); 3862 3863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3864 if (TLI.supportSwiftError()) { 3865 // Swifterror values can come from either a function parameter with 3866 // swifterror attribute or an alloca with swifterror attribute. 3867 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3868 if (Arg->hasSwiftErrorAttr()) 3869 return visitStoreToSwiftError(I); 3870 } 3871 3872 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3873 if (Alloca->isSwiftError()) 3874 return visitStoreToSwiftError(I); 3875 } 3876 } 3877 3878 SmallVector<EVT, 4> ValueVTs; 3879 SmallVector<uint64_t, 4> Offsets; 3880 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3881 SrcV->getType(), ValueVTs, &Offsets); 3882 unsigned NumValues = ValueVTs.size(); 3883 if (NumValues == 0) 3884 return; 3885 3886 // Get the lowered operands. Note that we do this after 3887 // checking if NumResults is zero, because with zero results 3888 // the operands won't have values in the map. 3889 SDValue Src = getValue(SrcV); 3890 SDValue Ptr = getValue(PtrV); 3891 3892 SDValue Root = getRoot(); 3893 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3894 SDLoc dl = getCurSDLoc(); 3895 EVT PtrVT = Ptr.getValueType(); 3896 unsigned Alignment = I.getAlignment(); 3897 AAMDNodes AAInfo; 3898 I.getAAMetadata(AAInfo); 3899 3900 auto MMOFlags = MachineMemOperand::MONone; 3901 if (I.isVolatile()) 3902 MMOFlags |= MachineMemOperand::MOVolatile; 3903 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3904 MMOFlags |= MachineMemOperand::MONonTemporal; 3905 MMOFlags |= TLI.getMMOFlags(I); 3906 3907 // An aggregate load cannot wrap around the address space, so offsets to its 3908 // parts don't wrap either. 3909 SDNodeFlags Flags; 3910 Flags.setNoUnsignedWrap(true); 3911 3912 unsigned ChainI = 0; 3913 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3914 // See visitLoad comments. 3915 if (ChainI == MaxParallelChains) { 3916 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3917 makeArrayRef(Chains.data(), ChainI)); 3918 Root = Chain; 3919 ChainI = 0; 3920 } 3921 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3922 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3923 SDValue St = DAG.getStore( 3924 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3925 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3926 Chains[ChainI] = St; 3927 } 3928 3929 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3930 makeArrayRef(Chains.data(), ChainI)); 3931 DAG.setRoot(StoreNode); 3932 } 3933 3934 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3935 bool IsCompressing) { 3936 SDLoc sdl = getCurSDLoc(); 3937 3938 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3939 unsigned& Alignment) { 3940 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3941 Src0 = I.getArgOperand(0); 3942 Ptr = I.getArgOperand(1); 3943 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3944 Mask = I.getArgOperand(3); 3945 }; 3946 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3947 unsigned& Alignment) { 3948 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3949 Src0 = I.getArgOperand(0); 3950 Ptr = I.getArgOperand(1); 3951 Mask = I.getArgOperand(2); 3952 Alignment = 0; 3953 }; 3954 3955 Value *PtrOperand, *MaskOperand, *Src0Operand; 3956 unsigned Alignment; 3957 if (IsCompressing) 3958 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3959 else 3960 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3961 3962 SDValue Ptr = getValue(PtrOperand); 3963 SDValue Src0 = getValue(Src0Operand); 3964 SDValue Mask = getValue(MaskOperand); 3965 3966 EVT VT = Src0.getValueType(); 3967 if (!Alignment) 3968 Alignment = DAG.getEVTAlignment(VT); 3969 3970 AAMDNodes AAInfo; 3971 I.getAAMetadata(AAInfo); 3972 3973 MachineMemOperand *MMO = 3974 DAG.getMachineFunction(). 3975 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3976 MachineMemOperand::MOStore, VT.getStoreSize(), 3977 Alignment, AAInfo); 3978 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3979 MMO, false /* Truncating */, 3980 IsCompressing); 3981 DAG.setRoot(StoreNode); 3982 setValue(&I, StoreNode); 3983 } 3984 3985 // Get a uniform base for the Gather/Scatter intrinsic. 3986 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3987 // We try to represent it as a base pointer + vector of indices. 3988 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3989 // The first operand of the GEP may be a single pointer or a vector of pointers 3990 // Example: 3991 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3992 // or 3993 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3994 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3995 // 3996 // When the first GEP operand is a single pointer - it is the uniform base we 3997 // are looking for. If first operand of the GEP is a splat vector - we 3998 // extract the splat value and use it as a uniform base. 3999 // In all other cases the function returns 'false'. 4000 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4001 SDValue &Scale, SelectionDAGBuilder* SDB) { 4002 SelectionDAG& DAG = SDB->DAG; 4003 LLVMContext &Context = *DAG.getContext(); 4004 4005 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4006 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4007 if (!GEP) 4008 return false; 4009 4010 const Value *GEPPtr = GEP->getPointerOperand(); 4011 if (!GEPPtr->getType()->isVectorTy()) 4012 Ptr = GEPPtr; 4013 else if (!(Ptr = getSplatValue(GEPPtr))) 4014 return false; 4015 4016 unsigned FinalIndex = GEP->getNumOperands() - 1; 4017 Value *IndexVal = GEP->getOperand(FinalIndex); 4018 4019 // Ensure all the other indices are 0. 4020 for (unsigned i = 1; i < FinalIndex; ++i) { 4021 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4022 if (!C || !C->isZero()) 4023 return false; 4024 } 4025 4026 // The operands of the GEP may be defined in another basic block. 4027 // In this case we'll not find nodes for the operands. 4028 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4029 return false; 4030 4031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4032 const DataLayout &DL = DAG.getDataLayout(); 4033 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4034 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4035 Base = SDB->getValue(Ptr); 4036 Index = SDB->getValue(IndexVal); 4037 4038 if (!Index.getValueType().isVector()) { 4039 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4040 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4041 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4042 } 4043 return true; 4044 } 4045 4046 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4047 SDLoc sdl = getCurSDLoc(); 4048 4049 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4050 const Value *Ptr = I.getArgOperand(1); 4051 SDValue Src0 = getValue(I.getArgOperand(0)); 4052 SDValue Mask = getValue(I.getArgOperand(3)); 4053 EVT VT = Src0.getValueType(); 4054 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4055 if (!Alignment) 4056 Alignment = DAG.getEVTAlignment(VT); 4057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4058 4059 AAMDNodes AAInfo; 4060 I.getAAMetadata(AAInfo); 4061 4062 SDValue Base; 4063 SDValue Index; 4064 SDValue Scale; 4065 const Value *BasePtr = Ptr; 4066 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4067 4068 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4069 MachineMemOperand *MMO = DAG.getMachineFunction(). 4070 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4071 MachineMemOperand::MOStore, VT.getStoreSize(), 4072 Alignment, AAInfo); 4073 if (!UniformBase) { 4074 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4075 Index = getValue(Ptr); 4076 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4077 } 4078 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4079 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4080 Ops, MMO); 4081 DAG.setRoot(Scatter); 4082 setValue(&I, Scatter); 4083 } 4084 4085 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4086 SDLoc sdl = getCurSDLoc(); 4087 4088 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4089 unsigned& Alignment) { 4090 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4091 Ptr = I.getArgOperand(0); 4092 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4093 Mask = I.getArgOperand(2); 4094 Src0 = I.getArgOperand(3); 4095 }; 4096 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4097 unsigned& Alignment) { 4098 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4099 Ptr = I.getArgOperand(0); 4100 Alignment = 0; 4101 Mask = I.getArgOperand(1); 4102 Src0 = I.getArgOperand(2); 4103 }; 4104 4105 Value *PtrOperand, *MaskOperand, *Src0Operand; 4106 unsigned Alignment; 4107 if (IsExpanding) 4108 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4109 else 4110 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4111 4112 SDValue Ptr = getValue(PtrOperand); 4113 SDValue Src0 = getValue(Src0Operand); 4114 SDValue Mask = getValue(MaskOperand); 4115 4116 EVT VT = Src0.getValueType(); 4117 if (!Alignment) 4118 Alignment = DAG.getEVTAlignment(VT); 4119 4120 AAMDNodes AAInfo; 4121 I.getAAMetadata(AAInfo); 4122 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4123 4124 // Do not serialize masked loads of constant memory with anything. 4125 bool AddToChain = 4126 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4127 PtrOperand, 4128 LocationSize::precise( 4129 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4130 AAInfo)); 4131 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4132 4133 MachineMemOperand *MMO = 4134 DAG.getMachineFunction(). 4135 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4136 MachineMemOperand::MOLoad, VT.getStoreSize(), 4137 Alignment, AAInfo, Ranges); 4138 4139 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4140 ISD::NON_EXTLOAD, IsExpanding); 4141 if (AddToChain) 4142 PendingLoads.push_back(Load.getValue(1)); 4143 setValue(&I, Load); 4144 } 4145 4146 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4147 SDLoc sdl = getCurSDLoc(); 4148 4149 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4150 const Value *Ptr = I.getArgOperand(0); 4151 SDValue Src0 = getValue(I.getArgOperand(3)); 4152 SDValue Mask = getValue(I.getArgOperand(2)); 4153 4154 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4155 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4156 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4157 if (!Alignment) 4158 Alignment = DAG.getEVTAlignment(VT); 4159 4160 AAMDNodes AAInfo; 4161 I.getAAMetadata(AAInfo); 4162 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4163 4164 SDValue Root = DAG.getRoot(); 4165 SDValue Base; 4166 SDValue Index; 4167 SDValue Scale; 4168 const Value *BasePtr = Ptr; 4169 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4170 bool ConstantMemory = false; 4171 if (UniformBase && AA && 4172 AA->pointsToConstantMemory( 4173 MemoryLocation(BasePtr, 4174 LocationSize::precise( 4175 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4176 AAInfo))) { 4177 // Do not serialize (non-volatile) loads of constant memory with anything. 4178 Root = DAG.getEntryNode(); 4179 ConstantMemory = true; 4180 } 4181 4182 MachineMemOperand *MMO = 4183 DAG.getMachineFunction(). 4184 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4185 MachineMemOperand::MOLoad, VT.getStoreSize(), 4186 Alignment, AAInfo, Ranges); 4187 4188 if (!UniformBase) { 4189 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4190 Index = getValue(Ptr); 4191 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4192 } 4193 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4194 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4195 Ops, MMO); 4196 4197 SDValue OutChain = Gather.getValue(1); 4198 if (!ConstantMemory) 4199 PendingLoads.push_back(OutChain); 4200 setValue(&I, Gather); 4201 } 4202 4203 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4204 SDLoc dl = getCurSDLoc(); 4205 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4206 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4207 SyncScope::ID SSID = I.getSyncScopeID(); 4208 4209 SDValue InChain = getRoot(); 4210 4211 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4212 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4213 SDValue L = DAG.getAtomicCmpSwap( 4214 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4215 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4216 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4217 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4218 4219 SDValue OutChain = L.getValue(2); 4220 4221 setValue(&I, L); 4222 DAG.setRoot(OutChain); 4223 } 4224 4225 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4226 SDLoc dl = getCurSDLoc(); 4227 ISD::NodeType NT; 4228 switch (I.getOperation()) { 4229 default: llvm_unreachable("Unknown atomicrmw operation"); 4230 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4231 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4232 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4233 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4234 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4235 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4236 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4237 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4238 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4239 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4240 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4241 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4242 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4243 } 4244 AtomicOrdering Order = I.getOrdering(); 4245 SyncScope::ID SSID = I.getSyncScopeID(); 4246 4247 SDValue InChain = getRoot(); 4248 4249 SDValue L = 4250 DAG.getAtomic(NT, dl, 4251 getValue(I.getValOperand()).getSimpleValueType(), 4252 InChain, 4253 getValue(I.getPointerOperand()), 4254 getValue(I.getValOperand()), 4255 I.getPointerOperand(), 4256 /* Alignment=*/ 0, Order, SSID); 4257 4258 SDValue OutChain = L.getValue(1); 4259 4260 setValue(&I, L); 4261 DAG.setRoot(OutChain); 4262 } 4263 4264 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4265 SDLoc dl = getCurSDLoc(); 4266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4267 SDValue Ops[3]; 4268 Ops[0] = getRoot(); 4269 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4270 TLI.getFenceOperandTy(DAG.getDataLayout())); 4271 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4272 TLI.getFenceOperandTy(DAG.getDataLayout())); 4273 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4274 } 4275 4276 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4277 SDLoc dl = getCurSDLoc(); 4278 AtomicOrdering Order = I.getOrdering(); 4279 SyncScope::ID SSID = I.getSyncScopeID(); 4280 4281 SDValue InChain = getRoot(); 4282 4283 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4284 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4285 4286 if (!TLI.supportsUnalignedAtomics() && 4287 I.getAlignment() < VT.getStoreSize()) 4288 report_fatal_error("Cannot generate unaligned atomic load"); 4289 4290 MachineMemOperand *MMO = 4291 DAG.getMachineFunction(). 4292 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4293 MachineMemOperand::MOVolatile | 4294 MachineMemOperand::MOLoad, 4295 VT.getStoreSize(), 4296 I.getAlignment() ? I.getAlignment() : 4297 DAG.getEVTAlignment(VT), 4298 AAMDNodes(), nullptr, SSID, Order); 4299 4300 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4301 SDValue L = 4302 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4303 getValue(I.getPointerOperand()), MMO); 4304 4305 SDValue OutChain = L.getValue(1); 4306 4307 setValue(&I, L); 4308 DAG.setRoot(OutChain); 4309 } 4310 4311 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4312 SDLoc dl = getCurSDLoc(); 4313 4314 AtomicOrdering Order = I.getOrdering(); 4315 SyncScope::ID SSID = I.getSyncScopeID(); 4316 4317 SDValue InChain = getRoot(); 4318 4319 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4320 EVT VT = 4321 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4322 4323 if (I.getAlignment() < VT.getStoreSize()) 4324 report_fatal_error("Cannot generate unaligned atomic store"); 4325 4326 SDValue OutChain = 4327 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4328 InChain, 4329 getValue(I.getPointerOperand()), 4330 getValue(I.getValueOperand()), 4331 I.getPointerOperand(), I.getAlignment(), 4332 Order, SSID); 4333 4334 DAG.setRoot(OutChain); 4335 } 4336 4337 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4338 /// node. 4339 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4340 unsigned Intrinsic) { 4341 // Ignore the callsite's attributes. A specific call site may be marked with 4342 // readnone, but the lowering code will expect the chain based on the 4343 // definition. 4344 const Function *F = I.getCalledFunction(); 4345 bool HasChain = !F->doesNotAccessMemory(); 4346 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4347 4348 // Build the operand list. 4349 SmallVector<SDValue, 8> Ops; 4350 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4351 if (OnlyLoad) { 4352 // We don't need to serialize loads against other loads. 4353 Ops.push_back(DAG.getRoot()); 4354 } else { 4355 Ops.push_back(getRoot()); 4356 } 4357 } 4358 4359 // Info is set by getTgtMemInstrinsic 4360 TargetLowering::IntrinsicInfo Info; 4361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4362 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4363 DAG.getMachineFunction(), 4364 Intrinsic); 4365 4366 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4367 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4368 Info.opc == ISD::INTRINSIC_W_CHAIN) 4369 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4370 TLI.getPointerTy(DAG.getDataLayout()))); 4371 4372 // Add all operands of the call to the operand list. 4373 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4374 SDValue Op = getValue(I.getArgOperand(i)); 4375 Ops.push_back(Op); 4376 } 4377 4378 SmallVector<EVT, 4> ValueVTs; 4379 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4380 4381 if (HasChain) 4382 ValueVTs.push_back(MVT::Other); 4383 4384 SDVTList VTs = DAG.getVTList(ValueVTs); 4385 4386 // Create the node. 4387 SDValue Result; 4388 if (IsTgtIntrinsic) { 4389 // This is target intrinsic that touches memory 4390 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4391 Ops, Info.memVT, 4392 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4393 Info.flags, Info.size); 4394 } else if (!HasChain) { 4395 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4396 } else if (!I.getType()->isVoidTy()) { 4397 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4398 } else { 4399 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4400 } 4401 4402 if (HasChain) { 4403 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4404 if (OnlyLoad) 4405 PendingLoads.push_back(Chain); 4406 else 4407 DAG.setRoot(Chain); 4408 } 4409 4410 if (!I.getType()->isVoidTy()) { 4411 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4412 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4413 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4414 } else 4415 Result = lowerRangeToAssertZExt(DAG, I, Result); 4416 4417 setValue(&I, Result); 4418 } 4419 } 4420 4421 /// GetSignificand - Get the significand and build it into a floating-point 4422 /// number with exponent of 1: 4423 /// 4424 /// Op = (Op & 0x007fffff) | 0x3f800000; 4425 /// 4426 /// where Op is the hexadecimal representation of floating point value. 4427 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4428 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4429 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4430 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4431 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4432 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4433 } 4434 4435 /// GetExponent - Get the exponent: 4436 /// 4437 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4438 /// 4439 /// where Op is the hexadecimal representation of floating point value. 4440 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4441 const TargetLowering &TLI, const SDLoc &dl) { 4442 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4443 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4444 SDValue t1 = DAG.getNode( 4445 ISD::SRL, dl, MVT::i32, t0, 4446 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4447 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4448 DAG.getConstant(127, dl, MVT::i32)); 4449 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4450 } 4451 4452 /// getF32Constant - Get 32-bit floating point constant. 4453 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4454 const SDLoc &dl) { 4455 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4456 MVT::f32); 4457 } 4458 4459 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4460 SelectionDAG &DAG) { 4461 // TODO: What fast-math-flags should be set on the floating-point nodes? 4462 4463 // IntegerPartOfX = ((int32_t)(t0); 4464 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4465 4466 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4467 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4468 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4469 4470 // IntegerPartOfX <<= 23; 4471 IntegerPartOfX = DAG.getNode( 4472 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4473 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4474 DAG.getDataLayout()))); 4475 4476 SDValue TwoToFractionalPartOfX; 4477 if (LimitFloatPrecision <= 6) { 4478 // For floating-point precision of 6: 4479 // 4480 // TwoToFractionalPartOfX = 4481 // 0.997535578f + 4482 // (0.735607626f + 0.252464424f * x) * x; 4483 // 4484 // error 0.0144103317, which is 6 bits 4485 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4486 getF32Constant(DAG, 0x3e814304, dl)); 4487 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4488 getF32Constant(DAG, 0x3f3c50c8, dl)); 4489 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4490 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4491 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4492 } else if (LimitFloatPrecision <= 12) { 4493 // For floating-point precision of 12: 4494 // 4495 // TwoToFractionalPartOfX = 4496 // 0.999892986f + 4497 // (0.696457318f + 4498 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4499 // 4500 // error 0.000107046256, which is 13 to 14 bits 4501 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4502 getF32Constant(DAG, 0x3da235e3, dl)); 4503 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4504 getF32Constant(DAG, 0x3e65b8f3, dl)); 4505 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4506 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4507 getF32Constant(DAG, 0x3f324b07, dl)); 4508 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4509 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4510 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4511 } else { // LimitFloatPrecision <= 18 4512 // For floating-point precision of 18: 4513 // 4514 // TwoToFractionalPartOfX = 4515 // 0.999999982f + 4516 // (0.693148872f + 4517 // (0.240227044f + 4518 // (0.554906021e-1f + 4519 // (0.961591928e-2f + 4520 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4521 // error 2.47208000*10^(-7), which is better than 18 bits 4522 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4523 getF32Constant(DAG, 0x3924b03e, dl)); 4524 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4525 getF32Constant(DAG, 0x3ab24b87, dl)); 4526 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4527 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4528 getF32Constant(DAG, 0x3c1d8c17, dl)); 4529 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4530 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4531 getF32Constant(DAG, 0x3d634a1d, dl)); 4532 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4533 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4534 getF32Constant(DAG, 0x3e75fe14, dl)); 4535 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4536 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4537 getF32Constant(DAG, 0x3f317234, dl)); 4538 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4539 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4540 getF32Constant(DAG, 0x3f800000, dl)); 4541 } 4542 4543 // Add the exponent into the result in integer domain. 4544 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4545 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4546 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4547 } 4548 4549 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4550 /// limited-precision mode. 4551 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4552 const TargetLowering &TLI) { 4553 if (Op.getValueType() == MVT::f32 && 4554 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4555 4556 // Put the exponent in the right bit position for later addition to the 4557 // final result: 4558 // 4559 // #define LOG2OFe 1.4426950f 4560 // t0 = Op * LOG2OFe 4561 4562 // TODO: What fast-math-flags should be set here? 4563 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4564 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4565 return getLimitedPrecisionExp2(t0, dl, DAG); 4566 } 4567 4568 // No special expansion. 4569 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4570 } 4571 4572 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4573 /// limited-precision mode. 4574 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4575 const TargetLowering &TLI) { 4576 // TODO: What fast-math-flags should be set on the floating-point nodes? 4577 4578 if (Op.getValueType() == MVT::f32 && 4579 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4580 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4581 4582 // Scale the exponent by log(2) [0.69314718f]. 4583 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4584 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4585 getF32Constant(DAG, 0x3f317218, dl)); 4586 4587 // Get the significand and build it into a floating-point number with 4588 // exponent of 1. 4589 SDValue X = GetSignificand(DAG, Op1, dl); 4590 4591 SDValue LogOfMantissa; 4592 if (LimitFloatPrecision <= 6) { 4593 // For floating-point precision of 6: 4594 // 4595 // LogofMantissa = 4596 // -1.1609546f + 4597 // (1.4034025f - 0.23903021f * x) * x; 4598 // 4599 // error 0.0034276066, which is better than 8 bits 4600 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4601 getF32Constant(DAG, 0xbe74c456, dl)); 4602 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4603 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4604 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4605 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4606 getF32Constant(DAG, 0x3f949a29, dl)); 4607 } else if (LimitFloatPrecision <= 12) { 4608 // For floating-point precision of 12: 4609 // 4610 // LogOfMantissa = 4611 // -1.7417939f + 4612 // (2.8212026f + 4613 // (-1.4699568f + 4614 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4615 // 4616 // error 0.000061011436, which is 14 bits 4617 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4618 getF32Constant(DAG, 0xbd67b6d6, dl)); 4619 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4620 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4621 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4622 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4623 getF32Constant(DAG, 0x3fbc278b, dl)); 4624 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4625 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4626 getF32Constant(DAG, 0x40348e95, dl)); 4627 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4628 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4629 getF32Constant(DAG, 0x3fdef31a, dl)); 4630 } else { // LimitFloatPrecision <= 18 4631 // For floating-point precision of 18: 4632 // 4633 // LogOfMantissa = 4634 // -2.1072184f + 4635 // (4.2372794f + 4636 // (-3.7029485f + 4637 // (2.2781945f + 4638 // (-0.87823314f + 4639 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4640 // 4641 // error 0.0000023660568, which is better than 18 bits 4642 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4643 getF32Constant(DAG, 0xbc91e5ac, dl)); 4644 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4645 getF32Constant(DAG, 0x3e4350aa, dl)); 4646 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4647 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4648 getF32Constant(DAG, 0x3f60d3e3, dl)); 4649 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4650 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4651 getF32Constant(DAG, 0x4011cdf0, dl)); 4652 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4653 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4654 getF32Constant(DAG, 0x406cfd1c, dl)); 4655 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4656 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4657 getF32Constant(DAG, 0x408797cb, dl)); 4658 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4659 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4660 getF32Constant(DAG, 0x4006dcab, dl)); 4661 } 4662 4663 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4664 } 4665 4666 // No special expansion. 4667 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4668 } 4669 4670 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4671 /// limited-precision mode. 4672 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4673 const TargetLowering &TLI) { 4674 // TODO: What fast-math-flags should be set on the floating-point nodes? 4675 4676 if (Op.getValueType() == MVT::f32 && 4677 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4678 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4679 4680 // Get the exponent. 4681 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4682 4683 // Get the significand and build it into a floating-point number with 4684 // exponent of 1. 4685 SDValue X = GetSignificand(DAG, Op1, dl); 4686 4687 // Different possible minimax approximations of significand in 4688 // floating-point for various degrees of accuracy over [1,2]. 