1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLibraryInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/CRSBuilder.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 // Limit the width of DAG chains. This is important in general to prevent 74 // prevent DAG-based analysis from blowing up. For example, alias analysis and 75 // load clustering may not complete in reasonable time. It is difficult to 76 // recognize and avoid this situation within each individual analysis, and 77 // future analyses are likely to have the same behavior. Limiting DAG width is 78 // the safe approach, and will be especially important with global DAGs. 79 // 80 // MaxParallelChains default is arbitrarily high to avoid affecting 81 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 82 // sequence over this should have been converted to llvm.memcpy by the 83 // frontend. It easy to induce this behavior with .ll code such as: 84 // %buffer = alloca [4096 x i8] 85 // %data = load [4096 x i8]* %argPtr 86 // store [4096 x i8] %data, [4096 x i8]* %buffer 87 static const unsigned MaxParallelChains = 64; 88 89 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 90 const SDValue *Parts, unsigned NumParts, 91 EVT PartVT, EVT ValueVT); 92 93 /// getCopyFromParts - Create a value that contains the specified legal parts 94 /// combined into the value they represent. If the parts combine to a type 95 /// larger then ValueVT then AssertOp can be used to specify whether the extra 96 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 97 /// (ISD::AssertSext). 98 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 99 const SDValue *Parts, 100 unsigned NumParts, EVT PartVT, EVT ValueVT, 101 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 102 if (ValueVT.isVector()) 103 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 104 105 assert(NumParts > 0 && "No parts to assemble!"); 106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 107 SDValue Val = Parts[0]; 108 109 if (NumParts > 1) { 110 // Assemble the value from multiple parts. 111 if (ValueVT.isInteger()) { 112 unsigned PartBits = PartVT.getSizeInBits(); 113 unsigned ValueBits = ValueVT.getSizeInBits(); 114 115 // Assemble the power of 2 part. 116 unsigned RoundParts = NumParts & (NumParts - 1) ? 117 1 << Log2_32(NumParts) : NumParts; 118 unsigned RoundBits = PartBits * RoundParts; 119 EVT RoundVT = RoundBits == ValueBits ? 120 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 121 SDValue Lo, Hi; 122 123 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 124 125 if (RoundParts > 2) { 126 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 127 PartVT, HalfVT); 128 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 129 RoundParts / 2, PartVT, HalfVT); 130 } else { 131 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 132 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 133 } 134 135 if (TLI.isBigEndian()) 136 std::swap(Lo, Hi); 137 138 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 139 140 if (RoundParts < NumParts) { 141 // Assemble the trailing non-power-of-2 part. 142 unsigned OddParts = NumParts - RoundParts; 143 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 144 Hi = getCopyFromParts(DAG, DL, 145 Parts + RoundParts, OddParts, PartVT, OddVT); 146 147 // Combine the round and odd parts. 148 Lo = Val; 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 152 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 153 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 154 DAG.getConstant(Lo.getValueType().getSizeInBits(), 155 TLI.getPointerTy())); 156 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 157 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 158 } 159 } else if (PartVT.isFloatingPoint()) { 160 // FP split into multiple FP parts (for ppcf128) 161 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 162 "Unexpected split"); 163 SDValue Lo, Hi; 164 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 165 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 166 if (TLI.isBigEndian()) 167 std::swap(Lo, Hi); 168 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 169 } else { 170 // FP split into integer parts (soft fp) 171 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 172 !PartVT.isVector() && "Unexpected split"); 173 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 174 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 175 } 176 } 177 178 // There is now one part, held in Val. Correct it to match ValueVT. 179 PartVT = Val.getValueType(); 180 181 if (PartVT == ValueVT) 182 return Val; 183 184 if (PartVT.isInteger() && ValueVT.isInteger()) { 185 if (ValueVT.bitsLT(PartVT)) { 186 // For a truncate, see if we have any information to 187 // indicate whether the truncated bits will always be 188 // zero or sign-extension. 189 if (AssertOp != ISD::DELETED_NODE) 190 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 191 DAG.getValueType(ValueVT)); 192 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 193 } 194 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 195 } 196 197 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 198 // FP_ROUND's are always exact here. 199 if (ValueVT.bitsLT(Val.getValueType())) 200 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 201 DAG.getTargetConstant(1, TLI.getPointerTy())); 202 203 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 204 } 205 206 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 207 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 208 209 llvm_unreachable("Unknown mismatch!"); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 357 ValueVT.isInteger() && 358 "Unknown mismatch!"); 359 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 360 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 361 if (PartVT == MVT::x86mmx) 362 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 363 } 364 } else if (PartBits == ValueVT.getSizeInBits()) { 365 // Different types of the same size. 366 assert(NumParts == 1 && PartVT != ValueVT); 367 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 368 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 369 // If the parts cover less bits than value has, truncate the value. 370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 371 ValueVT.isInteger() && 372 "Unknown mismatch!"); 373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 374 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 375 if (PartVT == MVT::x86mmx) 376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 377 } 378 379 // The value may have changed - recompute ValueVT. 380 ValueVT = Val.getValueType(); 381 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 382 "Failed to tile the value with PartVT!"); 383 384 if (NumParts == 1) { 385 assert(PartVT == ValueVT && "Type conversion failed!"); 386 Parts[0] = Val; 387 return; 388 } 389 390 // Expand the value into multiple parts. 391 if (NumParts & (NumParts - 1)) { 392 // The number of parts is not a power of 2. Split off and copy the tail. 393 assert(PartVT.isInteger() && ValueVT.isInteger() && 394 "Do not know what to expand to!"); 395 unsigned RoundParts = 1 << Log2_32(NumParts); 396 unsigned RoundBits = RoundParts * PartBits; 397 unsigned OddParts = NumParts - RoundParts; 398 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 399 DAG.getIntPtrConstant(RoundBits)); 400 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 401 402 if (TLI.isBigEndian()) 403 // The odd parts were reversed by getCopyToParts - unreverse them. 404 std::reverse(Parts + RoundParts, Parts + NumParts); 405 406 NumParts = RoundParts; 407 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 408 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 409 } 410 411 // The number of parts is a power of 2. Repeatedly bisect the value using 412 // EXTRACT_ELEMENT. 413 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 414 EVT::getIntegerVT(*DAG.getContext(), 415 ValueVT.getSizeInBits()), 416 Val); 417 418 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 419 for (unsigned i = 0; i < NumParts; i += StepSize) { 420 unsigned ThisBits = StepSize * PartBits / 2; 421 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 422 SDValue &Part0 = Parts[i]; 423 SDValue &Part1 = Parts[i+StepSize/2]; 424 425 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 426 ThisVT, Part0, DAG.getIntPtrConstant(1)); 427 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 428 ThisVT, Part0, DAG.getIntPtrConstant(0)); 429 430 if (ThisBits == PartBits && ThisVT != PartVT) { 431 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 432 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 433 } 434 } 435 } 436 437 if (TLI.isBigEndian()) 438 std::reverse(Parts, Parts + OrigNumParts); 439 } 440 441 442 /// getCopyToPartsVector - Create a series of nodes that contain the specified 443 /// value split into legal parts. 444 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 445 SDValue Val, SDValue *Parts, unsigned NumParts, 446 EVT PartVT) { 447 EVT ValueVT = Val.getValueType(); 448 assert(ValueVT.isVector() && "Not a vector"); 449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 450 451 if (NumParts == 1) { 452 if (PartVT == ValueVT) { 453 // Nothing to do. 454 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 455 // Bitconvert vector->vector case. 456 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 457 } else if (PartVT.isVector() && 458 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 459 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 460 EVT ElementVT = PartVT.getVectorElementType(); 461 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 462 // undef elements. 463 SmallVector<SDValue, 16> Ops; 464 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 465 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 466 ElementVT, Val, DAG.getIntPtrConstant(i))); 467 468 for (unsigned i = ValueVT.getVectorNumElements(), 469 e = PartVT.getVectorNumElements(); i != e; ++i) 470 Ops.push_back(DAG.getUNDEF(ElementVT)); 471 472 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 473 474 // FIXME: Use CONCAT for 2x -> 4x. 475 476 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 477 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 478 } else if (PartVT.isVector() && 479 PartVT.getVectorElementType().bitsGE( 480 ValueVT.getVectorElementType()) && 481 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 482 483 // Promoted vector extract 484 bool Smaller = PartVT.bitsLE(ValueVT); 485 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 486 DL, PartVT, Val); 487 } else{ 488 // Vector -> scalar conversion. 489 assert(ValueVT.getVectorNumElements() == 1 && 490 "Only trivial vector-to-scalar conversions should get here!"); 491 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 PartVT, Val, DAG.getIntPtrConstant(0)); 493 494 bool Smaller = ValueVT.bitsLE(PartVT); 495 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 496 DL, PartVT, Val); 497 } 498 499 Parts[0] = Val; 500 return; 501 } 502 503 // Handle a multi-element vector. 504 EVT IntermediateVT, RegisterVT; 505 unsigned NumIntermediates; 506 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 507 IntermediateVT, 508 NumIntermediates, RegisterVT); 509 unsigned NumElements = ValueVT.getVectorNumElements(); 510 511 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 512 NumParts = NumRegs; // Silence a compiler warning. 513 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 514 515 // Split the vector into intermediate operands. 516 SmallVector<SDValue, 8> Ops(NumIntermediates); 517 for (unsigned i = 0; i != NumIntermediates; ++i) { 518 if (IntermediateVT.isVector()) 519 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 520 IntermediateVT, Val, 521 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 522 else 523 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 525 } 526 527 // Split the intermediate operands into legal parts. 528 if (NumParts == NumIntermediates) { 529 // If the register was not expanded, promote or copy the value, 530 // as appropriate. 531 for (unsigned i = 0; i != NumParts; ++i) 532 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 533 } else if (NumParts > 0) { 534 // If the intermediate type was expanded, split each the value into 535 // legal parts. 536 assert(NumParts % NumIntermediates == 0 && 537 "Must expand into a divisible number of parts!"); 538 unsigned Factor = NumParts / NumIntermediates; 539 for (unsigned i = 0; i != NumIntermediates; ++i) 540 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 541 } 542 } 543 544 545 546 547 namespace { 548 /// RegsForValue - This struct represents the registers (physical or virtual) 549 /// that a particular set of values is assigned, and the type information 550 /// about the value. The most common situation is to represent one value at a 551 /// time, but struct or array values are handled element-wise as multiple 552 /// values. The splitting of aggregates is performed recursively, so that we 553 /// never have aggregate-typed registers. The values at this point do not 554 /// necessarily have legal types, so each value may require one or more 555 /// registers of some legal type. 556 /// 557 struct RegsForValue { 558 /// ValueVTs - The value types of the values, which may not be legal, and 559 /// may need be promoted or synthesized from one or more registers. 560 /// 561 SmallVector<EVT, 4> ValueVTs; 562 563 /// RegVTs - The value types of the registers. This is the same size as 564 /// ValueVTs and it records, for each value, what the type of the assigned 565 /// register or registers are. (Individual values are never synthesized 566 /// from more than one type of register.) 567 /// 568 /// With virtual registers, the contents of RegVTs is redundant with TLI's 569 /// getRegisterType member function, however when with physical registers 570 /// it is necessary to have a separate record of the types. 571 /// 572 SmallVector<EVT, 4> RegVTs; 573 574 /// Regs - This list holds the registers assigned to the values. 575 /// Each legal or promoted value requires one register, and each 576 /// expanded value requires multiple registers. 577 /// 578 SmallVector<unsigned, 4> Regs; 579 580 RegsForValue() {} 581 582 RegsForValue(const SmallVector<unsigned, 4> ®s, 583 EVT regvt, EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// areValueTypesLegal - Return true if types of all the values are legal. 602 bool areValueTypesLegal(const TargetLowering &TLI) { 603 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 604 EVT RegisterVT = RegVTs[Value]; 605 if (!TLI.isTypeLegal(RegisterVT)) 606 return false; 607 } 608 return true; 609 } 610 611 /// append - Add the specified values to this one. 612 void append(const RegsForValue &RHS) { 613 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 614 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 615 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 616 } 617 618 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 619 /// this value and returns the result as a ValueVTs value. This uses 620 /// Chain/Flag as the input and updates them for the output Chain/Flag. 621 /// If the Flag pointer is NULL, no flag is used. 622 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 623 DebugLoc dl, 624 SDValue &Chain, SDValue *Flag) const; 625 626 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 627 /// specified value into the registers specified by this object. This uses 628 /// Chain/Flag as the input and updates them for the output Chain/Flag. 629 /// If the Flag pointer is NULL, no flag is used. 630 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 631 SDValue &Chain, SDValue *Flag) const; 632 633 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 634 /// operand list. This adds the code marker, matching input operand index 635 /// (if applicable), and includes the number of values added into it. 636 void AddInlineAsmOperands(unsigned Kind, 637 bool HasMatching, unsigned MatchingIdx, 638 SelectionDAG &DAG, 639 std::vector<SDValue> &Ops) const; 640 }; 641 } 642 643 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 644 /// this value and returns the result as a ValueVT value. This uses 645 /// Chain/Flag as the input and updates them for the output Chain/Flag. 646 /// If the Flag pointer is NULL, no flag is used. 647 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 648 FunctionLoweringInfo &FuncInfo, 649 DebugLoc dl, 650 SDValue &Chain, SDValue *Flag) const { 651 // A Value with type {} or [0 x %t] needs no registers. 652 if (ValueVTs.empty()) 653 return SDValue(); 654 655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 656 657 // Assemble the legal parts into the final values. 658 SmallVector<SDValue, 4> Values(ValueVTs.size()); 659 SmallVector<SDValue, 8> Parts; 660 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 661 // Copy the legal parts from the registers. 662 EVT ValueVT = ValueVTs[Value]; 663 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 664 EVT RegisterVT = RegVTs[Value]; 665 666 Parts.resize(NumRegs); 667 for (unsigned i = 0; i != NumRegs; ++i) { 668 SDValue P; 669 if (Flag == 0) { 670 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 671 } else { 672 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 673 *Flag = P.getValue(2); 674 } 675 676 Chain = P.getValue(1); 677 Parts[i] = P; 678 679 // If the source register was virtual and if we know something about it, 680 // add an assert node. 681 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 682 !RegisterVT.isInteger() || RegisterVT.isVector()) 683 continue; 684 685 const FunctionLoweringInfo::LiveOutInfo *LOI = 686 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 687 if (!LOI) 688 continue; 689 690 unsigned RegSize = RegisterVT.getSizeInBits(); 691 unsigned NumSignBits = LOI->NumSignBits; 692 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) 699 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 700 else if (NumZeroBits >= RegSize-1) 701 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 702 else if (NumSignBits > RegSize-8) 703 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 704 else if (NumZeroBits >= RegSize-8) 705 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 706 else if (NumSignBits > RegSize-16) 707 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 708 else if (NumZeroBits >= RegSize-16) 709 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 710 else if (NumSignBits > RegSize-32) 711 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 712 else if (NumZeroBits >= RegSize-32) 713 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 714 else 715 continue; 716 717 // Add an assertion node. 718 assert(FromVT != MVT::Other); 719 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 720 RegisterVT, P, DAG.getValueType(FromVT)); 721 } 722 723 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 724 NumRegs, RegisterVT, ValueVT); 725 Part += NumRegs; 726 Parts.clear(); 727 } 728 729 return DAG.getNode(ISD::MERGE_VALUES, dl, 730 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 731 &Values[0], ValueVTs.size()); 732 } 733 734 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 735 /// specified value into the registers specified by this object. This uses 736 /// Chain/Flag as the input and updates them for the output Chain/Flag. 737 /// If the Flag pointer is NULL, no flag is used. 738 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 739 SDValue &Chain, SDValue *Flag) const { 740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 741 742 // Get the list of the values's legal parts. 743 unsigned NumRegs = Regs.size(); 744 SmallVector<SDValue, 8> Parts(NumRegs); 745 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 746 EVT ValueVT = ValueVTs[Value]; 747 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 748 EVT RegisterVT = RegVTs[Value]; 749 750 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 751 &Parts[Part], NumParts, RegisterVT); 752 Part += NumParts; 753 } 754 755 // Copy the parts into the registers. 756 SmallVector<SDValue, 8> Chains(NumRegs); 757 for (unsigned i = 0; i != NumRegs; ++i) { 758 SDValue Part; 759 if (Flag == 0) { 760 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 761 } else { 762 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 763 *Flag = Part.getValue(1); 764 } 765 766 Chains[i] = Part.getValue(0); 767 } 768 769 if (NumRegs == 1 || Flag) 770 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 771 // flagged to it. That is the CopyToReg nodes and the user are considered 772 // a single scheduling unit. If we create a TokenFactor and return it as 773 // chain, then the TokenFactor is both a predecessor (operand) of the 774 // user as well as a successor (the TF operands are flagged to the user). 775 // c1, f1 = CopyToReg 776 // c2, f2 = CopyToReg 777 // c3 = TokenFactor c1, c2 778 // ... 779 // = op c3, ..., f2 780 Chain = Chains[NumRegs-1]; 781 else 782 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 783 } 784 785 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 786 /// operand list. This adds the code marker and includes the number of 787 /// values added into it. 788 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 789 unsigned MatchingIdx, 790 SelectionDAG &DAG, 791 std::vector<SDValue> &Ops) const { 792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 793 794 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 795 if (HasMatching) 796 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 797 else if (!Regs.empty() && 798 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 799 // Put the register class of the virtual registers in the flag word. That 800 // way, later passes can recompute register class constraints for inline 801 // assembly as well as normal instructions. 802 // Don't do this for tied operands that can use the regclass information 803 // from the def. 804 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 805 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 806 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 807 } 808 809 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 810 Ops.push_back(Res); 811 812 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 814 EVT RegisterVT = RegVTs[Value]; 815 for (unsigned i = 0; i != NumRegs; ++i) { 816 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 817 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 818 } 819 } 820 } 821 822 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 823 const TargetLibraryInfo *li) { 824 AA = &aa; 825 GFI = gfi; 826 LibInfo = li; 827 TD = DAG.getTarget().getTargetData(); 828 LPadToCallSiteMap.clear(); 829 } 830 831 /// clear - Clear out the current SelectionDAG and the associated 832 /// state and prepare this SelectionDAGBuilder object to be used 833 /// for a new block. This doesn't clear out information about 834 /// additional blocks that are needed to complete switch lowering 835 /// or PHI node updating; that information is cleared out as it is 836 /// consumed. 837 void SelectionDAGBuilder::clear() { 838 NodeMap.clear(); 839 UnusedArgNodeMap.clear(); 840 PendingLoads.clear(); 841 PendingExports.clear(); 842 CurDebugLoc = DebugLoc(); 843 HasTailCall = false; 844 } 845 846 /// clearDanglingDebugInfo - Clear the dangling debug information 847 /// map. This function is seperated from the clear so that debug 848 /// information that is dangling in a basic block can be properly 849 /// resolved in a different basic block. This allows the 850 /// SelectionDAG to resolve dangling debug information attached 851 /// to PHI nodes. 852 void SelectionDAGBuilder::clearDanglingDebugInfo() { 853 DanglingDebugInfoMap.clear(); 854 } 855 856 /// getRoot - Return the current virtual root of the Selection DAG, 857 /// flushing any PendingLoad items. This must be done before emitting 858 /// a store or any other node that may need to be ordered after any 859 /// prior load instructions. 860 /// 861 SDValue SelectionDAGBuilder::getRoot() { 862 if (PendingLoads.empty()) 863 return DAG.getRoot(); 864 865 if (PendingLoads.size() == 1) { 866 SDValue Root = PendingLoads[0]; 867 DAG.setRoot(Root); 868 PendingLoads.clear(); 869 return Root; 870 } 871 872 // Otherwise, we have to make a token factor node. 873 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 874 &PendingLoads[0], PendingLoads.size()); 875 PendingLoads.clear(); 876 DAG.setRoot(Root); 877 return Root; 878 } 879 880 /// getControlRoot - Similar to getRoot, but instead of flushing all the 881 /// PendingLoad items, flush all the PendingExports items. It is necessary 882 /// to do this before emitting a terminator instruction. 883 /// 884 SDValue SelectionDAGBuilder::getControlRoot() { 885 SDValue Root = DAG.getRoot(); 886 887 if (PendingExports.empty()) 888 return Root; 889 890 // Turn all of the CopyToReg chains into one factored node. 891 if (Root.getOpcode() != ISD::EntryToken) { 892 unsigned i = 0, e = PendingExports.size(); 893 for (; i != e; ++i) { 894 assert(PendingExports[i].getNode()->getNumOperands() > 1); 895 if (PendingExports[i].getNode()->getOperand(0) == Root) 896 break; // Don't add the root if we already indirectly depend on it. 897 } 898 899 if (i == e) 900 PendingExports.push_back(Root); 901 } 902 903 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 904 &PendingExports[0], 905 PendingExports.size()); 906 PendingExports.clear(); 907 DAG.setRoot(Root); 908 return Root; 909 } 910 911 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 912 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 913 DAG.AssignOrdering(Node, SDNodeOrder); 914 915 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 916 AssignOrderingToNode(Node->getOperand(I).getNode()); 917 } 918 919 void SelectionDAGBuilder::visit(const Instruction &I) { 920 // Set up outgoing PHI node register values before emitting the terminator. 921 if (isa<TerminatorInst>(&I)) 922 HandlePHINodesInSuccessorBlocks(I.getParent()); 923 924 CurDebugLoc = I.getDebugLoc(); 925 926 visit(I.getOpcode(), I); 927 928 if (!isa<TerminatorInst>(&I) && !HasTailCall) 929 CopyToExportRegsIfNeeded(&I); 930 931 CurDebugLoc = DebugLoc(); 932 } 933 934 void SelectionDAGBuilder::visitPHI(const PHINode &) { 935 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 936 } 937 938 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 939 // Note: this doesn't use InstVisitor, because it has to work with 940 // ConstantExpr's in addition to instructions. 941 switch (Opcode) { 942 default: llvm_unreachable("Unknown instruction type encountered!"); 943 // Build the switch statement using the Instruction.def file. 944 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 945 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 946 #include "llvm/Instruction.def" 947 } 948 949 // Assign the ordering to the freshly created DAG nodes. 950 if (NodeMap.count(&I)) { 951 ++SDNodeOrder; 952 AssignOrderingToNode(getValue(&I).getNode()); 953 } 954 } 955 956 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 957 // generate the debug data structures now that we've seen its definition. 958 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 959 SDValue Val) { 960 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 961 if (DDI.getDI()) { 962 const DbgValueInst *DI = DDI.getDI(); 963 DebugLoc dl = DDI.getdl(); 964 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 965 MDNode *Variable = DI->getVariable(); 966 uint64_t Offset = DI->getOffset(); 967 SDDbgValue *SDV; 968 if (Val.getNode()) { 969 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 970 SDV = DAG.getDbgValue(Variable, Val.getNode(), 971 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 972 DAG.AddDbgValue(SDV, Val.getNode(), false); 973 } 974 } else 975 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 976 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 977 } 978 } 979 980 /// getValue - Return an SDValue for the given Value. 981 SDValue SelectionDAGBuilder::getValue(const Value *V) { 982 // If we already have an SDValue for this value, use it. It's important 983 // to do this first, so that we don't create a CopyFromReg if we already 984 // have a regular SDValue. 985 SDValue &N = NodeMap[V]; 986 if (N.getNode()) return N; 987 988 // If there's a virtual register allocated and initialized for this 989 // value, use it. 990 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 991 if (It != FuncInfo.ValueMap.end()) { 992 unsigned InReg = It->second; 993 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 994 SDValue Chain = DAG.getEntryNode(); 995 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 996 resolveDanglingDebugInfo(V, N); 997 return N; 998 } 999 1000 // Otherwise create a new SDValue and remember it. 1001 SDValue Val = getValueImpl(V); 1002 NodeMap[V] = Val; 1003 resolveDanglingDebugInfo(V, Val); 1004 return Val; 1005 } 1006 1007 /// getNonRegisterValue - Return an SDValue for the given Value, but 1008 /// don't look in FuncInfo.ValueMap for a virtual register. 1009 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. 1011 SDValue &N = NodeMap[V]; 1012 if (N.getNode()) return N; 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 if (const Constant *C = dyn_cast<Constant>(V)) { 1025 EVT VT = TLI.getValueType(V->getType(), true); 1026 1027 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1028 return DAG.getConstant(*CI, VT); 1029 1030 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1031 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1032 1033 if (isa<ConstantPointerNull>(C)) 1034 return DAG.getConstant(0, TLI.getPointerTy()); 1035 1036 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1037 return DAG.getConstantFP(*CFP, VT); 1038 1039 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1040 return DAG.getUNDEF(VT); 1041 1042 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1043 visit(CE->getOpcode(), *CE); 1044 SDValue N1 = NodeMap[V]; 1045 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1046 return N1; 1047 } 1048 1049 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1050 SmallVector<SDValue, 4> Constants; 1051 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1052 OI != OE; ++OI) { 1053 SDNode *Val = getValue(*OI).getNode(); 1054 // If the operand is an empty aggregate, there are no values. 1055 if (!Val) continue; 1056 // Add each leaf value from the operand to the Constants list 1057 // to form a flattened list of all the values. 