1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <iterator> 108 #include <limits> 109 #include <optional> 110 #include <tuple> 111 112 using namespace llvm; 113 using namespace PatternMatch; 114 using namespace SwitchCG; 115 116 #define DEBUG_TYPE "isel" 117 118 /// LimitFloatPrecision - Generate low-precision inline sequences for 119 /// some float libcalls (6, 8 or 12 bits). 120 static unsigned LimitFloatPrecision; 121 122 static cl::opt<bool> 123 InsertAssertAlign("insert-assert-align", cl::init(true), 124 cl::desc("Insert the experimental `assertalign` node."), 125 cl::ReallyHidden); 126 127 static cl::opt<unsigned, true> 128 LimitFPPrecision("limit-float-precision", 129 cl::desc("Generate low-precision inline sequences " 130 "for some float libcalls"), 131 cl::location(LimitFloatPrecision), cl::Hidden, 132 cl::init(0)); 133 134 static cl::opt<unsigned> SwitchPeelThreshold( 135 "switch-peel-threshold", cl::Hidden, cl::init(66), 136 cl::desc("Set the case probability threshold for peeling the case from a " 137 "switch statement. A value greater than 100 will void this " 138 "optimization")); 139 140 // Limit the width of DAG chains. This is important in general to prevent 141 // DAG-based analysis from blowing up. For example, alias analysis and 142 // load clustering may not complete in reasonable time. It is difficult to 143 // recognize and avoid this situation within each individual analysis, and 144 // future analyses are likely to have the same behavior. Limiting DAG width is 145 // the safe approach and will be especially important with global DAGs. 146 // 147 // MaxParallelChains default is arbitrarily high to avoid affecting 148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 149 // sequence over this should have been converted to llvm.memcpy by the 150 // frontend. It is easy to induce this behavior with .ll code such as: 151 // %buffer = alloca [4096 x i8] 152 // %data = load [4096 x i8]* %argPtr 153 // store [4096 x i8] %data, [4096 x i8]* %buffer 154 static const unsigned MaxParallelChains = 64; 155 156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 157 const SDValue *Parts, unsigned NumParts, 158 MVT PartVT, EVT ValueVT, const Value *V, 159 SDValue InChain, 160 std::optional<CallingConv::ID> CC); 161 162 /// getCopyFromParts - Create a value that contains the specified legal parts 163 /// combined into the value they represent. If the parts combine to a type 164 /// larger than ValueVT then AssertOp can be used to specify whether the extra 165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 166 /// (ISD::AssertSext). 167 static SDValue 168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 169 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 170 SDValue InChain, 171 std::optional<CallingConv::ID> CC = std::nullopt, 172 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 173 // Let the target assemble the parts if it wants to 174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 175 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 176 PartVT, ValueVT, CC)) 177 return Val; 178 179 if (ValueVT.isVector()) 180 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 181 InChain, CC); 182 183 assert(NumParts > 0 && "No parts to assemble!"); 184 SDValue Val = Parts[0]; 185 186 if (NumParts > 1) { 187 // Assemble the value from multiple parts. 188 if (ValueVT.isInteger()) { 189 unsigned PartBits = PartVT.getSizeInBits(); 190 unsigned ValueBits = ValueVT.getSizeInBits(); 191 192 // Assemble the power of 2 part. 193 unsigned RoundParts = llvm::bit_floor(NumParts); 194 unsigned RoundBits = PartBits * RoundParts; 195 EVT RoundVT = RoundBits == ValueBits ? 196 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 197 SDValue Lo, Hi; 198 199 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 200 201 if (RoundParts > 2) { 202 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 203 InChain); 204 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 205 PartVT, HalfVT, V, InChain); 206 } else { 207 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 208 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 209 } 210 211 if (DAG.getDataLayout().isBigEndian()) 212 std::swap(Lo, Hi); 213 214 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 215 216 if (RoundParts < NumParts) { 217 // Assemble the trailing non-power-of-2 part. 218 unsigned OddParts = NumParts - RoundParts; 219 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 220 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 221 OddVT, V, InChain, CC); 222 223 // Combine the round and odd parts. 224 Lo = Val; 225 if (DAG.getDataLayout().isBigEndian()) 226 std::swap(Lo, Hi); 227 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 228 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 229 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 230 DAG.getConstant(Lo.getValueSizeInBits(), DL, 231 TLI.getShiftAmountTy( 232 TotalVT, DAG.getDataLayout()))); 233 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 234 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 235 } 236 } else if (PartVT.isFloatingPoint()) { 237 // FP split into multiple FP parts (for ppcf128) 238 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 239 "Unexpected split"); 240 SDValue Lo, Hi; 241 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 242 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 243 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 244 std::swap(Lo, Hi); 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 246 } else { 247 // FP split into integer parts (soft fp) 248 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 249 !PartVT.isVector() && "Unexpected split"); 250 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 251 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 252 InChain, CC); 253 } 254 } 255 256 // There is now one part, held in Val. Correct it to match ValueVT. 257 // PartEVT is the type of the register class that holds the value. 258 // ValueVT is the type of the inline asm operation. 259 EVT PartEVT = Val.getValueType(); 260 261 if (PartEVT == ValueVT) 262 return Val; 263 264 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 265 ValueVT.bitsLT(PartEVT)) { 266 // For an FP value in an integer part, we need to truncate to the right 267 // width first. 268 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 270 } 271 272 // Handle types that have the same size. 273 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 274 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 275 276 // Handle types with different sizes. 277 if (PartEVT.isInteger() && ValueVT.isInteger()) { 278 if (ValueVT.bitsLT(PartEVT)) { 279 // For a truncate, see if we have any information to 280 // indicate whether the truncated bits will always be 281 // zero or sign-extension. 282 if (AssertOp) 283 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 284 DAG.getValueType(ValueVT)); 285 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 286 } 287 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 288 } 289 290 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 291 // FP_ROUND's are always exact here. 292 if (ValueVT.bitsLT(Val.getValueType())) { 293 294 SDValue NoChange = 295 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 296 297 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 298 llvm::Attribute::StrictFP)) { 299 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 300 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 301 NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 305 } 306 307 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 308 } 309 310 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 311 // then truncating. 312 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 313 ValueVT.bitsLT(PartEVT)) { 314 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 318 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (CI->isInlineAsm()) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 SDValue InChain, 344 std::optional<CallingConv::ID> CallConv) { 345 assert(ValueVT.isVector() && "Not a vector value"); 346 assert(NumParts > 0 && "No parts to assemble!"); 347 const bool IsABIRegCopy = CallConv.has_value(); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 SDValue Val = Parts[0]; 351 352 // Handle a multi-element vector. 353 if (NumParts > 1) { 354 EVT IntermediateVT; 355 MVT RegisterVT; 356 unsigned NumIntermediates; 357 unsigned NumRegs; 358 359 if (IsABIRegCopy) { 360 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 361 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } else { 364 NumRegs = 365 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } 368 369 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 370 NumParts = NumRegs; // Silence a compiler warning. 371 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 372 assert(RegisterVT.getSizeInBits() == 373 Parts[0].getSimpleValueType().getSizeInBits() && 374 "Part type sizes don't match!"); 375 376 // Assemble the parts into intermediate operands. 377 SmallVector<SDValue, 8> Ops(NumIntermediates); 378 if (NumIntermediates == NumParts) { 379 // If the register was not expanded, truncate or copy the value, 380 // as appropriate. 381 for (unsigned i = 0; i != NumParts; ++i) 382 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 383 V, InChain, CallConv); 384 } else if (NumParts > 0) { 385 // If the intermediate type was expanded, build the intermediate 386 // operands from the parts. 387 assert(NumParts % NumIntermediates == 0 && 388 "Must expand into a divisible number of parts!"); 389 unsigned Factor = NumParts / NumIntermediates; 390 for (unsigned i = 0; i != NumIntermediates; ++i) 391 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 392 IntermediateVT, V, InChain, CallConv); 393 } 394 395 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 396 // intermediate operands. 397 EVT BuiltVectorTy = 398 IntermediateVT.isVector() 399 ? EVT::getVectorVT( 400 *DAG.getContext(), IntermediateVT.getScalarType(), 401 IntermediateVT.getVectorElementCount() * NumParts) 402 : EVT::getVectorVT(*DAG.getContext(), 403 IntermediateVT.getScalarType(), 404 NumIntermediates); 405 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 406 : ISD::BUILD_VECTOR, 407 DL, BuiltVectorTy, Ops); 408 } 409 410 // There is now one part, held in Val. Correct it to match ValueVT. 411 EVT PartEVT = Val.getValueType(); 412 413 if (PartEVT == ValueVT) 414 return Val; 415 416 if (PartEVT.isVector()) { 417 // Vector/Vector bitcast. 418 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 419 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 421 // If the parts vector has more elements than the value vector, then we 422 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 423 // Extract the elements we want. 424 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 425 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 426 ValueVT.getVectorElementCount().getKnownMinValue()) && 427 (PartEVT.getVectorElementCount().isScalable() == 428 ValueVT.getVectorElementCount().isScalable()) && 429 "Cannot narrow, it would be a lossy transformation"); 430 PartEVT = 431 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 432 ValueVT.getVectorElementCount()); 433 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 434 DAG.getVectorIdxConstant(0, DL)); 435 if (PartEVT == ValueVT) 436 return Val; 437 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 } 444 445 // Promoted vector extract 446 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 447 } 448 449 // Trivial bitcast if the types are the same size and the destination 450 // vector type is legal. 451 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 452 TLI.isTypeLegal(ValueVT)) 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 455 if (ValueVT.getVectorNumElements() != 1) { 456 // Certain ABIs require that vectors are passed as integers. For vectors 457 // are the same size, this is an obvious bitcast. 458 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 459 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 460 } else if (ValueVT.bitsLT(PartEVT)) { 461 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 462 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 463 // Drop the extra bits. 464 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 465 return DAG.getBitcast(ValueVT, Val); 466 } 467 468 diagnosePossiblyInvalidConstraint( 469 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 470 return DAG.getUNDEF(ValueVT); 471 } 472 473 // Handle cases such as i8 -> <1 x i1> 474 EVT ValueSVT = ValueVT.getVectorElementType(); 475 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 476 unsigned ValueSize = ValueSVT.getSizeInBits(); 477 if (ValueSize == PartEVT.getSizeInBits()) { 478 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 479 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 480 // It's possible a scalar floating point type gets softened to integer and 481 // then promoted to a larger integer. If PartEVT is the larger integer 482 // we need to truncate it and then bitcast to the FP type. 483 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 484 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 485 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 486 Val = DAG.getBitcast(ValueSVT, Val); 487 } else { 488 Val = ValueVT.isFloatingPoint() 489 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 490 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 491 } 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 std::optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void 506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 507 unsigned NumParts, MVT PartVT, const Value *V, 508 std::optional<CallingConv::ID> CallConv = std::nullopt, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 // Let the target split the parts if it wants to 511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 512 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 513 CallConv)) 514 return; 515 EVT ValueVT = Val.getValueType(); 516 517 // Handle the vector case separately. 518 if (ValueVT.isVector()) 519 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 520 CallConv); 521 522 unsigned OrigNumParts = NumParts; 523 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 524 "Copying to an illegal type!"); 525 526 if (NumParts == 0) 527 return; 528 529 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 530 EVT PartEVT = PartVT; 531 if (PartEVT == ValueVT) { 532 assert(NumParts == 1 && "No-op copy with multiple parts!"); 533 Parts[0] = Val; 534 return; 535 } 536 537 unsigned PartBits = PartVT.getSizeInBits(); 538 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 539 // If the parts cover more bits than the value has, promote the value. 540 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 541 assert(NumParts == 1 && "Do not know what to promote to!"); 542 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 543 } else { 544 if (ValueVT.isFloatingPoint()) { 545 // FP values need to be bitcast, then extended if they are being put 546 // into a larger container. 547 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 548 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 549 } 550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 551 ValueVT.isInteger() && 552 "Unknown mismatch!"); 553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 554 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 555 if (PartVT == MVT::x86mmx) 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } 558 } else if (PartBits == ValueVT.getSizeInBits()) { 559 // Different types of the same size. 560 assert(NumParts == 1 && PartEVT != ValueVT); 561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 562 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 563 // If the parts cover less bits than value has, truncate the value. 564 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 565 ValueVT.isInteger() && 566 "Unknown mismatch!"); 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 if (PartVT == MVT::x86mmx) 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 // The value may have changed - recompute ValueVT. 574 ValueVT = Val.getValueType(); 575 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 576 "Failed to tile the value with PartVT!"); 577 578 if (NumParts == 1) { 579 if (PartEVT != ValueVT) { 580 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 581 "scalar-to-vector conversion failed"); 582 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 583 } 584 585 Parts[0] = Val; 586 return; 587 } 588 589 // Expand the value into multiple parts. 590 if (NumParts & (NumParts - 1)) { 591 // The number of parts is not a power of 2. Split off and copy the tail. 592 assert(PartVT.isInteger() && ValueVT.isInteger() && 593 "Do not know what to expand to!"); 594 unsigned RoundParts = llvm::bit_floor(NumParts); 595 unsigned RoundBits = RoundParts * PartBits; 596 unsigned OddParts = NumParts - RoundParts; 597 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 598 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 599 600 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 601 CallConv); 602 603 if (DAG.getDataLayout().isBigEndian()) 604 // The odd parts were reversed by getCopyToParts - unreverse them. 605 std::reverse(Parts + RoundParts, Parts + NumParts); 606 607 NumParts = RoundParts; 608 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 609 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 610 } 611 612 // The number of parts is a power of 2. Repeatedly bisect the value using 613 // EXTRACT_ELEMENT. 614 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 615 EVT::getIntegerVT(*DAG.getContext(), 616 ValueVT.getSizeInBits()), 617 Val); 618 619 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 620 for (unsigned i = 0; i < NumParts; i += StepSize) { 621 unsigned ThisBits = StepSize * PartBits / 2; 622 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 623 SDValue &Part0 = Parts[i]; 624 SDValue &Part1 = Parts[i+StepSize/2]; 625 626 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 628 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 629 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 630 631 if (ThisBits == PartBits && ThisVT != PartVT) { 632 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 633 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 634 } 635 } 636 } 637 638 if (DAG.getDataLayout().isBigEndian()) 639 std::reverse(Parts, Parts + OrigNumParts); 640 } 641 642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 643 const SDLoc &DL, EVT PartVT) { 644 if (!PartVT.isVector()) 645 return SDValue(); 646 647 EVT ValueVT = Val.getValueType(); 648 EVT PartEVT = PartVT.getVectorElementType(); 649 EVT ValueEVT = ValueVT.getVectorElementType(); 650 ElementCount PartNumElts = PartVT.getVectorElementCount(); 651 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 652 653 // We only support widening vectors with equivalent element types and 654 // fixed/scalable properties. If a target needs to widen a fixed-length type 655 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 656 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 657 PartNumElts.isScalable() != ValueNumElts.isScalable()) 658 return SDValue(); 659 660 // Have a try for bf16 because some targets share its ABI with fp16. 661 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 662 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 663 "Cannot widen to illegal type"); 664 Val = DAG.getNode(ISD::BITCAST, DL, 665 ValueVT.changeVectorElementType(MVT::f16), Val); 666 } else if (PartEVT != ValueEVT) { 667 return SDValue(); 668 } 669 670 // Widening a scalable vector to another scalable vector is done by inserting 671 // the vector into a larger undef one. 672 if (PartNumElts.isScalable()) 673 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 674 Val, DAG.getVectorIdxConstant(0, DL)); 675 676 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 677 // undef elements. 678 SmallVector<SDValue, 16> Ops; 679 DAG.ExtractVectorElements(Val, Ops); 680 SDValue EltUndef = DAG.getUNDEF(PartEVT); 681 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 682 683 // FIXME: Use CONCAT for 2x -> 4x. 684 return DAG.getBuildVector(PartVT, DL, Ops); 685 } 686 687 /// getCopyToPartsVector - Create a series of nodes that contain the specified 688 /// value split into legal parts. 689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 690 SDValue Val, SDValue *Parts, unsigned NumParts, 691 MVT PartVT, const Value *V, 692 std::optional<CallingConv::ID> CallConv) { 693 EVT ValueVT = Val.getValueType(); 694 assert(ValueVT.isVector() && "Not a vector"); 695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 696 const bool IsABIRegCopy = CallConv.has_value(); 697 698 if (NumParts == 1) { 699 EVT PartEVT = PartVT; 700 if (PartEVT == ValueVT) { 701 // Nothing to do. 702 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 703 // Bitconvert vector->vector case. 704 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 705 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 706 Val = Widened; 707 } else if (PartVT.isVector() && 708 PartEVT.getVectorElementType().bitsGE( 709 ValueVT.getVectorElementType()) && 710 PartEVT.getVectorElementCount() == 711 ValueVT.getVectorElementCount()) { 712 713 // Promoted vector extract 714 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 715 } else if (PartEVT.isVector() && 716 PartEVT.getVectorElementType() != 717 ValueVT.getVectorElementType() && 718 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 719 TargetLowering::TypeWidenVector) { 720 // Combination of widening and promotion. 721 EVT WidenVT = 722 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 723 PartVT.getVectorElementCount()); 724 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 725 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 726 } else { 727 // Don't extract an integer from a float vector. This can happen if the 728 // FP type gets softened to integer and then promoted. The promotion 729 // prevents it from being picked up by the earlier bitcast case. 730 if (ValueVT.getVectorElementCount().isScalar() && 731 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 732 // If we reach this condition and PartVT is FP, this means that 733 // ValueVT is also FP and both have a different size, otherwise we 734 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 735 // would be invalid since that would mean the smaller FP type has to 736 // be extended to the larger one. 737 if (PartVT.isFloatingPoint()) { 738 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 739 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 740 } else 741 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 742 DAG.getVectorIdxConstant(0, DL)); 743 } else { 744 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 745 assert(PartVT.getFixedSizeInBits() > ValueSize && 746 "lossy conversion of vector to scalar type"); 747 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 748 Val = DAG.getBitcast(IntermediateType, Val); 749 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 750 } 751 } 752 753 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 754 Parts[0] = Val; 755 return; 756 } 757 758 // Handle a multi-element vector. 759 EVT IntermediateVT; 760 MVT RegisterVT; 761 unsigned NumIntermediates; 762 unsigned NumRegs; 763 if (IsABIRegCopy) { 764 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 765 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 766 RegisterVT); 767 } else { 768 NumRegs = 769 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 770 NumIntermediates, RegisterVT); 771 } 772 773 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 774 NumParts = NumRegs; // Silence a compiler warning. 775 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 776 777 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 778 "Mixing scalable and fixed vectors when copying in parts"); 779 780 std::optional<ElementCount> DestEltCnt; 781 782 if (IntermediateVT.isVector()) 783 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 784 else 785 DestEltCnt = ElementCount::getFixed(NumIntermediates); 786 787 EVT BuiltVectorTy = EVT::getVectorVT( 788 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 789 790 if (ValueVT == BuiltVectorTy) { 791 // Nothing to do. 792 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 793 // Bitconvert vector->vector case. 794 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 795 } else { 796 if (BuiltVectorTy.getVectorElementType().bitsGT( 797 ValueVT.getVectorElementType())) { 798 // Integer promotion. 799 ValueVT = EVT::getVectorVT(*DAG.getContext(), 800 BuiltVectorTy.getVectorElementType(), 801 ValueVT.getVectorElementCount()); 802 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 803 } 804 805 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 806 Val = Widened; 807 } 808 } 809 810 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 811 812 // Split the vector into intermediate operands. 813 SmallVector<SDValue, 8> Ops(NumIntermediates); 814 for (unsigned i = 0; i != NumIntermediates; ++i) { 815 if (IntermediateVT.isVector()) { 816 // This does something sensible for scalable vectors - see the 817 // definition of EXTRACT_SUBVECTOR for further details. 818 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 819 Ops[i] = 820 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 821 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 822 } else { 823 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 824 DAG.getVectorIdxConstant(i, DL)); 825 } 826 } 827 828 // Split the intermediate operands into legal parts. 829 if (NumParts == NumIntermediates) { 830 // If the register was not expanded, promote or copy the value, 831 // as appropriate. 832 for (unsigned i = 0; i != NumParts; ++i) 833 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 834 } else if (NumParts > 0) { 835 // If the intermediate type was expanded, split each the value into 836 // legal parts. 837 assert(NumIntermediates != 0 && "division by zero"); 838 assert(NumParts % NumIntermediates == 0 && 839 "Must expand into a divisible number of parts!"); 840 unsigned Factor = NumParts / NumIntermediates; 841 for (unsigned i = 0; i != NumIntermediates; ++i) 842 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 843 CallConv); 844 } 845 } 846 847 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 848 EVT valuevt, std::optional<CallingConv::ID> CC) 849 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 850 RegCount(1, regs.size()), CallConv(CC) {} 851 852 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 853 const DataLayout &DL, unsigned Reg, Type *Ty, 854 std::optional<CallingConv::ID> CC) { 855 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 856 857 CallConv = CC; 858 859 for (EVT ValueVT : ValueVTs) { 860 unsigned NumRegs = 861 isABIMangled() 862 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 863 : TLI.getNumRegisters(Context, ValueVT); 864 MVT RegisterVT = 865 isABIMangled() 866 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 867 : TLI.getRegisterType(Context, ValueVT); 868 for (unsigned i = 0; i != NumRegs; ++i) 869 Regs.push_back(Reg + i); 870 RegVTs.push_back(RegisterVT); 871 RegCount.push_back(NumRegs); 872 Reg += NumRegs; 873 } 874 } 875 876 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 877 FunctionLoweringInfo &FuncInfo, 878 const SDLoc &dl, SDValue &Chain, 879 SDValue *Glue, const Value *V) const { 880 // A Value with type {} or [0 x %t] needs no registers. 881 if (ValueVTs.empty()) 882 return SDValue(); 883 884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 885 886 // Assemble the legal parts into the final values. 887 SmallVector<SDValue, 4> Values(ValueVTs.size()); 888 SmallVector<SDValue, 8> Parts; 889 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 890 // Copy the legal parts from the registers. 891 EVT ValueVT = ValueVTs[Value]; 892 unsigned NumRegs = RegCount[Value]; 893 MVT RegisterVT = isABIMangled() 894 ? TLI.getRegisterTypeForCallingConv( 895 *DAG.getContext(), *CallConv, RegVTs[Value]) 896 : RegVTs[Value]; 897 898 Parts.resize(NumRegs); 899 for (unsigned i = 0; i != NumRegs; ++i) { 900 SDValue P; 901 if (!Glue) { 902 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 903 } else { 904 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 905 *Glue = P.getValue(2); 906 } 907 908 Chain = P.getValue(1); 909 Parts[i] = P; 910 911 // If the source register was virtual and if we know something about it, 912 // add an assert node. 913 if (!Register::isVirtualRegister(Regs[Part + i]) || 914 !RegisterVT.isInteger()) 915 continue; 916 917 const FunctionLoweringInfo::LiveOutInfo *LOI = 918 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 919 if (!LOI) 920 continue; 921 922 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 923 unsigned NumSignBits = LOI->NumSignBits; 924 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 925 926 if (NumZeroBits == RegSize) { 927 // The current value is a zero. 928 // Explicitly express that as it would be easier for 929 // optimizations to kick in. 930 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 931 continue; 932 } 933 934 // FIXME: We capture more information than the dag can represent. For 935 // now, just use the tightest assertzext/assertsext possible. 936 bool isSExt; 937 EVT FromVT(MVT::Other); 938 if (NumZeroBits) { 939 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 940 isSExt = false; 941 } else if (NumSignBits > 1) { 942 FromVT = 943 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 944 isSExt = true; 945 } else { 946 continue; 947 } 948 // Add an assertion node. 949 assert(FromVT != MVT::Other); 950 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 951 RegisterVT, P, DAG.getValueType(FromVT)); 952 } 953 954 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 955 RegisterVT, ValueVT, V, Chain, CallConv); 956 Part += NumRegs; 957 Parts.clear(); 958 } 959 960 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 961 } 962 963 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 964 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 965 const Value *V, 966 ISD::NodeType PreferredExtendType) const { 967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 968 ISD::NodeType ExtendKind = PreferredExtendType; 969 970 // Get the list of the values's legal parts. 971 unsigned NumRegs = Regs.size(); 972 SmallVector<SDValue, 8> Parts(NumRegs); 973 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 974 unsigned NumParts = RegCount[Value]; 975 976 MVT RegisterVT = isABIMangled() 977 ? TLI.getRegisterTypeForCallingConv( 978 *DAG.getContext(), *CallConv, RegVTs[Value]) 979 : RegVTs[Value]; 980 981 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 982 ExtendKind = ISD::ZERO_EXTEND; 983 984 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 985 NumParts, RegisterVT, V, CallConv, ExtendKind); 986 Part += NumParts; 987 } 988 989 // Copy the parts into the registers. 990 SmallVector<SDValue, 8> Chains(NumRegs); 991 for (unsigned i = 0; i != NumRegs; ++i) { 992 SDValue Part; 993 if (!Glue) { 994 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 995 } else { 996 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 997 *Glue = Part.getValue(1); 998 } 999 1000 Chains[i] = Part.getValue(0); 1001 } 1002 1003 if (NumRegs == 1 || Glue) 1004 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1005 // flagged to it. That is the CopyToReg nodes and the user are considered 1006 // a single scheduling unit. If we create a TokenFactor and return it as 1007 // chain, then the TokenFactor is both a predecessor (operand) of the 1008 // user as well as a successor (the TF operands are flagged to the user). 1009 // c1, f1 = CopyToReg 1010 // c2, f2 = CopyToReg 1011 // c3 = TokenFactor c1, c2 1012 // ... 1013 // = op c3, ..., f2 1014 Chain = Chains[NumRegs-1]; 1015 else 1016 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1017 } 1018 1019 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1020 unsigned MatchingIdx, const SDLoc &dl, 1021 SelectionDAG &DAG, 1022 std::vector<SDValue> &Ops) const { 1023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1024 1025 InlineAsm::Flag Flag(Code, Regs.size()); 1026 if (HasMatching) 1027 Flag.setMatchingOp(MatchingIdx); 1028 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1029 // Put the register class of the virtual registers in the flag word. That 1030 // way, later passes can recompute register class constraints for inline 1031 // assembly as well as normal instructions. 1032 // Don't do this for tied operands that can use the regclass information 1033 // from the def. 1034 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1035 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1036 Flag.setRegClass(RC->getID()); 1037 } 1038 1039 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1040 Ops.push_back(Res); 1041 1042 if (Code == InlineAsm::Kind::Clobber) { 1043 // Clobbers should always have a 1:1 mapping with registers, and may 1044 // reference registers that have illegal (e.g. vector) types. Hence, we 1045 // shouldn't try to apply any sort of splitting logic to them. 1046 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1047 "No 1:1 mapping from clobbers to regs?"); 1048 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1049 (void)SP; 1050 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1051 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1052 assert( 1053 (Regs[I] != SP || 1054 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1055 "If we clobbered the stack pointer, MFI should know about it."); 1056 } 1057 return; 1058 } 1059 1060 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1061 MVT RegisterVT = RegVTs[Value]; 1062 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1063 RegisterVT); 1064 for (unsigned i = 0; i != NumRegs; ++i) { 1065 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1066 unsigned TheReg = Regs[Reg++]; 1067 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1068 } 1069 } 1070 } 1071 1072 SmallVector<std::pair<unsigned, TypeSize>, 4> 1073 RegsForValue::getRegsAndSizes() const { 1074 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1075 unsigned I = 0; 1076 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1077 unsigned RegCount = std::get<0>(CountAndVT); 1078 MVT RegisterVT = std::get<1>(CountAndVT); 1079 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1080 for (unsigned E = I + RegCount; I != E; ++I) 1081 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1082 } 1083 return OutVec; 1084 } 1085 1086 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1087 AssumptionCache *ac, 1088 const TargetLibraryInfo *li) { 1089 AA = aa; 1090 AC = ac; 1091 GFI = gfi; 1092 LibInfo = li; 1093 Context = DAG.getContext(); 1094 LPadToCallSiteMap.clear(); 1095 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1096 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1097 *DAG.getMachineFunction().getFunction().getParent()); 1098 } 1099 1100 void SelectionDAGBuilder::clear() { 1101 NodeMap.clear(); 1102 UnusedArgNodeMap.clear(); 1103 PendingLoads.clear(); 1104 PendingExports.clear(); 1105 PendingConstrainedFP.clear(); 1106 PendingConstrainedFPStrict.clear(); 1107 CurInst = nullptr; 1108 HasTailCall = false; 1109 SDNodeOrder = LowestSDNodeOrder; 1110 StatepointLowering.clear(); 1111 } 1112 1113 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1114 DanglingDebugInfoMap.clear(); 1115 } 1116 1117 // Update DAG root to include dependencies on Pending chains. 1118 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1119 SDValue Root = DAG.getRoot(); 1120 1121 if (Pending.empty()) 1122 return Root; 1123 1124 // Add current root to PendingChains, unless we already indirectly 1125 // depend on it. 1126 if (Root.getOpcode() != ISD::EntryToken) { 1127 unsigned i = 0, e = Pending.size(); 1128 for (; i != e; ++i) { 1129 assert(Pending[i].getNode()->getNumOperands() > 1); 1130 if (Pending[i].getNode()->getOperand(0) == Root) 1131 break; // Don't add the root if we already indirectly depend on it. 1132 } 1133 1134 if (i == e) 1135 Pending.push_back(Root); 1136 } 1137 1138 if (Pending.size() == 1) 1139 Root = Pending[0]; 1140 else 1141 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1142 1143 DAG.setRoot(Root); 1144 Pending.clear(); 1145 return Root; 1146 } 1147 1148 SDValue SelectionDAGBuilder::getMemoryRoot() { 1149 return updateRoot(PendingLoads); 1150 } 1151 1152 SDValue SelectionDAGBuilder::getRoot() { 1153 // Chain up all pending constrained intrinsics together with all 1154 // pending loads, by simply appending them to PendingLoads and 1155 // then calling getMemoryRoot(). 1156 PendingLoads.reserve(PendingLoads.size() + 1157 PendingConstrainedFP.size() + 1158 PendingConstrainedFPStrict.size()); 1159 PendingLoads.append(PendingConstrainedFP.begin(), 1160 PendingConstrainedFP.end()); 1161 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1162 PendingConstrainedFPStrict.end()); 1163 PendingConstrainedFP.clear(); 1164 PendingConstrainedFPStrict.clear(); 1165 return getMemoryRoot(); 1166 } 1167 1168 SDValue SelectionDAGBuilder::getControlRoot() { 1169 // We need to emit pending fpexcept.strict constrained intrinsics, 1170 // so append them to the PendingExports list. 1171 PendingExports.append(PendingConstrainedFPStrict.begin(), 1172 PendingConstrainedFPStrict.end()); 1173 PendingConstrainedFPStrict.clear(); 1174 return updateRoot(PendingExports); 1175 } 1176 1177 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1178 DILocalVariable *Variable, 1179 DIExpression *Expression, 1180 DebugLoc DL) { 1181 assert(Variable && "Missing variable"); 1182 1183 // Check if address has undef value. 1184 if (!Address || isa<UndefValue>(Address) || 1185 (Address->use_empty() && !isa<Argument>(Address))) { 1186 LLVM_DEBUG( 1187 dbgs() 1188 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1189 return; 1190 } 1191 1192 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1193 1194 SDValue &N = NodeMap[Address]; 1195 if (!N.getNode() && isa<Argument>(Address)) 1196 // Check unused arguments map. 1197 N = UnusedArgNodeMap[Address]; 1198 SDDbgValue *SDV; 1199 if (N.getNode()) { 1200 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1201 Address = BCI->getOperand(0); 1202 // Parameters are handled specially. 1203 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1204 if (IsParameter && FINode) { 1205 // Byval parameter. We have a frame index at this point. 1206 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1207 /*IsIndirect*/ true, DL, SDNodeOrder); 1208 } else if (isa<Argument>(Address)) { 1209 // Address is an argument, so try to emit its dbg value using 1210 // virtual register info from the FuncInfo.ValueMap. 1211 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1212 FuncArgumentDbgValueKind::Declare, N); 1213 return; 1214 } else { 1215 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1216 true, DL, SDNodeOrder); 1217 } 1218 DAG.AddDbgValue(SDV, IsParameter); 1219 } else { 1220 // If Address is an argument then try to emit its dbg value using 1221 // virtual register info from the FuncInfo.ValueMap. 1222 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1223 FuncArgumentDbgValueKind::Declare, N)) { 1224 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1225 << " (could not emit func-arg dbg_value)\n"); 1226 } 1227 } 1228 return; 1229 } 1230 1231 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1232 // Add SDDbgValue nodes for any var locs here. Do so before updating 1233 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1234 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1235 // Add SDDbgValue nodes for any var locs here. Do so before updating 1236 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1237 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1238 It != End; ++It) { 1239 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1240 dropDanglingDebugInfo(Var, It->Expr); 1241 if (It->Values.isKillLocation(It->Expr)) { 1242 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1243 continue; 1244 } 1245 SmallVector<Value *> Values(It->Values.location_ops()); 1246 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1247 It->Values.hasArgList())) { 1248 SmallVector<Value *, 4> Vals; 1249 for (Value *V : It->Values.location_ops()) 1250 Vals.push_back(V); 1251 addDanglingDebugInfo(Vals, 1252 FnVarLocs->getDILocalVariable(It->VariableID), 1253 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1254 } 1255 } 1256 } 1257 1258 // We must skip DbgVariableRecords if they've already been processed above as 1259 // we have just emitted the debug values resulting from assignment tracking 1260 // analysis, making any existing DbgVariableRecords redundant (and probably 1261 // less correct). We still need to process DbgLabelRecords. This does sink 1262 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1263 // be important as it does so deterministcally and ordering between 1264 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1265 // printing). 1266 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1267 // Is there is any debug-info attached to this instruction, in the form of 1268 // DbgRecord non-instruction debug-info records. 1269 for (DbgRecord &DR : I.getDbgRecordRange()) { 1270 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1271 assert(DLR->getLabel() && "Missing label"); 1272 SDDbgLabel *SDV = 1273 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1274 DAG.AddDbgLabel(SDV); 1275 continue; 1276 } 1277 1278 if (SkipDbgVariableRecords) 1279 continue; 1280 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1281 DILocalVariable *Variable = DVR.getVariable(); 1282 DIExpression *Expression = DVR.getExpression(); 1283 dropDanglingDebugInfo(Variable, Expression); 1284 1285 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1286 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1287 continue; 1288 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1289 << "\n"); 1290 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1291 DVR.getDebugLoc()); 1292 continue; 1293 } 1294 1295 // A DbgVariableRecord with no locations is a kill location. 1296 SmallVector<Value *, 4> Values(DVR.location_ops()); 1297 if (Values.empty()) { 1298 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1299 SDNodeOrder); 1300 continue; 1301 } 1302 1303 // A DbgVariableRecord with an undef or absent location is also a kill 1304 // location. 1305 if (llvm::any_of(Values, 1306 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1307 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1308 SDNodeOrder); 1309 continue; 1310 } 1311 1312 bool IsVariadic = DVR.hasArgList(); 1313 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1314 SDNodeOrder, IsVariadic)) { 1315 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1316 DVR.getDebugLoc(), SDNodeOrder); 1317 } 1318 } 1319 } 1320 1321 void SelectionDAGBuilder::visit(const Instruction &I) { 1322 visitDbgInfo(I); 1323 1324 // Set up outgoing PHI node register values before emitting the terminator. 1325 if (I.isTerminator()) { 1326 HandlePHINodesInSuccessorBlocks(I.getParent()); 1327 } 1328 1329 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1330 if (!isa<DbgInfoIntrinsic>(I)) 1331 ++SDNodeOrder; 1332 1333 CurInst = &I; 1334 1335 // Set inserted listener only if required. 1336 bool NodeInserted = false; 1337 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1338 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1339 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1340 if (PCSectionsMD || MMRA) { 1341 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1342 DAG, [&](SDNode *) { NodeInserted = true; }); 1343 } 1344 1345 visit(I.getOpcode(), I); 1346 1347 if (!I.isTerminator() && !HasTailCall && 1348 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1349 CopyToExportRegsIfNeeded(&I); 1350 1351 // Handle metadata. 1352 if (PCSectionsMD || MMRA) { 1353 auto It = NodeMap.find(&I); 1354 if (It != NodeMap.end()) { 1355 if (PCSectionsMD) 1356 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1357 if (MMRA) 1358 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1359 } else if (NodeInserted) { 1360 // This should not happen; if it does, don't let it go unnoticed so we can 1361 // fix it. Relevant visit*() function is probably missing a setValue(). 1362 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1363 << I.getModule()->getName() << "]\n"; 1364 LLVM_DEBUG(I.dump()); 1365 assert(false); 1366 } 1367 } 1368 1369 CurInst = nullptr; 1370 } 1371 1372 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1373 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1374 } 1375 1376 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1377 // Note: this doesn't use InstVisitor, because it has to work with 1378 // ConstantExpr's in addition to instructions. 1379 switch (Opcode) { 1380 default: llvm_unreachable("Unknown instruction type encountered!"); 1381 // Build the switch statement using the Instruction.def file. 1382 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1383 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1384 #include "llvm/IR/Instruction.def" 1385 } 1386 } 1387 1388 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1389 DILocalVariable *Variable, 1390 DebugLoc DL, unsigned Order, 1391 SmallVectorImpl<Value *> &Values, 1392 DIExpression *Expression) { 1393 // For variadic dbg_values we will now insert an undef. 1394 // FIXME: We can potentially recover these! 1395 SmallVector<SDDbgOperand, 2> Locs; 1396 for (const Value *V : Values) { 1397 auto *Undef = UndefValue::get(V->getType()); 1398 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1399 } 1400 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1401 /*IsIndirect=*/false, DL, Order, 1402 /*IsVariadic=*/true); 1403 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1404 return true; 1405 } 1406 1407 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1408 DILocalVariable *Var, 1409 DIExpression *Expr, 1410 bool IsVariadic, DebugLoc DL, 1411 unsigned Order) { 1412 if (IsVariadic) { 1413 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1414 return; 1415 } 1416 // TODO: Dangling debug info will eventually either be resolved or produce 1417 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1418 // between the original dbg.value location and its resolved DBG_VALUE, 1419 // which we should ideally fill with an extra Undef DBG_VALUE. 1420 assert(Values.size() == 1); 1421 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1422 } 1423 1424 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1425 const DIExpression *Expr) { 1426 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1427 DIVariable *DanglingVariable = DDI.getVariable(); 1428 DIExpression *DanglingExpr = DDI.getExpression(); 1429 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1430 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1431 << printDDI(nullptr, DDI) << "\n"); 1432 return true; 1433 } 1434 return false; 1435 }; 1436 1437 for (auto &DDIMI : DanglingDebugInfoMap) { 1438 DanglingDebugInfoVector &DDIV = DDIMI.second; 1439 1440 // If debug info is to be dropped, run it through final checks to see 1441 // whether it can be salvaged. 1442 for (auto &DDI : DDIV) 1443 if (isMatchingDbgValue(DDI)) 1444 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1445 1446 erase_if(DDIV, isMatchingDbgValue); 1447 } 1448 } 1449 1450 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1451 // generate the debug data structures now that we've seen its definition. 1452 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1453 SDValue Val) { 1454 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1455 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1456 return; 1457 1458 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1459 for (auto &DDI : DDIV) { 1460 DebugLoc DL = DDI.getDebugLoc(); 1461 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1462 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1463 DILocalVariable *Variable = DDI.getVariable(); 1464 DIExpression *Expr = DDI.getExpression(); 1465 assert(Variable->isValidLocationForIntrinsic(DL) && 1466 "Expected inlined-at fields to agree"); 1467 SDDbgValue *SDV; 1468 if (Val.getNode()) { 1469 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1470 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1471 // we couldn't resolve it directly when examining the DbgValue intrinsic 1472 // in the first place we should not be more successful here). Unless we 1473 // have some test case that prove this to be correct we should avoid 1474 // calling EmitFuncArgumentDbgValue here. 1475 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1476 FuncArgumentDbgValueKind::Value, Val)) { 1477 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1478 << printDDI(V, DDI) << "\n"); 1479 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1480 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1481 // inserted after the definition of Val when emitting the instructions 1482 // after ISel. An alternative could be to teach 1483 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1484 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1485 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1486 << ValSDNodeOrder << "\n"); 1487 SDV = getDbgValue(Val, Variable, Expr, DL, 1488 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1489 DAG.AddDbgValue(SDV, false); 1490 } else 1491 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1492 << printDDI(V, DDI) 1493 << " in EmitFuncArgumentDbgValue\n"); 1494 } else { 1495 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1496 << "\n"); 1497 auto Undef = UndefValue::get(V->getType()); 1498 auto SDV = 1499 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1500 DAG.AddDbgValue(SDV, false); 1501 } 1502 } 1503 DDIV.clear(); 1504 } 1505 1506 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1507 DanglingDebugInfo &DDI) { 1508 // TODO: For the variadic implementation, instead of only checking the fail 1509 // state of `handleDebugValue`, we need know specifically which values were 1510 // invalid, so that we attempt to salvage only those values when processing 1511 // a DIArgList. 1512 const Value *OrigV = V; 1513 DILocalVariable *Var = DDI.getVariable(); 1514 DIExpression *Expr = DDI.getExpression(); 1515 DebugLoc DL = DDI.getDebugLoc(); 1516 unsigned SDOrder = DDI.getSDNodeOrder(); 1517 1518 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1519 // that DW_OP_stack_value is desired. 1520 bool StackValue = true; 1521 1522 // Can this Value can be encoded without any further work? 1523 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1524 return; 1525 1526 // Attempt to salvage back through as many instructions as possible. Bail if 1527 // a non-instruction is seen, such as a constant expression or global 1528 // variable. FIXME: Further work could recover those too. 1529 while (isa<Instruction>(V)) { 1530 const Instruction &VAsInst = *cast<const Instruction>(V); 1531 // Temporary "0", awaiting real implementation. 1532 SmallVector<uint64_t, 16> Ops; 1533 SmallVector<Value *, 4> AdditionalValues; 1534 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1535 Expr->getNumLocationOperands(), Ops, 1536 AdditionalValues); 1537 // If we cannot salvage any further, and haven't yet found a suitable debug 1538 // expression, bail out. 1539 if (!V) 1540 break; 1541 1542 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1543 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1544 // here for variadic dbg_values, remove that condition. 1545 if (!AdditionalValues.empty()) 1546 break; 1547 1548 // New value and expr now represent this debuginfo. 1549 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1550 1551 // Some kind of simplification occurred: check whether the operand of the 1552 // salvaged debug expression can be encoded in this DAG. 1553 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1554 LLVM_DEBUG( 1555 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1556 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1557 return; 1558 } 1559 } 1560 1561 // This was the final opportunity to salvage this debug information, and it 1562 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1563 // any earlier variable location. 1564 assert(OrigV && "V shouldn't be null"); 1565 auto *Undef = UndefValue::get(OrigV->getType()); 1566 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1567 DAG.AddDbgValue(SDV, false); 1568 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1569 << printDDI(OrigV, DDI) << "\n"); 1570 } 1571 1572 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1573 DIExpression *Expr, 1574 DebugLoc DbgLoc, 1575 unsigned Order) { 1576 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1577 DIExpression *NewExpr = 1578 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1579 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1580 /*IsVariadic*/ false); 1581 } 1582 1583 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1584 DILocalVariable *Var, 1585 DIExpression *Expr, DebugLoc DbgLoc, 1586 unsigned Order, bool IsVariadic) { 1587 if (Values.empty()) 1588 return true; 1589 1590 // Filter EntryValue locations out early. 1591 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1592 return true; 1593 1594 SmallVector<SDDbgOperand> LocationOps; 1595 SmallVector<SDNode *> Dependencies; 1596 for (const Value *V : Values) { 1597 // Constant value. 1598 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1599 isa<ConstantPointerNull>(V)) { 1600 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1601 continue; 1602 } 1603 1604 // Look through IntToPtr constants. 1605 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1606 if (CE->getOpcode() == Instruction::IntToPtr) { 1607 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1608 continue; 1609 } 1610 1611 // If the Value is a frame index, we can create a FrameIndex debug value 1612 // without relying on the DAG at all. 1613 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1614 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1615 if (SI != FuncInfo.StaticAllocaMap.end()) { 1616 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1617 continue; 1618 } 1619 } 1620 1621 // Do not use getValue() in here; we don't want to generate code at 1622 // this point if it hasn't been done yet. 1623 SDValue N = NodeMap[V]; 1624 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1625 N = UnusedArgNodeMap[V]; 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (isa<ConstantPointerNull>(C)) { 1806 unsigned AS = V->getType()->getPointerAddressSpace(); 1807 return DAG.getConstant(0, getCurSDLoc(), 1808 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1809 } 1810 1811 if (match(C, m_VScale())) 1812 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1813 1814 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1815 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1816 1817 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1818 return DAG.getUNDEF(VT); 1819 1820 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1821 visit(CE->getOpcode(), *CE); 1822 SDValue N1 = NodeMap[V]; 1823 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1824 return N1; 1825 } 1826 1827 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1828 SmallVector<SDValue, 4> Constants; 1829 for (const Use &U : C->operands()) { 1830 SDNode *Val = getValue(U).getNode(); 1831 // If the operand is an empty aggregate, there are no values. 1832 if (!Val) continue; 1833 // Add each leaf value from the operand to the Constants list 1834 // to form a flattened list of all the values. 1835 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1836 Constants.push_back(SDValue(Val, i)); 1837 } 1838 1839 return DAG.getMergeValues(Constants, getCurSDLoc()); 1840 } 1841 1842 if (const ConstantDataSequential *CDS = 1843 dyn_cast<ConstantDataSequential>(C)) { 1844 SmallVector<SDValue, 4> Ops; 1845 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1846 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1847 // Add each leaf value from the operand to the Constants list 1848 // to form a flattened list of all the values. 