4689 SDValue Log2ofMantissa; 4690 if (LimitFloatPrecision <= 6) { 4691 // For floating-point precision of 6: 4692 // 4693 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4694 // 4695 // error 0.0049451742, which is more than 7 bits 4696 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4697 getF32Constant(DAG, 0xbeb08fe0, dl)); 4698 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4699 getF32Constant(DAG, 0x40019463, dl)); 4700 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4701 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4702 getF32Constant(DAG, 0x3fd6633d, dl)); 4703 } else if (LimitFloatPrecision <= 12) { 4704 // For floating-point precision of 12: 4705 // 4706 // Log2ofMantissa = 4707 // -2.51285454f + 4708 // (4.07009056f + 4709 // (-2.12067489f + 4710 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4711 // 4712 // error 0.0000876136000, which is better than 13 bits 4713 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4714 getF32Constant(DAG, 0xbda7262e, dl)); 4715 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4716 getF32Constant(DAG, 0x3f25280b, dl)); 4717 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4718 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4719 getF32Constant(DAG, 0x4007b923, dl)); 4720 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4721 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4722 getF32Constant(DAG, 0x40823e2f, dl)); 4723 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4724 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4725 getF32Constant(DAG, 0x4020d29c, dl)); 4726 } else { // LimitFloatPrecision <= 18 4727 // For floating-point precision of 18: 4728 // 4729 // Log2ofMantissa = 4730 // -3.0400495f + 4731 // (6.1129976f + 4732 // (-5.3420409f + 4733 // (3.2865683f + 4734 // (-1.2669343f + 4735 // (0.27515199f - 4736 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4737 // 4738 // error 0.0000018516, which is better than 18 bits 4739 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4740 getF32Constant(DAG, 0xbcd2769e, dl)); 4741 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4742 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4743 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4744 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4745 getF32Constant(DAG, 0x3fa22ae7, dl)); 4746 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4747 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4748 getF32Constant(DAG, 0x40525723, dl)); 4749 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4750 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4751 getF32Constant(DAG, 0x40aaf200, dl)); 4752 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4753 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4754 getF32Constant(DAG, 0x40c39dad, dl)); 4755 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4756 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4757 getF32Constant(DAG, 0x4042902c, dl)); 4758 } 4759 4760 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4761 } 4762 4763 // No special expansion. 4764 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4765 } 4766 4767 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4768 /// limited-precision mode. 4769 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4770 const TargetLowering &TLI) { 4771 // TODO: What fast-math-flags should be set on the floating-point nodes? 4772 4773 if (Op.getValueType() == MVT::f32 && 4774 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4775 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4776 4777 // Scale the exponent by log10(2) [0.30102999f]. 4778 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4779 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4780 getF32Constant(DAG, 0x3e9a209a, dl)); 4781 4782 // Get the significand and build it into a floating-point number with 4783 // exponent of 1. 4784 SDValue X = GetSignificand(DAG, Op1, dl); 4785 4786 SDValue Log10ofMantissa; 4787 if (LimitFloatPrecision <= 6) { 4788 // For floating-point precision of 6: 4789 // 4790 // Log10ofMantissa = 4791 // -0.50419619f + 4792 // (0.60948995f - 0.10380950f * x) * x; 4793 // 4794 // error 0.0014886165, which is 6 bits 4795 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4796 getF32Constant(DAG, 0xbdd49a13, dl)); 4797 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4798 getF32Constant(DAG, 0x3f1c0789, dl)); 4799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4800 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4801 getF32Constant(DAG, 0x3f011300, dl)); 4802 } else if (LimitFloatPrecision <= 12) { 4803 // For floating-point precision of 12: 4804 // 4805 // Log10ofMantissa = 4806 // -0.64831180f + 4807 // (0.91751397f + 4808 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4809 // 4810 // error 0.00019228036, which is better than 12 bits 4811 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4812 getF32Constant(DAG, 0x3d431f31, dl)); 4813 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4814 getF32Constant(DAG, 0x3ea21fb2, dl)); 4815 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4816 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4817 getF32Constant(DAG, 0x3f6ae232, dl)); 4818 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4819 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4820 getF32Constant(DAG, 0x3f25f7c3, dl)); 4821 } else { // LimitFloatPrecision <= 18 4822 // For floating-point precision of 18: 4823 // 4824 // Log10ofMantissa = 4825 // -0.84299375f + 4826 // (1.5327582f + 4827 // (-1.0688956f + 4828 // (0.49102474f + 4829 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4830 // 4831 // error 0.0000037995730, which is better than 18 bits 4832 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4833 getF32Constant(DAG, 0x3c5d51ce, dl)); 4834 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4835 getF32Constant(DAG, 0x3e00685a, dl)); 4836 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4837 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4838 getF32Constant(DAG, 0x3efb6798, dl)); 4839 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4840 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4841 getF32Constant(DAG, 0x3f88d192, dl)); 4842 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4843 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4844 getF32Constant(DAG, 0x3fc4316c, dl)); 4845 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4846 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4847 getF32Constant(DAG, 0x3f57ce70, dl)); 4848 } 4849 4850 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4851 } 4852 4853 // No special expansion. 4854 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4855 } 4856 4857 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4858 /// limited-precision mode. 4859 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4860 const TargetLowering &TLI) { 4861 if (Op.getValueType() == MVT::f32 && 4862 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4863 return getLimitedPrecisionExp2(Op, dl, DAG); 4864 4865 // No special expansion. 4866 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4867 } 4868 4869 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4870 /// limited-precision mode with x == 10.0f. 4871 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4872 SelectionDAG &DAG, const TargetLowering &TLI) { 4873 bool IsExp10 = false; 4874 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4875 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4876 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4877 APFloat Ten(10.0f); 4878 IsExp10 = LHSC->isExactlyValue(Ten); 4879 } 4880 } 4881 4882 // TODO: What fast-math-flags should be set on the FMUL node? 4883 if (IsExp10) { 4884 // Put the exponent in the right bit position for later addition to the 4885 // final result: 4886 // 4887 // #define LOG2OF10 3.3219281f 4888 // t0 = Op * LOG2OF10; 4889 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4890 getF32Constant(DAG, 0x40549a78, dl)); 4891 return getLimitedPrecisionExp2(t0, dl, DAG); 4892 } 4893 4894 // No special expansion. 4895 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4896 } 4897 4898 /// ExpandPowI - Expand a llvm.powi intrinsic. 4899 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4900 SelectionDAG &DAG) { 4901 // If RHS is a constant, we can expand this out to a multiplication tree, 4902 // otherwise we end up lowering to a call to __powidf2 (for example). When 4903 // optimizing for size, we only want to do this if the expansion would produce 4904 // a small number of multiplies, otherwise we do the full expansion. 4905 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4906 // Get the exponent as a positive value. 4907 unsigned Val = RHSC->getSExtValue(); 4908 if ((int)Val < 0) Val = -Val; 4909 4910 // powi(x, 0) -> 1.0 4911 if (Val == 0) 4912 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4913 4914 const Function &F = DAG.getMachineFunction().getFunction(); 4915 if (!F.optForSize() || 4916 // If optimizing for size, don't insert too many multiplies. 4917 // This inserts up to 5 multiplies. 4918 countPopulation(Val) + Log2_32(Val) < 7) { 4919 // We use the simple binary decomposition method to generate the multiply 4920 // sequence. There are more optimal ways to do this (for example, 4921 // powi(x,15) generates one more multiply than it should), but this has 4922 // the benefit of being both really simple and much better than a libcall. 4923 SDValue Res; // Logically starts equal to 1.0 4924 SDValue CurSquare = LHS; 4925 // TODO: Intrinsics should have fast-math-flags that propagate to these 4926 // nodes. 4927 while (Val) { 4928 if (Val & 1) { 4929 if (Res.getNode()) 4930 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4931 else 4932 Res = CurSquare; // 1.0*CurSquare. 4933 } 4934 4935 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4936 CurSquare, CurSquare); 4937 Val >>= 1; 4938 } 4939 4940 // If the original was negative, invert the result, producing 1/(x*x*x). 4941 if (RHSC->getSExtValue() < 0) 4942 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4943 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4944 return Res; 4945 } 4946 } 4947 4948 // Otherwise, expand to a libcall. 4949 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4950 } 4951 4952 // getUnderlyingArgReg - Find underlying register used for a truncated or 4953 // bitcasted argument. 4954 static unsigned getUnderlyingArgReg(const SDValue &N) { 4955 switch (N.getOpcode()) { 4956 case ISD::CopyFromReg: 4957 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4958 case ISD::BITCAST: 4959 case ISD::AssertZext: 4960 case ISD::AssertSext: 4961 case ISD::TRUNCATE: 4962 return getUnderlyingArgReg(N.getOperand(0)); 4963 default: 4964 return 0; 4965 } 4966 } 4967 4968 /// If the DbgValueInst is a dbg_value of a function argument, create the 4969 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4970 /// instruction selection, they will be inserted to the entry BB. 4971 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4972 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4973 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4974 const Argument *Arg = dyn_cast<Argument>(V); 4975 if (!Arg) 4976 return false; 4977 4978 MachineFunction &MF = DAG.getMachineFunction(); 4979 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4980 4981 bool IsIndirect = false; 4982 Optional<MachineOperand> Op; 4983 // Some arguments' frame index is recorded during argument lowering. 4984 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4985 if (FI != std::numeric_limits<int>::max()) 4986 Op = MachineOperand::CreateFI(FI); 4987 4988 if (!Op && N.getNode()) { 4989 unsigned Reg = getUnderlyingArgReg(N); 4990 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4991 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4992 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4993 if (PR) 4994 Reg = PR; 4995 } 4996 if (Reg) { 4997 Op = MachineOperand::CreateReg(Reg, false); 4998 IsIndirect = IsDbgDeclare; 4999 } 5000 } 5001 5002 if (!Op && N.getNode()) 5003 // Check if frame index is available. 5004 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 5005 if (FrameIndexSDNode *FINode = 5006 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5007 Op = MachineOperand::CreateFI(FINode->getIndex()); 5008 5009 if (!Op) { 5010 // Check if ValueMap has reg number. 5011 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5012 if (VMI != FuncInfo.ValueMap.end()) { 5013 const auto &TLI = DAG.getTargetLoweringInfo(); 5014 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5015 V->getType(), getABIRegCopyCC(V)); 5016 if (RFV.occupiesMultipleRegs()) { 5017 unsigned Offset = 0; 5018 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5019 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5020 auto FragmentExpr = DIExpression::createFragmentExpression( 5021 Expr, Offset, RegAndSize.second); 5022 if (!FragmentExpr) 5023 continue; 5024 FuncInfo.ArgDbgValues.push_back( 5025 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5026 Op->getReg(), Variable, *FragmentExpr)); 5027 Offset += RegAndSize.second; 5028 } 5029 return true; 5030 } 5031 Op = MachineOperand::CreateReg(VMI->second, false); 5032 IsIndirect = IsDbgDeclare; 5033 } 5034 } 5035 5036 if (!Op) 5037 return false; 5038 5039 assert(Variable->isValidLocationForIntrinsic(DL) && 5040 "Expected inlined-at fields to agree"); 5041 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5042 FuncInfo.ArgDbgValues.push_back( 5043 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5044 *Op, Variable, Expr)); 5045 5046 return true; 5047 } 5048 5049 /// Return the appropriate SDDbgValue based on N. 5050 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5051 DILocalVariable *Variable, 5052 DIExpression *Expr, 5053 const DebugLoc &dl, 5054 unsigned DbgSDNodeOrder) { 5055 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5056 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5057 // stack slot locations. 5058 // 5059 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5060 // debug values here after optimization: 5061 // 5062 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5063 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5064 // 5065 // Both describe the direct values of their associated variables. 5066 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5067 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5068 } 5069 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5070 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5071 } 5072 5073 // VisualStudio defines setjmp as _setjmp 5074 #if defined(_MSC_VER) && defined(setjmp) && \ 5075 !defined(setjmp_undefined_for_msvc) 5076 # pragma push_macro("setjmp") 5077 # undef setjmp 5078 # define setjmp_undefined_for_msvc 5079 #endif 5080 5081 /// Lower the call to the specified intrinsic function. If we want to emit this 5082 /// as a call to a named external function, return the name. Otherwise, lower it 5083 /// and return null. 5084 const char * 5085 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5087 SDLoc sdl = getCurSDLoc(); 5088 DebugLoc dl = getCurDebugLoc(); 5089 SDValue Res; 5090 5091 switch (Intrinsic) { 5092 default: 5093 // By default, turn this into a target intrinsic node. 5094 visitTargetIntrinsic(I, Intrinsic); 5095 return nullptr; 5096 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5097 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5098 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5099 case Intrinsic::returnaddress: 5100 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5101 TLI.getPointerTy(DAG.getDataLayout()), 5102 getValue(I.getArgOperand(0)))); 5103 return nullptr; 5104 case Intrinsic::addressofreturnaddress: 5105 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5106 TLI.getPointerTy(DAG.getDataLayout()))); 5107 return nullptr; 5108 case Intrinsic::sponentry: 5109 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5110 TLI.getPointerTy(DAG.getDataLayout()))); 5111 return nullptr; 5112 case Intrinsic::frameaddress: 5113 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5114 TLI.getPointerTy(DAG.getDataLayout()), 5115 getValue(I.getArgOperand(0)))); 5116 return nullptr; 5117 case Intrinsic::read_register: { 5118 Value *Reg = I.getArgOperand(0); 5119 SDValue Chain = getRoot(); 5120 SDValue RegName = 5121 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5122 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5123 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5124 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5125 setValue(&I, Res); 5126 DAG.setRoot(Res.getValue(1)); 5127 return nullptr; 5128 } 5129 case Intrinsic::write_register: { 5130 Value *Reg = I.getArgOperand(0); 5131 Value *RegValue = I.getArgOperand(1); 5132 SDValue Chain = getRoot(); 5133 SDValue RegName = 5134 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5135 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5136 RegName, getValue(RegValue))); 5137 return nullptr; 5138 } 5139 case Intrinsic::setjmp: 5140 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5141 case Intrinsic::longjmp: 5142 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5143 case Intrinsic::memcpy: { 5144 const auto &MCI = cast<MemCpyInst>(I); 5145 SDValue Op1 = getValue(I.getArgOperand(0)); 5146 SDValue Op2 = getValue(I.getArgOperand(1)); 5147 SDValue Op3 = getValue(I.getArgOperand(2)); 5148 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5149 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5150 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5151 unsigned Align = MinAlign(DstAlign, SrcAlign); 5152 bool isVol = MCI.isVolatile(); 5153 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5154 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5155 // node. 5156 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5157 false, isTC, 5158 MachinePointerInfo(I.getArgOperand(0)), 5159 MachinePointerInfo(I.getArgOperand(1))); 5160 updateDAGForMaybeTailCall(MC); 5161 return nullptr; 5162 } 5163 case Intrinsic::memset: { 5164 const auto &MSI = cast<MemSetInst>(I); 5165 SDValue Op1 = getValue(I.getArgOperand(0)); 5166 SDValue Op2 = getValue(I.getArgOperand(1)); 5167 SDValue Op3 = getValue(I.getArgOperand(2)); 5168 // @llvm.memset defines 0 and 1 to both mean no alignment. 5169 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5170 bool isVol = MSI.isVolatile(); 5171 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5172 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5173 isTC, MachinePointerInfo(I.getArgOperand(0))); 5174 updateDAGForMaybeTailCall(MS); 5175 return nullptr; 5176 } 5177 case Intrinsic::memmove: { 5178 const auto &MMI = cast<MemMoveInst>(I); 5179 SDValue Op1 = getValue(I.getArgOperand(0)); 5180 SDValue Op2 = getValue(I.getArgOperand(1)); 5181 SDValue Op3 = getValue(I.getArgOperand(2)); 5182 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5183 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5184 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5185 unsigned Align = MinAlign(DstAlign, SrcAlign); 5186 bool isVol = MMI.isVolatile(); 5187 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5188 // FIXME: Support passing different dest/src alignments to the memmove DAG 5189 // node. 5190 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5191 isTC, MachinePointerInfo(I.getArgOperand(0)), 5192 MachinePointerInfo(I.getArgOperand(1))); 5193 updateDAGForMaybeTailCall(MM); 5194 return nullptr; 5195 } 5196 case Intrinsic::memcpy_element_unordered_atomic: { 5197 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5198 SDValue Dst = getValue(MI.getRawDest()); 5199 SDValue Src = getValue(MI.getRawSource()); 5200 SDValue Length = getValue(MI.getLength()); 5201 5202 unsigned DstAlign = MI.getDestAlignment(); 5203 unsigned SrcAlign = MI.getSourceAlignment(); 5204 Type *LengthTy = MI.getLength()->getType(); 5205 unsigned ElemSz = MI.getElementSizeInBytes(); 5206 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5207 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5208 SrcAlign, Length, LengthTy, ElemSz, isTC, 5209 MachinePointerInfo(MI.getRawDest()), 5210 MachinePointerInfo(MI.getRawSource())); 5211 updateDAGForMaybeTailCall(MC); 5212 return nullptr; 5213 } 5214 case Intrinsic::memmove_element_unordered_atomic: { 5215 auto &MI = cast<AtomicMemMoveInst>(I); 5216 SDValue Dst = getValue(MI.getRawDest()); 5217 SDValue Src = getValue(MI.getRawSource()); 5218 SDValue Length = getValue(MI.getLength()); 5219 5220 unsigned DstAlign = MI.getDestAlignment(); 5221 unsigned SrcAlign = MI.getSourceAlignment(); 5222 Type *LengthTy = MI.getLength()->getType(); 5223 unsigned ElemSz = MI.getElementSizeInBytes(); 5224 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5225 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5226 SrcAlign, Length, LengthTy, ElemSz, isTC, 5227 MachinePointerInfo(MI.getRawDest()), 5228 MachinePointerInfo(MI.getRawSource())); 5229 updateDAGForMaybeTailCall(MC); 5230 return nullptr; 5231 } 5232 case Intrinsic::memset_element_unordered_atomic: { 5233 auto &MI = cast<AtomicMemSetInst>(I); 5234 SDValue Dst = getValue(MI.getRawDest()); 5235 SDValue Val = getValue(MI.getValue()); 5236 SDValue Length = getValue(MI.getLength()); 5237 5238 unsigned DstAlign = MI.getDestAlignment(); 5239 Type *LengthTy = MI.getLength()->getType(); 5240 unsigned ElemSz = MI.getElementSizeInBytes(); 5241 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5242 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5243 LengthTy, ElemSz, isTC, 5244 MachinePointerInfo(MI.getRawDest())); 5245 updateDAGForMaybeTailCall(MC); 5246 return nullptr; 5247 } 5248 case Intrinsic::dbg_addr: 5249 case Intrinsic::dbg_declare: { 5250 const auto &DI = cast<DbgVariableIntrinsic>(I); 5251 DILocalVariable *Variable = DI.getVariable(); 5252 DIExpression *Expression = DI.getExpression(); 5253 dropDanglingDebugInfo(Variable, Expression); 5254 assert(Variable && "Missing variable"); 5255 5256 // Check if address has undef value. 5257 const Value *Address = DI.getVariableLocation(); 5258 if (!Address || isa<UndefValue>(Address) || 5259 (Address->use_empty() && !isa<Argument>(Address))) { 5260 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5261 return nullptr; 5262 } 5263 5264 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5265 5266 // Check if this variable can be described by a frame index, typically 5267 // either as a static alloca or a byval parameter. 5268 int FI = std::numeric_limits<int>::max(); 5269 if (const auto *AI = 5270 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5271 if (AI->isStaticAlloca()) { 5272 auto I = FuncInfo.StaticAllocaMap.find(AI); 5273 if (I != FuncInfo.StaticAllocaMap.end()) 5274 FI = I->second; 5275 } 5276 } else if (const auto *Arg = dyn_cast<Argument>( 5277 Address->stripInBoundsConstantOffsets())) { 5278 FI = FuncInfo.getArgumentFrameIndex(Arg); 5279 } 5280 5281 // llvm.dbg.addr is control dependent and always generates indirect 5282 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5283 // the MachineFunction variable table. 5284 if (FI != std::numeric_limits<int>::max()) { 5285 if (Intrinsic == Intrinsic::dbg_addr) { 5286 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5287 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5288 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5289 } 5290 return nullptr; 5291 } 5292 5293 SDValue &N = NodeMap[Address]; 5294 if (!N.getNode() && isa<Argument>(Address)) 5295 // Check unused arguments map. 5296 N = UnusedArgNodeMap[Address]; 5297 SDDbgValue *SDV; 5298 if (N.getNode()) { 5299 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5300 Address = BCI->getOperand(0); 5301 // Parameters are handled specially. 5302 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5303 if (isParameter && FINode) { 5304 // Byval parameter. We have a frame index at this point. 5305 SDV = 5306 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5307 /*IsIndirect*/ true, dl, SDNodeOrder); 5308 } else if (isa<Argument>(Address)) { 5309 // Address is an argument, so try to emit its dbg value using 5310 // virtual register info from the FuncInfo.ValueMap. 5311 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5312 return nullptr; 5313 } else { 5314 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5315 true, dl, SDNodeOrder); 5316 } 5317 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5318 } else { 5319 // If Address is an argument then try to emit its dbg value using 5320 // virtual register info from the FuncInfo.ValueMap. 5321 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5322 N)) { 5323 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5324 } 5325 } 5326 return nullptr; 5327 } 5328 case Intrinsic::dbg_label: { 5329 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5330 DILabel *Label = DI.getLabel(); 5331 assert(Label && "Missing label"); 5332 5333 SDDbgLabel *SDV; 5334 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5335 DAG.AddDbgLabel(SDV); 5336 return nullptr; 5337 } 5338 case Intrinsic::dbg_value: { 5339 const DbgValueInst &DI = cast<DbgValueInst>(I); 5340 assert(DI.getVariable() && "Missing variable"); 5341 5342 DILocalVariable *Variable = DI.getVariable(); 5343 DIExpression *Expression = DI.getExpression(); 5344 dropDanglingDebugInfo(Variable, Expression); 5345 const Value *V = DI.getValue(); 5346 if (!V) 5347 return nullptr; 5348 5349 SDDbgValue *SDV; 5350 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 5351 isa<ConstantPointerNull>(V)) { 5352 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5353 DAG.AddDbgValue(SDV, nullptr, false); 5354 return nullptr; 5355 } 5356 5357 // If the Value is a frame index, we can create a FrameIndex debug value 5358 // without relying on the DAG at all. 5359 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 5360 auto SI = FuncInfo.StaticAllocaMap.find(AI); 5361 if (SI != FuncInfo.StaticAllocaMap.end()) { 5362 auto SDV = 5363 DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 5364 /*IsIndirect*/ false, dl, SDNodeOrder); 5365 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 5366 // is still available even if the SDNode gets optimized out. 5367 DAG.AddDbgValue(SDV, nullptr, false); 5368 return nullptr; 5369 } 5370 } 5371 5372 // Do not use getValue() in here; we don't want to generate code at 5373 // this point if it hasn't been done yet. 5374 SDValue N = NodeMap[V]; 5375 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5376 N = UnusedArgNodeMap[V]; 5377 if (N.getNode()) { 5378 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5379 return nullptr; 5380 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5381 DAG.AddDbgValue(SDV, N.getNode(), false); 5382 return nullptr; 5383 } 5384 5385 // The value is not used in this block yet (or it would have an SDNode). 5386 // We still want the value to appear for the user if possible -- if it has 5387 // an associated VReg, we can refer to that instead. 5388 if (!isa<Argument>(V)) { 5389 auto VMI = FuncInfo.ValueMap.find(V); 5390 if (VMI != FuncInfo.ValueMap.end()) { 5391 unsigned Reg = VMI->second; 5392 // If this is a PHI node, it may be split up into several MI PHI nodes 5393 // (in FunctionLoweringInfo::set). 5394 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5395 V->getType(), None); 5396 if (RFV.occupiesMultipleRegs()) { 5397 unsigned Offset = 0; 5398 unsigned BitsToDescribe = 0; 5399 if (auto VarSize = Variable->getSizeInBits()) 5400 BitsToDescribe = *VarSize; 5401 if (auto Fragment = Expression->getFragmentInfo()) 5402 BitsToDescribe = Fragment->SizeInBits; 5403 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5404 unsigned RegisterSize = RegAndSize.second; 5405 // Bail out if all bits are described already. 5406 if (Offset >= BitsToDescribe) 5407 break; 5408 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5409 ? BitsToDescribe - Offset 5410 : RegisterSize; 5411 auto FragmentExpr = DIExpression::createFragmentExpression( 5412 Expression, Offset, FragmentSize); 5413 if (!FragmentExpr) 5414 continue; 5415 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5416 false, dl, SDNodeOrder); 5417 DAG.AddDbgValue(SDV, nullptr, false); 5418 Offset += RegisterSize; 5419 } 5420 } else { 5421 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5422 SDNodeOrder); 5423 DAG.AddDbgValue(SDV, nullptr, false); 5424 } 5425 return nullptr; 5426 } 5427 } 5428 5429 // TODO: When we get here we will either drop the dbg.value completely, or 5430 // we try to move it forward by letting it dangle for awhile. So we should 5431 // probably add an extra DbgValue to the DAG here, with a reference to 5432 // "noreg", to indicate that we have lost the debug location for the 5433 // variable. 5434 5435 if (!V->use_empty() ) { 5436 // Do not call getValue(V) yet, as we don't want to generate code. 5437 // Remember it for later. 5438 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5439 return nullptr; 5440 } 5441 5442 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5443 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5444 return nullptr; 5445 } 5446 5447 case Intrinsic::eh_typeid_for: { 5448 // Find the type id for the given typeinfo. 5449 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5450 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5451 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5452 setValue(&I, Res); 5453 return nullptr; 5454 } 5455 5456 case Intrinsic::eh_return_i32: 5457 case Intrinsic::eh_return_i64: 5458 DAG.getMachineFunction().setCallsEHReturn(true); 5459 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5460 MVT::Other, 5461 getControlRoot(), 5462 getValue(I.getArgOperand(0)), 5463 getValue(I.getArgOperand(1)))); 5464 return nullptr; 5465 case Intrinsic::eh_unwind_init: 5466 DAG.getMachineFunction().setCallsUnwindInit(true); 5467 return nullptr; 5468 case Intrinsic::eh_dwarf_cfa: 5469 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5470 TLI.getPointerTy(DAG.getDataLayout()), 5471 getValue(I.getArgOperand(0)))); 5472 return nullptr; 5473 case Intrinsic::eh_sjlj_callsite: { 5474 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5475 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5476 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5477 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5478 5479 MMI.setCurrentCallSite(CI->getZExtValue()); 5480 return nullptr; 5481 } 5482 case Intrinsic::eh_sjlj_functioncontext: { 5483 // Get and store the index of the function context. 