1058 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1059 Constants.push_back(SDValue(Val, i)); 1060 } 1061 1062 return DAG.getMergeValues(&Constants[0], Constants.size(), 1063 getCurDebugLoc()); 1064 } 1065 1066 if (const ConstantDataSequential *CDS = 1067 dyn_cast<ConstantDataSequential>(C)) { 1068 SmallVector<SDValue, 4> Ops; 1069 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1070 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1071 // Add each leaf value from the operand to the Constants list 1072 // to form a flattened list of all the values. 1073 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1074 Ops.push_back(SDValue(Val, i)); 1075 } 1076 1077 if (isa<ArrayType>(CDS->getType())) 1078 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1079 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1080 VT, &Ops[0], Ops.size()); 1081 } 1082 1083 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1084 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1085 "Unknown struct or array constant!"); 1086 1087 SmallVector<EVT, 4> ValueVTs; 1088 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1089 unsigned NumElts = ValueVTs.size(); 1090 if (NumElts == 0) 1091 return SDValue(); // empty struct 1092 SmallVector<SDValue, 4> Constants(NumElts); 1093 for (unsigned i = 0; i != NumElts; ++i) { 1094 EVT EltVT = ValueVTs[i]; 1095 if (isa<UndefValue>(C)) 1096 Constants[i] = DAG.getUNDEF(EltVT); 1097 else if (EltVT.isFloatingPoint()) 1098 Constants[i] = DAG.getConstantFP(0, EltVT); 1099 else 1100 Constants[i] = DAG.getConstant(0, EltVT); 1101 } 1102 1103 return DAG.getMergeValues(&Constants[0], NumElts, 1104 getCurDebugLoc()); 1105 } 1106 1107 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1108 return DAG.getBlockAddress(BA, VT); 1109 1110 VectorType *VecTy = cast<VectorType>(V->getType()); 1111 unsigned NumElements = VecTy->getNumElements(); 1112 1113 // Now that we know the number and type of the elements, get that number of 1114 // elements into the Ops array based on what kind of constant it is. 1115 SmallVector<SDValue, 16> Ops; 1116 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1117 for (unsigned i = 0; i != NumElements; ++i) 1118 Ops.push_back(getValue(CV->getOperand(i))); 1119 } else { 1120 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1121 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1122 1123 SDValue Op; 1124 if (EltVT.isFloatingPoint()) 1125 Op = DAG.getConstantFP(0, EltVT); 1126 else 1127 Op = DAG.getConstant(0, EltVT); 1128 Ops.assign(NumElements, Op); 1129 } 1130 1131 // Create a BUILD_VECTOR node. 1132 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1133 VT, &Ops[0], Ops.size()); 1134 } 1135 1136 // If this is a static alloca, generate it as the frameindex instead of 1137 // computation. 1138 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1139 DenseMap<const AllocaInst*, int>::iterator SI = 1140 FuncInfo.StaticAllocaMap.find(AI); 1141 if (SI != FuncInfo.StaticAllocaMap.end()) 1142 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1143 } 1144 1145 // If this is an instruction which fast-isel has deferred, select it now. 1146 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1147 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1148 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1149 SDValue Chain = DAG.getEntryNode(); 1150 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1151 } 1152 1153 llvm_unreachable("Can't get register for value!"); 1154 } 1155 1156 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1157 SDValue Chain = getControlRoot(); 1158 SmallVector<ISD::OutputArg, 8> Outs; 1159 SmallVector<SDValue, 8> OutVals; 1160 1161 if (!FuncInfo.CanLowerReturn) { 1162 unsigned DemoteReg = FuncInfo.DemoteRegister; 1163 const Function *F = I.getParent()->getParent(); 1164 1165 // Emit a store of the return value through the virtual register. 1166 // Leave Outs empty so that LowerReturn won't try to load return 1167 // registers the usual way. 1168 SmallVector<EVT, 1> PtrValueVTs; 1169 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1170 PtrValueVTs); 1171 1172 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1173 SDValue RetOp = getValue(I.getOperand(0)); 1174 1175 SmallVector<EVT, 4> ValueVTs; 1176 SmallVector<uint64_t, 4> Offsets; 1177 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1178 unsigned NumValues = ValueVTs.size(); 1179 1180 SmallVector<SDValue, 4> Chains(NumValues); 1181 for (unsigned i = 0; i != NumValues; ++i) { 1182 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1183 RetPtr.getValueType(), RetPtr, 1184 DAG.getIntPtrConstant(Offsets[i])); 1185 Chains[i] = 1186 DAG.getStore(Chain, getCurDebugLoc(), 1187 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1188 // FIXME: better loc info would be nice. 1189 Add, MachinePointerInfo(), false, false, 0); 1190 } 1191 1192 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1193 MVT::Other, &Chains[0], NumValues); 1194 } else if (I.getNumOperands() != 0) { 1195 SmallVector<EVT, 4> ValueVTs; 1196 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1197 unsigned NumValues = ValueVTs.size(); 1198 if (NumValues) { 1199 SDValue RetOp = getValue(I.getOperand(0)); 1200 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1201 EVT VT = ValueVTs[j]; 1202 1203 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1204 1205 const Function *F = I.getParent()->getParent(); 1206 if (F->paramHasAttr(0, Attribute::SExt)) 1207 ExtendKind = ISD::SIGN_EXTEND; 1208 else if (F->paramHasAttr(0, Attribute::ZExt)) 1209 ExtendKind = ISD::ZERO_EXTEND; 1210 1211 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1212 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1213 1214 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1215 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1216 SmallVector<SDValue, 4> Parts(NumParts); 1217 getCopyToParts(DAG, getCurDebugLoc(), 1218 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1219 &Parts[0], NumParts, PartVT, ExtendKind); 1220 1221 // 'inreg' on function refers to return value 1222 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1223 if (F->paramHasAttr(0, Attribute::InReg)) 1224 Flags.setInReg(); 1225 1226 // Propagate extension type if any 1227 if (ExtendKind == ISD::SIGN_EXTEND) 1228 Flags.setSExt(); 1229 else if (ExtendKind == ISD::ZERO_EXTEND) 1230 Flags.setZExt(); 1231 1232 for (unsigned i = 0; i < NumParts; ++i) { 1233 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1234 /*isfixed=*/true)); 1235 OutVals.push_back(Parts[i]); 1236 } 1237 } 1238 } 1239 } 1240 1241 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1242 CallingConv::ID CallConv = 1243 DAG.getMachineFunction().getFunction()->getCallingConv(); 1244 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1245 Outs, OutVals, getCurDebugLoc(), DAG); 1246 1247 // Verify that the target's LowerReturn behaved as expected. 1248 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1249 "LowerReturn didn't return a valid chain!"); 1250 1251 // Update the DAG with the new chain value resulting from return lowering. 1252 DAG.setRoot(Chain); 1253 } 1254 1255 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1256 /// created for it, emit nodes to copy the value into the virtual 1257 /// registers. 1258 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1259 // Skip empty types 1260 if (V->getType()->isEmptyTy()) 1261 return; 1262 1263 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1264 if (VMI != FuncInfo.ValueMap.end()) { 1265 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1266 CopyValueToVirtualRegister(V, VMI->second); 1267 } 1268 } 1269 1270 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1271 /// the current basic block, add it to ValueMap now so that we'll get a 1272 /// CopyTo/FromReg. 1273 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1274 // No need to export constants. 1275 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1276 1277 // Already exported? 1278 if (FuncInfo.isExportedInst(V)) return; 1279 1280 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1281 CopyValueToVirtualRegister(V, Reg); 1282 } 1283 1284 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1285 const BasicBlock *FromBB) { 1286 // The operands of the setcc have to be in this block. We don't know 1287 // how to export them from some other block. 1288 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1289 // Can export from current BB. 1290 if (VI->getParent() == FromBB) 1291 return true; 1292 1293 // Is already exported, noop. 1294 return FuncInfo.isExportedInst(V); 1295 } 1296 1297 // If this is an argument, we can export it if the BB is the entry block or 1298 // if it is already exported. 1299 if (isa<Argument>(V)) { 1300 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1301 return true; 1302 1303 // Otherwise, can only export this if it is already exported. 1304 return FuncInfo.isExportedInst(V); 1305 } 1306 1307 // Otherwise, constants can always be exported. 1308 return true; 1309 } 1310 1311 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1312 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1313 const MachineBasicBlock *Dst) const { 1314 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1315 if (!BPI) 1316 return 0; 1317 const BasicBlock *SrcBB = Src->getBasicBlock(); 1318 const BasicBlock *DstBB = Dst->getBasicBlock(); 1319 return BPI->getEdgeWeight(SrcBB, DstBB); 1320 } 1321 1322 void SelectionDAGBuilder:: 1323 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1324 uint32_t Weight /* = 0 */) { 1325 if (!Weight) 1326 Weight = getEdgeWeight(Src, Dst); 1327 Src->addSuccessor(Dst, Weight); 1328 } 1329 1330 1331 static bool InBlock(const Value *V, const BasicBlock *BB) { 1332 if (const Instruction *I = dyn_cast<Instruction>(V)) 1333 return I->getParent() == BB; 1334 return true; 1335 } 1336 1337 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1338 /// This function emits a branch and is used at the leaves of an OR or an 1339 /// AND operator tree. 1340 /// 1341 void 1342 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1343 MachineBasicBlock *TBB, 1344 MachineBasicBlock *FBB, 1345 MachineBasicBlock *CurBB, 1346 MachineBasicBlock *SwitchBB) { 1347 const BasicBlock *BB = CurBB->getBasicBlock(); 1348 1349 // If the leaf of the tree is a comparison, merge the condition into 1350 // the caseblock. 1351 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1352 // The operands of the cmp have to be in this block. We don't know 1353 // how to export them from some other block. If this is the first block 1354 // of the sequence, no exporting is needed. 1355 if (CurBB == SwitchBB || 1356 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1357 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1358 ISD::CondCode Condition; 1359 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1360 Condition = getICmpCondCode(IC->getPredicate()); 1361 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1362 Condition = getFCmpCondCode(FC->getPredicate()); 1363 if (TM.Options.NoNaNsFPMath) 1364 Condition = getFCmpCodeWithoutNaN(Condition); 1365 } else { 1366 Condition = ISD::SETEQ; // silence warning. 1367 llvm_unreachable("Unknown compare instruction"); 1368 } 1369 1370 CaseBlock CB(Condition, BOp->getOperand(0), 1371 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1372 SwitchCases.push_back(CB); 1373 return; 1374 } 1375 } 1376 1377 // Create a CaseBlock record representing this branch. 1378 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1379 NULL, TBB, FBB, CurBB); 1380 SwitchCases.push_back(CB); 1381 } 1382 1383 /// FindMergedConditions - If Cond is an expression like 1384 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1385 MachineBasicBlock *TBB, 1386 MachineBasicBlock *FBB, 1387 MachineBasicBlock *CurBB, 1388 MachineBasicBlock *SwitchBB, 1389 unsigned Opc) { 1390 // If this node is not part of the or/and tree, emit it as a branch. 1391 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1392 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1393 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1394 BOp->getParent() != CurBB->getBasicBlock() || 1395 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1396 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1397 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1398 return; 1399 } 1400 1401 // Create TmpBB after CurBB. 1402 MachineFunction::iterator BBI = CurBB; 1403 MachineFunction &MF = DAG.getMachineFunction(); 1404 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1405 CurBB->getParent()->insert(++BBI, TmpBB); 1406 1407 if (Opc == Instruction::Or) { 1408 // Codegen X | Y as: 1409 // jmp_if_X TBB 1410 // jmp TmpBB 1411 // TmpBB: 1412 // jmp_if_Y TBB 1413 // jmp FBB 1414 // 1415 1416 // Emit the LHS condition. 1417 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1418 1419 // Emit the RHS condition into TmpBB. 1420 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1421 } else { 1422 assert(Opc == Instruction::And && "Unknown merge op!"); 1423 // Codegen X & Y as: 1424 // jmp_if_X TmpBB 1425 // jmp FBB 1426 // TmpBB: 1427 // jmp_if_Y TBB 1428 // jmp FBB 1429 // 1430 // This requires creation of TmpBB after CurBB. 1431 1432 // Emit the LHS condition. 1433 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1434 1435 // Emit the RHS condition into TmpBB. 1436 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1437 } 1438 } 1439 1440 /// If the set of cases should be emitted as a series of branches, return true. 1441 /// If we should emit this as a bunch of and/or'd together conditions, return 1442 /// false. 1443 bool 1444 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1445 if (Cases.size() != 2) return true; 1446 1447 // If this is two comparisons of the same values or'd or and'd together, they 1448 // will get folded into a single comparison, so don't emit two blocks. 1449 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1450 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1451 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1452 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1453 return false; 1454 } 1455 1456 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1457 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1458 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1459 Cases[0].CC == Cases[1].CC && 1460 isa<Constant>(Cases[0].CmpRHS) && 1461 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1462 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1463 return false; 1464 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1465 return false; 1466 } 1467 1468 return true; 1469 } 1470 1471 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1472 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1473 1474 // Update machine-CFG edges. 1475 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1476 1477 // Figure out which block is immediately after the current one. 1478 MachineBasicBlock *NextBlock = 0; 1479 MachineFunction::iterator BBI = BrMBB; 1480 if (++BBI != FuncInfo.MF->end()) 1481 NextBlock = BBI; 1482 1483 if (I.isUnconditional()) { 1484 // Update machine-CFG edges. 1485 BrMBB->addSuccessor(Succ0MBB); 1486 1487 // If this is not a fall-through branch, emit the branch. 1488 if (Succ0MBB != NextBlock) 1489 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1490 MVT::Other, getControlRoot(), 1491 DAG.getBasicBlock(Succ0MBB))); 1492 1493 return; 1494 } 1495 1496 // If this condition is one of the special cases we handle, do special stuff 1497 // now. 1498 const Value *CondVal = I.getCondition(); 1499 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1500 1501 // If this is a series of conditions that are or'd or and'd together, emit 1502 // this as a sequence of branches instead of setcc's with and/or operations. 1503 // As long as jumps are not expensive, this should improve performance. 1504 // For example, instead of something like: 1505 // cmp A, B 1506 // C = seteq 1507 // cmp D, E 1508 // F = setle 1509 // or C, F 1510 // jnz foo 1511 // Emit: 1512 // cmp A, B 1513 // je foo 1514 // cmp D, E 1515 // jle foo 1516 // 1517 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1518 if (!TLI.isJumpExpensive() && 1519 BOp->hasOneUse() && 1520 (BOp->getOpcode() == Instruction::And || 1521 BOp->getOpcode() == Instruction::Or)) { 1522 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1523 BOp->getOpcode()); 1524 // If the compares in later blocks need to use values not currently 1525 // exported from this block, export them now. This block should always 1526 // be the first entry. 1527 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1528 1529 // Allow some cases to be rejected. 1530 if (ShouldEmitAsBranches(SwitchCases)) { 1531 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1532 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1533 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1534 } 1535 1536 // Emit the branch for this block. 1537 visitSwitchCase(SwitchCases[0], BrMBB); 1538 SwitchCases.erase(SwitchCases.begin()); 1539 return; 1540 } 1541 1542 // Okay, we decided not to do this, remove any inserted MBB's and clear 1543 // SwitchCases. 1544 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1545 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1546 1547 SwitchCases.clear(); 1548 } 1549 } 1550 1551 // Create a CaseBlock record representing this branch. 1552 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1553 NULL, Succ0MBB, Succ1MBB, BrMBB); 1554 1555 // Use visitSwitchCase to actually insert the fast branch sequence for this 1556 // cond branch. 1557 visitSwitchCase(CB, BrMBB); 1558 } 1559 1560 /// visitSwitchCase - Emits the necessary code to represent a single node in 1561 /// the binary search tree resulting from lowering a switch instruction. 1562 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1563 MachineBasicBlock *SwitchBB) { 1564 SDValue Cond; 1565 SDValue CondLHS = getValue(CB.CmpLHS); 1566 DebugLoc dl = getCurDebugLoc(); 1567 1568 // Build the setcc now. 1569 if (CB.CmpMHS == NULL) { 1570 // Fold "(X == true)" to X and "(X == false)" to !X to 1571 // handle common cases produced by branch lowering. 1572 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1573 CB.CC == ISD::SETEQ) 1574 Cond = CondLHS; 1575 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1576 CB.CC == ISD::SETEQ) { 1577 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1578 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1579 } else 1580 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1581 } else { 1582 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1583 1584 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1585 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1586 1587 SDValue CmpOp = getValue(CB.CmpMHS); 1588 EVT VT = CmpOp.getValueType(); 1589 1590 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1591 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1592 ISD::SETLE); 1593 } else { 1594 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1595 VT, CmpOp, DAG.getConstant(Low, VT)); 1596 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1597 DAG.getConstant(High-Low, VT), ISD::SETULE); 1598 } 1599 } 1600 1601 // Update successor info 1602 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1603 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1604 1605 // Set NextBlock to be the MBB immediately after the current one, if any. 1606 // This is used to avoid emitting unnecessary branches to the next block. 1607 MachineBasicBlock *NextBlock = 0; 1608 MachineFunction::iterator BBI = SwitchBB; 1609 if (++BBI != FuncInfo.MF->end()) 1610 NextBlock = BBI; 1611 1612 // If the lhs block is the next block, invert the condition so that we can 1613 // fall through to the lhs instead of the rhs block. 1614 if (CB.TrueBB == NextBlock) { 1615 std::swap(CB.TrueBB, CB.FalseBB); 1616 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1617 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1618 } 1619 1620 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1621 MVT::Other, getControlRoot(), Cond, 1622 DAG.getBasicBlock(CB.TrueBB)); 1623 1624 // Insert the false branch. Do this even if it's a fall through branch, 1625 // this makes it easier to do DAG optimizations which require inverting 1626 // the branch condition. 1627 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1628 DAG.getBasicBlock(CB.FalseBB)); 1629 1630 DAG.setRoot(BrCond); 1631 } 1632 1633 /// visitJumpTable - Emit JumpTable node in the current MBB 1634 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1635 // Emit the code for the jump table 1636 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1637 EVT PTy = TLI.getPointerTy(); 1638 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1639 JT.Reg, PTy); 1640 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1641 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1642 MVT::Other, Index.getValue(1), 1643 Table, Index); 1644 DAG.setRoot(BrJumpTable); 1645 } 1646 1647 /// visitJumpTableHeader - This function emits necessary code to produce index 1648 /// in the JumpTable from switch case. 1649 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1650 JumpTableHeader &JTH, 1651 MachineBasicBlock *SwitchBB) { 1652 // Subtract the lowest switch case value from the value being switched on and 1653 // conditional branch to default mbb if the result is greater than the 1654 // difference between smallest and largest cases. 1655 SDValue SwitchOp = getValue(JTH.SValue); 1656 EVT VT = SwitchOp.getValueType(); 1657 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1658 DAG.getConstant(JTH.First, VT)); 1659 1660 // The SDNode we just created, which holds the value being switched on minus 1661 // the smallest case value, needs to be copied to a virtual register so it 1662 // can be used as an index into the jump table in a subsequent basic block. 1663 // This value may be smaller or larger than the target's pointer type, and 1664 // therefore require extension or truncating. 1665 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1666 1667 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1668 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1669 JumpTableReg, SwitchOp); 1670 JT.Reg = JumpTableReg; 1671 1672 // Emit the range check for the jump table, and branch to the default block 1673 // for the switch statement if the value being switched on exceeds the largest 1674 // case in the switch. 1675 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1676 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1677 DAG.getConstant(JTH.Last-JTH.First,VT), 1678 ISD::SETUGT); 1679 1680 // Set NextBlock to be the MBB immediately after the current one, if any. 1681 // This is used to avoid emitting unnecessary branches to the next block. 1682 MachineBasicBlock *NextBlock = 0; 1683 MachineFunction::iterator BBI = SwitchBB; 1684 1685 if (++BBI != FuncInfo.MF->end()) 1686 NextBlock = BBI; 1687 1688 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1689 MVT::Other, CopyTo, CMP, 1690 DAG.getBasicBlock(JT.Default)); 1691 1692 if (JT.MBB != NextBlock) 1693 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1694 DAG.getBasicBlock(JT.MBB)); 1695 1696 DAG.setRoot(BrCond); 1697 } 1698 1699 /// visitBitTestHeader - This function emits necessary code to produce value 1700 /// suitable for "bit tests" 1701 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1702 MachineBasicBlock *SwitchBB) { 1703 // Subtract the minimum value 1704 SDValue SwitchOp = getValue(B.SValue); 1705 EVT VT = SwitchOp.getValueType(); 1706 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1707 DAG.getConstant(B.First, VT)); 1708 1709 // Check range 1710 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1711 TLI.getSetCCResultType(Sub.getValueType()), 1712 Sub, DAG.getConstant(B.Range, VT), 1713 ISD::SETUGT); 1714 1715 // Determine the type of the test operands. 1716 bool UsePtrType = false; 1717 if (!TLI.isTypeLegal(VT)) 1718 UsePtrType = true; 1719 else { 1720 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1721 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1722 // Switch table case range are encoded into series of masks. 1723 // Just use pointer type, it's guaranteed to fit. 1724 UsePtrType = true; 1725 break; 1726 } 1727 } 1728 if (UsePtrType) { 1729 VT = TLI.getPointerTy(); 1730 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1731 } 1732 1733 B.RegVT = VT; 1734 B.Reg = FuncInfo.CreateReg(VT); 1735 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1736 B.Reg, Sub); 1737 1738 // Set NextBlock to be the MBB immediately after the current one, if any. 1739 // This is used to avoid emitting unnecessary branches to the next block. 1740 MachineBasicBlock *NextBlock = 0; 1741 MachineFunction::iterator BBI = SwitchBB; 1742 if (++BBI != FuncInfo.MF->end()) 1743 NextBlock = BBI; 1744 1745 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1746 1747 addSuccessorWithWeight(SwitchBB, B.Default); 1748 addSuccessorWithWeight(SwitchBB, MBB); 1749 1750 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1751 MVT::Other, CopyTo, RangeCmp, 1752 DAG.getBasicBlock(B.Default)); 1753 1754 if (MBB != NextBlock) 1755 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1756 DAG.getBasicBlock(MBB)); 1757 1758 DAG.setRoot(BrRange); 1759 } 1760 1761 /// visitBitTestCase - this function produces one "bit test" 1762 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1763 MachineBasicBlock* NextMBB, 1764 unsigned Reg, 1765 BitTestCase &B, 1766 MachineBasicBlock *SwitchBB) { 1767 EVT VT = BB.RegVT; 1768 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1769 Reg, VT); 1770 SDValue Cmp; 1771 unsigned PopCount = CountPopulation_64(B.Mask); 1772 if (PopCount == 1) { 1773 // Testing for a single bit; just compare the shift count with what it 1774 // would need to be to shift a 1 bit in that position. 1775 Cmp = DAG.getSetCC(getCurDebugLoc(), 1776 TLI.getSetCCResultType(VT), 1777 ShiftOp, 1778 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1779 ISD::SETEQ); 1780 } else if (PopCount == BB.Range) { 1781 // There is only one zero bit in the range, test for it directly. 1782 Cmp = DAG.getSetCC(getCurDebugLoc(), 1783 TLI.getSetCCResultType(VT), 1784 ShiftOp, 1785 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1786 ISD::SETNE); 1787 } else { 1788 // Make desired shift 1789 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1790 DAG.getConstant(1, VT), ShiftOp); 1791 1792 // Emit bit tests and jumps 1793 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1794 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1795 Cmp = DAG.getSetCC(getCurDebugLoc(), 1796 TLI.getSetCCResultType(VT), 1797 AndOp, DAG.getConstant(0, VT), 1798 ISD::SETNE); 1799 } 1800 1801 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1802 addSuccessorWithWeight(SwitchBB, NextMBB); 1803 1804 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1805 MVT::Other, getControlRoot(), 1806 Cmp, DAG.getBasicBlock(B.TargetBB)); 1807 1808 // Set NextBlock to be the MBB immediately after the current one, if any. 1809 // This is used to avoid emitting unnecessary branches to the next block. 1810 MachineBasicBlock *NextBlock = 0; 1811 MachineFunction::iterator BBI = SwitchBB; 1812 if (++BBI != FuncInfo.MF->end()) 1813 NextBlock = BBI; 1814 1815 if (NextMBB != NextBlock) 1816 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1817 DAG.getBasicBlock(NextMBB)); 1818 1819 DAG.setRoot(BrAnd); 1820 } 1821 1822 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1823 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1824 1825 // Retrieve successors. 1826 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1827 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1828 1829 const Value *Callee(I.getCalledValue()); 1830 if (isa<InlineAsm>(Callee)) 1831 visitInlineAsm(&I); 1832 else 1833 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1834 1835 // If the value of the invoke is used outside of its defining block, make it 1836 // available as a virtual register. 1837 CopyToExportRegsIfNeeded(&I); 1838 1839 // Update successor info 1840 addSuccessorWithWeight(InvokeMBB, Return); 1841 addSuccessorWithWeight(InvokeMBB, LandingPad); 1842 1843 // Drop into normal successor. 1844 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1845 MVT::Other, getControlRoot(), 1846 DAG.getBasicBlock(Return))); 1847 } 1848 1849 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1850 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1851 } 1852 1853 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1854 assert(FuncInfo.MBB->isLandingPad() && 1855 "Call to landingpad not in landing pad!"); 1856 1857 MachineBasicBlock *MBB = FuncInfo.MBB; 1858 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1859 AddLandingPadInfo(LP, MMI, MBB); 1860 1861 // If there aren't registers to copy the values into (e.g., during SjLj 1862 // exceptions), then don't bother to create these DAG nodes. 1863 if (TLI.getExceptionPointerRegister() == 0 && 1864 TLI.getExceptionSelectorRegister() == 0) 1865 return; 1866 1867 SmallVector<EVT, 2> ValueVTs; 1868 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1869 1870 // Insert the EXCEPTIONADDR instruction. 1871 assert(FuncInfo.MBB->isLandingPad() && 1872 "Call to eh.exception not in landing pad!"); 1873 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1874 SDValue Ops[2]; 1875 Ops[0] = DAG.getRoot(); 1876 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1877 SDValue Chain = Op1.getValue(1); 1878 1879 // Insert the EHSELECTION instruction. 1880 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1881 Ops[0] = Op1; 1882 Ops[1] = Chain; 1883 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1884 Chain = Op2.getValue(1); 1885 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1886 1887 Ops[0] = Op1; 1888 Ops[1] = Op2; 1889 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1890 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1891 &Ops[0], 2); 1892 1893 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1894 setValue(&LP, RetPair.first); 1895 DAG.setRoot(RetPair.second); 1896 } 1897 1898 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1899 /// small case ranges). 