1849 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1850 Ops.push_back(SDValue(Val, i)); 1851 } 1852 1853 if (isa<ArrayType>(CDS->getType())) 1854 return DAG.getMergeValues(Ops, getCurSDLoc()); 1855 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1856 } 1857 1858 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1859 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1860 "Unknown struct or array constant!"); 1861 1862 SmallVector<EVT, 4> ValueVTs; 1863 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1864 unsigned NumElts = ValueVTs.size(); 1865 if (NumElts == 0) 1866 return SDValue(); // empty struct 1867 SmallVector<SDValue, 4> Constants(NumElts); 1868 for (unsigned i = 0; i != NumElts; ++i) { 1869 EVT EltVT = ValueVTs[i]; 1870 if (isa<UndefValue>(C)) 1871 Constants[i] = DAG.getUNDEF(EltVT); 1872 else if (EltVT.isFloatingPoint()) 1873 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1874 else 1875 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1876 } 1877 1878 return DAG.getMergeValues(Constants, getCurSDLoc()); 1879 } 1880 1881 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1882 return DAG.getBlockAddress(BA, VT); 1883 1884 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1885 return getValue(Equiv->getGlobalValue()); 1886 1887 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1888 return getValue(NC->getGlobalValue()); 1889 1890 if (VT == MVT::aarch64svcount) { 1891 assert(C->isNullValue() && "Can only zero this target type!"); 1892 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1893 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1894 } 1895 1896 VectorType *VecTy = cast<VectorType>(V->getType()); 1897 1898 // Now that we know the number and type of the elements, get that number of 1899 // elements into the Ops array based on what kind of constant it is. 1900 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1901 SmallVector<SDValue, 16> Ops; 1902 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1903 for (unsigned i = 0; i != NumElements; ++i) 1904 Ops.push_back(getValue(CV->getOperand(i))); 1905 1906 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1907 } 1908 1909 if (isa<ConstantAggregateZero>(C)) { 1910 EVT EltVT = 1911 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1912 1913 SDValue Op; 1914 if (EltVT.isFloatingPoint()) 1915 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1916 else 1917 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1918 1919 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1920 } 1921 1922 llvm_unreachable("Unknown vector constant"); 1923 } 1924 1925 // If this is a static alloca, generate it as the frameindex instead of 1926 // computation. 1927 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1928 DenseMap<const AllocaInst*, int>::iterator SI = 1929 FuncInfo.StaticAllocaMap.find(AI); 1930 if (SI != FuncInfo.StaticAllocaMap.end()) 1931 return DAG.getFrameIndex( 1932 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1933 } 1934 1935 // If this is an instruction which fast-isel has deferred, select it now. 1936 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1937 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1938 1939 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1940 Inst->getType(), std::nullopt); 1941 SDValue Chain = DAG.getEntryNode(); 1942 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1943 } 1944 1945 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1946 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1947 1948 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1949 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1950 1951 llvm_unreachable("Can't get register for value!"); 1952 } 1953 1954 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1955 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1956 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1957 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1958 bool IsSEH = isAsynchronousEHPersonality(Pers); 1959 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1960 if (!IsSEH) 1961 CatchPadMBB->setIsEHScopeEntry(); 1962 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1963 if (IsMSVCCXX || IsCoreCLR) 1964 CatchPadMBB->setIsEHFuncletEntry(); 1965 } 1966 1967 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1968 // Update machine-CFG edge. 1969 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1970 FuncInfo.MBB->addSuccessor(TargetMBB); 1971 TargetMBB->setIsEHCatchretTarget(true); 1972 DAG.getMachineFunction().setHasEHCatchret(true); 1973 1974 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1975 bool IsSEH = isAsynchronousEHPersonality(Pers); 1976 if (IsSEH) { 1977 // If this is not a fall-through branch or optimizations are switched off, 1978 // emit the branch. 1979 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1980 TM.getOptLevel() == CodeGenOptLevel::None) 1981 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1982 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1983 return; 1984 } 1985 1986 // Figure out the funclet membership for the catchret's successor. 1987 // This will be used by the FuncletLayout pass to determine how to order the 1988 // BB's. 1989 // A 'catchret' returns to the outer scope's color. 1990 Value *ParentPad = I.getCatchSwitchParentPad(); 1991 const BasicBlock *SuccessorColor; 1992 if (isa<ConstantTokenNone>(ParentPad)) 1993 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1994 else 1995 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1996 assert(SuccessorColor && "No parent funclet for catchret!"); 1997 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1998 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1999 2000 // Create the terminator node. 2001 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2002 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2003 DAG.getBasicBlock(SuccessorColorMBB)); 2004 DAG.setRoot(Ret); 2005 } 2006 2007 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2008 // Don't emit any special code for the cleanuppad instruction. It just marks 2009 // the start of an EH scope/funclet. 2010 FuncInfo.MBB->setIsEHScopeEntry(); 2011 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2012 if (Pers != EHPersonality::Wasm_CXX) { 2013 FuncInfo.MBB->setIsEHFuncletEntry(); 2014 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2015 } 2016 } 2017 2018 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2019 // not match, it is OK to add only the first unwind destination catchpad to the 2020 // successors, because there will be at least one invoke instruction within the 2021 // catch scope that points to the next unwind destination, if one exists, so 2022 // CFGSort cannot mess up with BB sorting order. 2023 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2024 // call within them, and catchpads only consisting of 'catch (...)' have a 2025 // '__cxa_end_catch' call within them, both of which generate invokes in case 2026 // the next unwind destination exists, i.e., the next unwind destination is not 2027 // the caller.) 2028 // 2029 // Having at most one EH pad successor is also simpler and helps later 2030 // transformations. 2031 // 2032 // For example, 2033 // current: 2034 // invoke void @foo to ... unwind label %catch.dispatch 2035 // catch.dispatch: 2036 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2037 // catch.start: 2038 // ... 2039 // ... in this BB or some other child BB dominated by this BB there will be an 2040 // invoke that points to 'next' BB as an unwind destination 2041 // 2042 // next: ; We don't need to add this to 'current' BB's successor 2043 // ... 2044 static void findWasmUnwindDestinations( 2045 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2046 BranchProbability Prob, 2047 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2048 &UnwindDests) { 2049 while (EHPadBB) { 2050 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2051 if (isa<CleanupPadInst>(Pad)) { 2052 // Stop on cleanup pads. 2053 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2054 UnwindDests.back().first->setIsEHScopeEntry(); 2055 break; 2056 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2057 // Add the catchpad handlers to the possible destinations. We don't 2058 // continue to the unwind destination of the catchswitch for wasm. 2059 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2060 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 } 2063 break; 2064 } else { 2065 continue; 2066 } 2067 } 2068 } 2069 2070 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2071 /// many places it could ultimately go. In the IR, we have a single unwind 2072 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2073 /// This function skips over imaginary basic blocks that hold catchswitch 2074 /// instructions, and finds all the "real" machine 2075 /// basic block destinations. As those destinations may not be successors of 2076 /// EHPadBB, here we also calculate the edge probability to those destinations. 2077 /// The passed-in Prob is the edge probability to EHPadBB. 2078 static void findUnwindDestinations( 2079 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2080 BranchProbability Prob, 2081 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2082 &UnwindDests) { 2083 EHPersonality Personality = 2084 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2085 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2086 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2087 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2088 bool IsSEH = isAsynchronousEHPersonality(Personality); 2089 2090 if (IsWasmCXX) { 2091 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2092 assert(UnwindDests.size() <= 1 && 2093 "There should be at most one unwind destination for wasm"); 2094 return; 2095 } 2096 2097 while (EHPadBB) { 2098 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2099 BasicBlock *NewEHPadBB = nullptr; 2100 if (isa<LandingPadInst>(Pad)) { 2101 // Stop on landingpads. They are not funclets. 2102 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2103 break; 2104 } else if (isa<CleanupPadInst>(Pad)) { 2105 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2106 // personalities. 2107 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2108 UnwindDests.back().first->setIsEHScopeEntry(); 2109 UnwindDests.back().first->setIsEHFuncletEntry(); 2110 break; 2111 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2112 // Add the catchpad handlers to the possible destinations. 2113 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2114 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2115 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2116 if (IsMSVCCXX || IsCoreCLR) 2117 UnwindDests.back().first->setIsEHFuncletEntry(); 2118 if (!IsSEH) 2119 UnwindDests.back().first->setIsEHScopeEntry(); 2120 } 2121 NewEHPadBB = CatchSwitch->getUnwindDest(); 2122 } else { 2123 continue; 2124 } 2125 2126 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2127 if (BPI && NewEHPadBB) 2128 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2129 EHPadBB = NewEHPadBB; 2130 } 2131 } 2132 2133 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2134 // Update successor info. 2135 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2136 auto UnwindDest = I.getUnwindDest(); 2137 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2138 BranchProbability UnwindDestProb = 2139 (BPI && UnwindDest) 2140 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2141 : BranchProbability::getZero(); 2142 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2143 for (auto &UnwindDest : UnwindDests) { 2144 UnwindDest.first->setIsEHPad(); 2145 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2146 } 2147 FuncInfo.MBB->normalizeSuccProbs(); 2148 2149 // Create the terminator node. 2150 SDValue Ret = 2151 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2152 DAG.setRoot(Ret); 2153 } 2154 2155 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2156 report_fatal_error("visitCatchSwitch not yet implemented!"); 2157 } 2158 2159 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2161 auto &DL = DAG.getDataLayout(); 2162 SDValue Chain = getControlRoot(); 2163 SmallVector<ISD::OutputArg, 8> Outs; 2164 SmallVector<SDValue, 8> OutVals; 2165 2166 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2167 // lower 2168 // 2169 // %val = call <ty> @llvm.experimental.deoptimize() 2170 // ret <ty> %val 2171 // 2172 // differently. 2173 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2174 LowerDeoptimizingReturn(); 2175 return; 2176 } 2177 2178 if (!FuncInfo.CanLowerReturn) { 2179 unsigned DemoteReg = FuncInfo.DemoteRegister; 2180 const Function *F = I.getParent()->getParent(); 2181 2182 // Emit a store of the return value through the virtual register. 2183 // Leave Outs empty so that LowerReturn won't try to load return 2184 // registers the usual way. 2185 SmallVector<EVT, 1> PtrValueVTs; 2186 ComputeValueVTs(TLI, DL, 2187 PointerType::get(F->getContext(), 2188 DAG.getDataLayout().getAllocaAddrSpace()), 2189 PtrValueVTs); 2190 2191 SDValue RetPtr = 2192 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2193 SDValue RetOp = getValue(I.getOperand(0)); 2194 2195 SmallVector<EVT, 4> ValueVTs, MemVTs; 2196 SmallVector<uint64_t, 4> Offsets; 2197 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2198 &Offsets, 0); 2199 unsigned NumValues = ValueVTs.size(); 2200 2201 SmallVector<SDValue, 4> Chains(NumValues); 2202 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2203 for (unsigned i = 0; i != NumValues; ++i) { 2204 // An aggregate return value cannot wrap around the address space, so 2205 // offsets to its parts don't wrap either. 2206 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2207 TypeSize::getFixed(Offsets[i])); 2208 2209 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2210 if (MemVTs[i] != ValueVTs[i]) 2211 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2212 Chains[i] = DAG.getStore( 2213 Chain, getCurSDLoc(), Val, 2214 // FIXME: better loc info would be nice. 2215 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2216 commonAlignment(BaseAlign, Offsets[i])); 2217 } 2218 2219 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2220 MVT::Other, Chains); 2221 } else if (I.getNumOperands() != 0) { 2222 SmallVector<EVT, 4> ValueVTs; 2223 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2224 unsigned NumValues = ValueVTs.size(); 2225 if (NumValues) { 2226 SDValue RetOp = getValue(I.getOperand(0)); 2227 2228 const Function *F = I.getParent()->getParent(); 2229 2230 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2231 I.getOperand(0)->getType(), F->getCallingConv(), 2232 /*IsVarArg*/ false, DL); 2233 2234 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2235 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2236 ExtendKind = ISD::SIGN_EXTEND; 2237 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2238 ExtendKind = ISD::ZERO_EXTEND; 2239 2240 LLVMContext &Context = F->getContext(); 2241 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2242 2243 for (unsigned j = 0; j != NumValues; ++j) { 2244 EVT VT = ValueVTs[j]; 2245 2246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2247 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2248 2249 CallingConv::ID CC = F->getCallingConv(); 2250 2251 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2252 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2253 SmallVector<SDValue, 4> Parts(NumParts); 2254 getCopyToParts(DAG, getCurSDLoc(), 2255 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2256 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2257 2258 // 'inreg' on function refers to return value 2259 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2260 if (RetInReg) 2261 Flags.setInReg(); 2262 2263 if (I.getOperand(0)->getType()->isPointerTy()) { 2264 Flags.setPointer(); 2265 Flags.setPointerAddrSpace( 2266 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2267 } 2268 2269 if (NeedsRegBlock) { 2270 Flags.setInConsecutiveRegs(); 2271 if (j == NumValues - 1) 2272 Flags.setInConsecutiveRegsLast(); 2273 } 2274 2275 // Propagate extension type if any 2276 if (ExtendKind == ISD::SIGN_EXTEND) 2277 Flags.setSExt(); 2278 else if (ExtendKind == ISD::ZERO_EXTEND) 2279 Flags.setZExt(); 2280 2281 for (unsigned i = 0; i < NumParts; ++i) { 2282 Outs.push_back(ISD::OutputArg(Flags, 2283 Parts[i].getValueType().getSimpleVT(), 2284 VT, /*isfixed=*/true, 0, 0)); 2285 OutVals.push_back(Parts[i]); 2286 } 2287 } 2288 } 2289 } 2290 2291 // Push in swifterror virtual register as the last element of Outs. This makes 2292 // sure swifterror virtual register will be returned in the swifterror 2293 // physical register. 2294 const Function *F = I.getParent()->getParent(); 2295 if (TLI.supportSwiftError() && 2296 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2297 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2298 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2299 Flags.setSwiftError(); 2300 Outs.push_back(ISD::OutputArg( 2301 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2302 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2303 // Create SDNode for the swifterror virtual register. 2304 OutVals.push_back( 2305 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2306 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2307 EVT(TLI.getPointerTy(DL)))); 2308 } 2309 2310 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2311 CallingConv::ID CallConv = 2312 DAG.getMachineFunction().getFunction().getCallingConv(); 2313 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2314 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2315 2316 // Verify that the target's LowerReturn behaved as expected. 2317 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2318 "LowerReturn didn't return a valid chain!"); 2319 2320 // Update the DAG with the new chain value resulting from return lowering. 2321 DAG.setRoot(Chain); 2322 } 2323 2324 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2325 /// created for it, emit nodes to copy the value into the virtual 2326 /// registers. 2327 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2328 // Skip empty types 2329 if (V->getType()->isEmptyTy()) 2330 return; 2331 2332 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2333 if (VMI != FuncInfo.ValueMap.end()) { 2334 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2335 "Unused value assigned virtual registers!"); 2336 CopyValueToVirtualRegister(V, VMI->second); 2337 } 2338 } 2339 2340 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2341 /// the current basic block, add it to ValueMap now so that we'll get a 2342 /// CopyTo/FromReg. 2343 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2344 // No need to export constants. 2345 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2346 2347 // Already exported? 2348 if (FuncInfo.isExportedInst(V)) return; 2349 2350 Register Reg = FuncInfo.InitializeRegForValue(V); 2351 CopyValueToVirtualRegister(V, Reg); 2352 } 2353 2354 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2355 const BasicBlock *FromBB) { 2356 // The operands of the setcc have to be in this block. We don't know 2357 // how to export them from some other block. 2358 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2359 // Can export from current BB. 2360 if (VI->getParent() == FromBB) 2361 return true; 2362 2363 // Is already exported, noop. 2364 return FuncInfo.isExportedInst(V); 2365 } 2366 2367 // If this is an argument, we can export it if the BB is the entry block or 2368 // if it is already exported. 2369 if (isa<Argument>(V)) { 2370 if (FromBB->isEntryBlock()) 2371 return true; 2372 2373 // Otherwise, can only export this if it is already exported. 2374 return FuncInfo.isExportedInst(V); 2375 } 2376 2377 // Otherwise, constants can always be exported. 2378 return true; 2379 } 2380 2381 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2382 BranchProbability 2383 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2384 const MachineBasicBlock *Dst) const { 2385 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2386 const BasicBlock *SrcBB = Src->getBasicBlock(); 2387 const BasicBlock *DstBB = Dst->getBasicBlock(); 2388 if (!BPI) { 2389 // If BPI is not available, set the default probability as 1 / N, where N is 2390 // the number of successors. 2391 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2392 return BranchProbability(1, SuccSize); 2393 } 2394 return BPI->getEdgeProbability(SrcBB, DstBB); 2395 } 2396 2397 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2398 MachineBasicBlock *Dst, 2399 BranchProbability Prob) { 2400 if (!FuncInfo.BPI) 2401 Src->addSuccessorWithoutProb(Dst); 2402 else { 2403 if (Prob.isUnknown()) 2404 Prob = getEdgeProbability(Src, Dst); 2405 Src->addSuccessor(Dst, Prob); 2406 } 2407 } 2408 2409 static bool InBlock(const Value *V, const BasicBlock *BB) { 2410 if (const Instruction *I = dyn_cast<Instruction>(V)) 2411 return I->getParent() == BB; 2412 return true; 2413 } 2414 2415 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2416 /// This function emits a branch and is used at the leaves of an OR or an 2417 /// AND operator tree. 2418 void 2419 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2420 MachineBasicBlock *TBB, 2421 MachineBasicBlock *FBB, 2422 MachineBasicBlock *CurBB, 2423 MachineBasicBlock *SwitchBB, 2424 BranchProbability TProb, 2425 BranchProbability FProb, 2426 bool InvertCond) { 2427 const BasicBlock *BB = CurBB->getBasicBlock(); 2428 2429 // If the leaf of the tree is a comparison, merge the condition into 2430 // the caseblock. 2431 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2432 // The operands of the cmp have to be in this block. We don't know 2433 // how to export them from some other block. If this is the first block 2434 // of the sequence, no exporting is needed. 2435 if (CurBB == SwitchBB || 2436 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2437 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2438 ISD::CondCode Condition; 2439 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2440 ICmpInst::Predicate Pred = 2441 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2442 Condition = getICmpCondCode(Pred); 2443 } else { 2444 const FCmpInst *FC = cast<FCmpInst>(Cond); 2445 FCmpInst::Predicate Pred = 2446 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2447 Condition = getFCmpCondCode(Pred); 2448 if (TM.Options.NoNaNsFPMath) 2449 Condition = getFCmpCodeWithoutNaN(Condition); 2450 } 2451 2452 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2453 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2454 SL->SwitchCases.push_back(CB); 2455 return; 2456 } 2457 } 2458 2459 // Create a CaseBlock record representing this branch. 2460 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2461 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2462 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2463 SL->SwitchCases.push_back(CB); 2464 } 2465 2466 // Collect dependencies on V recursively. This is used for the cost analysis in 2467 // `shouldKeepJumpConditionsTogether`. 2468 static bool collectInstructionDeps( 2469 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2470 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2471 unsigned Depth = 0) { 2472 // Return false if we have an incomplete count. 2473 if (Depth >= SelectionDAG::MaxRecursionDepth) 2474 return false; 2475 2476 auto *I = dyn_cast<Instruction>(V); 2477 if (I == nullptr) 2478 return true; 2479 2480 if (Necessary != nullptr) { 2481 // This instruction is necessary for the other side of the condition so 2482 // don't count it. 2483 if (Necessary->contains(I)) 2484 return true; 2485 } 2486 2487 // Already added this dep. 2488 if (!Deps->try_emplace(I, false).second) 2489 return true; 2490 2491 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2492 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2493 Depth + 1)) 2494 return false; 2495 return true; 2496 } 2497 2498 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2499 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2500 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2501 TargetLoweringBase::CondMergingParams Params) const { 2502 if (I.getNumSuccessors() != 2) 2503 return false; 2504 2505 if (!I.isConditional()) 2506 return false; 2507 2508 if (Params.BaseCost < 0) 2509 return false; 2510 2511 // Baseline cost. 2512 InstructionCost CostThresh = Params.BaseCost; 2513 2514 BranchProbabilityInfo *BPI = nullptr; 2515 if (Params.LikelyBias || Params.UnlikelyBias) 2516 BPI = FuncInfo.BPI; 2517 if (BPI != nullptr) { 2518 // See if we are either likely to get an early out or compute both lhs/rhs 2519 // of the condition. 2520 BasicBlock *IfFalse = I.getSuccessor(0); 2521 BasicBlock *IfTrue = I.getSuccessor(1); 2522 2523 std::optional<bool> Likely; 2524 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2525 Likely = true; 2526 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2527 Likely = false; 2528 2529 if (Likely) { 2530 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2531 // Its likely we will have to compute both lhs and rhs of condition 2532 CostThresh += Params.LikelyBias; 2533 else { 2534 if (Params.UnlikelyBias < 0) 2535 return false; 2536 // Its likely we will get an early out. 2537 CostThresh -= Params.UnlikelyBias; 2538 } 2539 } 2540 } 2541 2542 if (CostThresh <= 0) 2543 return false; 2544 2545 // Collect "all" instructions that lhs condition is dependent on. 2546 // Use map for stable iteration (to avoid non-determanism of iteration of 2547 // SmallPtrSet). The `bool` value is just a dummy. 2548 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2549 collectInstructionDeps(&LhsDeps, Lhs); 2550 // Collect "all" instructions that rhs condition is dependent on AND are 2551 // dependencies of lhs. This gives us an estimate on which instructions we 2552 // stand to save by splitting the condition. 2553 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2554 return false; 2555 // Add the compare instruction itself unless its a dependency on the LHS. 2556 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2557 if (!LhsDeps.contains(RhsI)) 2558 RhsDeps.try_emplace(RhsI, false); 2559 2560 const auto &TLI = DAG.getTargetLoweringInfo(); 2561 const auto &TTI = 2562 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2563 2564 InstructionCost CostOfIncluding = 0; 2565 // See if this instruction will need to computed independently of whether RHS 2566 // is. 2567 Value *BrCond = I.getCondition(); 2568 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2569 for (const auto *U : Ins->users()) { 2570 // If user is independent of RHS calculation we don't need to count it. 2571 if (auto *UIns = dyn_cast<Instruction>(U)) 2572 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2573 return false; 2574 } 2575 return true; 2576 }; 2577 2578 // Prune instructions from RHS Deps that are dependencies of unrelated 2579 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2580 // arbitrary and just meant to cap the how much time we spend in the pruning 2581 // loop. Its highly unlikely to come into affect. 2582 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2583 // Stop after a certain point. No incorrectness from including too many 2584 // instructions. 2585 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2586 const Instruction *ToDrop = nullptr; 2587 for (const auto &InsPair : RhsDeps) { 2588 if (!ShouldCountInsn(InsPair.first)) { 2589 ToDrop = InsPair.first; 2590 break; 2591 } 2592 } 2593 if (ToDrop == nullptr) 2594 break; 2595 RhsDeps.erase(ToDrop); 2596 } 2597 2598 for (const auto &InsPair : RhsDeps) { 2599 // Finally accumulate latency that we can only attribute to computing the 2600 // RHS condition. Use latency because we are essentially trying to calculate 2601 // the cost of the dependency chain. 2602 // Possible TODO: We could try to estimate ILP and make this more precise. 2603 CostOfIncluding += 2604 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2605 2606 if (CostOfIncluding > CostThresh) 2607 return false; 2608 } 2609 return true; 2610 } 2611 2612 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2613 MachineBasicBlock *TBB, 2614 MachineBasicBlock *FBB, 2615 MachineBasicBlock *CurBB, 2616 MachineBasicBlock *SwitchBB, 2617 Instruction::BinaryOps Opc, 2618 BranchProbability TProb, 2619 BranchProbability FProb, 2620 bool InvertCond) { 2621 // Skip over not part of the tree and remember to invert op and operands at 2622 // next level. 2623 Value *NotCond; 2624 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2625 InBlock(NotCond, CurBB->getBasicBlock())) { 2626 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2627 !InvertCond); 2628 return; 2629 } 2630 2631 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2632 const Value *BOpOp0, *BOpOp1; 2633 // Compute the effective opcode for Cond, taking into account whether it needs 2634 // to be inverted, e.g. 2635 // and (not (or A, B)), C 2636 // gets lowered as 2637 // and (and (not A, not B), C) 2638 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2639 if (BOp) { 2640 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2641 ? Instruction::And 2642 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2643 ? Instruction::Or 2644 : (Instruction::BinaryOps)0); 2645 if (InvertCond) { 2646 if (BOpc == Instruction::And) 2647 BOpc = Instruction::Or; 2648 else if (BOpc == Instruction::Or) 2649 BOpc = Instruction::And; 2650 } 2651 } 2652 2653 // If this node is not part of the or/and tree, emit it as a branch. 2654 // Note that all nodes in the tree should have same opcode. 2655 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2656 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2657 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2658 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2659 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2660 TProb, FProb, InvertCond); 2661 return; 2662 } 2663 2664 // Create TmpBB after CurBB. 2665 MachineFunction::iterator BBI(CurBB); 2666 MachineFunction &MF = DAG.getMachineFunction(); 2667 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2668 CurBB->getParent()->insert(++BBI, TmpBB); 2669 2670 if (Opc == Instruction::Or) { 2671 // Codegen X | Y as: 2672 // BB1: 2673 // jmp_if_X TBB 2674 // jmp TmpBB 2675 // TmpBB: 2676 // jmp_if_Y TBB 2677 // jmp FBB 2678 // 2679 2680 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2681 // The requirement is that 2682 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2683 // = TrueProb for original BB. 2684 // Assuming the original probabilities are A and B, one choice is to set 2685 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2686 // A/(1+B) and 2B/(1+B). This choice assumes that 2687 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2688 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2689 // TmpBB, but the math is more complicated. 2690 2691 auto NewTrueProb = TProb / 2; 2692 auto NewFalseProb = TProb / 2 + FProb; 2693 // Emit the LHS condition. 2694 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2695 NewFalseProb, InvertCond); 2696 2697 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2698 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2699 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2700 // Emit the RHS condition into TmpBB. 2701 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2702 Probs[1], InvertCond); 2703 } else { 2704 assert(Opc == Instruction::And && "Unknown merge op!"); 2705 // Codegen X & Y as: 2706 // BB1: 2707 // jmp_if_X TmpBB 2708 // jmp FBB 2709 // TmpBB: 2710 // jmp_if_Y TBB 2711 // jmp FBB 2712 // 2713 // This requires creation of TmpBB after CurBB. 2714 2715 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2716 // The requirement is that 2717 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2718 // = FalseProb for original BB. 2719 // Assuming the original probabilities are A and B, one choice is to set 2720 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2721 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2722 // TrueProb for BB1 * FalseProb for TmpBB. 2723 2724 auto NewTrueProb = TProb + FProb / 2; 2725 auto NewFalseProb = FProb / 2; 2726 // Emit the LHS condition. 2727 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2728 NewFalseProb, InvertCond); 2729 2730 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2731 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2732 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2733 // Emit the RHS condition into TmpBB. 2734 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2735 Probs[1], InvertCond); 2736 } 2737 } 2738 2739 /// If the set of cases should be emitted as a series of branches, return true. 2740 /// If we should emit this as a bunch of and/or'd together conditions, return 2741 /// false. 2742 bool 2743 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2744 if (Cases.size() != 2) return true; 2745 2746 // If this is two comparisons of the same values or'd or and'd together, they 2747 // will get folded into a single comparison, so don't emit two blocks. 2748 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2749 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2750 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2751 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2752 return false; 2753 } 2754 2755 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2756 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2757 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2758 Cases[0].CC == Cases[1].CC && 2759 isa<Constant>(Cases[0].CmpRHS) && 2760 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2761 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2762 return false; 2763 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2764 return false; 2765 } 2766 2767 return true; 2768 } 2769 2770 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2771 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2772 2773 // Update machine-CFG edges. 2774 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2775 2776 if (I.isUnconditional()) { 2777 // Update machine-CFG edges. 2778 BrMBB->addSuccessor(Succ0MBB); 2779 2780 // If this is not a fall-through branch or optimizations are switched off, 2781 // emit the branch. 2782 if (Succ0MBB != NextBlock(BrMBB) || 2783 TM.getOptLevel() == CodeGenOptLevel::None) { 2784 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2785 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2786 setValue(&I, Br); 2787 DAG.setRoot(Br); 2788 } 2789 2790 return; 2791 } 2792 2793 // If this condition is one of the special cases we handle, do special stuff 2794 // now. 2795 const Value *CondVal = I.getCondition(); 2796 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2797 2798 // If this is a series of conditions that are or'd or and'd together, emit 2799 // this as a sequence of branches instead of setcc's with and/or operations. 2800 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2801 // unpredictable branches, and vector extracts because those jumps are likely 2802 // expensive for any target), this should improve performance. 2803 // For example, instead of something like: 2804 // cmp A, B 2805 // C = seteq 2806 // cmp D, E 2807 // F = setle 2808 // or C, F 2809 // jnz foo 2810 // Emit: 2811 // cmp A, B 2812 // je foo 2813 // cmp D, E 2814 // jle foo 2815 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2816 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2817 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2818 Value *Vec; 2819 const Value *BOp0, *BOp1; 2820 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2821 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2822 Opcode = Instruction::And; 2823 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2824 Opcode = Instruction::Or; 2825 2826 if (Opcode && 2827 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2828 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2829 !shouldKeepJumpConditionsTogether( 2830 FuncInfo, I, Opcode, BOp0, BOp1, 2831 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2832 Opcode, BOp0, BOp1))) { 2833 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2834 getEdgeProbability(BrMBB, Succ0MBB), 2835 getEdgeProbability(BrMBB, Succ1MBB), 2836 /*InvertCond=*/false); 2837 // If the compares in later blocks need to use values not currently 2838 // exported from this block, export them now. This block should always 2839 // be the first entry. 2840 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2841 2842 // Allow some cases to be rejected. 2843 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2844 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2845 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2846 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2847 } 2848 2849 // Emit the branch for this block. 2850 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2851 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2852 return; 2853 } 2854 2855 // Okay, we decided not to do this, remove any inserted MBB's and clear 2856 // SwitchCases. 2857 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2858 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2859 2860 SL->SwitchCases.clear(); 2861 } 2862 } 2863 2864 // Create a CaseBlock record representing this branch. 2865 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2866 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2867 2868 // Use visitSwitchCase to actually insert the fast branch sequence for this 2869 // cond branch. 2870 visitSwitchCase(CB, BrMBB); 2871 } 2872 2873 /// visitSwitchCase - Emits the necessary code to represent a single node in 2874 /// the binary search tree resulting from lowering a switch instruction. 2875 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2876 MachineBasicBlock *SwitchBB) { 2877 SDValue Cond; 2878 SDValue CondLHS = getValue(CB.CmpLHS); 2879 SDLoc dl = CB.DL; 2880 2881 if (CB.CC == ISD::SETTRUE) { 2882 // Branch or fall through to TrueBB. 2883 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2884 SwitchBB->normalizeSuccProbs(); 2885 if (CB.TrueBB != NextBlock(SwitchBB)) { 2886 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2887 DAG.getBasicBlock(CB.TrueBB))); 2888 } 2889 return; 2890 } 2891 2892 auto &TLI = DAG.getTargetLoweringInfo(); 2893 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2894 2895 // Build the setcc now. 2896 if (!CB.CmpMHS) { 2897 // Fold "(X == true)" to X and "(X == false)" to !X to 2898 // handle common cases produced by branch lowering. 2899 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2900 CB.CC == ISD::SETEQ) 2901 Cond = CondLHS; 2902 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2903 CB.CC == ISD::SETEQ) { 2904 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2905 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2906 } else { 2907 SDValue CondRHS = getValue(CB.CmpRHS); 2908 2909 // If a pointer's DAG type is larger than its memory type then the DAG 2910 // values are zero-extended. This breaks signed comparisons so truncate 2911 // back to the underlying type before doing the compare. 2912 if (CondLHS.getValueType() != MemVT) { 2913 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2914 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2915 } 2916 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2917 } 2918 } else { 2919 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2920 2921 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2922 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2923 2924 SDValue CmpOp = getValue(CB.CmpMHS); 2925 EVT VT = CmpOp.getValueType(); 2926 2927 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2928 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2929 ISD::SETLE); 2930 } else { 2931 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2932 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2933 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2934 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2935 } 2936 } 2937 2938 // Update successor info 2939 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2940 // TrueBB and FalseBB are always different unless the incoming IR is 2941 // degenerate. This only happens when running llc on weird IR. 2942 if (CB.TrueBB != CB.FalseBB) 2943 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2944 SwitchBB->normalizeSuccProbs(); 2945 2946 // If the lhs block is the next block, invert the condition so that we can 2947 // fall through to the lhs instead of the rhs block. 2948 if (CB.TrueBB == NextBlock(SwitchBB)) { 2949 std::swap(CB.TrueBB, CB.FalseBB); 2950 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2951 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2952 } 2953 2954 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2955 MVT::Other, getControlRoot(), Cond, 2956 DAG.getBasicBlock(CB.TrueBB)); 2957 2958 setValue(CurInst, BrCond); 2959 2960 // Insert the false branch. Do this even if it's a fall through branch, 2961 // this makes it easier to do DAG optimizations which require inverting 2962 // the branch condition. 2963 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2964 DAG.getBasicBlock(CB.FalseBB)); 2965 2966 DAG.setRoot(BrCond); 2967 } 2968 2969 /// visitJumpTable - Emit JumpTable node in the current MBB 2970 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2971 // Emit the code for the jump table 2972 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2973 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2974 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2975 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2976 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2977 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2978 Index.getValue(1), Table, Index); 2979 DAG.setRoot(BrJumpTable); 2980 } 2981 2982 /// visitJumpTableHeader - This function emits necessary code to produce index 2983 /// in the JumpTable from switch case. 2984 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2985 JumpTableHeader &JTH, 2986 MachineBasicBlock *SwitchBB) { 2987 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2988 const SDLoc &dl = *JT.SL; 2989 2990 // Subtract the lowest switch case value from the value being switched on. 2991 SDValue SwitchOp = getValue(JTH.SValue); 2992 EVT VT = SwitchOp.getValueType(); 2993 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2994 DAG.getConstant(JTH.First, dl, VT)); 2995 2996 // The SDNode we just created, which holds the value being switched on minus 2997 // the smallest case value, needs to be copied to a virtual register so it 2998 // can be used as an index into the jump table in a subsequent basic block. 2999 // This value may be smaller or larger than the target's pointer type, and 3000 // therefore require extension or truncating. 3001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3002 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 3003 3004 unsigned JumpTableReg = 3005 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 3006 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 3007 JumpTableReg, SwitchOp); 3008 JT.Reg = JumpTableReg; 3009 3010 if (!JTH.FallthroughUnreachable) { 3011 // Emit the range check for the jump table, and branch to the default block 3012 // for the switch statement if the value being switched on exceeds the 3013 // largest case in the switch. 3014 SDValue CMP = DAG.getSetCC( 3015 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3016 Sub.getValueType()), 3017 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3018 3019 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3020 MVT::Other, CopyTo, CMP, 3021 DAG.getBasicBlock(JT.Default)); 3022 3023 // Avoid emitting unnecessary branches to the next block. 3024 if (JT.MBB != NextBlock(SwitchBB)) 3025 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3026 DAG.getBasicBlock(JT.MBB)); 3027 3028 DAG.setRoot(BrCond); 3029 } else { 3030 // Avoid emitting unnecessary branches to the next block. 3031 if (JT.MBB != NextBlock(SwitchBB)) 3032 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3033 DAG.getBasicBlock(JT.MBB))); 3034 else 3035 DAG.setRoot(CopyTo); 3036 } 3037 } 3038 3039 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3040 /// variable if there exists one. 3041 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3042 SDValue &Chain) { 3043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3044 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3045 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3046 MachineFunction &MF = DAG.getMachineFunction(); 3047 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3048 MachineSDNode *Node = 3049 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3050 if (Global) { 3051 MachinePointerInfo MPInfo(Global); 3052 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3053 MachineMemOperand::MODereferenceable; 3054 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3055 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3056 DAG.getEVTAlign(PtrTy)); 3057 DAG.setNodeMemRefs(Node, {MemRef}); 3058 } 3059 if (PtrTy != PtrMemTy) 3060 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3061 return SDValue(Node, 0); 3062 } 3063 3064 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3065 /// tail spliced into a stack protector check success bb. 3066 /// 3067 /// For a high level explanation of how this fits into the stack protector 3068 /// generation see the comment on the declaration of class 3069 /// StackProtectorDescriptor. 3070 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3071 MachineBasicBlock *ParentBB) { 3072 3073 // First create the loads to the guard/stack slot for the comparison. 3074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3075 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3076 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3077 3078 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3079 int FI = MFI.getStackProtectorIndex(); 3080 3081 SDValue Guard; 3082 SDLoc dl = getCurSDLoc(); 3083 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3084 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3085 Align Align = 3086 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3087 3088 // Generate code to load the content of the guard slot. 3089 SDValue GuardVal = DAG.getLoad( 3090 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3091 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3092 MachineMemOperand::MOVolatile); 3093 3094 if (TLI.useStackGuardXorFP()) 3095 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3096 3097 // Retrieve guard check function, nullptr if instrumentation is inlined. 3098 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3099 // The target provides a guard check function to validate the guard value. 3100 // Generate a call to that function with the content of the guard slot as 3101 // argument. 3102 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3103 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3104 3105 TargetLowering::ArgListTy Args; 3106 TargetLowering::ArgListEntry Entry; 3107 Entry.Node = GuardVal; 3108 Entry.Ty = FnTy->getParamType(0); 3109 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3110 Entry.IsInReg = true; 3111 Args.push_back(Entry); 3112 3113 TargetLowering::CallLoweringInfo CLI(DAG); 3114 CLI.setDebugLoc(getCurSDLoc()) 3115 .setChain(DAG.getEntryNode()) 3116 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3117 getValue(GuardCheckFn), std::move(Args)); 3118 3119 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3120 DAG.setRoot(Result.second); 3121 return; 3122 } 3123 3124 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3125 // Otherwise, emit a volatile load to retrieve the stack guard value. 3126 SDValue Chain = DAG.getEntryNode(); 3127 if (TLI.useLoadStackGuardNode()) { 3128 Guard = getLoadStackGuard(DAG, dl, Chain); 3129 } else { 3130 const Value *IRGuard = TLI.getSDagStackGuard(M); 3131 SDValue GuardPtr = getValue(IRGuard); 3132 3133 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3134 MachinePointerInfo(IRGuard, 0), Align, 3135 MachineMemOperand::MOVolatile); 3136 } 3137 3138 // Perform the comparison via a getsetcc. 3139 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3140 *DAG.getContext(), 3141 Guard.getValueType()), 3142 Guard, GuardVal, ISD::SETNE); 3143 3144 // If the guard/stackslot do not equal, branch to failure MBB. 3145 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3146 MVT::Other, GuardVal.getOperand(0), 3147 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3148 // Otherwise branch to success MBB. 3149 SDValue Br = DAG.getNode(ISD::BR, dl, 3150 MVT::Other, BrCond, 3151 DAG.getBasicBlock(SPD.getSuccessMBB())); 3152 3153 DAG.setRoot(Br); 3154 } 3155 3156 /// Codegen the failure basic block for a stack protector check. 3157 /// 3158 /// A failure stack protector machine basic block consists simply of a call to 3159 /// __stack_chk_fail(). 3160 /// 3161 /// For a high level explanation of how this fits into the stack protector 3162 /// generation see the comment on the declaration of class 3163 /// StackProtectorDescriptor. 3164 void 3165 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3167 TargetLowering::MakeLibCallOptions CallOptions; 3168 CallOptions.setDiscardResult(true); 3169 SDValue Chain = 3170 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3171 std::nullopt, CallOptions, getCurSDLoc()) 3172 .second; 3173 // On PS4/PS5, the "return address" must still be within the calling 3174 // function, even if it's at the very end, so emit an explicit TRAP here. 3175 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3176 if (TM.getTargetTriple().isPS()) 3177 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3178 // WebAssembly needs an unreachable instruction after a non-returning call, 3179 // because the function return type can be different from __stack_chk_fail's 3180 // return type (void). 3181 if (TM.getTargetTriple().isWasm()) 3182 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3183 3184 DAG.setRoot(Chain); 3185 } 3186 3187 /// visitBitTestHeader - This function emits necessary code to produce value 3188 /// suitable for "bit tests" 3189 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3190 MachineBasicBlock *SwitchBB) { 3191 SDLoc dl = getCurSDLoc(); 3192 3193 // Subtract the minimum value. 3194 SDValue SwitchOp = getValue(B.SValue); 3195 EVT VT = SwitchOp.getValueType(); 3196 SDValue RangeSub = 3197 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3198 3199 // Determine the type of the test operands. 3200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3201 bool UsePtrType = false; 3202 if (!TLI.isTypeLegal(VT)) { 3203 UsePtrType = true; 3204 } else { 3205 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3206 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3207 // Switch table case range are encoded into series of masks. 3208 // Just use pointer type, it's guaranteed to fit. 3209 UsePtrType = true; 3210 break; 3211 } 3212 } 3213 SDValue Sub = RangeSub; 3214 if (UsePtrType) { 3215 VT = TLI.getPointerTy(DAG.getDataLayout()); 3216 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3217 } 3218 3219 B.RegVT = VT.getSimpleVT(); 3220 B.Reg = FuncInfo.CreateReg(B.RegVT); 3221 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3222 3223 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3224 3225 if (!B.FallthroughUnreachable) 3226 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3227 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3228 SwitchBB->normalizeSuccProbs(); 3229 3230 SDValue Root = CopyTo; 3231 if (!B.FallthroughUnreachable) { 3232 // Conditional branch to the default block. 3233 SDValue RangeCmp = DAG.getSetCC(dl, 3234 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3235 RangeSub.getValueType()), 3236 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3237 ISD::SETUGT); 3238 3239 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3240 DAG.getBasicBlock(B.Default)); 3241 } 3242 3243 // Avoid emitting unnecessary branches to the next block. 3244 if (MBB != NextBlock(SwitchBB)) 3245 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3246 3247 DAG.setRoot(Root); 3248 } 3249 3250 /// visitBitTestCase - this function produces one "bit test" 3251 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3252 MachineBasicBlock* NextMBB, 3253 BranchProbability BranchProbToNext, 3254 unsigned Reg, 3255 BitTestCase &B, 3256 MachineBasicBlock *SwitchBB) { 3257 SDLoc dl = getCurSDLoc(); 3258 MVT VT = BB.RegVT; 3259 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3260 SDValue Cmp; 3261 unsigned PopCount = llvm::popcount(B.Mask); 3262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3263 if (PopCount == 1) { 3264 // Testing for a single bit; just compare the shift count with what it 3265 // would need to be to shift a 1 bit in that position. 3266 Cmp = DAG.getSetCC( 3267 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3268 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3269 ISD::SETEQ); 3270 } else if (PopCount == BB.Range) { 3271 // There is only one zero bit in the range, test for it directly. 3272 Cmp = DAG.getSetCC( 3273 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3274 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3275 } else { 3276 // Make desired shift 3277 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3278 DAG.getConstant(1, dl, VT), ShiftOp); 3279 3280 // Emit bit tests and jumps 3281 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3282 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3283 Cmp = DAG.getSetCC( 3284 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3285 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3286 } 3287 3288 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3289 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3290 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3291 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3292 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3293 // one as they are relative probabilities (and thus work more like weights), 3294 // and hence we need to normalize them to let the sum of them become one. 3295 SwitchBB->normalizeSuccProbs(); 3296 3297 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3298 MVT::Other, getControlRoot(), 3299 Cmp, DAG.getBasicBlock(B.TargetBB)); 3300 3301 // Avoid emitting unnecessary branches to the next block. 3302 if (NextMBB != NextBlock(SwitchBB)) 3303 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3304 DAG.getBasicBlock(NextMBB)); 3305 3306 DAG.setRoot(BrAnd); 3307 } 3308 3309 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3310 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3311 3312 // Retrieve successors. Look through artificial IR level blocks like 3313 // catchswitch for successors. 3314 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3315 const BasicBlock *EHPadBB = I.getSuccessor(1); 3316 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3317 3318 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3319 // have to do anything here to lower funclet bundles. 3320 assert(!I.hasOperandBundlesOtherThan( 3321 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3322 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3323 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3324 LLVMContext::OB_clang_arc_attachedcall}) && 3325 "Cannot lower invokes with arbitrary operand bundles yet!"); 3326 3327 const Value *Callee(I.getCalledOperand()); 3328 const Function *Fn = dyn_cast<Function>(Callee); 3329 if (isa<InlineAsm>(Callee)) 3330 visitInlineAsm(I, EHPadBB); 3331 else if (Fn && Fn->isIntrinsic()) { 3332 switch (Fn->getIntrinsicID()) { 3333 default: 3334 llvm_unreachable("Cannot invoke this intrinsic"); 3335 case Intrinsic::donothing: 3336 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3337 case Intrinsic::seh_try_begin: 3338 case Intrinsic::seh_scope_begin: 3339 case Intrinsic::seh_try_end: 3340 case Intrinsic::seh_scope_end: 3341 if (EHPadMBB) 3342 // a block referenced by EH table 3343 // so dtor-funclet not removed by opts 3344 EHPadMBB->setMachineBlockAddressTaken(); 3345 break; 3346 case Intrinsic::experimental_patchpoint_void: 3347 case Intrinsic::experimental_patchpoint: 3348 visitPatchpoint(I, EHPadBB); 3349 break; 3350 case Intrinsic::experimental_gc_statepoint: 3351 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3352 break; 3353 case Intrinsic::wasm_rethrow: { 3354 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3355 // special because it can be invoked, so we manually lower it to a DAG 3356 // node here. 3357 SmallVector<SDValue, 8> Ops; 3358 Ops.push_back(getRoot()); // inchain 3359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3360 Ops.push_back( 3361 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3362 TLI.getPointerTy(DAG.getDataLayout()))); 3363 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3364 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3365 break; 3366 } 3367 } 3368 } else if (I.hasDeoptState()) { 3369 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3370 // Eventually we will support lowering the @llvm.experimental.deoptimize 3371 // intrinsic, and right now there are no plans to support other intrinsics 3372 // with deopt state. 