5484 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5485 AllocaInst *FnCtx = 5486 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5487 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5488 MFI.setFunctionContextIndex(FI); 5489 return nullptr; 5490 } 5491 case Intrinsic::eh_sjlj_setjmp: { 5492 SDValue Ops[2]; 5493 Ops[0] = getRoot(); 5494 Ops[1] = getValue(I.getArgOperand(0)); 5495 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5496 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5497 setValue(&I, Op.getValue(0)); 5498 DAG.setRoot(Op.getValue(1)); 5499 return nullptr; 5500 } 5501 case Intrinsic::eh_sjlj_longjmp: 5502 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5503 getRoot(), getValue(I.getArgOperand(0)))); 5504 return nullptr; 5505 case Intrinsic::eh_sjlj_setup_dispatch: 5506 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5507 getRoot())); 5508 return nullptr; 5509 case Intrinsic::masked_gather: 5510 visitMaskedGather(I); 5511 return nullptr; 5512 case Intrinsic::masked_load: 5513 visitMaskedLoad(I); 5514 return nullptr; 5515 case Intrinsic::masked_scatter: 5516 visitMaskedScatter(I); 5517 return nullptr; 5518 case Intrinsic::masked_store: 5519 visitMaskedStore(I); 5520 return nullptr; 5521 case Intrinsic::masked_expandload: 5522 visitMaskedLoad(I, true /* IsExpanding */); 5523 return nullptr; 5524 case Intrinsic::masked_compressstore: 5525 visitMaskedStore(I, true /* IsCompressing */); 5526 return nullptr; 5527 case Intrinsic::x86_mmx_pslli_w: 5528 case Intrinsic::x86_mmx_pslli_d: 5529 case Intrinsic::x86_mmx_pslli_q: 5530 case Intrinsic::x86_mmx_psrli_w: 5531 case Intrinsic::x86_mmx_psrli_d: 5532 case Intrinsic::x86_mmx_psrli_q: 5533 case Intrinsic::x86_mmx_psrai_w: 5534 case Intrinsic::x86_mmx_psrai_d: { 5535 SDValue ShAmt = getValue(I.getArgOperand(1)); 5536 if (isa<ConstantSDNode>(ShAmt)) { 5537 visitTargetIntrinsic(I, Intrinsic); 5538 return nullptr; 5539 } 5540 unsigned NewIntrinsic = 0; 5541 EVT ShAmtVT = MVT::v2i32; 5542 switch (Intrinsic) { 5543 case Intrinsic::x86_mmx_pslli_w: 5544 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5545 break; 5546 case Intrinsic::x86_mmx_pslli_d: 5547 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5548 break; 5549 case Intrinsic::x86_mmx_pslli_q: 5550 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5551 break; 5552 case Intrinsic::x86_mmx_psrli_w: 5553 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5554 break; 5555 case Intrinsic::x86_mmx_psrli_d: 5556 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5557 break; 5558 case Intrinsic::x86_mmx_psrli_q: 5559 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5560 break; 5561 case Intrinsic::x86_mmx_psrai_w: 5562 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5563 break; 5564 case Intrinsic::x86_mmx_psrai_d: 5565 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5566 break; 5567 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5568 } 5569 5570 // The vector shift intrinsics with scalars uses 32b shift amounts but 5571 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5572 // to be zero. 5573 // We must do this early because v2i32 is not a legal type. 5574 SDValue ShOps[2]; 5575 ShOps[0] = ShAmt; 5576 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5577 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5578 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5579 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5580 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5581 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5582 getValue(I.getArgOperand(0)), ShAmt); 5583 setValue(&I, Res); 5584 return nullptr; 5585 } 5586 case Intrinsic::powi: 5587 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5588 getValue(I.getArgOperand(1)), DAG)); 5589 return nullptr; 5590 case Intrinsic::log: 5591 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5592 return nullptr; 5593 case Intrinsic::log2: 5594 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5595 return nullptr; 5596 case Intrinsic::log10: 5597 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5598 return nullptr; 5599 case Intrinsic::exp: 5600 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5601 return nullptr; 5602 case Intrinsic::exp2: 5603 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5604 return nullptr; 5605 case Intrinsic::pow: 5606 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5607 getValue(I.getArgOperand(1)), DAG, TLI)); 5608 return nullptr; 5609 case Intrinsic::sqrt: 5610 case Intrinsic::fabs: 5611 case Intrinsic::sin: 5612 case Intrinsic::cos: 5613 case Intrinsic::floor: 5614 case Intrinsic::ceil: 5615 case Intrinsic::trunc: 5616 case Intrinsic::rint: 5617 case Intrinsic::nearbyint: 5618 case Intrinsic::round: 5619 case Intrinsic::canonicalize: { 5620 unsigned Opcode; 5621 switch (Intrinsic) { 5622 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5623 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5624 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5625 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5626 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5627 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5628 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5629 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5630 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5631 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5632 case Intrinsic::round: Opcode = ISD::FROUND; break; 5633 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5634 } 5635 5636 setValue(&I, DAG.getNode(Opcode, sdl, 5637 getValue(I.getArgOperand(0)).getValueType(), 5638 getValue(I.getArgOperand(0)))); 5639 return nullptr; 5640 } 5641 case Intrinsic::minnum: { 5642 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5643 unsigned Opc = 5644 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5645 ? ISD::FMINIMUM 5646 : ISD::FMINNUM; 5647 setValue(&I, DAG.getNode(Opc, sdl, VT, 5648 getValue(I.getArgOperand(0)), 5649 getValue(I.getArgOperand(1)))); 5650 return nullptr; 5651 } 5652 case Intrinsic::maxnum: { 5653 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5654 unsigned Opc = 5655 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5656 ? ISD::FMAXIMUM 5657 : ISD::FMAXNUM; 5658 setValue(&I, DAG.getNode(Opc, sdl, VT, 5659 getValue(I.getArgOperand(0)), 5660 getValue(I.getArgOperand(1)))); 5661 return nullptr; 5662 } 5663 case Intrinsic::minimum: 5664 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5665 getValue(I.getArgOperand(0)).getValueType(), 5666 getValue(I.getArgOperand(0)), 5667 getValue(I.getArgOperand(1)))); 5668 return nullptr; 5669 case Intrinsic::maximum: 5670 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5671 getValue(I.getArgOperand(0)).getValueType(), 5672 getValue(I.getArgOperand(0)), 5673 getValue(I.getArgOperand(1)))); 5674 return nullptr; 5675 case Intrinsic::copysign: 5676 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5677 getValue(I.getArgOperand(0)).getValueType(), 5678 getValue(I.getArgOperand(0)), 5679 getValue(I.getArgOperand(1)))); 5680 return nullptr; 5681 case Intrinsic::fma: 5682 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5683 getValue(I.getArgOperand(0)).getValueType(), 5684 getValue(I.getArgOperand(0)), 5685 getValue(I.getArgOperand(1)), 5686 getValue(I.getArgOperand(2)))); 5687 return nullptr; 5688 case Intrinsic::experimental_constrained_fadd: 5689 case Intrinsic::experimental_constrained_fsub: 5690 case Intrinsic::experimental_constrained_fmul: 5691 case Intrinsic::experimental_constrained_fdiv: 5692 case Intrinsic::experimental_constrained_frem: 5693 case Intrinsic::experimental_constrained_fma: 5694 case Intrinsic::experimental_constrained_sqrt: 5695 case Intrinsic::experimental_constrained_pow: 5696 case Intrinsic::experimental_constrained_powi: 5697 case Intrinsic::experimental_constrained_sin: 5698 case Intrinsic::experimental_constrained_cos: 5699 case Intrinsic::experimental_constrained_exp: 5700 case Intrinsic::experimental_constrained_exp2: 5701 case Intrinsic::experimental_constrained_log: 5702 case Intrinsic::experimental_constrained_log10: 5703 case Intrinsic::experimental_constrained_log2: 5704 case Intrinsic::experimental_constrained_rint: 5705 case Intrinsic::experimental_constrained_nearbyint: 5706 case Intrinsic::experimental_constrained_maxnum: 5707 case Intrinsic::experimental_constrained_minnum: 5708 case Intrinsic::experimental_constrained_ceil: 5709 case Intrinsic::experimental_constrained_floor: 5710 case Intrinsic::experimental_constrained_round: 5711 case Intrinsic::experimental_constrained_trunc: 5712 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5713 return nullptr; 5714 case Intrinsic::fmuladd: { 5715 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5716 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5717 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5718 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5719 getValue(I.getArgOperand(0)).getValueType(), 5720 getValue(I.getArgOperand(0)), 5721 getValue(I.getArgOperand(1)), 5722 getValue(I.getArgOperand(2)))); 5723 } else { 5724 // TODO: Intrinsic calls should have fast-math-flags. 5725 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5726 getValue(I.getArgOperand(0)).getValueType(), 5727 getValue(I.getArgOperand(0)), 5728 getValue(I.getArgOperand(1))); 5729 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5730 getValue(I.getArgOperand(0)).getValueType(), 5731 Mul, 5732 getValue(I.getArgOperand(2))); 5733 setValue(&I, Add); 5734 } 5735 return nullptr; 5736 } 5737 case Intrinsic::convert_to_fp16: 5738 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5739 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5740 getValue(I.getArgOperand(0)), 5741 DAG.getTargetConstant(0, sdl, 5742 MVT::i32)))); 5743 return nullptr; 5744 case Intrinsic::convert_from_fp16: 5745 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5746 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5747 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5748 getValue(I.getArgOperand(0))))); 5749 return nullptr; 5750 case Intrinsic::pcmarker: { 5751 SDValue Tmp = getValue(I.getArgOperand(0)); 5752 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5753 return nullptr; 5754 } 5755 case Intrinsic::readcyclecounter: { 5756 SDValue Op = getRoot(); 5757 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5758 DAG.getVTList(MVT::i64, MVT::Other), Op); 5759 setValue(&I, Res); 5760 DAG.setRoot(Res.getValue(1)); 5761 return nullptr; 5762 } 5763 case Intrinsic::bitreverse: 5764 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5765 getValue(I.getArgOperand(0)).getValueType(), 5766 getValue(I.getArgOperand(0)))); 5767 return nullptr; 5768 case Intrinsic::bswap: 5769 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5770 getValue(I.getArgOperand(0)).getValueType(), 5771 getValue(I.getArgOperand(0)))); 5772 return nullptr; 5773 case Intrinsic::cttz: { 5774 SDValue Arg = getValue(I.getArgOperand(0)); 5775 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5776 EVT Ty = Arg.getValueType(); 5777 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5778 sdl, Ty, Arg)); 5779 return nullptr; 5780 } 5781 case Intrinsic::ctlz: { 5782 SDValue Arg = getValue(I.getArgOperand(0)); 5783 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5784 EVT Ty = Arg.getValueType(); 5785 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5786 sdl, Ty, Arg)); 5787 return nullptr; 5788 } 5789 case Intrinsic::ctpop: { 5790 SDValue Arg = getValue(I.getArgOperand(0)); 5791 EVT Ty = Arg.getValueType(); 5792 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5793 return nullptr; 5794 } 5795 case Intrinsic::fshl: 5796 case Intrinsic::fshr: { 5797 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5798 SDValue X = getValue(I.getArgOperand(0)); 5799 SDValue Y = getValue(I.getArgOperand(1)); 5800 SDValue Z = getValue(I.getArgOperand(2)); 5801 EVT VT = X.getValueType(); 5802 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5803 SDValue Zero = DAG.getConstant(0, sdl, VT); 5804 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5805 5806 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 5807 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 5808 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 5809 return nullptr; 5810 } 5811 5812 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 5813 // avoid the select that is necessary in the general case to filter out 5814 // the 0-shift possibility that leads to UB. 5815 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 5816 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 5817 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 5818 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 5819 return nullptr; 5820 } 5821 5822 // Some targets only rotate one way. Try the opposite direction. 5823 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 5824 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 5825 // Negate the shift amount because it is safe to ignore the high bits. 5826 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5827 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 5828 return nullptr; 5829 } 5830 5831 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 5832 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 5833 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5834 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 5835 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 5836 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 5837 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 5838 return nullptr; 5839 } 5840 5841 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5842 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5843 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 5844 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 5845 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5846 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 5847 5848 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5849 // and that is undefined. We must compare and select to avoid UB. 5850 EVT CCVT = MVT::i1; 5851 if (VT.isVector()) 5852 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 5853 5854 // For fshl, 0-shift returns the 1st arg (X). 5855 // For fshr, 0-shift returns the 2nd arg (Y). 5856 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 5857 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 5858 return nullptr; 5859 } 5860 case Intrinsic::sadd_sat: { 5861 SDValue Op1 = getValue(I.getArgOperand(0)); 5862 SDValue Op2 = getValue(I.getArgOperand(1)); 5863 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 5864 return nullptr; 5865 } 5866 case Intrinsic::uadd_sat: { 5867 SDValue Op1 = getValue(I.getArgOperand(0)); 5868 SDValue Op2 = getValue(I.getArgOperand(1)); 5869 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 5870 return nullptr; 5871 } 5872 case Intrinsic::ssub_sat: { 5873 SDValue Op1 = getValue(I.getArgOperand(0)); 5874 SDValue Op2 = getValue(I.getArgOperand(1)); 5875 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 5876 return nullptr; 5877 } 5878 case Intrinsic::usub_sat: { 5879 SDValue Op1 = getValue(I.getArgOperand(0)); 5880 SDValue Op2 = getValue(I.getArgOperand(1)); 5881 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 5882 return nullptr; 5883 } 5884 case Intrinsic::smul_fix: { 5885 SDValue Op1 = getValue(I.getArgOperand(0)); 5886 SDValue Op2 = getValue(I.getArgOperand(1)); 5887 SDValue Op3 = getValue(I.getArgOperand(2)); 5888 setValue(&I, 5889 DAG.getNode(ISD::SMULFIX, sdl, Op1.getValueType(), Op1, Op2, Op3)); 5890 return nullptr; 5891 } 5892 case Intrinsic::stacksave: { 5893 SDValue Op = getRoot(); 5894 Res = DAG.getNode( 5895 ISD::STACKSAVE, sdl, 5896 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5897 setValue(&I, Res); 5898 DAG.setRoot(Res.getValue(1)); 5899 return nullptr; 5900 } 5901 case Intrinsic::stackrestore: 5902 Res = getValue(I.getArgOperand(0)); 5903 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5904 return nullptr; 5905 case Intrinsic::get_dynamic_area_offset: { 5906 SDValue Op = getRoot(); 5907 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5908 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5909 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5910 // target. 5911 if (PtrTy != ResTy) 5912 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5913 " intrinsic!"); 5914 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5915 Op); 5916 DAG.setRoot(Op); 5917 setValue(&I, Res); 5918 return nullptr; 5919 } 5920 case Intrinsic::stackguard: { 5921 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5922 MachineFunction &MF = DAG.getMachineFunction(); 5923 const Module &M = *MF.getFunction().getParent(); 5924 SDValue Chain = getRoot(); 5925 if (TLI.useLoadStackGuardNode()) { 5926 Res = getLoadStackGuard(DAG, sdl, Chain); 5927 } else { 5928 const Value *Global = TLI.getSDagStackGuard(M); 5929 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5930 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5931 MachinePointerInfo(Global, 0), Align, 5932 MachineMemOperand::MOVolatile); 5933 } 5934 if (TLI.useStackGuardXorFP()) 5935 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5936 DAG.setRoot(Chain); 5937 setValue(&I, Res); 5938 return nullptr; 5939 } 5940 case Intrinsic::stackprotector: { 5941 // Emit code into the DAG to store the stack guard onto the stack. 5942 MachineFunction &MF = DAG.getMachineFunction(); 5943 MachineFrameInfo &MFI = MF.getFrameInfo(); 5944 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5945 SDValue Src, Chain = getRoot(); 5946 5947 if (TLI.useLoadStackGuardNode()) 5948 Src = getLoadStackGuard(DAG, sdl, Chain); 5949 else 5950 Src = getValue(I.getArgOperand(0)); // The guard's value. 5951 5952 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5953 5954 int FI = FuncInfo.StaticAllocaMap[Slot]; 5955 MFI.setStackProtectorIndex(FI); 5956 5957 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5958 5959 // Store the stack protector onto the stack. 5960 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5961 DAG.getMachineFunction(), FI), 5962 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5963 setValue(&I, Res); 5964 DAG.setRoot(Res); 5965 return nullptr; 5966 } 5967 case Intrinsic::objectsize: { 5968 // If we don't know by now, we're never going to know. 5969 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5970 5971 assert(CI && "Non-constant type in __builtin_object_size?"); 5972 5973 SDValue Arg = getValue(I.getCalledValue()); 5974 EVT Ty = Arg.getValueType(); 5975 5976 if (CI->isZero()) 5977 Res = DAG.getConstant(-1ULL, sdl, Ty); 5978 else 5979 Res = DAG.getConstant(0, sdl, Ty); 5980 5981 setValue(&I, Res); 5982 return nullptr; 5983 } 5984 5985 case Intrinsic::is_constant: 5986 // If this wasn't constant-folded away by now, then it's not a 5987 // constant. 5988 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 5989 return nullptr; 5990 5991 case Intrinsic::annotation: 5992 case Intrinsic::ptr_annotation: 5993 case Intrinsic::launder_invariant_group: 5994 case Intrinsic::strip_invariant_group: 5995 // Drop the intrinsic, but forward the value 5996 setValue(&I, getValue(I.getOperand(0))); 5997 return nullptr; 5998 case Intrinsic::assume: 5999 case Intrinsic::var_annotation: 6000 case Intrinsic::sideeffect: 6001 // Discard annotate attributes, assumptions, and artificial side-effects. 6002 return nullptr; 6003 6004 case Intrinsic::codeview_annotation: { 6005 // Emit a label associated with this metadata. 6006 MachineFunction &MF = DAG.getMachineFunction(); 6007 MCSymbol *Label = 6008 MF.getMMI().getContext().createTempSymbol("annotation", true); 6009 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6010 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6011 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6012 DAG.setRoot(Res); 6013 return nullptr; 6014 } 6015 6016 case Intrinsic::init_trampoline: { 6017 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6018 6019 SDValue Ops[6]; 6020 Ops[0] = getRoot(); 6021 Ops[1] = getValue(I.getArgOperand(0)); 6022 Ops[2] = getValue(I.getArgOperand(1)); 6023 Ops[3] = getValue(I.getArgOperand(2)); 6024 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6025 Ops[5] = DAG.getSrcValue(F); 6026 6027 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6028 6029 DAG.setRoot(Res); 6030 return nullptr; 6031 } 6032 case Intrinsic::adjust_trampoline: 6033 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6034 TLI.getPointerTy(DAG.getDataLayout()), 6035 getValue(I.getArgOperand(0)))); 6036 return nullptr; 6037 case Intrinsic::gcroot: { 6038 assert(DAG.getMachineFunction().getFunction().hasGC() && 6039 "only valid in functions with gc specified, enforced by Verifier"); 6040 assert(GFI && "implied by previous"); 6041 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6042 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6043 6044 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6045 GFI->addStackRoot(FI->getIndex(), TypeMap); 6046 return nullptr; 6047 } 6048 case Intrinsic::gcread: 6049 case Intrinsic::gcwrite: 6050 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6051 case Intrinsic::flt_rounds: 6052 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6053 return nullptr; 6054 6055 case Intrinsic::expect: 6056 // Just replace __builtin_expect(exp, c) with EXP. 6057 setValue(&I, getValue(I.getArgOperand(0))); 6058 return nullptr; 6059 6060 case Intrinsic::debugtrap: 6061 case Intrinsic::trap: { 6062 StringRef TrapFuncName = 6063 I.getAttributes() 6064 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6065 .getValueAsString(); 6066 if (TrapFuncName.empty()) { 6067 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6068 ISD::TRAP : ISD::DEBUGTRAP; 6069 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6070 return nullptr; 6071 } 6072 TargetLowering::ArgListTy Args; 6073 6074 TargetLowering::CallLoweringInfo CLI(DAG); 6075 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6076 CallingConv::C, I.getType(), 6077 DAG.getExternalSymbol(TrapFuncName.data(), 6078 TLI.getPointerTy(DAG.getDataLayout())), 6079 std::move(Args)); 6080 6081 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6082 DAG.setRoot(Result.second); 6083 return nullptr; 6084 } 6085 6086 case Intrinsic::uadd_with_overflow: 6087 case Intrinsic::sadd_with_overflow: 6088 case Intrinsic::usub_with_overflow: 6089 case Intrinsic::ssub_with_overflow: 6090 case Intrinsic::umul_with_overflow: 6091 case Intrinsic::smul_with_overflow: { 6092 ISD::NodeType Op; 6093 switch (Intrinsic) { 6094 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6095 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6096 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6097 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6098 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6099 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6100 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6101 } 6102 SDValue Op1 = getValue(I.getArgOperand(0)); 6103 SDValue Op2 = getValue(I.getArgOperand(1)); 6104 6105 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 6106 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6107 return nullptr; 6108 } 6109 case Intrinsic::prefetch: { 6110 SDValue Ops[5]; 6111 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6112 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6113 Ops[0] = DAG.getRoot(); 6114 Ops[1] = getValue(I.getArgOperand(0)); 6115 Ops[2] = getValue(I.getArgOperand(1)); 6116 Ops[3] = getValue(I.getArgOperand(2)); 6117 Ops[4] = getValue(I.getArgOperand(3)); 6118 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6119 DAG.getVTList(MVT::Other), Ops, 6120 EVT::getIntegerVT(*Context, 8), 6121 MachinePointerInfo(I.getArgOperand(0)), 6122 0, /* align */ 6123 Flags); 6124 6125 // Chain the prefetch in parallell with any pending loads, to stay out of 6126 // the way of later optimizations. 6127 PendingLoads.push_back(Result); 6128 Result = getRoot(); 6129 DAG.setRoot(Result); 6130 return nullptr; 6131 } 6132 case Intrinsic::lifetime_start: 6133 case Intrinsic::lifetime_end: { 6134 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6135 // Stack coloring is not enabled in O0, discard region information. 6136 if (TM.getOptLevel() == CodeGenOpt::None) 6137 return nullptr; 6138 6139 SmallVector<Value *, 4> Allocas; 6140 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 6141 6142 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6143 E = Allocas.end(); Object != E; ++Object) { 6144 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6145 6146 // Could not find an Alloca. 6147 if (!LifetimeObject) 6148 continue; 6149 6150 // First check that the Alloca is static, otherwise it won't have a 6151 // valid frame index. 6152 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6153 if (SI == FuncInfo.StaticAllocaMap.end()) 6154 return nullptr; 6155 6156 int FI = SI->second; 6157 6158 SDValue Ops[2]; 6159 Ops[0] = getRoot(); 6160 Ops[1] = 6161 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 6162 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 6163 6164 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 6165 DAG.setRoot(Res); 6166 } 6167 return nullptr; 6168 } 6169 case Intrinsic::invariant_start: 6170 // Discard region information. 6171 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6172 return nullptr; 6173 case Intrinsic::invariant_end: 6174 // Discard region information. 6175 return nullptr; 6176 case Intrinsic::clear_cache: 6177 return TLI.getClearCacheBuiltinName(); 6178 case Intrinsic::donothing: 6179 // ignore 6180 return nullptr; 6181 case Intrinsic::experimental_stackmap: 6182 visitStackmap(I); 6183 return nullptr; 6184 case Intrinsic::experimental_patchpoint_void: 6185 case Intrinsic::experimental_patchpoint_i64: 6186 visitPatchpoint(&I); 6187 return nullptr; 6188 case Intrinsic::experimental_gc_statepoint: 6189 LowerStatepoint(ImmutableStatepoint(&I)); 6190 return nullptr; 6191 case Intrinsic::experimental_gc_result: 6192 visitGCResult(cast<GCResultInst>(I)); 6193 return nullptr; 6194 case Intrinsic::experimental_gc_relocate: 6195 visitGCRelocate(cast<GCRelocateInst>(I)); 6196 return nullptr; 6197 case Intrinsic::instrprof_increment: 6198 llvm_unreachable("instrprof failed to lower an increment"); 6199 case Intrinsic::instrprof_value_profile: 6200 llvm_unreachable("instrprof failed to lower a value profiling call"); 6201 case Intrinsic::localescape: { 6202 MachineFunction &MF = DAG.getMachineFunction(); 6203 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6204 6205 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6206 // is the same on all targets. 6207 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6208 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6209 if (isa<ConstantPointerNull>(Arg)) 6210 continue; // Skip null pointers. They represent a hole in index space. 6211 AllocaInst *Slot = cast<AllocaInst>(Arg); 6212 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6213 "can only escape static allocas"); 6214 int FI = FuncInfo.StaticAllocaMap[Slot]; 6215 MCSymbol *FrameAllocSym = 6216 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6217 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6218 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6219 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6220 .addSym(FrameAllocSym) 6221 .addFrameIndex(FI); 6222 } 6223 6224 MF.setHasLocalEscape(true); 6225 6226 return nullptr; 6227 } 6228 6229 case Intrinsic::localrecover: { 6230 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6231 MachineFunction &MF = DAG.getMachineFunction(); 6232 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6233 6234 // Get the symbol that defines the frame offset. 6235 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6236 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6237 unsigned IdxVal = 6238 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6239 MCSymbol *FrameAllocSym = 6240 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6241 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6242 6243 // Create a MCSymbol for the label to avoid any target lowering 6244 // that would make this PC relative. 6245 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6246 SDValue OffsetVal = 6247 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6248 6249 // Add the offset to the FP. 6250 Value *FP = I.getArgOperand(1); 6251 SDValue FPVal = getValue(FP); 6252 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6253 setValue(&I, Add); 6254 6255 return nullptr; 6256 } 6257 6258 case Intrinsic::eh_exceptionpointer: 6259 case Intrinsic::eh_exceptioncode: { 6260 // Get the exception pointer vreg, copy from it, and resize it to fit. 6261 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6262 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6263 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6264 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6265 SDValue N = 6266 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6267 if (Intrinsic == Intrinsic::eh_exceptioncode) 6268 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6269 setValue(&I, N); 6270 return nullptr; 6271 } 6272 case Intrinsic::xray_customevent: { 6273 // Here we want to make sure that the intrinsic behaves as if it has a 6274 // specific calling convention, and only for x86_64. 6275 // FIXME: Support other platforms later. 6276 const auto &Triple = DAG.getTarget().getTargetTriple(); 6277 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6278 return nullptr; 6279 6280 SDLoc DL = getCurSDLoc(); 6281 SmallVector<SDValue, 8> Ops; 6282 6283 // We want to say that we always want the arguments in registers. 6284 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6285 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6286 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6287 SDValue Chain = getRoot(); 6288 Ops.push_back(LogEntryVal); 6289 Ops.push_back(StrSizeVal); 6290 Ops.push_back(Chain); 6291 6292 // We need to enforce the calling convention for the callsite, so that 6293 // argument ordering is enforced correctly, and that register allocation can 6294 // see that some registers may be assumed clobbered and have to preserve 6295 // them across calls to the intrinsic. 6296 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6297 DL, NodeTys, Ops); 6298 SDValue patchableNode = SDValue(MN, 0); 6299 DAG.setRoot(patchableNode); 6300 setValue(&I, patchableNode); 6301 return nullptr; 6302 } 6303 case Intrinsic::xray_typedevent: { 6304 // Here we want to make sure that the intrinsic behaves as if it has a 6305 // specific calling convention, and only for x86_64. 6306 // FIXME: Support other platforms later. 6307 const auto &Triple = DAG.getTarget().getTargetTriple(); 6308 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6309 return nullptr; 6310 6311 SDLoc DL = getCurSDLoc(); 6312 SmallVector<SDValue, 8> Ops; 6313 6314 // We want to say that we always want the arguments in registers. 6315 // It's unclear to me how manipulating the selection DAG here forces callers 6316 // to provide arguments in registers instead of on the stack. 