1900 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1901 CaseRecVector& WorkList, 1902 const Value* SV, 1903 MachineBasicBlock *Default, 1904 MachineBasicBlock *SwitchBB) { 1905 Case& BackCase = *(CR.Range.second-1); 1906 1907 // Size is the number of Cases represented by this range. 1908 size_t Size = CR.Range.second - CR.Range.first; 1909 if (Size > 3) 1910 return false; 1911 1912 // Get the MachineFunction which holds the current MBB. This is used when 1913 // inserting any additional MBBs necessary to represent the switch. 1914 MachineFunction *CurMF = FuncInfo.MF; 1915 1916 // Figure out which block is immediately after the current one. 1917 MachineBasicBlock *NextBlock = 0; 1918 MachineFunction::iterator BBI = CR.CaseBB; 1919 1920 if (++BBI != FuncInfo.MF->end()) 1921 NextBlock = BBI; 1922 1923 // If any two of the cases has the same destination, and if one value 1924 // is the same as the other, but has one bit unset that the other has set, 1925 // use bit manipulation to do two compares at once. For example: 1926 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1927 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1928 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1929 if (Size == 2 && CR.CaseBB == SwitchBB) { 1930 Case &Small = *CR.Range.first; 1931 Case &Big = *(CR.Range.second-1); 1932 1933 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1934 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1935 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1936 1937 // Check that there is only one bit different. 1938 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1939 (SmallValue | BigValue) == BigValue) { 1940 // Isolate the common bit. 1941 APInt CommonBit = BigValue & ~SmallValue; 1942 assert((SmallValue | CommonBit) == BigValue && 1943 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1944 1945 SDValue CondLHS = getValue(SV); 1946 EVT VT = CondLHS.getValueType(); 1947 DebugLoc DL = getCurDebugLoc(); 1948 1949 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1950 DAG.getConstant(CommonBit, VT)); 1951 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1952 Or, DAG.getConstant(BigValue, VT), 1953 ISD::SETEQ); 1954 1955 // Update successor info. 1956 addSuccessorWithWeight(SwitchBB, Small.BB); 1957 addSuccessorWithWeight(SwitchBB, Default); 1958 1959 // Insert the true branch. 1960 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1961 getControlRoot(), Cond, 1962 DAG.getBasicBlock(Small.BB)); 1963 1964 // Insert the false branch. 1965 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1966 DAG.getBasicBlock(Default)); 1967 1968 DAG.setRoot(BrCond); 1969 return true; 1970 } 1971 } 1972 } 1973 1974 // Rearrange the case blocks so that the last one falls through if possible. 1975 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1976 // The last case block won't fall through into 'NextBlock' if we emit the 1977 // branches in this order. See if rearranging a case value would help. 1978 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1979 if (I->BB == NextBlock) { 1980 std::swap(*I, BackCase); 1981 break; 1982 } 1983 } 1984 } 1985 1986 // Create a CaseBlock record representing a conditional branch to 1987 // the Case's target mbb if the value being switched on SV is equal 1988 // to C. 1989 MachineBasicBlock *CurBlock = CR.CaseBB; 1990 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1991 MachineBasicBlock *FallThrough; 1992 if (I != E-1) { 1993 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1994 CurMF->insert(BBI, FallThrough); 1995 1996 // Put SV in a virtual register to make it available from the new blocks. 1997 ExportFromCurrentBlock(SV); 1998 } else { 1999 // If the last case doesn't match, go to the default block. 2000 FallThrough = Default; 2001 } 2002 2003 const Value *RHS, *LHS, *MHS; 2004 ISD::CondCode CC; 2005 if (I->High == I->Low) { 2006 // This is just small small case range :) containing exactly 1 case 2007 CC = ISD::SETEQ; 2008 LHS = SV; RHS = I->High; MHS = NULL; 2009 } else { 2010 CC = ISD::SETLE; 2011 LHS = I->Low; MHS = SV; RHS = I->High; 2012 } 2013 2014 uint32_t ExtraWeight = I->ExtraWeight; 2015 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2016 /* me */ CurBlock, 2017 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 2018 2019 // If emitting the first comparison, just call visitSwitchCase to emit the 2020 // code into the current block. Otherwise, push the CaseBlock onto the 2021 // vector to be later processed by SDISel, and insert the node's MBB 2022 // before the next MBB. 2023 if (CurBlock == SwitchBB) 2024 visitSwitchCase(CB, SwitchBB); 2025 else 2026 SwitchCases.push_back(CB); 2027 2028 CurBlock = FallThrough; 2029 } 2030 2031 return true; 2032 } 2033 2034 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2035 return !TLI.getTargetMachine().Options.DisableJumpTables && 2036 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2037 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2038 } 2039 2040 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2041 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2042 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2043 return (LastExt - FirstExt + 1ULL); 2044 } 2045 2046 /// handleJTSwitchCase - Emit jumptable for current switch case range 2047 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2048 CaseRecVector &WorkList, 2049 const Value *SV, 2050 MachineBasicBlock *Default, 2051 MachineBasicBlock *SwitchBB) { 2052 Case& FrontCase = *CR.Range.first; 2053 Case& BackCase = *(CR.Range.second-1); 2054 2055 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2056 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2057 2058 APInt TSize(First.getBitWidth(), 0); 2059 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2060 TSize += I->size(); 2061 2062 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2063 return false; 2064 2065 APInt Range = ComputeRange(First, Last); 2066 // The density is TSize / Range. Require at least 40%. 2067 // It should not be possible for IntTSize to saturate for sane code, but make 2068 // sure we handle Range saturation correctly. 2069 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2070 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2071 if (IntTSize * 10 < IntRange * 4) 2072 return false; 2073 2074 DEBUG(dbgs() << "Lowering jump table\n" 2075 << "First entry: " << First << ". Last entry: " << Last << '\n' 2076 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2077 2078 // Get the MachineFunction which holds the current MBB. This is used when 2079 // inserting any additional MBBs necessary to represent the switch. 2080 MachineFunction *CurMF = FuncInfo.MF; 2081 2082 // Figure out which block is immediately after the current one. 2083 MachineFunction::iterator BBI = CR.CaseBB; 2084 ++BBI; 2085 2086 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2087 2088 // Create a new basic block to hold the code for loading the address 2089 // of the jump table, and jumping to it. Update successor information; 2090 // we will either branch to the default case for the switch, or the jump 2091 // table. 2092 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2093 CurMF->insert(BBI, JumpTableBB); 2094 2095 addSuccessorWithWeight(CR.CaseBB, Default); 2096 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2097 2098 // Build a vector of destination BBs, corresponding to each target 2099 // of the jump table. If the value of the jump table slot corresponds to 2100 // a case statement, push the case's BB onto the vector, otherwise, push 2101 // the default BB. 2102 std::vector<MachineBasicBlock*> DestBBs; 2103 APInt TEI = First; 2104 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2105 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2106 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2107 2108 if (Low.ule(TEI) && TEI.ule(High)) { 2109 DestBBs.push_back(I->BB); 2110 if (TEI==High) 2111 ++I; 2112 } else { 2113 DestBBs.push_back(Default); 2114 } 2115 } 2116 2117 // Update successor info. Add one edge to each unique successor. 2118 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2119 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2120 E = DestBBs.end(); I != E; ++I) { 2121 if (!SuccsHandled[(*I)->getNumber()]) { 2122 SuccsHandled[(*I)->getNumber()] = true; 2123 addSuccessorWithWeight(JumpTableBB, *I); 2124 } 2125 } 2126 2127 // Create a jump table index for this jump table. 2128 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2129 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2130 ->createJumpTableIndex(DestBBs); 2131 2132 // Set the jump table information so that we can codegen it as a second 2133 // MachineBasicBlock 2134 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2135 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2136 if (CR.CaseBB == SwitchBB) 2137 visitJumpTableHeader(JT, JTH, SwitchBB); 2138 2139 JTCases.push_back(JumpTableBlock(JTH, JT)); 2140 return true; 2141 } 2142 2143 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2144 /// 2 subtrees. 2145 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2146 CaseRecVector& WorkList, 2147 const Value* SV, 2148 MachineBasicBlock *Default, 2149 MachineBasicBlock *SwitchBB) { 2150 // Get the MachineFunction which holds the current MBB. This is used when 2151 // inserting any additional MBBs necessary to represent the switch. 2152 MachineFunction *CurMF = FuncInfo.MF; 2153 2154 // Figure out which block is immediately after the current one. 2155 MachineFunction::iterator BBI = CR.CaseBB; 2156 ++BBI; 2157 2158 Case& FrontCase = *CR.Range.first; 2159 Case& BackCase = *(CR.Range.second-1); 2160 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2161 2162 // Size is the number of Cases represented by this range. 2163 unsigned Size = CR.Range.second - CR.Range.first; 2164 2165 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2166 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2167 double FMetric = 0; 2168 CaseItr Pivot = CR.Range.first + Size/2; 2169 2170 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2171 // (heuristically) allow us to emit JumpTable's later. 2172 APInt TSize(First.getBitWidth(), 0); 2173 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2174 I!=E; ++I) 2175 TSize += I->size(); 2176 2177 APInt LSize = FrontCase.size(); 2178 APInt RSize = TSize-LSize; 2179 DEBUG(dbgs() << "Selecting best pivot: \n" 2180 << "First: " << First << ", Last: " << Last <<'\n' 2181 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2182 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2183 J!=E; ++I, ++J) { 2184 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2185 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2186 APInt Range = ComputeRange(LEnd, RBegin); 2187 // Old: assert((Range - 2ULL).isNonNegative() && "Invalid case distance"); 2188 // Why APInt::sge wasn't used? 2189 assert(Range.uge(APInt(Range.getBitWidth(), 2)) && "Invalid case distance"); 2190 2191 // Use volatile double here to avoid excess precision issues on some hosts, 2192 // e.g. that use 80-bit X87 registers. 2193 volatile double LDensity = 2194 (double)LSize.roundToDouble() / 2195 (LEnd - First + 1ULL).roundToDouble(); 2196 volatile double RDensity = 2197 (double)RSize.roundToDouble() / 2198 (Last - RBegin + 1ULL).roundToDouble(); 2199 double Metric = Range.logBase2()*(LDensity+RDensity); 2200 // Should always split in some non-trivial place 2201 DEBUG(dbgs() <<"=>Step\n" 2202 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2203 << "LDensity: " << LDensity 2204 << ", RDensity: " << RDensity << '\n' 2205 << "Metric: " << Metric << '\n'); 2206 if (FMetric < Metric) { 2207 Pivot = J; 2208 FMetric = Metric; 2209 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2210 } 2211 2212 LSize += J->size(); 2213 RSize -= J->size(); 2214 } 2215 if (areJTsAllowed(TLI)) { 2216 // If our case is dense we *really* should handle it earlier! 2217 assert((FMetric > 0) && "Should handle dense range earlier!"); 2218 } else { 2219 Pivot = CR.Range.first + Size/2; 2220 } 2221 2222 CaseRange LHSR(CR.Range.first, Pivot); 2223 CaseRange RHSR(Pivot, CR.Range.second); 2224 const Constant *C = Pivot->Low; 2225 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2226 2227 // We know that we branch to the LHS if the Value being switched on is 2228 // less than the Pivot value, C. We use this to optimize our binary 2229 // tree a bit, by recognizing that if SV is greater than or equal to the 2230 // LHS's Case Value, and that Case Value is exactly one less than the 2231 // Pivot's Value, then we can branch directly to the LHS's Target, 2232 // rather than creating a leaf node for it. 2233 if ((LHSR.second - LHSR.first) == 1 && 2234 LHSR.first->High == CR.GE && 2235 cast<ConstantInt>(C)->getValue() == 2236 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2237 TrueBB = LHSR.first->BB; 2238 } else { 2239 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2240 CurMF->insert(BBI, TrueBB); 2241 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2242 2243 // Put SV in a virtual register to make it available from the new blocks. 2244 ExportFromCurrentBlock(SV); 2245 } 2246 2247 // Similar to the optimization above, if the Value being switched on is 2248 // known to be less than the Constant CR.LT, and the current Case Value 2249 // is CR.LT - 1, then we can branch directly to the target block for 2250 // the current Case Value, rather than emitting a RHS leaf node for it. 2251 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2252 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2253 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2254 FalseBB = RHSR.first->BB; 2255 } else { 2256 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2257 CurMF->insert(BBI, FalseBB); 2258 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2259 2260 // Put SV in a virtual register to make it available from the new blocks. 2261 ExportFromCurrentBlock(SV); 2262 } 2263 2264 // Create a CaseBlock record representing a conditional branch to 2265 // the LHS node if the value being switched on SV is less than C. 2266 // Otherwise, branch to LHS. 2267 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2268 2269 if (CR.CaseBB == SwitchBB) 2270 visitSwitchCase(CB, SwitchBB); 2271 else 2272 SwitchCases.push_back(CB); 2273 2274 return true; 2275 } 2276 2277 /// handleBitTestsSwitchCase - if current case range has few destination and 2278 /// range span less, than machine word bitwidth, encode case range into series 2279 /// of masks and emit bit tests with these masks. 2280 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2281 CaseRecVector& WorkList, 2282 const Value* SV, 2283 MachineBasicBlock* Default, 2284 MachineBasicBlock *SwitchBB){ 2285 EVT PTy = TLI.getPointerTy(); 2286 unsigned IntPtrBits = PTy.getSizeInBits(); 2287 2288 Case& FrontCase = *CR.Range.first; 2289 Case& BackCase = *(CR.Range.second-1); 2290 2291 // Get the MachineFunction which holds the current MBB. This is used when 2292 // inserting any additional MBBs necessary to represent the switch. 2293 MachineFunction *CurMF = FuncInfo.MF; 2294 2295 // If target does not have legal shift left, do not emit bit tests at all. 2296 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2297 return false; 2298 2299 size_t numCmps = 0; 2300 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2301 I!=E; ++I) { 2302 // Single case counts one, case range - two. 2303 numCmps += (I->Low == I->High ? 1 : 2); 2304 } 2305 2306 // Count unique destinations 2307 SmallSet<MachineBasicBlock*, 4> Dests; 2308 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2309 Dests.insert(I->BB); 2310 if (Dests.size() > 3) 2311 // Don't bother the code below, if there are too much unique destinations 2312 return false; 2313 } 2314 DEBUG(dbgs() << "Total number of unique destinations: " 2315 << Dests.size() << '\n' 2316 << "Total number of comparisons: " << numCmps << '\n'); 2317 2318 // Compute span of values. 2319 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2320 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2321 APInt cmpRange = maxValue - minValue; 2322 2323 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2324 << "Low bound: " << minValue << '\n' 2325 << "High bound: " << maxValue << '\n'); 2326 2327 if (cmpRange.uge(IntPtrBits) || 2328 (!(Dests.size() == 1 && numCmps >= 3) && 2329 !(Dests.size() == 2 && numCmps >= 5) && 2330 !(Dests.size() >= 3 && numCmps >= 6))) 2331 return false; 2332 2333 DEBUG(dbgs() << "Emitting bit tests\n"); 2334 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2335 2336 // Optimize the case where all the case values fit in a 2337 // word without having to subtract minValue. In this case, 2338 // we can optimize away the subtraction. 2339 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2340 cmpRange = maxValue; 2341 } else { 2342 lowBound = minValue; 2343 } 2344 2345 CaseBitsVector CasesBits; 2346 unsigned i, count = 0; 2347 2348 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2349 MachineBasicBlock* Dest = I->BB; 2350 for (i = 0; i < count; ++i) 2351 if (Dest == CasesBits[i].BB) 2352 break; 2353 2354 if (i == count) { 2355 assert((count < 3) && "Too much destinations to test!"); 2356 CasesBits.push_back(CaseBits(0, Dest, 0)); 2357 count++; 2358 } 2359 2360 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2361 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2362 2363 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2364 uint64_t hi = (highValue - lowBound).getZExtValue(); 2365 2366 for (uint64_t j = lo; j <= hi; j++) { 2367 CasesBits[i].Mask |= 1ULL << j; 2368 CasesBits[i].Bits++; 2369 } 2370 2371 } 2372 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2373 2374 BitTestInfo BTC; 2375 2376 // Figure out which block is immediately after the current one. 2377 MachineFunction::iterator BBI = CR.CaseBB; 2378 ++BBI; 2379 2380 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2381 2382 DEBUG(dbgs() << "Cases:\n"); 2383 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2384 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2385 << ", Bits: " << CasesBits[i].Bits 2386 << ", BB: " << CasesBits[i].BB << '\n'); 2387 2388 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2389 CurMF->insert(BBI, CaseBB); 2390 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2391 CaseBB, 2392 CasesBits[i].BB)); 2393 2394 // Put SV in a virtual register to make it available from the new blocks. 2395 ExportFromCurrentBlock(SV); 2396 } 2397 2398 BitTestBlock BTB(lowBound, cmpRange, SV, 2399 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2400 CR.CaseBB, Default, BTC); 2401 2402 if (CR.CaseBB == SwitchBB) 2403 visitBitTestHeader(BTB, SwitchBB); 2404 2405 BitTestCases.push_back(BTB); 2406 2407 return true; 2408 } 2409 2410 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2411 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2412 const SwitchInst& SI) { 2413 2414 /// Use a shorter form of declaration, and also 2415 /// show the we want to use CRSBuilder as Clusterifier. 2416 typedef CRSBuilderBase<MachineBasicBlock, true> Clusterifier; 2417 2418 Clusterifier TheClusterifier; 2419 2420 // Start with "simple" cases 2421 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2422 i != e; ++i) { 2423 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2424 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2425 2426 TheClusterifier.add(i.getCaseValueEx(), SMBB); 2427 } 2428 2429 TheClusterifier.optimize(); 2430 2431 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2432 size_t numCmps = 0; 2433 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2434 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2435 Clusterifier::Cluster &C = *i; 2436 unsigned W = 0; 2437 if (BPI) { 2438 W = BPI->getEdgeWeight(SI.getParent(), C.second->getBasicBlock()); 2439 if (!W) 2440 W = 16; 2441 W *= C.first.Weight; 2442 BPI->setEdgeWeight(SI.getParent(), C.second->getBasicBlock(), W); 2443 } 2444 2445 Cases.push_back(Case(C.first.Low, C.first.High, C.second, W)); 2446 2447 if (C.first.Low != C.first.High) 2448 // A range counts double, since it requires two compares. 2449 ++numCmps; 2450 } 2451 2452 return numCmps; 2453 } 2454 2455 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2456 MachineBasicBlock *Last) { 2457 // Update JTCases. 2458 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2459 if (JTCases[i].first.HeaderBB == First) 2460 JTCases[i].first.HeaderBB = Last; 2461 2462 // Update BitTestCases. 2463 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2464 if (BitTestCases[i].Parent == First) 2465 BitTestCases[i].Parent = Last; 2466 } 2467 2468 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2469 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2470 2471 // Figure out which block is immediately after the current one. 2472 MachineBasicBlock *NextBlock = 0; 2473 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2474 2475 // If there is only the default destination, branch to it if it is not the 2476 // next basic block. Otherwise, just fall through. 2477 if (!SI.getNumCases()) { 2478 // Update machine-CFG edges. 2479 2480 // If this is not a fall-through branch, emit the branch. 2481 SwitchMBB->addSuccessor(Default); 2482 if (Default != NextBlock) 2483 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2484 MVT::Other, getControlRoot(), 2485 DAG.getBasicBlock(Default))); 2486 2487 return; 2488 } 2489 2490 // If there are any non-default case statements, create a vector of Cases 2491 // representing each one, and sort the vector so that we can efficiently 2492 // create a binary search tree from them. 2493 CaseVector Cases; 2494 size_t numCmps = Clusterify(Cases, SI); 2495 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2496 << ". Total compares: " << numCmps << '\n'); 2497 (void)numCmps; 2498 2499 // Get the Value to be switched on and default basic blocks, which will be 2500 // inserted into CaseBlock records, representing basic blocks in the binary 2501 // search tree. 2502 const Value *SV = SI.getCondition(); 2503 2504 // Push the initial CaseRec onto the worklist 2505 CaseRecVector WorkList; 2506 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2507 CaseRange(Cases.begin(),Cases.end()))); 2508 2509 while (!WorkList.empty()) { 2510 // Grab a record representing a case range to process off the worklist 2511 CaseRec CR = WorkList.back(); 2512 WorkList.pop_back(); 2513 2514 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2515 continue; 2516 2517 // If the range has few cases (two or less) emit a series of specific 2518 // tests. 2519 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2520 continue; 2521 2522 // If the switch has more than 5 blocks, and at least 40% dense, and the 2523 // target supports indirect branches, then emit a jump table rather than 2524 // lowering the switch to a binary tree of conditional branches. 2525 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2526 continue; 2527 2528 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2529 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2530 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2531 } 2532 } 2533 2534 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2535 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2536 2537 // Update machine-CFG edges with unique successors. 2538 SmallVector<BasicBlock*, 32> succs; 2539 succs.reserve(I.getNumSuccessors()); 2540 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2541 succs.push_back(I.getSuccessor(i)); 2542 array_pod_sort(succs.begin(), succs.end()); 2543 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2544 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2545 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2546 addSuccessorWithWeight(IndirectBrMBB, Succ); 2547 } 2548 2549 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2550 MVT::Other, getControlRoot(), 2551 getValue(I.getAddress()))); 2552 } 2553 2554 void SelectionDAGBuilder::visitFSub(const User &I) { 2555 // -0.0 - X --> fneg 2556 Type *Ty = I.getType(); 2557 if (isa<Constant>(I.getOperand(0)) && 2558 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2559 SDValue Op2 = getValue(I.getOperand(1)); 2560 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2561 Op2.getValueType(), Op2)); 2562 return; 2563 } 2564 2565 visitBinary(I, ISD::FSUB); 2566 } 2567 2568 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2569 SDValue Op1 = getValue(I.getOperand(0)); 2570 SDValue Op2 = getValue(I.getOperand(1)); 2571 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2572 Op1.getValueType(), Op1, Op2)); 2573 } 2574 2575 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2576 SDValue Op1 = getValue(I.getOperand(0)); 2577 SDValue Op2 = getValue(I.getOperand(1)); 2578 2579 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2580 2581 // Coerce the shift amount to the right type if we can. 2582 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2583 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2584 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2585 DebugLoc DL = getCurDebugLoc(); 2586 2587 // If the operand is smaller than the shift count type, promote it. 2588 if (ShiftSize > Op2Size) 2589 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2590 2591 // If the operand is larger than the shift count type but the shift 2592 // count type has enough bits to represent any shift value, truncate 2593 // it now. This is a common case and it exposes the truncate to 2594 // optimization early. 2595 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2596 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2597 // Otherwise we'll need to temporarily settle for some other convenient 2598 // type. Type legalization will make adjustments once the shiftee is split. 2599 else 2600 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2601 } 2602 2603 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2604 Op1.getValueType(), Op1, Op2)); 2605 } 2606 2607 void SelectionDAGBuilder::visitSDiv(const User &I) { 2608 SDValue Op1 = getValue(I.getOperand(0)); 2609 SDValue Op2 = getValue(I.getOperand(1)); 2610 2611 // Turn exact SDivs into multiplications. 2612 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2613 // exact bit. 2614 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2615 !isa<ConstantSDNode>(Op1) && 2616 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2617 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2618 else 2619 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2620 Op1, Op2)); 2621 } 2622 2623 void SelectionDAGBuilder::visitICmp(const User &I) { 2624 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2625 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2626 predicate = IC->getPredicate(); 2627 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2628 predicate = ICmpInst::Predicate(IC->getPredicate()); 2629 SDValue Op1 = getValue(I.getOperand(0)); 2630 SDValue Op2 = getValue(I.getOperand(1)); 2631 ISD::CondCode Opcode = getICmpCondCode(predicate); 2632 2633 EVT DestVT = TLI.getValueType(I.getType()); 2634 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2635 } 2636 2637 void SelectionDAGBuilder::visitFCmp(const User &I) { 2638 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2639 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2640 predicate = FC->getPredicate(); 2641 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2642 predicate = FCmpInst::Predicate(FC->getPredicate()); 2643 SDValue Op1 = getValue(I.getOperand(0)); 2644 SDValue Op2 = getValue(I.getOperand(1)); 2645 ISD::CondCode Condition = getFCmpCondCode(predicate); 2646 if (TM.Options.NoNaNsFPMath) 2647 Condition = getFCmpCodeWithoutNaN(Condition); 2648 EVT DestVT = TLI.getValueType(I.getType()); 2649 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2650 } 2651 2652 void SelectionDAGBuilder::visitSelect(const User &I) { 2653 SmallVector<EVT, 4> ValueVTs; 2654 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2655 unsigned NumValues = ValueVTs.size(); 2656 if (NumValues == 0) return; 2657 2658 SmallVector<SDValue, 4> Values(NumValues); 2659 SDValue Cond = getValue(I.getOperand(0)); 2660 SDValue TrueVal = getValue(I.getOperand(1)); 2661 SDValue FalseVal = getValue(I.getOperand(2)); 2662 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2663 ISD::VSELECT : ISD::SELECT; 2664 2665 for (unsigned i = 0; i != NumValues; ++i) 2666 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2667 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2668 Cond, 2669 SDValue(TrueVal.getNode(), 2670 TrueVal.getResNo() + i), 2671 SDValue(FalseVal.getNode(), 2672 FalseVal.getResNo() + i)); 2673 2674 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2675 DAG.getVTList(&ValueVTs[0], NumValues), 2676 &Values[0], NumValues)); 2677 } 2678 2679 void SelectionDAGBuilder::visitTrunc(const User &I) { 2680 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2681 SDValue N = getValue(I.getOperand(0)); 2682 EVT DestVT = TLI.getValueType(I.getType()); 2683 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2684 } 2685 2686 void SelectionDAGBuilder::visitZExt(const User &I) { 2687 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2688 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2689 SDValue N = getValue(I.getOperand(0)); 2690 EVT DestVT = TLI.getValueType(I.getType()); 2691 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2692 } 2693 2694 void SelectionDAGBuilder::visitSExt(const User &I) { 2695 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2696 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2697 SDValue N = getValue(I.getOperand(0)); 2698 EVT DestVT = TLI.getValueType(I.getType()); 2699 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2700 } 2701 2702 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2703 // FPTrunc is never a no-op cast, no need to check 2704 SDValue N = getValue(I.getOperand(0)); 2705 EVT DestVT = TLI.getValueType(I.getType()); 2706 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2707 DestVT, N, 2708 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2709 } 2710 2711 void SelectionDAGBuilder::visitFPExt(const User &I){ 2712 // FPExt is never a no-op cast, no need to check 2713 SDValue N = getValue(I.getOperand(0)); 2714 EVT DestVT = TLI.getValueType(I.getType()); 2715 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2716 } 2717 2718 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2719 // FPToUI is never a no-op cast, no need to check 2720 SDValue N = getValue(I.getOperand(0)); 2721 EVT DestVT = TLI.getValueType(I.getType()); 2722 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2723 } 2724 2725 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2726 // FPToSI is never a no-op cast, no need to check 2727 SDValue N = getValue(I.getOperand(0)); 2728 EVT DestVT = TLI.getValueType(I.getType()); 2729 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2730 } 2731 2732 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2733 // UIToFP is never a no-op cast, no need to check 2734 SDValue N = getValue(I.getOperand(0)); 2735 EVT DestVT = TLI.getValueType(I.getType()); 2736 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2737 } 2738 2739 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2740 // SIToFP is never a no-op cast, no need to check 2741 SDValue N = getValue(I.getOperand(0)); 2742 EVT DestVT = TLI.getValueType(I.getType()); 2743 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2744 } 2745 2746 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2747 // What to do depends on the size of the integer and the size of the pointer. 