3373 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3374 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3375 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3376 } else { 3377 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3378 } 3379 3380 // If the value of the invoke is used outside of its defining block, make it 3381 // available as a virtual register. 3382 // We already took care of the exported value for the statepoint instruction 3383 // during call to the LowerStatepoint. 3384 if (!isa<GCStatepointInst>(I)) { 3385 CopyToExportRegsIfNeeded(&I); 3386 } 3387 3388 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3389 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3390 BranchProbability EHPadBBProb = 3391 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3392 : BranchProbability::getZero(); 3393 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3394 3395 // Update successor info. 3396 addSuccessorWithProb(InvokeMBB, Return); 3397 for (auto &UnwindDest : UnwindDests) { 3398 UnwindDest.first->setIsEHPad(); 3399 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3400 } 3401 InvokeMBB->normalizeSuccProbs(); 3402 3403 // Drop into normal successor. 3404 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3405 DAG.getBasicBlock(Return))); 3406 } 3407 3408 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3409 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3410 3411 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3412 // have to do anything here to lower funclet bundles. 3413 assert(!I.hasOperandBundlesOtherThan( 3414 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3415 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3416 3417 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3418 visitInlineAsm(I); 3419 CopyToExportRegsIfNeeded(&I); 3420 3421 // Retrieve successors. 3422 SmallPtrSet<BasicBlock *, 8> Dests; 3423 Dests.insert(I.getDefaultDest()); 3424 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3425 3426 // Update successor info. 3427 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3428 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3429 BasicBlock *Dest = I.getIndirectDest(i); 3430 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3431 Target->setIsInlineAsmBrIndirectTarget(); 3432 Target->setMachineBlockAddressTaken(); 3433 Target->setLabelMustBeEmitted(); 3434 // Don't add duplicate machine successors. 3435 if (Dests.insert(Dest).second) 3436 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3437 } 3438 CallBrMBB->normalizeSuccProbs(); 3439 3440 // Drop into default successor. 3441 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3442 MVT::Other, getControlRoot(), 3443 DAG.getBasicBlock(Return))); 3444 } 3445 3446 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3447 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3448 } 3449 3450 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3451 assert(FuncInfo.MBB->isEHPad() && 3452 "Call to landingpad not in landing pad!"); 3453 3454 // If there aren't registers to copy the values into (e.g., during SjLj 3455 // exceptions), then don't bother to create these DAG nodes. 3456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3457 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3458 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3459 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3460 return; 3461 3462 // If landingpad's return type is token type, we don't create DAG nodes 3463 // for its exception pointer and selector value. The extraction of exception 3464 // pointer or selector value from token type landingpads is not currently 3465 // supported. 3466 if (LP.getType()->isTokenTy()) 3467 return; 3468 3469 SmallVector<EVT, 2> ValueVTs; 3470 SDLoc dl = getCurSDLoc(); 3471 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3472 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3473 3474 // Get the two live-in registers as SDValues. The physregs have already been 3475 // copied into virtual registers. 3476 SDValue Ops[2]; 3477 if (FuncInfo.ExceptionPointerVirtReg) { 3478 Ops[0] = DAG.getZExtOrTrunc( 3479 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3480 FuncInfo.ExceptionPointerVirtReg, 3481 TLI.getPointerTy(DAG.getDataLayout())), 3482 dl, ValueVTs[0]); 3483 } else { 3484 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3485 } 3486 Ops[1] = DAG.getZExtOrTrunc( 3487 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3488 FuncInfo.ExceptionSelectorVirtReg, 3489 TLI.getPointerTy(DAG.getDataLayout())), 3490 dl, ValueVTs[1]); 3491 3492 // Merge into one. 3493 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3494 DAG.getVTList(ValueVTs), Ops); 3495 setValue(&LP, Res); 3496 } 3497 3498 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3499 MachineBasicBlock *Last) { 3500 // Update JTCases. 3501 for (JumpTableBlock &JTB : SL->JTCases) 3502 if (JTB.first.HeaderBB == First) 3503 JTB.first.HeaderBB = Last; 3504 3505 // Update BitTestCases. 3506 for (BitTestBlock &BTB : SL->BitTestCases) 3507 if (BTB.Parent == First) 3508 BTB.Parent = Last; 3509 } 3510 3511 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3512 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3513 3514 // Update machine-CFG edges with unique successors. 3515 SmallSet<BasicBlock*, 32> Done; 3516 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3517 BasicBlock *BB = I.getSuccessor(i); 3518 bool Inserted = Done.insert(BB).second; 3519 if (!Inserted) 3520 continue; 3521 3522 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3523 addSuccessorWithProb(IndirectBrMBB, Succ); 3524 } 3525 IndirectBrMBB->normalizeSuccProbs(); 3526 3527 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3528 MVT::Other, getControlRoot(), 3529 getValue(I.getAddress()))); 3530 } 3531 3532 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3533 if (!DAG.getTarget().Options.TrapUnreachable) 3534 return; 3535 3536 // We may be able to ignore unreachable behind a noreturn call. 3537 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3538 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3539 if (Call->doesNotReturn()) 3540 return; 3541 } 3542 } 3543 3544 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3545 } 3546 3547 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3548 SDNodeFlags Flags; 3549 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3550 Flags.copyFMF(*FPOp); 3551 3552 SDValue Op = getValue(I.getOperand(0)); 3553 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3554 Op, Flags); 3555 setValue(&I, UnNodeValue); 3556 } 3557 3558 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3559 SDNodeFlags Flags; 3560 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3561 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3562 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3563 } 3564 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3565 Flags.setExact(ExactOp->isExact()); 3566 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3567 Flags.setDisjoint(DisjointOp->isDisjoint()); 3568 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3569 Flags.copyFMF(*FPOp); 3570 3571 SDValue Op1 = getValue(I.getOperand(0)); 3572 SDValue Op2 = getValue(I.getOperand(1)); 3573 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3574 Op1, Op2, Flags); 3575 setValue(&I, BinNodeValue); 3576 } 3577 3578 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3579 SDValue Op1 = getValue(I.getOperand(0)); 3580 SDValue Op2 = getValue(I.getOperand(1)); 3581 3582 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3583 Op1.getValueType(), DAG.getDataLayout()); 3584 3585 // Coerce the shift amount to the right type if we can. This exposes the 3586 // truncate or zext to optimization early. 3587 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3588 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3589 "Unexpected shift type"); 3590 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3591 } 3592 3593 bool nuw = false; 3594 bool nsw = false; 3595 bool exact = false; 3596 3597 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3598 3599 if (const OverflowingBinaryOperator *OFBinOp = 3600 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3601 nuw = OFBinOp->hasNoUnsignedWrap(); 3602 nsw = OFBinOp->hasNoSignedWrap(); 3603 } 3604 if (const PossiblyExactOperator *ExactOp = 3605 dyn_cast<const PossiblyExactOperator>(&I)) 3606 exact = ExactOp->isExact(); 3607 } 3608 SDNodeFlags Flags; 3609 Flags.setExact(exact); 3610 Flags.setNoSignedWrap(nsw); 3611 Flags.setNoUnsignedWrap(nuw); 3612 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3613 Flags); 3614 setValue(&I, Res); 3615 } 3616 3617 void SelectionDAGBuilder::visitSDiv(const User &I) { 3618 SDValue Op1 = getValue(I.getOperand(0)); 3619 SDValue Op2 = getValue(I.getOperand(1)); 3620 3621 SDNodeFlags Flags; 3622 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3623 cast<PossiblyExactOperator>(&I)->isExact()); 3624 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3625 Op2, Flags)); 3626 } 3627 3628 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3629 ICmpInst::Predicate predicate = I.getPredicate(); 3630 SDValue Op1 = getValue(I.getOperand(0)); 3631 SDValue Op2 = getValue(I.getOperand(1)); 3632 ISD::CondCode Opcode = getICmpCondCode(predicate); 3633 3634 auto &TLI = DAG.getTargetLoweringInfo(); 3635 EVT MemVT = 3636 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3637 3638 // If a pointer's DAG type is larger than its memory type then the DAG values 3639 // are zero-extended. This breaks signed comparisons so truncate back to the 3640 // underlying type before doing the compare. 3641 if (Op1.getValueType() != MemVT) { 3642 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3643 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3644 } 3645 3646 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3647 I.getType()); 3648 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3649 } 3650 3651 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3652 FCmpInst::Predicate predicate = I.getPredicate(); 3653 SDValue Op1 = getValue(I.getOperand(0)); 3654 SDValue Op2 = getValue(I.getOperand(1)); 3655 3656 ISD::CondCode Condition = getFCmpCondCode(predicate); 3657 auto *FPMO = cast<FPMathOperator>(&I); 3658 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3659 Condition = getFCmpCodeWithoutNaN(Condition); 3660 3661 SDNodeFlags Flags; 3662 Flags.copyFMF(*FPMO); 3663 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3664 3665 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3666 I.getType()); 3667 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3668 } 3669 3670 // Check if the condition of the select has one use or two users that are both 3671 // selects with the same condition. 3672 static bool hasOnlySelectUsers(const Value *Cond) { 3673 return llvm::all_of(Cond->users(), [](const Value *V) { 3674 return isa<SelectInst>(V); 3675 }); 3676 } 3677 3678 void SelectionDAGBuilder::visitSelect(const User &I) { 3679 SmallVector<EVT, 4> ValueVTs; 3680 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3681 ValueVTs); 3682 unsigned NumValues = ValueVTs.size(); 3683 if (NumValues == 0) return; 3684 3685 SmallVector<SDValue, 4> Values(NumValues); 3686 SDValue Cond = getValue(I.getOperand(0)); 3687 SDValue LHSVal = getValue(I.getOperand(1)); 3688 SDValue RHSVal = getValue(I.getOperand(2)); 3689 SmallVector<SDValue, 1> BaseOps(1, Cond); 3690 ISD::NodeType OpCode = 3691 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3692 3693 bool IsUnaryAbs = false; 3694 bool Negate = false; 3695 3696 SDNodeFlags Flags; 3697 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3698 Flags.copyFMF(*FPOp); 3699 3700 Flags.setUnpredictable( 3701 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3702 3703 // Min/max matching is only viable if all output VTs are the same. 3704 if (all_equal(ValueVTs)) { 3705 EVT VT = ValueVTs[0]; 3706 LLVMContext &Ctx = *DAG.getContext(); 3707 auto &TLI = DAG.getTargetLoweringInfo(); 3708 3709 // We care about the legality of the operation after it has been type 3710 // legalized. 3711 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3712 VT = TLI.getTypeToTransformTo(Ctx, VT); 3713 3714 // If the vselect is legal, assume we want to leave this as a vector setcc + 3715 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3716 // min/max is legal on the scalar type. 3717 bool UseScalarMinMax = VT.isVector() && 3718 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3719 3720 // ValueTracking's select pattern matching does not account for -0.0, 3721 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3722 // -0.0 is less than +0.0. 3723 Value *LHS, *RHS; 3724 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3725 ISD::NodeType Opc = ISD::DELETED_NODE; 3726 switch (SPR.Flavor) { 3727 case SPF_UMAX: Opc = ISD::UMAX; break; 3728 case SPF_UMIN: Opc = ISD::UMIN; break; 3729 case SPF_SMAX: Opc = ISD::SMAX; break; 3730 case SPF_SMIN: Opc = ISD::SMIN; break; 3731 case SPF_FMINNUM: 3732 switch (SPR.NaNBehavior) { 3733 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3734 case SPNB_RETURNS_NAN: break; 3735 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3736 case SPNB_RETURNS_ANY: 3737 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3738 (UseScalarMinMax && 3739 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3740 Opc = ISD::FMINNUM; 3741 break; 3742 } 3743 break; 3744 case SPF_FMAXNUM: 3745 switch (SPR.NaNBehavior) { 3746 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3747 case SPNB_RETURNS_NAN: break; 3748 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3749 case SPNB_RETURNS_ANY: 3750 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3751 (UseScalarMinMax && 3752 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3753 Opc = ISD::FMAXNUM; 3754 break; 3755 } 3756 break; 3757 case SPF_NABS: 3758 Negate = true; 3759 [[fallthrough]]; 3760 case SPF_ABS: 3761 IsUnaryAbs = true; 3762 Opc = ISD::ABS; 3763 break; 3764 default: break; 3765 } 3766 3767 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3768 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3769 (UseScalarMinMax && 3770 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3771 // If the underlying comparison instruction is used by any other 3772 // instruction, the consumed instructions won't be destroyed, so it is 3773 // not profitable to convert to a min/max. 3774 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3775 OpCode = Opc; 3776 LHSVal = getValue(LHS); 3777 RHSVal = getValue(RHS); 3778 BaseOps.clear(); 3779 } 3780 3781 if (IsUnaryAbs) { 3782 OpCode = Opc; 3783 LHSVal = getValue(LHS); 3784 BaseOps.clear(); 3785 } 3786 } 3787 3788 if (IsUnaryAbs) { 3789 for (unsigned i = 0; i != NumValues; ++i) { 3790 SDLoc dl = getCurSDLoc(); 3791 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3792 Values[i] = 3793 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3794 if (Negate) 3795 Values[i] = DAG.getNegative(Values[i], dl, VT); 3796 } 3797 } else { 3798 for (unsigned i = 0; i != NumValues; ++i) { 3799 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3800 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3801 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3802 Values[i] = DAG.getNode( 3803 OpCode, getCurSDLoc(), 3804 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3805 } 3806 } 3807 3808 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3809 DAG.getVTList(ValueVTs), Values)); 3810 } 3811 3812 void SelectionDAGBuilder::visitTrunc(const User &I) { 3813 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3814 SDValue N = getValue(I.getOperand(0)); 3815 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3816 I.getType()); 3817 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3818 } 3819 3820 void SelectionDAGBuilder::visitZExt(const User &I) { 3821 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3822 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3823 SDValue N = getValue(I.getOperand(0)); 3824 auto &TLI = DAG.getTargetLoweringInfo(); 3825 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3826 3827 SDNodeFlags Flags; 3828 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3829 Flags.setNonNeg(PNI->hasNonNeg()); 3830 3831 // Eagerly use nonneg information to canonicalize towards sign_extend if 3832 // that is the target's preference. 3833 // TODO: Let the target do this later. 3834 if (Flags.hasNonNeg() && 3835 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3836 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3837 return; 3838 } 3839 3840 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3841 } 3842 3843 void SelectionDAGBuilder::visitSExt(const User &I) { 3844 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3845 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3846 SDValue N = getValue(I.getOperand(0)); 3847 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3848 I.getType()); 3849 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3850 } 3851 3852 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3853 // FPTrunc is never a no-op cast, no need to check 3854 SDValue N = getValue(I.getOperand(0)); 3855 SDLoc dl = getCurSDLoc(); 3856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3857 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3858 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3859 DAG.getTargetConstant( 3860 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3861 } 3862 3863 void SelectionDAGBuilder::visitFPExt(const User &I) { 3864 // FPExt is never a no-op cast, no need to check 3865 SDValue N = getValue(I.getOperand(0)); 3866 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3867 I.getType()); 3868 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3869 } 3870 3871 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3872 // FPToUI is never a no-op cast, no need to check 3873 SDValue N = getValue(I.getOperand(0)); 3874 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3875 I.getType()); 3876 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3877 } 3878 3879 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3880 // FPToSI is never a no-op cast, no need to check 3881 SDValue N = getValue(I.getOperand(0)); 3882 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3883 I.getType()); 3884 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3885 } 3886 3887 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3888 // UIToFP is never a no-op cast, no need to check 3889 SDValue N = getValue(I.getOperand(0)); 3890 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3891 I.getType()); 3892 SDNodeFlags Flags; 3893 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3894 Flags.setNonNeg(PNI->hasNonNeg()); 3895 3896 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3897 } 3898 3899 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3900 // SIToFP is never a no-op cast, no need to check 3901 SDValue N = getValue(I.getOperand(0)); 3902 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3903 I.getType()); 3904 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3905 } 3906 3907 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3908 // What to do depends on the size of the integer and the size of the pointer. 3909 // We can either truncate, zero extend, or no-op, accordingly. 3910 SDValue N = getValue(I.getOperand(0)); 3911 auto &TLI = DAG.getTargetLoweringInfo(); 3912 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3913 I.getType()); 3914 EVT PtrMemVT = 3915 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3916 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3917 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3918 setValue(&I, N); 3919 } 3920 3921 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3922 // What to do depends on the size of the integer and the size of the pointer. 3923 // We can either truncate, zero extend, or no-op, accordingly. 3924 SDValue N = getValue(I.getOperand(0)); 3925 auto &TLI = DAG.getTargetLoweringInfo(); 3926 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3927 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3928 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3929 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3930 setValue(&I, N); 3931 } 3932 3933 void SelectionDAGBuilder::visitBitCast(const User &I) { 3934 SDValue N = getValue(I.getOperand(0)); 3935 SDLoc dl = getCurSDLoc(); 3936 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3937 I.getType()); 3938 3939 // BitCast assures us that source and destination are the same size so this is 3940 // either a BITCAST or a no-op. 3941 if (DestVT != N.getValueType()) 3942 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3943 DestVT, N)); // convert types. 3944 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3945 // might fold any kind of constant expression to an integer constant and that 3946 // is not what we are looking for. Only recognize a bitcast of a genuine 3947 // constant integer as an opaque constant. 3948 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3949 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3950 /*isOpaque*/true)); 3951 else 3952 setValue(&I, N); // noop cast. 3953 } 3954 3955 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3957 const Value *SV = I.getOperand(0); 3958 SDValue N = getValue(SV); 3959 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3960 3961 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3962 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3963 3964 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3965 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3966 3967 setValue(&I, N); 3968 } 3969 3970 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3972 SDValue InVec = getValue(I.getOperand(0)); 3973 SDValue InVal = getValue(I.getOperand(1)); 3974 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3975 TLI.getVectorIdxTy(DAG.getDataLayout())); 3976 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3977 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3978 InVec, InVal, InIdx)); 3979 } 3980 3981 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3983 SDValue InVec = getValue(I.getOperand(0)); 3984 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3985 TLI.getVectorIdxTy(DAG.getDataLayout())); 3986 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3987 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3988 InVec, InIdx)); 3989 } 3990 3991 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3992 SDValue Src1 = getValue(I.getOperand(0)); 3993 SDValue Src2 = getValue(I.getOperand(1)); 3994 ArrayRef<int> Mask; 3995 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3996 Mask = SVI->getShuffleMask(); 3997 else 3998 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3999 SDLoc DL = getCurSDLoc(); 4000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4001 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4002 EVT SrcVT = Src1.getValueType(); 4003 4004 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4005 VT.isScalableVector()) { 4006 // Canonical splat form of first element of first input vector. 4007 SDValue FirstElt = 4008 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4009 DAG.getVectorIdxConstant(0, DL)); 4010 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4011 return; 4012 } 4013 4014 // For now, we only handle splats for scalable vectors. 4015 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4016 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4017 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4018 4019 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4020 unsigned MaskNumElts = Mask.size(); 4021 4022 if (SrcNumElts == MaskNumElts) { 4023 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4024 return; 4025 } 4026 4027 // Normalize the shuffle vector since mask and vector length don't match. 4028 if (SrcNumElts < MaskNumElts) { 4029 // Mask is longer than the source vectors. We can use concatenate vector to 4030 // make the mask and vectors lengths match. 4031 4032 if (MaskNumElts % SrcNumElts == 0) { 4033 // Mask length is a multiple of the source vector length. 4034 // Check if the shuffle is some kind of concatenation of the input 4035 // vectors. 4036 unsigned NumConcat = MaskNumElts / SrcNumElts; 4037 bool IsConcat = true; 4038 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4039 for (unsigned i = 0; i != MaskNumElts; ++i) { 4040 int Idx = Mask[i]; 4041 if (Idx < 0) 4042 continue; 4043 // Ensure the indices in each SrcVT sized piece are sequential and that 4044 // the same source is used for the whole piece. 4045 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4046 (ConcatSrcs[i / SrcNumElts] >= 0 && 4047 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4048 IsConcat = false; 4049 break; 4050 } 4051 // Remember which source this index came from. 4052 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4053 } 4054 4055 // The shuffle is concatenating multiple vectors together. Just emit 4056 // a CONCAT_VECTORS operation. 4057 if (IsConcat) { 4058 SmallVector<SDValue, 8> ConcatOps; 4059 for (auto Src : ConcatSrcs) { 4060 if (Src < 0) 4061 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4062 else if (Src == 0) 4063 ConcatOps.push_back(Src1); 4064 else 4065 ConcatOps.push_back(Src2); 4066 } 4067 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4068 return; 4069 } 4070 } 4071 4072 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4073 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4074 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4075 PaddedMaskNumElts); 4076 4077 // Pad both vectors with undefs to make them the same length as the mask. 4078 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4079 4080 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4081 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4082 MOps1[0] = Src1; 4083 MOps2[0] = Src2; 4084 4085 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4086 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4087 4088 // Readjust mask for new input vector length. 4089 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4090 for (unsigned i = 0; i != MaskNumElts; ++i) { 4091 int Idx = Mask[i]; 4092 if (Idx >= (int)SrcNumElts) 4093 Idx -= SrcNumElts - PaddedMaskNumElts; 4094 MappedOps[i] = Idx; 4095 } 4096 4097 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4098 4099 // If the concatenated vector was padded, extract a subvector with the 4100 // correct number of elements. 4101 if (MaskNumElts != PaddedMaskNumElts) 4102 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4103 DAG.getVectorIdxConstant(0, DL)); 4104 4105 setValue(&I, Result); 4106 return; 4107 } 4108 4109 if (SrcNumElts > MaskNumElts) { 4110 // Analyze the access pattern of the vector to see if we can extract 4111 // two subvectors and do the shuffle. 4112 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4113 bool CanExtract = true; 4114 for (int Idx : Mask) { 4115 unsigned Input = 0; 4116 if (Idx < 0) 4117 continue; 4118 4119 if (Idx >= (int)SrcNumElts) { 4120 Input = 1; 4121 Idx -= SrcNumElts; 4122 } 4123 4124 // If all the indices come from the same MaskNumElts sized portion of 4125 // the sources we can use extract. Also make sure the extract wouldn't 4126 // extract past the end of the source. 4127 int NewStartIdx = alignDown(Idx, MaskNumElts); 4128 if (NewStartIdx + MaskNumElts > SrcNumElts || 4129 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4130 CanExtract = false; 4131 // Make sure we always update StartIdx as we use it to track if all 4132 // elements are undef. 4133 StartIdx[Input] = NewStartIdx; 4134 } 4135 4136 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4137 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4138 return; 4139 } 4140 if (CanExtract) { 4141 // Extract appropriate subvector and generate a vector shuffle 4142 for (unsigned Input = 0; Input < 2; ++Input) { 4143 SDValue &Src = Input == 0 ? Src1 : Src2; 4144 if (StartIdx[Input] < 0) 4145 Src = DAG.getUNDEF(VT); 4146 else { 4147 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4148 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4149 } 4150 } 4151 4152 // Calculate new mask. 4153 SmallVector<int, 8> MappedOps(Mask); 4154 for (int &Idx : MappedOps) { 4155 if (Idx >= (int)SrcNumElts) 4156 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4157 else if (Idx >= 0) 4158 Idx -= StartIdx[0]; 4159 } 4160 4161 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4162 return; 4163 } 4164 } 4165 4166 // We can't use either concat vectors or extract subvectors so fall back to 4167 // replacing the shuffle with extract and build vector. 4168 // to insert and build vector. 4169 EVT EltVT = VT.getVectorElementType(); 4170 SmallVector<SDValue,8> Ops; 4171 for (int Idx : Mask) { 4172 SDValue Res; 4173 4174 if (Idx < 0) { 4175 Res = DAG.getUNDEF(EltVT); 4176 } else { 4177 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4178 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4179 4180 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4181 DAG.getVectorIdxConstant(Idx, DL)); 4182 } 4183 4184 Ops.push_back(Res); 4185 } 4186 4187 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4188 } 4189 4190 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4191 ArrayRef<unsigned> Indices = I.getIndices(); 4192 const Value *Op0 = I.getOperand(0); 4193 const Value *Op1 = I.getOperand(1); 4194 Type *AggTy = I.getType(); 4195 Type *ValTy = Op1->getType(); 4196 bool IntoUndef = isa<UndefValue>(Op0); 4197 bool FromUndef = isa<UndefValue>(Op1); 4198 4199 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4200 4201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4202 SmallVector<EVT, 4> AggValueVTs; 4203 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4204 SmallVector<EVT, 4> ValValueVTs; 4205 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4206 4207 unsigned NumAggValues = AggValueVTs.size(); 4208 unsigned NumValValues = ValValueVTs.size(); 4209 SmallVector<SDValue, 4> Values(NumAggValues); 4210 4211 // Ignore an insertvalue that produces an empty object 4212 if (!NumAggValues) { 4213 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4214 return; 4215 } 4216 4217 SDValue Agg = getValue(Op0); 4218 unsigned i = 0; 4219 // Copy the beginning value(s) from the original aggregate. 4220 for (; i != LinearIndex; ++i) 4221 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4222 SDValue(Agg.getNode(), Agg.getResNo() + i); 4223 // Copy values from the inserted value(s). 4224 if (NumValValues) { 4225 SDValue Val = getValue(Op1); 4226 for (; i != LinearIndex + NumValValues; ++i) 4227 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4228 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4229 } 4230 // Copy remaining value(s) from the original aggregate. 4231 for (; i != NumAggValues; ++i) 4232 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4233 SDValue(Agg.getNode(), Agg.getResNo() + i); 4234 4235 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4236 DAG.getVTList(AggValueVTs), Values)); 4237 } 4238 4239 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4240 ArrayRef<unsigned> Indices = I.getIndices(); 4241 const Value *Op0 = I.getOperand(0); 4242 Type *AggTy = Op0->getType(); 4243 Type *ValTy = I.getType(); 4244 bool OutOfUndef = isa<UndefValue>(Op0); 4245 4246 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4247 4248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4249 SmallVector<EVT, 4> ValValueVTs; 4250 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4251 4252 unsigned NumValValues = ValValueVTs.size(); 4253 4254 // Ignore a extractvalue that produces an empty object 4255 if (!NumValValues) { 4256 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4257 return; 4258 } 4259 4260 SmallVector<SDValue, 4> Values(NumValValues); 4261 4262 SDValue Agg = getValue(Op0); 4263 // Copy out the selected value(s). 4264 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4265 Values[i - LinearIndex] = 4266 OutOfUndef ? 4267 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4268 SDValue(Agg.getNode(), Agg.getResNo() + i); 4269 4270 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4271 DAG.getVTList(ValValueVTs), Values)); 4272 } 4273 4274 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4275 Value *Op0 = I.getOperand(0); 4276 // Note that the pointer operand may be a vector of pointers. Take the scalar 4277 // element which holds a pointer. 4278 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4279 SDValue N = getValue(Op0); 4280 SDLoc dl = getCurSDLoc(); 4281 auto &TLI = DAG.getTargetLoweringInfo(); 4282 4283 // Normalize Vector GEP - all scalar operands should be converted to the 4284 // splat vector. 4285 bool IsVectorGEP = I.getType()->isVectorTy(); 4286 ElementCount VectorElementCount = 4287 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4288 : ElementCount::getFixed(0); 4289 4290 if (IsVectorGEP && !N.getValueType().isVector()) { 4291 LLVMContext &Context = *DAG.getContext(); 4292 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4293 N = DAG.getSplat(VT, dl, N); 4294 } 4295 4296 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4297 GTI != E; ++GTI) { 4298 const Value *Idx = GTI.getOperand(); 4299 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4300 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4301 if (Field) { 4302 // N = N + Offset 4303 uint64_t Offset = 4304 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4305 4306 // In an inbounds GEP with an offset that is nonnegative even when 4307 // interpreted as signed, assume there is no unsigned overflow. 4308 SDNodeFlags Flags; 4309 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4310 Flags.setNoUnsignedWrap(true); 4311 4312 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4313 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4314 } 4315 } else { 4316 // IdxSize is the width of the arithmetic according to IR semantics. 4317 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4318 // (and fix up the result later). 4319 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4320 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4321 TypeSize ElementSize = 4322 GTI.getSequentialElementStride(DAG.getDataLayout()); 4323 // We intentionally mask away the high bits here; ElementSize may not 4324 // fit in IdxTy. 4325 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4326 bool ElementScalable = ElementSize.isScalable(); 4327 4328 // If this is a scalar constant or a splat vector of constants, 4329 // handle it quickly. 4330 const auto *C = dyn_cast<Constant>(Idx); 4331 if (C && isa<VectorType>(C->getType())) 4332 C = C->getSplatValue(); 4333 4334 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4335 if (CI && CI->isZero()) 4336 continue; 4337 if (CI && !ElementScalable) { 4338 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4339 LLVMContext &Context = *DAG.getContext(); 4340 SDValue OffsVal; 4341 if (IsVectorGEP) 4342 OffsVal = DAG.getConstant( 4343 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4344 else 4345 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4346 4347 // In an inbounds GEP with an offset that is nonnegative even when 4348 // interpreted as signed, assume there is no unsigned overflow. 4349 SDNodeFlags Flags; 4350 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4351 Flags.setNoUnsignedWrap(true); 4352 4353 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4354 4355 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4356 continue; 4357 } 4358 4359 // N = N + Idx * ElementMul; 4360 SDValue IdxN = getValue(Idx); 4361 4362 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4363 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4364 VectorElementCount); 4365 IdxN = DAG.getSplat(VT, dl, IdxN); 4366 } 4367 4368 // If the index is smaller or larger than intptr_t, truncate or extend 4369 // it. 4370 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4371 4372 if (ElementScalable) { 4373 EVT VScaleTy = N.getValueType().getScalarType(); 4374 SDValue VScale = DAG.getNode( 4375 ISD::VSCALE, dl, VScaleTy, 4376 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4377 if (IsVectorGEP) 4378 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4379 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4380 } else { 4381 // If this is a multiply by a power of two, turn it into a shl 4382 // immediately. This is a very common case. 4383 if (ElementMul != 1) { 4384 if (ElementMul.isPowerOf2()) { 4385 unsigned Amt = ElementMul.logBase2(); 4386 IdxN = DAG.getNode(ISD::SHL, dl, 4387 N.getValueType(), IdxN, 4388 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4389 } else { 4390 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4391 IdxN.getValueType()); 4392 IdxN = DAG.getNode(ISD::MUL, dl, 4393 N.getValueType(), IdxN, Scale); 4394 } 4395 } 4396 } 4397 4398 N = DAG.getNode(ISD::ADD, dl, 4399 N.getValueType(), N, IdxN); 4400 } 4401 } 4402 4403 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4404 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4405 if (IsVectorGEP) { 4406 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4407 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4408 } 4409 4410 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4411 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4412 4413 setValue(&I, N); 4414 } 4415 4416 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4417 // If this is a fixed sized alloca in the entry block of the function, 4418 // allocate it statically on the stack. 4419 if (FuncInfo.StaticAllocaMap.count(&I)) 4420 return; // getValue will auto-populate this. 4421 4422 SDLoc dl = getCurSDLoc(); 4423 Type *Ty = I.getAllocatedType(); 4424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4425 auto &DL = DAG.getDataLayout(); 4426 TypeSize TySize = DL.getTypeAllocSize(Ty); 4427 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4428 4429 SDValue AllocSize = getValue(I.getArraySize()); 4430 4431 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4432 if (AllocSize.getValueType() != IntPtr) 4433 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4434 4435 if (TySize.isScalable()) 4436 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4437 DAG.getVScale(dl, IntPtr, 4438 APInt(IntPtr.getScalarSizeInBits(), 4439 TySize.getKnownMinValue()))); 4440 else { 4441 SDValue TySizeValue = 4442 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4443 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4444 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4445 } 4446 4447 // Handle alignment. If the requested alignment is less than or equal to 4448 // the stack alignment, ignore it. If the size is greater than or equal to 4449 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4450 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4451 if (*Alignment <= StackAlign) 4452 Alignment = std::nullopt; 4453 4454 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4455 // Round the size of the allocation up to the stack alignment size 4456 // by add SA-1 to the size. This doesn't overflow because we're computing 4457 // an address inside an alloca. 4458 SDNodeFlags Flags; 4459 Flags.setNoUnsignedWrap(true); 4460 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4461 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4462 4463 // Mask out the low bits for alignment purposes. 4464 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4465 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4466 4467 SDValue Ops[] = { 4468 getRoot(), AllocSize, 4469 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4470 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4471 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4472 setValue(&I, DSA); 4473 DAG.setRoot(DSA.getValue(1)); 4474 4475 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4476 } 4477 4478 static const MDNode *getRangeMetadata(const Instruction &I) { 4479 // If !noundef is not present, then !range violation results in a poison 4480 // value rather than immediate undefined behavior. In theory, transferring 4481 // these annotations to SDAG is fine, but in practice there are key SDAG 4482 // transforms that are known not to be poison-safe, such as folding logical 4483 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4484 // also present. 4485 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4486 return nullptr; 4487 return I.getMetadata(LLVMContext::MD_range); 4488 } 4489 4490 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4491 if (I.isAtomic()) 4492 return visitAtomicLoad(I); 4493 4494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4495 const Value *SV = I.getOperand(0); 4496 if (TLI.supportSwiftError()) { 4497 // Swifterror values can come from either a function parameter with 4498 // swifterror attribute or an alloca with swifterror attribute. 4499 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4500 if (Arg->hasSwiftErrorAttr()) 4501 return visitLoadFromSwiftError(I); 4502 } 4503 4504 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4505 if (Alloca->isSwiftError()) 4506 return visitLoadFromSwiftError(I); 4507 } 4508 } 4509 4510 SDValue Ptr = getValue(SV); 4511 4512 Type *Ty = I.getType(); 4513 SmallVector<EVT, 4> ValueVTs, MemVTs; 4514 SmallVector<TypeSize, 4> Offsets; 4515 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4516 unsigned NumValues = ValueVTs.size(); 4517 if (NumValues == 0) 4518 return; 4519 4520 Align Alignment = I.getAlign(); 4521 AAMDNodes AAInfo = I.getAAMetadata(); 4522 const MDNode *Ranges = getRangeMetadata(I); 4523 bool isVolatile = I.isVolatile(); 4524 MachineMemOperand::Flags MMOFlags = 4525 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4526 4527 SDValue Root; 4528 bool ConstantMemory = false; 4529 if (isVolatile) 4530 // Serialize volatile loads with other side effects. 4531 Root = getRoot(); 4532 else if (NumValues > MaxParallelChains) 4533 Root = getMemoryRoot(); 4534 else if (AA && 4535 AA->pointsToConstantMemory(MemoryLocation( 4536 SV, 4537 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4538 AAInfo))) { 4539 // Do not serialize (non-volatile) loads of constant memory with anything. 4540 Root = DAG.getEntryNode(); 4541 ConstantMemory = true; 4542 MMOFlags |= MachineMemOperand::MOInvariant; 4543 } else { 4544 // Do not serialize non-volatile loads against each other. 4545 Root = DAG.getRoot(); 4546 } 4547 4548 SDLoc dl = getCurSDLoc(); 4549 4550 if (isVolatile) 4551 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4552 4553 SmallVector<SDValue, 4> Values(NumValues); 4554 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4555 4556 unsigned ChainI = 0; 4557 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4558 // Serializing loads here may result in excessive register pressure, and 4559 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4560 // could recover a bit by hoisting nodes upward in the chain by recognizing 4561 // they are side-effect free or do not alias. The optimizer should really 4562 // avoid this case by converting large object/array copies to llvm.memcpy 4563 // (MaxParallelChains should always remain as failsafe). 4564 if (ChainI == MaxParallelChains) { 4565 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4566 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4567 ArrayRef(Chains.data(), ChainI)); 4568 Root = Chain; 4569 ChainI = 0; 4570 } 4571 4572 // TODO: MachinePointerInfo only supports a fixed length offset. 4573 MachinePointerInfo PtrInfo = 4574 !Offsets[i].isScalable() || Offsets[i].isZero() 4575 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4576 : MachinePointerInfo(); 4577 4578 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4579 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4580 MMOFlags, AAInfo, Ranges); 4581 Chains[ChainI] = L.getValue(1); 4582 4583 if (MemVTs[i] != ValueVTs[i]) 4584 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4585 4586 Values[i] = L; 4587 } 4588 4589 if (!ConstantMemory) { 4590 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4591 ArrayRef(Chains.data(), ChainI)); 4592 if (isVolatile) 4593 DAG.setRoot(Chain); 4594 else 4595 PendingLoads.push_back(Chain); 4596 } 4597 4598 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4599 DAG.getVTList(ValueVTs), Values)); 4600 } 4601 4602 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4603 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4604 "call visitStoreToSwiftError when backend supports swifterror"); 4605 4606 SmallVector<EVT, 4> ValueVTs; 4607 SmallVector<uint64_t, 4> Offsets; 4608 const Value *SrcV = I.getOperand(0); 4609 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4610 SrcV->getType(), ValueVTs, &Offsets, 0); 4611 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4612 "expect a single EVT for swifterror"); 4613 4614 SDValue Src = getValue(SrcV); 4615 // Create a virtual register, then update the virtual register. 4616 Register VReg = 4617 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4618 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4619 // Chain can be getRoot or getControlRoot. 4620 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4621 SDValue(Src.getNode(), Src.getResNo())); 4622 DAG.setRoot(CopyNode); 4623 } 4624 4625 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4626 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4627 "call visitLoadFromSwiftError when backend supports swifterror"); 4628 4629 assert(!I.isVolatile() && 4630 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4631 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4632 "Support volatile, non temporal, invariant for load_from_swift_error"); 4633 4634 const Value *SV = I.getOperand(0); 4635 Type *Ty = I.getType(); 4636 assert( 4637 (!AA || 4638 !AA->pointsToConstantMemory(MemoryLocation( 4639 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4640 I.getAAMetadata()))) && 4641 "load_from_swift_error should not be constant memory"); 4642 4643 SmallVector<EVT, 4> ValueVTs; 4644 SmallVector<uint64_t, 4> Offsets; 4645 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4646 ValueVTs, &Offsets, 0); 4647 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4648 "expect a single EVT for swifterror"); 4649 4650 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4651 SDValue L = DAG.getCopyFromReg( 4652 getRoot(), getCurSDLoc(), 4653 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4654 4655 setValue(&I, L); 4656 } 4657 4658 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4659 if (I.isAtomic()) 4660 return visitAtomicStore(I); 4661 4662 const Value *SrcV = I.getOperand(0); 4663 const Value *PtrV = I.getOperand(1); 4664 4665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4666 if (TLI.supportSwiftError()) { 4667 // Swifterror values can come from either a function parameter with 4668 // swifterror attribute or an alloca with swifterror attribute. 4669 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4670 if (Arg->hasSwiftErrorAttr()) 4671 return visitStoreToSwiftError(I); 4672 } 4673 4674 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4675 if (Alloca->isSwiftError()) 4676 return visitStoreToSwiftError(I); 4677 } 4678 } 4679 4680 SmallVector<EVT, 4> ValueVTs, MemVTs; 4681 SmallVector<TypeSize, 4> Offsets; 4682 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4683 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4684 unsigned NumValues = ValueVTs.size(); 4685 if (NumValues == 0) 4686 return; 4687 4688 // Get the lowered operands. Note that we do this after 4689 // checking if NumResults is zero, because with zero results 4690 // the operands won't have values in the map. 4691 SDValue Src = getValue(SrcV); 4692 SDValue Ptr = getValue(PtrV); 4693 4694 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4695 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4696 SDLoc dl = getCurSDLoc(); 4697 Align Alignment = I.getAlign(); 4698 AAMDNodes AAInfo = I.getAAMetadata(); 4699 4700 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4701 4702 unsigned ChainI = 0; 4703 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4704 // See visitLoad comments. 4705 if (ChainI == MaxParallelChains) { 4706 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4707 ArrayRef(Chains.data(), ChainI)); 4708 Root = Chain; 4709 ChainI = 0; 4710 } 4711 4712 // TODO: MachinePointerInfo only supports a fixed length offset. 4713 MachinePointerInfo PtrInfo = 4714 !Offsets[i].isScalable() || Offsets[i].isZero() 4715 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4716 : MachinePointerInfo(); 4717 4718 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4719 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4720 if (MemVTs[i] != ValueVTs[i]) 4721 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4722 SDValue St = 4723 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4724 Chains[ChainI] = St; 4725 } 4726 4727 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4728 ArrayRef(Chains.data(), ChainI)); 4729 setValue(&I, StoreNode); 4730 DAG.setRoot(StoreNode); 4731 } 4732 4733 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4734 bool IsCompressing) { 4735 SDLoc sdl = getCurSDLoc(); 4736 4737 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4738 Align &Alignment) { 4739 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4740 Src0 = I.getArgOperand(0); 4741 Ptr = I.getArgOperand(1); 4742 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4743 Mask = I.getArgOperand(3); 4744 }; 4745 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4746 Align &Alignment) { 4747 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4748 Src0 = I.getArgOperand(0); 4749 Ptr = I.getArgOperand(1); 4750 Mask = I.getArgOperand(2); 4751 Alignment = I.getParamAlign(1).valueOrOne(); 4752 }; 4753 4754 Value *PtrOperand, *MaskOperand, *Src0Operand; 4755 Align Alignment; 4756 if (IsCompressing) 4757 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4758 else 4759 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4760 4761 SDValue Ptr = getValue(PtrOperand); 4762 SDValue Src0 = getValue(Src0Operand); 4763 SDValue Mask = getValue(MaskOperand); 4764 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4765 4766 EVT VT = Src0.getValueType(); 4767 4768 auto MMOFlags = MachineMemOperand::MOStore; 4769 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4770 MMOFlags |= MachineMemOperand::MONonTemporal; 4771 4772 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4773 MachinePointerInfo(PtrOperand), MMOFlags, 4774 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4775 SDValue StoreNode = 4776 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4777 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4778 DAG.setRoot(StoreNode); 4779 setValue(&I, StoreNode); 4780 } 4781 4782 // Get a uniform base for the Gather/Scatter intrinsic. 4783 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4784 // We try to represent it as a base pointer + vector of indices. 4785 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4786 // The first operand of the GEP may be a single pointer or a vector of pointers 4787 // Example: 4788 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4789 // or 4790 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4791 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4792 // 4793 // When the first GEP operand is a single pointer - it is the uniform base we 4794 // are looking for. If first operand of the GEP is a splat vector - we 4795 // extract the splat value and use it as a uniform base. 4796 // In all other cases the function returns 'false'. 4797 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4798 ISD::MemIndexType &IndexType, SDValue &Scale, 4799 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4800 uint64_t ElemSize) { 4801 SelectionDAG& DAG = SDB->DAG; 4802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4803 const DataLayout &DL = DAG.getDataLayout(); 4804 4805 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4806 4807 // Handle splat constant pointer. 4808 if (auto *C = dyn_cast<Constant>(Ptr)) { 4809 C = C->getSplatValue(); 4810 if (!C) 4811 return false; 4812 4813 Base = SDB->getValue(C); 4814 4815 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4816 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4817 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4818 IndexType = ISD::SIGNED_SCALED; 4819 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4820 return true; 4821 } 4822 4823 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4824 if (!GEP || GEP->getParent() != CurBB) 4825 return false; 4826 4827 if (GEP->getNumOperands() != 2) 4828 return false; 4829 4830 const Value *BasePtr = GEP->getPointerOperand(); 4831 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4832 4833 // Make sure the base is scalar and the index is a vector. 4834 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4835 return false; 4836 4837 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4838 if (ScaleVal.isScalable()) 4839 return false; 4840 4841 // Target may not support the required addressing mode. 4842 if (ScaleVal != 1 && 4843 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4844 return false; 4845 4846 Base = SDB->getValue(BasePtr); 4847 Index = SDB->getValue(IndexVal); 4848 IndexType = ISD::SIGNED_SCALED; 4849 4850 Scale = 4851 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4852 return true; 4853 } 4854 4855 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4856 SDLoc sdl = getCurSDLoc(); 4857 4858 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4859 const Value *Ptr = I.getArgOperand(1); 4860 SDValue Src0 = getValue(I.getArgOperand(0)); 4861 SDValue Mask = getValue(I.getArgOperand(3)); 4862 EVT VT = Src0.getValueType(); 4863 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4864 ->getMaybeAlignValue() 4865 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4867 4868 SDValue Base; 4869 SDValue Index; 4870 ISD::MemIndexType IndexType; 4871 SDValue Scale; 4872 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4873 I.getParent(), VT.getScalarStoreSize()); 4874 4875 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4876 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4877 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4878 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4879 if (!UniformBase) { 4880 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4881 Index = getValue(Ptr); 4882 IndexType = ISD::SIGNED_SCALED; 4883 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4884 } 4885 4886 EVT IdxVT = Index.getValueType(); 4887 EVT EltTy = IdxVT.getVectorElementType(); 4888 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4889 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4890 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4891 } 4892 4893 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4894 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4895 Ops, MMO, IndexType, false); 4896 DAG.setRoot(Scatter); 4897 setValue(&I, Scatter); 4898 } 4899 4900 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4901 SDLoc sdl = getCurSDLoc(); 4902 4903 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4904 Align &Alignment) { 4905 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4906 Ptr = I.getArgOperand(0); 4907 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4908 Mask = I.getArgOperand(2); 4909 Src0 = I.getArgOperand(3); 4910 }; 4911 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4912 Align &Alignment) { 4913 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4914 Ptr = I.getArgOperand(0); 4915 Alignment = I.getParamAlign(0).valueOrOne(); 4916 Mask = I.getArgOperand(1); 4917 Src0 = I.getArgOperand(2); 4918 }; 4919 4920 Value *PtrOperand, *MaskOperand, *Src0Operand; 4921 Align Alignment; 4922 if (IsExpanding) 4923 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4924 else 4925 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4926 4927 SDValue Ptr = getValue(PtrOperand); 4928 SDValue Src0 = getValue(Src0Operand); 4929 SDValue Mask = getValue(MaskOperand); 4930 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4931 4932 EVT VT = Src0.getValueType(); 4933 AAMDNodes AAInfo = I.getAAMetadata(); 4934 const MDNode *Ranges = getRangeMetadata(I); 4935 4936 // Do not serialize masked loads of constant memory with anything. 