6317 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6318 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6319 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6320 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6321 SDValue Chain = getRoot(); 6322 Ops.push_back(LogTypeId); 6323 Ops.push_back(LogEntryVal); 6324 Ops.push_back(StrSizeVal); 6325 Ops.push_back(Chain); 6326 6327 // We need to enforce the calling convention for the callsite, so that 6328 // argument ordering is enforced correctly, and that register allocation can 6329 // see that some registers may be assumed clobbered and have to preserve 6330 // them across calls to the intrinsic. 6331 MachineSDNode *MN = DAG.getMachineNode( 6332 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6333 SDValue patchableNode = SDValue(MN, 0); 6334 DAG.setRoot(patchableNode); 6335 setValue(&I, patchableNode); 6336 return nullptr; 6337 } 6338 case Intrinsic::experimental_deoptimize: 6339 LowerDeoptimizeCall(&I); 6340 return nullptr; 6341 6342 case Intrinsic::experimental_vector_reduce_fadd: 6343 case Intrinsic::experimental_vector_reduce_fmul: 6344 case Intrinsic::experimental_vector_reduce_add: 6345 case Intrinsic::experimental_vector_reduce_mul: 6346 case Intrinsic::experimental_vector_reduce_and: 6347 case Intrinsic::experimental_vector_reduce_or: 6348 case Intrinsic::experimental_vector_reduce_xor: 6349 case Intrinsic::experimental_vector_reduce_smax: 6350 case Intrinsic::experimental_vector_reduce_smin: 6351 case Intrinsic::experimental_vector_reduce_umax: 6352 case Intrinsic::experimental_vector_reduce_umin: 6353 case Intrinsic::experimental_vector_reduce_fmax: 6354 case Intrinsic::experimental_vector_reduce_fmin: 6355 visitVectorReduce(I, Intrinsic); 6356 return nullptr; 6357 6358 case Intrinsic::icall_branch_funnel: { 6359 SmallVector<SDValue, 16> Ops; 6360 Ops.push_back(DAG.getRoot()); 6361 Ops.push_back(getValue(I.getArgOperand(0))); 6362 6363 int64_t Offset; 6364 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6365 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6366 if (!Base) 6367 report_fatal_error( 6368 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6369 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6370 6371 struct BranchFunnelTarget { 6372 int64_t Offset; 6373 SDValue Target; 6374 }; 6375 SmallVector<BranchFunnelTarget, 8> Targets; 6376 6377 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6378 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6379 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6380 if (ElemBase != Base) 6381 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6382 "to the same GlobalValue"); 6383 6384 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6385 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6386 if (!GA) 6387 report_fatal_error( 6388 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6389 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6390 GA->getGlobal(), getCurSDLoc(), 6391 Val.getValueType(), GA->getOffset())}); 6392 } 6393 llvm::sort(Targets, 6394 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6395 return T1.Offset < T2.Offset; 6396 }); 6397 6398 for (auto &T : Targets) { 6399 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6400 Ops.push_back(T.Target); 6401 } 6402 6403 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6404 getCurSDLoc(), MVT::Other, Ops), 6405 0); 6406 DAG.setRoot(N); 6407 setValue(&I, N); 6408 HasTailCall = true; 6409 return nullptr; 6410 } 6411 6412 case Intrinsic::wasm_landingpad_index: 6413 // Information this intrinsic contained has been transferred to 6414 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6415 // delete it now. 6416 return nullptr; 6417 } 6418 } 6419 6420 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6421 const ConstrainedFPIntrinsic &FPI) { 6422 SDLoc sdl = getCurSDLoc(); 6423 unsigned Opcode; 6424 switch (FPI.getIntrinsicID()) { 6425 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6426 case Intrinsic::experimental_constrained_fadd: 6427 Opcode = ISD::STRICT_FADD; 6428 break; 6429 case Intrinsic::experimental_constrained_fsub: 6430 Opcode = ISD::STRICT_FSUB; 6431 break; 6432 case Intrinsic::experimental_constrained_fmul: 6433 Opcode = ISD::STRICT_FMUL; 6434 break; 6435 case Intrinsic::experimental_constrained_fdiv: 6436 Opcode = ISD::STRICT_FDIV; 6437 break; 6438 case Intrinsic::experimental_constrained_frem: 6439 Opcode = ISD::STRICT_FREM; 6440 break; 6441 case Intrinsic::experimental_constrained_fma: 6442 Opcode = ISD::STRICT_FMA; 6443 break; 6444 case Intrinsic::experimental_constrained_sqrt: 6445 Opcode = ISD::STRICT_FSQRT; 6446 break; 6447 case Intrinsic::experimental_constrained_pow: 6448 Opcode = ISD::STRICT_FPOW; 6449 break; 6450 case Intrinsic::experimental_constrained_powi: 6451 Opcode = ISD::STRICT_FPOWI; 6452 break; 6453 case Intrinsic::experimental_constrained_sin: 6454 Opcode = ISD::STRICT_FSIN; 6455 break; 6456 case Intrinsic::experimental_constrained_cos: 6457 Opcode = ISD::STRICT_FCOS; 6458 break; 6459 case Intrinsic::experimental_constrained_exp: 6460 Opcode = ISD::STRICT_FEXP; 6461 break; 6462 case Intrinsic::experimental_constrained_exp2: 6463 Opcode = ISD::STRICT_FEXP2; 6464 break; 6465 case Intrinsic::experimental_constrained_log: 6466 Opcode = ISD::STRICT_FLOG; 6467 break; 6468 case Intrinsic::experimental_constrained_log10: 6469 Opcode = ISD::STRICT_FLOG10; 6470 break; 6471 case Intrinsic::experimental_constrained_log2: 6472 Opcode = ISD::STRICT_FLOG2; 6473 break; 6474 case Intrinsic::experimental_constrained_rint: 6475 Opcode = ISD::STRICT_FRINT; 6476 break; 6477 case Intrinsic::experimental_constrained_nearbyint: 6478 Opcode = ISD::STRICT_FNEARBYINT; 6479 break; 6480 case Intrinsic::experimental_constrained_maxnum: 6481 Opcode = ISD::STRICT_FMAXNUM; 6482 break; 6483 case Intrinsic::experimental_constrained_minnum: 6484 Opcode = ISD::STRICT_FMINNUM; 6485 break; 6486 case Intrinsic::experimental_constrained_ceil: 6487 Opcode = ISD::STRICT_FCEIL; 6488 break; 6489 case Intrinsic::experimental_constrained_floor: 6490 Opcode = ISD::STRICT_FFLOOR; 6491 break; 6492 case Intrinsic::experimental_constrained_round: 6493 Opcode = ISD::STRICT_FROUND; 6494 break; 6495 case Intrinsic::experimental_constrained_trunc: 6496 Opcode = ISD::STRICT_FTRUNC; 6497 break; 6498 } 6499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6500 SDValue Chain = getRoot(); 6501 SmallVector<EVT, 4> ValueVTs; 6502 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6503 ValueVTs.push_back(MVT::Other); // Out chain 6504 6505 SDVTList VTs = DAG.getVTList(ValueVTs); 6506 SDValue Result; 6507 if (FPI.isUnaryOp()) 6508 Result = DAG.getNode(Opcode, sdl, VTs, 6509 { Chain, getValue(FPI.getArgOperand(0)) }); 6510 else if (FPI.isTernaryOp()) 6511 Result = DAG.getNode(Opcode, sdl, VTs, 6512 { Chain, getValue(FPI.getArgOperand(0)), 6513 getValue(FPI.getArgOperand(1)), 6514 getValue(FPI.getArgOperand(2)) }); 6515 else 6516 Result = DAG.getNode(Opcode, sdl, VTs, 6517 { Chain, getValue(FPI.getArgOperand(0)), 6518 getValue(FPI.getArgOperand(1)) }); 6519 6520 assert(Result.getNode()->getNumValues() == 2); 6521 SDValue OutChain = Result.getValue(1); 6522 DAG.setRoot(OutChain); 6523 SDValue FPResult = Result.getValue(0); 6524 setValue(&FPI, FPResult); 6525 } 6526 6527 std::pair<SDValue, SDValue> 6528 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6529 const BasicBlock *EHPadBB) { 6530 MachineFunction &MF = DAG.getMachineFunction(); 6531 MachineModuleInfo &MMI = MF.getMMI(); 6532 MCSymbol *BeginLabel = nullptr; 6533 6534 if (EHPadBB) { 6535 // Insert a label before the invoke call to mark the try range. This can be 6536 // used to detect deletion of the invoke via the MachineModuleInfo. 6537 BeginLabel = MMI.getContext().createTempSymbol(); 6538 6539 // For SjLj, keep track of which landing pads go with which invokes 6540 // so as to maintain the ordering of pads in the LSDA. 6541 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6542 if (CallSiteIndex) { 6543 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6544 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6545 6546 // Now that the call site is handled, stop tracking it. 6547 MMI.setCurrentCallSite(0); 6548 } 6549 6550 // Both PendingLoads and PendingExports must be flushed here; 6551 // this call might not return. 6552 (void)getRoot(); 6553 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6554 6555 CLI.setChain(getRoot()); 6556 } 6557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6558 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6559 6560 assert((CLI.IsTailCall || Result.second.getNode()) && 6561 "Non-null chain expected with non-tail call!"); 6562 assert((Result.second.getNode() || !Result.first.getNode()) && 6563 "Null value expected with tail call!"); 6564 6565 if (!Result.second.getNode()) { 6566 // As a special case, a null chain means that a tail call has been emitted 6567 // and the DAG root is already updated. 6568 HasTailCall = true; 6569 6570 // Since there's no actual continuation from this block, nothing can be 6571 // relying on us setting vregs for them. 6572 PendingExports.clear(); 6573 } else { 6574 DAG.setRoot(Result.second); 6575 } 6576 6577 if (EHPadBB) { 6578 // Insert a label at the end of the invoke call to mark the try range. This 6579 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6580 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6581 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6582 6583 // Inform MachineModuleInfo of range. 6584 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6585 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6586 // actually use outlined funclets and their LSDA info style. 6587 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6588 assert(CLI.CS); 6589 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6590 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6591 BeginLabel, EndLabel); 6592 } else if (!isScopedEHPersonality(Pers)) { 6593 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6594 } 6595 } 6596 6597 return Result; 6598 } 6599 6600 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6601 bool isTailCall, 6602 const BasicBlock *EHPadBB) { 6603 auto &DL = DAG.getDataLayout(); 6604 FunctionType *FTy = CS.getFunctionType(); 6605 Type *RetTy = CS.getType(); 6606 6607 TargetLowering::ArgListTy Args; 6608 Args.reserve(CS.arg_size()); 6609 6610 const Value *SwiftErrorVal = nullptr; 6611 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6612 6613 // We can't tail call inside a function with a swifterror argument. Lowering 6614 // does not support this yet. It would have to move into the swifterror 6615 // register before the call. 6616 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6617 if (TLI.supportSwiftError() && 6618 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6619 isTailCall = false; 6620 6621 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6622 i != e; ++i) { 6623 TargetLowering::ArgListEntry Entry; 6624 const Value *V = *i; 6625 6626 // Skip empty types 6627 if (V->getType()->isEmptyTy()) 6628 continue; 6629 6630 SDValue ArgNode = getValue(V); 6631 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6632 6633 Entry.setAttributes(&CS, i - CS.arg_begin()); 6634 6635 // Use swifterror virtual register as input to the call. 6636 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6637 SwiftErrorVal = V; 6638 // We find the virtual register for the actual swifterror argument. 6639 // Instead of using the Value, we use the virtual register instead. 6640 Entry.Node = DAG.getRegister(FuncInfo 6641 .getOrCreateSwiftErrorVRegUseAt( 6642 CS.getInstruction(), FuncInfo.MBB, V) 6643 .first, 6644 EVT(TLI.getPointerTy(DL))); 6645 } 6646 6647 Args.push_back(Entry); 6648 6649 // If we have an explicit sret argument that is an Instruction, (i.e., it 6650 // might point to function-local memory), we can't meaningfully tail-call. 6651 if (Entry.IsSRet && isa<Instruction>(V)) 6652 isTailCall = false; 6653 } 6654 6655 // Check if target-independent constraints permit a tail call here. 6656 // Target-dependent constraints are checked within TLI->LowerCallTo. 6657 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6658 isTailCall = false; 6659 6660 // Disable tail calls if there is an swifterror argument. Targets have not 6661 // been updated to support tail calls. 6662 if (TLI.supportSwiftError() && SwiftErrorVal) 6663 isTailCall = false; 6664 6665 TargetLowering::CallLoweringInfo CLI(DAG); 6666 CLI.setDebugLoc(getCurSDLoc()) 6667 .setChain(getRoot()) 6668 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6669 .setTailCall(isTailCall) 6670 .setConvergent(CS.isConvergent()); 6671 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6672 6673 if (Result.first.getNode()) { 6674 const Instruction *Inst = CS.getInstruction(); 6675 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6676 setValue(Inst, Result.first); 6677 } 6678 6679 // The last element of CLI.InVals has the SDValue for swifterror return. 6680 // Here we copy it to a virtual register and update SwiftErrorMap for 6681 // book-keeping. 6682 if (SwiftErrorVal && TLI.supportSwiftError()) { 6683 // Get the last element of InVals. 6684 SDValue Src = CLI.InVals.back(); 6685 unsigned VReg; bool CreatedVReg; 6686 std::tie(VReg, CreatedVReg) = 6687 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6688 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6689 // We update the virtual register for the actual swifterror argument. 6690 if (CreatedVReg) 6691 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6692 DAG.setRoot(CopyNode); 6693 } 6694 } 6695 6696 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6697 SelectionDAGBuilder &Builder) { 6698 // Check to see if this load can be trivially constant folded, e.g. if the 6699 // input is from a string literal. 6700 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6701 // Cast pointer to the type we really want to load. 6702 Type *LoadTy = 6703 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6704 if (LoadVT.isVector()) 6705 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6706 6707 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6708 PointerType::getUnqual(LoadTy)); 6709 6710 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6711 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6712 return Builder.getValue(LoadCst); 6713 } 6714 6715 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6716 // still constant memory, the input chain can be the entry node. 6717 SDValue Root; 6718 bool ConstantMemory = false; 6719 6720 // Do not serialize (non-volatile) loads of constant memory with anything. 6721 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6722 Root = Builder.DAG.getEntryNode(); 6723 ConstantMemory = true; 6724 } else { 6725 // Do not serialize non-volatile loads against each other. 6726 Root = Builder.DAG.getRoot(); 6727 } 6728 6729 SDValue Ptr = Builder.getValue(PtrVal); 6730 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6731 Ptr, MachinePointerInfo(PtrVal), 6732 /* Alignment = */ 1); 6733 6734 if (!ConstantMemory) 6735 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6736 return LoadVal; 6737 } 6738 6739 /// Record the value for an instruction that produces an integer result, 6740 /// converting the type where necessary. 6741 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6742 SDValue Value, 6743 bool IsSigned) { 6744 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6745 I.getType(), true); 6746 if (IsSigned) 6747 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6748 else 6749 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6750 setValue(&I, Value); 6751 } 6752 6753 /// See if we can lower a memcmp call into an optimized form. If so, return 6754 /// true and lower it. Otherwise return false, and it will be lowered like a 6755 /// normal call. 6756 /// The caller already checked that \p I calls the appropriate LibFunc with a 6757 /// correct prototype. 6758 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6759 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6760 const Value *Size = I.getArgOperand(2); 6761 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6762 if (CSize && CSize->getZExtValue() == 0) { 6763 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6764 I.getType(), true); 6765 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6766 return true; 6767 } 6768 6769 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6770 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6771 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6772 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6773 if (Res.first.getNode()) { 6774 processIntegerCallValue(I, Res.first, true); 6775 PendingLoads.push_back(Res.second); 6776 return true; 6777 } 6778 6779 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6780 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6781 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6782 return false; 6783 6784 // If the target has a fast compare for the given size, it will return a 6785 // preferred load type for that size. Require that the load VT is legal and 6786 // that the target supports unaligned loads of that type. Otherwise, return 6787 // INVALID. 6788 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6790 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6791 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6792 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6793 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6794 // TODO: Check alignment of src and dest ptrs. 6795 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6796 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6797 if (!TLI.isTypeLegal(LVT) || 6798 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6799 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6800 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6801 } 6802 6803 return LVT; 6804 }; 6805 6806 // This turns into unaligned loads. We only do this if the target natively 6807 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6808 // we'll only produce a small number of byte loads. 6809 MVT LoadVT; 6810 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6811 switch (NumBitsToCompare) { 6812 default: 6813 return false; 6814 case 16: 6815 LoadVT = MVT::i16; 6816 break; 6817 case 32: 6818 LoadVT = MVT::i32; 6819 break; 6820 case 64: 6821 case 128: 6822 case 256: 6823 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6824 break; 6825 } 6826 6827 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6828 return false; 6829 6830 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6831 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6832 6833 // Bitcast to a wide integer type if the loads are vectors. 6834 if (LoadVT.isVector()) { 6835 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6836 LoadL = DAG.getBitcast(CmpVT, LoadL); 6837 LoadR = DAG.getBitcast(CmpVT, LoadR); 6838 } 6839 6840 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6841 processIntegerCallValue(I, Cmp, false); 6842 return true; 6843 } 6844 6845 /// See if we can lower a memchr call into an optimized form. If so, return 6846 /// true and lower it. Otherwise return false, and it will be lowered like a 6847 /// normal call. 6848 /// The caller already checked that \p I calls the appropriate LibFunc with a 6849 /// correct prototype. 6850 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6851 const Value *Src = I.getArgOperand(0); 6852 const Value *Char = I.getArgOperand(1); 6853 const Value *Length = I.getArgOperand(2); 6854 6855 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6856 std::pair<SDValue, SDValue> Res = 6857 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6858 getValue(Src), getValue(Char), getValue(Length), 6859 MachinePointerInfo(Src)); 6860 if (Res.first.getNode()) { 6861 setValue(&I, Res.first); 6862 PendingLoads.push_back(Res.second); 6863 return true; 6864 } 6865 6866 return false; 6867 } 6868 6869 /// See if we can lower a mempcpy call into an optimized form. If so, return 6870 /// true and lower it. Otherwise return false, and it will be lowered like a 6871 /// normal call. 6872 /// The caller already checked that \p I calls the appropriate LibFunc with a 6873 /// correct prototype. 6874 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6875 SDValue Dst = getValue(I.getArgOperand(0)); 6876 SDValue Src = getValue(I.getArgOperand(1)); 6877 SDValue Size = getValue(I.getArgOperand(2)); 6878 6879 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6880 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6881 unsigned Align = std::min(DstAlign, SrcAlign); 6882 if (Align == 0) // Alignment of one or both could not be inferred. 6883 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6884 6885 bool isVol = false; 6886 SDLoc sdl = getCurSDLoc(); 6887 6888 // In the mempcpy context we need to pass in a false value for isTailCall 6889 // because the return pointer needs to be adjusted by the size of 6890 // the copied memory. 6891 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6892 false, /*isTailCall=*/false, 6893 MachinePointerInfo(I.getArgOperand(0)), 6894 MachinePointerInfo(I.getArgOperand(1))); 6895 assert(MC.getNode() != nullptr && 6896 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6897 DAG.setRoot(MC); 6898 6899 // Check if Size needs to be truncated or extended. 6900 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6901 6902 // Adjust return pointer to point just past the last dst byte. 6903 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6904 Dst, Size); 6905 setValue(&I, DstPlusSize); 6906 return true; 6907 } 6908 6909 /// See if we can lower a strcpy call into an optimized form. If so, return 6910 /// true and lower it, otherwise return false and it will be lowered like a 6911 /// normal call. 6912 /// The caller already checked that \p I calls the appropriate LibFunc with a 6913 /// correct prototype. 6914 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6915 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6916 6917 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6918 std::pair<SDValue, SDValue> Res = 6919 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6920 getValue(Arg0), getValue(Arg1), 6921 MachinePointerInfo(Arg0), 6922 MachinePointerInfo(Arg1), isStpcpy); 6923 if (Res.first.getNode()) { 6924 setValue(&I, Res.first); 6925 DAG.setRoot(Res.second); 6926 return true; 6927 } 6928 6929 return false; 6930 } 6931 6932 /// See if we can lower a strcmp call into an optimized form. If so, return 6933 /// true and lower it, otherwise return false and it will be lowered like a 6934 /// normal call. 6935 /// The caller already checked that \p I calls the appropriate LibFunc with a 6936 /// correct prototype. 6937 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6938 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6939 6940 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6941 std::pair<SDValue, SDValue> Res = 6942 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6943 getValue(Arg0), getValue(Arg1), 6944 MachinePointerInfo(Arg0), 6945 MachinePointerInfo(Arg1)); 6946 if (Res.first.getNode()) { 6947 processIntegerCallValue(I, Res.first, true); 6948 PendingLoads.push_back(Res.second); 6949 return true; 6950 } 6951 6952 return false; 6953 } 6954 6955 /// See if we can lower a strlen call into an optimized form. If so, return 6956 /// true and lower it, otherwise return false and it will be lowered like a 6957 /// normal call. 6958 /// The caller already checked that \p I calls the appropriate LibFunc with a 6959 /// correct prototype. 6960 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6961 const Value *Arg0 = I.getArgOperand(0); 6962 6963 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6964 std::pair<SDValue, SDValue> Res = 6965 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6966 getValue(Arg0), MachinePointerInfo(Arg0)); 6967 if (Res.first.getNode()) { 6968 processIntegerCallValue(I, Res.first, false); 6969 PendingLoads.push_back(Res.second); 6970 return true; 6971 } 6972 6973 return false; 6974 } 6975 6976 /// See if we can lower a strnlen call into an optimized form. If so, return 6977 /// true and lower it, otherwise return false and it will be lowered like a 6978 /// normal call. 6979 /// The caller already checked that \p I calls the appropriate LibFunc with a 6980 /// correct prototype. 6981 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6982 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6983 6984 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6985 std::pair<SDValue, SDValue> Res = 6986 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6987 getValue(Arg0), getValue(Arg1), 6988 MachinePointerInfo(Arg0)); 6989 if (Res.first.getNode()) { 6990 processIntegerCallValue(I, Res.first, false); 6991 PendingLoads.push_back(Res.second); 6992 return true; 6993 } 6994 6995 return false; 6996 } 6997 6998 /// See if we can lower a unary floating-point operation into an SDNode with 6999 /// the specified Opcode. If so, return true and lower it, otherwise return 7000 /// false and it will be lowered like a normal call. 7001 /// The caller already checked that \p I calls the appropriate LibFunc with a 7002 /// correct prototype. 7003 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7004 unsigned Opcode) { 7005 // We already checked this call's prototype; verify it doesn't modify errno. 7006 if (!I.onlyReadsMemory()) 7007 return false; 7008 7009 SDValue Tmp = getValue(I.getArgOperand(0)); 7010 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7011 return true; 7012 } 7013 7014 /// See if we can lower a binary floating-point operation into an SDNode with 7015 /// the specified Opcode. If so, return true and lower it. Otherwise return 7016 /// false, and it will be lowered like a normal call. 7017 /// The caller already checked that \p I calls the appropriate LibFunc with a 7018 /// correct prototype. 7019 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7020 unsigned Opcode) { 7021 // We already checked this call's prototype; verify it doesn't modify errno. 7022 if (!I.onlyReadsMemory()) 7023 return false; 7024 7025 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7026 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7027 EVT VT = Tmp0.getValueType(); 7028 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7029 return true; 7030 } 7031 7032 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7033 // Handle inline assembly differently. 7034 if (isa<InlineAsm>(I.getCalledValue())) { 7035 visitInlineAsm(&I); 7036 return; 7037 } 7038 7039 const char *RenameFn = nullptr; 7040 if (Function *F = I.getCalledFunction()) { 7041 if (F->isDeclaration()) { 7042 // Is this an LLVM intrinsic or a target-specific intrinsic? 7043 unsigned IID = F->getIntrinsicID(); 7044 if (!IID) 7045 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7046 IID = II->getIntrinsicID(F); 7047 7048 if (IID) { 7049 RenameFn = visitIntrinsicCall(I, IID); 7050 if (!RenameFn) 7051 return; 7052 } 7053 } 7054 7055 // Check for well-known libc/libm calls. If the function is internal, it 7056 // can't be a library call. Don't do the check if marked as nobuiltin for 7057 // some reason or the call site requires strict floating point semantics. 7058 LibFunc Func; 7059 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7060 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7061 LibInfo->hasOptimizedCodeGen(Func)) { 7062 switch (Func) { 7063 default: break; 7064 case LibFunc_copysign: 7065 case LibFunc_copysignf: 7066 case LibFunc_copysignl: 7067 // We already checked this call's prototype; verify it doesn't modify 7068 // errno. 7069 if (I.onlyReadsMemory()) { 7070 SDValue LHS = getValue(I.getArgOperand(0)); 7071 SDValue RHS = getValue(I.getArgOperand(1)); 7072 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7073 LHS.getValueType(), LHS, RHS)); 7074 return; 7075 } 7076 break; 7077 case LibFunc_fabs: 7078 case LibFunc_fabsf: 7079 case LibFunc_fabsl: 7080 if (visitUnaryFloatCall(I, ISD::FABS)) 7081 return; 7082 break; 7083 case LibFunc_fmin: 7084 case LibFunc_fminf: 7085 case LibFunc_fminl: 7086 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7087 return; 7088 break; 7089 case LibFunc_fmax: 7090 case LibFunc_fmaxf: 7091 case LibFunc_fmaxl: 7092 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7093 return; 7094 break; 7095 case LibFunc_sin: 7096 case LibFunc_sinf: 7097 case LibFunc_sinl: 7098 if (visitUnaryFloatCall(I, ISD::FSIN)) 7099 return; 7100 break; 7101 case LibFunc_cos: 7102 case LibFunc_cosf: 7103 case LibFunc_cosl: 7104 if (visitUnaryFloatCall(I, ISD::FCOS)) 7105 return; 7106 break; 7107 case LibFunc_sqrt: 7108 case LibFunc_sqrtf: 7109 case LibFunc_sqrtl: 7110 case LibFunc_sqrt_finite: 7111 case LibFunc_sqrtf_finite: 7112 case LibFunc_sqrtl_finite: 7113 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7114 return; 7115 break; 7116 case LibFunc_floor: 7117 case LibFunc_floorf: 7118 case LibFunc_floorl: 7119 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7120 return; 7121 break; 7122 case LibFunc_nearbyint: 7123 case LibFunc_nearbyintf: 7124 case LibFunc_nearbyintl: 7125 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7126 return; 7127 break; 7128 case LibFunc_ceil: 7129 case LibFunc_ceilf: 7130 case LibFunc_ceill: 7131 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7132 return; 7133 break; 7134 case LibFunc_rint: 7135 case LibFunc_rintf: 7136 case LibFunc_rintl: 7137 if (visitUnaryFloatCall(I, ISD::FRINT)) 7138 return; 7139 break; 7140 case LibFunc_round: 7141 case LibFunc_roundf: 7142 case LibFunc_roundl: 7143 if (visitUnaryFloatCall(I, ISD::FROUND)) 7144 return; 7145 break; 7146 case LibFunc_trunc: 7147 case LibFunc_truncf: 7148 case LibFunc_truncl: 7149 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7150 return; 7151 break; 7152 case LibFunc_log2: 7153 case LibFunc_log2f: 7154 case LibFunc_log2l: 7155 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7156 return; 7157 break; 7158 case LibFunc_exp2: 7159 case LibFunc_exp2f: 7160 case LibFunc_exp2l: 7161 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7162 return; 7163 break; 7164 case LibFunc_memcmp: 7165 if (visitMemCmpCall(I)) 7166 return; 7167 break; 7168 case LibFunc_mempcpy: 7169 if (visitMemPCpyCall(I)) 7170 return; 7171 break; 7172 case LibFunc_memchr: 7173 if (visitMemChrCall(I)) 7174 return; 7175 break; 7176 case LibFunc_strcpy: 7177 if (visitStrCpyCall(I, false)) 7178 return; 7179 break; 7180 case LibFunc_stpcpy: 7181 if (visitStrCpyCall(I, true)) 7182 return; 7183 break; 7184 case LibFunc_strcmp: 7185 if (visitStrCmpCall(I)) 7186 return; 7187 break; 7188 case LibFunc_strlen: 7189 if (visitStrLenCall(I)) 7190 return; 7191 break; 7192 case LibFunc_strnlen: 7193 if (visitStrNLenCall(I)) 7194 return; 7195 break; 7196 } 7197 } 7198 } 7199 7200 SDValue Callee; 7201 if (!RenameFn) 7202 Callee = getValue(I.getCalledValue()); 7203 else 7204 Callee = DAG.getExternalSymbol( 7205 RenameFn, 7206 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7207 7208 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7209 // have to do anything here to lower funclet bundles. 