2748 // We can either truncate, zero extend, or no-op, accordingly. 2749 SDValue N = getValue(I.getOperand(0)); 2750 EVT DestVT = TLI.getValueType(I.getType()); 2751 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2752 } 2753 2754 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2755 // What to do depends on the size of the integer and the size of the pointer. 2756 // We can either truncate, zero extend, or no-op, accordingly. 2757 SDValue N = getValue(I.getOperand(0)); 2758 EVT DestVT = TLI.getValueType(I.getType()); 2759 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2760 } 2761 2762 void SelectionDAGBuilder::visitBitCast(const User &I) { 2763 SDValue N = getValue(I.getOperand(0)); 2764 EVT DestVT = TLI.getValueType(I.getType()); 2765 2766 // BitCast assures us that source and destination are the same size so this is 2767 // either a BITCAST or a no-op. 2768 if (DestVT != N.getValueType()) 2769 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2770 DestVT, N)); // convert types. 2771 else 2772 setValue(&I, N); // noop cast. 2773 } 2774 2775 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2776 SDValue InVec = getValue(I.getOperand(0)); 2777 SDValue InVal = getValue(I.getOperand(1)); 2778 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2779 TLI.getPointerTy(), 2780 getValue(I.getOperand(2))); 2781 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2782 TLI.getValueType(I.getType()), 2783 InVec, InVal, InIdx)); 2784 } 2785 2786 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2787 SDValue InVec = getValue(I.getOperand(0)); 2788 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2789 TLI.getPointerTy(), 2790 getValue(I.getOperand(1))); 2791 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2792 TLI.getValueType(I.getType()), InVec, InIdx)); 2793 } 2794 2795 // Utility for visitShuffleVector - Return true if every element in Mask, 2796 // begining from position Pos and ending in Pos+Size, falls within the 2797 // specified sequential range [L, L+Pos). or is undef. 2798 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2799 unsigned Pos, unsigned Size, int Low) { 2800 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2801 if (Mask[i] >= 0 && Mask[i] != Low) 2802 return false; 2803 return true; 2804 } 2805 2806 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2807 SDValue Src1 = getValue(I.getOperand(0)); 2808 SDValue Src2 = getValue(I.getOperand(1)); 2809 2810 SmallVector<int, 8> Mask; 2811 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2812 unsigned MaskNumElts = Mask.size(); 2813 2814 EVT VT = TLI.getValueType(I.getType()); 2815 EVT SrcVT = Src1.getValueType(); 2816 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2817 2818 if (SrcNumElts == MaskNumElts) { 2819 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2820 &Mask[0])); 2821 return; 2822 } 2823 2824 // Normalize the shuffle vector since mask and vector length don't match. 2825 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2826 // Mask is longer than the source vectors and is a multiple of the source 2827 // vectors. We can use concatenate vector to make the mask and vectors 2828 // lengths match. 2829 if (SrcNumElts*2 == MaskNumElts) { 2830 // First check for Src1 in low and Src2 in high 2831 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2832 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2833 // The shuffle is concatenating two vectors together. 2834 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2835 VT, Src1, Src2)); 2836 return; 2837 } 2838 // Then check for Src2 in low and Src1 in high 2839 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2840 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2841 // The shuffle is concatenating two vectors together. 2842 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2843 VT, Src2, Src1)); 2844 return; 2845 } 2846 } 2847 2848 // Pad both vectors with undefs to make them the same length as the mask. 2849 unsigned NumConcat = MaskNumElts / SrcNumElts; 2850 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2851 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2852 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2853 2854 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2855 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2856 MOps1[0] = Src1; 2857 MOps2[0] = Src2; 2858 2859 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2860 getCurDebugLoc(), VT, 2861 &MOps1[0], NumConcat); 2862 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2863 getCurDebugLoc(), VT, 2864 &MOps2[0], NumConcat); 2865 2866 // Readjust mask for new input vector length. 2867 SmallVector<int, 8> MappedOps; 2868 for (unsigned i = 0; i != MaskNumElts; ++i) { 2869 int Idx = Mask[i]; 2870 if (Idx >= (int)SrcNumElts) 2871 Idx -= SrcNumElts - MaskNumElts; 2872 MappedOps.push_back(Idx); 2873 } 2874 2875 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2876 &MappedOps[0])); 2877 return; 2878 } 2879 2880 if (SrcNumElts > MaskNumElts) { 2881 // Analyze the access pattern of the vector to see if we can extract 2882 // two subvectors and do the shuffle. The analysis is done by calculating 2883 // the range of elements the mask access on both vectors. 2884 int MinRange[2] = { static_cast<int>(SrcNumElts), 2885 static_cast<int>(SrcNumElts)}; 2886 int MaxRange[2] = {-1, -1}; 2887 2888 for (unsigned i = 0; i != MaskNumElts; ++i) { 2889 int Idx = Mask[i]; 2890 unsigned Input = 0; 2891 if (Idx < 0) 2892 continue; 2893 2894 if (Idx >= (int)SrcNumElts) { 2895 Input = 1; 2896 Idx -= SrcNumElts; 2897 } 2898 if (Idx > MaxRange[Input]) 2899 MaxRange[Input] = Idx; 2900 if (Idx < MinRange[Input]) 2901 MinRange[Input] = Idx; 2902 } 2903 2904 // Check if the access is smaller than the vector size and can we find 2905 // a reasonable extract index. 2906 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2907 // Extract. 2908 int StartIdx[2]; // StartIdx to extract from 2909 for (unsigned Input = 0; Input < 2; ++Input) { 2910 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2911 RangeUse[Input] = 0; // Unused 2912 StartIdx[Input] = 0; 2913 continue; 2914 } 2915 2916 // Find a good start index that is a multiple of the mask length. Then 2917 // see if the rest of the elements are in range. 2918 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2919 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2920 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2921 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2922 } 2923 2924 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2925 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2926 return; 2927 } 2928 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2929 // Extract appropriate subvector and generate a vector shuffle 2930 for (unsigned Input = 0; Input < 2; ++Input) { 2931 SDValue &Src = Input == 0 ? Src1 : Src2; 2932 if (RangeUse[Input] == 0) 2933 Src = DAG.getUNDEF(VT); 2934 else 2935 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2936 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2937 } 2938 2939 // Calculate new mask. 2940 SmallVector<int, 8> MappedOps; 2941 for (unsigned i = 0; i != MaskNumElts; ++i) { 2942 int Idx = Mask[i]; 2943 if (Idx >= 0) { 2944 if (Idx < (int)SrcNumElts) 2945 Idx -= StartIdx[0]; 2946 else 2947 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2948 } 2949 MappedOps.push_back(Idx); 2950 } 2951 2952 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2953 &MappedOps[0])); 2954 return; 2955 } 2956 } 2957 2958 // We can't use either concat vectors or extract subvectors so fall back to 2959 // replacing the shuffle with extract and build vector. 2960 // to insert and build vector. 2961 EVT EltVT = VT.getVectorElementType(); 2962 EVT PtrVT = TLI.getPointerTy(); 2963 SmallVector<SDValue,8> Ops; 2964 for (unsigned i = 0; i != MaskNumElts; ++i) { 2965 int Idx = Mask[i]; 2966 SDValue Res; 2967 2968 if (Idx < 0) { 2969 Res = DAG.getUNDEF(EltVT); 2970 } else { 2971 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2972 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2973 2974 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2975 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 2976 } 2977 2978 Ops.push_back(Res); 2979 } 2980 2981 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2982 VT, &Ops[0], Ops.size())); 2983 } 2984 2985 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2986 const Value *Op0 = I.getOperand(0); 2987 const Value *Op1 = I.getOperand(1); 2988 Type *AggTy = I.getType(); 2989 Type *ValTy = Op1->getType(); 2990 bool IntoUndef = isa<UndefValue>(Op0); 2991 bool FromUndef = isa<UndefValue>(Op1); 2992 2993 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2994 2995 SmallVector<EVT, 4> AggValueVTs; 2996 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2997 SmallVector<EVT, 4> ValValueVTs; 2998 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2999 3000 unsigned NumAggValues = AggValueVTs.size(); 3001 unsigned NumValValues = ValValueVTs.size(); 3002 SmallVector<SDValue, 4> Values(NumAggValues); 3003 3004 SDValue Agg = getValue(Op0); 3005 unsigned i = 0; 3006 // Copy the beginning value(s) from the original aggregate. 3007 for (; i != LinearIndex; ++i) 3008 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3009 SDValue(Agg.getNode(), Agg.getResNo() + i); 3010 // Copy values from the inserted value(s). 3011 if (NumValValues) { 3012 SDValue Val = getValue(Op1); 3013 for (; i != LinearIndex + NumValValues; ++i) 3014 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3015 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3016 } 3017 // Copy remaining value(s) from the original aggregate. 3018 for (; i != NumAggValues; ++i) 3019 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3020 SDValue(Agg.getNode(), Agg.getResNo() + i); 3021 3022 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3023 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3024 &Values[0], NumAggValues)); 3025 } 3026 3027 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3028 const Value *Op0 = I.getOperand(0); 3029 Type *AggTy = Op0->getType(); 3030 Type *ValTy = I.getType(); 3031 bool OutOfUndef = isa<UndefValue>(Op0); 3032 3033 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3034 3035 SmallVector<EVT, 4> ValValueVTs; 3036 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3037 3038 unsigned NumValValues = ValValueVTs.size(); 3039 3040 // Ignore a extractvalue that produces an empty object 3041 if (!NumValValues) { 3042 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3043 return; 3044 } 3045 3046 SmallVector<SDValue, 4> Values(NumValValues); 3047 3048 SDValue Agg = getValue(Op0); 3049 // Copy out the selected value(s). 3050 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3051 Values[i - LinearIndex] = 3052 OutOfUndef ? 3053 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3054 SDValue(Agg.getNode(), Agg.getResNo() + i); 3055 3056 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3057 DAG.getVTList(&ValValueVTs[0], NumValValues), 3058 &Values[0], NumValValues)); 3059 } 3060 3061 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3062 SDValue N = getValue(I.getOperand(0)); 3063 // Note that the pointer operand may be a vector of pointers. Take the scalar 3064 // element which holds a pointer. 3065 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3066 3067 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3068 OI != E; ++OI) { 3069 const Value *Idx = *OI; 3070 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3071 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3072 if (Field) { 3073 // N = N + Offset 3074 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3075 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3076 DAG.getIntPtrConstant(Offset)); 3077 } 3078 3079 Ty = StTy->getElementType(Field); 3080 } else { 3081 Ty = cast<SequentialType>(Ty)->getElementType(); 3082 3083 // If this is a constant subscript, handle it quickly. 3084 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3085 if (CI->isZero()) continue; 3086 uint64_t Offs = 3087 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3088 SDValue OffsVal; 3089 EVT PTy = TLI.getPointerTy(); 3090 unsigned PtrBits = PTy.getSizeInBits(); 3091 if (PtrBits < 64) 3092 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3093 TLI.getPointerTy(), 3094 DAG.getConstant(Offs, MVT::i64)); 3095 else 3096 OffsVal = DAG.getIntPtrConstant(Offs); 3097 3098 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3099 OffsVal); 3100 continue; 3101 } 3102 3103 // N = N + Idx * ElementSize; 3104 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3105 TD->getTypeAllocSize(Ty)); 3106 SDValue IdxN = getValue(Idx); 3107 3108 // If the index is smaller or larger than intptr_t, truncate or extend 3109 // it. 3110 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3111 3112 // If this is a multiply by a power of two, turn it into a shl 3113 // immediately. This is a very common case. 3114 if (ElementSize != 1) { 3115 if (ElementSize.isPowerOf2()) { 3116 unsigned Amt = ElementSize.logBase2(); 3117 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3118 N.getValueType(), IdxN, 3119 DAG.getConstant(Amt, IdxN.getValueType())); 3120 } else { 3121 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3122 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3123 N.getValueType(), IdxN, Scale); 3124 } 3125 } 3126 3127 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3128 N.getValueType(), N, IdxN); 3129 } 3130 } 3131 3132 setValue(&I, N); 3133 } 3134 3135 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3136 // If this is a fixed sized alloca in the entry block of the function, 3137 // allocate it statically on the stack. 3138 if (FuncInfo.StaticAllocaMap.count(&I)) 3139 return; // getValue will auto-populate this. 3140 3141 Type *Ty = I.getAllocatedType(); 3142 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3143 unsigned Align = 3144 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3145 I.getAlignment()); 3146 3147 SDValue AllocSize = getValue(I.getArraySize()); 3148 3149 EVT IntPtr = TLI.getPointerTy(); 3150 if (AllocSize.getValueType() != IntPtr) 3151 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3152 3153 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3154 AllocSize, 3155 DAG.getConstant(TySize, IntPtr)); 3156 3157 // Handle alignment. If the requested alignment is less than or equal to 3158 // the stack alignment, ignore it. If the size is greater than or equal to 3159 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3160 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3161 if (Align <= StackAlign) 3162 Align = 0; 3163 3164 // Round the size of the allocation up to the stack alignment size 3165 // by add SA-1 to the size. 3166 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3167 AllocSize.getValueType(), AllocSize, 3168 DAG.getIntPtrConstant(StackAlign-1)); 3169 3170 // Mask out the low bits for alignment purposes. 3171 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3172 AllocSize.getValueType(), AllocSize, 3173 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3174 3175 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3176 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3177 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3178 VTs, Ops, 3); 3179 setValue(&I, DSA); 3180 DAG.setRoot(DSA.getValue(1)); 3181 3182 // Inform the Frame Information that we have just allocated a variable-sized 3183 // object. 3184 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3185 } 3186 3187 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3188 if (I.isAtomic()) 3189 return visitAtomicLoad(I); 3190 3191 const Value *SV = I.getOperand(0); 3192 SDValue Ptr = getValue(SV); 3193 3194 Type *Ty = I.getType(); 3195 3196 bool isVolatile = I.isVolatile(); 3197 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3198 bool isInvariant = I.getMetadata("invariant.load") != 0; 3199 unsigned Alignment = I.getAlignment(); 3200 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3201 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3202 3203 SmallVector<EVT, 4> ValueVTs; 3204 SmallVector<uint64_t, 4> Offsets; 3205 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3206 unsigned NumValues = ValueVTs.size(); 3207 if (NumValues == 0) 3208 return; 3209 3210 SDValue Root; 3211 bool ConstantMemory = false; 3212 if (I.isVolatile() || NumValues > MaxParallelChains) 3213 // Serialize volatile loads with other side effects. 3214 Root = getRoot(); 3215 else if (AA->pointsToConstantMemory( 3216 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3217 // Do not serialize (non-volatile) loads of constant memory with anything. 3218 Root = DAG.getEntryNode(); 3219 ConstantMemory = true; 3220 } else { 3221 // Do not serialize non-volatile loads against each other. 3222 Root = DAG.getRoot(); 3223 } 3224 3225 SmallVector<SDValue, 4> Values(NumValues); 3226 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3227 NumValues)); 3228 EVT PtrVT = Ptr.getValueType(); 3229 unsigned ChainI = 0; 3230 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3231 // Serializing loads here may result in excessive register pressure, and 3232 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3233 // could recover a bit by hoisting nodes upward in the chain by recognizing 3234 // they are side-effect free or do not alias. The optimizer should really 3235 // avoid this case by converting large object/array copies to llvm.memcpy 3236 // (MaxParallelChains should always remain as failsafe). 3237 if (ChainI == MaxParallelChains) { 3238 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3239 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3240 MVT::Other, &Chains[0], ChainI); 3241 Root = Chain; 3242 ChainI = 0; 3243 } 3244 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3245 PtrVT, Ptr, 3246 DAG.getConstant(Offsets[i], PtrVT)); 3247 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3248 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3249 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3250 Ranges); 3251 3252 Values[i] = L; 3253 Chains[ChainI] = L.getValue(1); 3254 } 3255 3256 if (!ConstantMemory) { 3257 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3258 MVT::Other, &Chains[0], ChainI); 3259 if (isVolatile) 3260 DAG.setRoot(Chain); 3261 else 3262 PendingLoads.push_back(Chain); 3263 } 3264 3265 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3266 DAG.getVTList(&ValueVTs[0], NumValues), 3267 &Values[0], NumValues)); 3268 } 3269 3270 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3271 if (I.isAtomic()) 3272 return visitAtomicStore(I); 3273 3274 const Value *SrcV = I.getOperand(0); 3275 const Value *PtrV = I.getOperand(1); 3276 3277 SmallVector<EVT, 4> ValueVTs; 3278 SmallVector<uint64_t, 4> Offsets; 3279 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3280 unsigned NumValues = ValueVTs.size(); 3281 if (NumValues == 0) 3282 return; 3283 3284 // Get the lowered operands. Note that we do this after 3285 // checking if NumResults is zero, because with zero results 3286 // the operands won't have values in the map. 3287 SDValue Src = getValue(SrcV); 3288 SDValue Ptr = getValue(PtrV); 3289 3290 SDValue Root = getRoot(); 3291 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3292 NumValues)); 3293 EVT PtrVT = Ptr.getValueType(); 3294 bool isVolatile = I.isVolatile(); 3295 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3296 unsigned Alignment = I.getAlignment(); 3297 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3298 3299 unsigned ChainI = 0; 3300 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3301 // See visitLoad comments. 3302 if (ChainI == MaxParallelChains) { 3303 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3304 MVT::Other, &Chains[0], ChainI); 3305 Root = Chain; 3306 ChainI = 0; 3307 } 3308 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3309 DAG.getConstant(Offsets[i], PtrVT)); 3310 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3311 SDValue(Src.getNode(), Src.getResNo() + i), 3312 Add, MachinePointerInfo(PtrV, Offsets[i]), 3313 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3314 Chains[ChainI] = St; 3315 } 3316 3317 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3318 MVT::Other, &Chains[0], ChainI); 3319 ++SDNodeOrder; 3320 AssignOrderingToNode(StoreNode.getNode()); 3321 DAG.setRoot(StoreNode); 3322 } 3323 3324 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3325 SynchronizationScope Scope, 3326 bool Before, DebugLoc dl, 3327 SelectionDAG &DAG, 3328 const TargetLowering &TLI) { 3329 // Fence, if necessary 3330 if (Before) { 3331 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3332 Order = Release; 3333 else if (Order == Acquire || Order == Monotonic) 3334 return Chain; 3335 } else { 3336 if (Order == AcquireRelease) 3337 Order = Acquire; 3338 else if (Order == Release || Order == Monotonic) 3339 return Chain; 3340 } 3341 SDValue Ops[3]; 3342 Ops[0] = Chain; 3343 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3344 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3345 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3346 } 3347 3348 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3349 DebugLoc dl = getCurDebugLoc(); 3350 AtomicOrdering Order = I.getOrdering(); 3351 SynchronizationScope Scope = I.getSynchScope(); 3352 3353 SDValue InChain = getRoot(); 3354 3355 if (TLI.getInsertFencesForAtomic()) 3356 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3357 DAG, TLI); 3358 3359 SDValue L = 3360 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3361 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3362 InChain, 3363 getValue(I.getPointerOperand()), 3364 getValue(I.getCompareOperand()), 3365 getValue(I.getNewValOperand()), 3366 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3367 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3368 Scope); 3369 3370 SDValue OutChain = L.getValue(1); 3371 3372 if (TLI.getInsertFencesForAtomic()) 3373 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3374 DAG, TLI); 3375 3376 setValue(&I, L); 3377 DAG.setRoot(OutChain); 3378 } 3379 3380 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3381 DebugLoc dl = getCurDebugLoc(); 3382 ISD::NodeType NT; 3383 switch (I.getOperation()) { 3384 default: llvm_unreachable("Unknown atomicrmw operation"); 3385 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3386 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3387 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3388 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3389 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3390 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3391 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3392 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3393 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3394 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3395 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3396 } 3397 AtomicOrdering Order = I.getOrdering(); 3398 SynchronizationScope Scope = I.getSynchScope(); 3399 3400 SDValue InChain = getRoot(); 3401 3402 if (TLI.getInsertFencesForAtomic()) 3403 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3404 DAG, TLI); 3405 3406 SDValue L = 3407 DAG.getAtomic(NT, dl, 3408 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3409 InChain, 3410 getValue(I.getPointerOperand()), 3411 getValue(I.getValOperand()), 3412 I.getPointerOperand(), 0 /* Alignment */, 3413 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3414 Scope); 3415 3416 SDValue OutChain = L.getValue(1); 3417 3418 if (TLI.getInsertFencesForAtomic()) 3419 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3420 DAG, TLI); 3421 3422 setValue(&I, L); 3423 DAG.setRoot(OutChain); 3424 } 3425 3426 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3427 DebugLoc dl = getCurDebugLoc(); 3428 SDValue Ops[3]; 3429 Ops[0] = getRoot(); 3430 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3431 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3432 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3433 } 3434 3435 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3436 DebugLoc dl = getCurDebugLoc(); 3437 AtomicOrdering Order = I.getOrdering(); 3438 SynchronizationScope Scope = I.getSynchScope(); 3439 3440 SDValue InChain = getRoot(); 3441 3442 EVT VT = EVT::getEVT(I.getType()); 3443 3444 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3445 report_fatal_error("Cannot generate unaligned atomic load"); 3446 3447 SDValue L = 3448 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3449 getValue(I.getPointerOperand()), 3450 I.getPointerOperand(), I.getAlignment(), 3451 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3452 Scope); 3453 3454 SDValue OutChain = L.getValue(1); 3455 3456 if (TLI.getInsertFencesForAtomic()) 3457 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3458 DAG, TLI); 3459 3460 setValue(&I, L); 3461 DAG.setRoot(OutChain); 3462 } 3463 3464 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3465 DebugLoc dl = getCurDebugLoc(); 3466 3467 AtomicOrdering Order = I.getOrdering(); 3468 SynchronizationScope Scope = I.getSynchScope(); 3469 3470 SDValue InChain = getRoot(); 3471 3472 EVT VT = EVT::getEVT(I.getValueOperand()->getType()); 3473 3474 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3475 report_fatal_error("Cannot generate unaligned atomic store"); 3476 3477 if (TLI.getInsertFencesForAtomic()) 3478 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3479 DAG, TLI); 3480 3481 SDValue OutChain = 3482 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3483 InChain, 3484 getValue(I.getPointerOperand()), 3485 getValue(I.getValueOperand()), 3486 I.getPointerOperand(), I.getAlignment(), 3487 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3488 Scope); 3489 3490 if (TLI.getInsertFencesForAtomic()) 3491 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3492 DAG, TLI); 3493 3494 DAG.setRoot(OutChain); 3495 } 3496 3497 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3498 /// node. 3499 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3500 unsigned Intrinsic) { 3501 bool HasChain = !I.doesNotAccessMemory(); 3502 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3503 3504 // Build the operand list. 3505 SmallVector<SDValue, 8> Ops; 3506 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3507 if (OnlyLoad) { 3508 // We don't need to serialize loads against other loads. 3509 Ops.push_back(DAG.getRoot()); 3510 } else { 3511 Ops.push_back(getRoot()); 3512 } 3513 } 3514 3515 // Info is set by getTgtMemInstrinsic 3516 TargetLowering::IntrinsicInfo Info; 3517 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3518 3519 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3520 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3521 Info.opc == ISD::INTRINSIC_W_CHAIN) 3522 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3523 3524 // Add all operands of the call to the operand list. 3525 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3526 SDValue Op = getValue(I.getArgOperand(i)); 3527 Ops.push_back(Op); 3528 } 3529 3530 SmallVector<EVT, 4> ValueVTs; 3531 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3532 3533 if (HasChain) 3534 ValueVTs.push_back(MVT::Other); 3535 3536 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3537 3538 // Create the node. 3539 SDValue Result; 3540 if (IsTgtIntrinsic) { 3541 // This is target intrinsic that touches memory 3542 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3543 VTs, &Ops[0], Ops.size(), 3544 Info.memVT, 3545 MachinePointerInfo(Info.ptrVal, Info.offset), 3546 Info.align, Info.vol, 3547 Info.readMem, Info.writeMem); 3548 } else if (!HasChain) { 3549 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3550 VTs, &Ops[0], Ops.size()); 3551 } else if (!I.getType()->isVoidTy()) { 3552 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3553 VTs, &Ops[0], Ops.size()); 3554 } else { 3555 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3556 VTs, &Ops[0], Ops.size()); 3557 } 3558 3559 if (HasChain) { 3560 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3561 if (OnlyLoad) 3562 PendingLoads.push_back(Chain); 3563 else 3564 DAG.setRoot(Chain); 3565 } 3566 3567 if (!I.getType()->isVoidTy()) { 3568 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3569 EVT VT = TLI.getValueType(PTy); 3570 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3571 } 3572 3573 setValue(&I, Result); 3574 } else { 3575 // Assign order to result here. If the intrinsic does not produce a result, 3576 // it won't be mapped to a SDNode and visit() will not assign it an order 3577 // number. 3578 ++SDNodeOrder; 3579 AssignOrderingToNode(Result.getNode()); 3580 } 3581 } 3582 3583 /// GetSignificand - Get the significand and build it into a floating-point 3584 /// number with exponent of 1: 3585 /// 3586 /// Op = (Op & 0x007fffff) | 0x3f800000; 3587 /// 3588 /// where Op is the hexidecimal representation of floating point value. 