4937 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4938 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4939 4940 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4941 4942 auto MMOFlags = MachineMemOperand::MOLoad; 4943 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4944 MMOFlags |= MachineMemOperand::MONonTemporal; 4945 4946 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4947 MachinePointerInfo(PtrOperand), MMOFlags, 4948 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4949 4950 SDValue Load = 4951 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4952 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4953 if (AddToChain) 4954 PendingLoads.push_back(Load.getValue(1)); 4955 setValue(&I, Load); 4956 } 4957 4958 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4959 SDLoc sdl = getCurSDLoc(); 4960 4961 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4962 const Value *Ptr = I.getArgOperand(0); 4963 SDValue Src0 = getValue(I.getArgOperand(3)); 4964 SDValue Mask = getValue(I.getArgOperand(2)); 4965 4966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4967 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4968 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4969 ->getMaybeAlignValue() 4970 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4971 4972 const MDNode *Ranges = getRangeMetadata(I); 4973 4974 SDValue Root = DAG.getRoot(); 4975 SDValue Base; 4976 SDValue Index; 4977 ISD::MemIndexType IndexType; 4978 SDValue Scale; 4979 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4980 I.getParent(), VT.getScalarStoreSize()); 4981 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4982 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4983 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4984 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 4985 Ranges); 4986 4987 if (!UniformBase) { 4988 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4989 Index = getValue(Ptr); 4990 IndexType = ISD::SIGNED_SCALED; 4991 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4992 } 4993 4994 EVT IdxVT = Index.getValueType(); 4995 EVT EltTy = IdxVT.getVectorElementType(); 4996 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4997 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4998 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4999 } 5000 5001 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5002 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5003 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5004 5005 PendingLoads.push_back(Gather.getValue(1)); 5006 setValue(&I, Gather); 5007 } 5008 5009 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5010 SDLoc dl = getCurSDLoc(); 5011 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5012 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5013 SyncScope::ID SSID = I.getSyncScopeID(); 5014 5015 SDValue InChain = getRoot(); 5016 5017 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5018 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5019 5020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5021 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5022 5023 MachineFunction &MF = DAG.getMachineFunction(); 5024 MachineMemOperand *MMO = MF.getMachineMemOperand( 5025 MachinePointerInfo(I.getPointerOperand()), Flags, 5026 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5027 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5028 5029 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5030 dl, MemVT, VTs, InChain, 5031 getValue(I.getPointerOperand()), 5032 getValue(I.getCompareOperand()), 5033 getValue(I.getNewValOperand()), MMO); 5034 5035 SDValue OutChain = L.getValue(2); 5036 5037 setValue(&I, L); 5038 DAG.setRoot(OutChain); 5039 } 5040 5041 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5042 SDLoc dl = getCurSDLoc(); 5043 ISD::NodeType NT; 5044 switch (I.getOperation()) { 5045 default: llvm_unreachable("Unknown atomicrmw operation"); 5046 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5047 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5048 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5049 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5050 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5051 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5052 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5053 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5054 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5055 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5056 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5057 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5058 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5059 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5060 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5061 case AtomicRMWInst::UIncWrap: 5062 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5063 break; 5064 case AtomicRMWInst::UDecWrap: 5065 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5066 break; 5067 } 5068 AtomicOrdering Ordering = I.getOrdering(); 5069 SyncScope::ID SSID = I.getSyncScopeID(); 5070 5071 SDValue InChain = getRoot(); 5072 5073 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5075 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5076 5077 MachineFunction &MF = DAG.getMachineFunction(); 5078 MachineMemOperand *MMO = MF.getMachineMemOperand( 5079 MachinePointerInfo(I.getPointerOperand()), Flags, 5080 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5081 AAMDNodes(), nullptr, SSID, Ordering); 5082 5083 SDValue L = 5084 DAG.getAtomic(NT, dl, MemVT, InChain, 5085 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5086 MMO); 5087 5088 SDValue OutChain = L.getValue(1); 5089 5090 setValue(&I, L); 5091 DAG.setRoot(OutChain); 5092 } 5093 5094 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5095 SDLoc dl = getCurSDLoc(); 5096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5097 SDValue Ops[3]; 5098 Ops[0] = getRoot(); 5099 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5100 TLI.getFenceOperandTy(DAG.getDataLayout())); 5101 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5102 TLI.getFenceOperandTy(DAG.getDataLayout())); 5103 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5104 setValue(&I, N); 5105 DAG.setRoot(N); 5106 } 5107 5108 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5109 SDLoc dl = getCurSDLoc(); 5110 AtomicOrdering Order = I.getOrdering(); 5111 SyncScope::ID SSID = I.getSyncScopeID(); 5112 5113 SDValue InChain = getRoot(); 5114 5115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5116 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5117 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5118 5119 if (!TLI.supportsUnalignedAtomics() && 5120 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5121 report_fatal_error("Cannot generate unaligned atomic load"); 5122 5123 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5124 5125 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5126 MachinePointerInfo(I.getPointerOperand()), Flags, 5127 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5128 nullptr, SSID, Order); 5129 5130 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5131 5132 SDValue Ptr = getValue(I.getPointerOperand()); 5133 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5134 Ptr, MMO); 5135 5136 SDValue OutChain = L.getValue(1); 5137 if (MemVT != VT) 5138 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5139 5140 setValue(&I, L); 5141 DAG.setRoot(OutChain); 5142 } 5143 5144 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5145 SDLoc dl = getCurSDLoc(); 5146 5147 AtomicOrdering Ordering = I.getOrdering(); 5148 SyncScope::ID SSID = I.getSyncScopeID(); 5149 5150 SDValue InChain = getRoot(); 5151 5152 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5153 EVT MemVT = 5154 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5155 5156 if (!TLI.supportsUnalignedAtomics() && 5157 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5158 report_fatal_error("Cannot generate unaligned atomic store"); 5159 5160 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5161 5162 MachineFunction &MF = DAG.getMachineFunction(); 5163 MachineMemOperand *MMO = MF.getMachineMemOperand( 5164 MachinePointerInfo(I.getPointerOperand()), Flags, 5165 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5166 nullptr, SSID, Ordering); 5167 5168 SDValue Val = getValue(I.getValueOperand()); 5169 if (Val.getValueType() != MemVT) 5170 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5171 SDValue Ptr = getValue(I.getPointerOperand()); 5172 5173 SDValue OutChain = 5174 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5175 5176 setValue(&I, OutChain); 5177 DAG.setRoot(OutChain); 5178 } 5179 5180 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5181 /// node. 5182 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5183 unsigned Intrinsic) { 5184 // Ignore the callsite's attributes. A specific call site may be marked with 5185 // readnone, but the lowering code will expect the chain based on the 5186 // definition. 5187 const Function *F = I.getCalledFunction(); 5188 bool HasChain = !F->doesNotAccessMemory(); 5189 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5190 5191 // Build the operand list. 5192 SmallVector<SDValue, 8> Ops; 5193 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5194 if (OnlyLoad) { 5195 // We don't need to serialize loads against other loads. 5196 Ops.push_back(DAG.getRoot()); 5197 } else { 5198 Ops.push_back(getRoot()); 5199 } 5200 } 5201 5202 // Info is set by getTgtMemIntrinsic 5203 TargetLowering::IntrinsicInfo Info; 5204 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5205 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5206 DAG.getMachineFunction(), 5207 Intrinsic); 5208 5209 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5210 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5211 Info.opc == ISD::INTRINSIC_W_CHAIN) 5212 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5213 TLI.getPointerTy(DAG.getDataLayout()))); 5214 5215 // Add all operands of the call to the operand list. 5216 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5217 const Value *Arg = I.getArgOperand(i); 5218 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5219 Ops.push_back(getValue(Arg)); 5220 continue; 5221 } 5222 5223 // Use TargetConstant instead of a regular constant for immarg. 5224 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5225 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5226 assert(CI->getBitWidth() <= 64 && 5227 "large intrinsic immediates not handled"); 5228 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5229 } else { 5230 Ops.push_back( 5231 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5232 } 5233 } 5234 5235 SmallVector<EVT, 4> ValueVTs; 5236 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5237 5238 if (HasChain) 5239 ValueVTs.push_back(MVT::Other); 5240 5241 SDVTList VTs = DAG.getVTList(ValueVTs); 5242 5243 // Propagate fast-math-flags from IR to node(s). 5244 SDNodeFlags Flags; 5245 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5246 Flags.copyFMF(*FPMO); 5247 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5248 5249 // Create the node. 5250 SDValue Result; 5251 5252 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5253 auto *Token = Bundle->Inputs[0].get(); 5254 SDValue ConvControlToken = getValue(Token); 5255 assert(Ops.back().getValueType() != MVT::Glue && 5256 "Did not expected another glue node here."); 5257 ConvControlToken = 5258 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5259 Ops.push_back(ConvControlToken); 5260 } 5261 5262 // In some cases, custom collection of operands from CallInst I may be needed. 5263 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5264 if (IsTgtIntrinsic) { 5265 // This is target intrinsic that touches memory 5266 // 5267 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5268 // didn't yield anything useful. 5269 MachinePointerInfo MPI; 5270 if (Info.ptrVal) 5271 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5272 else if (Info.fallbackAddressSpace) 5273 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5274 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5275 Info.memVT, MPI, Info.align, Info.flags, 5276 Info.size, I.getAAMetadata()); 5277 } else if (!HasChain) { 5278 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5279 } else if (!I.getType()->isVoidTy()) { 5280 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5281 } else { 5282 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5283 } 5284 5285 if (HasChain) { 5286 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5287 if (OnlyLoad) 5288 PendingLoads.push_back(Chain); 5289 else 5290 DAG.setRoot(Chain); 5291 } 5292 5293 if (!I.getType()->isVoidTy()) { 5294 if (!isa<VectorType>(I.getType())) 5295 Result = lowerRangeToAssertZExt(DAG, I, Result); 5296 5297 MaybeAlign Alignment = I.getRetAlign(); 5298 5299 // Insert `assertalign` node if there's an alignment. 5300 if (InsertAssertAlign && Alignment) { 5301 Result = 5302 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5303 } 5304 } 5305 5306 setValue(&I, Result); 5307 } 5308 5309 /// GetSignificand - Get the significand and build it into a floating-point 5310 /// number with exponent of 1: 5311 /// 5312 /// Op = (Op & 0x007fffff) | 0x3f800000; 5313 /// 5314 /// where Op is the hexadecimal representation of floating point value. 5315 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5316 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5317 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5318 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5319 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5320 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5321 } 5322 5323 /// GetExponent - Get the exponent: 5324 /// 5325 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5326 /// 5327 /// where Op is the hexadecimal representation of floating point value. 5328 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5329 const TargetLowering &TLI, const SDLoc &dl) { 5330 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5331 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5332 SDValue t1 = DAG.getNode( 5333 ISD::SRL, dl, MVT::i32, t0, 5334 DAG.getConstant(23, dl, 5335 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5336 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5337 DAG.getConstant(127, dl, MVT::i32)); 5338 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5339 } 5340 5341 /// getF32Constant - Get 32-bit floating point constant. 5342 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5343 const SDLoc &dl) { 5344 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5345 MVT::f32); 5346 } 5347 5348 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5349 SelectionDAG &DAG) { 5350 // TODO: What fast-math-flags should be set on the floating-point nodes? 5351 5352 // IntegerPartOfX = ((int32_t)(t0); 5353 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5354 5355 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5356 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5357 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5358 5359 // IntegerPartOfX <<= 23; 5360 IntegerPartOfX = 5361 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5362 DAG.getConstant(23, dl, 5363 DAG.getTargetLoweringInfo().getShiftAmountTy( 5364 MVT::i32, DAG.getDataLayout()))); 5365 5366 SDValue TwoToFractionalPartOfX; 5367 if (LimitFloatPrecision <= 6) { 5368 // For floating-point precision of 6: 5369 // 5370 // TwoToFractionalPartOfX = 5371 // 0.997535578f + 5372 // (0.735607626f + 0.252464424f * x) * x; 5373 // 5374 // error 0.0144103317, which is 6 bits 5375 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5376 getF32Constant(DAG, 0x3e814304, dl)); 5377 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5378 getF32Constant(DAG, 0x3f3c50c8, dl)); 5379 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5380 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5381 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5382 } else if (LimitFloatPrecision <= 12) { 5383 // For floating-point precision of 12: 5384 // 5385 // TwoToFractionalPartOfX = 5386 // 0.999892986f + 5387 // (0.696457318f + 5388 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5389 // 5390 // error 0.000107046256, which is 13 to 14 bits 5391 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5392 getF32Constant(DAG, 0x3da235e3, dl)); 5393 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5394 getF32Constant(DAG, 0x3e65b8f3, dl)); 5395 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5396 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5397 getF32Constant(DAG, 0x3f324b07, dl)); 5398 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5399 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5400 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5401 } else { // LimitFloatPrecision <= 18 5402 // For floating-point precision of 18: 5403 // 5404 // TwoToFractionalPartOfX = 5405 // 0.999999982f + 5406 // (0.693148872f + 5407 // (0.240227044f + 5408 // (0.554906021e-1f + 5409 // (0.961591928e-2f + 5410 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5411 // error 2.47208000*10^(-7), which is better than 18 bits 5412 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5413 getF32Constant(DAG, 0x3924b03e, dl)); 5414 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5415 getF32Constant(DAG, 0x3ab24b87, dl)); 5416 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5417 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5418 getF32Constant(DAG, 0x3c1d8c17, dl)); 5419 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5420 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5421 getF32Constant(DAG, 0x3d634a1d, dl)); 5422 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5423 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5424 getF32Constant(DAG, 0x3e75fe14, dl)); 5425 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5426 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5427 getF32Constant(DAG, 0x3f317234, dl)); 5428 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5429 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5430 getF32Constant(DAG, 0x3f800000, dl)); 5431 } 5432 5433 // Add the exponent into the result in integer domain. 5434 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5435 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5436 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5437 } 5438 5439 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5440 /// limited-precision mode. 5441 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5442 const TargetLowering &TLI, SDNodeFlags Flags) { 5443 if (Op.getValueType() == MVT::f32 && 5444 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5445 5446 // Put the exponent in the right bit position for later addition to the 5447 // final result: 5448 // 5449 // t0 = Op * log2(e) 5450 5451 // TODO: What fast-math-flags should be set here? 5452 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5453 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5454 return getLimitedPrecisionExp2(t0, dl, DAG); 5455 } 5456 5457 // No special expansion. 5458 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5459 } 5460 5461 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5462 /// limited-precision mode. 5463 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5464 const TargetLowering &TLI, SDNodeFlags Flags) { 5465 // TODO: What fast-math-flags should be set on the floating-point nodes? 5466 5467 if (Op.getValueType() == MVT::f32 && 5468 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5469 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5470 5471 // Scale the exponent by log(2). 5472 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5473 SDValue LogOfExponent = 5474 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5475 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5476 5477 // Get the significand and build it into a floating-point number with 5478 // exponent of 1. 5479 SDValue X = GetSignificand(DAG, Op1, dl); 5480 5481 SDValue LogOfMantissa; 5482 if (LimitFloatPrecision <= 6) { 5483 // For floating-point precision of 6: 5484 // 5485 // LogofMantissa = 5486 // -1.1609546f + 5487 // (1.4034025f - 0.23903021f * x) * x; 5488 // 5489 // error 0.0034276066, which is better than 8 bits 5490 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5491 getF32Constant(DAG, 0xbe74c456, dl)); 5492 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5493 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5494 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5495 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5496 getF32Constant(DAG, 0x3f949a29, dl)); 5497 } else if (LimitFloatPrecision <= 12) { 5498 // For floating-point precision of 12: 5499 // 5500 // LogOfMantissa = 5501 // -1.7417939f + 5502 // (2.8212026f + 5503 // (-1.4699568f + 5504 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5505 // 5506 // error 0.000061011436, which is 14 bits 5507 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5508 getF32Constant(DAG, 0xbd67b6d6, dl)); 5509 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5510 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5511 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5512 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5513 getF32Constant(DAG, 0x3fbc278b, dl)); 5514 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5515 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5516 getF32Constant(DAG, 0x40348e95, dl)); 5517 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5518 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5519 getF32Constant(DAG, 0x3fdef31a, dl)); 5520 } else { // LimitFloatPrecision <= 18 5521 // For floating-point precision of 18: 5522 // 5523 // LogOfMantissa = 5524 // -2.1072184f + 5525 // (4.2372794f + 5526 // (-3.7029485f + 5527 // (2.2781945f + 5528 // (-0.87823314f + 5529 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5530 // 5531 // error 0.0000023660568, which is better than 18 bits 5532 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5533 getF32Constant(DAG, 0xbc91e5ac, dl)); 5534 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5535 getF32Constant(DAG, 0x3e4350aa, dl)); 5536 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5537 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5538 getF32Constant(DAG, 0x3f60d3e3, dl)); 5539 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5540 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5541 getF32Constant(DAG, 0x4011cdf0, dl)); 5542 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5543 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5544 getF32Constant(DAG, 0x406cfd1c, dl)); 5545 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5546 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5547 getF32Constant(DAG, 0x408797cb, dl)); 5548 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5549 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5550 getF32Constant(DAG, 0x4006dcab, dl)); 5551 } 5552 5553 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5554 } 5555 5556 // No special expansion. 5557 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5558 } 5559 5560 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5561 /// limited-precision mode. 5562 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5563 const TargetLowering &TLI, SDNodeFlags Flags) { 5564 // TODO: What fast-math-flags should be set on the floating-point nodes? 5565 5566 if (Op.getValueType() == MVT::f32 && 5567 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5568 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5569 5570 // Get the exponent. 5571 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5572 5573 // Get the significand and build it into a floating-point number with 5574 // exponent of 1. 5575 SDValue X = GetSignificand(DAG, Op1, dl); 5576 5577 // Different possible minimax approximations of significand in 5578 // floating-point for various degrees of accuracy over [1,2]. 5579 SDValue Log2ofMantissa; 5580 if (LimitFloatPrecision <= 6) { 5581 // For floating-point precision of 6: 5582 // 5583 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5584 // 5585 // error 0.0049451742, which is more than 7 bits 5586 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5587 getF32Constant(DAG, 0xbeb08fe0, dl)); 5588 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5589 getF32Constant(DAG, 0x40019463, dl)); 5590 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5591 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5592 getF32Constant(DAG, 0x3fd6633d, dl)); 5593 } else if (LimitFloatPrecision <= 12) { 5594 // For floating-point precision of 12: 5595 // 5596 // Log2ofMantissa = 5597 // -2.51285454f + 5598 // (4.07009056f + 5599 // (-2.12067489f + 5600 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5601 // 5602 // error 0.0000876136000, which is better than 13 bits 5603 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5604 getF32Constant(DAG, 0xbda7262e, dl)); 5605 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5606 getF32Constant(DAG, 0x3f25280b, dl)); 5607 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5608 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5609 getF32Constant(DAG, 0x4007b923, dl)); 5610 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5611 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5612 getF32Constant(DAG, 0x40823e2f, dl)); 5613 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5614 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5615 getF32Constant(DAG, 0x4020d29c, dl)); 5616 } else { // LimitFloatPrecision <= 18 5617 // For floating-point precision of 18: 5618 // 5619 // Log2ofMantissa = 5620 // -3.0400495f + 5621 // (6.1129976f + 5622 // (-5.3420409f + 5623 // (3.2865683f + 5624 // (-1.2669343f + 5625 // (0.27515199f - 5626 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5627 // 5628 // error 0.0000018516, which is better than 18 bits 5629 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5630 getF32Constant(DAG, 0xbcd2769e, dl)); 5631 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5632 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5633 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5634 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5635 getF32Constant(DAG, 0x3fa22ae7, dl)); 5636 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5637 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5638 getF32Constant(DAG, 0x40525723, dl)); 5639 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5640 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5641 getF32Constant(DAG, 0x40aaf200, dl)); 5642 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5643 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5644 getF32Constant(DAG, 0x40c39dad, dl)); 5645 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5646 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5647 getF32Constant(DAG, 0x4042902c, dl)); 5648 } 5649 5650 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5651 } 5652 5653 // No special expansion. 5654 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5655 } 5656 5657 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5658 /// limited-precision mode. 5659 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5660 const TargetLowering &TLI, SDNodeFlags Flags) { 5661 // TODO: What fast-math-flags should be set on the floating-point nodes? 5662 5663 if (Op.getValueType() == MVT::f32 && 5664 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5665 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5666 5667 // Scale the exponent by log10(2) [0.30102999f]. 5668 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5669 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5670 getF32Constant(DAG, 0x3e9a209a, dl)); 5671 5672 // Get the significand and build it into a floating-point number with 5673 // exponent of 1. 5674 SDValue X = GetSignificand(DAG, Op1, dl); 5675 5676 SDValue Log10ofMantissa; 5677 if (LimitFloatPrecision <= 6) { 5678 // For floating-point precision of 6: 5679 // 5680 // Log10ofMantissa = 5681 // -0.50419619f + 5682 // (0.60948995f - 0.10380950f * x) * x; 5683 // 5684 // error 0.0014886165, which is 6 bits 5685 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5686 getF32Constant(DAG, 0xbdd49a13, dl)); 5687 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5688 getF32Constant(DAG, 0x3f1c0789, dl)); 5689 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5690 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5691 getF32Constant(DAG, 0x3f011300, dl)); 5692 } else if (LimitFloatPrecision <= 12) { 5693 // For floating-point precision of 12: 5694 // 5695 // Log10ofMantissa = 5696 // -0.64831180f + 5697 // (0.91751397f + 5698 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5699 // 5700 // error 0.00019228036, which is better than 12 bits 5701 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5702 getF32Constant(DAG, 0x3d431f31, dl)); 5703 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5704 getF32Constant(DAG, 0x3ea21fb2, dl)); 5705 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5706 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5707 getF32Constant(DAG, 0x3f6ae232, dl)); 5708 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5709 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5710 getF32Constant(DAG, 0x3f25f7c3, dl)); 5711 } else { // LimitFloatPrecision <= 18 5712 // For floating-point precision of 18: 5713 // 5714 // Log10ofMantissa = 5715 // -0.84299375f + 5716 // (1.5327582f + 5717 // (-1.0688956f + 5718 // (0.49102474f + 5719 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5720 // 5721 // error 0.0000037995730, which is better than 18 bits 5722 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5723 getF32Constant(DAG, 0x3c5d51ce, dl)); 5724 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5725 getF32Constant(DAG, 0x3e00685a, dl)); 5726 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5727 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5728 getF32Constant(DAG, 0x3efb6798, dl)); 5729 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5730 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5731 getF32Constant(DAG, 0x3f88d192, dl)); 5732 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5733 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5734 getF32Constant(DAG, 0x3fc4316c, dl)); 5735 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5736 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5737 getF32Constant(DAG, 0x3f57ce70, dl)); 5738 } 5739 5740 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5741 } 5742 5743 // No special expansion. 5744 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5745 } 5746 5747 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5748 /// limited-precision mode. 5749 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5750 const TargetLowering &TLI, SDNodeFlags Flags) { 5751 if (Op.getValueType() == MVT::f32 && 5752 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5753 return getLimitedPrecisionExp2(Op, dl, DAG); 5754 5755 // No special expansion. 5756 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5757 } 5758 5759 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5760 /// limited-precision mode with x == 10.0f. 5761 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5762 SelectionDAG &DAG, const TargetLowering &TLI, 5763 SDNodeFlags Flags) { 5764 bool IsExp10 = false; 5765 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5766 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5767 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5768 APFloat Ten(10.0f); 5769 IsExp10 = LHSC->isExactlyValue(Ten); 5770 } 5771 } 5772 5773 // TODO: What fast-math-flags should be set on the FMUL node? 5774 if (IsExp10) { 5775 // Put the exponent in the right bit position for later addition to the 5776 // final result: 5777 // 5778 // #define LOG2OF10 3.3219281f 5779 // t0 = Op * LOG2OF10; 5780 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5781 getF32Constant(DAG, 0x40549a78, dl)); 5782 return getLimitedPrecisionExp2(t0, dl, DAG); 5783 } 5784 5785 // No special expansion. 5786 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5787 } 5788 5789 /// ExpandPowI - Expand a llvm.powi intrinsic. 5790 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5791 SelectionDAG &DAG) { 5792 // If RHS is a constant, we can expand this out to a multiplication tree if 5793 // it's beneficial on the target, otherwise we end up lowering to a call to 5794 // __powidf2 (for example). 5795 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5796 unsigned Val = RHSC->getSExtValue(); 5797 5798 // powi(x, 0) -> 1.0 5799 if (Val == 0) 5800 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5801 5802 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5803 Val, DAG.shouldOptForSize())) { 5804 // Get the exponent as a positive value. 5805 if ((int)Val < 0) 5806 Val = -Val; 5807 // We use the simple binary decomposition method to generate the multiply 5808 // sequence. There are more optimal ways to do this (for example, 5809 // powi(x,15) generates one more multiply than it should), but this has 5810 // the benefit of being both really simple and much better than a libcall. 5811 SDValue Res; // Logically starts equal to 1.0 5812 SDValue CurSquare = LHS; 5813 // TODO: Intrinsics should have fast-math-flags that propagate to these 5814 // nodes. 5815 while (Val) { 5816 if (Val & 1) { 5817 if (Res.getNode()) 5818 Res = 5819 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5820 else 5821 Res = CurSquare; // 1.0*CurSquare. 5822 } 5823 5824 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5825 CurSquare, CurSquare); 5826 Val >>= 1; 5827 } 5828 5829 // If the original was negative, invert the result, producing 1/(x*x*x). 5830 if (RHSC->getSExtValue() < 0) 5831 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5832 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5833 return Res; 5834 } 5835 } 5836 5837 // Otherwise, expand to a libcall. 5838 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5839 } 5840 5841 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5842 SDValue LHS, SDValue RHS, SDValue Scale, 5843 SelectionDAG &DAG, const TargetLowering &TLI) { 5844 EVT VT = LHS.getValueType(); 5845 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5846 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5847 LLVMContext &Ctx = *DAG.getContext(); 5848 5849 // If the type is legal but the operation isn't, this node might survive all 5850 // the way to operation legalization. If we end up there and we do not have 5851 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5852 // node. 5853 5854 // Coax the legalizer into expanding the node during type legalization instead 5855 // by bumping the size by one bit. This will force it to Promote, enabling the 5856 // early expansion and avoiding the need to expand later. 5857 5858 // We don't have to do this if Scale is 0; that can always be expanded, unless 5859 // it's a saturating signed operation. Those can experience true integer 5860 // division overflow, a case which we must avoid. 5861 5862 // FIXME: We wouldn't have to do this (or any of the early 5863 // expansion/promotion) if it was possible to expand a libcall of an 5864 // illegal type during operation legalization. But it's not, so things 5865 // get a bit hacky. 5866 unsigned ScaleInt = Scale->getAsZExtVal(); 5867 if ((ScaleInt > 0 || (Saturating && Signed)) && 5868 (TLI.isTypeLegal(VT) || 5869 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5870 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5871 Opcode, VT, ScaleInt); 5872 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5873 EVT PromVT; 5874 if (VT.isScalarInteger()) 5875 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5876 else if (VT.isVector()) { 5877 PromVT = VT.getVectorElementType(); 5878 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5879 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5880 } else 5881 llvm_unreachable("Wrong VT for DIVFIX?"); 5882 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5883 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5884 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5885 // For saturating operations, we need to shift up the LHS to get the 5886 // proper saturation width, and then shift down again afterwards. 5887 if (Saturating) 5888 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5889 DAG.getConstant(1, DL, ShiftTy)); 5890 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5891 if (Saturating) 5892 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5893 DAG.getConstant(1, DL, ShiftTy)); 5894 return DAG.getZExtOrTrunc(Res, DL, VT); 5895 } 5896 } 5897 5898 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5899 } 5900 5901 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5902 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5903 static void 5904 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5905 const SDValue &N) { 5906 switch (N.getOpcode()) { 5907 case ISD::CopyFromReg: { 5908 SDValue Op = N.getOperand(1); 5909 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5910 Op.getValueType().getSizeInBits()); 5911 return; 5912 } 5913 case ISD::BITCAST: 5914 case ISD::AssertZext: 5915 case ISD::AssertSext: 5916 case ISD::TRUNCATE: 5917 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5918 return; 5919 case ISD::BUILD_PAIR: 5920 case ISD::BUILD_VECTOR: 5921 case ISD::CONCAT_VECTORS: 5922 for (SDValue Op : N->op_values()) 5923 getUnderlyingArgRegs(Regs, Op); 5924 return; 5925 default: 5926 return; 5927 } 5928 } 5929 5930 /// If the DbgValueInst is a dbg_value of a function argument, create the 5931 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5932 /// instruction selection, they will be inserted to the entry BB. 5933 /// We don't currently support this for variadic dbg_values, as they shouldn't 5934 /// appear for function arguments or in the prologue. 5935 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5936 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5937 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5938 const Argument *Arg = dyn_cast<Argument>(V); 5939 if (!Arg) 5940 return false; 5941 5942 MachineFunction &MF = DAG.getMachineFunction(); 5943 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5944 5945 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5946 // we've been asked to pursue. 5947 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5948 bool Indirect) { 5949 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5950 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5951 // pointing at the VReg, which will be patched up later. 5952 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5953 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5954 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5955 /* isKill */ false, /* isDead */ false, 5956 /* isUndef */ false, /* isEarlyClobber */ false, 5957 /* SubReg */ 0, /* isDebug */ true)}); 5958 5959 auto *NewDIExpr = FragExpr; 5960 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5961 // the DIExpression. 5962 if (Indirect) 5963 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5964 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5965 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5966 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5967 } else { 5968 // Create a completely standard DBG_VALUE. 5969 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5970 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5971 } 5972 }; 5973 5974 if (Kind == FuncArgumentDbgValueKind::Value) { 5975 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5976 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5977 // the entry block. 5978 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5979 if (!IsInEntryBlock) 5980 return false; 5981 5982 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5983 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5984 // variable that also is a param. 5985 // 5986 // Although, if we are at the top of the entry block already, we can still 5987 // emit using ArgDbgValue. This might catch some situations when the 5988 // dbg.value refers to an argument that isn't used in the entry block, so 5989 // any CopyToReg node would be optimized out and the only way to express 5990 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5991 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5992 // we should only emit as ArgDbgValue if the Variable is an argument to the 5993 // current function, and the dbg.value intrinsic is found in the entry 5994 // block. 5995 bool VariableIsFunctionInputArg = Variable->isParameter() && 5996 !DL->getInlinedAt(); 5997 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5998 if (!IsInPrologue && !VariableIsFunctionInputArg) 5999 return false; 6000 6001 // Here we assume that a function argument on IR level only can be used to 6002 // describe one input parameter on source level. If we for example have 6003 // source code like this 6004 // 6005 // struct A { long x, y; }; 6006 // void foo(struct A a, long b) { 6007 // ... 6008 // b = a.x; 6009 // ... 6010 // } 6011 // 6012 // and IR like this 6013 // 6014 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6015 // entry: 6016 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6017 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6018 // call void @llvm.dbg.value(metadata i32 %b, "b", 6019 // ... 6020 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6021 // ... 6022 // 6023 // then the last dbg.value is describing a parameter "b" using a value that 6024 // is an argument. But since we already has used %a1 to describe a parameter 6025 // we should not handle that last dbg.value here (that would result in an 6026 // incorrect hoisting of the DBG_VALUE to the function entry). 6027 // Notice that we allow one dbg.value per IR level argument, to accommodate 6028 // for the situation with fragments above. 6029 // If there is no node for the value being handled, we return true to skip 6030 // the normal generation of debug info, as it would kill existing debug 6031 // info for the parameter in case of duplicates. 6032 if (VariableIsFunctionInputArg) { 6033 unsigned ArgNo = Arg->getArgNo(); 6034 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6035 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6036 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6037 return !NodeMap[V].getNode(); 6038 FuncInfo.DescribedArgs.set(ArgNo); 6039 } 6040 } 6041 6042 bool IsIndirect = false; 6043 std::optional<MachineOperand> Op; 6044 // Some arguments' frame index is recorded during argument lowering. 6045 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6046 if (FI != std::numeric_limits<int>::max()) 6047 Op = MachineOperand::CreateFI(FI); 6048 6049 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6050 if (!Op && N.getNode()) { 6051 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6052 Register Reg; 6053 if (ArgRegsAndSizes.size() == 1) 6054 Reg = ArgRegsAndSizes.front().first; 6055 6056 if (Reg && Reg.isVirtual()) { 6057 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6058 Register PR = RegInfo.getLiveInPhysReg(Reg); 6059 if (PR) 6060 Reg = PR; 6061 } 6062 if (Reg) { 6063 Op = MachineOperand::CreateReg(Reg, false); 6064 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6065 } 6066 } 6067 6068 if (!Op && N.getNode()) { 6069 // Check if frame index is available. 6070 SDValue LCandidate = peekThroughBitcasts(N); 6071 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6072 if (FrameIndexSDNode *FINode = 6073 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6074 Op = MachineOperand::CreateFI(FINode->getIndex()); 6075 } 6076 6077 if (!Op) { 6078 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6079 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6080 SplitRegs) { 6081 unsigned Offset = 0; 6082 for (const auto &RegAndSize : SplitRegs) { 6083 // If the expression is already a fragment, the current register 6084 // offset+size might extend beyond the fragment. In this case, only 6085 // the register bits that are inside the fragment are relevant. 6086 int RegFragmentSizeInBits = RegAndSize.second; 6087 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6088 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6089 // The register is entirely outside the expression fragment, 6090 // so is irrelevant for debug info. 6091 if (Offset >= ExprFragmentSizeInBits) 6092 break; 6093 // The register is partially outside the expression fragment, only 6094 // the low bits within the fragment are relevant for debug info. 6095 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6096 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6097 } 6098 } 6099 6100 auto FragmentExpr = DIExpression::createFragmentExpression( 6101 Expr, Offset, RegFragmentSizeInBits); 6102 Offset += RegAndSize.second; 6103 // If a valid fragment expression cannot be created, the variable's 6104 // correct value cannot be determined and so it is set as Undef. 6105 if (!FragmentExpr) { 6106 SDDbgValue *SDV = DAG.getConstantDbgValue( 6107 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6108 DAG.AddDbgValue(SDV, false); 6109 continue; 6110 } 6111 MachineInstr *NewMI = 6112 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6113 Kind != FuncArgumentDbgValueKind::Value); 6114 FuncInfo.ArgDbgValues.push_back(NewMI); 6115 } 6116 }; 6117 6118 // Check if ValueMap has reg number. 6119 DenseMap<const Value *, Register>::const_iterator 6120 VMI = FuncInfo.ValueMap.find(V); 6121 if (VMI != FuncInfo.ValueMap.end()) { 6122 const auto &TLI = DAG.getTargetLoweringInfo(); 6123 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6124 V->getType(), std::nullopt); 6125 if (RFV.occupiesMultipleRegs()) { 6126 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6127 return true; 6128 } 6129 6130 Op = MachineOperand::CreateReg(VMI->second, false); 6131 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6132 } else if (ArgRegsAndSizes.size() > 1) { 6133 // This was split due to the calling convention, and no virtual register 6134 // mapping exists for the value. 6135 splitMultiRegDbgValue(ArgRegsAndSizes); 6136 return true; 6137 } 6138 } 6139 6140 if (!Op) 6141 return false; 6142 6143 assert(Variable->isValidLocationForIntrinsic(DL) && 6144 "Expected inlined-at fields to agree"); 6145 MachineInstr *NewMI = nullptr; 6146 6147 if (Op->isReg()) 6148 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6149 else 6150 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6151 Variable, Expr); 6152 6153 // Otherwise, use ArgDbgValues. 6154 FuncInfo.ArgDbgValues.push_back(NewMI); 6155 return true; 6156 } 6157 6158 /// Return the appropriate SDDbgValue based on N. 6159 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6160 DILocalVariable *Variable, 6161 DIExpression *Expr, 6162 const DebugLoc &dl, 6163 unsigned DbgSDNodeOrder) { 6164 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6165 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6166 // stack slot locations. 6167 // 6168 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6169 // debug values here after optimization: 6170 // 6171 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6172 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6173 // 6174 // Both describe the direct values of their associated variables. 6175 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6176 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6177 } 6178 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6179 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6180 } 6181 6182 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6183 switch (Intrinsic) { 6184 case Intrinsic::smul_fix: 6185 return ISD::SMULFIX; 6186 case Intrinsic::umul_fix: 6187 return ISD::UMULFIX; 6188 case Intrinsic::smul_fix_sat: 6189 return ISD::SMULFIXSAT; 6190 case Intrinsic::umul_fix_sat: 6191 return ISD::UMULFIXSAT; 6192 case Intrinsic::sdiv_fix: 6193 return ISD::SDIVFIX; 6194 case Intrinsic::udiv_fix: 6195 return ISD::UDIVFIX; 6196 case Intrinsic::sdiv_fix_sat: 6197 return ISD::SDIVFIXSAT; 6198 case Intrinsic::udiv_fix_sat: 6199 return ISD::UDIVFIXSAT; 6200 default: 6201 llvm_unreachable("Unhandled fixed point intrinsic"); 6202 } 6203 } 6204 6205 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6206 const char *FunctionName) { 6207 assert(FunctionName && "FunctionName must not be nullptr"); 6208 SDValue Callee = DAG.getExternalSymbol( 6209 FunctionName, 6210 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6211 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6212 } 6213 6214 /// Given a @llvm.call.preallocated.setup, return the corresponding 6215 /// preallocated call. 6216 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6217 assert(cast<CallBase>(PreallocatedSetup) 6218 ->getCalledFunction() 6219 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6220 "expected call_preallocated_setup Value"); 6221 for (const auto *U : PreallocatedSetup->users()) { 6222 auto *UseCall = cast<CallBase>(U); 6223 const Function *Fn = UseCall->getCalledFunction(); 6224 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6225 return UseCall; 6226 } 6227 } 6228 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6229 } 6230 6231 /// If DI is a debug value with an EntryValue expression, lower it using the 6232 /// corresponding physical register of the associated Argument value 6233 /// (guaranteed to exist by the verifier). 6234 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6235 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6236 DIExpression *Expr, DebugLoc DbgLoc) { 6237 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6238 return false; 6239 6240 // These properties are guaranteed by the verifier. 6241 const Argument *Arg = cast<Argument>(Values[0]); 6242 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6243 6244 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6245 if (ArgIt == FuncInfo.ValueMap.end()) { 6246 LLVM_DEBUG( 6247 dbgs() << "Dropping dbg.value: expression is entry_value but " 6248 "couldn't find an associated register for the Argument\n"); 6249 return true; 6250 } 6251 Register ArgVReg = ArgIt->getSecond(); 6252 6253 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6254 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6255 SDDbgValue *SDV = DAG.getVRegDbgValue( 6256 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6257 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6258 return true; 6259 } 6260 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6261 "couldn't find a physical register\n"); 6262 return true; 6263 } 6264 6265 /// Lower the call to the specified intrinsic function. 6266 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6267 unsigned Intrinsic) { 6268 SDLoc sdl = getCurSDLoc(); 6269 switch (Intrinsic) { 6270 case Intrinsic::experimental_convergence_anchor: 6271 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6272 break; 6273 case Intrinsic::experimental_convergence_entry: 6274 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6275 break; 6276 case Intrinsic::experimental_convergence_loop: { 6277 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6278 auto *Token = Bundle->Inputs[0].get(); 6279 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6280 getValue(Token))); 6281 break; 6282 } 6283 } 6284 } 6285 6286 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6287 unsigned IntrinsicID) { 6288 // For now, we're only lowering an 'add' histogram. 6289 // We can add others later, e.g. saturating adds, min/max. 6290 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6291 "Tried to lower unsupported histogram type"); 6292 SDLoc sdl = getCurSDLoc(); 6293 Value *Ptr = I.getOperand(0); 6294 SDValue Inc = getValue(I.getOperand(1)); 6295 SDValue Mask = getValue(I.getOperand(2)); 6296 6297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6298 DataLayout TargetDL = DAG.getDataLayout(); 6299 EVT VT = Inc.getValueType(); 6300 Align Alignment = DAG.getEVTAlign(VT); 6301 6302 const MDNode *Ranges = getRangeMetadata(I); 6303 6304 SDValue Root = DAG.getRoot(); 6305 SDValue Base; 6306 SDValue Index; 6307 ISD::MemIndexType IndexType; 6308 SDValue Scale; 6309 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6310 I.getParent(), VT.getScalarStoreSize()); 6311 6312 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6313 6314 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6315 MachinePointerInfo(AS), 6316 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6317 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6318 6319 if (!UniformBase) { 6320 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6321 Index = getValue(Ptr); 6322 IndexType = ISD::SIGNED_SCALED; 6323 Scale = 6324 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6325 } 6326 6327 EVT IdxVT = Index.getValueType(); 6328 EVT EltTy = IdxVT.getVectorElementType(); 6329 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6330 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6331 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6332 } 6333 6334 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6335 6336 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6337 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6338 Ops, MMO, IndexType); 6339 6340 setValue(&I, Histogram); 6341 DAG.setRoot(Histogram); 6342 } 6343 6344 /// Lower the call to the specified intrinsic function. 6345 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6346 unsigned Intrinsic) { 6347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6348 SDLoc sdl = getCurSDLoc(); 6349 DebugLoc dl = getCurDebugLoc(); 6350 SDValue Res; 6351 6352 SDNodeFlags Flags; 6353 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6354 Flags.copyFMF(*FPOp); 6355 6356 switch (Intrinsic) { 6357 default: 6358 // By default, turn this into a target intrinsic node. 6359 visitTargetIntrinsic(I, Intrinsic); 6360 return; 6361 case Intrinsic::vscale: { 6362 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6363 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6364 return; 6365 } 6366 case Intrinsic::vastart: visitVAStart(I); return; 6367 case Intrinsic::vaend: visitVAEnd(I); return; 6368 case Intrinsic::vacopy: visitVACopy(I); return; 6369 case Intrinsic::returnaddress: 6370 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6371 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6372 getValue(I.getArgOperand(0)))); 6373 return; 6374 case Intrinsic::addressofreturnaddress: 6375 setValue(&I, 6376 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6377 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6378 return; 6379 case Intrinsic::sponentry: 6380 setValue(&I, 6381 DAG.getNode(ISD::SPONENTRY, sdl, 6382 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6383 return; 6384 case Intrinsic::frameaddress: 6385 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6386 TLI.getFrameIndexTy(DAG.getDataLayout()), 6387 getValue(I.getArgOperand(0)))); 6388 return; 6389 case Intrinsic::read_volatile_register: 6390 case Intrinsic::read_register: { 6391 Value *Reg = I.getArgOperand(0); 6392 SDValue Chain = getRoot(); 6393 SDValue RegName = 6394 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6395 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6396 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6397 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6398 setValue(&I, Res); 6399 DAG.setRoot(Res.getValue(1)); 6400 return; 6401 } 6402 case Intrinsic::write_register: { 6403 Value *Reg = I.getArgOperand(0); 6404 Value *RegValue = I.getArgOperand(1); 6405 SDValue Chain = getRoot(); 6406 SDValue RegName = 6407 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6408 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6409 RegName, getValue(RegValue))); 6410 return; 6411 } 6412 case Intrinsic::memcpy: { 6413 const auto &MCI = cast<MemCpyInst>(I); 6414 SDValue Op1 = getValue(I.getArgOperand(0)); 6415 SDValue Op2 = getValue(I.getArgOperand(1)); 6416 SDValue Op3 = getValue(I.getArgOperand(2)); 6417 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6418 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6419 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6420 Align Alignment = std::min(DstAlign, SrcAlign); 6421 bool isVol = MCI.isVolatile(); 6422 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6423 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6424 // node. 6425 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6426 SDValue MC = DAG.getMemcpy( 6427 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6428 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6429 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6430 updateDAGForMaybeTailCall(MC); 6431 return; 6432 } 6433 case Intrinsic::memcpy_inline: { 6434 const auto &MCI = cast<MemCpyInlineInst>(I); 6435 SDValue Dst = getValue(I.getArgOperand(0)); 6436 SDValue Src = getValue(I.getArgOperand(1)); 6437 SDValue Size = getValue(I.getArgOperand(2)); 6438 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6439 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6440 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6441 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6442 Align Alignment = std::min(DstAlign, SrcAlign); 6443 bool isVol = MCI.isVolatile(); 6444 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6445 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6446 // node. 6447 SDValue MC = DAG.getMemcpy( 6448 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6449 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6450 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6451 updateDAGForMaybeTailCall(MC); 6452 return; 6453 } 6454 case Intrinsic::memset: { 6455 const auto &MSI = cast<MemSetInst>(I); 6456 SDValue Op1 = getValue(I.getArgOperand(0)); 6457 SDValue Op2 = getValue(I.getArgOperand(1)); 6458 SDValue Op3 = getValue(I.getArgOperand(2)); 6459 // @llvm.memset defines 0 and 1 to both mean no alignment. 