7210 assert(!I.hasOperandBundlesOtherThan( 7211 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7212 "Cannot lower calls with arbitrary operand bundles!"); 7213 7214 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7215 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7216 else 7217 // Check if we can potentially perform a tail call. More detailed checking 7218 // is be done within LowerCallTo, after more information about the call is 7219 // known. 7220 LowerCallTo(&I, Callee, I.isTailCall()); 7221 } 7222 7223 namespace { 7224 7225 /// AsmOperandInfo - This contains information for each constraint that we are 7226 /// lowering. 7227 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7228 public: 7229 /// CallOperand - If this is the result output operand or a clobber 7230 /// this is null, otherwise it is the incoming operand to the CallInst. 7231 /// This gets modified as the asm is processed. 7232 SDValue CallOperand; 7233 7234 /// AssignedRegs - If this is a register or register class operand, this 7235 /// contains the set of register corresponding to the operand. 7236 RegsForValue AssignedRegs; 7237 7238 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7239 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7240 } 7241 7242 /// Whether or not this operand accesses memory 7243 bool hasMemory(const TargetLowering &TLI) const { 7244 // Indirect operand accesses access memory. 7245 if (isIndirect) 7246 return true; 7247 7248 for (const auto &Code : Codes) 7249 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7250 return true; 7251 7252 return false; 7253 } 7254 7255 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7256 /// corresponds to. If there is no Value* for this operand, it returns 7257 /// MVT::Other. 7258 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7259 const DataLayout &DL) const { 7260 if (!CallOperandVal) return MVT::Other; 7261 7262 if (isa<BasicBlock>(CallOperandVal)) 7263 return TLI.getPointerTy(DL); 7264 7265 llvm::Type *OpTy = CallOperandVal->getType(); 7266 7267 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7268 // If this is an indirect operand, the operand is a pointer to the 7269 // accessed type. 7270 if (isIndirect) { 7271 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7272 if (!PtrTy) 7273 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7274 OpTy = PtrTy->getElementType(); 7275 } 7276 7277 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7278 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7279 if (STy->getNumElements() == 1) 7280 OpTy = STy->getElementType(0); 7281 7282 // If OpTy is not a single value, it may be a struct/union that we 7283 // can tile with integers. 7284 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7285 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7286 switch (BitSize) { 7287 default: break; 7288 case 1: 7289 case 8: 7290 case 16: 7291 case 32: 7292 case 64: 7293 case 128: 7294 OpTy = IntegerType::get(Context, BitSize); 7295 break; 7296 } 7297 } 7298 7299 return TLI.getValueType(DL, OpTy, true); 7300 } 7301 }; 7302 7303 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7304 7305 } // end anonymous namespace 7306 7307 /// Make sure that the output operand \p OpInfo and its corresponding input 7308 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7309 /// out). 7310 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7311 SDISelAsmOperandInfo &MatchingOpInfo, 7312 SelectionDAG &DAG) { 7313 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7314 return; 7315 7316 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7317 const auto &TLI = DAG.getTargetLoweringInfo(); 7318 7319 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7320 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7321 OpInfo.ConstraintVT); 7322 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7323 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7324 MatchingOpInfo.ConstraintVT); 7325 if ((OpInfo.ConstraintVT.isInteger() != 7326 MatchingOpInfo.ConstraintVT.isInteger()) || 7327 (MatchRC.second != InputRC.second)) { 7328 // FIXME: error out in a more elegant fashion 7329 report_fatal_error("Unsupported asm: input constraint" 7330 " with a matching output constraint of" 7331 " incompatible type!"); 7332 } 7333 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7334 } 7335 7336 /// Get a direct memory input to behave well as an indirect operand. 7337 /// This may introduce stores, hence the need for a \p Chain. 7338 /// \return The (possibly updated) chain. 7339 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7340 SDISelAsmOperandInfo &OpInfo, 7341 SelectionDAG &DAG) { 7342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7343 7344 // If we don't have an indirect input, put it in the constpool if we can, 7345 // otherwise spill it to a stack slot. 7346 // TODO: This isn't quite right. We need to handle these according to 7347 // the addressing mode that the constraint wants. Also, this may take 7348 // an additional register for the computation and we don't want that 7349 // either. 7350 7351 // If the operand is a float, integer, or vector constant, spill to a 7352 // constant pool entry to get its address. 7353 const Value *OpVal = OpInfo.CallOperandVal; 7354 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7355 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7356 OpInfo.CallOperand = DAG.getConstantPool( 7357 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7358 return Chain; 7359 } 7360 7361 // Otherwise, create a stack slot and emit a store to it before the asm. 7362 Type *Ty = OpVal->getType(); 7363 auto &DL = DAG.getDataLayout(); 7364 uint64_t TySize = DL.getTypeAllocSize(Ty); 7365 unsigned Align = DL.getPrefTypeAlignment(Ty); 7366 MachineFunction &MF = DAG.getMachineFunction(); 7367 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7368 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7369 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7370 MachinePointerInfo::getFixedStack(MF, SSFI)); 7371 OpInfo.CallOperand = StackSlot; 7372 7373 return Chain; 7374 } 7375 7376 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7377 /// specified operand. We prefer to assign virtual registers, to allow the 7378 /// register allocator to handle the assignment process. However, if the asm 7379 /// uses features that we can't model on machineinstrs, we have SDISel do the 7380 /// allocation. This produces generally horrible, but correct, code. 7381 /// 7382 /// OpInfo describes the operand 7383 /// RefOpInfo describes the matching operand if any, the operand otherwise 7384 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7385 SDISelAsmOperandInfo &OpInfo, 7386 SDISelAsmOperandInfo &RefOpInfo) { 7387 LLVMContext &Context = *DAG.getContext(); 7388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7389 7390 MachineFunction &MF = DAG.getMachineFunction(); 7391 SmallVector<unsigned, 4> Regs; 7392 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7393 7394 // No work to do for memory operations. 7395 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7396 return; 7397 7398 // If this is a constraint for a single physreg, or a constraint for a 7399 // register class, find it. 7400 unsigned AssignedReg; 7401 const TargetRegisterClass *RC; 7402 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7403 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7404 // RC is unset only on failure. Return immediately. 7405 if (!RC) 7406 return; 7407 7408 // Get the actual register value type. This is important, because the user 7409 // may have asked for (e.g.) the AX register in i32 type. We need to 7410 // remember that AX is actually i16 to get the right extension. 7411 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7412 7413 if (OpInfo.ConstraintVT != MVT::Other) { 7414 // If this is an FP operand in an integer register (or visa versa), or more 7415 // generally if the operand value disagrees with the register class we plan 7416 // to stick it in, fix the operand type. 7417 // 7418 // If this is an input value, the bitcast to the new type is done now. 7419 // Bitcast for output value is done at the end of visitInlineAsm(). 7420 if ((OpInfo.Type == InlineAsm::isOutput || 7421 OpInfo.Type == InlineAsm::isInput) && 7422 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7423 // Try to convert to the first EVT that the reg class contains. If the 7424 // types are identical size, use a bitcast to convert (e.g. two differing 7425 // vector types). Note: output bitcast is done at the end of 7426 // visitInlineAsm(). 7427 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7428 // Exclude indirect inputs while they are unsupported because the code 7429 // to perform the load is missing and thus OpInfo.CallOperand still 7430 // refers to the input address rather than the pointed-to value. 7431 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7432 OpInfo.CallOperand = 7433 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7434 OpInfo.ConstraintVT = RegVT; 7435 // If the operand is an FP value and we want it in integer registers, 7436 // use the corresponding integer type. This turns an f64 value into 7437 // i64, which can be passed with two i32 values on a 32-bit machine. 7438 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7439 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7440 if (OpInfo.Type == InlineAsm::isInput) 7441 OpInfo.CallOperand = 7442 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7443 OpInfo.ConstraintVT = VT; 7444 } 7445 } 7446 } 7447 7448 // No need to allocate a matching input constraint since the constraint it's 7449 // matching to has already been allocated. 7450 if (OpInfo.isMatchingInputConstraint()) 7451 return; 7452 7453 EVT ValueVT = OpInfo.ConstraintVT; 7454 if (OpInfo.ConstraintVT == MVT::Other) 7455 ValueVT = RegVT; 7456 7457 // Initialize NumRegs. 7458 unsigned NumRegs = 1; 7459 if (OpInfo.ConstraintVT != MVT::Other) 7460 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7461 7462 // If this is a constraint for a specific physical register, like {r17}, 7463 // assign it now. 7464 7465 // If this associated to a specific register, initialize iterator to correct 7466 // place. If virtual, make sure we have enough registers 7467 7468 // Initialize iterator if necessary 7469 TargetRegisterClass::iterator I = RC->begin(); 7470 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7471 7472 // Do not check for single registers. 7473 if (AssignedReg) { 7474 for (; *I != AssignedReg; ++I) 7475 assert(I != RC->end() && "AssignedReg should be member of RC"); 7476 } 7477 7478 for (; NumRegs; --NumRegs, ++I) { 7479 assert(I != RC->end() && "Ran out of registers to allocate!"); 7480 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7481 Regs.push_back(R); 7482 } 7483 7484 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7485 } 7486 7487 static unsigned 7488 findMatchingInlineAsmOperand(unsigned OperandNo, 7489 const std::vector<SDValue> &AsmNodeOperands) { 7490 // Scan until we find the definition we already emitted of this operand. 7491 unsigned CurOp = InlineAsm::Op_FirstOperand; 7492 for (; OperandNo; --OperandNo) { 7493 // Advance to the next operand. 7494 unsigned OpFlag = 7495 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7496 assert((InlineAsm::isRegDefKind(OpFlag) || 7497 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7498 InlineAsm::isMemKind(OpFlag)) && 7499 "Skipped past definitions?"); 7500 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7501 } 7502 return CurOp; 7503 } 7504 7505 namespace { 7506 7507 class ExtraFlags { 7508 unsigned Flags = 0; 7509 7510 public: 7511 explicit ExtraFlags(ImmutableCallSite CS) { 7512 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7513 if (IA->hasSideEffects()) 7514 Flags |= InlineAsm::Extra_HasSideEffects; 7515 if (IA->isAlignStack()) 7516 Flags |= InlineAsm::Extra_IsAlignStack; 7517 if (CS.isConvergent()) 7518 Flags |= InlineAsm::Extra_IsConvergent; 7519 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7520 } 7521 7522 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7523 // Ideally, we would only check against memory constraints. However, the 7524 // meaning of an Other constraint can be target-specific and we can't easily 7525 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7526 // for Other constraints as well. 7527 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7528 OpInfo.ConstraintType == TargetLowering::C_Other) { 7529 if (OpInfo.Type == InlineAsm::isInput) 7530 Flags |= InlineAsm::Extra_MayLoad; 7531 else if (OpInfo.Type == InlineAsm::isOutput) 7532 Flags |= InlineAsm::Extra_MayStore; 7533 else if (OpInfo.Type == InlineAsm::isClobber) 7534 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7535 } 7536 } 7537 7538 unsigned get() const { return Flags; } 7539 }; 7540 7541 } // end anonymous namespace 7542 7543 /// visitInlineAsm - Handle a call to an InlineAsm object. 7544 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7545 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7546 7547 /// ConstraintOperands - Information about all of the constraints. 7548 SDISelAsmOperandInfoVector ConstraintOperands; 7549 7550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7551 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7552 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7553 7554 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7555 // AsmDialect, MayLoad, MayStore). 7556 bool HasSideEffect = IA->hasSideEffects(); 7557 ExtraFlags ExtraInfo(CS); 7558 7559 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7560 unsigned ResNo = 0; // ResNo - The result number of the next output. 7561 for (auto &T : TargetConstraints) { 7562 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7563 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7564 7565 // Compute the value type for each operand. 7566 if (OpInfo.Type == InlineAsm::isInput || 7567 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7568 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7569 7570 // Process the call argument. BasicBlocks are labels, currently appearing 7571 // only in asm's. 7572 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7573 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7574 } else { 7575 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7576 } 7577 7578 OpInfo.ConstraintVT = 7579 OpInfo 7580 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7581 .getSimpleVT(); 7582 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7583 // The return value of the call is this value. As such, there is no 7584 // corresponding argument. 7585 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7586 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7587 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7588 DAG.getDataLayout(), STy->getElementType(ResNo)); 7589 } else { 7590 assert(ResNo == 0 && "Asm only has one result!"); 7591 OpInfo.ConstraintVT = 7592 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7593 } 7594 ++ResNo; 7595 } else { 7596 OpInfo.ConstraintVT = MVT::Other; 7597 } 7598 7599 if (!HasSideEffect) 7600 HasSideEffect = OpInfo.hasMemory(TLI); 7601 7602 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7603 // FIXME: Could we compute this on OpInfo rather than T? 7604 7605 // Compute the constraint code and ConstraintType to use. 7606 TLI.ComputeConstraintToUse(T, SDValue()); 7607 7608 ExtraInfo.update(T); 7609 } 7610 7611 // We won't need to flush pending loads if this asm doesn't touch 7612 // memory and is nonvolatile. 7613 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7614 7615 // Second pass over the constraints: compute which constraint option to use. 7616 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7617 // If this is an output operand with a matching input operand, look up the 7618 // matching input. If their types mismatch, e.g. one is an integer, the 7619 // other is floating point, or their sizes are different, flag it as an 7620 // error. 7621 if (OpInfo.hasMatchingInput()) { 7622 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7623 patchMatchingInput(OpInfo, Input, DAG); 7624 } 7625 7626 // Compute the constraint code and ConstraintType to use. 7627 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7628 7629 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7630 OpInfo.Type == InlineAsm::isClobber) 7631 continue; 7632 7633 // If this is a memory input, and if the operand is not indirect, do what we 7634 // need to provide an address for the memory input. 7635 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7636 !OpInfo.isIndirect) { 7637 assert((OpInfo.isMultipleAlternative || 7638 (OpInfo.Type == InlineAsm::isInput)) && 7639 "Can only indirectify direct input operands!"); 7640 7641 // Memory operands really want the address of the value. 7642 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7643 7644 // There is no longer a Value* corresponding to this operand. 7645 OpInfo.CallOperandVal = nullptr; 7646 7647 // It is now an indirect operand. 7648 OpInfo.isIndirect = true; 7649 } 7650 7651 } 7652 7653 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7654 std::vector<SDValue> AsmNodeOperands; 7655 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7656 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7657 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7658 7659 // If we have a !srcloc metadata node associated with it, we want to attach 7660 // this to the ultimately generated inline asm machineinstr. To do this, we 7661 // pass in the third operand as this (potentially null) inline asm MDNode. 7662 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7663 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7664 7665 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7666 // bits as operand 3. 7667 AsmNodeOperands.push_back(DAG.getTargetConstant( 7668 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7669 7670 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7671 // this, assign virtual and physical registers for inputs and otput. 7672 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7673 // Assign Registers. 7674 SDISelAsmOperandInfo &RefOpInfo = 7675 OpInfo.isMatchingInputConstraint() 7676 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7677 : OpInfo; 7678 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7679 7680 switch (OpInfo.Type) { 7681 case InlineAsm::isOutput: 7682 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7683 OpInfo.ConstraintType != TargetLowering::C_Register) { 7684 // Memory output, or 'other' output (e.g. 'X' constraint). 7685 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7686 7687 unsigned ConstraintID = 7688 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7689 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7690 "Failed to convert memory constraint code to constraint id."); 7691 7692 // Add information to the INLINEASM node to know about this output. 7693 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7694 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7695 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7696 MVT::i32)); 7697 AsmNodeOperands.push_back(OpInfo.CallOperand); 7698 break; 7699 } else if (OpInfo.ConstraintType == TargetLowering::C_Register || 7700 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 7701 // Otherwise, this is a register or register class output. 7702 7703 // Copy the output from the appropriate register. Find a register that 7704 // we can use. 7705 if (OpInfo.AssignedRegs.Regs.empty()) { 7706 emitInlineAsmError( 7707 CS, "couldn't allocate output register for constraint '" + 7708 Twine(OpInfo.ConstraintCode) + "'"); 7709 return; 7710 } 7711 7712 // Add information to the INLINEASM node to know that this register is 7713 // set. 7714 OpInfo.AssignedRegs.AddInlineAsmOperands( 7715 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 7716 : InlineAsm::Kind_RegDef, 7717 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7718 } 7719 break; 7720 7721 case InlineAsm::isInput: { 7722 SDValue InOperandVal = OpInfo.CallOperand; 7723 7724 if (OpInfo.isMatchingInputConstraint()) { 7725 // If this is required to match an output register we have already set, 7726 // just use its register. 7727 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7728 AsmNodeOperands); 7729 unsigned OpFlag = 7730 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7731 if (InlineAsm::isRegDefKind(OpFlag) || 7732 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7733 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7734 if (OpInfo.isIndirect) { 7735 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7736 emitInlineAsmError(CS, "inline asm not supported yet:" 7737 " don't know how to handle tied " 7738 "indirect register inputs"); 7739 return; 7740 } 7741 7742 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7743 SmallVector<unsigned, 4> Regs; 7744 7745 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 7746 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 7747 MachineRegisterInfo &RegInfo = 7748 DAG.getMachineFunction().getRegInfo(); 7749 for (unsigned i = 0; i != NumRegs; ++i) 7750 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7751 } else { 7752 emitInlineAsmError(CS, "inline asm error: This value type register " 7753 "class is not natively supported!"); 7754 return; 7755 } 7756 7757 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7758 7759 SDLoc dl = getCurSDLoc(); 7760 // Use the produced MatchedRegs object to 7761 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7762 CS.getInstruction()); 7763 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7764 true, OpInfo.getMatchedOperand(), dl, 7765 DAG, AsmNodeOperands); 7766 break; 7767 } 7768 7769 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7770 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7771 "Unexpected number of operands"); 7772 // Add information to the INLINEASM node to know about this input. 7773 // See InlineAsm.h isUseOperandTiedToDef. 7774 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7775 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7776 OpInfo.getMatchedOperand()); 7777 AsmNodeOperands.push_back(DAG.getTargetConstant( 7778 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7779 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7780 break; 7781 } 7782 7783 // Treat indirect 'X' constraint as memory. 7784 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7785 OpInfo.isIndirect) 7786 OpInfo.ConstraintType = TargetLowering::C_Memory; 7787 7788 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7789 std::vector<SDValue> Ops; 7790 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7791 Ops, DAG); 7792 if (Ops.empty()) { 7793 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7794 Twine(OpInfo.ConstraintCode) + "'"); 7795 return; 7796 } 7797 7798 // Add information to the INLINEASM node to know about this input. 7799 unsigned ResOpType = 7800 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7801 AsmNodeOperands.push_back(DAG.getTargetConstant( 7802 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7803 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7804 break; 7805 } 7806 7807 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7808 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7809 assert(InOperandVal.getValueType() == 7810 TLI.getPointerTy(DAG.getDataLayout()) && 7811 "Memory operands expect pointer values"); 7812 7813 unsigned ConstraintID = 7814 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7815 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7816 "Failed to convert memory constraint code to constraint id."); 7817 7818 // Add information to the INLINEASM node to know about this input. 7819 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7820 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7821 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7822 getCurSDLoc(), 7823 MVT::i32)); 7824 AsmNodeOperands.push_back(InOperandVal); 7825 break; 7826 } 7827 7828 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7829 OpInfo.ConstraintType == TargetLowering::C_Register) && 7830 "Unknown constraint type!"); 7831 7832 // TODO: Support this. 7833 if (OpInfo.isIndirect) { 7834 emitInlineAsmError( 7835 CS, "Don't know how to handle indirect register inputs yet " 7836 "for constraint '" + 7837 Twine(OpInfo.ConstraintCode) + "'"); 7838 return; 7839 } 7840 7841 // Copy the input into the appropriate registers. 7842 if (OpInfo.AssignedRegs.Regs.empty()) { 7843 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7844 Twine(OpInfo.ConstraintCode) + "'"); 7845 return; 7846 } 7847 7848 SDLoc dl = getCurSDLoc(); 7849 7850 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7851 Chain, &Flag, CS.getInstruction()); 7852 7853 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7854 dl, DAG, AsmNodeOperands); 7855 break; 7856 } 7857 case InlineAsm::isClobber: 7858 // Add the clobbered value to the operand list, so that the register 7859 // allocator is aware that the physreg got clobbered. 7860 if (!OpInfo.AssignedRegs.Regs.empty()) 7861 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7862 false, 0, getCurSDLoc(), DAG, 7863 AsmNodeOperands); 7864 break; 7865 } 7866 } 7867 7868 // Finish up input operands. Set the input chain and add the flag last. 7869 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7870 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7871 7872 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7873 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7874 Flag = Chain.getValue(1); 7875 7876 // Do additional work to generate outputs. 7877 7878 SmallVector<EVT, 1> ResultVTs; 7879 SmallVector<SDValue, 1> ResultValues; 7880 SmallVector<SDValue, 8> OutChains; 7881 7882 llvm::Type *CSResultType = CS.getType(); 7883 ArrayRef<Type *> ResultTypes; 7884 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 7885 ResultTypes = StructResult->elements(); 7886 else if (!CSResultType->isVoidTy()) 7887 ResultTypes = makeArrayRef(CSResultType); 7888 7889 auto CurResultType = ResultTypes.begin(); 7890 auto handleRegAssign = [&](SDValue V) { 7891 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 7892 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 7893 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 7894 ++CurResultType; 7895 // If the type of the inline asm call site return value is different but has 7896 // same size as the type of the asm output bitcast it. One example of this 7897 // is for vectors with different width / number of elements. This can 7898 // happen for register classes that can contain multiple different value 7899 // types. The preg or vreg allocated may not have the same VT as was 7900 // expected. 7901 // 7902 // This can also happen for a return value that disagrees with the register 7903 // class it is put in, eg. a double in a general-purpose register on a 7904 // 32-bit machine. 7905 if (ResultVT != V.getValueType() && 7906 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 7907 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 7908 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 7909 V.getValueType().isInteger()) { 7910 // If a result value was tied to an input value, the computed result 7911 // may have a wider width than the expected result. Extract the 7912 // relevant portion. 7913 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 7914 } 7915 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 7916 ResultVTs.push_back(ResultVT); 7917 ResultValues.push_back(V); 7918 }; 7919 7920 // Deal with assembly output fixups. 7921 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7922 if (OpInfo.Type == InlineAsm::isOutput && 7923 (OpInfo.ConstraintType == TargetLowering::C_Register || 7924 OpInfo.ConstraintType == TargetLowering::C_RegisterClass)) { 7925 if (OpInfo.isIndirect) { 7926 // Register indirect are manifest as stores. 7927 const RegsForValue &OutRegs = OpInfo.AssignedRegs; 7928 const Value *Ptr = OpInfo.CallOperandVal; 7929 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7930 Chain, &Flag, IA); 7931 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), OutVal, getValue(Ptr), 7932 MachinePointerInfo(Ptr)); 7933 OutChains.push_back(Val); 7934 } else { 7935 // generate CopyFromRegs to associated registers. 7936 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7937 SDValue Val = OpInfo.AssignedRegs.getCopyFromRegs( 7938 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 7939 if (Val.getOpcode() == ISD::MERGE_VALUES) { 7940 for (const SDValue &V : Val->op_values()) 7941 handleRegAssign(V); 7942 } else 7943 handleRegAssign(Val); 7944 } 7945 } 7946 } 7947 7948 // Set results. 7949 if (!ResultValues.empty()) { 7950 assert(CurResultType == ResultTypes.end() && 7951 "Mismatch in number of ResultTypes"); 7952 assert(ResultValues.size() == ResultTypes.size() && 7953 "Mismatch in number of output operands in asm result"); 7954 7955 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 7956 DAG.getVTList(ResultVTs), ResultValues); 7957 setValue(CS.getInstruction(), V); 7958 } 7959 7960 // Collect store chains. 7961 if (!OutChains.empty()) 7962 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7963 7964 // Only Update Root if inline assembly has a memory effect. 