3589 static SDValue 3590 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3591 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3592 DAG.getConstant(0x007fffff, MVT::i32)); 3593 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3594 DAG.getConstant(0x3f800000, MVT::i32)); 3595 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3596 } 3597 3598 /// GetExponent - Get the exponent: 3599 /// 3600 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3601 /// 3602 /// where Op is the hexidecimal representation of floating point value. 3603 static SDValue 3604 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3605 DebugLoc dl) { 3606 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3607 DAG.getConstant(0x7f800000, MVT::i32)); 3608 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3609 DAG.getConstant(23, TLI.getPointerTy())); 3610 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3611 DAG.getConstant(127, MVT::i32)); 3612 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3613 } 3614 3615 /// getF32Constant - Get 32-bit floating point constant. 3616 static SDValue 3617 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3618 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3619 } 3620 3621 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3622 /// limited-precision mode. 3623 void 3624 SelectionDAGBuilder::visitExp(const CallInst &I) { 3625 SDValue result; 3626 DebugLoc dl = getCurDebugLoc(); 3627 3628 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3629 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3630 SDValue Op = getValue(I.getArgOperand(0)); 3631 3632 // Put the exponent in the right bit position for later addition to the 3633 // final result: 3634 // 3635 // #define LOG2OFe 1.4426950f 3636 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3637 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3638 getF32Constant(DAG, 0x3fb8aa3b)); 3639 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3640 3641 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3642 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3643 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3644 3645 // IntegerPartOfX <<= 23; 3646 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3647 DAG.getConstant(23, TLI.getPointerTy())); 3648 3649 if (LimitFloatPrecision <= 6) { 3650 // For floating-point precision of 6: 3651 // 3652 // TwoToFractionalPartOfX = 3653 // 0.997535578f + 3654 // (0.735607626f + 0.252464424f * x) * x; 3655 // 3656 // error 0.0144103317, which is 6 bits 3657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3658 getF32Constant(DAG, 0x3e814304)); 3659 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3660 getF32Constant(DAG, 0x3f3c50c8)); 3661 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3662 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3663 getF32Constant(DAG, 0x3f7f5e7e)); 3664 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3665 3666 // Add the exponent into the result in integer domain. 3667 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3668 TwoToFracPartOfX, IntegerPartOfX); 3669 3670 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3671 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3672 // For floating-point precision of 12: 3673 // 3674 // TwoToFractionalPartOfX = 3675 // 0.999892986f + 3676 // (0.696457318f + 3677 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3678 // 3679 // 0.000107046256 error, which is 13 to 14 bits 3680 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3681 getF32Constant(DAG, 0x3da235e3)); 3682 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3683 getF32Constant(DAG, 0x3e65b8f3)); 3684 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3685 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3686 getF32Constant(DAG, 0x3f324b07)); 3687 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3688 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3689 getF32Constant(DAG, 0x3f7ff8fd)); 3690 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3691 3692 // Add the exponent into the result in integer domain. 3693 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3694 TwoToFracPartOfX, IntegerPartOfX); 3695 3696 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3697 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3698 // For floating-point precision of 18: 3699 // 3700 // TwoToFractionalPartOfX = 3701 // 0.999999982f + 3702 // (0.693148872f + 3703 // (0.240227044f + 3704 // (0.554906021e-1f + 3705 // (0.961591928e-2f + 3706 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3707 // 3708 // error 2.47208000*10^(-7), which is better than 18 bits 3709 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3710 getF32Constant(DAG, 0x3924b03e)); 3711 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3712 getF32Constant(DAG, 0x3ab24b87)); 3713 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3714 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3715 getF32Constant(DAG, 0x3c1d8c17)); 3716 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3717 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3718 getF32Constant(DAG, 0x3d634a1d)); 3719 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3720 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3721 getF32Constant(DAG, 0x3e75fe14)); 3722 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3723 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3724 getF32Constant(DAG, 0x3f317234)); 3725 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3726 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3727 getF32Constant(DAG, 0x3f800000)); 3728 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3729 MVT::i32, t13); 3730 3731 // Add the exponent into the result in integer domain. 3732 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3733 TwoToFracPartOfX, IntegerPartOfX); 3734 3735 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3736 } 3737 } else { 3738 // No special expansion. 3739 result = DAG.getNode(ISD::FEXP, dl, 3740 getValue(I.getArgOperand(0)).getValueType(), 3741 getValue(I.getArgOperand(0))); 3742 } 3743 3744 setValue(&I, result); 3745 } 3746 3747 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3748 /// limited-precision mode. 3749 void 3750 SelectionDAGBuilder::visitLog(const CallInst &I) { 3751 SDValue result; 3752 DebugLoc dl = getCurDebugLoc(); 3753 3754 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3755 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3756 SDValue Op = getValue(I.getArgOperand(0)); 3757 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3758 3759 // Scale the exponent by log(2) [0.69314718f]. 3760 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3761 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3762 getF32Constant(DAG, 0x3f317218)); 3763 3764 // Get the significand and build it into a floating-point number with 3765 // exponent of 1. 3766 SDValue X = GetSignificand(DAG, Op1, dl); 3767 3768 if (LimitFloatPrecision <= 6) { 3769 // For floating-point precision of 6: 3770 // 3771 // LogofMantissa = 3772 // -1.1609546f + 3773 // (1.4034025f - 0.23903021f * x) * x; 3774 // 3775 // error 0.0034276066, which is better than 8 bits 3776 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3777 getF32Constant(DAG, 0xbe74c456)); 3778 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3779 getF32Constant(DAG, 0x3fb3a2b1)); 3780 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3781 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3782 getF32Constant(DAG, 0x3f949a29)); 3783 3784 result = DAG.getNode(ISD::FADD, dl, 3785 MVT::f32, LogOfExponent, LogOfMantissa); 3786 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3787 // For floating-point precision of 12: 3788 // 3789 // LogOfMantissa = 3790 // -1.7417939f + 3791 // (2.8212026f + 3792 // (-1.4699568f + 3793 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3794 // 3795 // error 0.000061011436, which is 14 bits 3796 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3797 getF32Constant(DAG, 0xbd67b6d6)); 3798 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3799 getF32Constant(DAG, 0x3ee4f4b8)); 3800 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3801 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3802 getF32Constant(DAG, 0x3fbc278b)); 3803 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3804 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3805 getF32Constant(DAG, 0x40348e95)); 3806 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3807 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3808 getF32Constant(DAG, 0x3fdef31a)); 3809 3810 result = DAG.getNode(ISD::FADD, dl, 3811 MVT::f32, LogOfExponent, LogOfMantissa); 3812 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3813 // For floating-point precision of 18: 3814 // 3815 // LogOfMantissa = 3816 // -2.1072184f + 3817 // (4.2372794f + 3818 // (-3.7029485f + 3819 // (2.2781945f + 3820 // (-0.87823314f + 3821 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3822 // 3823 // error 0.0000023660568, which is better than 18 bits 3824 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3825 getF32Constant(DAG, 0xbc91e5ac)); 3826 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3827 getF32Constant(DAG, 0x3e4350aa)); 3828 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3829 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3830 getF32Constant(DAG, 0x3f60d3e3)); 3831 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3832 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3833 getF32Constant(DAG, 0x4011cdf0)); 3834 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3835 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3836 getF32Constant(DAG, 0x406cfd1c)); 3837 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3838 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3839 getF32Constant(DAG, 0x408797cb)); 3840 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3841 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3842 getF32Constant(DAG, 0x4006dcab)); 3843 3844 result = DAG.getNode(ISD::FADD, dl, 3845 MVT::f32, LogOfExponent, LogOfMantissa); 3846 } 3847 } else { 3848 // No special expansion. 3849 result = DAG.getNode(ISD::FLOG, dl, 3850 getValue(I.getArgOperand(0)).getValueType(), 3851 getValue(I.getArgOperand(0))); 3852 } 3853 3854 setValue(&I, result); 3855 } 3856 3857 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3858 /// limited-precision mode. 3859 void 3860 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3861 SDValue result; 3862 DebugLoc dl = getCurDebugLoc(); 3863 3864 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3865 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3866 SDValue Op = getValue(I.getArgOperand(0)); 3867 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3868 3869 // Get the exponent. 3870 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3871 3872 // Get the significand and build it into a floating-point number with 3873 // exponent of 1. 3874 SDValue X = GetSignificand(DAG, Op1, dl); 3875 3876 // Different possible minimax approximations of significand in 3877 // floating-point for various degrees of accuracy over [1,2]. 3878 if (LimitFloatPrecision <= 6) { 3879 // For floating-point precision of 6: 3880 // 3881 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3882 // 3883 // error 0.0049451742, which is more than 7 bits 3884 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3885 getF32Constant(DAG, 0xbeb08fe0)); 3886 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3887 getF32Constant(DAG, 0x40019463)); 3888 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3889 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3890 getF32Constant(DAG, 0x3fd6633d)); 3891 3892 result = DAG.getNode(ISD::FADD, dl, 3893 MVT::f32, LogOfExponent, Log2ofMantissa); 3894 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3895 // For floating-point precision of 12: 3896 // 3897 // Log2ofMantissa = 3898 // -2.51285454f + 3899 // (4.07009056f + 3900 // (-2.12067489f + 3901 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3902 // 3903 // error 0.0000876136000, which is better than 13 bits 3904 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3905 getF32Constant(DAG, 0xbda7262e)); 3906 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3907 getF32Constant(DAG, 0x3f25280b)); 3908 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3909 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3910 getF32Constant(DAG, 0x4007b923)); 3911 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3912 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3913 getF32Constant(DAG, 0x40823e2f)); 3914 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3915 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3916 getF32Constant(DAG, 0x4020d29c)); 3917 3918 result = DAG.getNode(ISD::FADD, dl, 3919 MVT::f32, LogOfExponent, Log2ofMantissa); 3920 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3921 // For floating-point precision of 18: 3922 // 3923 // Log2ofMantissa = 3924 // -3.0400495f + 3925 // (6.1129976f + 3926 // (-5.3420409f + 3927 // (3.2865683f + 3928 // (-1.2669343f + 3929 // (0.27515199f - 3930 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3931 // 3932 // error 0.0000018516, which is better than 18 bits 3933 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3934 getF32Constant(DAG, 0xbcd2769e)); 3935 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3936 getF32Constant(DAG, 0x3e8ce0b9)); 3937 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3938 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3939 getF32Constant(DAG, 0x3fa22ae7)); 3940 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3941 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3942 getF32Constant(DAG, 0x40525723)); 3943 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3944 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3945 getF32Constant(DAG, 0x40aaf200)); 3946 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3947 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3948 getF32Constant(DAG, 0x40c39dad)); 3949 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3950 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3951 getF32Constant(DAG, 0x4042902c)); 3952 3953 result = DAG.getNode(ISD::FADD, dl, 3954 MVT::f32, LogOfExponent, Log2ofMantissa); 3955 } 3956 } else { 3957 // No special expansion. 3958 result = DAG.getNode(ISD::FLOG2, dl, 3959 getValue(I.getArgOperand(0)).getValueType(), 3960 getValue(I.getArgOperand(0))); 3961 } 3962 3963 setValue(&I, result); 3964 } 3965 3966 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3967 /// limited-precision mode. 3968 void 3969 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3970 SDValue result; 3971 DebugLoc dl = getCurDebugLoc(); 3972 3973 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3974 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3975 SDValue Op = getValue(I.getArgOperand(0)); 3976 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3977 3978 // Scale the exponent by log10(2) [0.30102999f]. 3979 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3980 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3981 getF32Constant(DAG, 0x3e9a209a)); 3982 3983 // Get the significand and build it into a floating-point number with 3984 // exponent of 1. 3985 SDValue X = GetSignificand(DAG, Op1, dl); 3986 3987 if (LimitFloatPrecision <= 6) { 3988 // For floating-point precision of 6: 3989 // 3990 // Log10ofMantissa = 3991 // -0.50419619f + 3992 // (0.60948995f - 0.10380950f * x) * x; 3993 // 3994 // error 0.0014886165, which is 6 bits 3995 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3996 getF32Constant(DAG, 0xbdd49a13)); 3997 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3998 getF32Constant(DAG, 0x3f1c0789)); 3999 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4000 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4001 getF32Constant(DAG, 0x3f011300)); 4002 4003 result = DAG.getNode(ISD::FADD, dl, 4004 MVT::f32, LogOfExponent, Log10ofMantissa); 4005 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4006 // For floating-point precision of 12: 4007 // 4008 // Log10ofMantissa = 4009 // -0.64831180f + 4010 // (0.91751397f + 4011 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4012 // 4013 // error 0.00019228036, which is better than 12 bits 4014 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4015 getF32Constant(DAG, 0x3d431f31)); 4016 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4017 getF32Constant(DAG, 0x3ea21fb2)); 4018 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4019 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4020 getF32Constant(DAG, 0x3f6ae232)); 4021 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4022 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4023 getF32Constant(DAG, 0x3f25f7c3)); 4024 4025 result = DAG.getNode(ISD::FADD, dl, 4026 MVT::f32, LogOfExponent, Log10ofMantissa); 4027 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4028 // For floating-point precision of 18: 4029 // 4030 // Log10ofMantissa = 4031 // -0.84299375f + 4032 // (1.5327582f + 4033 // (-1.0688956f + 4034 // (0.49102474f + 4035 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4036 // 4037 // error 0.0000037995730, which is better than 18 bits 4038 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4039 getF32Constant(DAG, 0x3c5d51ce)); 4040 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4041 getF32Constant(DAG, 0x3e00685a)); 4042 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4043 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4044 getF32Constant(DAG, 0x3efb6798)); 4045 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4046 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4047 getF32Constant(DAG, 0x3f88d192)); 4048 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4049 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4050 getF32Constant(DAG, 0x3fc4316c)); 4051 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4052 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4053 getF32Constant(DAG, 0x3f57ce70)); 4054 4055 result = DAG.getNode(ISD::FADD, dl, 4056 MVT::f32, LogOfExponent, Log10ofMantissa); 4057 } 4058 } else { 4059 // No special expansion. 4060 result = DAG.getNode(ISD::FLOG10, dl, 4061 getValue(I.getArgOperand(0)).getValueType(), 4062 getValue(I.getArgOperand(0))); 4063 } 4064 4065 setValue(&I, result); 4066 } 4067 4068 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4069 /// limited-precision mode. 4070 void 4071 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4072 SDValue result; 4073 DebugLoc dl = getCurDebugLoc(); 4074 4075 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4076 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4077 SDValue Op = getValue(I.getArgOperand(0)); 4078 4079 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4080 4081 // FractionalPartOfX = x - (float)IntegerPartOfX; 4082 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4083 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4084 4085 // IntegerPartOfX <<= 23; 4086 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4087 DAG.getConstant(23, TLI.getPointerTy())); 4088 4089 if (LimitFloatPrecision <= 6) { 4090 // For floating-point precision of 6: 4091 // 4092 // TwoToFractionalPartOfX = 4093 // 0.997535578f + 4094 // (0.735607626f + 0.252464424f * x) * x; 4095 // 4096 // error 0.0144103317, which is 6 bits 4097 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4098 getF32Constant(DAG, 0x3e814304)); 4099 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4100 getF32Constant(DAG, 0x3f3c50c8)); 4101 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4102 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4103 getF32Constant(DAG, 0x3f7f5e7e)); 4104 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4105 SDValue TwoToFractionalPartOfX = 4106 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4107 4108 result = DAG.getNode(ISD::BITCAST, dl, 4109 MVT::f32, TwoToFractionalPartOfX); 4110 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4111 // For floating-point precision of 12: 4112 // 4113 // TwoToFractionalPartOfX = 4114 // 0.999892986f + 4115 // (0.696457318f + 4116 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4117 // 4118 // error 0.000107046256, which is 13 to 14 bits 4119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4120 getF32Constant(DAG, 0x3da235e3)); 4121 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4122 getF32Constant(DAG, 0x3e65b8f3)); 4123 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4124 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4125 getF32Constant(DAG, 0x3f324b07)); 4126 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4127 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4128 getF32Constant(DAG, 0x3f7ff8fd)); 4129 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4130 SDValue TwoToFractionalPartOfX = 4131 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4132 4133 result = DAG.getNode(ISD::BITCAST, dl, 4134 MVT::f32, TwoToFractionalPartOfX); 4135 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4136 // For floating-point precision of 18: 4137 // 4138 // TwoToFractionalPartOfX = 4139 // 0.999999982f + 4140 // (0.693148872f + 4141 // (0.240227044f + 4142 // (0.554906021e-1f + 4143 // (0.961591928e-2f + 4144 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4145 // error 2.47208000*10^(-7), which is better than 18 bits 4146 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4147 getF32Constant(DAG, 0x3924b03e)); 4148 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4149 getF32Constant(DAG, 0x3ab24b87)); 4150 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4151 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4152 getF32Constant(DAG, 0x3c1d8c17)); 4153 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4154 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4155 getF32Constant(DAG, 0x3d634a1d)); 4156 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4157 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4158 getF32Constant(DAG, 0x3e75fe14)); 4159 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4160 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4161 getF32Constant(DAG, 0x3f317234)); 4162 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4163 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4164 getF32Constant(DAG, 0x3f800000)); 4165 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4166 SDValue TwoToFractionalPartOfX = 4167 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4168 4169 result = DAG.getNode(ISD::BITCAST, dl, 4170 MVT::f32, TwoToFractionalPartOfX); 4171 } 4172 } else { 4173 // No special expansion. 4174 result = DAG.getNode(ISD::FEXP2, dl, 4175 getValue(I.getArgOperand(0)).getValueType(), 4176 getValue(I.getArgOperand(0))); 4177 } 4178 4179 setValue(&I, result); 4180 } 4181 4182 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4183 /// limited-precision mode with x == 10.0f. 4184 void 4185 SelectionDAGBuilder::visitPow(const CallInst &I) { 4186 SDValue result; 4187 const Value *Val = I.getArgOperand(0); 4188 DebugLoc dl = getCurDebugLoc(); 4189 bool IsExp10 = false; 4190 4191 if (getValue(Val).getValueType() == MVT::f32 && 4192 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4193 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4194 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4195 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4196 APFloat Ten(10.0f); 4197 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4198 } 4199 } 4200 } 4201 4202 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4203 SDValue Op = getValue(I.getArgOperand(1)); 4204 4205 // Put the exponent in the right bit position for later addition to the 4206 // final result: 4207 // 4208 // #define LOG2OF10 3.3219281f 4209 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4210 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4211 getF32Constant(DAG, 0x40549a78)); 4212 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4213 4214 // FractionalPartOfX = x - (float)IntegerPartOfX; 4215 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4216 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4217 4218 // IntegerPartOfX <<= 23; 4219 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4220 DAG.getConstant(23, TLI.getPointerTy())); 4221 4222 if (LimitFloatPrecision <= 6) { 4223 // For floating-point precision of 6: 4224 // 4225 // twoToFractionalPartOfX = 4226 // 0.997535578f + 4227 // (0.735607626f + 0.252464424f * x) * x; 4228 // 4229 // error 0.0144103317, which is 6 bits 4230 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4231 getF32Constant(DAG, 0x3e814304)); 4232 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4233 getF32Constant(DAG, 0x3f3c50c8)); 4234 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4235 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4236 getF32Constant(DAG, 0x3f7f5e7e)); 4237 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4238 SDValue TwoToFractionalPartOfX = 4239 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4240 4241 result = DAG.getNode(ISD::BITCAST, dl, 4242 MVT::f32, TwoToFractionalPartOfX); 4243 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4244 // For floating-point precision of 12: 4245 // 4246 // TwoToFractionalPartOfX = 4247 // 0.999892986f + 4248 // (0.696457318f + 4249 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4250 // 4251 // error 0.000107046256, which is 13 to 14 bits 4252 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4253 getF32Constant(DAG, 0x3da235e3)); 4254 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4255 getF32Constant(DAG, 0x3e65b8f3)); 4256 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4257 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4258 getF32Constant(DAG, 0x3f324b07)); 4259 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4260 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4261 getF32Constant(DAG, 0x3f7ff8fd)); 4262 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4263 SDValue TwoToFractionalPartOfX = 4264 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4265 4266 result = DAG.getNode(ISD::BITCAST, dl, 4267 MVT::f32, TwoToFractionalPartOfX); 4268 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4269 // For floating-point precision of 18: 4270 // 4271 // TwoToFractionalPartOfX = 4272 // 0.999999982f + 4273 // (0.693148872f + 4274 // (0.240227044f + 4275 // (0.554906021e-1f + 4276 // (0.961591928e-2f + 4277 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4278 // error 2.47208000*10^(-7), which is better than 18 bits 4279 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4280 getF32Constant(DAG, 0x3924b03e)); 4281 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4282 getF32Constant(DAG, 0x3ab24b87)); 4283 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4284 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4285 getF32Constant(DAG, 0x3c1d8c17)); 4286 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4287 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4288 getF32Constant(DAG, 0x3d634a1d)); 4289 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4290 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4291 getF32Constant(DAG, 0x3e75fe14)); 4292 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4293 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4294 getF32Constant(DAG, 0x3f317234)); 4295 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4296 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4297 getF32Constant(DAG, 0x3f800000)); 4298 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4299 SDValue TwoToFractionalPartOfX = 4300 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4301 4302 result = DAG.getNode(ISD::BITCAST, dl, 4303 MVT::f32, TwoToFractionalPartOfX); 4304 } 4305 } else { 4306 // No special expansion. 4307 result = DAG.getNode(ISD::FPOW, dl, 4308 getValue(I.getArgOperand(0)).getValueType(), 4309 getValue(I.getArgOperand(0)), 4310 getValue(I.getArgOperand(1))); 4311 } 4312 4313 setValue(&I, result); 4314 } 4315 4316 4317 /// ExpandPowI - Expand a llvm.powi intrinsic. 4318 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4319 SelectionDAG &DAG) { 4320 // If RHS is a constant, we can expand this out to a multiplication tree, 4321 // otherwise we end up lowering to a call to __powidf2 (for example). When 4322 // optimizing for size, we only want to do this if the expansion would produce 4323 // a small number of multiplies, otherwise we do the full expansion. 4324 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4325 // Get the exponent as a positive value. 4326 unsigned Val = RHSC->getSExtValue(); 4327 if ((int)Val < 0) Val = -Val; 4328 4329 // powi(x, 0) -> 1.0 4330 if (Val == 0) 4331 return DAG.getConstantFP(1.0, LHS.getValueType()); 4332 4333 const Function *F = DAG.getMachineFunction().getFunction(); 4334 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4335 // If optimizing for size, don't insert too many multiplies. This 4336 // inserts up to 5 multiplies. 4337 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4338 // We use the simple binary decomposition method to generate the multiply 4339 // sequence. There are more optimal ways to do this (for example, 4340 // powi(x,15) generates one more multiply than it should), but this has 4341 // the benefit of being both really simple and much better than a libcall. 4342 SDValue Res; // Logically starts equal to 1.0 4343 SDValue CurSquare = LHS; 4344 while (Val) { 4345 if (Val & 1) { 4346 if (Res.getNode()) 4347 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4348 else 4349 Res = CurSquare; // 1.0*CurSquare. 4350 } 4351 4352 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4353 CurSquare, CurSquare); 4354 Val >>= 1; 4355 } 4356 4357 // If the original was negative, invert the result, producing 1/(x*x*x). 4358 if (RHSC->getSExtValue() < 0) 4359 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4360 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4361 return Res; 4362 } 4363 } 4364 4365 // Otherwise, expand to a libcall. 4366 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4367 } 4368 4369 // getTruncatedArgReg - Find underlying register used for an truncated 4370 // argument. 