6460 Align Alignment = MSI.getDestAlign().valueOrOne(); 6461 bool isVol = MSI.isVolatile(); 6462 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6463 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6464 SDValue MS = DAG.getMemset( 6465 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6466 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6467 updateDAGForMaybeTailCall(MS); 6468 return; 6469 } 6470 case Intrinsic::memset_inline: { 6471 const auto &MSII = cast<MemSetInlineInst>(I); 6472 SDValue Dst = getValue(I.getArgOperand(0)); 6473 SDValue Value = getValue(I.getArgOperand(1)); 6474 SDValue Size = getValue(I.getArgOperand(2)); 6475 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6476 // @llvm.memset defines 0 and 1 to both mean no alignment. 6477 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6478 bool isVol = MSII.isVolatile(); 6479 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6480 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6481 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6482 /* AlwaysInline */ true, isTC, 6483 MachinePointerInfo(I.getArgOperand(0)), 6484 I.getAAMetadata()); 6485 updateDAGForMaybeTailCall(MC); 6486 return; 6487 } 6488 case Intrinsic::memmove: { 6489 const auto &MMI = cast<MemMoveInst>(I); 6490 SDValue Op1 = getValue(I.getArgOperand(0)); 6491 SDValue Op2 = getValue(I.getArgOperand(1)); 6492 SDValue Op3 = getValue(I.getArgOperand(2)); 6493 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6494 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6495 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6496 Align Alignment = std::min(DstAlign, SrcAlign); 6497 bool isVol = MMI.isVolatile(); 6498 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6499 // FIXME: Support passing different dest/src alignments to the memmove DAG 6500 // node. 6501 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6502 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6503 isTC, MachinePointerInfo(I.getArgOperand(0)), 6504 MachinePointerInfo(I.getArgOperand(1)), 6505 I.getAAMetadata(), AA); 6506 updateDAGForMaybeTailCall(MM); 6507 return; 6508 } 6509 case Intrinsic::memcpy_element_unordered_atomic: { 6510 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6511 SDValue Dst = getValue(MI.getRawDest()); 6512 SDValue Src = getValue(MI.getRawSource()); 6513 SDValue Length = getValue(MI.getLength()); 6514 6515 Type *LengthTy = MI.getLength()->getType(); 6516 unsigned ElemSz = MI.getElementSizeInBytes(); 6517 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6518 SDValue MC = 6519 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6520 isTC, MachinePointerInfo(MI.getRawDest()), 6521 MachinePointerInfo(MI.getRawSource())); 6522 updateDAGForMaybeTailCall(MC); 6523 return; 6524 } 6525 case Intrinsic::memmove_element_unordered_atomic: { 6526 auto &MI = cast<AtomicMemMoveInst>(I); 6527 SDValue Dst = getValue(MI.getRawDest()); 6528 SDValue Src = getValue(MI.getRawSource()); 6529 SDValue Length = getValue(MI.getLength()); 6530 6531 Type *LengthTy = MI.getLength()->getType(); 6532 unsigned ElemSz = MI.getElementSizeInBytes(); 6533 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6534 SDValue MC = 6535 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6536 isTC, MachinePointerInfo(MI.getRawDest()), 6537 MachinePointerInfo(MI.getRawSource())); 6538 updateDAGForMaybeTailCall(MC); 6539 return; 6540 } 6541 case Intrinsic::memset_element_unordered_atomic: { 6542 auto &MI = cast<AtomicMemSetInst>(I); 6543 SDValue Dst = getValue(MI.getRawDest()); 6544 SDValue Val = getValue(MI.getValue()); 6545 SDValue Length = getValue(MI.getLength()); 6546 6547 Type *LengthTy = MI.getLength()->getType(); 6548 unsigned ElemSz = MI.getElementSizeInBytes(); 6549 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6550 SDValue MC = 6551 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6552 isTC, MachinePointerInfo(MI.getRawDest())); 6553 updateDAGForMaybeTailCall(MC); 6554 return; 6555 } 6556 case Intrinsic::call_preallocated_setup: { 6557 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6558 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6559 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6560 getRoot(), SrcValue); 6561 setValue(&I, Res); 6562 DAG.setRoot(Res); 6563 return; 6564 } 6565 case Intrinsic::call_preallocated_arg: { 6566 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6567 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6568 SDValue Ops[3]; 6569 Ops[0] = getRoot(); 6570 Ops[1] = SrcValue; 6571 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6572 MVT::i32); // arg index 6573 SDValue Res = DAG.getNode( 6574 ISD::PREALLOCATED_ARG, sdl, 6575 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6576 setValue(&I, Res); 6577 DAG.setRoot(Res.getValue(1)); 6578 return; 6579 } 6580 case Intrinsic::dbg_declare: { 6581 const auto &DI = cast<DbgDeclareInst>(I); 6582 // Debug intrinsics are handled separately in assignment tracking mode. 6583 // Some intrinsics are handled right after Argument lowering. 6584 if (AssignmentTrackingEnabled || 6585 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6586 return; 6587 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6588 DILocalVariable *Variable = DI.getVariable(); 6589 DIExpression *Expression = DI.getExpression(); 6590 dropDanglingDebugInfo(Variable, Expression); 6591 // Assume dbg.declare can not currently use DIArgList, i.e. 6592 // it is non-variadic. 6593 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6594 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6595 DI.getDebugLoc()); 6596 return; 6597 } 6598 case Intrinsic::dbg_label: { 6599 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6600 DILabel *Label = DI.getLabel(); 6601 assert(Label && "Missing label"); 6602 6603 SDDbgLabel *SDV; 6604 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6605 DAG.AddDbgLabel(SDV); 6606 return; 6607 } 6608 case Intrinsic::dbg_assign: { 6609 // Debug intrinsics are handled separately in assignment tracking mode. 6610 if (AssignmentTrackingEnabled) 6611 return; 6612 // If assignment tracking hasn't been enabled then fall through and treat 6613 // the dbg.assign as a dbg.value. 6614 [[fallthrough]]; 6615 } 6616 case Intrinsic::dbg_value: { 6617 // Debug intrinsics are handled separately in assignment tracking mode. 6618 if (AssignmentTrackingEnabled) 6619 return; 6620 const DbgValueInst &DI = cast<DbgValueInst>(I); 6621 assert(DI.getVariable() && "Missing variable"); 6622 6623 DILocalVariable *Variable = DI.getVariable(); 6624 DIExpression *Expression = DI.getExpression(); 6625 dropDanglingDebugInfo(Variable, Expression); 6626 6627 if (DI.isKillLocation()) { 6628 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6629 return; 6630 } 6631 6632 SmallVector<Value *, 4> Values(DI.getValues()); 6633 if (Values.empty()) 6634 return; 6635 6636 bool IsVariadic = DI.hasArgList(); 6637 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6638 SDNodeOrder, IsVariadic)) 6639 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6640 DI.getDebugLoc(), SDNodeOrder); 6641 return; 6642 } 6643 6644 case Intrinsic::eh_typeid_for: { 6645 // Find the type id for the given typeinfo. 6646 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6647 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6648 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6649 setValue(&I, Res); 6650 return; 6651 } 6652 6653 case Intrinsic::eh_return_i32: 6654 case Intrinsic::eh_return_i64: 6655 DAG.getMachineFunction().setCallsEHReturn(true); 6656 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6657 MVT::Other, 6658 getControlRoot(), 6659 getValue(I.getArgOperand(0)), 6660 getValue(I.getArgOperand(1)))); 6661 return; 6662 case Intrinsic::eh_unwind_init: 6663 DAG.getMachineFunction().setCallsUnwindInit(true); 6664 return; 6665 case Intrinsic::eh_dwarf_cfa: 6666 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6667 TLI.getPointerTy(DAG.getDataLayout()), 6668 getValue(I.getArgOperand(0)))); 6669 return; 6670 case Intrinsic::eh_sjlj_callsite: { 6671 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6672 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6673 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6674 6675 MMI.setCurrentCallSite(CI->getZExtValue()); 6676 return; 6677 } 6678 case Intrinsic::eh_sjlj_functioncontext: { 6679 // Get and store the index of the function context. 6680 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6681 AllocaInst *FnCtx = 6682 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6683 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6684 MFI.setFunctionContextIndex(FI); 6685 return; 6686 } 6687 case Intrinsic::eh_sjlj_setjmp: { 6688 SDValue Ops[2]; 6689 Ops[0] = getRoot(); 6690 Ops[1] = getValue(I.getArgOperand(0)); 6691 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6692 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6693 setValue(&I, Op.getValue(0)); 6694 DAG.setRoot(Op.getValue(1)); 6695 return; 6696 } 6697 case Intrinsic::eh_sjlj_longjmp: 6698 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6699 getRoot(), getValue(I.getArgOperand(0)))); 6700 return; 6701 case Intrinsic::eh_sjlj_setup_dispatch: 6702 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6703 getRoot())); 6704 return; 6705 case Intrinsic::masked_gather: 6706 visitMaskedGather(I); 6707 return; 6708 case Intrinsic::masked_load: 6709 visitMaskedLoad(I); 6710 return; 6711 case Intrinsic::masked_scatter: 6712 visitMaskedScatter(I); 6713 return; 6714 case Intrinsic::masked_store: 6715 visitMaskedStore(I); 6716 return; 6717 case Intrinsic::masked_expandload: 6718 visitMaskedLoad(I, true /* IsExpanding */); 6719 return; 6720 case Intrinsic::masked_compressstore: 6721 visitMaskedStore(I, true /* IsCompressing */); 6722 return; 6723 case Intrinsic::powi: 6724 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6725 getValue(I.getArgOperand(1)), DAG)); 6726 return; 6727 case Intrinsic::log: 6728 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6729 return; 6730 case Intrinsic::log2: 6731 setValue(&I, 6732 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6733 return; 6734 case Intrinsic::log10: 6735 setValue(&I, 6736 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6737 return; 6738 case Intrinsic::exp: 6739 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6740 return; 6741 case Intrinsic::exp2: 6742 setValue(&I, 6743 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6744 return; 6745 case Intrinsic::pow: 6746 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6747 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6748 return; 6749 case Intrinsic::sqrt: 6750 case Intrinsic::fabs: 6751 case Intrinsic::sin: 6752 case Intrinsic::cos: 6753 case Intrinsic::tan: 6754 case Intrinsic::exp10: 6755 case Intrinsic::floor: 6756 case Intrinsic::ceil: 6757 case Intrinsic::trunc: 6758 case Intrinsic::rint: 6759 case Intrinsic::nearbyint: 6760 case Intrinsic::round: 6761 case Intrinsic::roundeven: 6762 case Intrinsic::canonicalize: { 6763 unsigned Opcode; 6764 // clang-format off 6765 switch (Intrinsic) { 6766 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6767 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6768 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6769 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6770 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6771 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6772 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6773 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6774 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6775 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6776 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6777 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6778 case Intrinsic::round: Opcode = ISD::FROUND; break; 6779 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6780 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6781 } 6782 // clang-format on 6783 6784 setValue(&I, DAG.getNode(Opcode, sdl, 6785 getValue(I.getArgOperand(0)).getValueType(), 6786 getValue(I.getArgOperand(0)), Flags)); 6787 return; 6788 } 6789 case Intrinsic::lround: 6790 case Intrinsic::llround: 6791 case Intrinsic::lrint: 6792 case Intrinsic::llrint: { 6793 unsigned Opcode; 6794 // clang-format off 6795 switch (Intrinsic) { 6796 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6797 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6798 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6799 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6800 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6801 } 6802 // clang-format on 6803 6804 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6805 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6806 getValue(I.getArgOperand(0)))); 6807 return; 6808 } 6809 case Intrinsic::minnum: 6810 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6811 getValue(I.getArgOperand(0)).getValueType(), 6812 getValue(I.getArgOperand(0)), 6813 getValue(I.getArgOperand(1)), Flags)); 6814 return; 6815 case Intrinsic::maxnum: 6816 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6817 getValue(I.getArgOperand(0)).getValueType(), 6818 getValue(I.getArgOperand(0)), 6819 getValue(I.getArgOperand(1)), Flags)); 6820 return; 6821 case Intrinsic::minimum: 6822 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6823 getValue(I.getArgOperand(0)).getValueType(), 6824 getValue(I.getArgOperand(0)), 6825 getValue(I.getArgOperand(1)), Flags)); 6826 return; 6827 case Intrinsic::maximum: 6828 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6829 getValue(I.getArgOperand(0)).getValueType(), 6830 getValue(I.getArgOperand(0)), 6831 getValue(I.getArgOperand(1)), Flags)); 6832 return; 6833 case Intrinsic::copysign: 6834 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6835 getValue(I.getArgOperand(0)).getValueType(), 6836 getValue(I.getArgOperand(0)), 6837 getValue(I.getArgOperand(1)), Flags)); 6838 return; 6839 case Intrinsic::ldexp: 6840 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6841 getValue(I.getArgOperand(0)).getValueType(), 6842 getValue(I.getArgOperand(0)), 6843 getValue(I.getArgOperand(1)), Flags)); 6844 return; 6845 case Intrinsic::frexp: { 6846 SmallVector<EVT, 2> ValueVTs; 6847 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6848 SDVTList VTs = DAG.getVTList(ValueVTs); 6849 setValue(&I, 6850 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6851 return; 6852 } 6853 case Intrinsic::arithmetic_fence: { 6854 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6855 getValue(I.getArgOperand(0)).getValueType(), 6856 getValue(I.getArgOperand(0)), Flags)); 6857 return; 6858 } 6859 case Intrinsic::fma: 6860 setValue(&I, DAG.getNode( 6861 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6862 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6863 getValue(I.getArgOperand(2)), Flags)); 6864 return; 6865 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6866 case Intrinsic::INTRINSIC: 6867 #include "llvm/IR/ConstrainedOps.def" 6868 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6869 return; 6870 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6871 #include "llvm/IR/VPIntrinsics.def" 6872 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6873 return; 6874 case Intrinsic::fptrunc_round: { 6875 // Get the last argument, the metadata and convert it to an integer in the 6876 // call 6877 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6878 std::optional<RoundingMode> RoundMode = 6879 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6880 6881 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6882 6883 // Propagate fast-math-flags from IR to node(s). 6884 SDNodeFlags Flags; 6885 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6886 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6887 6888 SDValue Result; 6889 Result = DAG.getNode( 6890 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6891 DAG.getTargetConstant((int)*RoundMode, sdl, 6892 TLI.getPointerTy(DAG.getDataLayout()))); 6893 setValue(&I, Result); 6894 6895 return; 6896 } 6897 case Intrinsic::fmuladd: { 6898 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6899 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6900 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6901 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6902 getValue(I.getArgOperand(0)).getValueType(), 6903 getValue(I.getArgOperand(0)), 6904 getValue(I.getArgOperand(1)), 6905 getValue(I.getArgOperand(2)), Flags)); 6906 } else { 6907 // TODO: Intrinsic calls should have fast-math-flags. 6908 SDValue Mul = DAG.getNode( 6909 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6910 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6911 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6912 getValue(I.getArgOperand(0)).getValueType(), 6913 Mul, getValue(I.getArgOperand(2)), Flags); 6914 setValue(&I, Add); 6915 } 6916 return; 6917 } 6918 case Intrinsic::convert_to_fp16: 6919 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6920 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6921 getValue(I.getArgOperand(0)), 6922 DAG.getTargetConstant(0, sdl, 6923 MVT::i32)))); 6924 return; 6925 case Intrinsic::convert_from_fp16: 6926 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6927 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6928 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6929 getValue(I.getArgOperand(0))))); 6930 return; 6931 case Intrinsic::fptosi_sat: { 6932 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6933 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6934 getValue(I.getArgOperand(0)), 6935 DAG.getValueType(VT.getScalarType()))); 6936 return; 6937 } 6938 case Intrinsic::fptoui_sat: { 6939 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6940 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6941 getValue(I.getArgOperand(0)), 6942 DAG.getValueType(VT.getScalarType()))); 6943 return; 6944 } 6945 case Intrinsic::set_rounding: 6946 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6947 {getRoot(), getValue(I.getArgOperand(0))}); 6948 setValue(&I, Res); 6949 DAG.setRoot(Res.getValue(0)); 6950 return; 6951 case Intrinsic::is_fpclass: { 6952 const DataLayout DLayout = DAG.getDataLayout(); 6953 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6954 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6955 FPClassTest Test = static_cast<FPClassTest>( 6956 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6957 MachineFunction &MF = DAG.getMachineFunction(); 6958 const Function &F = MF.getFunction(); 6959 SDValue Op = getValue(I.getArgOperand(0)); 6960 SDNodeFlags Flags; 6961 Flags.setNoFPExcept( 6962 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6963 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6964 // expansion can use illegal types. Making expansion early allows 6965 // legalizing these types prior to selection. 6966 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6967 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6968 setValue(&I, Result); 6969 return; 6970 } 6971 6972 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6973 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6974 setValue(&I, V); 6975 return; 6976 } 6977 case Intrinsic::get_fpenv: { 6978 const DataLayout DLayout = DAG.getDataLayout(); 6979 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6980 Align TempAlign = DAG.getEVTAlign(EnvVT); 6981 SDValue Chain = getRoot(); 6982 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6983 // and temporary storage in stack. 6984 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6985 Res = DAG.getNode( 6986 ISD::GET_FPENV, sdl, 6987 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6988 MVT::Other), 6989 Chain); 6990 } else { 6991 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6992 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6993 auto MPI = 6994 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6995 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6996 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 6997 TempAlign); 6998 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6999 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7000 } 7001 setValue(&I, Res); 7002 DAG.setRoot(Res.getValue(1)); 7003 return; 7004 } 7005 case Intrinsic::set_fpenv: { 7006 const DataLayout DLayout = DAG.getDataLayout(); 7007 SDValue Env = getValue(I.getArgOperand(0)); 7008 EVT EnvVT = Env.getValueType(); 7009 Align TempAlign = DAG.getEVTAlign(EnvVT); 7010 SDValue Chain = getRoot(); 7011 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7012 // environment from memory. 7013 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7014 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7015 } else { 7016 // Allocate space in stack, copy environment bits into it and use this 7017 // memory in SET_FPENV_MEM. 7018 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7019 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7020 auto MPI = 7021 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7022 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7023 MachineMemOperand::MOStore); 7024 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7025 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7026 TempAlign); 7027 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7028 } 7029 DAG.setRoot(Chain); 7030 return; 7031 } 7032 case Intrinsic::reset_fpenv: 7033 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7034 return; 7035 case Intrinsic::get_fpmode: 7036 Res = DAG.getNode( 7037 ISD::GET_FPMODE, sdl, 7038 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7039 MVT::Other), 7040 DAG.getRoot()); 7041 setValue(&I, Res); 7042 DAG.setRoot(Res.getValue(1)); 7043 return; 7044 case Intrinsic::set_fpmode: 7045 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7046 getValue(I.getArgOperand(0))); 7047 DAG.setRoot(Res); 7048 return; 7049 case Intrinsic::reset_fpmode: { 7050 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7051 DAG.setRoot(Res); 7052 return; 7053 } 7054 case Intrinsic::pcmarker: { 7055 SDValue Tmp = getValue(I.getArgOperand(0)); 7056 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7057 return; 7058 } 7059 case Intrinsic::readcyclecounter: { 7060 SDValue Op = getRoot(); 7061 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7062 DAG.getVTList(MVT::i64, MVT::Other), Op); 7063 setValue(&I, Res); 7064 DAG.setRoot(Res.getValue(1)); 7065 return; 7066 } 7067 case Intrinsic::readsteadycounter: { 7068 SDValue Op = getRoot(); 7069 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7070 DAG.getVTList(MVT::i64, MVT::Other), Op); 7071 setValue(&I, Res); 7072 DAG.setRoot(Res.getValue(1)); 7073 return; 7074 } 7075 case Intrinsic::bitreverse: 7076 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7077 getValue(I.getArgOperand(0)).getValueType(), 7078 getValue(I.getArgOperand(0)))); 7079 return; 7080 case Intrinsic::bswap: 7081 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7082 getValue(I.getArgOperand(0)).getValueType(), 7083 getValue(I.getArgOperand(0)))); 7084 return; 7085 case Intrinsic::cttz: { 7086 SDValue Arg = getValue(I.getArgOperand(0)); 7087 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7088 EVT Ty = Arg.getValueType(); 7089 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7090 sdl, Ty, Arg)); 7091 return; 7092 } 7093 case Intrinsic::ctlz: { 7094 SDValue Arg = getValue(I.getArgOperand(0)); 7095 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7096 EVT Ty = Arg.getValueType(); 7097 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7098 sdl, Ty, Arg)); 7099 return; 7100 } 7101 case Intrinsic::ctpop: { 7102 SDValue Arg = getValue(I.getArgOperand(0)); 7103 EVT Ty = Arg.getValueType(); 7104 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7105 return; 7106 } 7107 case Intrinsic::fshl: 7108 case Intrinsic::fshr: { 7109 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7110 SDValue X = getValue(I.getArgOperand(0)); 7111 SDValue Y = getValue(I.getArgOperand(1)); 7112 SDValue Z = getValue(I.getArgOperand(2)); 7113 EVT VT = X.getValueType(); 7114 7115 if (X == Y) { 7116 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7117 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7118 } else { 7119 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7120 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7121 } 7122 return; 7123 } 7124 case Intrinsic::sadd_sat: { 7125 SDValue Op1 = getValue(I.getArgOperand(0)); 7126 SDValue Op2 = getValue(I.getArgOperand(1)); 7127 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7128 return; 7129 } 7130 case Intrinsic::uadd_sat: { 7131 SDValue Op1 = getValue(I.getArgOperand(0)); 7132 SDValue Op2 = getValue(I.getArgOperand(1)); 7133 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7134 return; 7135 } 7136 case Intrinsic::ssub_sat: { 7137 SDValue Op1 = getValue(I.getArgOperand(0)); 7138 SDValue Op2 = getValue(I.getArgOperand(1)); 7139 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7140 return; 7141 } 7142 case Intrinsic::usub_sat: { 7143 SDValue Op1 = getValue(I.getArgOperand(0)); 7144 SDValue Op2 = getValue(I.getArgOperand(1)); 7145 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7146 return; 7147 } 7148 case Intrinsic::sshl_sat: { 7149 SDValue Op1 = getValue(I.getArgOperand(0)); 7150 SDValue Op2 = getValue(I.getArgOperand(1)); 7151 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7152 return; 7153 } 7154 case Intrinsic::ushl_sat: { 7155 SDValue Op1 = getValue(I.getArgOperand(0)); 7156 SDValue Op2 = getValue(I.getArgOperand(1)); 7157 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7158 return; 7159 } 7160 case Intrinsic::smul_fix: 7161 case Intrinsic::umul_fix: 7162 case Intrinsic::smul_fix_sat: 7163 case Intrinsic::umul_fix_sat: { 7164 SDValue Op1 = getValue(I.getArgOperand(0)); 7165 SDValue Op2 = getValue(I.getArgOperand(1)); 7166 SDValue Op3 = getValue(I.getArgOperand(2)); 7167 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7168 Op1.getValueType(), Op1, Op2, Op3)); 7169 return; 7170 } 7171 case Intrinsic::sdiv_fix: 7172 case Intrinsic::udiv_fix: 7173 case Intrinsic::sdiv_fix_sat: 7174 case Intrinsic::udiv_fix_sat: { 7175 SDValue Op1 = getValue(I.getArgOperand(0)); 7176 SDValue Op2 = getValue(I.getArgOperand(1)); 7177 SDValue Op3 = getValue(I.getArgOperand(2)); 7178 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7179 Op1, Op2, Op3, DAG, TLI)); 7180 return; 7181 } 7182 case Intrinsic::smax: { 7183 SDValue Op1 = getValue(I.getArgOperand(0)); 7184 SDValue Op2 = getValue(I.getArgOperand(1)); 7185 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7186 return; 7187 } 7188 case Intrinsic::smin: { 7189 SDValue Op1 = getValue(I.getArgOperand(0)); 7190 SDValue Op2 = getValue(I.getArgOperand(1)); 7191 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7192 return; 7193 } 7194 case Intrinsic::umax: { 7195 SDValue Op1 = getValue(I.getArgOperand(0)); 7196 SDValue Op2 = getValue(I.getArgOperand(1)); 7197 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7198 return; 7199 } 7200 case Intrinsic::umin: { 7201 SDValue Op1 = getValue(I.getArgOperand(0)); 7202 SDValue Op2 = getValue(I.getArgOperand(1)); 7203 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7204 return; 7205 } 7206 case Intrinsic::abs: { 7207 // TODO: Preserve "int min is poison" arg in SDAG? 7208 SDValue Op1 = getValue(I.getArgOperand(0)); 7209 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7210 return; 7211 } 7212 case Intrinsic::stacksave: { 7213 SDValue Op = getRoot(); 7214 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7215 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7216 setValue(&I, Res); 7217 DAG.setRoot(Res.getValue(1)); 7218 return; 7219 } 7220 case Intrinsic::stackrestore: 7221 Res = getValue(I.getArgOperand(0)); 7222 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7223 return; 7224 case Intrinsic::get_dynamic_area_offset: { 7225 SDValue Op = getRoot(); 7226 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7227 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7228 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7229 // target. 7230 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7231 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7232 " intrinsic!"); 7233 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7234 Op); 7235 DAG.setRoot(Op); 7236 setValue(&I, Res); 7237 return; 7238 } 7239 case Intrinsic::stackguard: { 7240 MachineFunction &MF = DAG.getMachineFunction(); 7241 const Module &M = *MF.getFunction().getParent(); 7242 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7243 SDValue Chain = getRoot(); 7244 if (TLI.useLoadStackGuardNode()) { 7245 Res = getLoadStackGuard(DAG, sdl, Chain); 7246 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7247 } else { 7248 const Value *Global = TLI.getSDagStackGuard(M); 7249 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7250 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7251 MachinePointerInfo(Global, 0), Align, 7252 MachineMemOperand::MOVolatile); 7253 } 7254 if (TLI.useStackGuardXorFP()) 7255 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7256 DAG.setRoot(Chain); 7257 setValue(&I, Res); 7258 return; 7259 } 7260 case Intrinsic::stackprotector: { 7261 // Emit code into the DAG to store the stack guard onto the stack. 7262 MachineFunction &MF = DAG.getMachineFunction(); 7263 MachineFrameInfo &MFI = MF.getFrameInfo(); 7264 SDValue Src, Chain = getRoot(); 7265 7266 if (TLI.useLoadStackGuardNode()) 7267 Src = getLoadStackGuard(DAG, sdl, Chain); 7268 else 7269 Src = getValue(I.getArgOperand(0)); // The guard's value. 7270 7271 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7272 7273 int FI = FuncInfo.StaticAllocaMap[Slot]; 7274 MFI.setStackProtectorIndex(FI); 7275 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7276 7277 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7278 7279 // Store the stack protector onto the stack. 7280 Res = DAG.getStore( 7281 Chain, sdl, Src, FIN, 7282 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7283 MaybeAlign(), MachineMemOperand::MOVolatile); 7284 setValue(&I, Res); 7285 DAG.setRoot(Res); 7286 return; 7287 } 7288 case Intrinsic::objectsize: 7289 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7290 7291 case Intrinsic::is_constant: 7292 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7293 7294 case Intrinsic::annotation: 7295 case Intrinsic::ptr_annotation: 7296 case Intrinsic::launder_invariant_group: 7297 case Intrinsic::strip_invariant_group: 7298 // Drop the intrinsic, but forward the value 7299 setValue(&I, getValue(I.getOperand(0))); 7300 return; 7301 7302 case Intrinsic::assume: 7303 case Intrinsic::experimental_noalias_scope_decl: 7304 case Intrinsic::var_annotation: 7305 case Intrinsic::sideeffect: 7306 // Discard annotate attributes, noalias scope declarations, assumptions, and 7307 // artificial side-effects. 7308 return; 7309 7310 case Intrinsic::codeview_annotation: { 7311 // Emit a label associated with this metadata. 7312 MachineFunction &MF = DAG.getMachineFunction(); 7313 MCSymbol *Label = 7314 MF.getMMI().getContext().createTempSymbol("annotation", true); 7315 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7316 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7317 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7318 DAG.setRoot(Res); 7319 return; 7320 } 7321 7322 case Intrinsic::init_trampoline: { 7323 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7324 7325 SDValue Ops[6]; 7326 Ops[0] = getRoot(); 7327 Ops[1] = getValue(I.getArgOperand(0)); 7328 Ops[2] = getValue(I.getArgOperand(1)); 7329 Ops[3] = getValue(I.getArgOperand(2)); 7330 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7331 Ops[5] = DAG.getSrcValue(F); 7332 7333 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7334 7335 DAG.setRoot(Res); 7336 return; 7337 } 7338 case Intrinsic::adjust_trampoline: 7339 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7340 TLI.getPointerTy(DAG.getDataLayout()), 7341 getValue(I.getArgOperand(0)))); 7342 return; 7343 case Intrinsic::gcroot: { 7344 assert(DAG.getMachineFunction().getFunction().hasGC() && 7345 "only valid in functions with gc specified, enforced by Verifier"); 7346 assert(GFI && "implied by previous"); 7347 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7348 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7349 7350 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7351 GFI->addStackRoot(FI->getIndex(), TypeMap); 7352 return; 7353 } 7354 case Intrinsic::gcread: 7355 case Intrinsic::gcwrite: 7356 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7357 case Intrinsic::get_rounding: 7358 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7359 setValue(&I, Res); 7360 DAG.setRoot(Res.getValue(1)); 7361 return; 7362 7363 case Intrinsic::expect: 7364 // Just replace __builtin_expect(exp, c) with EXP. 7365 setValue(&I, getValue(I.getArgOperand(0))); 7366 return; 7367 7368 case Intrinsic::ubsantrap: 7369 case Intrinsic::debugtrap: 7370 case Intrinsic::trap: { 7371 StringRef TrapFuncName = 7372 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7373 if (TrapFuncName.empty()) { 7374 switch (Intrinsic) { 7375 case Intrinsic::trap: 7376 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7377 break; 7378 case Intrinsic::debugtrap: 7379 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7380 break; 7381 case Intrinsic::ubsantrap: 7382 DAG.setRoot(DAG.getNode( 7383 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7384 DAG.getTargetConstant( 7385 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7386 MVT::i32))); 7387 break; 7388 default: llvm_unreachable("unknown trap intrinsic"); 7389 } 7390 return; 7391 } 7392 TargetLowering::ArgListTy Args; 7393 if (Intrinsic == Intrinsic::ubsantrap) { 7394 Args.push_back(TargetLoweringBase::ArgListEntry()); 7395 Args[0].Val = I.getArgOperand(0); 7396 Args[0].Node = getValue(Args[0].Val); 7397 Args[0].Ty = Args[0].Val->getType(); 7398 } 7399 7400 TargetLowering::CallLoweringInfo CLI(DAG); 7401 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7402 CallingConv::C, I.getType(), 7403 DAG.getExternalSymbol(TrapFuncName.data(), 7404 TLI.getPointerTy(DAG.getDataLayout())), 7405 std::move(Args)); 7406 7407 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7408 DAG.setRoot(Result.second); 7409 return; 7410 } 7411 7412 case Intrinsic::allow_runtime_check: 7413 case Intrinsic::allow_ubsan_check: 7414 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7415 return; 7416 7417 case Intrinsic::uadd_with_overflow: 7418 case Intrinsic::sadd_with_overflow: 7419 case Intrinsic::usub_with_overflow: 7420 case Intrinsic::ssub_with_overflow: 7421 case Intrinsic::umul_with_overflow: 7422 case Intrinsic::smul_with_overflow: { 7423 ISD::NodeType Op; 7424 switch (Intrinsic) { 7425 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7426 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7427 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7428 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7429 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7430 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7431 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7432 } 7433 SDValue Op1 = getValue(I.getArgOperand(0)); 7434 SDValue Op2 = getValue(I.getArgOperand(1)); 7435 7436 EVT ResultVT = Op1.getValueType(); 7437 EVT OverflowVT = MVT::i1; 7438 if (ResultVT.isVector()) 7439 OverflowVT = EVT::getVectorVT( 7440 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7441 7442 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7443 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7444 return; 7445 } 7446 case Intrinsic::prefetch: { 7447 SDValue Ops[5]; 7448 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7449 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7450 Ops[0] = DAG.getRoot(); 7451 Ops[1] = getValue(I.getArgOperand(0)); 7452 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7453 MVT::i32); 7454 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7455 MVT::i32); 7456 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7457 MVT::i32); 7458 SDValue Result = DAG.getMemIntrinsicNode( 7459 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7460 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7461 /* align */ std::nullopt, Flags); 7462 7463 // Chain the prefetch in parallel with any pending loads, to stay out of 7464 // the way of later optimizations. 7465 PendingLoads.push_back(Result); 7466 Result = getRoot(); 7467 DAG.setRoot(Result); 7468 return; 7469 } 7470 case Intrinsic::lifetime_start: 7471 case Intrinsic::lifetime_end: { 7472 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7473 // Stack coloring is not enabled in O0, discard region information. 7474 if (TM.getOptLevel() == CodeGenOptLevel::None) 7475 return; 7476 7477 const int64_t ObjectSize = 7478 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7479 Value *const ObjectPtr = I.getArgOperand(1); 7480 SmallVector<const Value *, 4> Allocas; 7481 getUnderlyingObjects(ObjectPtr, Allocas); 7482 7483 for (const Value *Alloca : Allocas) { 7484 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7485 7486 // Could not find an Alloca. 7487 if (!LifetimeObject) 7488 continue; 7489 7490 // First check that the Alloca is static, otherwise it won't have a 7491 // valid frame index. 7492 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7493 if (SI == FuncInfo.StaticAllocaMap.end()) 7494 return; 7495 7496 const int FrameIndex = SI->second; 7497 int64_t Offset; 7498 if (GetPointerBaseWithConstantOffset( 7499 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7500 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7501 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7502 Offset); 7503 DAG.setRoot(Res); 7504 } 7505 return; 7506 } 7507 case Intrinsic::pseudoprobe: { 7508 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7509 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7510 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7511 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7512 DAG.setRoot(Res); 7513 return; 7514 } 7515 case Intrinsic::invariant_start: 7516 // Discard region information. 7517 setValue(&I, 7518 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7519 return; 7520 case Intrinsic::invariant_end: 7521 // Discard region information. 7522 return; 7523 case Intrinsic::clear_cache: { 7524 SDValue InputChain = DAG.getRoot(); 7525 SDValue StartVal = getValue(I.getArgOperand(0)); 7526 SDValue EndVal = getValue(I.getArgOperand(1)); 7527 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7528 {InputChain, StartVal, EndVal}); 7529 setValue(&I, Res); 7530 DAG.setRoot(Res); 7531 return; 7532 } 7533 case Intrinsic::donothing: 7534 case Intrinsic::seh_try_begin: 7535 case Intrinsic::seh_scope_begin: 7536 case Intrinsic::seh_try_end: 7537 case Intrinsic::seh_scope_end: 7538 // ignore 7539 return; 7540 case Intrinsic::experimental_stackmap: 7541 visitStackmap(I); 7542 return; 7543 case Intrinsic::experimental_patchpoint_void: 7544 case Intrinsic::experimental_patchpoint: 7545 visitPatchpoint(I); 7546 return; 7547 case Intrinsic::experimental_gc_statepoint: 7548 LowerStatepoint(cast<GCStatepointInst>(I)); 7549 return; 7550 case Intrinsic::experimental_gc_result: 7551 visitGCResult(cast<GCResultInst>(I)); 7552 return; 7553 case Intrinsic::experimental_gc_relocate: 7554 visitGCRelocate(cast<GCRelocateInst>(I)); 7555 return; 7556 case Intrinsic::instrprof_cover: 7557 llvm_unreachable("instrprof failed to lower a cover"); 7558 case Intrinsic::instrprof_increment: 7559 llvm_unreachable("instrprof failed to lower an increment"); 7560 case Intrinsic::instrprof_timestamp: 7561 llvm_unreachable("instrprof failed to lower a timestamp"); 7562 case Intrinsic::instrprof_value_profile: 7563 llvm_unreachable("instrprof failed to lower a value profiling call"); 7564 case Intrinsic::instrprof_mcdc_parameters: 7565 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7566 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7567 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7568 case Intrinsic::instrprof_mcdc_condbitmap_update: 7569 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7570 case Intrinsic::localescape: { 7571 MachineFunction &MF = DAG.getMachineFunction(); 7572 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7573 7574 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7575 // is the same on all targets. 7576 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7577 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7578 if (isa<ConstantPointerNull>(Arg)) 7579 continue; // Skip null pointers. They represent a hole in index space. 7580 AllocaInst *Slot = cast<AllocaInst>(Arg); 7581 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7582 "can only escape static allocas"); 7583 int FI = FuncInfo.StaticAllocaMap[Slot]; 7584 MCSymbol *FrameAllocSym = 7585 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7586 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7587 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7588 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7589 .addSym(FrameAllocSym) 7590 .addFrameIndex(FI); 7591 } 7592 7593 return; 7594 } 7595 7596 case Intrinsic::localrecover: { 7597 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7598 MachineFunction &MF = DAG.getMachineFunction(); 7599 7600 // Get the symbol that defines the frame offset. 7601 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7602 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7603 unsigned IdxVal = 7604 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7605 MCSymbol *FrameAllocSym = 7606 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7607 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7608 7609 Value *FP = I.getArgOperand(1); 7610 SDValue FPVal = getValue(FP); 7611 EVT PtrVT = FPVal.getValueType(); 7612 7613 // Create a MCSymbol for the label to avoid any target lowering 7614 // that would make this PC relative. 7615 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7616 SDValue OffsetVal = 7617 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7618 7619 // Add the offset to the FP. 7620 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7621 setValue(&I, Add); 7622 7623 return; 7624 } 7625 7626 case Intrinsic::eh_exceptionpointer: 7627 case Intrinsic::eh_exceptioncode: { 7628 // Get the exception pointer vreg, copy from it, and resize it to fit. 7629 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7630 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7631 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7632 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7633 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7634 if (Intrinsic == Intrinsic::eh_exceptioncode) 7635 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7636 setValue(&I, N); 7637 return; 7638 } 7639 case Intrinsic::xray_customevent: { 7640 // Here we want to make sure that the intrinsic behaves as if it has a 7641 // specific calling convention. 7642 const auto &Triple = DAG.getTarget().getTargetTriple(); 7643 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7644 return; 7645 7646 SmallVector<SDValue, 8> Ops; 7647 7648 // We want to say that we always want the arguments in registers. 7649 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7650 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7651 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7652 SDValue Chain = getRoot(); 7653 Ops.push_back(LogEntryVal); 7654 Ops.push_back(StrSizeVal); 7655 Ops.push_back(Chain); 7656 7657 // We need to enforce the calling convention for the callsite, so that 7658 // argument ordering is enforced correctly, and that register allocation can 7659 // see that some registers may be assumed clobbered and have to preserve 7660 // them across calls to the intrinsic. 7661 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7662 sdl, NodeTys, Ops); 7663 SDValue patchableNode = SDValue(MN, 0); 7664 DAG.setRoot(patchableNode); 7665 setValue(&I, patchableNode); 7666 return; 7667 } 7668 case Intrinsic::xray_typedevent: { 7669 // Here we want to make sure that the intrinsic behaves as if it has a 7670 // specific calling convention. 7671 const auto &Triple = DAG.getTarget().getTargetTriple(); 7672 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7673 return; 7674 7675 SmallVector<SDValue, 8> Ops; 7676 7677 // We want to say that we always want the arguments in registers. 7678 // It's unclear to me how manipulating the selection DAG here forces callers 7679 // to provide arguments in registers instead of on the stack. 7680 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7681 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7682 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7683 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7684 SDValue Chain = getRoot(); 7685 Ops.push_back(LogTypeId); 7686 Ops.push_back(LogEntryVal); 7687 Ops.push_back(StrSizeVal); 7688 Ops.push_back(Chain); 7689 7690 // We need to enforce the calling convention for the callsite, so that 7691 // argument ordering is enforced correctly, and that register allocation can 7692 // see that some registers may be assumed clobbered and have to preserve 7693 // them across calls to the intrinsic. 7694 MachineSDNode *MN = DAG.getMachineNode( 7695 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7696 SDValue patchableNode = SDValue(MN, 0); 7697 DAG.setRoot(patchableNode); 7698 setValue(&I, patchableNode); 7699 return; 7700 } 7701 case Intrinsic::experimental_deoptimize: 7702 LowerDeoptimizeCall(&I); 7703 return; 7704 case Intrinsic::experimental_stepvector: 7705 visitStepVector(I); 7706 return; 7707 case Intrinsic::vector_reduce_fadd: 7708 case Intrinsic::vector_reduce_fmul: 7709 case Intrinsic::vector_reduce_add: 7710 case Intrinsic::vector_reduce_mul: 7711 case Intrinsic::vector_reduce_and: 7712 case Intrinsic::vector_reduce_or: 7713 case Intrinsic::vector_reduce_xor: 7714 case Intrinsic::vector_reduce_smax: 7715 case Intrinsic::vector_reduce_smin: 7716 case Intrinsic::vector_reduce_umax: 7717 case Intrinsic::vector_reduce_umin: 7718 case Intrinsic::vector_reduce_fmax: 7719 case Intrinsic::vector_reduce_fmin: 7720 case Intrinsic::vector_reduce_fmaximum: 7721 case Intrinsic::vector_reduce_fminimum: 7722 visitVectorReduce(I, Intrinsic); 7723 return; 7724 7725 case Intrinsic::icall_branch_funnel: { 7726 SmallVector<SDValue, 16> Ops; 7727 Ops.push_back(getValue(I.getArgOperand(0))); 7728 7729 int64_t Offset; 7730 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7731 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7732 if (!Base) 7733 report_fatal_error( 7734 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7735 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7736 7737 struct BranchFunnelTarget { 7738 int64_t Offset; 7739 SDValue Target; 7740 }; 7741 SmallVector<BranchFunnelTarget, 8> Targets; 7742 7743 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7744 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7745 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7746 if (ElemBase != Base) 7747 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7748 "to the same GlobalValue"); 7749 7750 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7751 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7752 if (!GA) 7753 report_fatal_error( 7754 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7755 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7756 GA->getGlobal(), sdl, Val.getValueType(), 7757 GA->getOffset())}); 7758 } 7759 llvm::sort(Targets, 7760 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7761 return T1.Offset < T2.Offset; 7762 }); 7763 7764 for (auto &T : Targets) { 7765 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7766 Ops.push_back(T.Target); 7767 } 7768 7769 Ops.push_back(DAG.getRoot()); // Chain 7770 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7771 MVT::Other, Ops), 7772 0); 7773 DAG.setRoot(N); 7774 setValue(&I, N); 7775 HasTailCall = true; 7776 return; 7777 } 7778 7779 case Intrinsic::wasm_landingpad_index: 7780 // Information this intrinsic contained has been transferred to 7781 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7782 // delete it now. 7783 return; 7784 7785 case Intrinsic::aarch64_settag: 7786 case Intrinsic::aarch64_settag_zero: { 7787 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7788 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7789 SDValue Val = TSI.EmitTargetCodeForSetTag( 7790 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7791 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7792 ZeroMemory); 7793 DAG.setRoot(Val); 7794 setValue(&I, Val); 7795 return; 7796 } 7797 case Intrinsic::amdgcn_cs_chain: { 7798 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7799 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7800 "Non-zero flags not supported yet"); 7801 7802 // At this point we don't care if it's amdgpu_cs_chain or 7803 // amdgpu_cs_chain_preserve. 7804 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7805 7806 Type *RetTy = I.getType(); 7807 assert(RetTy->isVoidTy() && "Should not return"); 7808 7809 SDValue Callee = getValue(I.getOperand(0)); 7810 7811 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7812 // We'll also tack the value of the EXEC mask at the end. 7813 TargetLowering::ArgListTy Args; 7814 Args.reserve(3); 7815 7816 for (unsigned Idx : {2, 3, 1}) { 7817 TargetLowering::ArgListEntry Arg; 7818 Arg.Node = getValue(I.getOperand(Idx)); 7819 Arg.Ty = I.getOperand(Idx)->getType(); 7820 Arg.setAttributes(&I, Idx); 7821 Args.push_back(Arg); 7822 } 7823 7824 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7825 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7826 Args[2].IsInReg = true; // EXEC should be inreg 7827 7828 TargetLowering::CallLoweringInfo CLI(DAG); 7829 CLI.setDebugLoc(getCurSDLoc()) 7830 .setChain(getRoot()) 7831 .setCallee(CC, RetTy, Callee, std::move(Args)) 7832 .setNoReturn(true) 7833 .setTailCall(true) 7834 .setConvergent(I.isConvergent()); 7835 CLI.CB = &I; 7836 std::pair<SDValue, SDValue> Result = 7837 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7838 (void)Result; 7839 assert(!Result.first.getNode() && !Result.second.getNode() && 7840 "Should've lowered as tail call"); 7841 7842 HasTailCall = true; 7843 return; 7844 } 7845 case Intrinsic::ptrmask: { 7846 SDValue Ptr = getValue(I.getOperand(0)); 7847 SDValue Mask = getValue(I.getOperand(1)); 7848 7849 // On arm64_32, pointers are 32 bits when stored in memory, but 7850 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7851 // match the index type, but the pointer is 64 bits, so the the mask must be 7852 // zero-extended up to 64 bits to match the pointer. 7853 EVT PtrVT = 7854 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7855 EVT MemVT = 7856 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7857 assert(PtrVT == Ptr.getValueType()); 7858 assert(MemVT == Mask.getValueType()); 7859 if (MemVT != PtrVT) 7860 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7861 7862 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7863 return; 7864 } 7865 case Intrinsic::threadlocal_address: { 7866 setValue(&I, getValue(I.getOperand(0))); 7867 return; 7868 } 7869 case Intrinsic::get_active_lane_mask: { 7870 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7871 SDValue Index = getValue(I.getOperand(0)); 7872 EVT ElementVT = Index.getValueType(); 7873 7874 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7875 visitTargetIntrinsic(I, Intrinsic); 7876 return; 7877 } 7878 7879 SDValue TripCount = getValue(I.getOperand(1)); 7880 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7881 CCVT.getVectorElementCount()); 7882 7883 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7884 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7885 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7886 SDValue VectorInduction = DAG.getNode( 7887 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7888 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7889 VectorTripCount, ISD::CondCode::SETULT); 7890 setValue(&I, SetCC); 7891 return; 7892 } 7893 case Intrinsic::experimental_get_vector_length: { 7894 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7895 "Expected positive VF"); 7896 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7897 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7898 7899 SDValue Count = getValue(I.getOperand(0)); 7900 EVT CountVT = Count.getValueType(); 7901 7902 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7903 visitTargetIntrinsic(I, Intrinsic); 7904 return; 7905 } 7906 7907 // Expand to a umin between the trip count and the maximum elements the type 7908 // can hold. 7909 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7910 7911 // Extend the trip count to at least the result VT. 7912 if (CountVT.bitsLT(VT)) { 7913 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7914 CountVT = VT; 7915 } 7916 7917 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7918 ElementCount::get(VF, IsScalable)); 7919 7920 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7921 // Clip to the result type if needed. 7922 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7923 7924 setValue(&I, Trunc); 7925 return; 7926 } 7927 case Intrinsic::experimental_cttz_elts: { 7928 auto DL = getCurSDLoc(); 7929 SDValue Op = getValue(I.getOperand(0)); 7930 EVT OpVT = Op.getValueType(); 7931 7932 if (!TLI.shouldExpandCttzElements(OpVT)) { 7933 visitTargetIntrinsic(I, Intrinsic); 7934 return; 7935 } 7936 7937 if (OpVT.getScalarType() != MVT::i1) { 7938 // Compare the input vector elements to zero & use to count trailing zeros 7939 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7940 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7941 OpVT.getVectorElementCount()); 7942 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7943 } 7944 7945 // If the zero-is-poison flag is set, we can assume the upper limit 7946 // of the result is VF-1. 7947 bool ZeroIsPoison = 7948 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 7949 ConstantRange VScaleRange(1, true); // Dummy value. 7950 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 7951 VScaleRange = getVScaleRange(I.getCaller(), 64); 7952 unsigned EltWidth = TLI.getBitWidthForCttzElements( 7953 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 7954 7955 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7956 7957 // Create the new vector type & get the vector length 7958 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7959 OpVT.getVectorElementCount()); 7960 7961 SDValue VL = 7962 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7963 7964 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7965 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7966 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7967 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7968 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7969 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7970 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7971 7972 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7973 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7974 7975 setValue(&I, Ret); 7976 return; 7977 } 7978 case Intrinsic::vector_insert: { 7979 SDValue Vec = getValue(I.getOperand(0)); 7980 SDValue SubVec = getValue(I.getOperand(1)); 7981 SDValue Index = getValue(I.getOperand(2)); 7982 7983 // The intrinsic's index type is i64, but the SDNode requires an index type 7984 // suitable for the target. Convert the index as required. 