7965 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 7966 DAG.setRoot(Chain); 7967 } 7968 7969 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7970 const Twine &Message) { 7971 LLVMContext &Ctx = *DAG.getContext(); 7972 Ctx.emitError(CS.getInstruction(), Message); 7973 7974 // Make sure we leave the DAG in a valid state 7975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7976 SmallVector<EVT, 1> ValueVTs; 7977 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7978 7979 if (ValueVTs.empty()) 7980 return; 7981 7982 SmallVector<SDValue, 1> Ops; 7983 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7984 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7985 7986 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7987 } 7988 7989 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7990 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7991 MVT::Other, getRoot(), 7992 getValue(I.getArgOperand(0)), 7993 DAG.getSrcValue(I.getArgOperand(0)))); 7994 } 7995 7996 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7998 const DataLayout &DL = DAG.getDataLayout(); 7999 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8000 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8001 DAG.getSrcValue(I.getOperand(0)), 8002 DL.getABITypeAlignment(I.getType())); 8003 setValue(&I, V); 8004 DAG.setRoot(V.getValue(1)); 8005 } 8006 8007 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8008 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8009 MVT::Other, getRoot(), 8010 getValue(I.getArgOperand(0)), 8011 DAG.getSrcValue(I.getArgOperand(0)))); 8012 } 8013 8014 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8015 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8016 MVT::Other, getRoot(), 8017 getValue(I.getArgOperand(0)), 8018 getValue(I.getArgOperand(1)), 8019 DAG.getSrcValue(I.getArgOperand(0)), 8020 DAG.getSrcValue(I.getArgOperand(1)))); 8021 } 8022 8023 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8024 const Instruction &I, 8025 SDValue Op) { 8026 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8027 if (!Range) 8028 return Op; 8029 8030 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8031 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8032 return Op; 8033 8034 APInt Lo = CR.getUnsignedMin(); 8035 if (!Lo.isMinValue()) 8036 return Op; 8037 8038 APInt Hi = CR.getUnsignedMax(); 8039 unsigned Bits = std::max(Hi.getActiveBits(), 8040 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8041 8042 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8043 8044 SDLoc SL = getCurSDLoc(); 8045 8046 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8047 DAG.getValueType(SmallVT)); 8048 unsigned NumVals = Op.getNode()->getNumValues(); 8049 if (NumVals == 1) 8050 return ZExt; 8051 8052 SmallVector<SDValue, 4> Ops; 8053 8054 Ops.push_back(ZExt); 8055 for (unsigned I = 1; I != NumVals; ++I) 8056 Ops.push_back(Op.getValue(I)); 8057 8058 return DAG.getMergeValues(Ops, SL); 8059 } 8060 8061 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8062 /// the call being lowered. 8063 /// 8064 /// This is a helper for lowering intrinsics that follow a target calling 8065 /// convention or require stack pointer adjustment. Only a subset of the 8066 /// intrinsic's operands need to participate in the calling convention. 8067 void SelectionDAGBuilder::populateCallLoweringInfo( 8068 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 8069 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8070 bool IsPatchPoint) { 8071 TargetLowering::ArgListTy Args; 8072 Args.reserve(NumArgs); 8073 8074 // Populate the argument list. 8075 // Attributes for args start at offset 1, after the return attribute. 8076 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8077 ArgI != ArgE; ++ArgI) { 8078 const Value *V = CS->getOperand(ArgI); 8079 8080 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8081 8082 TargetLowering::ArgListEntry Entry; 8083 Entry.Node = getValue(V); 8084 Entry.Ty = V->getType(); 8085 Entry.setAttributes(&CS, ArgI); 8086 Args.push_back(Entry); 8087 } 8088 8089 CLI.setDebugLoc(getCurSDLoc()) 8090 .setChain(getRoot()) 8091 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 8092 .setDiscardResult(CS->use_empty()) 8093 .setIsPatchPoint(IsPatchPoint); 8094 } 8095 8096 /// Add a stack map intrinsic call's live variable operands to a stackmap 8097 /// or patchpoint target node's operand list. 8098 /// 8099 /// Constants are converted to TargetConstants purely as an optimization to 8100 /// avoid constant materialization and register allocation. 8101 /// 8102 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8103 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8104 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8105 /// address materialization and register allocation, but may also be required 8106 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8107 /// alloca in the entry block, then the runtime may assume that the alloca's 8108 /// StackMap location can be read immediately after compilation and that the 8109 /// location is valid at any point during execution (this is similar to the 8110 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8111 /// only available in a register, then the runtime would need to trap when 8112 /// execution reaches the StackMap in order to read the alloca's location. 8113 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8114 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8115 SelectionDAGBuilder &Builder) { 8116 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8117 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8118 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8119 Ops.push_back( 8120 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8121 Ops.push_back( 8122 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8123 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8124 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8125 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8126 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8127 } else 8128 Ops.push_back(OpVal); 8129 } 8130 } 8131 8132 /// Lower llvm.experimental.stackmap directly to its target opcode. 8133 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8134 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8135 // [live variables...]) 8136 8137 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8138 8139 SDValue Chain, InFlag, Callee, NullPtr; 8140 SmallVector<SDValue, 32> Ops; 8141 8142 SDLoc DL = getCurSDLoc(); 8143 Callee = getValue(CI.getCalledValue()); 8144 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8145 8146 // The stackmap intrinsic only records the live variables (the arguemnts 8147 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8148 // intrinsic, this won't be lowered to a function call. This means we don't 8149 // have to worry about calling conventions and target specific lowering code. 8150 // Instead we perform the call lowering right here. 8151 // 8152 // chain, flag = CALLSEQ_START(chain, 0, 0) 8153 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8154 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8155 // 8156 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8157 InFlag = Chain.getValue(1); 8158 8159 // Add the <id> and <numBytes> constants. 8160 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8161 Ops.push_back(DAG.getTargetConstant( 8162 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8163 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8164 Ops.push_back(DAG.getTargetConstant( 8165 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8166 MVT::i32)); 8167 8168 // Push live variables for the stack map. 8169 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8170 8171 // We are not pushing any register mask info here on the operands list, 8172 // because the stackmap doesn't clobber anything. 8173 8174 // Push the chain and the glue flag. 8175 Ops.push_back(Chain); 8176 Ops.push_back(InFlag); 8177 8178 // Create the STACKMAP node. 8179 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8180 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8181 Chain = SDValue(SM, 0); 8182 InFlag = Chain.getValue(1); 8183 8184 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8185 8186 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8187 8188 // Set the root to the target-lowered call chain. 8189 DAG.setRoot(Chain); 8190 8191 // Inform the Frame Information that we have a stackmap in this function. 8192 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8193 } 8194 8195 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8196 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8197 const BasicBlock *EHPadBB) { 8198 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8199 // i32 <numBytes>, 8200 // i8* <target>, 8201 // i32 <numArgs>, 8202 // [Args...], 8203 // [live variables...]) 8204 8205 CallingConv::ID CC = CS.getCallingConv(); 8206 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8207 bool HasDef = !CS->getType()->isVoidTy(); 8208 SDLoc dl = getCurSDLoc(); 8209 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8210 8211 // Handle immediate and symbolic callees. 8212 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8213 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8214 /*isTarget=*/true); 8215 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8216 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8217 SDLoc(SymbolicCallee), 8218 SymbolicCallee->getValueType(0)); 8219 8220 // Get the real number of arguments participating in the call <numArgs> 8221 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8222 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8223 8224 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8225 // Intrinsics include all meta-operands up to but not including CC. 8226 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8227 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8228 "Not enough arguments provided to the patchpoint intrinsic"); 8229 8230 // For AnyRegCC the arguments are lowered later on manually. 8231 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8232 Type *ReturnTy = 8233 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8234 8235 TargetLowering::CallLoweringInfo CLI(DAG); 8236 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 8237 true); 8238 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8239 8240 SDNode *CallEnd = Result.second.getNode(); 8241 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8242 CallEnd = CallEnd->getOperand(0).getNode(); 8243 8244 /// Get a call instruction from the call sequence chain. 8245 /// Tail calls are not allowed. 8246 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8247 "Expected a callseq node."); 8248 SDNode *Call = CallEnd->getOperand(0).getNode(); 8249 bool HasGlue = Call->getGluedNode(); 8250 8251 // Replace the target specific call node with the patchable intrinsic. 8252 SmallVector<SDValue, 8> Ops; 8253 8254 // Add the <id> and <numBytes> constants. 8255 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8256 Ops.push_back(DAG.getTargetConstant( 8257 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8258 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8259 Ops.push_back(DAG.getTargetConstant( 8260 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8261 MVT::i32)); 8262 8263 // Add the callee. 8264 Ops.push_back(Callee); 8265 8266 // Adjust <numArgs> to account for any arguments that have been passed on the 8267 // stack instead. 8268 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8269 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8270 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8271 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8272 8273 // Add the calling convention 8274 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8275 8276 // Add the arguments we omitted previously. The register allocator should 8277 // place these in any free register. 8278 if (IsAnyRegCC) 8279 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8280 Ops.push_back(getValue(CS.getArgument(i))); 8281 8282 // Push the arguments from the call instruction up to the register mask. 8283 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8284 Ops.append(Call->op_begin() + 2, e); 8285 8286 // Push live variables for the stack map. 8287 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8288 8289 // Push the register mask info. 8290 if (HasGlue) 8291 Ops.push_back(*(Call->op_end()-2)); 8292 else 8293 Ops.push_back(*(Call->op_end()-1)); 8294 8295 // Push the chain (this is originally the first operand of the call, but 8296 // becomes now the last or second to last operand). 8297 Ops.push_back(*(Call->op_begin())); 8298 8299 // Push the glue flag (last operand). 8300 if (HasGlue) 8301 Ops.push_back(*(Call->op_end()-1)); 8302 8303 SDVTList NodeTys; 8304 if (IsAnyRegCC && HasDef) { 8305 // Create the return types based on the intrinsic definition 8306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8307 SmallVector<EVT, 3> ValueVTs; 8308 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8309 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8310 8311 // There is always a chain and a glue type at the end 8312 ValueVTs.push_back(MVT::Other); 8313 ValueVTs.push_back(MVT::Glue); 8314 NodeTys = DAG.getVTList(ValueVTs); 8315 } else 8316 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8317 8318 // Replace the target specific call node with a PATCHPOINT node. 8319 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8320 dl, NodeTys, Ops); 8321 8322 // Update the NodeMap. 8323 if (HasDef) { 8324 if (IsAnyRegCC) 8325 setValue(CS.getInstruction(), SDValue(MN, 0)); 8326 else 8327 setValue(CS.getInstruction(), Result.first); 8328 } 8329 8330 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8331 // call sequence. Furthermore the location of the chain and glue can change 8332 // when the AnyReg calling convention is used and the intrinsic returns a 8333 // value. 8334 if (IsAnyRegCC && HasDef) { 8335 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8336 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8337 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8338 } else 8339 DAG.ReplaceAllUsesWith(Call, MN); 8340 DAG.DeleteNode(Call); 8341 8342 // Inform the Frame Information that we have a patchpoint in this function. 8343 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8344 } 8345 8346 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8347 unsigned Intrinsic) { 8348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8349 SDValue Op1 = getValue(I.getArgOperand(0)); 8350 SDValue Op2; 8351 if (I.getNumArgOperands() > 1) 8352 Op2 = getValue(I.getArgOperand(1)); 8353 SDLoc dl = getCurSDLoc(); 8354 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8355 SDValue Res; 8356 FastMathFlags FMF; 8357 if (isa<FPMathOperator>(I)) 8358 FMF = I.getFastMathFlags(); 8359 8360 switch (Intrinsic) { 8361 case Intrinsic::experimental_vector_reduce_fadd: 8362 if (FMF.isFast()) 8363 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8364 else 8365 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8366 break; 8367 case Intrinsic::experimental_vector_reduce_fmul: 8368 if (FMF.isFast()) 8369 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8370 else 8371 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8372 break; 8373 case Intrinsic::experimental_vector_reduce_add: 8374 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8375 break; 8376 case Intrinsic::experimental_vector_reduce_mul: 8377 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8378 break; 8379 case Intrinsic::experimental_vector_reduce_and: 8380 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8381 break; 8382 case Intrinsic::experimental_vector_reduce_or: 8383 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8384 break; 8385 case Intrinsic::experimental_vector_reduce_xor: 8386 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8387 break; 8388 case Intrinsic::experimental_vector_reduce_smax: 8389 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8390 break; 8391 case Intrinsic::experimental_vector_reduce_smin: 8392 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8393 break; 8394 case Intrinsic::experimental_vector_reduce_umax: 8395 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8396 break; 8397 case Intrinsic::experimental_vector_reduce_umin: 8398 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8399 break; 8400 case Intrinsic::experimental_vector_reduce_fmax: 8401 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8402 break; 8403 case Intrinsic::experimental_vector_reduce_fmin: 8404 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8405 break; 8406 default: 8407 llvm_unreachable("Unhandled vector reduce intrinsic"); 8408 } 8409 setValue(&I, Res); 8410 } 8411 8412 /// Returns an AttributeList representing the attributes applied to the return 8413 /// value of the given call. 8414 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8415 SmallVector<Attribute::AttrKind, 2> Attrs; 8416 if (CLI.RetSExt) 8417 Attrs.push_back(Attribute::SExt); 8418 if (CLI.RetZExt) 8419 Attrs.push_back(Attribute::ZExt); 8420 if (CLI.IsInReg) 8421 Attrs.push_back(Attribute::InReg); 8422 8423 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8424 Attrs); 8425 } 8426 8427 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8428 /// implementation, which just calls LowerCall. 8429 /// FIXME: When all targets are 8430 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8431 std::pair<SDValue, SDValue> 8432 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8433 // Handle the incoming return values from the call. 8434 CLI.Ins.clear(); 8435 Type *OrigRetTy = CLI.RetTy; 8436 SmallVector<EVT, 4> RetTys; 8437 SmallVector<uint64_t, 4> Offsets; 8438 auto &DL = CLI.DAG.getDataLayout(); 8439 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8440 8441 if (CLI.IsPostTypeLegalization) { 8442 // If we are lowering a libcall after legalization, split the return type. 8443 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8444 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8445 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8446 EVT RetVT = OldRetTys[i]; 8447 uint64_t Offset = OldOffsets[i]; 8448 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8449 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8450 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8451 RetTys.append(NumRegs, RegisterVT); 8452 for (unsigned j = 0; j != NumRegs; ++j) 8453 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8454 } 8455 } 8456 8457 SmallVector<ISD::OutputArg, 4> Outs; 8458 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8459 8460 bool CanLowerReturn = 8461 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8462 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8463 8464 SDValue DemoteStackSlot; 8465 int DemoteStackIdx = -100; 8466 if (!CanLowerReturn) { 8467 // FIXME: equivalent assert? 8468 // assert(!CS.hasInAllocaArgument() && 8469 // "sret demotion is incompatible with inalloca"); 8470 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8471 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8472 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8473 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8474 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8475 DL.getAllocaAddrSpace()); 8476 8477 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8478 ArgListEntry Entry; 8479 Entry.Node = DemoteStackSlot; 8480 Entry.Ty = StackSlotPtrType; 8481 Entry.IsSExt = false; 8482 Entry.IsZExt = false; 8483 Entry.IsInReg = false; 8484 Entry.IsSRet = true; 8485 Entry.IsNest = false; 8486 Entry.IsByVal = false; 8487 Entry.IsReturned = false; 8488 Entry.IsSwiftSelf = false; 8489 Entry.IsSwiftError = false; 8490 Entry.Alignment = Align; 8491 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8492 CLI.NumFixedArgs += 1; 8493 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8494 8495 // sret demotion isn't compatible with tail-calls, since the sret argument 8496 // points into the callers stack frame. 8497 CLI.IsTailCall = false; 8498 } else { 8499 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8500 EVT VT = RetTys[I]; 8501 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8502 CLI.CallConv, VT); 8503 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8504 CLI.CallConv, VT); 8505 for (unsigned i = 0; i != NumRegs; ++i) { 8506 ISD::InputArg MyFlags; 8507 MyFlags.VT = RegisterVT; 8508 MyFlags.ArgVT = VT; 8509 MyFlags.Used = CLI.IsReturnValueUsed; 8510 if (CLI.RetSExt) 8511 MyFlags.Flags.setSExt(); 8512 if (CLI.RetZExt) 8513 MyFlags.Flags.setZExt(); 8514 if (CLI.IsInReg) 8515 MyFlags.Flags.setInReg(); 8516 CLI.Ins.push_back(MyFlags); 8517 } 8518 } 8519 } 8520 8521 // We push in swifterror return as the last element of CLI.Ins. 8522 ArgListTy &Args = CLI.getArgs(); 8523 if (supportSwiftError()) { 8524 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8525 if (Args[i].IsSwiftError) { 8526 ISD::InputArg MyFlags; 8527 MyFlags.VT = getPointerTy(DL); 8528 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8529 MyFlags.Flags.setSwiftError(); 8530 CLI.Ins.push_back(MyFlags); 8531 } 8532 } 8533 } 8534 8535 // Handle all of the outgoing arguments. 8536 CLI.Outs.clear(); 8537 CLI.OutVals.clear(); 8538 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8539 SmallVector<EVT, 4> ValueVTs; 8540 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8541 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8542 Type *FinalType = Args[i].Ty; 8543 if (Args[i].IsByVal) 8544 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8545 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8546 FinalType, CLI.CallConv, CLI.IsVarArg); 8547 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8548 ++Value) { 8549 EVT VT = ValueVTs[Value]; 8550 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8551 SDValue Op = SDValue(Args[i].Node.getNode(), 8552 Args[i].Node.getResNo() + Value); 8553 ISD::ArgFlagsTy Flags; 8554 8555 // Certain targets (such as MIPS), may have a different ABI alignment 8556 // for a type depending on the context. Give the target a chance to 8557 // specify the alignment it wants. 8558 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8559 8560 if (Args[i].IsZExt) 8561 Flags.setZExt(); 8562 if (Args[i].IsSExt) 8563 Flags.setSExt(); 8564 if (Args[i].IsInReg) { 8565 // If we are using vectorcall calling convention, a structure that is 8566 // passed InReg - is surely an HVA 8567 if (CLI.CallConv == CallingConv::X86_VectorCall && 8568 isa<StructType>(FinalType)) { 8569 // The first value of a structure is marked 8570 if (0 == Value) 8571 Flags.setHvaStart(); 8572 Flags.setHva(); 8573 } 8574 // Set InReg Flag 8575 Flags.setInReg(); 8576 } 8577 if (Args[i].IsSRet) 8578 Flags.setSRet(); 8579 if (Args[i].IsSwiftSelf) 8580 Flags.setSwiftSelf(); 8581 if (Args[i].IsSwiftError) 8582 Flags.setSwiftError(); 8583 if (Args[i].IsByVal) 8584 Flags.setByVal(); 8585 if (Args[i].IsInAlloca) { 8586 Flags.setInAlloca(); 8587 // Set the byval flag for CCAssignFn callbacks that don't know about 8588 // inalloca. This way we can know how many bytes we should've allocated 8589 // and how many bytes a callee cleanup function will pop. If we port 8590 // inalloca to more targets, we'll have to add custom inalloca handling 8591 // in the various CC lowering callbacks. 8592 Flags.setByVal(); 8593 } 8594 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8595 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8596 Type *ElementTy = Ty->getElementType(); 8597 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8598 // For ByVal, alignment should come from FE. BE will guess if this 8599 // info is not there but there are cases it cannot get right. 8600 unsigned FrameAlign; 8601 if (Args[i].Alignment) 8602 FrameAlign = Args[i].Alignment; 8603 else 8604 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8605 Flags.setByValAlign(FrameAlign); 8606 } 8607 if (Args[i].IsNest) 8608 Flags.setNest(); 8609 if (NeedsRegBlock) 8610 Flags.setInConsecutiveRegs(); 8611 Flags.setOrigAlign(OriginalAlignment); 8612 8613 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8614 CLI.CallConv, VT); 8615 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8616 CLI.CallConv, VT); 8617 SmallVector<SDValue, 4> Parts(NumParts); 8618 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8619 8620 if (Args[i].IsSExt) 8621 ExtendKind = ISD::SIGN_EXTEND; 8622 else if (Args[i].IsZExt) 8623 ExtendKind = ISD::ZERO_EXTEND; 8624 8625 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8626 // for now. 8627 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8628 CanLowerReturn) { 8629 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8630 "unexpected use of 'returned'"); 8631 // Before passing 'returned' to the target lowering code, ensure that 8632 // either the register MVT and the actual EVT are the same size or that 8633 // the return value and argument are extended in the same way; in these 8634 // cases it's safe to pass the argument register value unchanged as the 8635 // return register value (although it's at the target's option whether 8636 // to do so) 8637 // TODO: allow code generation to take advantage of partially preserved 8638 // registers rather than clobbering the entire register when the 8639 // parameter extension method is not compatible with the return 8640 // extension method 8641 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8642 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8643 CLI.RetZExt == Args[i].IsZExt)) 8644 Flags.setReturned(); 8645 } 8646 8647 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8648 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8649 8650 for (unsigned j = 0; j != NumParts; ++j) { 8651 // if it isn't first piece, alignment must be 1 8652 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8653 i < CLI.NumFixedArgs, 8654 i, j*Parts[j].getValueType().getStoreSize()); 8655 if (NumParts > 1 && j == 0) 8656 MyFlags.Flags.setSplit(); 8657 else if (j != 0) { 8658 MyFlags.Flags.setOrigAlign(1); 8659 if (j == NumParts - 1) 8660 MyFlags.Flags.setSplitEnd(); 8661 } 8662 8663 CLI.Outs.push_back(MyFlags); 8664 CLI.OutVals.push_back(Parts[j]); 8665 } 8666 8667 if (NeedsRegBlock && Value == NumValues - 1) 8668 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8669 } 8670 } 8671 8672 SmallVector<SDValue, 4> InVals; 8673 CLI.Chain = LowerCall(CLI, InVals); 8674 8675 // Update CLI.InVals to use outside of this function. 8676 CLI.InVals = InVals; 8677 8678 // Verify that the target's LowerCall behaved as expected. 8679 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8680 "LowerCall didn't return a valid chain!"); 8681 assert((!CLI.IsTailCall || InVals.empty()) && 8682 "LowerCall emitted a return value for a tail call!"); 8683 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8684 "LowerCall didn't emit the correct number of values!"); 8685 8686 // For a tail call, the return value is merely live-out and there aren't 8687 // any nodes in the DAG representing it. Return a special value to 8688 // indicate that a tail call has been emitted and no more Instructions 8689 // should be processed in the current block. 8690 if (CLI.IsTailCall) { 8691 CLI.DAG.setRoot(CLI.Chain); 8692 return std::make_pair(SDValue(), SDValue()); 8693 } 8694 8695 #ifndef NDEBUG 8696 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8697 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8698 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8699 "LowerCall emitted a value with the wrong type!"); 8700 } 8701 #endif 8702 8703 SmallVector<SDValue, 4> ReturnValues; 8704 if (!CanLowerReturn) { 8705 // The instruction result is the result of loading from the 8706 // hidden sret parameter. 8707 SmallVector<EVT, 1> PVTs; 8708 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8709 8710 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8711 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8712 EVT PtrVT = PVTs[0]; 8713 8714 unsigned NumValues = RetTys.size(); 8715 ReturnValues.resize(NumValues); 8716 SmallVector<SDValue, 4> Chains(NumValues); 8717 8718 // An aggregate return value cannot wrap around the address space, so 8719 // offsets to its parts don't wrap either. 8720 SDNodeFlags Flags; 8721 Flags.setNoUnsignedWrap(true); 8722 8723 for (unsigned i = 0; i < NumValues; ++i) { 8724 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8725 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8726 PtrVT), Flags); 8727 SDValue L = CLI.DAG.getLoad( 8728 RetTys[i], CLI.DL, CLI.Chain, Add, 8729 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8730 DemoteStackIdx, Offsets[i]), 8731 /* Alignment = */ 1); 8732 ReturnValues[i] = L; 8733 Chains[i] = L.getValue(1); 8734 } 8735 8736 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8737 } else { 8738 // Collect the legal value parts into potentially illegal values 8739 // that correspond to the original function's return values. 8740 Optional<ISD::NodeType> AssertOp; 8741 if (CLI.RetSExt) 8742 AssertOp = ISD::AssertSext; 8743 else if (CLI.RetZExt) 8744 AssertOp = ISD::AssertZext; 8745 unsigned CurReg = 0; 8746 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8747 EVT VT = RetTys[I]; 8748 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8749 CLI.CallConv, VT); 8750 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8751 CLI.CallConv, VT); 8752 8753 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8754 NumRegs, RegisterVT, VT, nullptr, 8755 CLI.CallConv, AssertOp)); 8756 CurReg += NumRegs; 8757 } 8758 8759 // For a function returning void, there is no return value. We can't create 8760 // such a node, so we just return a null return value in that case. In 8761 // that case, nothing will actually look at the value. 8762 if (ReturnValues.empty()) 8763 return std::make_pair(SDValue(), CLI.Chain); 8764 } 8765 8766 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8767 CLI.DAG.getVTList(RetTys), ReturnValues); 8768 return std::make_pair(Res, CLI.Chain); 8769 } 8770 8771 void TargetLowering::LowerOperationWrapper(SDNode *N, 8772 SmallVectorImpl<SDValue> &Results, 8773 SelectionDAG &DAG) const { 8774 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8775 Results.push_back(Res); 8776 } 8777 8778 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8779 llvm_unreachable("LowerOperation not implemented for this target!"); 8780 } 8781 8782 void 8783 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8784 SDValue Op = getNonRegisterValue(V); 8785 assert((Op.getOpcode() != ISD::CopyFromReg || 8786 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8787 "Copy from a reg to the same reg!"); 8788 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8789 8790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8791 // If this is an InlineAsm we have to match the registers required, not the 8792 // notional registers required by the type. 8793 8794 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 8795 None); // This is not an ABI copy. 8796 SDValue Chain = DAG.getEntryNode(); 8797 8798 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8799 FuncInfo.PreferredExtendType.end()) 8800 ? ISD::ANY_EXTEND 8801 : FuncInfo.PreferredExtendType[V]; 8802 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8803 PendingExports.push_back(Chain); 8804 } 8805 8806 #include "llvm/CodeGen/SelectionDAGISel.h" 8807 8808 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8809 /// entry block, return true. This includes arguments used by switches, since 8810 /// the switch may expand into multiple basic blocks. 