4371 static unsigned getTruncatedArgReg(const SDValue &N) { 4372 if (N.getOpcode() != ISD::TRUNCATE) 4373 return 0; 4374 4375 const SDValue &Ext = N.getOperand(0); 4376 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4377 const SDValue &CFR = Ext.getOperand(0); 4378 if (CFR.getOpcode() == ISD::CopyFromReg) 4379 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4380 if (CFR.getOpcode() == ISD::TRUNCATE) 4381 return getTruncatedArgReg(CFR); 4382 } 4383 return 0; 4384 } 4385 4386 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4387 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4388 /// At the end of instruction selection, they will be inserted to the entry BB. 4389 bool 4390 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4391 int64_t Offset, 4392 const SDValue &N) { 4393 const Argument *Arg = dyn_cast<Argument>(V); 4394 if (!Arg) 4395 return false; 4396 4397 MachineFunction &MF = DAG.getMachineFunction(); 4398 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4399 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4400 4401 // Ignore inlined function arguments here. 4402 DIVariable DV(Variable); 4403 if (DV.isInlinedFnArgument(MF.getFunction())) 4404 return false; 4405 4406 unsigned Reg = 0; 4407 // Some arguments' frame index is recorded during argument lowering. 4408 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4409 if (Offset) 4410 Reg = TRI->getFrameRegister(MF); 4411 4412 if (!Reg && N.getNode()) { 4413 if (N.getOpcode() == ISD::CopyFromReg) 4414 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4415 else 4416 Reg = getTruncatedArgReg(N); 4417 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4418 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4419 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4420 if (PR) 4421 Reg = PR; 4422 } 4423 } 4424 4425 if (!Reg) { 4426 // Check if ValueMap has reg number. 4427 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4428 if (VMI != FuncInfo.ValueMap.end()) 4429 Reg = VMI->second; 4430 } 4431 4432 if (!Reg && N.getNode()) { 4433 // Check if frame index is available. 4434 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4435 if (FrameIndexSDNode *FINode = 4436 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4437 Reg = TRI->getFrameRegister(MF); 4438 Offset = FINode->getIndex(); 4439 } 4440 } 4441 4442 if (!Reg) 4443 return false; 4444 4445 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4446 TII->get(TargetOpcode::DBG_VALUE)) 4447 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4448 FuncInfo.ArgDbgValues.push_back(&*MIB); 4449 return true; 4450 } 4451 4452 // VisualStudio defines setjmp as _setjmp 4453 #if defined(_MSC_VER) && defined(setjmp) && \ 4454 !defined(setjmp_undefined_for_msvc) 4455 # pragma push_macro("setjmp") 4456 # undef setjmp 4457 # define setjmp_undefined_for_msvc 4458 #endif 4459 4460 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4461 /// we want to emit this as a call to a named external function, return the name 4462 /// otherwise lower it and return null. 4463 const char * 4464 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4465 DebugLoc dl = getCurDebugLoc(); 4466 SDValue Res; 4467 4468 switch (Intrinsic) { 4469 default: 4470 // By default, turn this into a target intrinsic node. 4471 visitTargetIntrinsic(I, Intrinsic); 4472 return 0; 4473 case Intrinsic::vastart: visitVAStart(I); return 0; 4474 case Intrinsic::vaend: visitVAEnd(I); return 0; 4475 case Intrinsic::vacopy: visitVACopy(I); return 0; 4476 case Intrinsic::returnaddress: 4477 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4478 getValue(I.getArgOperand(0)))); 4479 return 0; 4480 case Intrinsic::frameaddress: 4481 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4482 getValue(I.getArgOperand(0)))); 4483 return 0; 4484 case Intrinsic::setjmp: 4485 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4486 case Intrinsic::longjmp: 4487 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4488 case Intrinsic::memcpy: { 4489 // Assert for address < 256 since we support only user defined address 4490 // spaces. 4491 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4492 < 256 && 4493 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4494 < 256 && 4495 "Unknown address space"); 4496 SDValue Op1 = getValue(I.getArgOperand(0)); 4497 SDValue Op2 = getValue(I.getArgOperand(1)); 4498 SDValue Op3 = getValue(I.getArgOperand(2)); 4499 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4500 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4501 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4502 MachinePointerInfo(I.getArgOperand(0)), 4503 MachinePointerInfo(I.getArgOperand(1)))); 4504 return 0; 4505 } 4506 case Intrinsic::memset: { 4507 // Assert for address < 256 since we support only user defined address 4508 // spaces. 4509 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4510 < 256 && 4511 "Unknown address space"); 4512 SDValue Op1 = getValue(I.getArgOperand(0)); 4513 SDValue Op2 = getValue(I.getArgOperand(1)); 4514 SDValue Op3 = getValue(I.getArgOperand(2)); 4515 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4516 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4517 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4518 MachinePointerInfo(I.getArgOperand(0)))); 4519 return 0; 4520 } 4521 case Intrinsic::memmove: { 4522 // Assert for address < 256 since we support only user defined address 4523 // spaces. 4524 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4525 < 256 && 4526 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4527 < 256 && 4528 "Unknown address space"); 4529 SDValue Op1 = getValue(I.getArgOperand(0)); 4530 SDValue Op2 = getValue(I.getArgOperand(1)); 4531 SDValue Op3 = getValue(I.getArgOperand(2)); 4532 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4533 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4534 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4535 MachinePointerInfo(I.getArgOperand(0)), 4536 MachinePointerInfo(I.getArgOperand(1)))); 4537 return 0; 4538 } 4539 case Intrinsic::dbg_declare: { 4540 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4541 MDNode *Variable = DI.getVariable(); 4542 const Value *Address = DI.getAddress(); 4543 if (!Address || !DIVariable(Variable).Verify()) { 4544 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4545 return 0; 4546 } 4547 4548 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4549 // but do not always have a corresponding SDNode built. The SDNodeOrder 4550 // absolute, but not relative, values are different depending on whether 4551 // debug info exists. 4552 ++SDNodeOrder; 4553 4554 // Check if address has undef value. 4555 if (isa<UndefValue>(Address) || 4556 (Address->use_empty() && !isa<Argument>(Address))) { 4557 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4558 return 0; 4559 } 4560 4561 SDValue &N = NodeMap[Address]; 4562 if (!N.getNode() && isa<Argument>(Address)) 4563 // Check unused arguments map. 4564 N = UnusedArgNodeMap[Address]; 4565 SDDbgValue *SDV; 4566 if (N.getNode()) { 4567 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4568 Address = BCI->getOperand(0); 4569 // Parameters are handled specially. 4570 bool isParameter = 4571 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4572 isa<Argument>(Address)); 4573 4574 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4575 4576 if (isParameter && !AI) { 4577 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4578 if (FINode) 4579 // Byval parameter. We have a frame index at this point. 4580 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4581 0, dl, SDNodeOrder); 4582 else { 4583 // Address is an argument, so try to emit its dbg value using 4584 // virtual register info from the FuncInfo.ValueMap. 4585 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4586 return 0; 4587 } 4588 } else if (AI) 4589 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4590 0, dl, SDNodeOrder); 4591 else { 4592 // Can't do anything with other non-AI cases yet. 4593 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4594 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4595 DEBUG(Address->dump()); 4596 return 0; 4597 } 4598 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4599 } else { 4600 // If Address is an argument then try to emit its dbg value using 4601 // virtual register info from the FuncInfo.ValueMap. 4602 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4603 // If variable is pinned by a alloca in dominating bb then 4604 // use StaticAllocaMap. 4605 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4606 if (AI->getParent() != DI.getParent()) { 4607 DenseMap<const AllocaInst*, int>::iterator SI = 4608 FuncInfo.StaticAllocaMap.find(AI); 4609 if (SI != FuncInfo.StaticAllocaMap.end()) { 4610 SDV = DAG.getDbgValue(Variable, SI->second, 4611 0, dl, SDNodeOrder); 4612 DAG.AddDbgValue(SDV, 0, false); 4613 return 0; 4614 } 4615 } 4616 } 4617 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4618 } 4619 } 4620 return 0; 4621 } 4622 case Intrinsic::dbg_value: { 4623 const DbgValueInst &DI = cast<DbgValueInst>(I); 4624 if (!DIVariable(DI.getVariable()).Verify()) 4625 return 0; 4626 4627 MDNode *Variable = DI.getVariable(); 4628 uint64_t Offset = DI.getOffset(); 4629 const Value *V = DI.getValue(); 4630 if (!V) 4631 return 0; 4632 4633 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4634 // but do not always have a corresponding SDNode built. The SDNodeOrder 4635 // absolute, but not relative, values are different depending on whether 4636 // debug info exists. 4637 ++SDNodeOrder; 4638 SDDbgValue *SDV; 4639 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4640 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4641 DAG.AddDbgValue(SDV, 0, false); 4642 } else { 4643 // Do not use getValue() in here; we don't want to generate code at 4644 // this point if it hasn't been done yet. 4645 SDValue N = NodeMap[V]; 4646 if (!N.getNode() && isa<Argument>(V)) 4647 // Check unused arguments map. 4648 N = UnusedArgNodeMap[V]; 4649 if (N.getNode()) { 4650 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4651 SDV = DAG.getDbgValue(Variable, N.getNode(), 4652 N.getResNo(), Offset, dl, SDNodeOrder); 4653 DAG.AddDbgValue(SDV, N.getNode(), false); 4654 } 4655 } else if (!V->use_empty() ) { 4656 // Do not call getValue(V) yet, as we don't want to generate code. 4657 // Remember it for later. 4658 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4659 DanglingDebugInfoMap[V] = DDI; 4660 } else { 4661 // We may expand this to cover more cases. One case where we have no 4662 // data available is an unreferenced parameter. 4663 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4664 } 4665 } 4666 4667 // Build a debug info table entry. 4668 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4669 V = BCI->getOperand(0); 4670 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4671 // Don't handle byval struct arguments or VLAs, for example. 4672 if (!AI) { 4673 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4674 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4675 return 0; 4676 } 4677 DenseMap<const AllocaInst*, int>::iterator SI = 4678 FuncInfo.StaticAllocaMap.find(AI); 4679 if (SI == FuncInfo.StaticAllocaMap.end()) 4680 return 0; // VLAs. 4681 int FI = SI->second; 4682 4683 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4684 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4685 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4686 return 0; 4687 } 4688 4689 case Intrinsic::eh_typeid_for: { 4690 // Find the type id for the given typeinfo. 4691 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4692 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4693 Res = DAG.getConstant(TypeID, MVT::i32); 4694 setValue(&I, Res); 4695 return 0; 4696 } 4697 4698 case Intrinsic::eh_return_i32: 4699 case Intrinsic::eh_return_i64: 4700 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4701 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4702 MVT::Other, 4703 getControlRoot(), 4704 getValue(I.getArgOperand(0)), 4705 getValue(I.getArgOperand(1)))); 4706 return 0; 4707 case Intrinsic::eh_unwind_init: 4708 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4709 return 0; 4710 case Intrinsic::eh_dwarf_cfa: { 4711 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4712 TLI.getPointerTy()); 4713 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4714 TLI.getPointerTy(), 4715 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4716 TLI.getPointerTy()), 4717 CfaArg); 4718 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4719 TLI.getPointerTy(), 4720 DAG.getConstant(0, TLI.getPointerTy())); 4721 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4722 FA, Offset)); 4723 return 0; 4724 } 4725 case Intrinsic::eh_sjlj_callsite: { 4726 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4727 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4728 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4729 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4730 4731 MMI.setCurrentCallSite(CI->getZExtValue()); 4732 return 0; 4733 } 4734 case Intrinsic::eh_sjlj_functioncontext: { 4735 // Get and store the index of the function context. 4736 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4737 AllocaInst *FnCtx = 4738 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4739 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4740 MFI->setFunctionContextIndex(FI); 4741 return 0; 4742 } 4743 case Intrinsic::eh_sjlj_setjmp: { 4744 SDValue Ops[2]; 4745 Ops[0] = getRoot(); 4746 Ops[1] = getValue(I.getArgOperand(0)); 4747 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4748 DAG.getVTList(MVT::i32, MVT::Other), 4749 Ops, 2); 4750 setValue(&I, Op.getValue(0)); 4751 DAG.setRoot(Op.getValue(1)); 4752 return 0; 4753 } 4754 case Intrinsic::eh_sjlj_longjmp: { 4755 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4756 getRoot(), getValue(I.getArgOperand(0)))); 4757 return 0; 4758 } 4759 4760 case Intrinsic::x86_mmx_pslli_w: 4761 case Intrinsic::x86_mmx_pslli_d: 4762 case Intrinsic::x86_mmx_pslli_q: 4763 case Intrinsic::x86_mmx_psrli_w: 4764 case Intrinsic::x86_mmx_psrli_d: 4765 case Intrinsic::x86_mmx_psrli_q: 4766 case Intrinsic::x86_mmx_psrai_w: 4767 case Intrinsic::x86_mmx_psrai_d: { 4768 SDValue ShAmt = getValue(I.getArgOperand(1)); 4769 if (isa<ConstantSDNode>(ShAmt)) { 4770 visitTargetIntrinsic(I, Intrinsic); 4771 return 0; 4772 } 4773 unsigned NewIntrinsic = 0; 4774 EVT ShAmtVT = MVT::v2i32; 4775 switch (Intrinsic) { 4776 case Intrinsic::x86_mmx_pslli_w: 4777 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4778 break; 4779 case Intrinsic::x86_mmx_pslli_d: 4780 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4781 break; 4782 case Intrinsic::x86_mmx_pslli_q: 4783 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4784 break; 4785 case Intrinsic::x86_mmx_psrli_w: 4786 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4787 break; 4788 case Intrinsic::x86_mmx_psrli_d: 4789 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4790 break; 4791 case Intrinsic::x86_mmx_psrli_q: 4792 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4793 break; 4794 case Intrinsic::x86_mmx_psrai_w: 4795 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4796 break; 4797 case Intrinsic::x86_mmx_psrai_d: 4798 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4799 break; 4800 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4801 } 4802 4803 // The vector shift intrinsics with scalars uses 32b shift amounts but 4804 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4805 // to be zero. 4806 // We must do this early because v2i32 is not a legal type. 4807 DebugLoc dl = getCurDebugLoc(); 4808 SDValue ShOps[2]; 4809 ShOps[0] = ShAmt; 4810 ShOps[1] = DAG.getConstant(0, MVT::i32); 4811 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4812 EVT DestVT = TLI.getValueType(I.getType()); 4813 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4814 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4815 DAG.getConstant(NewIntrinsic, MVT::i32), 4816 getValue(I.getArgOperand(0)), ShAmt); 4817 setValue(&I, Res); 4818 return 0; 4819 } 4820 case Intrinsic::x86_avx_vinsertf128_pd_256: 4821 case Intrinsic::x86_avx_vinsertf128_ps_256: 4822 case Intrinsic::x86_avx_vinsertf128_si_256: 4823 case Intrinsic::x86_avx2_vinserti128: { 4824 DebugLoc dl = getCurDebugLoc(); 4825 EVT DestVT = TLI.getValueType(I.getType()); 4826 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4827 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4828 ElVT.getVectorNumElements(); 4829 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4830 getValue(I.getArgOperand(0)), 4831 getValue(I.getArgOperand(1)), 4832 DAG.getConstant(Idx, MVT::i32)); 4833 setValue(&I, Res); 4834 return 0; 4835 } 4836 case Intrinsic::convertff: 4837 case Intrinsic::convertfsi: 4838 case Intrinsic::convertfui: 4839 case Intrinsic::convertsif: 4840 case Intrinsic::convertuif: 4841 case Intrinsic::convertss: 4842 case Intrinsic::convertsu: 4843 case Intrinsic::convertus: 4844 case Intrinsic::convertuu: { 4845 ISD::CvtCode Code = ISD::CVT_INVALID; 4846 switch (Intrinsic) { 4847 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4848 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4849 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4850 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4851 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4852 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4853 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4854 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4855 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4856 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4857 } 4858 EVT DestVT = TLI.getValueType(I.getType()); 4859 const Value *Op1 = I.getArgOperand(0); 4860 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4861 DAG.getValueType(DestVT), 4862 DAG.getValueType(getValue(Op1).getValueType()), 4863 getValue(I.getArgOperand(1)), 4864 getValue(I.getArgOperand(2)), 4865 Code); 4866 setValue(&I, Res); 4867 return 0; 4868 } 4869 case Intrinsic::sqrt: 4870 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4871 getValue(I.getArgOperand(0)).getValueType(), 4872 getValue(I.getArgOperand(0)))); 4873 return 0; 4874 case Intrinsic::powi: 4875 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4876 getValue(I.getArgOperand(1)), DAG)); 4877 return 0; 4878 case Intrinsic::sin: 4879 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4880 getValue(I.getArgOperand(0)).getValueType(), 4881 getValue(I.getArgOperand(0)))); 4882 return 0; 4883 case Intrinsic::cos: 4884 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4885 getValue(I.getArgOperand(0)).getValueType(), 4886 getValue(I.getArgOperand(0)))); 4887 return 0; 4888 case Intrinsic::log: 4889 visitLog(I); 4890 return 0; 4891 case Intrinsic::log2: 4892 visitLog2(I); 4893 return 0; 4894 case Intrinsic::log10: 4895 visitLog10(I); 4896 return 0; 4897 case Intrinsic::exp: 4898 visitExp(I); 4899 return 0; 4900 case Intrinsic::exp2: 4901 visitExp2(I); 4902 return 0; 4903 case Intrinsic::pow: 4904 visitPow(I); 4905 return 0; 4906 case Intrinsic::fma: 4907 setValue(&I, DAG.getNode(ISD::FMA, dl, 4908 getValue(I.getArgOperand(0)).getValueType(), 4909 getValue(I.getArgOperand(0)), 4910 getValue(I.getArgOperand(1)), 4911 getValue(I.getArgOperand(2)))); 4912 return 0; 4913 case Intrinsic::convert_to_fp16: 4914 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4915 MVT::i16, getValue(I.getArgOperand(0)))); 4916 return 0; 4917 case Intrinsic::convert_from_fp16: 4918 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4919 MVT::f32, getValue(I.getArgOperand(0)))); 4920 return 0; 4921 case Intrinsic::pcmarker: { 4922 SDValue Tmp = getValue(I.getArgOperand(0)); 4923 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4924 return 0; 4925 } 4926 case Intrinsic::readcyclecounter: { 4927 SDValue Op = getRoot(); 4928 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4929 DAG.getVTList(MVT::i64, MVT::Other), 4930 &Op, 1); 4931 setValue(&I, Res); 4932 DAG.setRoot(Res.getValue(1)); 4933 return 0; 4934 } 4935 case Intrinsic::bswap: 4936 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4937 getValue(I.getArgOperand(0)).getValueType(), 4938 getValue(I.getArgOperand(0)))); 4939 return 0; 4940 case Intrinsic::cttz: { 4941 SDValue Arg = getValue(I.getArgOperand(0)); 4942 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4943 EVT Ty = Arg.getValueType(); 4944 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4945 dl, Ty, Arg)); 4946 return 0; 4947 } 4948 case Intrinsic::ctlz: { 4949 SDValue Arg = getValue(I.getArgOperand(0)); 4950 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4951 EVT Ty = Arg.getValueType(); 4952 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4953 dl, Ty, Arg)); 4954 return 0; 4955 } 4956 case Intrinsic::ctpop: { 4957 SDValue Arg = getValue(I.getArgOperand(0)); 4958 EVT Ty = Arg.getValueType(); 4959 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4960 return 0; 4961 } 4962 case Intrinsic::stacksave: { 4963 SDValue Op = getRoot(); 4964 Res = DAG.getNode(ISD::STACKSAVE, dl, 4965 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4966 setValue(&I, Res); 4967 DAG.setRoot(Res.getValue(1)); 4968 return 0; 4969 } 4970 case Intrinsic::stackrestore: { 4971 Res = getValue(I.getArgOperand(0)); 4972 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4973 return 0; 4974 } 4975 case Intrinsic::stackprotector: { 4976 // Emit code into the DAG to store the stack guard onto the stack. 4977 MachineFunction &MF = DAG.getMachineFunction(); 4978 MachineFrameInfo *MFI = MF.getFrameInfo(); 4979 EVT PtrTy = TLI.getPointerTy(); 4980 4981 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4982 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4983 4984 int FI = FuncInfo.StaticAllocaMap[Slot]; 4985 MFI->setStackProtectorIndex(FI); 4986 4987 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4988 4989 // Store the stack protector onto the stack. 4990 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4991 MachinePointerInfo::getFixedStack(FI), 4992 true, false, 0); 4993 setValue(&I, Res); 4994 DAG.setRoot(Res); 4995 return 0; 4996 } 4997 case Intrinsic::objectsize: { 4998 // If we don't know by now, we're never going to know. 4999 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5000 5001 assert(CI && "Non-constant type in __builtin_object_size?"); 5002 5003 SDValue Arg = getValue(I.getCalledValue()); 5004 EVT Ty = Arg.getValueType(); 5005 5006 if (CI->isZero()) 5007 Res = DAG.getConstant(-1ULL, Ty); 5008 else 5009 Res = DAG.getConstant(0, Ty); 5010 5011 setValue(&I, Res); 5012 return 0; 5013 } 5014 case Intrinsic::var_annotation: 5015 // Discard annotate attributes 5016 return 0; 5017 5018 case Intrinsic::init_trampoline: { 5019 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5020 5021 SDValue Ops[6]; 5022 Ops[0] = getRoot(); 5023 Ops[1] = getValue(I.getArgOperand(0)); 5024 Ops[2] = getValue(I.getArgOperand(1)); 5025 Ops[3] = getValue(I.getArgOperand(2)); 5026 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5027 Ops[5] = DAG.getSrcValue(F); 5028 5029 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5030 5031 DAG.setRoot(Res); 5032 return 0; 5033 } 5034 case Intrinsic::adjust_trampoline: { 5035 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5036 TLI.getPointerTy(), 5037 getValue(I.getArgOperand(0)))); 5038 return 0; 5039 } 5040 case Intrinsic::gcroot: 5041 if (GFI) { 5042 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5043 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5044 5045 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5046 GFI->addStackRoot(FI->getIndex(), TypeMap); 5047 } 5048 return 0; 5049 case Intrinsic::gcread: 5050 case Intrinsic::gcwrite: 5051 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5052 case Intrinsic::flt_rounds: 5053 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5054 return 0; 5055 5056 case Intrinsic::expect: { 5057 // Just replace __builtin_expect(exp, c) with EXP. 5058 setValue(&I, getValue(I.getArgOperand(0))); 5059 return 0; 5060 } 5061 5062 case Intrinsic::trap: { 5063 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5064 if (TrapFuncName.empty()) { 5065 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5066 return 0; 5067 } 5068 TargetLowering::ArgListTy Args; 5069 std::pair<SDValue, SDValue> Result = 5070 TLI.LowerCallTo(getRoot(), I.getType(), 5071 false, false, false, false, 0, CallingConv::C, 5072 /*isTailCall=*/false, 5073 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5074 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5075 Args, DAG, getCurDebugLoc()); 5076 DAG.setRoot(Result.second); 5077 return 0; 5078 } 5079 case Intrinsic::debugtrap: { 5080 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot())); 5081 return 0; 5082 } 5083 case Intrinsic::uadd_with_overflow: 5084 case Intrinsic::sadd_with_overflow: 5085 case Intrinsic::usub_with_overflow: 5086 case Intrinsic::ssub_with_overflow: 5087 case Intrinsic::umul_with_overflow: 5088 case Intrinsic::smul_with_overflow: { 5089 ISD::NodeType Op; 5090 switch (Intrinsic) { 5091 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5092 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5093 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5094 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5095 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5096 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5097 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5098 } 5099 SDValue Op1 = getValue(I.getArgOperand(0)); 5100 SDValue Op2 = getValue(I.getArgOperand(1)); 5101 5102 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5103 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 5104 return 0; 5105 } 5106 case Intrinsic::prefetch: { 5107 SDValue Ops[5]; 5108 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5109 Ops[0] = getRoot(); 5110 Ops[1] = getValue(I.getArgOperand(0)); 5111 Ops[2] = getValue(I.getArgOperand(1)); 5112 Ops[3] = getValue(I.getArgOperand(2)); 5113 Ops[4] = getValue(I.getArgOperand(3)); 5114 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5115 DAG.getVTList(MVT::Other), 5116 &Ops[0], 5, 5117 EVT::getIntegerVT(*Context, 8), 5118 MachinePointerInfo(I.getArgOperand(0)), 5119 0, /* align */ 5120 false, /* volatile */ 5121 rw==0, /* read */ 5122 rw==1)); /* write */ 5123 return 0; 5124 } 5125 5126 case Intrinsic::invariant_start: 5127 case Intrinsic::lifetime_start: 5128 // Discard region information. 5129 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5130 return 0; 5131 case Intrinsic::invariant_end: 5132 case Intrinsic::lifetime_end: 5133 // Discard region information. 5134 return 0; 5135 } 5136 } 5137 5138 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5139 bool isTailCall, 5140 MachineBasicBlock *LandingPad) { 5141 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5142 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5143 Type *RetTy = FTy->getReturnType(); 5144 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5145 MCSymbol *BeginLabel = 0; 5146 5147 TargetLowering::ArgListTy Args; 5148 TargetLowering::ArgListEntry Entry; 5149 Args.reserve(CS.arg_size()); 5150 5151 // Check whether the function can return without sret-demotion. 5152 SmallVector<ISD::OutputArg, 4> Outs; 5153 SmallVector<uint64_t, 4> Offsets; 5154 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5155 Outs, TLI, &Offsets); 5156 5157 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5158 DAG.getMachineFunction(), 5159 FTy->isVarArg(), Outs, 5160 FTy->getContext()); 5161 5162 SDValue DemoteStackSlot; 5163 int DemoteStackIdx = -100; 5164 5165 if (!CanLowerReturn) { 5166 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5167 FTy->getReturnType()); 5168 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5169 FTy->getReturnType()); 5170 MachineFunction &MF = DAG.getMachineFunction(); 5171 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5172 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5173 5174 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5175 Entry.Node = DemoteStackSlot; 5176 Entry.Ty = StackSlotPtrType; 5177 Entry.isSExt = false; 5178 Entry.isZExt = false; 5179 Entry.isInReg = false; 5180 Entry.isSRet = true; 5181 Entry.isNest = false; 5182 Entry.isByVal = false; 5183 Entry.Alignment = Align; 5184 Args.push_back(Entry); 5185 RetTy = Type::getVoidTy(FTy->getContext()); 5186 } 5187 5188 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5189 i != e; ++i) { 5190 const Value *V = *i; 5191 5192 // Skip empty types 5193 if (V->getType()->isEmptyTy()) 5194 continue; 5195 5196 SDValue ArgNode = getValue(V); 5197 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5198 5199 unsigned attrInd = i - CS.arg_begin() + 1; 5200 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5201 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5202 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5203 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5204 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5205 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5206 Entry.Alignment = CS.getParamAlignment(attrInd); 5207 Args.push_back(Entry); 5208 } 5209 5210 if (LandingPad) { 5211 // Insert a label before the invoke call to mark the try range. This can be 5212 // used to detect deletion of the invoke via the MachineModuleInfo. 5213 BeginLabel = MMI.getContext().CreateTempSymbol(); 5214 5215 // For SjLj, keep track of which landing pads go with which invokes 5216 // so as to maintain the ordering of pads in the LSDA. 5217 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5218 if (CallSiteIndex) { 5219 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5220 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5221 5222 // Now that the call site is handled, stop tracking it. 5223 MMI.setCurrentCallSite(0); 5224 } 5225 5226 // Both PendingLoads and PendingExports must be flushed here; 5227 // this call might not return. 5228 (void)getRoot(); 5229 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5230 } 5231 5232 // Check if target-independent constraints permit a tail call here. 5233 // Target-dependent constraints are checked within TLI.LowerCallTo. 