7985 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7986 if (Index.getValueType() != VectorIdxTy) 7987 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7988 7989 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7990 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7991 Index)); 7992 return; 7993 } 7994 case Intrinsic::vector_extract: { 7995 SDValue Vec = getValue(I.getOperand(0)); 7996 SDValue Index = getValue(I.getOperand(1)); 7997 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7998 7999 // The intrinsic's index type is i64, but the SDNode requires an index type 8000 // suitable for the target. Convert the index as required. 8001 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8002 if (Index.getValueType() != VectorIdxTy) 8003 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8004 8005 setValue(&I, 8006 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8007 return; 8008 } 8009 case Intrinsic::vector_reverse: 8010 visitVectorReverse(I); 8011 return; 8012 case Intrinsic::vector_splice: 8013 visitVectorSplice(I); 8014 return; 8015 case Intrinsic::callbr_landingpad: 8016 visitCallBrLandingPad(I); 8017 return; 8018 case Intrinsic::vector_interleave2: 8019 visitVectorInterleave(I); 8020 return; 8021 case Intrinsic::vector_deinterleave2: 8022 visitVectorDeinterleave(I); 8023 return; 8024 case Intrinsic::experimental_convergence_anchor: 8025 case Intrinsic::experimental_convergence_entry: 8026 case Intrinsic::experimental_convergence_loop: 8027 visitConvergenceControl(I, Intrinsic); 8028 return; 8029 case Intrinsic::experimental_vector_histogram_add: { 8030 visitVectorHistogram(I, Intrinsic); 8031 return; 8032 } 8033 } 8034 } 8035 8036 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8037 const ConstrainedFPIntrinsic &FPI) { 8038 SDLoc sdl = getCurSDLoc(); 8039 8040 // We do not need to serialize constrained FP intrinsics against 8041 // each other or against (nonvolatile) loads, so they can be 8042 // chained like loads. 8043 SDValue Chain = DAG.getRoot(); 8044 SmallVector<SDValue, 4> Opers; 8045 Opers.push_back(Chain); 8046 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8047 Opers.push_back(getValue(FPI.getArgOperand(I))); 8048 8049 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8050 assert(Result.getNode()->getNumValues() == 2); 8051 8052 // Push node to the appropriate list so that future instructions can be 8053 // chained up correctly. 8054 SDValue OutChain = Result.getValue(1); 8055 switch (EB) { 8056 case fp::ExceptionBehavior::ebIgnore: 8057 // The only reason why ebIgnore nodes still need to be chained is that 8058 // they might depend on the current rounding mode, and therefore must 8059 // not be moved across instruction that may change that mode. 8060 [[fallthrough]]; 8061 case fp::ExceptionBehavior::ebMayTrap: 8062 // These must not be moved across calls or instructions that may change 8063 // floating-point exception masks. 8064 PendingConstrainedFP.push_back(OutChain); 8065 break; 8066 case fp::ExceptionBehavior::ebStrict: 8067 // These must not be moved across calls or instructions that may change 8068 // floating-point exception masks or read floating-point exception flags. 8069 // In addition, they cannot be optimized out even if unused. 8070 PendingConstrainedFPStrict.push_back(OutChain); 8071 break; 8072 } 8073 }; 8074 8075 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8076 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8077 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8078 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8079 8080 SDNodeFlags Flags; 8081 if (EB == fp::ExceptionBehavior::ebIgnore) 8082 Flags.setNoFPExcept(true); 8083 8084 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8085 Flags.copyFMF(*FPOp); 8086 8087 unsigned Opcode; 8088 switch (FPI.getIntrinsicID()) { 8089 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8090 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8091 case Intrinsic::INTRINSIC: \ 8092 Opcode = ISD::STRICT_##DAGN; \ 8093 break; 8094 #include "llvm/IR/ConstrainedOps.def" 8095 case Intrinsic::experimental_constrained_fmuladd: { 8096 Opcode = ISD::STRICT_FMA; 8097 // Break fmuladd into fmul and fadd. 8098 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8099 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8100 Opers.pop_back(); 8101 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8102 pushOutChain(Mul, EB); 8103 Opcode = ISD::STRICT_FADD; 8104 Opers.clear(); 8105 Opers.push_back(Mul.getValue(1)); 8106 Opers.push_back(Mul.getValue(0)); 8107 Opers.push_back(getValue(FPI.getArgOperand(2))); 8108 } 8109 break; 8110 } 8111 } 8112 8113 // A few strict DAG nodes carry additional operands that are not 8114 // set up by the default code above. 8115 switch (Opcode) { 8116 default: break; 8117 case ISD::STRICT_FP_ROUND: 8118 Opers.push_back( 8119 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8120 break; 8121 case ISD::STRICT_FSETCC: 8122 case ISD::STRICT_FSETCCS: { 8123 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8124 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8125 if (TM.Options.NoNaNsFPMath) 8126 Condition = getFCmpCodeWithoutNaN(Condition); 8127 Opers.push_back(DAG.getCondCode(Condition)); 8128 break; 8129 } 8130 } 8131 8132 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8133 pushOutChain(Result, EB); 8134 8135 SDValue FPResult = Result.getValue(0); 8136 setValue(&FPI, FPResult); 8137 } 8138 8139 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8140 std::optional<unsigned> ResOPC; 8141 switch (VPIntrin.getIntrinsicID()) { 8142 case Intrinsic::vp_ctlz: { 8143 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8144 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8145 break; 8146 } 8147 case Intrinsic::vp_cttz: { 8148 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8149 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8150 break; 8151 } 8152 case Intrinsic::vp_cttz_elts: { 8153 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8154 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8155 break; 8156 } 8157 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8158 case Intrinsic::VPID: \ 8159 ResOPC = ISD::VPSD; \ 8160 break; 8161 #include "llvm/IR/VPIntrinsics.def" 8162 } 8163 8164 if (!ResOPC) 8165 llvm_unreachable( 8166 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8167 8168 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8169 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8170 if (VPIntrin.getFastMathFlags().allowReassoc()) 8171 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8172 : ISD::VP_REDUCE_FMUL; 8173 } 8174 8175 return *ResOPC; 8176 } 8177 8178 void SelectionDAGBuilder::visitVPLoad( 8179 const VPIntrinsic &VPIntrin, EVT VT, 8180 const SmallVectorImpl<SDValue> &OpValues) { 8181 SDLoc DL = getCurSDLoc(); 8182 Value *PtrOperand = VPIntrin.getArgOperand(0); 8183 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8184 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8185 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8186 SDValue LD; 8187 // Do not serialize variable-length loads of constant memory with 8188 // anything. 8189 if (!Alignment) 8190 Alignment = DAG.getEVTAlign(VT); 8191 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8192 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8193 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8194 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8195 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8196 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8197 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8198 MMO, false /*IsExpanding */); 8199 if (AddToChain) 8200 PendingLoads.push_back(LD.getValue(1)); 8201 setValue(&VPIntrin, LD); 8202 } 8203 8204 void SelectionDAGBuilder::visitVPGather( 8205 const VPIntrinsic &VPIntrin, EVT VT, 8206 const SmallVectorImpl<SDValue> &OpValues) { 8207 SDLoc DL = getCurSDLoc(); 8208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8209 Value *PtrOperand = VPIntrin.getArgOperand(0); 8210 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8211 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8212 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8213 SDValue LD; 8214 if (!Alignment) 8215 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8216 unsigned AS = 8217 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8218 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8219 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8220 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8221 SDValue Base, Index, Scale; 8222 ISD::MemIndexType IndexType; 8223 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8224 this, VPIntrin.getParent(), 8225 VT.getScalarStoreSize()); 8226 if (!UniformBase) { 8227 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8228 Index = getValue(PtrOperand); 8229 IndexType = ISD::SIGNED_SCALED; 8230 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8231 } 8232 EVT IdxVT = Index.getValueType(); 8233 EVT EltTy = IdxVT.getVectorElementType(); 8234 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8235 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8236 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8237 } 8238 LD = DAG.getGatherVP( 8239 DAG.getVTList(VT, MVT::Other), VT, DL, 8240 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8241 IndexType); 8242 PendingLoads.push_back(LD.getValue(1)); 8243 setValue(&VPIntrin, LD); 8244 } 8245 8246 void SelectionDAGBuilder::visitVPStore( 8247 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8248 SDLoc DL = getCurSDLoc(); 8249 Value *PtrOperand = VPIntrin.getArgOperand(1); 8250 EVT VT = OpValues[0].getValueType(); 8251 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8252 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8253 SDValue ST; 8254 if (!Alignment) 8255 Alignment = DAG.getEVTAlign(VT); 8256 SDValue Ptr = OpValues[1]; 8257 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8258 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8259 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8260 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8261 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8262 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8263 /* IsTruncating */ false, /*IsCompressing*/ false); 8264 DAG.setRoot(ST); 8265 setValue(&VPIntrin, ST); 8266 } 8267 8268 void SelectionDAGBuilder::visitVPScatter( 8269 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8270 SDLoc DL = getCurSDLoc(); 8271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8272 Value *PtrOperand = VPIntrin.getArgOperand(1); 8273 EVT VT = OpValues[0].getValueType(); 8274 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8275 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8276 SDValue ST; 8277 if (!Alignment) 8278 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8279 unsigned AS = 8280 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8281 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8282 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8283 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8284 SDValue Base, Index, Scale; 8285 ISD::MemIndexType IndexType; 8286 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8287 this, VPIntrin.getParent(), 8288 VT.getScalarStoreSize()); 8289 if (!UniformBase) { 8290 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8291 Index = getValue(PtrOperand); 8292 IndexType = ISD::SIGNED_SCALED; 8293 Scale = 8294 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8295 } 8296 EVT IdxVT = Index.getValueType(); 8297 EVT EltTy = IdxVT.getVectorElementType(); 8298 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8299 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8300 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8301 } 8302 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8303 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8304 OpValues[2], OpValues[3]}, 8305 MMO, IndexType); 8306 DAG.setRoot(ST); 8307 setValue(&VPIntrin, ST); 8308 } 8309 8310 void SelectionDAGBuilder::visitVPStridedLoad( 8311 const VPIntrinsic &VPIntrin, EVT VT, 8312 const SmallVectorImpl<SDValue> &OpValues) { 8313 SDLoc DL = getCurSDLoc(); 8314 Value *PtrOperand = VPIntrin.getArgOperand(0); 8315 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8316 if (!Alignment) 8317 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8318 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8319 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8320 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8321 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8322 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8323 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8324 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8325 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8326 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8327 8328 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8329 OpValues[2], OpValues[3], MMO, 8330 false /*IsExpanding*/); 8331 8332 if (AddToChain) 8333 PendingLoads.push_back(LD.getValue(1)); 8334 setValue(&VPIntrin, LD); 8335 } 8336 8337 void SelectionDAGBuilder::visitVPStridedStore( 8338 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8339 SDLoc DL = getCurSDLoc(); 8340 Value *PtrOperand = VPIntrin.getArgOperand(1); 8341 EVT VT = OpValues[0].getValueType(); 8342 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8343 if (!Alignment) 8344 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8345 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8346 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8347 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8348 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8349 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8350 8351 SDValue ST = DAG.getStridedStoreVP( 8352 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8353 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8354 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8355 /*IsCompressing*/ false); 8356 8357 DAG.setRoot(ST); 8358 setValue(&VPIntrin, ST); 8359 } 8360 8361 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8363 SDLoc DL = getCurSDLoc(); 8364 8365 ISD::CondCode Condition; 8366 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8367 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8368 if (IsFP) { 8369 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8370 // flags, but calls that don't return floating-point types can't be 8371 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8372 Condition = getFCmpCondCode(CondCode); 8373 if (TM.Options.NoNaNsFPMath) 8374 Condition = getFCmpCodeWithoutNaN(Condition); 8375 } else { 8376 Condition = getICmpCondCode(CondCode); 8377 } 8378 8379 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8380 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8381 // #2 is the condition code 8382 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8383 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8384 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8385 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8386 "Unexpected target EVL type"); 8387 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8388 8389 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8390 VPIntrin.getType()); 8391 setValue(&VPIntrin, 8392 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8393 } 8394 8395 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8396 const VPIntrinsic &VPIntrin) { 8397 SDLoc DL = getCurSDLoc(); 8398 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8399 8400 auto IID = VPIntrin.getIntrinsicID(); 8401 8402 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8403 return visitVPCmp(*CmpI); 8404 8405 SmallVector<EVT, 4> ValueVTs; 8406 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8407 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8408 SDVTList VTs = DAG.getVTList(ValueVTs); 8409 8410 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8411 8412 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8413 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8414 "Unexpected target EVL type"); 8415 8416 // Request operands. 8417 SmallVector<SDValue, 7> OpValues; 8418 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8419 auto Op = getValue(VPIntrin.getArgOperand(I)); 8420 if (I == EVLParamPos) 8421 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8422 OpValues.push_back(Op); 8423 } 8424 8425 switch (Opcode) { 8426 default: { 8427 SDNodeFlags SDFlags; 8428 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8429 SDFlags.copyFMF(*FPMO); 8430 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8431 setValue(&VPIntrin, Result); 8432 break; 8433 } 8434 case ISD::VP_LOAD: 8435 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8436 break; 8437 case ISD::VP_GATHER: 8438 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8439 break; 8440 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8441 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8442 break; 8443 case ISD::VP_STORE: 8444 visitVPStore(VPIntrin, OpValues); 8445 break; 8446 case ISD::VP_SCATTER: 8447 visitVPScatter(VPIntrin, OpValues); 8448 break; 8449 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8450 visitVPStridedStore(VPIntrin, OpValues); 8451 break; 8452 case ISD::VP_FMULADD: { 8453 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8454 SDNodeFlags SDFlags; 8455 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8456 SDFlags.copyFMF(*FPMO); 8457 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8458 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8459 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8460 } else { 8461 SDValue Mul = DAG.getNode( 8462 ISD::VP_FMUL, DL, VTs, 8463 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8464 SDValue Add = 8465 DAG.getNode(ISD::VP_FADD, DL, VTs, 8466 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8467 setValue(&VPIntrin, Add); 8468 } 8469 break; 8470 } 8471 case ISD::VP_IS_FPCLASS: { 8472 const DataLayout DLayout = DAG.getDataLayout(); 8473 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8474 auto Constant = OpValues[1]->getAsZExtVal(); 8475 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8476 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8477 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8478 setValue(&VPIntrin, V); 8479 return; 8480 } 8481 case ISD::VP_INTTOPTR: { 8482 SDValue N = OpValues[0]; 8483 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8484 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8485 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8486 OpValues[2]); 8487 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8488 OpValues[2]); 8489 setValue(&VPIntrin, N); 8490 break; 8491 } 8492 case ISD::VP_PTRTOINT: { 8493 SDValue N = OpValues[0]; 8494 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8495 VPIntrin.getType()); 8496 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8497 VPIntrin.getOperand(0)->getType()); 8498 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8499 OpValues[2]); 8500 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8501 OpValues[2]); 8502 setValue(&VPIntrin, N); 8503 break; 8504 } 8505 case ISD::VP_ABS: 8506 case ISD::VP_CTLZ: 8507 case ISD::VP_CTLZ_ZERO_UNDEF: 8508 case ISD::VP_CTTZ: 8509 case ISD::VP_CTTZ_ZERO_UNDEF: 8510 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8511 case ISD::VP_CTTZ_ELTS: { 8512 SDValue Result = 8513 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8514 setValue(&VPIntrin, Result); 8515 break; 8516 } 8517 } 8518 } 8519 8520 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8521 const BasicBlock *EHPadBB, 8522 MCSymbol *&BeginLabel) { 8523 MachineFunction &MF = DAG.getMachineFunction(); 8524 MachineModuleInfo &MMI = MF.getMMI(); 8525 8526 // Insert a label before the invoke call to mark the try range. This can be 8527 // used to detect deletion of the invoke via the MachineModuleInfo. 8528 BeginLabel = MMI.getContext().createTempSymbol(); 8529 8530 // For SjLj, keep track of which landing pads go with which invokes 8531 // so as to maintain the ordering of pads in the LSDA. 8532 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8533 if (CallSiteIndex) { 8534 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8535 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8536 8537 // Now that the call site is handled, stop tracking it. 8538 MMI.setCurrentCallSite(0); 8539 } 8540 8541 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8542 } 8543 8544 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8545 const BasicBlock *EHPadBB, 8546 MCSymbol *BeginLabel) { 8547 assert(BeginLabel && "BeginLabel should've been set"); 8548 8549 MachineFunction &MF = DAG.getMachineFunction(); 8550 MachineModuleInfo &MMI = MF.getMMI(); 8551 8552 // Insert a label at the end of the invoke call to mark the try range. This 8553 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8554 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8555 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8556 8557 // Inform MachineModuleInfo of range. 8558 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8559 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8560 // actually use outlined funclets and their LSDA info style. 8561 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8562 assert(II && "II should've been set"); 8563 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8564 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8565 } else if (!isScopedEHPersonality(Pers)) { 8566 assert(EHPadBB); 8567 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8568 } 8569 8570 return Chain; 8571 } 8572 8573 std::pair<SDValue, SDValue> 8574 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8575 const BasicBlock *EHPadBB) { 8576 MCSymbol *BeginLabel = nullptr; 8577 8578 if (EHPadBB) { 8579 // Both PendingLoads and PendingExports must be flushed here; 8580 // this call might not return. 8581 (void)getRoot(); 8582 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8583 CLI.setChain(getRoot()); 8584 } 8585 8586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8587 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8588 8589 assert((CLI.IsTailCall || Result.second.getNode()) && 8590 "Non-null chain expected with non-tail call!"); 8591 assert((Result.second.getNode() || !Result.first.getNode()) && 8592 "Null value expected with tail call!"); 8593 8594 if (!Result.second.getNode()) { 8595 // As a special case, a null chain means that a tail call has been emitted 8596 // and the DAG root is already updated. 8597 HasTailCall = true; 8598 8599 // Since there's no actual continuation from this block, nothing can be 8600 // relying on us setting vregs for them. 8601 PendingExports.clear(); 8602 } else { 8603 DAG.setRoot(Result.second); 8604 } 8605 8606 if (EHPadBB) { 8607 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8608 BeginLabel)); 8609 } 8610 8611 return Result; 8612 } 8613 8614 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8615 bool isTailCall, bool isMustTailCall, 8616 const BasicBlock *EHPadBB, 8617 const TargetLowering::PtrAuthInfo *PAI) { 8618 auto &DL = DAG.getDataLayout(); 8619 FunctionType *FTy = CB.getFunctionType(); 8620 Type *RetTy = CB.getType(); 8621 8622 TargetLowering::ArgListTy Args; 8623 Args.reserve(CB.arg_size()); 8624 8625 const Value *SwiftErrorVal = nullptr; 8626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8627 8628 if (isTailCall) { 8629 // Avoid emitting tail calls in functions with the disable-tail-calls 8630 // attribute. 8631 auto *Caller = CB.getParent()->getParent(); 8632 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8633 "true" && !isMustTailCall) 8634 isTailCall = false; 8635 8636 // We can't tail call inside a function with a swifterror argument. Lowering 8637 // does not support this yet. It would have to move into the swifterror 8638 // register before the call. 8639 if (TLI.supportSwiftError() && 8640 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8641 isTailCall = false; 8642 } 8643 8644 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8645 TargetLowering::ArgListEntry Entry; 8646 const Value *V = *I; 8647 8648 // Skip empty types 8649 if (V->getType()->isEmptyTy()) 8650 continue; 8651 8652 SDValue ArgNode = getValue(V); 8653 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8654 8655 Entry.setAttributes(&CB, I - CB.arg_begin()); 8656 8657 // Use swifterror virtual register as input to the call. 8658 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8659 SwiftErrorVal = V; 8660 // We find the virtual register for the actual swifterror argument. 8661 // Instead of using the Value, we use the virtual register instead. 8662 Entry.Node = 8663 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8664 EVT(TLI.getPointerTy(DL))); 8665 } 8666 8667 Args.push_back(Entry); 8668 8669 // If we have an explicit sret argument that is an Instruction, (i.e., it 8670 // might point to function-local memory), we can't meaningfully tail-call. 8671 if (Entry.IsSRet && isa<Instruction>(V)) 8672 isTailCall = false; 8673 } 8674 8675 // If call site has a cfguardtarget operand bundle, create and add an 8676 // additional ArgListEntry. 8677 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8678 TargetLowering::ArgListEntry Entry; 8679 Value *V = Bundle->Inputs[0]; 8680 SDValue ArgNode = getValue(V); 8681 Entry.Node = ArgNode; 8682 Entry.Ty = V->getType(); 8683 Entry.IsCFGuardTarget = true; 8684 Args.push_back(Entry); 8685 } 8686 8687 // Check if target-independent constraints permit a tail call here. 8688 // Target-dependent constraints are checked within TLI->LowerCallTo. 8689 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8690 isTailCall = false; 8691 8692 // Disable tail calls if there is an swifterror argument. Targets have not 8693 // been updated to support tail calls. 8694 if (TLI.supportSwiftError() && SwiftErrorVal) 8695 isTailCall = false; 8696 8697 ConstantInt *CFIType = nullptr; 8698 if (CB.isIndirectCall()) { 8699 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8700 if (!TLI.supportKCFIBundles()) 8701 report_fatal_error( 8702 "Target doesn't support calls with kcfi operand bundles."); 8703 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8704 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8705 } 8706 } 8707 8708 SDValue ConvControlToken; 8709 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8710 auto *Token = Bundle->Inputs[0].get(); 8711 ConvControlToken = getValue(Token); 8712 } 8713 8714 TargetLowering::CallLoweringInfo CLI(DAG); 8715 CLI.setDebugLoc(getCurSDLoc()) 8716 .setChain(getRoot()) 8717 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8718 .setTailCall(isTailCall) 8719 .setConvergent(CB.isConvergent()) 8720 .setIsPreallocated( 8721 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8722 .setCFIType(CFIType) 8723 .setConvergenceControlToken(ConvControlToken); 8724 8725 // Set the pointer authentication info if we have it. 8726 if (PAI) { 8727 if (!TLI.supportPtrAuthBundles()) 8728 report_fatal_error( 8729 "This target doesn't support calls with ptrauth operand bundles."); 8730 CLI.setPtrAuth(*PAI); 8731 } 8732 8733 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8734 8735 if (Result.first.getNode()) { 8736 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8737 setValue(&CB, Result.first); 8738 } 8739 8740 // The last element of CLI.InVals has the SDValue for swifterror return. 8741 // Here we copy it to a virtual register and update SwiftErrorMap for 8742 // book-keeping. 8743 if (SwiftErrorVal && TLI.supportSwiftError()) { 8744 // Get the last element of InVals. 8745 SDValue Src = CLI.InVals.back(); 8746 Register VReg = 8747 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8748 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8749 DAG.setRoot(CopyNode); 8750 } 8751 } 8752 8753 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8754 SelectionDAGBuilder &Builder) { 8755 // Check to see if this load can be trivially constant folded, e.g. if the 8756 // input is from a string literal. 8757 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8758 // Cast pointer to the type we really want to load. 8759 Type *LoadTy = 8760 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8761 if (LoadVT.isVector()) 8762 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8763 8764 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8765 PointerType::getUnqual(LoadTy)); 8766 8767 if (const Constant *LoadCst = 8768 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8769 LoadTy, Builder.DAG.getDataLayout())) 8770 return Builder.getValue(LoadCst); 8771 } 8772 8773 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8774 // still constant memory, the input chain can be the entry node. 8775 SDValue Root; 8776 bool ConstantMemory = false; 8777 8778 // Do not serialize (non-volatile) loads of constant memory with anything. 8779 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8780 Root = Builder.DAG.getEntryNode(); 8781 ConstantMemory = true; 8782 } else { 8783 // Do not serialize non-volatile loads against each other. 8784 Root = Builder.DAG.getRoot(); 8785 } 8786 8787 SDValue Ptr = Builder.getValue(PtrVal); 8788 SDValue LoadVal = 8789 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8790 MachinePointerInfo(PtrVal), Align(1)); 8791 8792 if (!ConstantMemory) 8793 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8794 return LoadVal; 8795 } 8796 8797 /// Record the value for an instruction that produces an integer result, 8798 /// converting the type where necessary. 8799 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8800 SDValue Value, 8801 bool IsSigned) { 8802 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8803 I.getType(), true); 8804 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8805 setValue(&I, Value); 8806 } 8807 8808 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8809 /// true and lower it. Otherwise return false, and it will be lowered like a 8810 /// normal call. 8811 /// The caller already checked that \p I calls the appropriate LibFunc with a 8812 /// correct prototype. 8813 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8814 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8815 const Value *Size = I.getArgOperand(2); 8816 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8817 if (CSize && CSize->getZExtValue() == 0) { 8818 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8819 I.getType(), true); 8820 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8821 return true; 8822 } 8823 8824 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8825 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8826 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8827 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8828 if (Res.first.getNode()) { 8829 processIntegerCallValue(I, Res.first, true); 8830 PendingLoads.push_back(Res.second); 8831 return true; 8832 } 8833 8834 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8835 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8836 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8837 return false; 8838 8839 // If the target has a fast compare for the given size, it will return a 8840 // preferred load type for that size. Require that the load VT is legal and 8841 // that the target supports unaligned loads of that type. Otherwise, return 8842 // INVALID. 8843 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8845 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8846 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8847 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8848 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8849 // TODO: Check alignment of src and dest ptrs. 8850 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8851 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8852 if (!TLI.isTypeLegal(LVT) || 8853 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8854 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8855 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8856 } 8857 8858 return LVT; 8859 }; 8860 8861 // This turns into unaligned loads. We only do this if the target natively 8862 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8863 // we'll only produce a small number of byte loads. 8864 MVT LoadVT; 8865 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8866 switch (NumBitsToCompare) { 8867 default: 8868 return false; 8869 case 16: 8870 LoadVT = MVT::i16; 8871 break; 8872 case 32: 8873 LoadVT = MVT::i32; 8874 break; 8875 case 64: 8876 case 128: 8877 case 256: 8878 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8879 break; 8880 } 8881 8882 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8883 return false; 8884 8885 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8886 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8887 8888 // Bitcast to a wide integer type if the loads are vectors. 8889 if (LoadVT.isVector()) { 8890 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8891 LoadL = DAG.getBitcast(CmpVT, LoadL); 8892 LoadR = DAG.getBitcast(CmpVT, LoadR); 8893 } 8894 8895 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8896 processIntegerCallValue(I, Cmp, false); 8897 return true; 8898 } 8899 8900 /// See if we can lower a memchr call into an optimized form. If so, return 8901 /// true and lower it. Otherwise return false, and it will be lowered like a 8902 /// normal call. 8903 /// The caller already checked that \p I calls the appropriate LibFunc with a 8904 /// correct prototype. 8905 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8906 const Value *Src = I.getArgOperand(0); 8907 const Value *Char = I.getArgOperand(1); 8908 const Value *Length = I.getArgOperand(2); 8909 8910 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8911 std::pair<SDValue, SDValue> Res = 8912 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8913 getValue(Src), getValue(Char), getValue(Length), 8914 MachinePointerInfo(Src)); 8915 if (Res.first.getNode()) { 8916 setValue(&I, Res.first); 8917 PendingLoads.push_back(Res.second); 8918 return true; 8919 } 8920 8921 return false; 8922 } 8923 8924 /// See if we can lower a mempcpy call into an optimized form. If so, return 8925 /// true and lower it. Otherwise return false, and it will be lowered like a 8926 /// normal call. 8927 /// The caller already checked that \p I calls the appropriate LibFunc with a 8928 /// correct prototype. 8929 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8930 SDValue Dst = getValue(I.getArgOperand(0)); 8931 SDValue Src = getValue(I.getArgOperand(1)); 8932 SDValue Size = getValue(I.getArgOperand(2)); 8933 8934 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8935 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8936 // DAG::getMemcpy needs Alignment to be defined. 8937 Align Alignment = std::min(DstAlign, SrcAlign); 8938 8939 SDLoc sdl = getCurSDLoc(); 8940 8941 // In the mempcpy context we need to pass in a false value for isTailCall 8942 // because the return pointer needs to be adjusted by the size of 8943 // the copied memory. 8944 SDValue Root = getMemoryRoot(); 8945 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8946 /*isTailCall=*/false, 8947 MachinePointerInfo(I.getArgOperand(0)), 8948 MachinePointerInfo(I.getArgOperand(1)), 8949 I.getAAMetadata()); 8950 assert(MC.getNode() != nullptr && 8951 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8952 DAG.setRoot(MC); 8953 8954 // Check if Size needs to be truncated or extended. 8955 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8956 8957 // Adjust return pointer to point just past the last dst byte. 8958 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8959 Dst, Size); 8960 setValue(&I, DstPlusSize); 8961 return true; 8962 } 8963 8964 /// See if we can lower a strcpy call into an optimized form. If so, return 8965 /// true and lower it, otherwise return false and it will be lowered like a 8966 /// normal call. 8967 /// The caller already checked that \p I calls the appropriate LibFunc with a 8968 /// correct prototype. 8969 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8970 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8971 8972 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8973 std::pair<SDValue, SDValue> Res = 8974 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8975 getValue(Arg0), getValue(Arg1), 8976 MachinePointerInfo(Arg0), 8977 MachinePointerInfo(Arg1), isStpcpy); 8978 if (Res.first.getNode()) { 8979 setValue(&I, Res.first); 8980 DAG.setRoot(Res.second); 8981 return true; 8982 } 8983 8984 return false; 8985 } 8986 8987 /// See if we can lower a strcmp call into an optimized form. If so, return 8988 /// true and lower it, otherwise return false and it will be lowered like a 8989 /// normal call. 8990 /// The caller already checked that \p I calls the appropriate LibFunc with a 8991 /// correct prototype. 8992 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8993 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8994 8995 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8996 std::pair<SDValue, SDValue> Res = 8997 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8998 getValue(Arg0), getValue(Arg1), 8999 MachinePointerInfo(Arg0), 9000 MachinePointerInfo(Arg1)); 9001 if (Res.first.getNode()) { 9002 processIntegerCallValue(I, Res.first, true); 9003 PendingLoads.push_back(Res.second); 9004 return true; 9005 } 9006 9007 return false; 9008 } 9009 9010 /// See if we can lower a strlen call into an optimized form. If so, return 9011 /// true and lower it, otherwise return false and it will be lowered like a 9012 /// normal call. 9013 /// The caller already checked that \p I calls the appropriate LibFunc with a 9014 /// correct prototype. 9015 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9016 const Value *Arg0 = I.getArgOperand(0); 9017 9018 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9019 std::pair<SDValue, SDValue> Res = 9020 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9021 getValue(Arg0), MachinePointerInfo(Arg0)); 9022 if (Res.first.getNode()) { 9023 processIntegerCallValue(I, Res.first, false); 9024 PendingLoads.push_back(Res.second); 9025 return true; 9026 } 9027 9028 return false; 9029 } 9030 9031 /// See if we can lower a strnlen call into an optimized form. If so, return 9032 /// true and lower it, otherwise return false and it will be lowered like a 9033 /// normal call. 9034 /// The caller already checked that \p I calls the appropriate LibFunc with a 9035 /// correct prototype. 9036 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9037 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9038 9039 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9040 std::pair<SDValue, SDValue> Res = 9041 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9042 getValue(Arg0), getValue(Arg1), 9043 MachinePointerInfo(Arg0)); 9044 if (Res.first.getNode()) { 9045 processIntegerCallValue(I, Res.first, false); 9046 PendingLoads.push_back(Res.second); 9047 return true; 9048 } 9049 9050 return false; 9051 } 9052 9053 /// See if we can lower a unary floating-point operation into an SDNode with 9054 /// the specified Opcode. If so, return true and lower it, otherwise return 9055 /// false and it will be lowered like a normal call. 9056 /// The caller already checked that \p I calls the appropriate LibFunc with a 9057 /// correct prototype. 9058 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9059 unsigned Opcode) { 9060 // We already checked this call's prototype; verify it doesn't modify errno. 9061 if (!I.onlyReadsMemory()) 9062 return false; 9063 9064 SDNodeFlags Flags; 9065 Flags.copyFMF(cast<FPMathOperator>(I)); 9066 9067 SDValue Tmp = getValue(I.getArgOperand(0)); 9068 setValue(&I, 9069 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9070 return true; 9071 } 9072 9073 /// See if we can lower a binary floating-point operation into an SDNode with 9074 /// the specified Opcode. If so, return true and lower it. Otherwise return 9075 /// false, and it will be lowered like a normal call. 9076 /// The caller already checked that \p I calls the appropriate LibFunc with a 9077 /// correct prototype. 9078 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9079 unsigned Opcode) { 9080 // We already checked this call's prototype; verify it doesn't modify errno. 9081 if (!I.onlyReadsMemory()) 9082 return false; 9083 9084 SDNodeFlags Flags; 9085 Flags.copyFMF(cast<FPMathOperator>(I)); 9086 9087 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9088 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9089 EVT VT = Tmp0.getValueType(); 9090 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9091 return true; 9092 } 9093 9094 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9095 // Handle inline assembly differently. 9096 if (I.isInlineAsm()) { 9097 visitInlineAsm(I); 9098 return; 9099 } 9100 9101 diagnoseDontCall(I); 9102 9103 if (Function *F = I.getCalledFunction()) { 9104 if (F->isDeclaration()) { 9105 // Is this an LLVM intrinsic or a target-specific intrinsic? 9106 unsigned IID = F->getIntrinsicID(); 9107 if (!IID) 9108 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9109 IID = II->getIntrinsicID(F); 9110 9111 if (IID) { 9112 visitIntrinsicCall(I, IID); 9113 return; 9114 } 9115 } 9116 9117 // Check for well-known libc/libm calls. If the function is internal, it 9118 // can't be a library call. Don't do the check if marked as nobuiltin for 9119 // some reason or the call site requires strict floating point semantics. 9120 LibFunc Func; 9121 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9122 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9123 LibInfo->hasOptimizedCodeGen(Func)) { 9124 switch (Func) { 9125 default: break; 9126 case LibFunc_bcmp: 9127 if (visitMemCmpBCmpCall(I)) 9128 return; 9129 break; 9130 case LibFunc_copysign: 9131 case LibFunc_copysignf: 9132 case LibFunc_copysignl: 9133 // We already checked this call's prototype; verify it doesn't modify 9134 // errno. 9135 if (I.onlyReadsMemory()) { 9136 SDValue LHS = getValue(I.getArgOperand(0)); 9137 SDValue RHS = getValue(I.getArgOperand(1)); 9138 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9139 LHS.getValueType(), LHS, RHS)); 9140 return; 9141 } 9142 break; 9143 case LibFunc_fabs: 9144 case LibFunc_fabsf: 9145 case LibFunc_fabsl: 9146 if (visitUnaryFloatCall(I, ISD::FABS)) 9147 return; 9148 break; 9149 case LibFunc_fmin: 9150 case LibFunc_fminf: 9151 case LibFunc_fminl: 9152 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9153 return; 9154 break; 9155 case LibFunc_fmax: 9156 case LibFunc_fmaxf: 9157 case LibFunc_fmaxl: 9158 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9159 return; 9160 break; 9161 case LibFunc_sin: 9162 case LibFunc_sinf: 9163 case LibFunc_sinl: 9164 if (visitUnaryFloatCall(I, ISD::FSIN)) 9165 return; 9166 break; 9167 case LibFunc_cos: 9168 case LibFunc_cosf: 9169 case LibFunc_cosl: 9170 if (visitUnaryFloatCall(I, ISD::FCOS)) 9171 return; 9172 break; 9173 case LibFunc_tan: 9174 case LibFunc_tanf: 9175 case LibFunc_tanl: 9176 if (visitUnaryFloatCall(I, ISD::FTAN)) 9177 return; 9178 break; 9179 case LibFunc_sqrt: 9180 case LibFunc_sqrtf: 9181 case LibFunc_sqrtl: 9182 case LibFunc_sqrt_finite: 9183 case LibFunc_sqrtf_finite: 9184 case LibFunc_sqrtl_finite: 9185 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9186 return; 9187 break; 9188 case LibFunc_floor: 9189 case LibFunc_floorf: 9190 case LibFunc_floorl: 9191 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9192 return; 9193 break; 9194 case LibFunc_nearbyint: 9195 case LibFunc_nearbyintf: 9196 case LibFunc_nearbyintl: 9197 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9198 return; 9199 break; 9200 case LibFunc_ceil: 9201 case LibFunc_ceilf: 9202 case LibFunc_ceill: 9203 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9204 return; 9205 break; 9206 case LibFunc_rint: 9207 case LibFunc_rintf: 9208 case LibFunc_rintl: 9209 if (visitUnaryFloatCall(I, ISD::FRINT)) 9210 return; 9211 break; 9212 case LibFunc_round: 9213 case LibFunc_roundf: 9214 case LibFunc_roundl: 9215 if (visitUnaryFloatCall(I, ISD::FROUND)) 9216 return; 9217 break; 9218 case LibFunc_trunc: 9219 case LibFunc_truncf: 9220 case LibFunc_truncl: 9221 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9222 return; 9223 break; 9224 case LibFunc_log2: 9225 case LibFunc_log2f: 9226 case LibFunc_log2l: 9227 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9228 return; 9229 break; 9230 case LibFunc_exp2: 9231 case LibFunc_exp2f: 9232 case LibFunc_exp2l: 9233 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9234 return; 9235 break; 9236 case LibFunc_exp10: 9237 case LibFunc_exp10f: 9238 case LibFunc_exp10l: 9239 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9240 return; 9241 break; 9242 case LibFunc_ldexp: 9243 case LibFunc_ldexpf: 9244 case LibFunc_ldexpl: 9245 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9246 return; 9247 break; 9248 case LibFunc_memcmp: 9249 if (visitMemCmpBCmpCall(I)) 9250 return; 9251 break; 9252 case LibFunc_mempcpy: 9253 if (visitMemPCpyCall(I)) 9254 return; 9255 break; 9256 case LibFunc_memchr: 9257 if (visitMemChrCall(I)) 9258 return; 9259 break; 9260 case LibFunc_strcpy: 9261 if (visitStrCpyCall(I, false)) 9262 return; 9263 break; 9264 case LibFunc_stpcpy: 9265 if (visitStrCpyCall(I, true)) 9266 return; 9267 break; 9268 case LibFunc_strcmp: 9269 if (visitStrCmpCall(I)) 9270 return; 9271 break; 9272 case LibFunc_strlen: 9273 if (visitStrLenCall(I)) 9274 return; 9275 break; 9276 case LibFunc_strnlen: 9277 if (visitStrNLenCall(I)) 9278 return; 9279 break; 9280 } 9281 } 9282 } 9283 9284 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9285 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9286 return; 9287 } 9288 9289 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9290 // have to do anything here to lower funclet bundles. 9291 // CFGuardTarget bundles are lowered in LowerCallTo. 9292 assert(!I.hasOperandBundlesOtherThan( 9293 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9294 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9295 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9296 LLVMContext::OB_convergencectrl}) && 9297 "Cannot lower calls with arbitrary operand bundles!"); 9298 9299 SDValue Callee = getValue(I.getCalledOperand()); 9300 9301 if (I.hasDeoptState()) 9302 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9303 else 9304 // Check if we can potentially perform a tail call. More detailed checking 9305 // is be done within LowerCallTo, after more information about the call is 9306 // known. 9307 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9308 } 9309 9310 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9311 const CallBase &CB, const BasicBlock *EHPadBB) { 9312 auto PAB = CB.getOperandBundle("ptrauth"); 9313 const Value *CalleeV = CB.getCalledOperand(); 9314 9315 // Gather the call ptrauth data from the operand bundle: 9316 // [ i32 <key>, i64 <discriminator> ] 9317 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9318 const Value *Discriminator = PAB->Inputs[1]; 9319 9320 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9321 assert(Discriminator->getType()->isIntegerTy(64) && 9322 "Invalid ptrauth discriminator"); 9323 9324 // Functions should never be ptrauth-called directly. 9325 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9326 9327 // Otherwise, do an authenticated indirect call. 9328 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9329 getValue(Discriminator)}; 9330 9331 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9332 EHPadBB, &PAI); 9333 } 9334 9335 namespace { 9336 9337 /// AsmOperandInfo - This contains information for each constraint that we are 9338 /// lowering. 9339 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9340 public: 9341 /// CallOperand - If this is the result output operand or a clobber 9342 /// this is null, otherwise it is the incoming operand to the CallInst. 9343 /// This gets modified as the asm is processed. 9344 SDValue CallOperand; 9345 9346 /// AssignedRegs - If this is a register or register class operand, this 9347 /// contains the set of register corresponding to the operand. 9348 RegsForValue AssignedRegs; 9349 9350 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9351 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9352 } 9353 9354 /// Whether or not this operand accesses memory 9355 bool hasMemory(const TargetLowering &TLI) const { 9356 // Indirect operand accesses access memory. 9357 if (isIndirect) 9358 return true; 9359 9360 for (const auto &Code : Codes) 9361 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9362 return true; 9363 9364 return false; 9365 } 9366 }; 9367 9368 9369 } // end anonymous namespace 9370 9371 /// Make sure that the output operand \p OpInfo and its corresponding input 9372 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9373 /// out). 9374 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9375 SDISelAsmOperandInfo &MatchingOpInfo, 9376 SelectionDAG &DAG) { 9377 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9378 return; 9379 9380 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9381 const auto &TLI = DAG.getTargetLoweringInfo(); 9382 9383 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9384 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9385 OpInfo.ConstraintVT); 9386 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9387 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9388 MatchingOpInfo.ConstraintVT); 9389 if ((OpInfo.ConstraintVT.isInteger() != 9390 MatchingOpInfo.ConstraintVT.isInteger()) || 9391 (MatchRC.second != InputRC.second)) { 9392 // FIXME: error out in a more elegant fashion 9393 report_fatal_error("Unsupported asm: input constraint" 9394 " with a matching output constraint of" 9395 " incompatible type!"); 9396 } 9397 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9398 } 9399 9400 /// Get a direct memory input to behave well as an indirect operand. 9401 /// This may introduce stores, hence the need for a \p Chain. 9402 /// \return The (possibly updated) chain. 9403 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9404 SDISelAsmOperandInfo &OpInfo, 9405 SelectionDAG &DAG) { 9406 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9407 9408 // If we don't have an indirect input, put it in the constpool if we can, 9409 // otherwise spill it to a stack slot. 9410 // TODO: This isn't quite right. We need to handle these according to 9411 // the addressing mode that the constraint wants. Also, this may take 9412 // an additional register for the computation and we don't want that 9413 // either. 9414 9415 // If the operand is a float, integer, or vector constant, spill to a 9416 // constant pool entry to get its address. 9417 const Value *OpVal = OpInfo.CallOperandVal; 9418 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9419 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9420 OpInfo.CallOperand = DAG.getConstantPool( 9421 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9422 return Chain; 9423 } 9424 9425 // Otherwise, create a stack slot and emit a store to it before the asm. 9426 Type *Ty = OpVal->getType(); 9427 auto &DL = DAG.getDataLayout(); 9428 uint64_t TySize = DL.getTypeAllocSize(Ty); 9429 MachineFunction &MF = DAG.getMachineFunction(); 9430 int SSFI = MF.getFrameInfo().CreateStackObject( 9431 TySize, DL.getPrefTypeAlign(Ty), false); 9432 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9433 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9434 MachinePointerInfo::getFixedStack(MF, SSFI), 9435 TLI.getMemValueType(DL, Ty)); 9436 OpInfo.CallOperand = StackSlot; 9437 9438 return Chain; 9439 } 9440 9441 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9442 /// specified operand. We prefer to assign virtual registers, to allow the 9443 /// register allocator to handle the assignment process. However, if the asm 9444 /// uses features that we can't model on machineinstrs, we have SDISel do the 9445 /// allocation. This produces generally horrible, but correct, code. 9446 /// 9447 /// OpInfo describes the operand 9448 /// RefOpInfo describes the matching operand if any, the operand otherwise 9449 static std::optional<unsigned> 9450 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9451 SDISelAsmOperandInfo &OpInfo, 9452 SDISelAsmOperandInfo &RefOpInfo) { 9453 LLVMContext &Context = *DAG.getContext(); 9454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9455 9456 MachineFunction &MF = DAG.getMachineFunction(); 9457 SmallVector<unsigned, 4> Regs; 9458 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9459 9460 // No work to do for memory/address operands. 9461 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9462 OpInfo.ConstraintType == TargetLowering::C_Address) 9463 return std::nullopt; 9464 9465 // If this is a constraint for a single physreg, or a constraint for a 9466 // register class, find it. 9467 unsigned AssignedReg; 9468 const TargetRegisterClass *RC; 9469 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9470 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9471 // RC is unset only on failure. Return immediately. 9472 if (!RC) 9473 return std::nullopt; 9474 9475 // Get the actual register value type. This is important, because the user 9476 // may have asked for (e.g.) the AX register in i32 type. We need to 9477 // remember that AX is actually i16 to get the right extension. 9478 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9479 9480 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9481 // If this is an FP operand in an integer register (or visa versa), or more 9482 // generally if the operand value disagrees with the register class we plan 9483 // to stick it in, fix the operand type. 9484 // 9485 // If this is an input value, the bitcast to the new type is done now. 9486 // Bitcast for output value is done at the end of visitInlineAsm(). 9487 if ((OpInfo.Type == InlineAsm::isOutput || 9488 OpInfo.Type == InlineAsm::isInput) && 9489 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9490 // Try to convert to the first EVT that the reg class contains. If the 9491 // types are identical size, use a bitcast to convert (e.g. two differing 9492 // vector types). Note: output bitcast is done at the end of 9493 // visitInlineAsm(). 9494 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9495 // Exclude indirect inputs while they are unsupported because the code 9496 // to perform the load is missing and thus OpInfo.CallOperand still 9497 // refers to the input address rather than the pointed-to value. 9498 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9499 OpInfo.CallOperand = 9500 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9501 OpInfo.ConstraintVT = RegVT; 9502 // If the operand is an FP value and we want it in integer registers, 9503 // use the corresponding integer type. This turns an f64 value into 9504 // i64, which can be passed with two i32 values on a 32-bit machine. 9505 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9506 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9507 if (OpInfo.Type == InlineAsm::isInput) 9508 OpInfo.CallOperand = 9509 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9510 OpInfo.ConstraintVT = VT; 9511 } 9512 } 9513 } 9514 9515 // No need to allocate a matching input constraint since the constraint it's 9516 // matching to has already been allocated. 9517 if (OpInfo.isMatchingInputConstraint()) 9518 return std::nullopt; 9519 9520 EVT ValueVT = OpInfo.ConstraintVT; 9521 if (OpInfo.ConstraintVT == MVT::Other) 9522 ValueVT = RegVT; 9523 9524 // Initialize NumRegs. 