8811 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8812 // With FastISel active, we may be splitting blocks, so force creation 8813 // of virtual registers for all non-dead arguments. 8814 if (FastISel) 8815 return A->use_empty(); 8816 8817 const BasicBlock &Entry = A->getParent()->front(); 8818 for (const User *U : A->users()) 8819 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8820 return false; // Use not in entry block. 8821 8822 return true; 8823 } 8824 8825 using ArgCopyElisionMapTy = 8826 DenseMap<const Argument *, 8827 std::pair<const AllocaInst *, const StoreInst *>>; 8828 8829 /// Scan the entry block of the function in FuncInfo for arguments that look 8830 /// like copies into a local alloca. Record any copied arguments in 8831 /// ArgCopyElisionCandidates. 8832 static void 8833 findArgumentCopyElisionCandidates(const DataLayout &DL, 8834 FunctionLoweringInfo *FuncInfo, 8835 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8836 // Record the state of every static alloca used in the entry block. Argument 8837 // allocas are all used in the entry block, so we need approximately as many 8838 // entries as we have arguments. 8839 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8840 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8841 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8842 StaticAllocas.reserve(NumArgs * 2); 8843 8844 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8845 if (!V) 8846 return nullptr; 8847 V = V->stripPointerCasts(); 8848 const auto *AI = dyn_cast<AllocaInst>(V); 8849 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8850 return nullptr; 8851 auto Iter = StaticAllocas.insert({AI, Unknown}); 8852 return &Iter.first->second; 8853 }; 8854 8855 // Look for stores of arguments to static allocas. Look through bitcasts and 8856 // GEPs to handle type coercions, as long as the alloca is fully initialized 8857 // by the store. Any non-store use of an alloca escapes it and any subsequent 8858 // unanalyzed store might write it. 8859 // FIXME: Handle structs initialized with multiple stores. 8860 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8861 // Look for stores, and handle non-store uses conservatively. 8862 const auto *SI = dyn_cast<StoreInst>(&I); 8863 if (!SI) { 8864 // We will look through cast uses, so ignore them completely. 8865 if (I.isCast()) 8866 continue; 8867 // Ignore debug info intrinsics, they don't escape or store to allocas. 8868 if (isa<DbgInfoIntrinsic>(I)) 8869 continue; 8870 // This is an unknown instruction. Assume it escapes or writes to all 8871 // static alloca operands. 8872 for (const Use &U : I.operands()) { 8873 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8874 *Info = StaticAllocaInfo::Clobbered; 8875 } 8876 continue; 8877 } 8878 8879 // If the stored value is a static alloca, mark it as escaped. 8880 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8881 *Info = StaticAllocaInfo::Clobbered; 8882 8883 // Check if the destination is a static alloca. 8884 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8885 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8886 if (!Info) 8887 continue; 8888 const AllocaInst *AI = cast<AllocaInst>(Dst); 8889 8890 // Skip allocas that have been initialized or clobbered. 8891 if (*Info != StaticAllocaInfo::Unknown) 8892 continue; 8893 8894 // Check if the stored value is an argument, and that this store fully 8895 // initializes the alloca. Don't elide copies from the same argument twice. 8896 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8897 const auto *Arg = dyn_cast<Argument>(Val); 8898 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8899 Arg->getType()->isEmptyTy() || 8900 DL.getTypeStoreSize(Arg->getType()) != 8901 DL.getTypeAllocSize(AI->getAllocatedType()) || 8902 ArgCopyElisionCandidates.count(Arg)) { 8903 *Info = StaticAllocaInfo::Clobbered; 8904 continue; 8905 } 8906 8907 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8908 << '\n'); 8909 8910 // Mark this alloca and store for argument copy elision. 8911 *Info = StaticAllocaInfo::Elidable; 8912 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8913 8914 // Stop scanning if we've seen all arguments. This will happen early in -O0 8915 // builds, which is useful, because -O0 builds have large entry blocks and 8916 // many allocas. 8917 if (ArgCopyElisionCandidates.size() == NumArgs) 8918 break; 8919 } 8920 } 8921 8922 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8923 /// ArgVal is a load from a suitable fixed stack object. 8924 static void tryToElideArgumentCopy( 8925 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8926 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8927 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8928 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8929 SDValue ArgVal, bool &ArgHasUses) { 8930 // Check if this is a load from a fixed stack object. 8931 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8932 if (!LNode) 8933 return; 8934 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8935 if (!FINode) 8936 return; 8937 8938 // Check that the fixed stack object is the right size and alignment. 8939 // Look at the alignment that the user wrote on the alloca instead of looking 8940 // at the stack object. 8941 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8942 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8943 const AllocaInst *AI = ArgCopyIter->second.first; 8944 int FixedIndex = FINode->getIndex(); 8945 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8946 int OldIndex = AllocaIndex; 8947 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8948 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8949 LLVM_DEBUG( 8950 dbgs() << " argument copy elision failed due to bad fixed stack " 8951 "object size\n"); 8952 return; 8953 } 8954 unsigned RequiredAlignment = AI->getAlignment(); 8955 if (!RequiredAlignment) { 8956 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8957 AI->getAllocatedType()); 8958 } 8959 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8960 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8961 "greater than stack argument alignment (" 8962 << RequiredAlignment << " vs " 8963 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8964 return; 8965 } 8966 8967 // Perform the elision. Delete the old stack object and replace its only use 8968 // in the variable info map. Mark the stack object as mutable. 8969 LLVM_DEBUG({ 8970 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8971 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8972 << '\n'; 8973 }); 8974 MFI.RemoveStackObject(OldIndex); 8975 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8976 AllocaIndex = FixedIndex; 8977 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8978 Chains.push_back(ArgVal.getValue(1)); 8979 8980 // Avoid emitting code for the store implementing the copy. 8981 const StoreInst *SI = ArgCopyIter->second.second; 8982 ElidedArgCopyInstrs.insert(SI); 8983 8984 // Check for uses of the argument again so that we can avoid exporting ArgVal 8985 // if it is't used by anything other than the store. 8986 for (const Value *U : Arg.users()) { 8987 if (U != SI) { 8988 ArgHasUses = true; 8989 break; 8990 } 8991 } 8992 } 8993 8994 void SelectionDAGISel::LowerArguments(const Function &F) { 8995 SelectionDAG &DAG = SDB->DAG; 8996 SDLoc dl = SDB->getCurSDLoc(); 8997 const DataLayout &DL = DAG.getDataLayout(); 8998 SmallVector<ISD::InputArg, 16> Ins; 8999 9000 if (!FuncInfo->CanLowerReturn) { 9001 // Put in an sret pointer parameter before all the other parameters. 9002 SmallVector<EVT, 1> ValueVTs; 9003 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9004 F.getReturnType()->getPointerTo( 9005 DAG.getDataLayout().getAllocaAddrSpace()), 9006 ValueVTs); 9007 9008 // NOTE: Assuming that a pointer will never break down to more than one VT 9009 // or one register. 9010 ISD::ArgFlagsTy Flags; 9011 Flags.setSRet(); 9012 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9013 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9014 ISD::InputArg::NoArgIndex, 0); 9015 Ins.push_back(RetArg); 9016 } 9017 9018 // Look for stores of arguments to static allocas. Mark such arguments with a 9019 // flag to ask the target to give us the memory location of that argument if 9020 // available. 9021 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9022 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9023 9024 // Set up the incoming argument description vector. 9025 for (const Argument &Arg : F.args()) { 9026 unsigned ArgNo = Arg.getArgNo(); 9027 SmallVector<EVT, 4> ValueVTs; 9028 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9029 bool isArgValueUsed = !Arg.use_empty(); 9030 unsigned PartBase = 0; 9031 Type *FinalType = Arg.getType(); 9032 if (Arg.hasAttribute(Attribute::ByVal)) 9033 FinalType = cast<PointerType>(FinalType)->getElementType(); 9034 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9035 FinalType, F.getCallingConv(), F.isVarArg()); 9036 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9037 Value != NumValues; ++Value) { 9038 EVT VT = ValueVTs[Value]; 9039 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9040 ISD::ArgFlagsTy Flags; 9041 9042 // Certain targets (such as MIPS), may have a different ABI alignment 9043 // for a type depending on the context. Give the target a chance to 9044 // specify the alignment it wants. 9045 unsigned OriginalAlignment = 9046 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9047 9048 if (Arg.hasAttribute(Attribute::ZExt)) 9049 Flags.setZExt(); 9050 if (Arg.hasAttribute(Attribute::SExt)) 9051 Flags.setSExt(); 9052 if (Arg.hasAttribute(Attribute::InReg)) { 9053 // If we are using vectorcall calling convention, a structure that is 9054 // passed InReg - is surely an HVA 9055 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9056 isa<StructType>(Arg.getType())) { 9057 // The first value of a structure is marked 9058 if (0 == Value) 9059 Flags.setHvaStart(); 9060 Flags.setHva(); 9061 } 9062 // Set InReg Flag 9063 Flags.setInReg(); 9064 } 9065 if (Arg.hasAttribute(Attribute::StructRet)) 9066 Flags.setSRet(); 9067 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9068 Flags.setSwiftSelf(); 9069 if (Arg.hasAttribute(Attribute::SwiftError)) 9070 Flags.setSwiftError(); 9071 if (Arg.hasAttribute(Attribute::ByVal)) 9072 Flags.setByVal(); 9073 if (Arg.hasAttribute(Attribute::InAlloca)) { 9074 Flags.setInAlloca(); 9075 // Set the byval flag for CCAssignFn callbacks that don't know about 9076 // inalloca. This way we can know how many bytes we should've allocated 9077 // and how many bytes a callee cleanup function will pop. If we port 9078 // inalloca to more targets, we'll have to add custom inalloca handling 9079 // in the various CC lowering callbacks. 9080 Flags.setByVal(); 9081 } 9082 if (F.getCallingConv() == CallingConv::X86_INTR) { 9083 // IA Interrupt passes frame (1st parameter) by value in the stack. 9084 if (ArgNo == 0) 9085 Flags.setByVal(); 9086 } 9087 if (Flags.isByVal() || Flags.isInAlloca()) { 9088 PointerType *Ty = cast<PointerType>(Arg.getType()); 9089 Type *ElementTy = Ty->getElementType(); 9090 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9091 // For ByVal, alignment should be passed from FE. BE will guess if 9092 // this info is not there but there are cases it cannot get right. 9093 unsigned FrameAlign; 9094 if (Arg.getParamAlignment()) 9095 FrameAlign = Arg.getParamAlignment(); 9096 else 9097 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9098 Flags.setByValAlign(FrameAlign); 9099 } 9100 if (Arg.hasAttribute(Attribute::Nest)) 9101 Flags.setNest(); 9102 if (NeedsRegBlock) 9103 Flags.setInConsecutiveRegs(); 9104 Flags.setOrigAlign(OriginalAlignment); 9105 if (ArgCopyElisionCandidates.count(&Arg)) 9106 Flags.setCopyElisionCandidate(); 9107 9108 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9109 *CurDAG->getContext(), F.getCallingConv(), VT); 9110 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9111 *CurDAG->getContext(), F.getCallingConv(), VT); 9112 for (unsigned i = 0; i != NumRegs; ++i) { 9113 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9114 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9115 if (NumRegs > 1 && i == 0) 9116 MyFlags.Flags.setSplit(); 9117 // if it isn't first piece, alignment must be 1 9118 else if (i > 0) { 9119 MyFlags.Flags.setOrigAlign(1); 9120 if (i == NumRegs - 1) 9121 MyFlags.Flags.setSplitEnd(); 9122 } 9123 Ins.push_back(MyFlags); 9124 } 9125 if (NeedsRegBlock && Value == NumValues - 1) 9126 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9127 PartBase += VT.getStoreSize(); 9128 } 9129 } 9130 9131 // Call the target to set up the argument values. 9132 SmallVector<SDValue, 8> InVals; 9133 SDValue NewRoot = TLI->LowerFormalArguments( 9134 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9135 9136 // Verify that the target's LowerFormalArguments behaved as expected. 9137 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9138 "LowerFormalArguments didn't return a valid chain!"); 9139 assert(InVals.size() == Ins.size() && 9140 "LowerFormalArguments didn't emit the correct number of values!"); 9141 LLVM_DEBUG({ 9142 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9143 assert(InVals[i].getNode() && 9144 "LowerFormalArguments emitted a null value!"); 9145 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9146 "LowerFormalArguments emitted a value with the wrong type!"); 9147 } 9148 }); 9149 9150 // Update the DAG with the new chain value resulting from argument lowering. 9151 DAG.setRoot(NewRoot); 9152 9153 // Set up the argument values. 9154 unsigned i = 0; 9155 if (!FuncInfo->CanLowerReturn) { 9156 // Create a virtual register for the sret pointer, and put in a copy 9157 // from the sret argument into it. 9158 SmallVector<EVT, 1> ValueVTs; 9159 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9160 F.getReturnType()->getPointerTo( 9161 DAG.getDataLayout().getAllocaAddrSpace()), 9162 ValueVTs); 9163 MVT VT = ValueVTs[0].getSimpleVT(); 9164 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9165 Optional<ISD::NodeType> AssertOp = None; 9166 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9167 nullptr, F.getCallingConv(), AssertOp); 9168 9169 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9170 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9171 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9172 FuncInfo->DemoteRegister = SRetReg; 9173 NewRoot = 9174 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9175 DAG.setRoot(NewRoot); 9176 9177 // i indexes lowered arguments. Bump it past the hidden sret argument. 9178 ++i; 9179 } 9180 9181 SmallVector<SDValue, 4> Chains; 9182 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9183 for (const Argument &Arg : F.args()) { 9184 SmallVector<SDValue, 4> ArgValues; 9185 SmallVector<EVT, 4> ValueVTs; 9186 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9187 unsigned NumValues = ValueVTs.size(); 9188 if (NumValues == 0) 9189 continue; 9190 9191 bool ArgHasUses = !Arg.use_empty(); 9192 9193 // Elide the copying store if the target loaded this argument from a 9194 // suitable fixed stack object. 9195 if (Ins[i].Flags.isCopyElisionCandidate()) { 9196 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9197 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9198 InVals[i], ArgHasUses); 9199 } 9200 9201 // If this argument is unused then remember its value. It is used to generate 9202 // debugging information. 9203 bool isSwiftErrorArg = 9204 TLI->supportSwiftError() && 9205 Arg.hasAttribute(Attribute::SwiftError); 9206 if (!ArgHasUses && !isSwiftErrorArg) { 9207 SDB->setUnusedArgValue(&Arg, InVals[i]); 9208 9209 // Also remember any frame index for use in FastISel. 9210 if (FrameIndexSDNode *FI = 9211 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9212 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9213 } 9214 9215 for (unsigned Val = 0; Val != NumValues; ++Val) { 9216 EVT VT = ValueVTs[Val]; 9217 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9218 F.getCallingConv(), VT); 9219 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9220 *CurDAG->getContext(), F.getCallingConv(), VT); 9221 9222 // Even an apparant 'unused' swifterror argument needs to be returned. So 9223 // we do generate a copy for it that can be used on return from the 9224 // function. 9225 if (ArgHasUses || isSwiftErrorArg) { 9226 Optional<ISD::NodeType> AssertOp; 9227 if (Arg.hasAttribute(Attribute::SExt)) 9228 AssertOp = ISD::AssertSext; 9229 else if (Arg.hasAttribute(Attribute::ZExt)) 9230 AssertOp = ISD::AssertZext; 9231 9232 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9233 PartVT, VT, nullptr, 9234 F.getCallingConv(), AssertOp)); 9235 } 9236 9237 i += NumParts; 9238 } 9239 9240 // We don't need to do anything else for unused arguments. 9241 if (ArgValues.empty()) 9242 continue; 9243 9244 // Note down frame index. 9245 if (FrameIndexSDNode *FI = 9246 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9247 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9248 9249 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9250 SDB->getCurSDLoc()); 9251 9252 SDB->setValue(&Arg, Res); 9253 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9254 // We want to associate the argument with the frame index, among 9255 // involved operands, that correspond to the lowest address. The 9256 // getCopyFromParts function, called earlier, is swapping the order of 9257 // the operands to BUILD_PAIR depending on endianness. The result of 9258 // that swapping is that the least significant bits of the argument will 9259 // be in the first operand of the BUILD_PAIR node, and the most 9260 // significant bits will be in the second operand. 9261 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9262 if (LoadSDNode *LNode = 9263 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9264 if (FrameIndexSDNode *FI = 9265 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9266 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9267 } 9268 9269 // Update the SwiftErrorVRegDefMap. 9270 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9271 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9272 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9273 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9274 FuncInfo->SwiftErrorArg, Reg); 9275 } 9276 9277 // If this argument is live outside of the entry block, insert a copy from 9278 // wherever we got it to the vreg that other BB's will reference it as. 9279 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9280 // If we can, though, try to skip creating an unnecessary vreg. 9281 // FIXME: This isn't very clean... it would be nice to make this more 9282 // general. It's also subtly incompatible with the hacks FastISel 9283 // uses with vregs. 9284 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9285 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9286 FuncInfo->ValueMap[&Arg] = Reg; 9287 continue; 9288 } 9289 } 9290 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9291 FuncInfo->InitializeRegForValue(&Arg); 9292 SDB->CopyToExportRegsIfNeeded(&Arg); 9293 } 9294 } 9295 9296 if (!Chains.empty()) { 9297 Chains.push_back(NewRoot); 9298 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9299 } 9300 9301 DAG.setRoot(NewRoot); 9302 9303 assert(i == InVals.size() && "Argument register count mismatch!"); 9304 9305 // If any argument copy elisions occurred and we have debug info, update the 9306 // stale frame indices used in the dbg.declare variable info table. 9307 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9308 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9309 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9310 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9311 if (I != ArgCopyElisionFrameIndexMap.end()) 9312 VI.Slot = I->second; 9313 } 9314 } 9315 9316 // Finally, if the target has anything special to do, allow it to do so. 9317 EmitFunctionEntryCode(); 9318 } 9319 9320 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9321 /// ensure constants are generated when needed. Remember the virtual registers 9322 /// that need to be added to the Machine PHI nodes as input. We cannot just 9323 /// directly add them, because expansion might result in multiple MBB's for one 9324 /// BB. As such, the start of the BB might correspond to a different MBB than 9325 /// the end. 9326 void 9327 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9328 const Instruction *TI = LLVMBB->getTerminator(); 9329 9330 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9331 9332 // Check PHI nodes in successors that expect a value to be available from this 9333 // block. 9334 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9335 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9336 if (!isa<PHINode>(SuccBB->begin())) continue; 9337 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9338 9339 // If this terminator has multiple identical successors (common for 9340 // switches), only handle each succ once. 9341 if (!SuccsHandled.insert(SuccMBB).second) 9342 continue; 9343 9344 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9345 9346 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9347 // nodes and Machine PHI nodes, but the incoming operands have not been 9348 // emitted yet. 9349 for (const PHINode &PN : SuccBB->phis()) { 9350 // Ignore dead phi's. 9351 if (PN.use_empty()) 9352 continue; 9353 9354 // Skip empty types 9355 if (PN.getType()->isEmptyTy()) 9356 continue; 9357 9358 unsigned Reg; 9359 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9360 9361 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9362 unsigned &RegOut = ConstantsOut[C]; 9363 if (RegOut == 0) { 9364 RegOut = FuncInfo.CreateRegs(C->getType()); 9365 CopyValueToVirtualRegister(C, RegOut); 9366 } 9367 Reg = RegOut; 9368 } else { 9369 DenseMap<const Value *, unsigned>::iterator I = 9370 FuncInfo.ValueMap.find(PHIOp); 9371 if (I != FuncInfo.ValueMap.end()) 9372 Reg = I->second; 9373 else { 9374 assert(isa<AllocaInst>(PHIOp) && 9375 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9376 "Didn't codegen value into a register!??"); 9377 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9378 CopyValueToVirtualRegister(PHIOp, Reg); 9379 } 9380 } 9381 9382 // Remember that this register needs to added to the machine PHI node as 9383 // the input for this MBB. 9384 SmallVector<EVT, 4> ValueVTs; 9385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9386 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9387 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9388 EVT VT = ValueVTs[vti]; 9389 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9390 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9391 FuncInfo.PHINodesToUpdate.push_back( 9392 std::make_pair(&*MBBI++, Reg + i)); 9393 Reg += NumRegisters; 9394 } 9395 } 9396 } 9397 9398 ConstantsOut.clear(); 9399 } 9400 9401 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9402 /// is 0. 9403 MachineBasicBlock * 9404 SelectionDAGBuilder::StackProtectorDescriptor:: 9405 AddSuccessorMBB(const BasicBlock *BB, 9406 MachineBasicBlock *ParentMBB, 9407 bool IsLikely, 9408 MachineBasicBlock *SuccMBB) { 9409 // If SuccBB has not been created yet, create it. 9410 if (!SuccMBB) { 9411 MachineFunction *MF = ParentMBB->getParent(); 9412 MachineFunction::iterator BBI(ParentMBB); 9413 SuccMBB = MF->CreateMachineBasicBlock(BB); 9414 MF->insert(++BBI, SuccMBB); 9415 } 9416 // Add it as a successor of ParentMBB. 9417 ParentMBB->addSuccessor( 9418 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9419 return SuccMBB; 9420 } 9421 9422 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9423 MachineFunction::iterator I(MBB); 9424 if (++I == FuncInfo.MF->end()) 9425 return nullptr; 9426 return &*I; 9427 } 9428 9429 /// During lowering new call nodes can be created (such as memset, etc.). 9430 /// Those will become new roots of the current DAG, but complications arise 9431 /// when they are tail calls. In such cases, the call lowering will update 9432 /// the root, but the builder still needs to know that a tail call has been 9433 /// lowered in order to avoid generating an additional return. 9434 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9435 // If the node is null, we do have a tail call. 9436 if (MaybeTC.getNode() != nullptr) 9437 DAG.setRoot(MaybeTC); 9438 else 9439 HasTailCall = true; 9440 } 9441 9442 uint64_t 9443 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9444 unsigned First, unsigned Last) const { 9445 assert(Last >= First); 9446 const APInt &LowCase = Clusters[First].Low->getValue(); 9447 const APInt &HighCase = Clusters[Last].High->getValue(); 9448 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9449 9450 // FIXME: A range of consecutive cases has 100% density, but only requires one 9451 // comparison to lower. We should discriminate against such consecutive ranges 9452 // in jump tables. 9453 9454 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9455 } 9456 9457 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9458 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9459 unsigned Last) const { 9460 assert(Last >= First); 9461 assert(TotalCases[Last] >= TotalCases[First]); 9462 uint64_t NumCases = 9463 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9464 return NumCases; 9465 } 9466 9467 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9468 unsigned First, unsigned Last, 9469 const SwitchInst *SI, 9470 MachineBasicBlock *DefaultMBB, 9471 CaseCluster &JTCluster) { 9472 assert(First <= Last); 9473 9474 auto Prob = BranchProbability::getZero(); 9475 unsigned NumCmps = 0; 9476 std::vector<MachineBasicBlock*> Table; 9477 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9478 9479 // Initialize probabilities in JTProbs. 9480 for (unsigned I = First; I <= Last; ++I) 9481 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9482 9483 for (unsigned I = First; I <= Last; ++I) { 9484 assert(Clusters[I].Kind == CC_Range); 9485 Prob += Clusters[I].Prob; 9486 const APInt &Low = Clusters[I].Low->getValue(); 9487 const APInt &High = Clusters[I].High->getValue(); 9488 NumCmps += (Low == High) ? 1 : 2; 9489 if (I != First) { 9490 // Fill the gap between this and the previous cluster. 9491 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9492 assert(PreviousHigh.slt(Low)); 9493 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9494 for (uint64_t J = 0; J < Gap; J++) 9495 Table.push_back(DefaultMBB); 9496 } 9497 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9498 for (uint64_t J = 0; J < ClusterSize; ++J) 9499 Table.push_back(Clusters[I].MBB); 9500 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9501 } 9502 9503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9504 unsigned NumDests = JTProbs.size(); 9505 if (TLI.isSuitableForBitTests( 9506 NumDests, NumCmps, Clusters[First].Low->getValue(), 9507 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9508 // Clusters[First..Last] should be lowered as bit tests instead. 9509 return false; 9510 } 9511 9512 // Create the MBB that will load from and jump through the table. 9513 // Note: We create it here, but it's not inserted into the function yet. 9514 MachineFunction *CurMF = FuncInfo.MF; 9515 MachineBasicBlock *JumpTableMBB = 9516 CurMF->CreateMachineBasicBlock(SI->getParent()); 9517 9518 // Add successors. Note: use table order for determinism. 9519 SmallPtrSet<MachineBasicBlock *, 8> Done; 9520 for (MachineBasicBlock *Succ : Table) { 9521 if (Done.count(Succ)) 9522 continue; 9523 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9524 Done.insert(Succ); 9525 } 9526 JumpTableMBB->normalizeSuccProbs(); 9527 9528 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9529 ->createJumpTableIndex(Table); 9530 9531 // Set up the jump table info. 9532 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9533 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9534 Clusters[Last].High->getValue(), SI->getCondition(), 9535 nullptr, false); 9536 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9537 9538 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9539 JTCases.size() - 1, Prob); 9540 return true; 9541 } 9542 9543 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9544 const SwitchInst *SI, 9545 MachineBasicBlock *DefaultMBB) { 9546 #ifndef NDEBUG 9547 // Clusters must be non-empty, sorted, and only contain Range clusters. 9548 assert(!Clusters.empty()); 9549 for (CaseCluster &C : Clusters) 9550 assert(C.Kind == CC_Range); 9551 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9552 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9553 #endif 9554 9555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9556 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9557 return; 9558 9559 const int64_t N = Clusters.size(); 9560 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9561 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9562 9563 if (N < 2 || N < MinJumpTableEntries) 9564 return; 9565 9566 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9567 SmallVector<unsigned, 8> TotalCases(N); 9568 for (unsigned i = 0; i < N; ++i) { 9569 const APInt &Hi = Clusters[i].High->getValue(); 9570 const APInt &Lo = Clusters[i].Low->getValue(); 9571 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9572 if (i != 0) 9573 TotalCases[i] += TotalCases[i - 1]; 9574 } 9575 9576 // Cheap case: the whole range may be suitable for jump table. 9577 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9578 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9579 assert(NumCases < UINT64_MAX / 100); 9580 assert(Range >= NumCases); 9581 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9582 CaseCluster JTCluster; 9583 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9584 Clusters[0] = JTCluster; 9585 Clusters.resize(1); 9586 return; 9587 } 9588 } 9589 9590 // The algorithm below is not suitable for -O0. 9591 if (TM.getOptLevel() == CodeGenOpt::None) 9592 return; 9593 9594 // Split Clusters into minimum number of dense partitions. The algorithm uses 9595 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9596 // for the Case Statement'" (1994), but builds the MinPartitions array in 9597 // reverse order to make it easier to reconstruct the partitions in ascending 9598 // order. In the choice between two optimal partitionings, it picks the one 9599 // which yields more jump tables. 