5234 if (isTailCall && 5235 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5236 isTailCall = false; 5237 5238 // If there's a possibility that fast-isel has already selected some amount 5239 // of the current basic block, don't emit a tail call. 5240 if (isTailCall && TM.Options.EnableFastISel) 5241 isTailCall = false; 5242 5243 std::pair<SDValue,SDValue> Result = 5244 TLI.LowerCallTo(getRoot(), RetTy, 5245 CS.paramHasAttr(0, Attribute::SExt), 5246 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5247 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5248 CS.getCallingConv(), 5249 isTailCall, 5250 CS.doesNotReturn(), 5251 !CS.getInstruction()->use_empty(), 5252 Callee, Args, DAG, getCurDebugLoc()); 5253 assert((isTailCall || Result.second.getNode()) && 5254 "Non-null chain expected with non-tail call!"); 5255 assert((Result.second.getNode() || !Result.first.getNode()) && 5256 "Null value expected with tail call!"); 5257 if (Result.first.getNode()) { 5258 setValue(CS.getInstruction(), Result.first); 5259 } else if (!CanLowerReturn && Result.second.getNode()) { 5260 // The instruction result is the result of loading from the 5261 // hidden sret parameter. 5262 SmallVector<EVT, 1> PVTs; 5263 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5264 5265 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5266 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5267 EVT PtrVT = PVTs[0]; 5268 unsigned NumValues = Outs.size(); 5269 SmallVector<SDValue, 4> Values(NumValues); 5270 SmallVector<SDValue, 4> Chains(NumValues); 5271 5272 for (unsigned i = 0; i < NumValues; ++i) { 5273 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5274 DemoteStackSlot, 5275 DAG.getConstant(Offsets[i], PtrVT)); 5276 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5277 Add, 5278 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5279 false, false, false, 1); 5280 Values[i] = L; 5281 Chains[i] = L.getValue(1); 5282 } 5283 5284 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5285 MVT::Other, &Chains[0], NumValues); 5286 PendingLoads.push_back(Chain); 5287 5288 // Collect the legal value parts into potentially illegal values 5289 // that correspond to the original function's return values. 5290 SmallVector<EVT, 4> RetTys; 5291 RetTy = FTy->getReturnType(); 5292 ComputeValueVTs(TLI, RetTy, RetTys); 5293 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5294 SmallVector<SDValue, 4> ReturnValues; 5295 unsigned CurReg = 0; 5296 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5297 EVT VT = RetTys[I]; 5298 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5299 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5300 5301 SDValue ReturnValue = 5302 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5303 RegisterVT, VT, AssertOp); 5304 ReturnValues.push_back(ReturnValue); 5305 CurReg += NumRegs; 5306 } 5307 5308 setValue(CS.getInstruction(), 5309 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5310 DAG.getVTList(&RetTys[0], RetTys.size()), 5311 &ReturnValues[0], ReturnValues.size())); 5312 } 5313 5314 // Assign order to nodes here. If the call does not produce a result, it won't 5315 // be mapped to a SDNode and visit() will not assign it an order number. 5316 if (!Result.second.getNode()) { 5317 // As a special case, a null chain means that a tail call has been emitted and 5318 // the DAG root is already updated. 5319 HasTailCall = true; 5320 ++SDNodeOrder; 5321 AssignOrderingToNode(DAG.getRoot().getNode()); 5322 } else { 5323 DAG.setRoot(Result.second); 5324 ++SDNodeOrder; 5325 AssignOrderingToNode(Result.second.getNode()); 5326 } 5327 5328 if (LandingPad) { 5329 // Insert a label at the end of the invoke call to mark the try range. This 5330 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5331 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5332 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5333 5334 // Inform MachineModuleInfo of range. 5335 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5336 } 5337 } 5338 5339 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5340 /// value is equal or not-equal to zero. 5341 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5342 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5343 UI != E; ++UI) { 5344 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5345 if (IC->isEquality()) 5346 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5347 if (C->isNullValue()) 5348 continue; 5349 // Unknown instruction. 5350 return false; 5351 } 5352 return true; 5353 } 5354 5355 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5356 Type *LoadTy, 5357 SelectionDAGBuilder &Builder) { 5358 5359 // Check to see if this load can be trivially constant folded, e.g. if the 5360 // input is from a string literal. 5361 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5362 // Cast pointer to the type we really want to load. 5363 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5364 PointerType::getUnqual(LoadTy)); 5365 5366 if (const Constant *LoadCst = 5367 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5368 Builder.TD)) 5369 return Builder.getValue(LoadCst); 5370 } 5371 5372 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5373 // still constant memory, the input chain can be the entry node. 5374 SDValue Root; 5375 bool ConstantMemory = false; 5376 5377 // Do not serialize (non-volatile) loads of constant memory with anything. 5378 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5379 Root = Builder.DAG.getEntryNode(); 5380 ConstantMemory = true; 5381 } else { 5382 // Do not serialize non-volatile loads against each other. 5383 Root = Builder.DAG.getRoot(); 5384 } 5385 5386 SDValue Ptr = Builder.getValue(PtrVal); 5387 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5388 Ptr, MachinePointerInfo(PtrVal), 5389 false /*volatile*/, 5390 false /*nontemporal*/, 5391 false /*isinvariant*/, 1 /* align=1 */); 5392 5393 if (!ConstantMemory) 5394 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5395 return LoadVal; 5396 } 5397 5398 5399 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5400 /// If so, return true and lower it, otherwise return false and it will be 5401 /// lowered like a normal call. 5402 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5403 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5404 if (I.getNumArgOperands() != 3) 5405 return false; 5406 5407 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5408 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5409 !I.getArgOperand(2)->getType()->isIntegerTy() || 5410 !I.getType()->isIntegerTy()) 5411 return false; 5412 5413 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5414 5415 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5416 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5417 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5418 bool ActuallyDoIt = true; 5419 MVT LoadVT; 5420 Type *LoadTy; 5421 switch (Size->getZExtValue()) { 5422 default: 5423 LoadVT = MVT::Other; 5424 LoadTy = 0; 5425 ActuallyDoIt = false; 5426 break; 5427 case 2: 5428 LoadVT = MVT::i16; 5429 LoadTy = Type::getInt16Ty(Size->getContext()); 5430 break; 5431 case 4: 5432 LoadVT = MVT::i32; 5433 LoadTy = Type::getInt32Ty(Size->getContext()); 5434 break; 5435 case 8: 5436 LoadVT = MVT::i64; 5437 LoadTy = Type::getInt64Ty(Size->getContext()); 5438 break; 5439 /* 5440 case 16: 5441 LoadVT = MVT::v4i32; 5442 LoadTy = Type::getInt32Ty(Size->getContext()); 5443 LoadTy = VectorType::get(LoadTy, 4); 5444 break; 5445 */ 5446 } 5447 5448 // This turns into unaligned loads. We only do this if the target natively 5449 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5450 // we'll only produce a small number of byte loads. 5451 5452 // Require that we can find a legal MVT, and only do this if the target 5453 // supports unaligned loads of that type. Expanding into byte loads would 5454 // bloat the code. 5455 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5456 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5457 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5458 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5459 ActuallyDoIt = false; 5460 } 5461 5462 if (ActuallyDoIt) { 5463 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5464 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5465 5466 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5467 ISD::SETNE); 5468 EVT CallVT = TLI.getValueType(I.getType(), true); 5469 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5470 return true; 5471 } 5472 } 5473 5474 5475 return false; 5476 } 5477 5478 5479 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5480 // Handle inline assembly differently. 5481 if (isa<InlineAsm>(I.getCalledValue())) { 5482 visitInlineAsm(&I); 5483 return; 5484 } 5485 5486 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5487 ComputeUsesVAFloatArgument(I, &MMI); 5488 5489 const char *RenameFn = 0; 5490 if (Function *F = I.getCalledFunction()) { 5491 if (F->isDeclaration()) { 5492 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5493 if (unsigned IID = II->getIntrinsicID(F)) { 5494 RenameFn = visitIntrinsicCall(I, IID); 5495 if (!RenameFn) 5496 return; 5497 } 5498 } 5499 if (unsigned IID = F->getIntrinsicID()) { 5500 RenameFn = visitIntrinsicCall(I, IID); 5501 if (!RenameFn) 5502 return; 5503 } 5504 } 5505 5506 // Check for well-known libc/libm calls. If the function is internal, it 5507 // can't be a library call. 5508 if (!F->hasLocalLinkage() && F->hasName()) { 5509 StringRef Name = F->getName(); 5510 if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") || 5511 (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") || 5512 (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) { 5513 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5514 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5515 I.getType() == I.getArgOperand(0)->getType() && 5516 I.getType() == I.getArgOperand(1)->getType()) { 5517 SDValue LHS = getValue(I.getArgOperand(0)); 5518 SDValue RHS = getValue(I.getArgOperand(1)); 5519 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5520 LHS.getValueType(), LHS, RHS)); 5521 return; 5522 } 5523 } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") || 5524 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") || 5525 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) { 5526 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5527 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5528 I.getType() == I.getArgOperand(0)->getType()) { 5529 SDValue Tmp = getValue(I.getArgOperand(0)); 5530 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5531 Tmp.getValueType(), Tmp)); 5532 return; 5533 } 5534 } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") || 5535 (LibInfo->has(LibFunc::sinf) && Name == "sinf") || 5536 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) { 5537 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5538 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5539 I.getType() == I.getArgOperand(0)->getType() && 5540 I.onlyReadsMemory()) { 5541 SDValue Tmp = getValue(I.getArgOperand(0)); 5542 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5543 Tmp.getValueType(), Tmp)); 5544 return; 5545 } 5546 } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") || 5547 (LibInfo->has(LibFunc::cosf) && Name == "cosf") || 5548 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) { 5549 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5550 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5551 I.getType() == I.getArgOperand(0)->getType() && 5552 I.onlyReadsMemory()) { 5553 SDValue Tmp = getValue(I.getArgOperand(0)); 5554 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5555 Tmp.getValueType(), Tmp)); 5556 return; 5557 } 5558 } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") || 5559 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") || 5560 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) { 5561 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5562 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5563 I.getType() == I.getArgOperand(0)->getType() && 5564 I.onlyReadsMemory()) { 5565 SDValue Tmp = getValue(I.getArgOperand(0)); 5566 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5567 Tmp.getValueType(), Tmp)); 5568 return; 5569 } 5570 } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") || 5571 (LibInfo->has(LibFunc::floorf) && Name == "floorf") || 5572 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) { 5573 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5574 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5575 I.getType() == I.getArgOperand(0)->getType()) { 5576 SDValue Tmp = getValue(I.getArgOperand(0)); 5577 setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(), 5578 Tmp.getValueType(), Tmp)); 5579 return; 5580 } 5581 } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") || 5582 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") || 5583 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) { 5584 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5585 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5586 I.getType() == I.getArgOperand(0)->getType()) { 5587 SDValue Tmp = getValue(I.getArgOperand(0)); 5588 setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(), 5589 Tmp.getValueType(), Tmp)); 5590 return; 5591 } 5592 } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") || 5593 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") || 5594 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) { 5595 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5596 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5597 I.getType() == I.getArgOperand(0)->getType()) { 5598 SDValue Tmp = getValue(I.getArgOperand(0)); 5599 setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(), 5600 Tmp.getValueType(), Tmp)); 5601 return; 5602 } 5603 } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") || 5604 (LibInfo->has(LibFunc::rintf) && Name == "rintf") || 5605 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) { 5606 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5607 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5608 I.getType() == I.getArgOperand(0)->getType()) { 5609 SDValue Tmp = getValue(I.getArgOperand(0)); 5610 setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(), 5611 Tmp.getValueType(), Tmp)); 5612 return; 5613 } 5614 } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") || 5615 (LibInfo->has(LibFunc::truncf) && Name == "truncf") || 5616 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) { 5617 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5618 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5619 I.getType() == I.getArgOperand(0)->getType()) { 5620 SDValue Tmp = getValue(I.getArgOperand(0)); 5621 setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(), 5622 Tmp.getValueType(), Tmp)); 5623 return; 5624 } 5625 } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") || 5626 (LibInfo->has(LibFunc::log2f) && Name == "log2f") || 5627 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) { 5628 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5629 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5630 I.getType() == I.getArgOperand(0)->getType() && 5631 I.onlyReadsMemory()) { 5632 SDValue Tmp = getValue(I.getArgOperand(0)); 5633 setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(), 5634 Tmp.getValueType(), Tmp)); 5635 return; 5636 } 5637 } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") || 5638 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") || 5639 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) { 5640 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5641 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5642 I.getType() == I.getArgOperand(0)->getType() && 5643 I.onlyReadsMemory()) { 5644 SDValue Tmp = getValue(I.getArgOperand(0)); 5645 setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(), 5646 Tmp.getValueType(), Tmp)); 5647 return; 5648 } 5649 } else if (Name == "memcmp") { 5650 if (visitMemCmpCall(I)) 5651 return; 5652 } 5653 } 5654 } 5655 5656 SDValue Callee; 5657 if (!RenameFn) 5658 Callee = getValue(I.getCalledValue()); 5659 else 5660 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5661 5662 // Check if we can potentially perform a tail call. More detailed checking is 5663 // be done within LowerCallTo, after more information about the call is known. 5664 LowerCallTo(&I, Callee, I.isTailCall()); 5665 } 5666 5667 namespace { 5668 5669 /// AsmOperandInfo - This contains information for each constraint that we are 5670 /// lowering. 5671 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5672 public: 5673 /// CallOperand - If this is the result output operand or a clobber 5674 /// this is null, otherwise it is the incoming operand to the CallInst. 5675 /// This gets modified as the asm is processed. 5676 SDValue CallOperand; 5677 5678 /// AssignedRegs - If this is a register or register class operand, this 5679 /// contains the set of register corresponding to the operand. 5680 RegsForValue AssignedRegs; 5681 5682 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5683 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5684 } 5685 5686 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5687 /// corresponds to. If there is no Value* for this operand, it returns 5688 /// MVT::Other. 5689 EVT getCallOperandValEVT(LLVMContext &Context, 5690 const TargetLowering &TLI, 5691 const TargetData *TD) const { 5692 if (CallOperandVal == 0) return MVT::Other; 5693 5694 if (isa<BasicBlock>(CallOperandVal)) 5695 return TLI.getPointerTy(); 5696 5697 llvm::Type *OpTy = CallOperandVal->getType(); 5698 5699 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5700 // If this is an indirect operand, the operand is a pointer to the 5701 // accessed type. 5702 if (isIndirect) { 5703 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5704 if (!PtrTy) 5705 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5706 OpTy = PtrTy->getElementType(); 5707 } 5708 5709 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5710 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5711 if (STy->getNumElements() == 1) 5712 OpTy = STy->getElementType(0); 5713 5714 // If OpTy is not a single value, it may be a struct/union that we 5715 // can tile with integers. 5716 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5717 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5718 switch (BitSize) { 5719 default: break; 5720 case 1: 5721 case 8: 5722 case 16: 5723 case 32: 5724 case 64: 5725 case 128: 5726 OpTy = IntegerType::get(Context, BitSize); 5727 break; 5728 } 5729 } 5730 5731 return TLI.getValueType(OpTy, true); 5732 } 5733 }; 5734 5735 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5736 5737 } // end anonymous namespace 5738 5739 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5740 /// specified operand. We prefer to assign virtual registers, to allow the 5741 /// register allocator to handle the assignment process. However, if the asm 5742 /// uses features that we can't model on machineinstrs, we have SDISel do the 5743 /// allocation. This produces generally horrible, but correct, code. 5744 /// 5745 /// OpInfo describes the operand. 5746 /// 5747 static void GetRegistersForValue(SelectionDAG &DAG, 5748 const TargetLowering &TLI, 5749 DebugLoc DL, 5750 SDISelAsmOperandInfo &OpInfo) { 5751 LLVMContext &Context = *DAG.getContext(); 5752 5753 MachineFunction &MF = DAG.getMachineFunction(); 5754 SmallVector<unsigned, 4> Regs; 5755 5756 // If this is a constraint for a single physreg, or a constraint for a 5757 // register class, find it. 5758 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5759 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5760 OpInfo.ConstraintVT); 5761 5762 unsigned NumRegs = 1; 5763 if (OpInfo.ConstraintVT != MVT::Other) { 5764 // If this is a FP input in an integer register (or visa versa) insert a bit 5765 // cast of the input value. More generally, handle any case where the input 5766 // value disagrees with the register class we plan to stick this in. 5767 if (OpInfo.Type == InlineAsm::isInput && 5768 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5769 // Try to convert to the first EVT that the reg class contains. If the 5770 // types are identical size, use a bitcast to convert (e.g. two differing 5771 // vector types). 5772 EVT RegVT = *PhysReg.second->vt_begin(); 5773 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5774 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5775 RegVT, OpInfo.CallOperand); 5776 OpInfo.ConstraintVT = RegVT; 5777 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5778 // If the input is a FP value and we want it in FP registers, do a 5779 // bitcast to the corresponding integer type. This turns an f64 value 5780 // into i64, which can be passed with two i32 values on a 32-bit 5781 // machine. 5782 RegVT = EVT::getIntegerVT(Context, 5783 OpInfo.ConstraintVT.getSizeInBits()); 5784 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5785 RegVT, OpInfo.CallOperand); 5786 OpInfo.ConstraintVT = RegVT; 5787 } 5788 } 5789 5790 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5791 } 5792 5793 EVT RegVT; 5794 EVT ValueVT = OpInfo.ConstraintVT; 5795 5796 // If this is a constraint for a specific physical register, like {r17}, 5797 // assign it now. 5798 if (unsigned AssignedReg = PhysReg.first) { 5799 const TargetRegisterClass *RC = PhysReg.second; 5800 if (OpInfo.ConstraintVT == MVT::Other) 5801 ValueVT = *RC->vt_begin(); 5802 5803 // Get the actual register value type. This is important, because the user 5804 // may have asked for (e.g.) the AX register in i32 type. We need to 5805 // remember that AX is actually i16 to get the right extension. 5806 RegVT = *RC->vt_begin(); 5807 5808 // This is a explicit reference to a physical register. 5809 Regs.push_back(AssignedReg); 5810 5811 // If this is an expanded reference, add the rest of the regs to Regs. 5812 if (NumRegs != 1) { 5813 TargetRegisterClass::iterator I = RC->begin(); 5814 for (; *I != AssignedReg; ++I) 5815 assert(I != RC->end() && "Didn't find reg!"); 5816 5817 // Already added the first reg. 5818 --NumRegs; ++I; 5819 for (; NumRegs; --NumRegs, ++I) { 5820 assert(I != RC->end() && "Ran out of registers to allocate!"); 5821 Regs.push_back(*I); 5822 } 5823 } 5824 5825 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5826 return; 5827 } 5828 5829 // Otherwise, if this was a reference to an LLVM register class, create vregs 5830 // for this reference. 5831 if (const TargetRegisterClass *RC = PhysReg.second) { 5832 RegVT = *RC->vt_begin(); 5833 if (OpInfo.ConstraintVT == MVT::Other) 5834 ValueVT = RegVT; 5835 5836 // Create the appropriate number of virtual registers. 5837 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5838 for (; NumRegs; --NumRegs) 5839 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5840 5841 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5842 return; 5843 } 5844 5845 // Otherwise, we couldn't allocate enough registers for this. 5846 } 5847 5848 /// visitInlineAsm - Handle a call to an InlineAsm object. 5849 /// 5850 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5851 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5852 5853 /// ConstraintOperands - Information about all of the constraints. 5854 SDISelAsmOperandInfoVector ConstraintOperands; 5855 5856 TargetLowering::AsmOperandInfoVector 5857 TargetConstraints = TLI.ParseConstraints(CS); 5858 5859 bool hasMemory = false; 5860 5861 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5862 unsigned ResNo = 0; // ResNo - The result number of the next output. 5863 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5864 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5865 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5866 5867 EVT OpVT = MVT::Other; 5868 5869 // Compute the value type for each operand. 5870 switch (OpInfo.Type) { 5871 case InlineAsm::isOutput: 5872 // Indirect outputs just consume an argument. 5873 if (OpInfo.isIndirect) { 5874 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5875 break; 5876 } 5877 5878 // The return value of the call is this value. As such, there is no 5879 // corresponding argument. 5880 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5881 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5882 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5883 } else { 5884 assert(ResNo == 0 && "Asm only has one result!"); 5885 OpVT = TLI.getValueType(CS.getType()); 5886 } 5887 ++ResNo; 5888 break; 5889 case InlineAsm::isInput: 5890 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5891 break; 5892 case InlineAsm::isClobber: 5893 // Nothing to do. 5894 break; 5895 } 5896 5897 // If this is an input or an indirect output, process the call argument. 5898 // BasicBlocks are labels, currently appearing only in asm's. 5899 if (OpInfo.CallOperandVal) { 5900 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5901 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5902 } else { 5903 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5904 } 5905 5906 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5907 } 5908 5909 OpInfo.ConstraintVT = OpVT; 5910 5911 // Indirect operand accesses access memory. 5912 if (OpInfo.isIndirect) 5913 hasMemory = true; 5914 else { 5915 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5916 TargetLowering::ConstraintType 5917 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5918 if (CType == TargetLowering::C_Memory) { 5919 hasMemory = true; 5920 break; 5921 } 5922 } 5923 } 5924 } 5925 5926 SDValue Chain, Flag; 5927 5928 // We won't need to flush pending loads if this asm doesn't touch 5929 // memory and is nonvolatile. 5930 if (hasMemory || IA->hasSideEffects()) 5931 Chain = getRoot(); 5932 else 5933 Chain = DAG.getRoot(); 5934 5935 // Second pass over the constraints: compute which constraint option to use 5936 // and assign registers to constraints that want a specific physreg. 5937 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5938 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5939 5940 // If this is an output operand with a matching input operand, look up the 5941 // matching input. If their types mismatch, e.g. one is an integer, the 5942 // other is floating point, or their sizes are different, flag it as an 5943 // error. 5944 if (OpInfo.hasMatchingInput()) { 5945 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5946 5947 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5948 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5949 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5950 OpInfo.ConstraintVT); 5951 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5952 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5953 Input.ConstraintVT); 5954 if ((OpInfo.ConstraintVT.isInteger() != 5955 Input.ConstraintVT.isInteger()) || 5956 (MatchRC.second != InputRC.second)) { 5957 report_fatal_error("Unsupported asm: input constraint" 5958 " with a matching output constraint of" 5959 " incompatible type!"); 5960 } 5961 Input.ConstraintVT = OpInfo.ConstraintVT; 5962 } 5963 } 5964 5965 // Compute the constraint code and ConstraintType to use. 5966 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5967 5968 // If this is a memory input, and if the operand is not indirect, do what we 5969 // need to to provide an address for the memory input. 5970 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5971 !OpInfo.isIndirect) { 5972 assert((OpInfo.isMultipleAlternative || 5973 (OpInfo.Type == InlineAsm::isInput)) && 5974 "Can only indirectify direct input operands!"); 5975 5976 // Memory operands really want the address of the value. If we don't have 5977 // an indirect input, put it in the constpool if we can, otherwise spill 5978 // it to a stack slot. 5979 // TODO: This isn't quite right. We need to handle these according to 5980 // the addressing mode that the constraint wants. Also, this may take 5981 // an additional register for the computation and we don't want that 5982 // either. 5983 5984 // If the operand is a float, integer, or vector constant, spill to a 5985 // constant pool entry to get its address. 5986 const Value *OpVal = OpInfo.CallOperandVal; 5987 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5988 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5989 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5990 TLI.getPointerTy()); 5991 } else { 5992 // Otherwise, create a stack slot and emit a store to it before the 5993 // asm. 5994 Type *Ty = OpVal->getType(); 5995 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5996 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5997 MachineFunction &MF = DAG.getMachineFunction(); 5998 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5999 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6000 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6001 OpInfo.CallOperand, StackSlot, 6002 MachinePointerInfo::getFixedStack(SSFI), 6003 false, false, 0); 6004 OpInfo.CallOperand = StackSlot; 6005 } 6006 6007 // There is no longer a Value* corresponding to this operand. 6008 OpInfo.CallOperandVal = 0; 6009 6010 // It is now an indirect operand. 6011 OpInfo.isIndirect = true; 6012 } 6013 6014 // If this constraint is for a specific register, allocate it before 6015 // anything else. 6016 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6017 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6018 } 6019 6020 // Second pass - Loop over all of the operands, assigning virtual or physregs 6021 // to register class operands. 6022 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6023 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6024 6025 // C_Register operands have already been allocated, Other/Memory don't need 6026 // to be. 6027 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6028 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6029 } 6030 6031 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6032 std::vector<SDValue> AsmNodeOperands; 6033 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6034 AsmNodeOperands.push_back( 6035 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6036 TLI.getPointerTy())); 6037 6038 // If we have a !srcloc metadata node associated with it, we want to attach 6039 // this to the ultimately generated inline asm machineinstr. To do this, we 6040 // pass in the third operand as this (potentially null) inline asm MDNode. 