9525 unsigned NumRegs = 1; 9526 if (OpInfo.ConstraintVT != MVT::Other) 9527 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9528 9529 // If this is a constraint for a specific physical register, like {r17}, 9530 // assign it now. 9531 9532 // If this associated to a specific register, initialize iterator to correct 9533 // place. If virtual, make sure we have enough registers 9534 9535 // Initialize iterator if necessary 9536 TargetRegisterClass::iterator I = RC->begin(); 9537 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9538 9539 // Do not check for single registers. 9540 if (AssignedReg) { 9541 I = std::find(I, RC->end(), AssignedReg); 9542 if (I == RC->end()) { 9543 // RC does not contain the selected register, which indicates a 9544 // mismatch between the register and the required type/bitwidth. 9545 return {AssignedReg}; 9546 } 9547 } 9548 9549 for (; NumRegs; --NumRegs, ++I) { 9550 assert(I != RC->end() && "Ran out of registers to allocate!"); 9551 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9552 Regs.push_back(R); 9553 } 9554 9555 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9556 return std::nullopt; 9557 } 9558 9559 static unsigned 9560 findMatchingInlineAsmOperand(unsigned OperandNo, 9561 const std::vector<SDValue> &AsmNodeOperands) { 9562 // Scan until we find the definition we already emitted of this operand. 9563 unsigned CurOp = InlineAsm::Op_FirstOperand; 9564 for (; OperandNo; --OperandNo) { 9565 // Advance to the next operand. 9566 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9567 const InlineAsm::Flag F(OpFlag); 9568 assert( 9569 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9570 "Skipped past definitions?"); 9571 CurOp += F.getNumOperandRegisters() + 1; 9572 } 9573 return CurOp; 9574 } 9575 9576 namespace { 9577 9578 class ExtraFlags { 9579 unsigned Flags = 0; 9580 9581 public: 9582 explicit ExtraFlags(const CallBase &Call) { 9583 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9584 if (IA->hasSideEffects()) 9585 Flags |= InlineAsm::Extra_HasSideEffects; 9586 if (IA->isAlignStack()) 9587 Flags |= InlineAsm::Extra_IsAlignStack; 9588 if (Call.isConvergent()) 9589 Flags |= InlineAsm::Extra_IsConvergent; 9590 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9591 } 9592 9593 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9594 // Ideally, we would only check against memory constraints. However, the 9595 // meaning of an Other constraint can be target-specific and we can't easily 9596 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9597 // for Other constraints as well. 9598 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9599 OpInfo.ConstraintType == TargetLowering::C_Other) { 9600 if (OpInfo.Type == InlineAsm::isInput) 9601 Flags |= InlineAsm::Extra_MayLoad; 9602 else if (OpInfo.Type == InlineAsm::isOutput) 9603 Flags |= InlineAsm::Extra_MayStore; 9604 else if (OpInfo.Type == InlineAsm::isClobber) 9605 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9606 } 9607 } 9608 9609 unsigned get() const { return Flags; } 9610 }; 9611 9612 } // end anonymous namespace 9613 9614 static bool isFunction(SDValue Op) { 9615 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9616 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9617 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9618 9619 // In normal "call dllimport func" instruction (non-inlineasm) it force 9620 // indirect access by specifing call opcode. And usually specially print 9621 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9622 // not do in this way now. (In fact, this is similar with "Data Access" 9623 // action). So here we ignore dllimport function. 9624 if (Fn && !Fn->hasDLLImportStorageClass()) 9625 return true; 9626 } 9627 } 9628 return false; 9629 } 9630 9631 /// visitInlineAsm - Handle a call to an InlineAsm object. 9632 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9633 const BasicBlock *EHPadBB) { 9634 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9635 9636 /// ConstraintOperands - Information about all of the constraints. 9637 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9638 9639 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9640 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9641 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9642 9643 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9644 // AsmDialect, MayLoad, MayStore). 9645 bool HasSideEffect = IA->hasSideEffects(); 9646 ExtraFlags ExtraInfo(Call); 9647 9648 for (auto &T : TargetConstraints) { 9649 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9650 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9651 9652 if (OpInfo.CallOperandVal) 9653 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9654 9655 if (!HasSideEffect) 9656 HasSideEffect = OpInfo.hasMemory(TLI); 9657 9658 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9659 // FIXME: Could we compute this on OpInfo rather than T? 9660 9661 // Compute the constraint code and ConstraintType to use. 9662 TLI.ComputeConstraintToUse(T, SDValue()); 9663 9664 if (T.ConstraintType == TargetLowering::C_Immediate && 9665 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9666 // We've delayed emitting a diagnostic like the "n" constraint because 9667 // inlining could cause an integer showing up. 9668 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9669 "' expects an integer constant " 9670 "expression"); 9671 9672 ExtraInfo.update(T); 9673 } 9674 9675 // We won't need to flush pending loads if this asm doesn't touch 9676 // memory and is nonvolatile. 9677 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9678 9679 bool EmitEHLabels = isa<InvokeInst>(Call); 9680 if (EmitEHLabels) { 9681 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9682 } 9683 bool IsCallBr = isa<CallBrInst>(Call); 9684 9685 if (IsCallBr || EmitEHLabels) { 9686 // If this is a callbr or invoke we need to flush pending exports since 9687 // inlineasm_br and invoke are terminators. 9688 // We need to do this before nodes are glued to the inlineasm_br node. 9689 Chain = getControlRoot(); 9690 } 9691 9692 MCSymbol *BeginLabel = nullptr; 9693 if (EmitEHLabels) { 9694 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9695 } 9696 9697 int OpNo = -1; 9698 SmallVector<StringRef> AsmStrs; 9699 IA->collectAsmStrs(AsmStrs); 9700 9701 // Second pass over the constraints: compute which constraint option to use. 9702 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9703 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9704 OpNo++; 9705 9706 // If this is an output operand with a matching input operand, look up the 9707 // matching input. If their types mismatch, e.g. one is an integer, the 9708 // other is floating point, or their sizes are different, flag it as an 9709 // error. 9710 if (OpInfo.hasMatchingInput()) { 9711 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9712 patchMatchingInput(OpInfo, Input, DAG); 9713 } 9714 9715 // Compute the constraint code and ConstraintType to use. 9716 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9717 9718 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9719 OpInfo.Type == InlineAsm::isClobber) || 9720 OpInfo.ConstraintType == TargetLowering::C_Address) 9721 continue; 9722 9723 // In Linux PIC model, there are 4 cases about value/label addressing: 9724 // 9725 // 1: Function call or Label jmp inside the module. 9726 // 2: Data access (such as global variable, static variable) inside module. 9727 // 3: Function call or Label jmp outside the module. 9728 // 4: Data access (such as global variable) outside the module. 9729 // 9730 // Due to current llvm inline asm architecture designed to not "recognize" 9731 // the asm code, there are quite troubles for us to treat mem addressing 9732 // differently for same value/adress used in different instuctions. 9733 // For example, in pic model, call a func may in plt way or direclty 9734 // pc-related, but lea/mov a function adress may use got. 9735 // 9736 // Here we try to "recognize" function call for the case 1 and case 3 in 9737 // inline asm. And try to adjust the constraint for them. 9738 // 9739 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9740 // label, so here we don't handle jmp function label now, but we need to 9741 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9742 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9743 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9744 TM.getCodeModel() != CodeModel::Large) { 9745 OpInfo.isIndirect = false; 9746 OpInfo.ConstraintType = TargetLowering::C_Address; 9747 } 9748 9749 // If this is a memory input, and if the operand is not indirect, do what we 9750 // need to provide an address for the memory input. 9751 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9752 !OpInfo.isIndirect) { 9753 assert((OpInfo.isMultipleAlternative || 9754 (OpInfo.Type == InlineAsm::isInput)) && 9755 "Can only indirectify direct input operands!"); 9756 9757 // Memory operands really want the address of the value. 9758 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9759 9760 // There is no longer a Value* corresponding to this operand. 9761 OpInfo.CallOperandVal = nullptr; 9762 9763 // It is now an indirect operand. 9764 OpInfo.isIndirect = true; 9765 } 9766 9767 } 9768 9769 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9770 std::vector<SDValue> AsmNodeOperands; 9771 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9772 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9773 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9774 9775 // If we have a !srcloc metadata node associated with it, we want to attach 9776 // this to the ultimately generated inline asm machineinstr. To do this, we 9777 // pass in the third operand as this (potentially null) inline asm MDNode. 9778 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9779 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9780 9781 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9782 // bits as operand 3. 9783 AsmNodeOperands.push_back(DAG.getTargetConstant( 9784 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9785 9786 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9787 // this, assign virtual and physical registers for inputs and otput. 9788 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9789 // Assign Registers. 9790 SDISelAsmOperandInfo &RefOpInfo = 9791 OpInfo.isMatchingInputConstraint() 9792 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9793 : OpInfo; 9794 const auto RegError = 9795 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9796 if (RegError) { 9797 const MachineFunction &MF = DAG.getMachineFunction(); 9798 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9799 const char *RegName = TRI.getName(*RegError); 9800 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9801 "' allocated for constraint '" + 9802 Twine(OpInfo.ConstraintCode) + 9803 "' does not match required type"); 9804 return; 9805 } 9806 9807 auto DetectWriteToReservedRegister = [&]() { 9808 const MachineFunction &MF = DAG.getMachineFunction(); 9809 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9810 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9811 if (Register::isPhysicalRegister(Reg) && 9812 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9813 const char *RegName = TRI.getName(Reg); 9814 emitInlineAsmError(Call, "write to reserved register '" + 9815 Twine(RegName) + "'"); 9816 return true; 9817 } 9818 } 9819 return false; 9820 }; 9821 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9822 (OpInfo.Type == InlineAsm::isInput && 9823 !OpInfo.isMatchingInputConstraint())) && 9824 "Only address as input operand is allowed."); 9825 9826 switch (OpInfo.Type) { 9827 case InlineAsm::isOutput: 9828 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9829 const InlineAsm::ConstraintCode ConstraintID = 9830 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9831 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9832 "Failed to convert memory constraint code to constraint id."); 9833 9834 // Add information to the INLINEASM node to know about this output. 9835 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9836 OpFlags.setMemConstraint(ConstraintID); 9837 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9838 MVT::i32)); 9839 AsmNodeOperands.push_back(OpInfo.CallOperand); 9840 } else { 9841 // Otherwise, this outputs to a register (directly for C_Register / 9842 // C_RegisterClass, and a target-defined fashion for 9843 // C_Immediate/C_Other). Find a register that we can use. 9844 if (OpInfo.AssignedRegs.Regs.empty()) { 9845 emitInlineAsmError( 9846 Call, "couldn't allocate output register for constraint '" + 9847 Twine(OpInfo.ConstraintCode) + "'"); 9848 return; 9849 } 9850 9851 if (DetectWriteToReservedRegister()) 9852 return; 9853 9854 // Add information to the INLINEASM node to know that this register is 9855 // set. 9856 OpInfo.AssignedRegs.AddInlineAsmOperands( 9857 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9858 : InlineAsm::Kind::RegDef, 9859 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9860 } 9861 break; 9862 9863 case InlineAsm::isInput: 9864 case InlineAsm::isLabel: { 9865 SDValue InOperandVal = OpInfo.CallOperand; 9866 9867 if (OpInfo.isMatchingInputConstraint()) { 9868 // If this is required to match an output register we have already set, 9869 // just use its register. 9870 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9871 AsmNodeOperands); 9872 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9873 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9874 if (OpInfo.isIndirect) { 9875 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9876 emitInlineAsmError(Call, "inline asm not supported yet: " 9877 "don't know how to handle tied " 9878 "indirect register inputs"); 9879 return; 9880 } 9881 9882 SmallVector<unsigned, 4> Regs; 9883 MachineFunction &MF = DAG.getMachineFunction(); 9884 MachineRegisterInfo &MRI = MF.getRegInfo(); 9885 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9886 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9887 Register TiedReg = R->getReg(); 9888 MVT RegVT = R->getSimpleValueType(0); 9889 const TargetRegisterClass *RC = 9890 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9891 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9892 : TRI.getMinimalPhysRegClass(TiedReg); 9893 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9894 Regs.push_back(MRI.createVirtualRegister(RC)); 9895 9896 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9897 9898 SDLoc dl = getCurSDLoc(); 9899 // Use the produced MatchedRegs object to 9900 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9901 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9902 OpInfo.getMatchedOperand(), dl, DAG, 9903 AsmNodeOperands); 9904 break; 9905 } 9906 9907 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9908 assert(Flag.getNumOperandRegisters() == 1 && 9909 "Unexpected number of operands"); 9910 // Add information to the INLINEASM node to know about this input. 9911 // See InlineAsm.h isUseOperandTiedToDef. 9912 Flag.clearMemConstraint(); 9913 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9914 AsmNodeOperands.push_back(DAG.getTargetConstant( 9915 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9916 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9917 break; 9918 } 9919 9920 // Treat indirect 'X' constraint as memory. 9921 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9922 OpInfo.isIndirect) 9923 OpInfo.ConstraintType = TargetLowering::C_Memory; 9924 9925 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9926 OpInfo.ConstraintType == TargetLowering::C_Other) { 9927 std::vector<SDValue> Ops; 9928 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9929 Ops, DAG); 9930 if (Ops.empty()) { 9931 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9932 if (isa<ConstantSDNode>(InOperandVal)) { 9933 emitInlineAsmError(Call, "value out of range for constraint '" + 9934 Twine(OpInfo.ConstraintCode) + "'"); 9935 return; 9936 } 9937 9938 emitInlineAsmError(Call, 9939 "invalid operand for inline asm constraint '" + 9940 Twine(OpInfo.ConstraintCode) + "'"); 9941 return; 9942 } 9943 9944 // Add information to the INLINEASM node to know about this input. 9945 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9946 AsmNodeOperands.push_back(DAG.getTargetConstant( 9947 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9948 llvm::append_range(AsmNodeOperands, Ops); 9949 break; 9950 } 9951 9952 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9953 assert((OpInfo.isIndirect || 9954 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9955 "Operand must be indirect to be a mem!"); 9956 assert(InOperandVal.getValueType() == 9957 TLI.getPointerTy(DAG.getDataLayout()) && 9958 "Memory operands expect pointer values"); 9959 9960 const InlineAsm::ConstraintCode ConstraintID = 9961 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9962 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9963 "Failed to convert memory constraint code to constraint id."); 9964 9965 // Add information to the INLINEASM node to know about this input. 9966 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9967 ResOpType.setMemConstraint(ConstraintID); 9968 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9969 getCurSDLoc(), 9970 MVT::i32)); 9971 AsmNodeOperands.push_back(InOperandVal); 9972 break; 9973 } 9974 9975 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9976 const InlineAsm::ConstraintCode ConstraintID = 9977 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9978 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9979 "Failed to convert memory constraint code to constraint id."); 9980 9981 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9982 9983 SDValue AsmOp = InOperandVal; 9984 if (isFunction(InOperandVal)) { 9985 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9986 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9987 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9988 InOperandVal.getValueType(), 9989 GA->getOffset()); 9990 } 9991 9992 // Add information to the INLINEASM node to know about this input. 9993 ResOpType.setMemConstraint(ConstraintID); 9994 9995 AsmNodeOperands.push_back( 9996 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9997 9998 AsmNodeOperands.push_back(AsmOp); 9999 break; 10000 } 10001 10002 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 10003 OpInfo.ConstraintType == TargetLowering::C_Register) && 10004 "Unknown constraint type!"); 10005 10006 // TODO: Support this. 10007 if (OpInfo.isIndirect) { 10008 emitInlineAsmError( 10009 Call, "Don't know how to handle indirect register inputs yet " 10010 "for constraint '" + 10011 Twine(OpInfo.ConstraintCode) + "'"); 10012 return; 10013 } 10014 10015 // Copy the input into the appropriate registers. 10016 if (OpInfo.AssignedRegs.Regs.empty()) { 10017 emitInlineAsmError(Call, 10018 "couldn't allocate input reg for constraint '" + 10019 Twine(OpInfo.ConstraintCode) + "'"); 10020 return; 10021 } 10022 10023 if (DetectWriteToReservedRegister()) 10024 return; 10025 10026 SDLoc dl = getCurSDLoc(); 10027 10028 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10029 &Call); 10030 10031 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10032 0, dl, DAG, AsmNodeOperands); 10033 break; 10034 } 10035 case InlineAsm::isClobber: 10036 // Add the clobbered value to the operand list, so that the register 10037 // allocator is aware that the physreg got clobbered. 10038 if (!OpInfo.AssignedRegs.Regs.empty()) 10039 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10040 false, 0, getCurSDLoc(), DAG, 10041 AsmNodeOperands); 10042 break; 10043 } 10044 } 10045 10046 // Finish up input operands. Set the input chain and add the flag last. 10047 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10048 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10049 10050 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10051 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10052 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10053 Glue = Chain.getValue(1); 10054 10055 // Do additional work to generate outputs. 10056 10057 SmallVector<EVT, 1> ResultVTs; 10058 SmallVector<SDValue, 1> ResultValues; 10059 SmallVector<SDValue, 8> OutChains; 10060 10061 llvm::Type *CallResultType = Call.getType(); 10062 ArrayRef<Type *> ResultTypes; 10063 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10064 ResultTypes = StructResult->elements(); 10065 else if (!CallResultType->isVoidTy()) 10066 ResultTypes = ArrayRef(CallResultType); 10067 10068 auto CurResultType = ResultTypes.begin(); 10069 auto handleRegAssign = [&](SDValue V) { 10070 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10071 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10072 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10073 ++CurResultType; 10074 // If the type of the inline asm call site return value is different but has 10075 // same size as the type of the asm output bitcast it. One example of this 10076 // is for vectors with different width / number of elements. This can 10077 // happen for register classes that can contain multiple different value 10078 // types. The preg or vreg allocated may not have the same VT as was 10079 // expected. 10080 // 10081 // This can also happen for a return value that disagrees with the register 10082 // class it is put in, eg. a double in a general-purpose register on a 10083 // 32-bit machine. 10084 if (ResultVT != V.getValueType() && 10085 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10086 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10087 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10088 V.getValueType().isInteger()) { 10089 // If a result value was tied to an input value, the computed result 10090 // may have a wider width than the expected result. Extract the 10091 // relevant portion. 10092 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10093 } 10094 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10095 ResultVTs.push_back(ResultVT); 10096 ResultValues.push_back(V); 10097 }; 10098 10099 // Deal with output operands. 10100 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10101 if (OpInfo.Type == InlineAsm::isOutput) { 10102 SDValue Val; 10103 // Skip trivial output operands. 10104 if (OpInfo.AssignedRegs.Regs.empty()) 10105 continue; 10106 10107 switch (OpInfo.ConstraintType) { 10108 case TargetLowering::C_Register: 10109 case TargetLowering::C_RegisterClass: 10110 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10111 Chain, &Glue, &Call); 10112 break; 10113 case TargetLowering::C_Immediate: 10114 case TargetLowering::C_Other: 10115 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10116 OpInfo, DAG); 10117 break; 10118 case TargetLowering::C_Memory: 10119 break; // Already handled. 10120 case TargetLowering::C_Address: 10121 break; // Silence warning. 10122 case TargetLowering::C_Unknown: 10123 assert(false && "Unexpected unknown constraint"); 10124 } 10125 10126 // Indirect output manifest as stores. Record output chains. 10127 if (OpInfo.isIndirect) { 10128 const Value *Ptr = OpInfo.CallOperandVal; 10129 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10130 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10131 MachinePointerInfo(Ptr)); 10132 OutChains.push_back(Store); 10133 } else { 10134 // generate CopyFromRegs to associated registers. 10135 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10136 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10137 for (const SDValue &V : Val->op_values()) 10138 handleRegAssign(V); 10139 } else 10140 handleRegAssign(Val); 10141 } 10142 } 10143 } 10144 10145 // Set results. 10146 if (!ResultValues.empty()) { 10147 assert(CurResultType == ResultTypes.end() && 10148 "Mismatch in number of ResultTypes"); 10149 assert(ResultValues.size() == ResultTypes.size() && 10150 "Mismatch in number of output operands in asm result"); 10151 10152 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10153 DAG.getVTList(ResultVTs), ResultValues); 10154 setValue(&Call, V); 10155 } 10156 10157 // Collect store chains. 10158 if (!OutChains.empty()) 10159 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10160 10161 if (EmitEHLabels) { 10162 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10163 } 10164 10165 // Only Update Root if inline assembly has a memory effect. 10166 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10167 EmitEHLabels) 10168 DAG.setRoot(Chain); 10169 } 10170 10171 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10172 const Twine &Message) { 10173 LLVMContext &Ctx = *DAG.getContext(); 10174 Ctx.emitError(&Call, Message); 10175 10176 // Make sure we leave the DAG in a valid state 10177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10178 SmallVector<EVT, 1> ValueVTs; 10179 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10180 10181 if (ValueVTs.empty()) 10182 return; 10183 10184 SmallVector<SDValue, 1> Ops; 10185 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 10186 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 10187 10188 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10189 } 10190 10191 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10192 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10193 MVT::Other, getRoot(), 10194 getValue(I.getArgOperand(0)), 10195 DAG.getSrcValue(I.getArgOperand(0)))); 10196 } 10197 10198 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10200 const DataLayout &DL = DAG.getDataLayout(); 10201 SDValue V = DAG.getVAArg( 10202 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10203 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10204 DL.getABITypeAlign(I.getType()).value()); 10205 DAG.setRoot(V.getValue(1)); 10206 10207 if (I.getType()->isPointerTy()) 10208 V = DAG.getPtrExtOrTrunc( 10209 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10210 setValue(&I, V); 10211 } 10212 10213 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10214 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10215 MVT::Other, getRoot(), 10216 getValue(I.getArgOperand(0)), 10217 DAG.getSrcValue(I.getArgOperand(0)))); 10218 } 10219 10220 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10221 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10222 MVT::Other, getRoot(), 10223 getValue(I.getArgOperand(0)), 10224 getValue(I.getArgOperand(1)), 10225 DAG.getSrcValue(I.getArgOperand(0)), 10226 DAG.getSrcValue(I.getArgOperand(1)))); 10227 } 10228 10229 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10230 const Instruction &I, 10231 SDValue Op) { 10232 const MDNode *Range = getRangeMetadata(I); 10233 if (!Range) 10234 return Op; 10235 10236 ConstantRange CR = getConstantRangeFromMetadata(*Range); 10237 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 10238 return Op; 10239 10240 APInt Lo = CR.getUnsignedMin(); 10241 if (!Lo.isMinValue()) 10242 return Op; 10243 10244 APInt Hi = CR.getUnsignedMax(); 10245 unsigned Bits = std::max(Hi.getActiveBits(), 10246 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10247 10248 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10249 10250 SDLoc SL = getCurSDLoc(); 10251 10252 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10253 DAG.getValueType(SmallVT)); 10254 unsigned NumVals = Op.getNode()->getNumValues(); 10255 if (NumVals == 1) 10256 return ZExt; 10257 10258 SmallVector<SDValue, 4> Ops; 10259 10260 Ops.push_back(ZExt); 10261 for (unsigned I = 1; I != NumVals; ++I) 10262 Ops.push_back(Op.getValue(I)); 10263 10264 return DAG.getMergeValues(Ops, SL); 10265 } 10266 10267 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10268 /// the call being lowered. 10269 /// 10270 /// This is a helper for lowering intrinsics that follow a target calling 10271 /// convention or require stack pointer adjustment. Only a subset of the 10272 /// intrinsic's operands need to participate in the calling convention. 10273 void SelectionDAGBuilder::populateCallLoweringInfo( 10274 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10275 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10276 AttributeSet RetAttrs, bool IsPatchPoint) { 10277 TargetLowering::ArgListTy Args; 10278 Args.reserve(NumArgs); 10279 10280 // Populate the argument list. 10281 // Attributes for args start at offset 1, after the return attribute. 10282 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10283 ArgI != ArgE; ++ArgI) { 10284 const Value *V = Call->getOperand(ArgI); 10285 10286 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10287 10288 TargetLowering::ArgListEntry Entry; 10289 Entry.Node = getValue(V); 10290 Entry.Ty = V->getType(); 10291 Entry.setAttributes(Call, ArgI); 10292 Args.push_back(Entry); 10293 } 10294 10295 CLI.setDebugLoc(getCurSDLoc()) 10296 .setChain(getRoot()) 10297 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10298 RetAttrs) 10299 .setDiscardResult(Call->use_empty()) 10300 .setIsPatchPoint(IsPatchPoint) 10301 .setIsPreallocated( 10302 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10303 } 10304 10305 /// Add a stack map intrinsic call's live variable operands to a stackmap 10306 /// or patchpoint target node's operand list. 10307 /// 10308 /// Constants are converted to TargetConstants purely as an optimization to 10309 /// avoid constant materialization and register allocation. 10310 /// 10311 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10312 /// generate addess computation nodes, and so FinalizeISel can convert the 10313 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10314 /// address materialization and register allocation, but may also be required 10315 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10316 /// alloca in the entry block, then the runtime may assume that the alloca's 10317 /// StackMap location can be read immediately after compilation and that the 10318 /// location is valid at any point during execution (this is similar to the 10319 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10320 /// only available in a register, then the runtime would need to trap when 10321 /// execution reaches the StackMap in order to read the alloca's location. 10322 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10323 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10324 SelectionDAGBuilder &Builder) { 10325 SelectionDAG &DAG = Builder.DAG; 10326 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10327 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10328 10329 // Things on the stack are pointer-typed, meaning that they are already 10330 // legal and can be emitted directly to target nodes. 10331 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10332 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10333 } else { 10334 // Otherwise emit a target independent node to be legalised. 10335 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10336 } 10337 } 10338 } 10339 10340 /// Lower llvm.experimental.stackmap. 10341 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10342 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10343 // [live variables...]) 10344 10345 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10346 10347 SDValue Chain, InGlue, Callee; 10348 SmallVector<SDValue, 32> Ops; 10349 10350 SDLoc DL = getCurSDLoc(); 10351 Callee = getValue(CI.getCalledOperand()); 10352 10353 // The stackmap intrinsic only records the live variables (the arguments 10354 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10355 // intrinsic, this won't be lowered to a function call. This means we don't 10356 // have to worry about calling conventions and target specific lowering code. 10357 // Instead we perform the call lowering right here. 10358 // 10359 // chain, flag = CALLSEQ_START(chain, 0, 0) 10360 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10361 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10362 // 10363 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10364 InGlue = Chain.getValue(1); 10365 10366 // Add the STACKMAP operands, starting with DAG house-keeping. 10367 Ops.push_back(Chain); 10368 Ops.push_back(InGlue); 10369 10370 // Add the <id>, <numShadowBytes> operands. 10371 // 10372 // These do not require legalisation, and can be emitted directly to target 10373 // constant nodes. 10374 SDValue ID = getValue(CI.getArgOperand(0)); 10375 assert(ID.getValueType() == MVT::i64); 10376 SDValue IDConst = 10377 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10378 Ops.push_back(IDConst); 10379 10380 SDValue Shad = getValue(CI.getArgOperand(1)); 10381 assert(Shad.getValueType() == MVT::i32); 10382 SDValue ShadConst = 10383 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10384 Ops.push_back(ShadConst); 10385 10386 // Add the live variables. 10387 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10388 10389 // Create the STACKMAP node. 10390 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10391 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10392 InGlue = Chain.getValue(1); 10393 10394 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10395 10396 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10397 10398 // Set the root to the target-lowered call chain. 10399 DAG.setRoot(Chain); 10400 10401 // Inform the Frame Information that we have a stackmap in this function. 10402 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10403 } 10404 10405 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10406 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10407 const BasicBlock *EHPadBB) { 10408 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10409 // i32 <numBytes>, 10410 // i8* <target>, 10411 // i32 <numArgs>, 10412 // [Args...], 10413 // [live variables...]) 10414 10415 CallingConv::ID CC = CB.getCallingConv(); 10416 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10417 bool HasDef = !CB.getType()->isVoidTy(); 10418 SDLoc dl = getCurSDLoc(); 10419 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10420 10421 // Handle immediate and symbolic callees. 10422 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10423 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10424 /*isTarget=*/true); 10425 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10426 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10427 SDLoc(SymbolicCallee), 10428 SymbolicCallee->getValueType(0)); 10429 10430 // Get the real number of arguments participating in the call <numArgs> 10431 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10432 unsigned NumArgs = NArgVal->getAsZExtVal(); 10433 10434 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10435 // Intrinsics include all meta-operands up to but not including CC. 10436 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10437 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10438 "Not enough arguments provided to the patchpoint intrinsic"); 10439 10440 // For AnyRegCC the arguments are lowered later on manually. 10441 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10442 Type *ReturnTy = 10443 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10444 10445 TargetLowering::CallLoweringInfo CLI(DAG); 10446 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10447 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10448 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10449 10450 SDNode *CallEnd = Result.second.getNode(); 10451 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10452 CallEnd = CallEnd->getOperand(0).getNode(); 10453 10454 /// Get a call instruction from the call sequence chain. 10455 /// Tail calls are not allowed. 10456 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10457 "Expected a callseq node."); 10458 SDNode *Call = CallEnd->getOperand(0).getNode(); 10459 bool HasGlue = Call->getGluedNode(); 10460 10461 // Replace the target specific call node with the patchable intrinsic. 10462 SmallVector<SDValue, 8> Ops; 10463 10464 // Push the chain. 10465 Ops.push_back(*(Call->op_begin())); 10466 10467 // Optionally, push the glue (if any). 10468 if (HasGlue) 10469 Ops.push_back(*(Call->op_end() - 1)); 10470 10471 // Push the register mask info. 10472 if (HasGlue) 10473 Ops.push_back(*(Call->op_end() - 2)); 10474 else 10475 Ops.push_back(*(Call->op_end() - 1)); 10476 10477 // Add the <id> and <numBytes> constants. 10478 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10479 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10480 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10481 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10482 10483 // Add the callee. 10484 Ops.push_back(Callee); 10485 10486 // Adjust <numArgs> to account for any arguments that have been passed on the 10487 // stack instead. 10488 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10489 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10490 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10491 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10492 10493 // Add the calling convention 10494 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10495 10496 // Add the arguments we omitted previously. The register allocator should 10497 // place these in any free register. 10498 if (IsAnyRegCC) 10499 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10500 Ops.push_back(getValue(CB.getArgOperand(i))); 10501 10502 // Push the arguments from the call instruction. 10503 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10504 Ops.append(Call->op_begin() + 2, e); 10505 10506 // Push live variables for the stack map. 10507 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10508 10509 SDVTList NodeTys; 10510 if (IsAnyRegCC && HasDef) { 10511 // Create the return types based on the intrinsic definition 10512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10513 SmallVector<EVT, 3> ValueVTs; 10514 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10515 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10516 10517 // There is always a chain and a glue type at the end 10518 ValueVTs.push_back(MVT::Other); 10519 ValueVTs.push_back(MVT::Glue); 10520 NodeTys = DAG.getVTList(ValueVTs); 10521 } else 10522 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10523 10524 // Replace the target specific call node with a PATCHPOINT node. 10525 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10526 10527 // Update the NodeMap. 10528 if (HasDef) { 10529 if (IsAnyRegCC) 10530 setValue(&CB, SDValue(PPV.getNode(), 0)); 10531 else 10532 setValue(&CB, Result.first); 10533 } 10534 10535 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10536 // call sequence. Furthermore the location of the chain and glue can change 10537 // when the AnyReg calling convention is used and the intrinsic returns a 10538 // value. 10539 if (IsAnyRegCC && HasDef) { 10540 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10541 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10542 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10543 } else 10544 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10545 DAG.DeleteNode(Call); 10546 10547 // Inform the Frame Information that we have a patchpoint in this function. 10548 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10549 } 10550 10551 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10552 unsigned Intrinsic) { 10553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10554 SDValue Op1 = getValue(I.getArgOperand(0)); 10555 SDValue Op2; 10556 if (I.arg_size() > 1) 10557 Op2 = getValue(I.getArgOperand(1)); 10558 SDLoc dl = getCurSDLoc(); 10559 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10560 SDValue Res; 10561 SDNodeFlags SDFlags; 10562 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10563 SDFlags.copyFMF(*FPMO); 10564 10565 switch (Intrinsic) { 10566 case Intrinsic::vector_reduce_fadd: 10567 if (SDFlags.hasAllowReassociation()) 10568 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10569 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10570 SDFlags); 10571 else 10572 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10573 break; 10574 case Intrinsic::vector_reduce_fmul: 10575 if (SDFlags.hasAllowReassociation()) 10576 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10577 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10578 SDFlags); 10579 else 10580 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10581 break; 10582 case Intrinsic::vector_reduce_add: 10583 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10584 break; 10585 case Intrinsic::vector_reduce_mul: 10586 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10587 break; 10588 case Intrinsic::vector_reduce_and: 10589 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10590 break; 10591 case Intrinsic::vector_reduce_or: 10592 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10593 break; 10594 case Intrinsic::vector_reduce_xor: 10595 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10596 break; 10597 case Intrinsic::vector_reduce_smax: 10598 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10599 break; 10600 case Intrinsic::vector_reduce_smin: 10601 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10602 break; 10603 case Intrinsic::vector_reduce_umax: 10604 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10605 break; 10606 case Intrinsic::vector_reduce_umin: 10607 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10608 break; 10609 case Intrinsic::vector_reduce_fmax: 10610 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10611 break; 10612 case Intrinsic::vector_reduce_fmin: 10613 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10614 break; 10615 case Intrinsic::vector_reduce_fmaximum: 10616 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10617 break; 10618 case Intrinsic::vector_reduce_fminimum: 10619 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10620 break; 10621 default: 10622 llvm_unreachable("Unhandled vector reduce intrinsic"); 10623 } 10624 setValue(&I, Res); 10625 } 10626 10627 /// Returns an AttributeList representing the attributes applied to the return 10628 /// value of the given call. 10629 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10630 SmallVector<Attribute::AttrKind, 2> Attrs; 10631 if (CLI.RetSExt) 10632 Attrs.push_back(Attribute::SExt); 10633 if (CLI.RetZExt) 10634 Attrs.push_back(Attribute::ZExt); 10635 if (CLI.IsInReg) 10636 Attrs.push_back(Attribute::InReg); 10637 10638 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10639 Attrs); 10640 } 10641 10642 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10643 /// implementation, which just calls LowerCall. 10644 /// FIXME: When all targets are 10645 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10646 std::pair<SDValue, SDValue> 10647 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10648 // Handle the incoming return values from the call. 10649 CLI.Ins.clear(); 10650 Type *OrigRetTy = CLI.RetTy; 10651 SmallVector<EVT, 4> RetTys; 10652 SmallVector<TypeSize, 4> Offsets; 10653 auto &DL = CLI.DAG.getDataLayout(); 10654 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10655 10656 if (CLI.IsPostTypeLegalization) { 10657 // If we are lowering a libcall after legalization, split the return type. 10658 SmallVector<EVT, 4> OldRetTys; 10659 SmallVector<TypeSize, 4> OldOffsets; 10660 RetTys.swap(OldRetTys); 10661 Offsets.swap(OldOffsets); 10662 10663 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10664 EVT RetVT = OldRetTys[i]; 10665 uint64_t Offset = OldOffsets[i]; 10666 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10667 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10668 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10669 RetTys.append(NumRegs, RegisterVT); 10670 for (unsigned j = 0; j != NumRegs; ++j) 10671 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10672 } 10673 } 10674 10675 SmallVector<ISD::OutputArg, 4> Outs; 10676 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10677 10678 bool CanLowerReturn = 10679 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10680 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10681 10682 SDValue DemoteStackSlot; 10683 int DemoteStackIdx = -100; 10684 if (!CanLowerReturn) { 10685 // FIXME: equivalent assert? 10686 // assert(!CS.hasInAllocaArgument() && 10687 // "sret demotion is incompatible with inalloca"); 10688 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10689 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10690 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10691 DemoteStackIdx = 10692 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10693 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10694 DL.getAllocaAddrSpace()); 10695 10696 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10697 ArgListEntry Entry; 10698 Entry.Node = DemoteStackSlot; 10699 Entry.Ty = StackSlotPtrType; 10700 Entry.IsSExt = false; 10701 Entry.IsZExt = false; 10702 Entry.IsInReg = false; 10703 Entry.IsSRet = true; 10704 Entry.IsNest = false; 10705 Entry.IsByVal = false; 10706 Entry.IsByRef = false; 10707 Entry.IsReturned = false; 10708 Entry.IsSwiftSelf = false; 10709 Entry.IsSwiftAsync = false; 10710 Entry.IsSwiftError = false; 10711 Entry.IsCFGuardTarget = false; 10712 Entry.Alignment = Alignment; 10713 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10714 CLI.NumFixedArgs += 1; 10715 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10716 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10717 10718 // sret demotion isn't compatible with tail-calls, since the sret argument 10719 // points into the callers stack frame. 10720 CLI.IsTailCall = false; 10721 } else { 10722 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10723 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10724 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10725 ISD::ArgFlagsTy Flags; 10726 if (NeedsRegBlock) { 10727 Flags.setInConsecutiveRegs(); 10728 if (I == RetTys.size() - 1) 10729 Flags.setInConsecutiveRegsLast(); 10730 } 10731 EVT VT = RetTys[I]; 10732 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10733 CLI.CallConv, VT); 10734 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10735 CLI.CallConv, VT); 10736 for (unsigned i = 0; i != NumRegs; ++i) { 10737 ISD::InputArg MyFlags; 10738 MyFlags.Flags = Flags; 10739 MyFlags.VT = RegisterVT; 10740 MyFlags.ArgVT = VT; 10741 MyFlags.Used = CLI.IsReturnValueUsed; 10742 if (CLI.RetTy->isPointerTy()) { 10743 MyFlags.Flags.setPointer(); 10744 MyFlags.Flags.setPointerAddrSpace( 10745 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10746 } 10747 if (CLI.RetSExt) 10748 MyFlags.Flags.setSExt(); 10749 if (CLI.RetZExt) 10750 MyFlags.Flags.setZExt(); 10751 if (CLI.IsInReg) 10752 MyFlags.Flags.setInReg(); 10753 CLI.Ins.push_back(MyFlags); 10754 } 10755 } 10756 } 10757 10758 // We push in swifterror return as the last element of CLI.Ins. 10759 ArgListTy &Args = CLI.getArgs(); 10760 if (supportSwiftError()) { 10761 for (const ArgListEntry &Arg : Args) { 10762 if (Arg.IsSwiftError) { 10763 ISD::InputArg MyFlags; 10764 MyFlags.VT = getPointerTy(DL); 10765 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10766 MyFlags.Flags.setSwiftError(); 10767 CLI.Ins.push_back(MyFlags); 10768 } 10769 } 10770 } 10771 10772 // Handle all of the outgoing arguments. 10773 CLI.Outs.clear(); 10774 CLI.OutVals.clear(); 10775 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10776 SmallVector<EVT, 4> ValueVTs; 10777 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10778 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10779 Type *FinalType = Args[i].Ty; 10780 if (Args[i].IsByVal) 10781 FinalType = Args[i].IndirectType; 10782 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10783 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10784 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10785 ++Value) { 10786 EVT VT = ValueVTs[Value]; 10787 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10788 SDValue Op = SDValue(Args[i].Node.getNode(), 10789 Args[i].Node.getResNo() + Value); 10790 ISD::ArgFlagsTy Flags; 10791 10792 // Certain targets (such as MIPS), may have a different ABI alignment 10793 // for a type depending on the context. Give the target a chance to 10794 // specify the alignment it wants. 10795 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10796 Flags.setOrigAlign(OriginalAlignment); 10797 10798 if (Args[i].Ty->isPointerTy()) { 10799 Flags.setPointer(); 10800 Flags.setPointerAddrSpace( 10801 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10802 } 10803 if (Args[i].IsZExt) 10804 Flags.setZExt(); 10805 if (Args[i].IsSExt) 10806 Flags.setSExt(); 10807 if (Args[i].IsInReg) { 10808 // If we are using vectorcall calling convention, a structure that is 10809 // passed InReg - is surely an HVA 10810 if (CLI.CallConv == CallingConv::X86_VectorCall && 10811 isa<StructType>(FinalType)) { 10812 // The first value of a structure is marked 10813 if (0 == Value) 10814 Flags.setHvaStart(); 10815 Flags.setHva(); 10816 } 10817 // Set InReg Flag 10818 Flags.setInReg(); 10819 } 10820 if (Args[i].IsSRet) 10821 Flags.setSRet(); 10822 if (Args[i].IsSwiftSelf) 10823 Flags.setSwiftSelf(); 10824 if (Args[i].IsSwiftAsync) 10825 Flags.setSwiftAsync(); 10826 if (Args[i].IsSwiftError) 10827 Flags.setSwiftError(); 10828 if (Args[i].IsCFGuardTarget) 10829 Flags.setCFGuardTarget(); 10830 if (Args[i].IsByVal) 10831 Flags.setByVal(); 10832 if (Args[i].IsByRef) 10833 Flags.setByRef(); 10834 if (Args[i].IsPreallocated) { 10835 Flags.setPreallocated(); 10836 // Set the byval flag for CCAssignFn callbacks that don't know about 10837 // preallocated. This way we can know how many bytes we should've 10838 // allocated and how many bytes a callee cleanup function will pop. If 10839 // we port preallocated to more targets, we'll have to add custom 10840 // preallocated handling in the various CC lowering callbacks. 10841 Flags.setByVal(); 10842 } 10843 if (Args[i].IsInAlloca) { 10844 Flags.setInAlloca(); 10845 // Set the byval flag for CCAssignFn callbacks that don't know about 10846 // inalloca. This way we can know how many bytes we should've allocated 10847 // and how many bytes a callee cleanup function will pop. If we port 10848 // inalloca to more targets, we'll have to add custom inalloca handling 10849 // in the various CC lowering callbacks. 10850 Flags.setByVal(); 10851 } 10852 Align MemAlign; 10853 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10854 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10855 Flags.setByValSize(FrameSize); 10856 10857 // info is not there but there are cases it cannot get right. 10858 if (auto MA = Args[i].Alignment) 10859 MemAlign = *MA; 10860 else 10861 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10862 } else if (auto MA = Args[i].Alignment) { 10863 MemAlign = *MA; 10864 } else { 10865 MemAlign = OriginalAlignment; 10866 } 10867 Flags.setMemAlign(MemAlign); 10868 if (Args[i].IsNest) 10869 Flags.setNest(); 10870 if (NeedsRegBlock) 10871 Flags.setInConsecutiveRegs(); 10872 10873 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10874 CLI.CallConv, VT); 10875 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10876 CLI.CallConv, VT); 10877 SmallVector<SDValue, 4> Parts(NumParts); 10878 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10879 10880 if (Args[i].IsSExt) 10881 ExtendKind = ISD::SIGN_EXTEND; 10882 else if (Args[i].IsZExt) 10883 ExtendKind = ISD::ZERO_EXTEND; 10884 10885 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10886 // for now. 10887 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10888 CanLowerReturn) { 10889 assert((CLI.RetTy == Args[i].Ty || 10890 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10891 CLI.RetTy->getPointerAddressSpace() == 10892 Args[i].Ty->getPointerAddressSpace())) && 10893 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10894 // Before passing 'returned' to the target lowering code, ensure that 10895 // either the register MVT and the actual EVT are the same size or that 10896 // the return value and argument are extended in the same way; in these 10897 // cases it's safe to pass the argument register value unchanged as the 10898 // return register value (although it's at the target's option whether 10899 // to do so) 10900 // TODO: allow code generation to take advantage of partially preserved 10901 // registers rather than clobbering the entire register when the 10902 // parameter extension method is not compatible with the return 10903 // extension method 10904 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10905 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10906 CLI.RetZExt == Args[i].IsZExt)) 10907 Flags.setReturned(); 10908 } 10909 10910 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10911 CLI.CallConv, ExtendKind); 10912 10913 for (unsigned j = 0; j != NumParts; ++j) { 10914 // if it isn't first piece, alignment must be 1 10915 // For scalable vectors the scalable part is currently handled 10916 // by individual targets, so we just use the known minimum size here. 10917 ISD::OutputArg MyFlags( 10918 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10919 i < CLI.NumFixedArgs, i, 10920 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10921 if (NumParts > 1 && j == 0) 10922 MyFlags.Flags.setSplit(); 10923 else if (j != 0) { 10924 MyFlags.Flags.setOrigAlign(Align(1)); 10925 if (j == NumParts - 1) 10926 MyFlags.Flags.setSplitEnd(); 10927 } 10928 10929 CLI.Outs.push_back(MyFlags); 10930 CLI.OutVals.push_back(Parts[j]); 10931 } 10932 10933 if (NeedsRegBlock && Value == NumValues - 1) 10934 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10935 } 10936 } 10937 10938 SmallVector<SDValue, 4> InVals; 10939 CLI.Chain = LowerCall(CLI, InVals); 10940 10941 // Update CLI.InVals to use outside of this function. 10942 CLI.InVals = InVals; 10943 10944 // Verify that the target's LowerCall behaved as expected. 10945 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10946 "LowerCall didn't return a valid chain!"); 10947 assert((!CLI.IsTailCall || InVals.empty()) && 10948 "LowerCall emitted a return value for a tail call!"); 10949 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10950 "LowerCall didn't emit the correct number of values!"); 10951 10952 // For a tail call, the return value is merely live-out and there aren't 10953 // any nodes in the DAG representing it. Return a special value to 10954 // indicate that a tail call has been emitted and no more Instructions 10955 // should be processed in the current block. 10956 if (CLI.IsTailCall) { 10957 CLI.DAG.setRoot(CLI.Chain); 10958 return std::make_pair(SDValue(), SDValue()); 10959 } 10960 10961 #ifndef NDEBUG 10962 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10963 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10964 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10965 "LowerCall emitted a value with the wrong type!"); 10966 } 10967 #endif 10968 10969 SmallVector<SDValue, 4> ReturnValues; 10970 if (!CanLowerReturn) { 10971 // The instruction result is the result of loading from the 10972 // hidden sret parameter. 10973 SmallVector<EVT, 1> PVTs; 10974 Type *PtrRetTy = 10975 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10976 10977 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10978 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10979 EVT PtrVT = PVTs[0]; 10980 10981 unsigned NumValues = RetTys.size(); 10982 ReturnValues.resize(NumValues); 10983 SmallVector<SDValue, 4> Chains(NumValues); 10984 10985 // An aggregate return value cannot wrap around the address space, so 10986 // offsets to its parts don't wrap either. 10987 SDNodeFlags Flags; 10988 Flags.setNoUnsignedWrap(true); 10989 10990 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10991 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10992 for (unsigned i = 0; i < NumValues; ++i) { 10993 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10994 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10995 PtrVT), Flags); 10996 SDValue L = CLI.DAG.getLoad( 10997 RetTys[i], CLI.DL, CLI.Chain, Add, 10998 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10999 DemoteStackIdx, Offsets[i]), 11000 HiddenSRetAlign); 11001 ReturnValues[i] = L; 11002 Chains[i] = L.getValue(1); 11003 } 11004 11005 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11006 } else { 11007 // Collect the legal value parts into potentially illegal values 11008 // that correspond to the original function's return values. 11009 std::optional<ISD::NodeType> AssertOp; 11010 if (CLI.RetSExt) 11011 AssertOp = ISD::AssertSext; 11012 else if (CLI.RetZExt) 11013 AssertOp = ISD::AssertZext; 11014 unsigned CurReg = 0; 11015 for (EVT VT : RetTys) { 11016 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11017 CLI.CallConv, VT); 11018 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11019 CLI.CallConv, VT); 11020 11021 ReturnValues.push_back(getCopyFromParts( 11022 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11023 CLI.Chain, CLI.CallConv, AssertOp)); 11024 CurReg += NumRegs; 11025 } 11026 11027 // For a function returning void, there is no return value. We can't create 11028 // such a node, so we just return a null return value in that case. In 11029 // that case, nothing will actually look at the value. 