9600 9601 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9602 SmallVector<unsigned, 8> MinPartitions(N); 9603 // LastElement[i] is the last element of the partition starting at i. 9604 SmallVector<unsigned, 8> LastElement(N); 9605 // PartitionsScore[i] is used to break ties when choosing between two 9606 // partitionings resulting in the same number of partitions. 9607 SmallVector<unsigned, 8> PartitionsScore(N); 9608 // For PartitionsScore, a small number of comparisons is considered as good as 9609 // a jump table and a single comparison is considered better than a jump 9610 // table. 9611 enum PartitionScores : unsigned { 9612 NoTable = 0, 9613 Table = 1, 9614 FewCases = 1, 9615 SingleCase = 2 9616 }; 9617 9618 // Base case: There is only one way to partition Clusters[N-1]. 9619 MinPartitions[N - 1] = 1; 9620 LastElement[N - 1] = N - 1; 9621 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9622 9623 // Note: loop indexes are signed to avoid underflow. 9624 for (int64_t i = N - 2; i >= 0; i--) { 9625 // Find optimal partitioning of Clusters[i..N-1]. 9626 // Baseline: Put Clusters[i] into a partition on its own. 9627 MinPartitions[i] = MinPartitions[i + 1] + 1; 9628 LastElement[i] = i; 9629 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9630 9631 // Search for a solution that results in fewer partitions. 9632 for (int64_t j = N - 1; j > i; j--) { 9633 // Try building a partition from Clusters[i..j]. 9634 uint64_t Range = getJumpTableRange(Clusters, i, j); 9635 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9636 assert(NumCases < UINT64_MAX / 100); 9637 assert(Range >= NumCases); 9638 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9639 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9640 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9641 int64_t NumEntries = j - i + 1; 9642 9643 if (NumEntries == 1) 9644 Score += PartitionScores::SingleCase; 9645 else if (NumEntries <= SmallNumberOfEntries) 9646 Score += PartitionScores::FewCases; 9647 else if (NumEntries >= MinJumpTableEntries) 9648 Score += PartitionScores::Table; 9649 9650 // If this leads to fewer partitions, or to the same number of 9651 // partitions with better score, it is a better partitioning. 9652 if (NumPartitions < MinPartitions[i] || 9653 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9654 MinPartitions[i] = NumPartitions; 9655 LastElement[i] = j; 9656 PartitionsScore[i] = Score; 9657 } 9658 } 9659 } 9660 } 9661 9662 // Iterate over the partitions, replacing some with jump tables in-place. 9663 unsigned DstIndex = 0; 9664 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9665 Last = LastElement[First]; 9666 assert(Last >= First); 9667 assert(DstIndex <= First); 9668 unsigned NumClusters = Last - First + 1; 9669 9670 CaseCluster JTCluster; 9671 if (NumClusters >= MinJumpTableEntries && 9672 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9673 Clusters[DstIndex++] = JTCluster; 9674 } else { 9675 for (unsigned I = First; I <= Last; ++I) 9676 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9677 } 9678 } 9679 Clusters.resize(DstIndex); 9680 } 9681 9682 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9683 unsigned First, unsigned Last, 9684 const SwitchInst *SI, 9685 CaseCluster &BTCluster) { 9686 assert(First <= Last); 9687 if (First == Last) 9688 return false; 9689 9690 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9691 unsigned NumCmps = 0; 9692 for (int64_t I = First; I <= Last; ++I) { 9693 assert(Clusters[I].Kind == CC_Range); 9694 Dests.set(Clusters[I].MBB->getNumber()); 9695 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9696 } 9697 unsigned NumDests = Dests.count(); 9698 9699 APInt Low = Clusters[First].Low->getValue(); 9700 APInt High = Clusters[Last].High->getValue(); 9701 assert(Low.slt(High)); 9702 9703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9704 const DataLayout &DL = DAG.getDataLayout(); 9705 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9706 return false; 9707 9708 APInt LowBound; 9709 APInt CmpRange; 9710 9711 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9712 assert(TLI.rangeFitsInWord(Low, High, DL) && 9713 "Case range must fit in bit mask!"); 9714 9715 // Check if the clusters cover a contiguous range such that no value in the 9716 // range will jump to the default statement. 9717 bool ContiguousRange = true; 9718 for (int64_t I = First + 1; I <= Last; ++I) { 9719 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9720 ContiguousRange = false; 9721 break; 9722 } 9723 } 9724 9725 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9726 // Optimize the case where all the case values fit in a word without having 9727 // to subtract minValue. In this case, we can optimize away the subtraction. 9728 LowBound = APInt::getNullValue(Low.getBitWidth()); 9729 CmpRange = High; 9730 ContiguousRange = false; 9731 } else { 9732 LowBound = Low; 9733 CmpRange = High - Low; 9734 } 9735 9736 CaseBitsVector CBV; 9737 auto TotalProb = BranchProbability::getZero(); 9738 for (unsigned i = First; i <= Last; ++i) { 9739 // Find the CaseBits for this destination. 9740 unsigned j; 9741 for (j = 0; j < CBV.size(); ++j) 9742 if (CBV[j].BB == Clusters[i].MBB) 9743 break; 9744 if (j == CBV.size()) 9745 CBV.push_back( 9746 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9747 CaseBits *CB = &CBV[j]; 9748 9749 // Update Mask, Bits and ExtraProb. 9750 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9751 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9752 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9753 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9754 CB->Bits += Hi - Lo + 1; 9755 CB->ExtraProb += Clusters[i].Prob; 9756 TotalProb += Clusters[i].Prob; 9757 } 9758 9759 BitTestInfo BTI; 9760 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 9761 // Sort by probability first, number of bits second, bit mask third. 9762 if (a.ExtraProb != b.ExtraProb) 9763 return a.ExtraProb > b.ExtraProb; 9764 if (a.Bits != b.Bits) 9765 return a.Bits > b.Bits; 9766 return a.Mask < b.Mask; 9767 }); 9768 9769 for (auto &CB : CBV) { 9770 MachineBasicBlock *BitTestBB = 9771 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9772 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9773 } 9774 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9775 SI->getCondition(), -1U, MVT::Other, false, 9776 ContiguousRange, nullptr, nullptr, std::move(BTI), 9777 TotalProb); 9778 9779 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9780 BitTestCases.size() - 1, TotalProb); 9781 return true; 9782 } 9783 9784 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9785 const SwitchInst *SI) { 9786 // Partition Clusters into as few subsets as possible, where each subset has a 9787 // range that fits in a machine word and has <= 3 unique destinations. 9788 9789 #ifndef NDEBUG 9790 // Clusters must be sorted and contain Range or JumpTable clusters. 9791 assert(!Clusters.empty()); 9792 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9793 for (const CaseCluster &C : Clusters) 9794 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9795 for (unsigned i = 1; i < Clusters.size(); ++i) 9796 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9797 #endif 9798 9799 // The algorithm below is not suitable for -O0. 9800 if (TM.getOptLevel() == CodeGenOpt::None) 9801 return; 9802 9803 // If target does not have legal shift left, do not emit bit tests at all. 9804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9805 const DataLayout &DL = DAG.getDataLayout(); 9806 9807 EVT PTy = TLI.getPointerTy(DL); 9808 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9809 return; 9810 9811 int BitWidth = PTy.getSizeInBits(); 9812 const int64_t N = Clusters.size(); 9813 9814 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9815 SmallVector<unsigned, 8> MinPartitions(N); 9816 // LastElement[i] is the last element of the partition starting at i. 9817 SmallVector<unsigned, 8> LastElement(N); 9818 9819 // FIXME: This might not be the best algorithm for finding bit test clusters. 9820 9821 // Base case: There is only one way to partition Clusters[N-1]. 9822 MinPartitions[N - 1] = 1; 9823 LastElement[N - 1] = N - 1; 9824 9825 // Note: loop indexes are signed to avoid underflow. 9826 for (int64_t i = N - 2; i >= 0; --i) { 9827 // Find optimal partitioning of Clusters[i..N-1]. 9828 // Baseline: Put Clusters[i] into a partition on its own. 9829 MinPartitions[i] = MinPartitions[i + 1] + 1; 9830 LastElement[i] = i; 9831 9832 // Search for a solution that results in fewer partitions. 9833 // Note: the search is limited by BitWidth, reducing time complexity. 9834 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9835 // Try building a partition from Clusters[i..j]. 9836 9837 // Check the range. 9838 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9839 Clusters[j].High->getValue(), DL)) 9840 continue; 9841 9842 // Check nbr of destinations and cluster types. 9843 // FIXME: This works, but doesn't seem very efficient. 9844 bool RangesOnly = true; 9845 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9846 for (int64_t k = i; k <= j; k++) { 9847 if (Clusters[k].Kind != CC_Range) { 9848 RangesOnly = false; 9849 break; 9850 } 9851 Dests.set(Clusters[k].MBB->getNumber()); 9852 } 9853 if (!RangesOnly || Dests.count() > 3) 9854 break; 9855 9856 // Check if it's a better partition. 9857 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9858 if (NumPartitions < MinPartitions[i]) { 9859 // Found a better partition. 9860 MinPartitions[i] = NumPartitions; 9861 LastElement[i] = j; 9862 } 9863 } 9864 } 9865 9866 // Iterate over the partitions, replacing with bit-test clusters in-place. 9867 unsigned DstIndex = 0; 9868 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9869 Last = LastElement[First]; 9870 assert(First <= Last); 9871 assert(DstIndex <= First); 9872 9873 CaseCluster BitTestCluster; 9874 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9875 Clusters[DstIndex++] = BitTestCluster; 9876 } else { 9877 size_t NumClusters = Last - First + 1; 9878 std::memmove(&Clusters[DstIndex], &Clusters[First], 9879 sizeof(Clusters[0]) * NumClusters); 9880 DstIndex += NumClusters; 9881 } 9882 } 9883 Clusters.resize(DstIndex); 9884 } 9885 9886 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9887 MachineBasicBlock *SwitchMBB, 9888 MachineBasicBlock *DefaultMBB) { 9889 MachineFunction *CurMF = FuncInfo.MF; 9890 MachineBasicBlock *NextMBB = nullptr; 9891 MachineFunction::iterator BBI(W.MBB); 9892 if (++BBI != FuncInfo.MF->end()) 9893 NextMBB = &*BBI; 9894 9895 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9896 9897 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9898 9899 if (Size == 2 && W.MBB == SwitchMBB) { 9900 // If any two of the cases has the same destination, and if one value 9901 // is the same as the other, but has one bit unset that the other has set, 9902 // use bit manipulation to do two compares at once. For example: 9903 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9904 // TODO: This could be extended to merge any 2 cases in switches with 3 9905 // cases. 9906 // TODO: Handle cases where W.CaseBB != SwitchBB. 9907 CaseCluster &Small = *W.FirstCluster; 9908 CaseCluster &Big = *W.LastCluster; 9909 9910 if (Small.Low == Small.High && Big.Low == Big.High && 9911 Small.MBB == Big.MBB) { 9912 const APInt &SmallValue = Small.Low->getValue(); 9913 const APInt &BigValue = Big.Low->getValue(); 9914 9915 // Check that there is only one bit different. 9916 APInt CommonBit = BigValue ^ SmallValue; 9917 if (CommonBit.isPowerOf2()) { 9918 SDValue CondLHS = getValue(Cond); 9919 EVT VT = CondLHS.getValueType(); 9920 SDLoc DL = getCurSDLoc(); 9921 9922 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9923 DAG.getConstant(CommonBit, DL, VT)); 9924 SDValue Cond = DAG.getSetCC( 9925 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9926 ISD::SETEQ); 9927 9928 // Update successor info. 9929 // Both Small and Big will jump to Small.BB, so we sum up the 9930 // probabilities. 9931 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9932 if (BPI) 9933 addSuccessorWithProb( 9934 SwitchMBB, DefaultMBB, 9935 // The default destination is the first successor in IR. 9936 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9937 else 9938 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9939 9940 // Insert the true branch. 9941 SDValue BrCond = 9942 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9943 DAG.getBasicBlock(Small.MBB)); 9944 // Insert the false branch. 9945 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9946 DAG.getBasicBlock(DefaultMBB)); 9947 9948 DAG.setRoot(BrCond); 9949 return; 9950 } 9951 } 9952 } 9953 9954 if (TM.getOptLevel() != CodeGenOpt::None) { 9955 // Here, we order cases by probability so the most likely case will be 9956 // checked first. However, two clusters can have the same probability in 9957 // which case their relative ordering is non-deterministic. So we use Low 9958 // as a tie-breaker as clusters are guaranteed to never overlap. 9959 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9960 [](const CaseCluster &a, const CaseCluster &b) { 9961 return a.Prob != b.Prob ? 9962 a.Prob > b.Prob : 9963 a.Low->getValue().slt(b.Low->getValue()); 9964 }); 9965 9966 // Rearrange the case blocks so that the last one falls through if possible 9967 // without changing the order of probabilities. 9968 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9969 --I; 9970 if (I->Prob > W.LastCluster->Prob) 9971 break; 9972 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9973 std::swap(*I, *W.LastCluster); 9974 break; 9975 } 9976 } 9977 } 9978 9979 // Compute total probability. 9980 BranchProbability DefaultProb = W.DefaultProb; 9981 BranchProbability UnhandledProbs = DefaultProb; 9982 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9983 UnhandledProbs += I->Prob; 9984 9985 MachineBasicBlock *CurMBB = W.MBB; 9986 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9987 MachineBasicBlock *Fallthrough; 9988 if (I == W.LastCluster) { 9989 // For the last cluster, fall through to the default destination. 9990 Fallthrough = DefaultMBB; 9991 } else { 9992 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9993 CurMF->insert(BBI, Fallthrough); 9994 // Put Cond in a virtual register to make it available from the new blocks. 9995 ExportFromCurrentBlock(Cond); 9996 } 9997 UnhandledProbs -= I->Prob; 9998 9999 switch (I->Kind) { 10000 case CC_JumpTable: { 10001 // FIXME: Optimize away range check based on pivot comparisons. 10002 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10003 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10004 10005 // The jump block hasn't been inserted yet; insert it here. 10006 MachineBasicBlock *JumpMBB = JT->MBB; 10007 CurMF->insert(BBI, JumpMBB); 10008 10009 auto JumpProb = I->Prob; 10010 auto FallthroughProb = UnhandledProbs; 10011 10012 // If the default statement is a target of the jump table, we evenly 10013 // distribute the default probability to successors of CurMBB. Also 10014 // update the probability on the edge from JumpMBB to Fallthrough. 10015 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10016 SE = JumpMBB->succ_end(); 10017 SI != SE; ++SI) { 10018 if (*SI == DefaultMBB) { 10019 JumpProb += DefaultProb / 2; 10020 FallthroughProb -= DefaultProb / 2; 10021 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10022 JumpMBB->normalizeSuccProbs(); 10023 break; 10024 } 10025 } 10026 10027 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10028 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10029 CurMBB->normalizeSuccProbs(); 10030 10031 // The jump table header will be inserted in our current block, do the 10032 // range check, and fall through to our fallthrough block. 10033 JTH->HeaderBB = CurMBB; 10034 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10035 10036 // If we're in the right place, emit the jump table header right now. 10037 if (CurMBB == SwitchMBB) { 10038 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10039 JTH->Emitted = true; 10040 } 10041 break; 10042 } 10043 case CC_BitTests: { 10044 // FIXME: Optimize away range check based on pivot comparisons. 10045 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10046 10047 // The bit test blocks haven't been inserted yet; insert them here. 10048 for (BitTestCase &BTC : BTB->Cases) 10049 CurMF->insert(BBI, BTC.ThisBB); 10050 10051 // Fill in fields of the BitTestBlock. 10052 BTB->Parent = CurMBB; 10053 BTB->Default = Fallthrough; 10054 10055 BTB->DefaultProb = UnhandledProbs; 10056 // If the cases in bit test don't form a contiguous range, we evenly 10057 // distribute the probability on the edge to Fallthrough to two 10058 // successors of CurMBB. 10059 if (!BTB->ContiguousRange) { 10060 BTB->Prob += DefaultProb / 2; 10061 BTB->DefaultProb -= DefaultProb / 2; 10062 } 10063 10064 // If we're in the right place, emit the bit test header right now. 10065 if (CurMBB == SwitchMBB) { 10066 visitBitTestHeader(*BTB, SwitchMBB); 10067 BTB->Emitted = true; 10068 } 10069 break; 10070 } 10071 case CC_Range: { 10072 const Value *RHS, *LHS, *MHS; 10073 ISD::CondCode CC; 10074 if (I->Low == I->High) { 10075 // Check Cond == I->Low. 10076 CC = ISD::SETEQ; 10077 LHS = Cond; 10078 RHS=I->Low; 10079 MHS = nullptr; 10080 } else { 10081 // Check I->Low <= Cond <= I->High. 10082 CC = ISD::SETLE; 10083 LHS = I->Low; 10084 MHS = Cond; 10085 RHS = I->High; 10086 } 10087 10088 // The false probability is the sum of all unhandled cases. 10089 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10090 getCurSDLoc(), I->Prob, UnhandledProbs); 10091 10092 if (CurMBB == SwitchMBB) 10093 visitSwitchCase(CB, SwitchMBB); 10094 else 10095 SwitchCases.push_back(CB); 10096 10097 break; 10098 } 10099 } 10100 CurMBB = Fallthrough; 10101 } 10102 } 10103 10104 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10105 CaseClusterIt First, 10106 CaseClusterIt Last) { 10107 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10108 if (X.Prob != CC.Prob) 10109 return X.Prob > CC.Prob; 10110 10111 // Ties are broken by comparing the case value. 10112 return X.Low->getValue().slt(CC.Low->getValue()); 10113 }); 10114 } 10115 10116 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10117 const SwitchWorkListItem &W, 10118 Value *Cond, 10119 MachineBasicBlock *SwitchMBB) { 10120 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10121 "Clusters not sorted?"); 10122 10123 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10124 10125 // Balance the tree based on branch probabilities to create a near-optimal (in 10126 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10127 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10128 CaseClusterIt LastLeft = W.FirstCluster; 10129 CaseClusterIt FirstRight = W.LastCluster; 10130 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10131 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10132 10133 // Move LastLeft and FirstRight towards each other from opposite directions to 10134 // find a partitioning of the clusters which balances the probability on both 10135 // sides. If LeftProb and RightProb are equal, alternate which side is 10136 // taken to ensure 0-probability nodes are distributed evenly. 10137 unsigned I = 0; 10138 while (LastLeft + 1 < FirstRight) { 10139 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10140 LeftProb += (++LastLeft)->Prob; 10141 else 10142 RightProb += (--FirstRight)->Prob; 10143 I++; 10144 } 10145 10146 while (true) { 10147 // Our binary search tree differs from a typical BST in that ours can have up 10148 // to three values in each leaf. The pivot selection above doesn't take that 10149 // into account, which means the tree might require more nodes and be less 10150 // efficient. We compensate for this here. 10151 10152 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10153 unsigned NumRight = W.LastCluster - FirstRight + 1; 10154 10155 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10156 // If one side has less than 3 clusters, and the other has more than 3, 10157 // consider taking a cluster from the other side. 10158 10159 if (NumLeft < NumRight) { 10160 // Consider moving the first cluster on the right to the left side. 10161 CaseCluster &CC = *FirstRight; 10162 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10163 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10164 if (LeftSideRank <= RightSideRank) { 10165 // Moving the cluster to the left does not demote it. 10166 ++LastLeft; 10167 ++FirstRight; 10168 continue; 10169 } 10170 } else { 10171 assert(NumRight < NumLeft); 10172 // Consider moving the last element on the left to the right side. 10173 CaseCluster &CC = *LastLeft; 10174 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10175 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10176 if (RightSideRank <= LeftSideRank) { 10177 // Moving the cluster to the right does not demot it. 10178 --LastLeft; 10179 --FirstRight; 10180 continue; 10181 } 10182 } 10183 } 10184 break; 10185 } 10186 10187 assert(LastLeft + 1 == FirstRight); 10188 assert(LastLeft >= W.FirstCluster); 10189 assert(FirstRight <= W.LastCluster); 10190 10191 // Use the first element on the right as pivot since we will make less-than 10192 // comparisons against it. 10193 CaseClusterIt PivotCluster = FirstRight; 10194 assert(PivotCluster > W.FirstCluster); 10195 assert(PivotCluster <= W.LastCluster); 10196 10197 CaseClusterIt FirstLeft = W.FirstCluster; 10198 CaseClusterIt LastRight = W.LastCluster; 10199 10200 const ConstantInt *Pivot = PivotCluster->Low; 10201 10202 // New blocks will be inserted immediately after the current one. 10203 MachineFunction::iterator BBI(W.MBB); 10204 ++BBI; 10205 10206 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10207 // we can branch to its destination directly if it's squeezed exactly in 10208 // between the known lower bound and Pivot - 1. 10209 MachineBasicBlock *LeftMBB; 10210 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10211 FirstLeft->Low == W.GE && 10212 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10213 LeftMBB = FirstLeft->MBB; 10214 } else { 10215 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10216 FuncInfo.MF->insert(BBI, LeftMBB); 10217 WorkList.push_back( 10218 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10219 // Put Cond in a virtual register to make it available from the new blocks. 10220 ExportFromCurrentBlock(Cond); 10221 } 10222 10223 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10224 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10225 // directly if RHS.High equals the current upper bound. 10226 MachineBasicBlock *RightMBB; 10227 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10228 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10229 RightMBB = FirstRight->MBB; 10230 } else { 10231 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10232 FuncInfo.MF->insert(BBI, RightMBB); 10233 WorkList.push_back( 10234 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10235 // Put Cond in a virtual register to make it available from the new blocks. 10236 ExportFromCurrentBlock(Cond); 10237 } 10238 10239 // Create the CaseBlock record that will be used to lower the branch. 10240 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10241 getCurSDLoc(), LeftProb, RightProb); 10242 10243 if (W.MBB == SwitchMBB) 10244 visitSwitchCase(CB, SwitchMBB); 10245 else 10246 SwitchCases.push_back(CB); 10247 } 10248 10249 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10250 // from the swith statement. 10251 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10252 BranchProbability PeeledCaseProb) { 10253 if (PeeledCaseProb == BranchProbability::getOne()) 10254 return BranchProbability::getZero(); 10255 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10256 10257 uint32_t Numerator = CaseProb.getNumerator(); 10258 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10259 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10260 } 10261 10262 // Try to peel the top probability case if it exceeds the threshold. 10263 // Return current MachineBasicBlock for the switch statement if the peeling 10264 // does not occur. 10265 // If the peeling is performed, return the newly created MachineBasicBlock 10266 // for the peeled switch statement. Also update Clusters to remove the peeled 10267 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10268 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10269 const SwitchInst &SI, CaseClusterVector &Clusters, 10270 BranchProbability &PeeledCaseProb) { 10271 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10272 // Don't perform if there is only one cluster or optimizing for size. 10273 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10274 TM.getOptLevel() == CodeGenOpt::None || 10275 SwitchMBB->getParent()->getFunction().optForMinSize()) 10276 return SwitchMBB; 10277 10278 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10279 unsigned PeeledCaseIndex = 0; 10280 bool SwitchPeeled = false; 10281 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10282 CaseCluster &CC = Clusters[Index]; 10283 if (CC.Prob < TopCaseProb) 10284 continue; 10285 TopCaseProb = CC.Prob; 10286 PeeledCaseIndex = Index; 10287 SwitchPeeled = true; 10288 } 10289 if (!SwitchPeeled) 10290 return SwitchMBB; 10291 10292 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10293 << TopCaseProb << "\n"); 10294 10295 // Record the MBB for the peeled switch statement. 10296 MachineFunction::iterator BBI(SwitchMBB); 10297 ++BBI; 10298 MachineBasicBlock *PeeledSwitchMBB = 10299 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10300 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10301 10302 ExportFromCurrentBlock(SI.getCondition()); 10303 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10304 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10305 nullptr, nullptr, TopCaseProb.getCompl()}; 10306 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10307 10308 Clusters.erase(PeeledCaseIt); 10309 for (CaseCluster &CC : Clusters) { 10310 LLVM_DEBUG( 10311 dbgs() << "Scale the probablity for one cluster, before scaling: " 10312 << CC.Prob << "\n"); 10313 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10314 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10315 } 10316 PeeledCaseProb = TopCaseProb; 10317 return PeeledSwitchMBB; 10318 } 10319 10320 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10321 // Extract cases from the switch. 10322 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10323 CaseClusterVector Clusters; 10324 Clusters.reserve(SI.getNumCases()); 10325 for (auto I : SI.cases()) { 10326 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10327 const ConstantInt *CaseVal = I.getCaseValue(); 10328 BranchProbability Prob = 10329 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10330 : BranchProbability(1, SI.getNumCases() + 1); 10331 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10332 } 10333 10334 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10335 10336 // Cluster adjacent cases with the same destination. We do this at all 10337 // optimization levels because it's cheap to do and will make codegen faster 10338 // if there are many clusters. 10339 sortAndRangeify(Clusters); 10340 10341 if (TM.getOptLevel() != CodeGenOpt::None) { 10342 // Replace an unreachable default with the most popular destination. 10343 // FIXME: Exploit unreachable default more aggressively. 10344 bool UnreachableDefault = 10345 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10346 if (UnreachableDefault && !Clusters.empty()) { 10347 DenseMap<const BasicBlock *, unsigned> Popularity; 10348 unsigned MaxPop = 0; 10349 const BasicBlock *MaxBB = nullptr; 10350 for (auto I : SI.cases()) { 10351 const BasicBlock *BB = I.getCaseSuccessor(); 10352 if (++Popularity[BB] > MaxPop) { 10353 MaxPop = Popularity[BB]; 10354 MaxBB = BB; 10355 } 10356 } 10357 // Set new default. 10358 assert(MaxPop > 0 && MaxBB); 10359 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10360 10361 // Remove cases that were pointing to the destination that is now the 10362 // default. 10363 CaseClusterVector New; 10364 New.reserve(Clusters.size()); 10365 for (CaseCluster &CC : Clusters) { 10366 if (CC.MBB != DefaultMBB) 10367 New.push_back(CC); 10368 } 10369 Clusters = std::move(New); 10370 } 10371 } 10372 10373 // The branch probablity of the peeled case. 10374 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10375 MachineBasicBlock *PeeledSwitchMBB = 10376 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10377 10378 // If there is only the default destination, jump there directly. 10379 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10380 if (Clusters.empty()) { 10381 assert(PeeledSwitchMBB == SwitchMBB); 10382 SwitchMBB->addSuccessor(DefaultMBB); 10383 if (DefaultMBB != NextBlock(SwitchMBB)) { 10384 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10385 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10386 } 10387 return; 10388 } 10389 10390 findJumpTables(Clusters, &SI, DefaultMBB); 10391 findBitTestClusters(Clusters, &SI); 10392 10393 LLVM_DEBUG({ 10394 dbgs() << "Case clusters: "; 10395 for (const CaseCluster &C : Clusters) { 10396 if (C.Kind == CC_JumpTable) 10397 dbgs() << "JT:"; 10398 if (C.Kind == CC_BitTests) 10399 dbgs() << "BT:"; 10400 10401 C.Low->getValue().print(dbgs(), true); 10402 if (C.Low != C.High) { 10403 dbgs() << '-'; 10404 C.High->getValue().print(dbgs(), true); 10405 } 10406 dbgs() << ' '; 10407 } 10408 dbgs() << '\n'; 10409 }); 10410 10411 assert(!Clusters.empty()); 10412 SwitchWorkList WorkList; 10413 CaseClusterIt First = Clusters.begin(); 10414 CaseClusterIt Last = Clusters.end() - 1; 10415 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10416 // Scale the branchprobability for DefaultMBB if the peel occurs and 10417 // DefaultMBB is not replaced. 10418 if (PeeledCaseProb != BranchProbability::getZero() && 10419 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10420 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10421 WorkList.push_back( 10422 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10423 10424 while (!WorkList.empty()) { 10425 SwitchWorkListItem W = WorkList.back(); 10426 WorkList.pop_back(); 10427 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10428 10429 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10430 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10431 // For optimized builds, lower large range as a balanced binary tree. 10432 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10433 continue; 10434 } 10435 10436 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10437 } 10438 } 10439