6041 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6042 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6043 6044 // Remember the HasSideEffect and AlignStack bits as operand 3. 6045 unsigned ExtraInfo = 0; 6046 if (IA->hasSideEffects()) 6047 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6048 if (IA->isAlignStack()) 6049 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6050 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6051 TLI.getPointerTy())); 6052 6053 // Loop over all of the inputs, copying the operand values into the 6054 // appropriate registers and processing the output regs. 6055 RegsForValue RetValRegs; 6056 6057 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6058 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6059 6060 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6061 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6062 6063 switch (OpInfo.Type) { 6064 case InlineAsm::isOutput: { 6065 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6066 OpInfo.ConstraintType != TargetLowering::C_Register) { 6067 // Memory output, or 'other' output (e.g. 'X' constraint). 6068 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6069 6070 // Add information to the INLINEASM node to know about this output. 6071 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6072 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6073 TLI.getPointerTy())); 6074 AsmNodeOperands.push_back(OpInfo.CallOperand); 6075 break; 6076 } 6077 6078 // Otherwise, this is a register or register class output. 6079 6080 // Copy the output from the appropriate register. Find a register that 6081 // we can use. 6082 if (OpInfo.AssignedRegs.Regs.empty()) { 6083 LLVMContext &Ctx = *DAG.getContext(); 6084 Ctx.emitError(CS.getInstruction(), 6085 "couldn't allocate output register for constraint '" + 6086 Twine(OpInfo.ConstraintCode) + "'"); 6087 break; 6088 } 6089 6090 // If this is an indirect operand, store through the pointer after the 6091 // asm. 6092 if (OpInfo.isIndirect) { 6093 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6094 OpInfo.CallOperandVal)); 6095 } else { 6096 // This is the result value of the call. 6097 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6098 // Concatenate this output onto the outputs list. 6099 RetValRegs.append(OpInfo.AssignedRegs); 6100 } 6101 6102 // Add information to the INLINEASM node to know that this register is 6103 // set. 6104 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6105 InlineAsm::Kind_RegDefEarlyClobber : 6106 InlineAsm::Kind_RegDef, 6107 false, 6108 0, 6109 DAG, 6110 AsmNodeOperands); 6111 break; 6112 } 6113 case InlineAsm::isInput: { 6114 SDValue InOperandVal = OpInfo.CallOperand; 6115 6116 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6117 // If this is required to match an output register we have already set, 6118 // just use its register. 6119 unsigned OperandNo = OpInfo.getMatchedOperand(); 6120 6121 // Scan until we find the definition we already emitted of this operand. 6122 // When we find it, create a RegsForValue operand. 6123 unsigned CurOp = InlineAsm::Op_FirstOperand; 6124 for (; OperandNo; --OperandNo) { 6125 // Advance to the next operand. 6126 unsigned OpFlag = 6127 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6128 assert((InlineAsm::isRegDefKind(OpFlag) || 6129 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6130 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6131 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6132 } 6133 6134 unsigned OpFlag = 6135 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6136 if (InlineAsm::isRegDefKind(OpFlag) || 6137 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6138 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6139 if (OpInfo.isIndirect) { 6140 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6141 LLVMContext &Ctx = *DAG.getContext(); 6142 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6143 " don't know how to handle tied " 6144 "indirect register inputs"); 6145 } 6146 6147 RegsForValue MatchedRegs; 6148 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6149 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6150 MatchedRegs.RegVTs.push_back(RegVT); 6151 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6152 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6153 i != e; ++i) 6154 MatchedRegs.Regs.push_back 6155 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6156 6157 // Use the produced MatchedRegs object to 6158 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6159 Chain, &Flag); 6160 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6161 true, OpInfo.getMatchedOperand(), 6162 DAG, AsmNodeOperands); 6163 break; 6164 } 6165 6166 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6167 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6168 "Unexpected number of operands"); 6169 // Add information to the INLINEASM node to know about this input. 6170 // See InlineAsm.h isUseOperandTiedToDef. 6171 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6172 OpInfo.getMatchedOperand()); 6173 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6174 TLI.getPointerTy())); 6175 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6176 break; 6177 } 6178 6179 // Treat indirect 'X' constraint as memory. 6180 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6181 OpInfo.isIndirect) 6182 OpInfo.ConstraintType = TargetLowering::C_Memory; 6183 6184 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6185 std::vector<SDValue> Ops; 6186 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6187 Ops, DAG); 6188 if (Ops.empty()) { 6189 LLVMContext &Ctx = *DAG.getContext(); 6190 Ctx.emitError(CS.getInstruction(), 6191 "invalid operand for inline asm constraint '" + 6192 Twine(OpInfo.ConstraintCode) + "'"); 6193 break; 6194 } 6195 6196 // Add information to the INLINEASM node to know about this input. 6197 unsigned ResOpType = 6198 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6199 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6200 TLI.getPointerTy())); 6201 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6202 break; 6203 } 6204 6205 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6206 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6207 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6208 "Memory operands expect pointer values"); 6209 6210 // Add information to the INLINEASM node to know about this input. 6211 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6212 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6213 TLI.getPointerTy())); 6214 AsmNodeOperands.push_back(InOperandVal); 6215 break; 6216 } 6217 6218 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6219 OpInfo.ConstraintType == TargetLowering::C_Register) && 6220 "Unknown constraint type!"); 6221 assert(!OpInfo.isIndirect && 6222 "Don't know how to handle indirect register inputs yet!"); 6223 6224 // Copy the input into the appropriate registers. 6225 if (OpInfo.AssignedRegs.Regs.empty()) { 6226 LLVMContext &Ctx = *DAG.getContext(); 6227 Ctx.emitError(CS.getInstruction(), 6228 "couldn't allocate input reg for constraint '" + 6229 Twine(OpInfo.ConstraintCode) + "'"); 6230 break; 6231 } 6232 6233 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6234 Chain, &Flag); 6235 6236 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6237 DAG, AsmNodeOperands); 6238 break; 6239 } 6240 case InlineAsm::isClobber: { 6241 // Add the clobbered value to the operand list, so that the register 6242 // allocator is aware that the physreg got clobbered. 6243 if (!OpInfo.AssignedRegs.Regs.empty()) 6244 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6245 false, 0, DAG, 6246 AsmNodeOperands); 6247 break; 6248 } 6249 } 6250 } 6251 6252 // Finish up input operands. Set the input chain and add the flag last. 6253 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6254 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6255 6256 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6257 DAG.getVTList(MVT::Other, MVT::Glue), 6258 &AsmNodeOperands[0], AsmNodeOperands.size()); 6259 Flag = Chain.getValue(1); 6260 6261 // If this asm returns a register value, copy the result from that register 6262 // and set it as the value of the call. 6263 if (!RetValRegs.Regs.empty()) { 6264 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6265 Chain, &Flag); 6266 6267 // FIXME: Why don't we do this for inline asms with MRVs? 6268 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6269 EVT ResultType = TLI.getValueType(CS.getType()); 6270 6271 // If any of the results of the inline asm is a vector, it may have the 6272 // wrong width/num elts. This can happen for register classes that can 6273 // contain multiple different value types. The preg or vreg allocated may 6274 // not have the same VT as was expected. Convert it to the right type 6275 // with bit_convert. 6276 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6277 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6278 ResultType, Val); 6279 6280 } else if (ResultType != Val.getValueType() && 6281 ResultType.isInteger() && Val.getValueType().isInteger()) { 6282 // If a result value was tied to an input value, the computed result may 6283 // have a wider width than the expected result. Extract the relevant 6284 // portion. 6285 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6286 } 6287 6288 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6289 } 6290 6291 setValue(CS.getInstruction(), Val); 6292 // Don't need to use this as a chain in this case. 6293 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6294 return; 6295 } 6296 6297 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6298 6299 // Process indirect outputs, first output all of the flagged copies out of 6300 // physregs. 6301 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6302 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6303 const Value *Ptr = IndirectStoresToEmit[i].second; 6304 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6305 Chain, &Flag); 6306 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6307 } 6308 6309 // Emit the non-flagged stores from the physregs. 6310 SmallVector<SDValue, 8> OutChains; 6311 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6312 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6313 StoresToEmit[i].first, 6314 getValue(StoresToEmit[i].second), 6315 MachinePointerInfo(StoresToEmit[i].second), 6316 false, false, 0); 6317 OutChains.push_back(Val); 6318 } 6319 6320 if (!OutChains.empty()) 6321 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6322 &OutChains[0], OutChains.size()); 6323 6324 DAG.setRoot(Chain); 6325 } 6326 6327 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6328 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6329 MVT::Other, getRoot(), 6330 getValue(I.getArgOperand(0)), 6331 DAG.getSrcValue(I.getArgOperand(0)))); 6332 } 6333 6334 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6335 const TargetData &TD = *TLI.getTargetData(); 6336 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6337 getRoot(), getValue(I.getOperand(0)), 6338 DAG.getSrcValue(I.getOperand(0)), 6339 TD.getABITypeAlignment(I.getType())); 6340 setValue(&I, V); 6341 DAG.setRoot(V.getValue(1)); 6342 } 6343 6344 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6345 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6346 MVT::Other, getRoot(), 6347 getValue(I.getArgOperand(0)), 6348 DAG.getSrcValue(I.getArgOperand(0)))); 6349 } 6350 6351 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6352 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6353 MVT::Other, getRoot(), 6354 getValue(I.getArgOperand(0)), 6355 getValue(I.getArgOperand(1)), 6356 DAG.getSrcValue(I.getArgOperand(0)), 6357 DAG.getSrcValue(I.getArgOperand(1)))); 6358 } 6359 6360 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6361 /// implementation, which just calls LowerCall. 6362 /// FIXME: When all targets are 6363 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6364 std::pair<SDValue, SDValue> 6365 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6366 bool RetSExt, bool RetZExt, bool isVarArg, 6367 bool isInreg, unsigned NumFixedArgs, 6368 CallingConv::ID CallConv, bool isTailCall, 6369 bool doesNotRet, bool isReturnValueUsed, 6370 SDValue Callee, 6371 ArgListTy &Args, SelectionDAG &DAG, 6372 DebugLoc dl) const { 6373 // Handle all of the outgoing arguments. 6374 SmallVector<ISD::OutputArg, 32> Outs; 6375 SmallVector<SDValue, 32> OutVals; 6376 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6377 SmallVector<EVT, 4> ValueVTs; 6378 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6379 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6380 Value != NumValues; ++Value) { 6381 EVT VT = ValueVTs[Value]; 6382 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6383 SDValue Op = SDValue(Args[i].Node.getNode(), 6384 Args[i].Node.getResNo() + Value); 6385 ISD::ArgFlagsTy Flags; 6386 unsigned OriginalAlignment = 6387 getTargetData()->getABITypeAlignment(ArgTy); 6388 6389 if (Args[i].isZExt) 6390 Flags.setZExt(); 6391 if (Args[i].isSExt) 6392 Flags.setSExt(); 6393 if (Args[i].isInReg) 6394 Flags.setInReg(); 6395 if (Args[i].isSRet) 6396 Flags.setSRet(); 6397 if (Args[i].isByVal) { 6398 Flags.setByVal(); 6399 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6400 Type *ElementTy = Ty->getElementType(); 6401 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6402 // For ByVal, alignment should come from FE. BE will guess if this 6403 // info is not there but there are cases it cannot get right. 6404 unsigned FrameAlign; 6405 if (Args[i].Alignment) 6406 FrameAlign = Args[i].Alignment; 6407 else 6408 FrameAlign = getByValTypeAlignment(ElementTy); 6409 Flags.setByValAlign(FrameAlign); 6410 } 6411 if (Args[i].isNest) 6412 Flags.setNest(); 6413 Flags.setOrigAlign(OriginalAlignment); 6414 6415 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6416 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6417 SmallVector<SDValue, 4> Parts(NumParts); 6418 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6419 6420 if (Args[i].isSExt) 6421 ExtendKind = ISD::SIGN_EXTEND; 6422 else if (Args[i].isZExt) 6423 ExtendKind = ISD::ZERO_EXTEND; 6424 6425 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6426 PartVT, ExtendKind); 6427 6428 for (unsigned j = 0; j != NumParts; ++j) { 6429 // if it isn't first piece, alignment must be 1 6430 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6431 i < NumFixedArgs); 6432 if (NumParts > 1 && j == 0) 6433 MyFlags.Flags.setSplit(); 6434 else if (j != 0) 6435 MyFlags.Flags.setOrigAlign(1); 6436 6437 Outs.push_back(MyFlags); 6438 OutVals.push_back(Parts[j]); 6439 } 6440 } 6441 } 6442 6443 // Handle the incoming return values from the call. 6444 SmallVector<ISD::InputArg, 32> Ins; 6445 SmallVector<EVT, 4> RetTys; 6446 ComputeValueVTs(*this, RetTy, RetTys); 6447 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6448 EVT VT = RetTys[I]; 6449 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6450 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6451 for (unsigned i = 0; i != NumRegs; ++i) { 6452 ISD::InputArg MyFlags; 6453 MyFlags.VT = RegisterVT.getSimpleVT(); 6454 MyFlags.Used = isReturnValueUsed; 6455 if (RetSExt) 6456 MyFlags.Flags.setSExt(); 6457 if (RetZExt) 6458 MyFlags.Flags.setZExt(); 6459 if (isInreg) 6460 MyFlags.Flags.setInReg(); 6461 Ins.push_back(MyFlags); 6462 } 6463 } 6464 6465 SmallVector<SDValue, 4> InVals; 6466 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, doesNotRet, isTailCall, 6467 Outs, OutVals, Ins, dl, DAG, InVals); 6468 6469 // Verify that the target's LowerCall behaved as expected. 6470 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6471 "LowerCall didn't return a valid chain!"); 6472 assert((!isTailCall || InVals.empty()) && 6473 "LowerCall emitted a return value for a tail call!"); 6474 assert((isTailCall || InVals.size() == Ins.size()) && 6475 "LowerCall didn't emit the correct number of values!"); 6476 6477 // For a tail call, the return value is merely live-out and there aren't 6478 // any nodes in the DAG representing it. Return a special value to 6479 // indicate that a tail call has been emitted and no more Instructions 6480 // should be processed in the current block. 6481 if (isTailCall) { 6482 DAG.setRoot(Chain); 6483 return std::make_pair(SDValue(), SDValue()); 6484 } 6485 6486 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6487 assert(InVals[i].getNode() && 6488 "LowerCall emitted a null value!"); 6489 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6490 "LowerCall emitted a value with the wrong type!"); 6491 }); 6492 6493 // Collect the legal value parts into potentially illegal values 6494 // that correspond to the original function's return values. 6495 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6496 if (RetSExt) 6497 AssertOp = ISD::AssertSext; 6498 else if (RetZExt) 6499 AssertOp = ISD::AssertZext; 6500 SmallVector<SDValue, 4> ReturnValues; 6501 unsigned CurReg = 0; 6502 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6503 EVT VT = RetTys[I]; 6504 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6505 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6506 6507 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6508 NumRegs, RegisterVT, VT, 6509 AssertOp)); 6510 CurReg += NumRegs; 6511 } 6512 6513 // For a function returning void, there is no return value. We can't create 6514 // such a node, so we just return a null return value in that case. In 6515 // that case, nothing will actually look at the value. 6516 if (ReturnValues.empty()) 6517 return std::make_pair(SDValue(), Chain); 6518 6519 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6520 DAG.getVTList(&RetTys[0], RetTys.size()), 6521 &ReturnValues[0], ReturnValues.size()); 6522 return std::make_pair(Res, Chain); 6523 } 6524 6525 void TargetLowering::LowerOperationWrapper(SDNode *N, 6526 SmallVectorImpl<SDValue> &Results, 6527 SelectionDAG &DAG) const { 6528 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6529 if (Res.getNode()) 6530 Results.push_back(Res); 6531 } 6532 6533 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6534 llvm_unreachable("LowerOperation not implemented for this target!"); 6535 } 6536 6537 void 6538 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6539 SDValue Op = getNonRegisterValue(V); 6540 assert((Op.getOpcode() != ISD::CopyFromReg || 6541 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6542 "Copy from a reg to the same reg!"); 6543 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6544 6545 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6546 SDValue Chain = DAG.getEntryNode(); 6547 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6548 PendingExports.push_back(Chain); 6549 } 6550 6551 #include "llvm/CodeGen/SelectionDAGISel.h" 6552 6553 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6554 /// entry block, return true. This includes arguments used by switches, since 6555 /// the switch may expand into multiple basic blocks. 6556 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6557 // With FastISel active, we may be splitting blocks, so force creation 6558 // of virtual registers for all non-dead arguments. 6559 if (FastISel) 6560 return A->use_empty(); 6561 6562 const BasicBlock *Entry = A->getParent()->begin(); 6563 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6564 UI != E; ++UI) { 6565 const User *U = *UI; 6566 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6567 return false; // Use not in entry block. 6568 } 6569 return true; 6570 } 6571 6572 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6573 // If this is the entry block, emit arguments. 6574 const Function &F = *LLVMBB->getParent(); 6575 SelectionDAG &DAG = SDB->DAG; 6576 DebugLoc dl = SDB->getCurDebugLoc(); 6577 const TargetData *TD = TLI.getTargetData(); 6578 SmallVector<ISD::InputArg, 16> Ins; 6579 6580 // Check whether the function can return without sret-demotion. 6581 SmallVector<ISD::OutputArg, 4> Outs; 6582 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6583 Outs, TLI); 6584 6585 if (!FuncInfo->CanLowerReturn) { 6586 // Put in an sret pointer parameter before all the other parameters. 6587 SmallVector<EVT, 1> ValueVTs; 6588 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6589 6590 // NOTE: Assuming that a pointer will never break down to more than one VT 6591 // or one register. 6592 ISD::ArgFlagsTy Flags; 6593 Flags.setSRet(); 6594 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6595 ISD::InputArg RetArg(Flags, RegisterVT, true); 6596 Ins.push_back(RetArg); 6597 } 6598 6599 // Set up the incoming argument description vector. 6600 unsigned Idx = 1; 6601 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6602 I != E; ++I, ++Idx) { 6603 SmallVector<EVT, 4> ValueVTs; 6604 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6605 bool isArgValueUsed = !I->use_empty(); 6606 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6607 Value != NumValues; ++Value) { 6608 EVT VT = ValueVTs[Value]; 6609 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6610 ISD::ArgFlagsTy Flags; 6611 unsigned OriginalAlignment = 6612 TD->getABITypeAlignment(ArgTy); 6613 6614 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6615 Flags.setZExt(); 6616 if (F.paramHasAttr(Idx, Attribute::SExt)) 6617 Flags.setSExt(); 6618 if (F.paramHasAttr(Idx, Attribute::InReg)) 6619 Flags.setInReg(); 6620 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6621 Flags.setSRet(); 6622 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6623 Flags.setByVal(); 6624 PointerType *Ty = cast<PointerType>(I->getType()); 6625 Type *ElementTy = Ty->getElementType(); 6626 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6627 // For ByVal, alignment should be passed from FE. BE will guess if 6628 // this info is not there but there are cases it cannot get right. 6629 unsigned FrameAlign; 6630 if (F.getParamAlignment(Idx)) 6631 FrameAlign = F.getParamAlignment(Idx); 6632 else 6633 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6634 Flags.setByValAlign(FrameAlign); 6635 } 6636 if (F.paramHasAttr(Idx, Attribute::Nest)) 6637 Flags.setNest(); 6638 Flags.setOrigAlign(OriginalAlignment); 6639 6640 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6641 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6642 for (unsigned i = 0; i != NumRegs; ++i) { 6643 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6644 if (NumRegs > 1 && i == 0) 6645 MyFlags.Flags.setSplit(); 6646 // if it isn't first piece, alignment must be 1 6647 else if (i > 0) 6648 MyFlags.Flags.setOrigAlign(1); 6649 Ins.push_back(MyFlags); 6650 } 6651 } 6652 } 6653 6654 // Call the target to set up the argument values. 6655 SmallVector<SDValue, 8> InVals; 6656 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6657 F.isVarArg(), Ins, 6658 dl, DAG, InVals); 6659 6660 // Verify that the target's LowerFormalArguments behaved as expected. 6661 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6662 "LowerFormalArguments didn't return a valid chain!"); 6663 assert(InVals.size() == Ins.size() && 6664 "LowerFormalArguments didn't emit the correct number of values!"); 6665 DEBUG({ 6666 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6667 assert(InVals[i].getNode() && 6668 "LowerFormalArguments emitted a null value!"); 6669 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6670 "LowerFormalArguments emitted a value with the wrong type!"); 6671 } 6672 }); 6673 6674 // Update the DAG with the new chain value resulting from argument lowering. 6675 DAG.setRoot(NewRoot); 6676 6677 // Set up the argument values. 6678 unsigned i = 0; 6679 Idx = 1; 6680 if (!FuncInfo->CanLowerReturn) { 6681 // Create a virtual register for the sret pointer, and put in a copy 6682 // from the sret argument into it. 6683 SmallVector<EVT, 1> ValueVTs; 6684 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6685 EVT VT = ValueVTs[0]; 6686 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6687 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6688 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6689 RegVT, VT, AssertOp); 6690 6691 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6692 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6693 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6694 FuncInfo->DemoteRegister = SRetReg; 6695 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6696 SRetReg, ArgValue); 6697 DAG.setRoot(NewRoot); 6698 6699 // i indexes lowered arguments. Bump it past the hidden sret argument. 6700 // Idx indexes LLVM arguments. Don't touch it. 6701 ++i; 6702 } 6703 6704 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6705 ++I, ++Idx) { 6706 SmallVector<SDValue, 4> ArgValues; 6707 SmallVector<EVT, 4> ValueVTs; 6708 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6709 unsigned NumValues = ValueVTs.size(); 6710 6711 // If this argument is unused then remember its value. It is used to generate 6712 // debugging information. 6713 if (I->use_empty() && NumValues) 6714 SDB->setUnusedArgValue(I, InVals[i]); 6715 6716 for (unsigned Val = 0; Val != NumValues; ++Val) { 6717 EVT VT = ValueVTs[Val]; 6718 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6719 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6720 6721 if (!I->use_empty()) { 6722 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6723 if (F.paramHasAttr(Idx, Attribute::SExt)) 6724 AssertOp = ISD::AssertSext; 6725 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6726 AssertOp = ISD::AssertZext; 6727 6728 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6729 NumParts, PartVT, VT, 6730 AssertOp)); 6731 } 6732 6733 i += NumParts; 6734 } 6735 6736 // We don't need to do anything else for unused arguments. 6737 if (ArgValues.empty()) 6738 continue; 6739 6740 // Note down frame index. 6741 if (FrameIndexSDNode *FI = 6742 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6743 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6744 6745 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6746 SDB->getCurDebugLoc()); 6747 6748 SDB->setValue(I, Res); 6749 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6750 if (LoadSDNode *LNode = 6751 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6752 if (FrameIndexSDNode *FI = 6753 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6754 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6755 } 6756 6757 // If this argument is live outside of the entry block, insert a copy from 6758 // wherever we got it to the vreg that other BB's will reference it as. 6759 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6760 // If we can, though, try to skip creating an unnecessary vreg. 6761 // FIXME: This isn't very clean... it would be nice to make this more 6762 // general. It's also subtly incompatible with the hacks FastISel 6763 // uses with vregs. 6764 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6765 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6766 FuncInfo->ValueMap[I] = Reg; 6767 continue; 6768 } 6769 } 6770 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6771 FuncInfo->InitializeRegForValue(I); 6772 SDB->CopyToExportRegsIfNeeded(I); 6773 } 6774 } 6775 6776 assert(i == InVals.size() && "Argument register count mismatch!"); 6777 6778 // Finally, if the target has anything special to do, allow it to do so. 6779 // FIXME: this should insert code into the DAG! 6780 EmitFunctionEntryCode(); 6781 } 6782 6783 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6784 /// ensure constants are generated when needed. Remember the virtual registers 6785 /// that need to be added to the Machine PHI nodes as input. We cannot just 6786 /// directly add them, because expansion might result in multiple MBB's for one 6787 /// BB. As such, the start of the BB might correspond to a different MBB than 6788 /// the end. 6789 /// 6790 void 6791 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6792 const TerminatorInst *TI = LLVMBB->getTerminator(); 6793 6794 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6795 6796 // Check successor nodes' PHI nodes that expect a constant to be available 6797 // from this block. 6798 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6799 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6800 if (!isa<PHINode>(SuccBB->begin())) continue; 6801 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6802 6803 // If this terminator has multiple identical successors (common for 6804 // switches), only handle each succ once. 6805 if (!SuccsHandled.insert(SuccMBB)) continue; 6806 6807 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6808 6809 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6810 // nodes and Machine PHI nodes, but the incoming operands have not been 6811 // emitted yet. 6812 for (BasicBlock::const_iterator I = SuccBB->begin(); 6813 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6814 // Ignore dead phi's. 6815 if (PN->use_empty()) continue; 6816 6817 // Skip empty types 6818 if (PN->getType()->isEmptyTy()) 6819 continue; 6820 6821 unsigned Reg; 6822 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6823 6824 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6825 unsigned &RegOut = ConstantsOut[C]; 6826 if (RegOut == 0) { 6827 RegOut = FuncInfo.CreateRegs(C->getType()); 6828 CopyValueToVirtualRegister(C, RegOut); 6829 } 6830 Reg = RegOut; 6831 } else { 6832 DenseMap<const Value *, unsigned>::iterator I = 6833 FuncInfo.ValueMap.find(PHIOp); 6834 if (I != FuncInfo.ValueMap.end()) 6835 Reg = I->second; 6836 else { 6837 assert(isa<AllocaInst>(PHIOp) && 6838 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6839 "Didn't codegen value into a register!??"); 6840 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6841 CopyValueToVirtualRegister(PHIOp, Reg); 6842 } 6843 } 6844 6845 // Remember that this register needs to added to the machine PHI node as 6846 // the input for this MBB. 6847 SmallVector<EVT, 4> ValueVTs; 6848 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6849 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6850 EVT VT = ValueVTs[vti]; 6851 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6852 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6853 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6854 Reg += NumRegisters; 6855 } 6856 } 6857 } 6858 ConstantsOut.clear(); 6859 } 6860