11030 if (ReturnValues.empty()) 11031 return std::make_pair(SDValue(), CLI.Chain); 11032 } 11033 11034 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11035 CLI.DAG.getVTList(RetTys), ReturnValues); 11036 return std::make_pair(Res, CLI.Chain); 11037 } 11038 11039 /// Places new result values for the node in Results (their number 11040 /// and types must exactly match those of the original return values of 11041 /// the node), or leaves Results empty, which indicates that the node is not 11042 /// to be custom lowered after all. 11043 void TargetLowering::LowerOperationWrapper(SDNode *N, 11044 SmallVectorImpl<SDValue> &Results, 11045 SelectionDAG &DAG) const { 11046 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11047 11048 if (!Res.getNode()) 11049 return; 11050 11051 // If the original node has one result, take the return value from 11052 // LowerOperation as is. It might not be result number 0. 11053 if (N->getNumValues() == 1) { 11054 Results.push_back(Res); 11055 return; 11056 } 11057 11058 // If the original node has multiple results, then the return node should 11059 // have the same number of results. 11060 assert((N->getNumValues() == Res->getNumValues()) && 11061 "Lowering returned the wrong number of results!"); 11062 11063 // Places new result values base on N result number. 11064 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11065 Results.push_back(Res.getValue(I)); 11066 } 11067 11068 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11069 llvm_unreachable("LowerOperation not implemented for this target!"); 11070 } 11071 11072 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11073 unsigned Reg, 11074 ISD::NodeType ExtendType) { 11075 SDValue Op = getNonRegisterValue(V); 11076 assert((Op.getOpcode() != ISD::CopyFromReg || 11077 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11078 "Copy from a reg to the same reg!"); 11079 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11080 11081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11082 // If this is an InlineAsm we have to match the registers required, not the 11083 // notional registers required by the type. 11084 11085 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11086 std::nullopt); // This is not an ABI copy. 11087 SDValue Chain = DAG.getEntryNode(); 11088 11089 if (ExtendType == ISD::ANY_EXTEND) { 11090 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11091 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11092 ExtendType = PreferredExtendIt->second; 11093 } 11094 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11095 PendingExports.push_back(Chain); 11096 } 11097 11098 #include "llvm/CodeGen/SelectionDAGISel.h" 11099 11100 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11101 /// entry block, return true. This includes arguments used by switches, since 11102 /// the switch may expand into multiple basic blocks. 11103 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11104 // With FastISel active, we may be splitting blocks, so force creation 11105 // of virtual registers for all non-dead arguments. 11106 if (FastISel) 11107 return A->use_empty(); 11108 11109 const BasicBlock &Entry = A->getParent()->front(); 11110 for (const User *U : A->users()) 11111 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11112 return false; // Use not in entry block. 11113 11114 return true; 11115 } 11116 11117 using ArgCopyElisionMapTy = 11118 DenseMap<const Argument *, 11119 std::pair<const AllocaInst *, const StoreInst *>>; 11120 11121 /// Scan the entry block of the function in FuncInfo for arguments that look 11122 /// like copies into a local alloca. Record any copied arguments in 11123 /// ArgCopyElisionCandidates. 11124 static void 11125 findArgumentCopyElisionCandidates(const DataLayout &DL, 11126 FunctionLoweringInfo *FuncInfo, 11127 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11128 // Record the state of every static alloca used in the entry block. Argument 11129 // allocas are all used in the entry block, so we need approximately as many 11130 // entries as we have arguments. 11131 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11132 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11133 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11134 StaticAllocas.reserve(NumArgs * 2); 11135 11136 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11137 if (!V) 11138 return nullptr; 11139 V = V->stripPointerCasts(); 11140 const auto *AI = dyn_cast<AllocaInst>(V); 11141 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11142 return nullptr; 11143 auto Iter = StaticAllocas.insert({AI, Unknown}); 11144 return &Iter.first->second; 11145 }; 11146 11147 // Look for stores of arguments to static allocas. Look through bitcasts and 11148 // GEPs to handle type coercions, as long as the alloca is fully initialized 11149 // by the store. Any non-store use of an alloca escapes it and any subsequent 11150 // unanalyzed store might write it. 11151 // FIXME: Handle structs initialized with multiple stores. 11152 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11153 // Look for stores, and handle non-store uses conservatively. 11154 const auto *SI = dyn_cast<StoreInst>(&I); 11155 if (!SI) { 11156 // We will look through cast uses, so ignore them completely. 11157 if (I.isCast()) 11158 continue; 11159 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11160 // to allocas. 11161 if (I.isDebugOrPseudoInst()) 11162 continue; 11163 // This is an unknown instruction. Assume it escapes or writes to all 11164 // static alloca operands. 11165 for (const Use &U : I.operands()) { 11166 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11167 *Info = StaticAllocaInfo::Clobbered; 11168 } 11169 continue; 11170 } 11171 11172 // If the stored value is a static alloca, mark it as escaped. 11173 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11174 *Info = StaticAllocaInfo::Clobbered; 11175 11176 // Check if the destination is a static alloca. 11177 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11178 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11179 if (!Info) 11180 continue; 11181 const AllocaInst *AI = cast<AllocaInst>(Dst); 11182 11183 // Skip allocas that have been initialized or clobbered. 11184 if (*Info != StaticAllocaInfo::Unknown) 11185 continue; 11186 11187 // Check if the stored value is an argument, and that this store fully 11188 // initializes the alloca. 11189 // If the argument type has padding bits we can't directly forward a pointer 11190 // as the upper bits may contain garbage. 11191 // Don't elide copies from the same argument twice. 11192 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11193 const auto *Arg = dyn_cast<Argument>(Val); 11194 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11195 Arg->getType()->isEmptyTy() || 11196 DL.getTypeStoreSize(Arg->getType()) != 11197 DL.getTypeAllocSize(AI->getAllocatedType()) || 11198 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11199 ArgCopyElisionCandidates.count(Arg)) { 11200 *Info = StaticAllocaInfo::Clobbered; 11201 continue; 11202 } 11203 11204 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11205 << '\n'); 11206 11207 // Mark this alloca and store for argument copy elision. 11208 *Info = StaticAllocaInfo::Elidable; 11209 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11210 11211 // Stop scanning if we've seen all arguments. This will happen early in -O0 11212 // builds, which is useful, because -O0 builds have large entry blocks and 11213 // many allocas. 11214 if (ArgCopyElisionCandidates.size() == NumArgs) 11215 break; 11216 } 11217 } 11218 11219 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11220 /// ArgVal is a load from a suitable fixed stack object. 11221 static void tryToElideArgumentCopy( 11222 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11223 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11224 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11225 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11226 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11227 // Check if this is a load from a fixed stack object. 11228 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11229 if (!LNode) 11230 return; 11231 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11232 if (!FINode) 11233 return; 11234 11235 // Check that the fixed stack object is the right size and alignment. 11236 // Look at the alignment that the user wrote on the alloca instead of looking 11237 // at the stack object. 11238 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11239 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11240 const AllocaInst *AI = ArgCopyIter->second.first; 11241 int FixedIndex = FINode->getIndex(); 11242 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11243 int OldIndex = AllocaIndex; 11244 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11245 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11246 LLVM_DEBUG( 11247 dbgs() << " argument copy elision failed due to bad fixed stack " 11248 "object size\n"); 11249 return; 11250 } 11251 Align RequiredAlignment = AI->getAlign(); 11252 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11253 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11254 "greater than stack argument alignment (" 11255 << DebugStr(RequiredAlignment) << " vs " 11256 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11257 return; 11258 } 11259 11260 // Perform the elision. Delete the old stack object and replace its only use 11261 // in the variable info map. Mark the stack object as mutable and aliased. 11262 LLVM_DEBUG({ 11263 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11264 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11265 << '\n'; 11266 }); 11267 MFI.RemoveStackObject(OldIndex); 11268 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11269 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11270 AllocaIndex = FixedIndex; 11271 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11272 for (SDValue ArgVal : ArgVals) 11273 Chains.push_back(ArgVal.getValue(1)); 11274 11275 // Avoid emitting code for the store implementing the copy. 11276 const StoreInst *SI = ArgCopyIter->second.second; 11277 ElidedArgCopyInstrs.insert(SI); 11278 11279 // Check for uses of the argument again so that we can avoid exporting ArgVal 11280 // if it is't used by anything other than the store. 11281 for (const Value *U : Arg.users()) { 11282 if (U != SI) { 11283 ArgHasUses = true; 11284 break; 11285 } 11286 } 11287 } 11288 11289 void SelectionDAGISel::LowerArguments(const Function &F) { 11290 SelectionDAG &DAG = SDB->DAG; 11291 SDLoc dl = SDB->getCurSDLoc(); 11292 const DataLayout &DL = DAG.getDataLayout(); 11293 SmallVector<ISD::InputArg, 16> Ins; 11294 11295 // In Naked functions we aren't going to save any registers. 11296 if (F.hasFnAttribute(Attribute::Naked)) 11297 return; 11298 11299 if (!FuncInfo->CanLowerReturn) { 11300 // Put in an sret pointer parameter before all the other parameters. 11301 SmallVector<EVT, 1> ValueVTs; 11302 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11303 PointerType::get(F.getContext(), 11304 DAG.getDataLayout().getAllocaAddrSpace()), 11305 ValueVTs); 11306 11307 // NOTE: Assuming that a pointer will never break down to more than one VT 11308 // or one register. 11309 ISD::ArgFlagsTy Flags; 11310 Flags.setSRet(); 11311 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11312 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11313 ISD::InputArg::NoArgIndex, 0); 11314 Ins.push_back(RetArg); 11315 } 11316 11317 // Look for stores of arguments to static allocas. Mark such arguments with a 11318 // flag to ask the target to give us the memory location of that argument if 11319 // available. 11320 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11321 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11322 ArgCopyElisionCandidates); 11323 11324 // Set up the incoming argument description vector. 11325 for (const Argument &Arg : F.args()) { 11326 unsigned ArgNo = Arg.getArgNo(); 11327 SmallVector<EVT, 4> ValueVTs; 11328 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11329 bool isArgValueUsed = !Arg.use_empty(); 11330 unsigned PartBase = 0; 11331 Type *FinalType = Arg.getType(); 11332 if (Arg.hasAttribute(Attribute::ByVal)) 11333 FinalType = Arg.getParamByValType(); 11334 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11335 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11336 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11337 Value != NumValues; ++Value) { 11338 EVT VT = ValueVTs[Value]; 11339 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11340 ISD::ArgFlagsTy Flags; 11341 11342 11343 if (Arg.getType()->isPointerTy()) { 11344 Flags.setPointer(); 11345 Flags.setPointerAddrSpace( 11346 cast<PointerType>(Arg.getType())->getAddressSpace()); 11347 } 11348 if (Arg.hasAttribute(Attribute::ZExt)) 11349 Flags.setZExt(); 11350 if (Arg.hasAttribute(Attribute::SExt)) 11351 Flags.setSExt(); 11352 if (Arg.hasAttribute(Attribute::InReg)) { 11353 // If we are using vectorcall calling convention, a structure that is 11354 // passed InReg - is surely an HVA 11355 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11356 isa<StructType>(Arg.getType())) { 11357 // The first value of a structure is marked 11358 if (0 == Value) 11359 Flags.setHvaStart(); 11360 Flags.setHva(); 11361 } 11362 // Set InReg Flag 11363 Flags.setInReg(); 11364 } 11365 if (Arg.hasAttribute(Attribute::StructRet)) 11366 Flags.setSRet(); 11367 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11368 Flags.setSwiftSelf(); 11369 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11370 Flags.setSwiftAsync(); 11371 if (Arg.hasAttribute(Attribute::SwiftError)) 11372 Flags.setSwiftError(); 11373 if (Arg.hasAttribute(Attribute::ByVal)) 11374 Flags.setByVal(); 11375 if (Arg.hasAttribute(Attribute::ByRef)) 11376 Flags.setByRef(); 11377 if (Arg.hasAttribute(Attribute::InAlloca)) { 11378 Flags.setInAlloca(); 11379 // Set the byval flag for CCAssignFn callbacks that don't know about 11380 // inalloca. This way we can know how many bytes we should've allocated 11381 // and how many bytes a callee cleanup function will pop. If we port 11382 // inalloca to more targets, we'll have to add custom inalloca handling 11383 // in the various CC lowering callbacks. 11384 Flags.setByVal(); 11385 } 11386 if (Arg.hasAttribute(Attribute::Preallocated)) { 11387 Flags.setPreallocated(); 11388 // Set the byval flag for CCAssignFn callbacks that don't know about 11389 // preallocated. This way we can know how many bytes we should've 11390 // allocated and how many bytes a callee cleanup function will pop. If 11391 // we port preallocated to more targets, we'll have to add custom 11392 // preallocated handling in the various CC lowering callbacks. 11393 Flags.setByVal(); 11394 } 11395 11396 // Certain targets (such as MIPS), may have a different ABI alignment 11397 // for a type depending on the context. Give the target a chance to 11398 // specify the alignment it wants. 11399 const Align OriginalAlignment( 11400 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11401 Flags.setOrigAlign(OriginalAlignment); 11402 11403 Align MemAlign; 11404 Type *ArgMemTy = nullptr; 11405 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11406 Flags.isByRef()) { 11407 if (!ArgMemTy) 11408 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11409 11410 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11411 11412 // For in-memory arguments, size and alignment should be passed from FE. 11413 // BE will guess if this info is not there but there are cases it cannot 11414 // get right. 11415 if (auto ParamAlign = Arg.getParamStackAlign()) 11416 MemAlign = *ParamAlign; 11417 else if ((ParamAlign = Arg.getParamAlign())) 11418 MemAlign = *ParamAlign; 11419 else 11420 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11421 if (Flags.isByRef()) 11422 Flags.setByRefSize(MemSize); 11423 else 11424 Flags.setByValSize(MemSize); 11425 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11426 MemAlign = *ParamAlign; 11427 } else { 11428 MemAlign = OriginalAlignment; 11429 } 11430 Flags.setMemAlign(MemAlign); 11431 11432 if (Arg.hasAttribute(Attribute::Nest)) 11433 Flags.setNest(); 11434 if (NeedsRegBlock) 11435 Flags.setInConsecutiveRegs(); 11436 if (ArgCopyElisionCandidates.count(&Arg)) 11437 Flags.setCopyElisionCandidate(); 11438 if (Arg.hasAttribute(Attribute::Returned)) 11439 Flags.setReturned(); 11440 11441 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11442 *CurDAG->getContext(), F.getCallingConv(), VT); 11443 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11444 *CurDAG->getContext(), F.getCallingConv(), VT); 11445 for (unsigned i = 0; i != NumRegs; ++i) { 11446 // For scalable vectors, use the minimum size; individual targets 11447 // are responsible for handling scalable vector arguments and 11448 // return values. 11449 ISD::InputArg MyFlags( 11450 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11451 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11452 if (NumRegs > 1 && i == 0) 11453 MyFlags.Flags.setSplit(); 11454 // if it isn't first piece, alignment must be 1 11455 else if (i > 0) { 11456 MyFlags.Flags.setOrigAlign(Align(1)); 11457 if (i == NumRegs - 1) 11458 MyFlags.Flags.setSplitEnd(); 11459 } 11460 Ins.push_back(MyFlags); 11461 } 11462 if (NeedsRegBlock && Value == NumValues - 1) 11463 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11464 PartBase += VT.getStoreSize().getKnownMinValue(); 11465 } 11466 } 11467 11468 // Call the target to set up the argument values. 11469 SmallVector<SDValue, 8> InVals; 11470 SDValue NewRoot = TLI->LowerFormalArguments( 11471 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11472 11473 // Verify that the target's LowerFormalArguments behaved as expected. 11474 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11475 "LowerFormalArguments didn't return a valid chain!"); 11476 assert(InVals.size() == Ins.size() && 11477 "LowerFormalArguments didn't emit the correct number of values!"); 11478 LLVM_DEBUG({ 11479 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11480 assert(InVals[i].getNode() && 11481 "LowerFormalArguments emitted a null value!"); 11482 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11483 "LowerFormalArguments emitted a value with the wrong type!"); 11484 } 11485 }); 11486 11487 // Update the DAG with the new chain value resulting from argument lowering. 11488 DAG.setRoot(NewRoot); 11489 11490 // Set up the argument values. 11491 unsigned i = 0; 11492 if (!FuncInfo->CanLowerReturn) { 11493 // Create a virtual register for the sret pointer, and put in a copy 11494 // from the sret argument into it. 11495 SmallVector<EVT, 1> ValueVTs; 11496 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11497 PointerType::get(F.getContext(), 11498 DAG.getDataLayout().getAllocaAddrSpace()), 11499 ValueVTs); 11500 MVT VT = ValueVTs[0].getSimpleVT(); 11501 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11502 std::optional<ISD::NodeType> AssertOp; 11503 SDValue ArgValue = 11504 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11505 F.getCallingConv(), AssertOp); 11506 11507 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11508 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11509 Register SRetReg = 11510 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11511 FuncInfo->DemoteRegister = SRetReg; 11512 NewRoot = 11513 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11514 DAG.setRoot(NewRoot); 11515 11516 // i indexes lowered arguments. Bump it past the hidden sret argument. 11517 ++i; 11518 } 11519 11520 SmallVector<SDValue, 4> Chains; 11521 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11522 for (const Argument &Arg : F.args()) { 11523 SmallVector<SDValue, 4> ArgValues; 11524 SmallVector<EVT, 4> ValueVTs; 11525 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11526 unsigned NumValues = ValueVTs.size(); 11527 if (NumValues == 0) 11528 continue; 11529 11530 bool ArgHasUses = !Arg.use_empty(); 11531 11532 // Elide the copying store if the target loaded this argument from a 11533 // suitable fixed stack object. 11534 if (Ins[i].Flags.isCopyElisionCandidate()) { 11535 unsigned NumParts = 0; 11536 for (EVT VT : ValueVTs) 11537 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11538 F.getCallingConv(), VT); 11539 11540 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11541 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11542 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11543 } 11544 11545 // If this argument is unused then remember its value. It is used to generate 11546 // debugging information. 11547 bool isSwiftErrorArg = 11548 TLI->supportSwiftError() && 11549 Arg.hasAttribute(Attribute::SwiftError); 11550 if (!ArgHasUses && !isSwiftErrorArg) { 11551 SDB->setUnusedArgValue(&Arg, InVals[i]); 11552 11553 // Also remember any frame index for use in FastISel. 11554 if (FrameIndexSDNode *FI = 11555 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11556 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11557 } 11558 11559 for (unsigned Val = 0; Val != NumValues; ++Val) { 11560 EVT VT = ValueVTs[Val]; 11561 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11562 F.getCallingConv(), VT); 11563 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11564 *CurDAG->getContext(), F.getCallingConv(), VT); 11565 11566 // Even an apparent 'unused' swifterror argument needs to be returned. So 11567 // we do generate a copy for it that can be used on return from the 11568 // function. 11569 if (ArgHasUses || isSwiftErrorArg) { 11570 std::optional<ISD::NodeType> AssertOp; 11571 if (Arg.hasAttribute(Attribute::SExt)) 11572 AssertOp = ISD::AssertSext; 11573 else if (Arg.hasAttribute(Attribute::ZExt)) 11574 AssertOp = ISD::AssertZext; 11575 11576 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11577 PartVT, VT, nullptr, NewRoot, 11578 F.getCallingConv(), AssertOp)); 11579 } 11580 11581 i += NumParts; 11582 } 11583 11584 // We don't need to do anything else for unused arguments. 11585 if (ArgValues.empty()) 11586 continue; 11587 11588 // Note down frame index. 11589 if (FrameIndexSDNode *FI = 11590 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11591 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11592 11593 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11594 SDB->getCurSDLoc()); 11595 11596 SDB->setValue(&Arg, Res); 11597 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11598 // We want to associate the argument with the frame index, among 11599 // involved operands, that correspond to the lowest address. The 11600 // getCopyFromParts function, called earlier, is swapping the order of 11601 // the operands to BUILD_PAIR depending on endianness. The result of 11602 // that swapping is that the least significant bits of the argument will 11603 // be in the first operand of the BUILD_PAIR node, and the most 11604 // significant bits will be in the second operand. 11605 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11606 if (LoadSDNode *LNode = 11607 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11608 if (FrameIndexSDNode *FI = 11609 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11610 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11611 } 11612 11613 // Analyses past this point are naive and don't expect an assertion. 11614 if (Res.getOpcode() == ISD::AssertZext) 11615 Res = Res.getOperand(0); 11616 11617 // Update the SwiftErrorVRegDefMap. 11618 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11619 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11620 if (Register::isVirtualRegister(Reg)) 11621 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11622 Reg); 11623 } 11624 11625 // If this argument is live outside of the entry block, insert a copy from 11626 // wherever we got it to the vreg that other BB's will reference it as. 11627 if (Res.getOpcode() == ISD::CopyFromReg) { 11628 // If we can, though, try to skip creating an unnecessary vreg. 11629 // FIXME: This isn't very clean... it would be nice to make this more 11630 // general. 11631 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11632 if (Register::isVirtualRegister(Reg)) { 11633 FuncInfo->ValueMap[&Arg] = Reg; 11634 continue; 11635 } 11636 } 11637 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11638 FuncInfo->InitializeRegForValue(&Arg); 11639 SDB->CopyToExportRegsIfNeeded(&Arg); 11640 } 11641 } 11642 11643 if (!Chains.empty()) { 11644 Chains.push_back(NewRoot); 11645 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11646 } 11647 11648 DAG.setRoot(NewRoot); 11649 11650 assert(i == InVals.size() && "Argument register count mismatch!"); 11651 11652 // If any argument copy elisions occurred and we have debug info, update the 11653 // stale frame indices used in the dbg.declare variable info table. 11654 if (!ArgCopyElisionFrameIndexMap.empty()) { 11655 for (MachineFunction::VariableDbgInfo &VI : 11656 MF->getInStackSlotVariableDbgInfo()) { 11657 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11658 if (I != ArgCopyElisionFrameIndexMap.end()) 11659 VI.updateStackSlot(I->second); 11660 } 11661 } 11662 11663 // Finally, if the target has anything special to do, allow it to do so. 11664 emitFunctionEntryCode(); 11665 } 11666 11667 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11668 /// ensure constants are generated when needed. Remember the virtual registers 11669 /// that need to be added to the Machine PHI nodes as input. We cannot just 11670 /// directly add them, because expansion might result in multiple MBB's for one 11671 /// BB. As such, the start of the BB might correspond to a different MBB than 11672 /// the end. 11673 void 11674 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11676 11677 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11678 11679 // Check PHI nodes in successors that expect a value to be available from this 11680 // block. 11681 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11682 if (!isa<PHINode>(SuccBB->begin())) continue; 11683 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11684 11685 // If this terminator has multiple identical successors (common for 11686 // switches), only handle each succ once. 11687 if (!SuccsHandled.insert(SuccMBB).second) 11688 continue; 11689 11690 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11691 11692 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11693 // nodes and Machine PHI nodes, but the incoming operands have not been 11694 // emitted yet. 11695 for (const PHINode &PN : SuccBB->phis()) { 11696 // Ignore dead phi's. 11697 if (PN.use_empty()) 11698 continue; 11699 11700 // Skip empty types 11701 if (PN.getType()->isEmptyTy()) 11702 continue; 11703 11704 unsigned Reg; 11705 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11706 11707 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11708 unsigned &RegOut = ConstantsOut[C]; 11709 if (RegOut == 0) { 11710 RegOut = FuncInfo.CreateRegs(C); 11711 // We need to zero/sign extend ConstantInt phi operands to match 11712 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11713 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11714 if (auto *CI = dyn_cast<ConstantInt>(C)) 11715 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11716 : ISD::ZERO_EXTEND; 11717 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11718 } 11719 Reg = RegOut; 11720 } else { 11721 DenseMap<const Value *, Register>::iterator I = 11722 FuncInfo.ValueMap.find(PHIOp); 11723 if (I != FuncInfo.ValueMap.end()) 11724 Reg = I->second; 11725 else { 11726 assert(isa<AllocaInst>(PHIOp) && 11727 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11728 "Didn't codegen value into a register!??"); 11729 Reg = FuncInfo.CreateRegs(PHIOp); 11730 CopyValueToVirtualRegister(PHIOp, Reg); 11731 } 11732 } 11733 11734 // Remember that this register needs to added to the machine PHI node as 11735 // the input for this MBB. 11736 SmallVector<EVT, 4> ValueVTs; 11737 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11738 for (EVT VT : ValueVTs) { 11739 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11740 for (unsigned i = 0; i != NumRegisters; ++i) 11741 FuncInfo.PHINodesToUpdate.push_back( 11742 std::make_pair(&*MBBI++, Reg + i)); 11743 Reg += NumRegisters; 11744 } 11745 } 11746 } 11747 11748 ConstantsOut.clear(); 11749 } 11750 11751 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11752 MachineFunction::iterator I(MBB); 11753 if (++I == FuncInfo.MF->end()) 11754 return nullptr; 11755 return &*I; 11756 } 11757 11758 /// During lowering new call nodes can be created (such as memset, etc.). 11759 /// Those will become new roots of the current DAG, but complications arise 11760 /// when they are tail calls. In such cases, the call lowering will update 11761 /// the root, but the builder still needs to know that a tail call has been 11762 /// lowered in order to avoid generating an additional return. 11763 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11764 // If the node is null, we do have a tail call. 11765 if (MaybeTC.getNode() != nullptr) 11766 DAG.setRoot(MaybeTC); 11767 else 11768 HasTailCall = true; 11769 } 11770 11771 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11772 MachineBasicBlock *SwitchMBB, 11773 MachineBasicBlock *DefaultMBB) { 11774 MachineFunction *CurMF = FuncInfo.MF; 11775 MachineBasicBlock *NextMBB = nullptr; 11776 MachineFunction::iterator BBI(W.MBB); 11777 if (++BBI != FuncInfo.MF->end()) 11778 NextMBB = &*BBI; 11779 11780 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11781 11782 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11783 11784 if (Size == 2 && W.MBB == SwitchMBB) { 11785 // If any two of the cases has the same destination, and if one value 11786 // is the same as the other, but has one bit unset that the other has set, 11787 // use bit manipulation to do two compares at once. For example: 11788 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11789 // TODO: This could be extended to merge any 2 cases in switches with 3 11790 // cases. 11791 // TODO: Handle cases where W.CaseBB != SwitchBB. 11792 CaseCluster &Small = *W.FirstCluster; 11793 CaseCluster &Big = *W.LastCluster; 11794 11795 if (Small.Low == Small.High && Big.Low == Big.High && 11796 Small.MBB == Big.MBB) { 11797 const APInt &SmallValue = Small.Low->getValue(); 11798 const APInt &BigValue = Big.Low->getValue(); 11799 11800 // Check that there is only one bit different. 11801 APInt CommonBit = BigValue ^ SmallValue; 11802 if (CommonBit.isPowerOf2()) { 11803 SDValue CondLHS = getValue(Cond); 11804 EVT VT = CondLHS.getValueType(); 11805 SDLoc DL = getCurSDLoc(); 11806 11807 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11808 DAG.getConstant(CommonBit, DL, VT)); 11809 SDValue Cond = DAG.getSetCC( 11810 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11811 ISD::SETEQ); 11812 11813 // Update successor info. 11814 // Both Small and Big will jump to Small.BB, so we sum up the 11815 // probabilities. 11816 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11817 if (BPI) 11818 addSuccessorWithProb( 11819 SwitchMBB, DefaultMBB, 11820 // The default destination is the first successor in IR. 11821 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11822 else 11823 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11824 11825 // Insert the true branch. 11826 SDValue BrCond = 11827 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11828 DAG.getBasicBlock(Small.MBB)); 11829 // Insert the false branch. 11830 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11831 DAG.getBasicBlock(DefaultMBB)); 11832 11833 DAG.setRoot(BrCond); 11834 return; 11835 } 11836 } 11837 } 11838 11839 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11840 // Here, we order cases by probability so the most likely case will be 11841 // checked first. However, two clusters can have the same probability in 11842 // which case their relative ordering is non-deterministic. So we use Low 11843 // as a tie-breaker as clusters are guaranteed to never overlap. 11844 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11845 [](const CaseCluster &a, const CaseCluster &b) { 11846 return a.Prob != b.Prob ? 11847 a.Prob > b.Prob : 11848 a.Low->getValue().slt(b.Low->getValue()); 11849 }); 11850 11851 // Rearrange the case blocks so that the last one falls through if possible 11852 // without changing the order of probabilities. 11853 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11854 --I; 11855 if (I->Prob > W.LastCluster->Prob) 11856 break; 11857 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11858 std::swap(*I, *W.LastCluster); 11859 break; 11860 } 11861 } 11862 } 11863 11864 // Compute total probability. 11865 BranchProbability DefaultProb = W.DefaultProb; 11866 BranchProbability UnhandledProbs = DefaultProb; 11867 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11868 UnhandledProbs += I->Prob; 11869 11870 MachineBasicBlock *CurMBB = W.MBB; 11871 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11872 bool FallthroughUnreachable = false; 11873 MachineBasicBlock *Fallthrough; 11874 if (I == W.LastCluster) { 11875 // For the last cluster, fall through to the default destination. 11876 Fallthrough = DefaultMBB; 11877 FallthroughUnreachable = isa<UnreachableInst>( 11878 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11879 } else { 11880 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11881 CurMF->insert(BBI, Fallthrough); 11882 // Put Cond in a virtual register to make it available from the new blocks. 11883 ExportFromCurrentBlock(Cond); 11884 } 11885 UnhandledProbs -= I->Prob; 11886 11887 switch (I->Kind) { 11888 case CC_JumpTable: { 11889 // FIXME: Optimize away range check based on pivot comparisons. 11890 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11891 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11892 11893 // The jump block hasn't been inserted yet; insert it here. 11894 MachineBasicBlock *JumpMBB = JT->MBB; 11895 CurMF->insert(BBI, JumpMBB); 11896 11897 auto JumpProb = I->Prob; 11898 auto FallthroughProb = UnhandledProbs; 11899 11900 // If the default statement is a target of the jump table, we evenly 11901 // distribute the default probability to successors of CurMBB. Also 11902 // update the probability on the edge from JumpMBB to Fallthrough. 11903 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11904 SE = JumpMBB->succ_end(); 11905 SI != SE; ++SI) { 11906 if (*SI == DefaultMBB) { 11907 JumpProb += DefaultProb / 2; 11908 FallthroughProb -= DefaultProb / 2; 11909 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11910 JumpMBB->normalizeSuccProbs(); 11911 break; 11912 } 11913 } 11914 11915 // If the default clause is unreachable, propagate that knowledge into 11916 // JTH->FallthroughUnreachable which will use it to suppress the range 11917 // check. 11918 // 11919 // However, don't do this if we're doing branch target enforcement, 11920 // because a table branch _without_ a range check can be a tempting JOP 11921 // gadget - out-of-bounds inputs that are impossible in correct 11922 // execution become possible again if an attacker can influence the 11923 // control flow. So if an attacker doesn't already have a BTI bypass 11924 // available, we don't want them to be able to get one out of this 11925 // table branch. 11926 if (FallthroughUnreachable) { 11927 Function &CurFunc = CurMF->getFunction(); 11928 bool HasBranchTargetEnforcement = false; 11929 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11930 HasBranchTargetEnforcement = 11931 CurFunc.getFnAttribute("branch-target-enforcement") 11932 .getValueAsBool(); 11933 } else { 11934 HasBranchTargetEnforcement = 11935 CurMF->getMMI().getModule()->getModuleFlag( 11936 "branch-target-enforcement"); 11937 } 11938 if (!HasBranchTargetEnforcement) 11939 JTH->FallthroughUnreachable = true; 11940 } 11941 11942 if (!JTH->FallthroughUnreachable) 11943 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11944 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11945 CurMBB->normalizeSuccProbs(); 11946 11947 // The jump table header will be inserted in our current block, do the 11948 // range check, and fall through to our fallthrough block. 11949 JTH->HeaderBB = CurMBB; 11950 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11951 11952 // If we're in the right place, emit the jump table header right now. 11953 if (CurMBB == SwitchMBB) { 11954 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11955 JTH->Emitted = true; 11956 } 11957 break; 11958 } 11959 case CC_BitTests: { 11960 // FIXME: Optimize away range check based on pivot comparisons. 11961 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11962 11963 // The bit test blocks haven't been inserted yet; insert them here. 11964 for (BitTestCase &BTC : BTB->Cases) 11965 CurMF->insert(BBI, BTC.ThisBB); 11966 11967 // Fill in fields of the BitTestBlock. 11968 BTB->Parent = CurMBB; 11969 BTB->Default = Fallthrough; 11970 11971 BTB->DefaultProb = UnhandledProbs; 11972 // If the cases in bit test don't form a contiguous range, we evenly 11973 // distribute the probability on the edge to Fallthrough to two 11974 // successors of CurMBB. 11975 if (!BTB->ContiguousRange) { 11976 BTB->Prob += DefaultProb / 2; 11977 BTB->DefaultProb -= DefaultProb / 2; 11978 } 11979 11980 if (FallthroughUnreachable) 11981 BTB->FallthroughUnreachable = true; 11982 11983 // If we're in the right place, emit the bit test header right now. 11984 if (CurMBB == SwitchMBB) { 11985 visitBitTestHeader(*BTB, SwitchMBB); 11986 BTB->Emitted = true; 11987 } 11988 break; 11989 } 11990 case CC_Range: { 11991 const Value *RHS, *LHS, *MHS; 11992 ISD::CondCode CC; 11993 if (I->Low == I->High) { 11994 // Check Cond == I->Low. 11995 CC = ISD::SETEQ; 11996 LHS = Cond; 11997 RHS=I->Low; 11998 MHS = nullptr; 11999 } else { 12000 // Check I->Low <= Cond <= I->High. 12001 CC = ISD::SETLE; 12002 LHS = I->Low; 12003 MHS = Cond; 12004 RHS = I->High; 12005 } 12006 12007 // If Fallthrough is unreachable, fold away the comparison. 12008 if (FallthroughUnreachable) 12009 CC = ISD::SETTRUE; 12010 12011 // The false probability is the sum of all unhandled cases. 12012 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12013 getCurSDLoc(), I->Prob, UnhandledProbs); 12014 12015 if (CurMBB == SwitchMBB) 12016 visitSwitchCase(CB, SwitchMBB); 12017 else 12018 SL->SwitchCases.push_back(CB); 12019 12020 break; 12021 } 12022 } 12023 CurMBB = Fallthrough; 12024 } 12025 } 12026 12027 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12028 const SwitchWorkListItem &W, 12029 Value *Cond, 12030 MachineBasicBlock *SwitchMBB) { 12031 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12032 "Clusters not sorted?"); 12033 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12034 12035 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12036 SL->computeSplitWorkItemInfo(W); 12037 12038 // Use the first element on the right as pivot since we will make less-than 12039 // comparisons against it. 12040 CaseClusterIt PivotCluster = FirstRight; 12041 assert(PivotCluster > W.FirstCluster); 12042 assert(PivotCluster <= W.LastCluster); 12043 12044 CaseClusterIt FirstLeft = W.FirstCluster; 12045 CaseClusterIt LastRight = W.LastCluster; 12046 12047 const ConstantInt *Pivot = PivotCluster->Low; 12048 12049 // New blocks will be inserted immediately after the current one. 12050 MachineFunction::iterator BBI(W.MBB); 12051 ++BBI; 12052 12053 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12054 // we can branch to its destination directly if it's squeezed exactly in 12055 // between the known lower bound and Pivot - 1. 12056 MachineBasicBlock *LeftMBB; 12057 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12058 FirstLeft->Low == W.GE && 12059 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12060 LeftMBB = FirstLeft->MBB; 12061 } else { 12062 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12063 FuncInfo.MF->insert(BBI, LeftMBB); 12064 WorkList.push_back( 12065 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12066 // Put Cond in a virtual register to make it available from the new blocks. 12067 ExportFromCurrentBlock(Cond); 12068 } 12069 12070 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12071 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12072 // directly if RHS.High equals the current upper bound. 12073 MachineBasicBlock *RightMBB; 12074 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12075 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12076 RightMBB = FirstRight->MBB; 12077 } else { 12078 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12079 FuncInfo.MF->insert(BBI, RightMBB); 12080 WorkList.push_back( 12081 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12082 // Put Cond in a virtual register to make it available from the new blocks. 12083 ExportFromCurrentBlock(Cond); 12084 } 12085 12086 // Create the CaseBlock record that will be used to lower the branch. 12087 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12088 getCurSDLoc(), LeftProb, RightProb); 12089 12090 if (W.MBB == SwitchMBB) 12091 visitSwitchCase(CB, SwitchMBB); 12092 else 12093 SL->SwitchCases.push_back(CB); 12094 } 12095 12096 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12097 // from the swith statement. 12098 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12099 BranchProbability PeeledCaseProb) { 12100 if (PeeledCaseProb == BranchProbability::getOne()) 12101 return BranchProbability::getZero(); 12102 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12103 12104 uint32_t Numerator = CaseProb.getNumerator(); 12105 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12106 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12107 } 12108 12109 // Try to peel the top probability case if it exceeds the threshold. 12110 // Return current MachineBasicBlock for the switch statement if the peeling 12111 // does not occur. 12112 // If the peeling is performed, return the newly created MachineBasicBlock 12113 // for the peeled switch statement. Also update Clusters to remove the peeled 12114 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12115 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12116 const SwitchInst &SI, CaseClusterVector &Clusters, 12117 BranchProbability &PeeledCaseProb) { 12118 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12119 // Don't perform if there is only one cluster or optimizing for size. 12120 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12121 TM.getOptLevel() == CodeGenOptLevel::None || 12122 SwitchMBB->getParent()->getFunction().hasMinSize()) 12123 return SwitchMBB; 12124 12125 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12126 unsigned PeeledCaseIndex = 0; 12127 bool SwitchPeeled = false; 12128 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12129 CaseCluster &CC = Clusters[Index]; 12130 if (CC.Prob < TopCaseProb) 12131 continue; 12132 TopCaseProb = CC.Prob; 12133 PeeledCaseIndex = Index; 12134 SwitchPeeled = true; 12135 } 12136 if (!SwitchPeeled) 12137 return SwitchMBB; 12138 12139 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12140 << TopCaseProb << "\n"); 12141 12142 // Record the MBB for the peeled switch statement. 12143 MachineFunction::iterator BBI(SwitchMBB); 12144 ++BBI; 12145 MachineBasicBlock *PeeledSwitchMBB = 12146 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12147 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12148 12149 ExportFromCurrentBlock(SI.getCondition()); 12150 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12151 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12152 nullptr, nullptr, TopCaseProb.getCompl()}; 12153 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12154 12155 Clusters.erase(PeeledCaseIt); 12156 for (CaseCluster &CC : Clusters) { 12157 LLVM_DEBUG( 12158 dbgs() << "Scale the probablity for one cluster, before scaling: " 12159 << CC.Prob << "\n"); 12160 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12161 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12162 } 12163 PeeledCaseProb = TopCaseProb; 12164 return PeeledSwitchMBB; 12165 } 12166 12167 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12168 // Extract cases from the switch. 12169 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12170 CaseClusterVector Clusters; 12171 Clusters.reserve(SI.getNumCases()); 12172 for (auto I : SI.cases()) { 12173 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12174 const ConstantInt *CaseVal = I.getCaseValue(); 12175 BranchProbability Prob = 12176 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12177 : BranchProbability(1, SI.getNumCases() + 1); 12178 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12179 } 12180 12181 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12182 12183 // Cluster adjacent cases with the same destination. We do this at all 12184 // optimization levels because it's cheap to do and will make codegen faster 12185 // if there are many clusters. 12186 sortAndRangeify(Clusters); 12187 12188 // The branch probablity of the peeled case. 12189 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12190 MachineBasicBlock *PeeledSwitchMBB = 12191 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12192 12193 // If there is only the default destination, jump there directly. 12194 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12195 if (Clusters.empty()) { 12196 assert(PeeledSwitchMBB == SwitchMBB); 12197 SwitchMBB->addSuccessor(DefaultMBB); 12198 if (DefaultMBB != NextBlock(SwitchMBB)) { 12199 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12200 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12201 } 12202 return; 12203 } 12204 12205 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12206 DAG.getBFI()); 12207 SL->findBitTestClusters(Clusters, &SI); 12208 12209 LLVM_DEBUG({ 12210 dbgs() << "Case clusters: "; 12211 for (const CaseCluster &C : Clusters) { 12212 if (C.Kind == CC_JumpTable) 12213 dbgs() << "JT:"; 12214 if (C.Kind == CC_BitTests) 12215 dbgs() << "BT:"; 12216 12217 C.Low->getValue().print(dbgs(), true); 12218 if (C.Low != C.High) { 12219 dbgs() << '-'; 12220 C.High->getValue().print(dbgs(), true); 12221 } 12222 dbgs() << ' '; 12223 } 12224 dbgs() << '\n'; 12225 }); 12226 12227 assert(!Clusters.empty()); 12228 SwitchWorkList WorkList; 12229 CaseClusterIt First = Clusters.begin(); 12230 CaseClusterIt Last = Clusters.end() - 1; 12231 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12232 // Scale the branchprobability for DefaultMBB if the peel occurs and 12233 // DefaultMBB is not replaced. 12234 if (PeeledCaseProb != BranchProbability::getZero() && 12235 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12236 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12237 WorkList.push_back( 12238 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12239 12240 while (!WorkList.empty()) { 12241 SwitchWorkListItem W = WorkList.pop_back_val(); 12242 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12243 12244 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12245 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12246 // For optimized builds, lower large range as a balanced binary tree. 12247 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12248 continue; 12249 } 12250 12251 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12252 } 12253 } 12254 12255 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12257 auto DL = getCurSDLoc(); 12258 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12259 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12260 } 12261 12262 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12264 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12265 12266 SDLoc DL = getCurSDLoc(); 12267 SDValue V = getValue(I.getOperand(0)); 12268 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12269 12270 if (VT.isScalableVector()) { 12271 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12272 return; 12273 } 12274 12275 // Use VECTOR_SHUFFLE for the fixed-length vector 12276 // to maintain existing behavior. 12277 SmallVector<int, 8> Mask; 12278 unsigned NumElts = VT.getVectorMinNumElements(); 12279 for (unsigned i = 0; i != NumElts; ++i) 12280 Mask.push_back(NumElts - 1 - i); 12281 12282 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12283 } 12284 12285 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12286 auto DL = getCurSDLoc(); 12287 SDValue InVec = getValue(I.getOperand(0)); 12288 EVT OutVT = 12289 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12290 12291 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12292 12293 // ISD Node needs the input vectors split into two equal parts 12294 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12295 DAG.getVectorIdxConstant(0, DL)); 12296 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12297 DAG.getVectorIdxConstant(OutNumElts, DL)); 12298 12299 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12300 // legalisation and combines. 12301 if (OutVT.isFixedLengthVector()) { 12302 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12303 createStrideMask(0, 2, OutNumElts)); 12304 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12305 createStrideMask(1, 2, OutNumElts)); 12306 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12307 setValue(&I, Res); 12308 return; 12309 } 12310 12311 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12312 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12313 setValue(&I, Res); 12314 } 12315 12316 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12317 auto DL = getCurSDLoc(); 12318 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12319 SDValue InVec0 = getValue(I.getOperand(0)); 12320 SDValue InVec1 = getValue(I.getOperand(1)); 12321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12322 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12323 12324 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12325 // legalisation and combines. 12326 if (OutVT.isFixedLengthVector()) { 12327 unsigned NumElts = InVT.getVectorMinNumElements(); 12328 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12329 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12330 createInterleaveMask(NumElts, 2))); 12331 return; 12332 } 12333 12334 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12335 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12336 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12337 Res.getValue(1)); 12338 setValue(&I, Res); 12339 } 12340 12341 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12342 SmallVector<EVT, 4> ValueVTs; 12343 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12344 ValueVTs); 12345 unsigned NumValues = ValueVTs.size(); 12346 if (NumValues == 0) return; 12347 12348 SmallVector<SDValue, 4> Values(NumValues); 12349 SDValue Op = getValue(I.getOperand(0)); 12350 12351 for (unsigned i = 0; i != NumValues; ++i) 12352 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12353 SDValue(Op.getNode(), Op.getResNo() + i)); 12354 12355 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12356 DAG.getVTList(ValueVTs), Values)); 12357 } 12358 12359 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12361 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12362 12363 SDLoc DL = getCurSDLoc(); 12364 SDValue V1 = getValue(I.getOperand(0)); 12365 SDValue V2 = getValue(I.getOperand(1)); 12366 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12367 12368 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12369 if (VT.isScalableVector()) { 12370 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12371 DAG.getVectorIdxConstant(Imm, DL))); 12372 return; 12373 } 12374 12375 unsigned NumElts = VT.getVectorNumElements(); 12376 12377 uint64_t Idx = (NumElts + Imm) % NumElts; 12378 12379 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12380 SmallVector<int, 8> Mask; 12381 for (unsigned i = 0; i < NumElts; ++i) 12382 Mask.push_back(Idx + i); 12383 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12384 } 12385 12386 // Consider the following MIR after SelectionDAG, which produces output in 12387 // phyregs in the first case or virtregs in the second case. 12388 // 12389 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12390 // %5:gr32 = COPY $ebx 12391 // %6:gr32 = COPY $edx 12392 // %1:gr32 = COPY %6:gr32 12393 // %0:gr32 = COPY %5:gr32 12394 // 12395 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12396 // %1:gr32 = COPY %6:gr32 12397 // %0:gr32 = COPY %5:gr32 12398 // 12399 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12400 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12401 // 12402 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12403 // to a single virtreg (such as %0). The remaining outputs monotonically 12404 // increase in virtreg number from there. If a callbr has no outputs, then it 12405 // should not have a corresponding callbr landingpad; in fact, the callbr 12406 // landingpad would not even be able to refer to such a callbr. 12407 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12408 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12409 // There is definitely at least one copy. 12410 assert(MI->getOpcode() == TargetOpcode::COPY && 12411 "start of copy chain MUST be COPY"); 12412 Reg = MI->getOperand(1).getReg(); 12413 MI = MRI.def_begin(Reg)->getParent(); 12414 // There may be an optional second copy. 12415 if (MI->getOpcode() == TargetOpcode::COPY) { 12416 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12417 Reg = MI->getOperand(1).getReg(); 12418 assert(Reg.isPhysical() && "expected COPY of physical register"); 12419 MI = MRI.def_begin(Reg)->getParent(); 12420 } 12421 // The start of the chain must be an INLINEASM_BR. 12422 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12423 "end of copy chain MUST be INLINEASM_BR"); 12424 return Reg; 12425 } 12426 12427 // We must do this walk rather than the simpler 12428 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12429 // otherwise we will end up with copies of virtregs only valid along direct 12430 // edges. 12431 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12432 SmallVector<EVT, 8> ResultVTs; 12433 SmallVector<SDValue, 8> ResultValues; 12434 const auto *CBR = 12435 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12436 12437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12438 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12439 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12440 12441 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12442 SDValue Chain = DAG.getRoot(); 12443 12444 // Re-parse the asm constraints string. 12445 TargetLowering::AsmOperandInfoVector TargetConstraints = 12446 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12447 for (auto &T : TargetConstraints) { 12448 SDISelAsmOperandInfo OpInfo(T); 12449 if (OpInfo.Type != InlineAsm::isOutput) 12450 continue; 12451 12452 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12453 // individual constraint. 12454 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12455 12456 switch (OpInfo.ConstraintType) { 12457 case TargetLowering::C_Register: 12458 case TargetLowering::C_RegisterClass: { 12459 // Fill in OpInfo.AssignedRegs.Regs. 12460 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12461 12462 // getRegistersForValue may produce 1 to many registers based on whether 12463 // the OpInfo.ConstraintVT is legal on the target or not. 12464 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12465 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12466 if (Register::isPhysicalRegister(OriginalDef)) 12467 FuncInfo.MBB->addLiveIn(OriginalDef); 12468 // Update the assigned registers to use the original defs. 12469 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12470 } 12471 12472 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12473 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12474 ResultValues.push_back(V); 12475 ResultVTs.push_back(OpInfo.ConstraintVT); 12476 break; 12477 } 12478 case TargetLowering::C_Other: { 12479 SDValue Flag; 12480 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12481 OpInfo, DAG); 12482 ++InitialDef; 12483 ResultValues.push_back(V); 12484 ResultVTs.push_back(OpInfo.ConstraintVT); 12485 break; 12486 } 12487 default: 12488 break; 12489 } 12490 } 12491 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12492 DAG.getVTList(ResultVTs), ResultValues); 12493 setValue(&I, V); 12494 } 12495