xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision d34e60ca8532511acb8c93ef26297e349fbec86a)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // True if the Value passed requires ABI mangling as it is a parameter to a
161 // function or a return value from a function which is not an intrinsic.
162 static bool isABIRegCopy(const Value *V) {
163   const bool IsRetInst = V && isa<ReturnInst>(V);
164   const bool IsCallInst = V && isa<CallInst>(V);
165   const bool IsInLineAsm =
166       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
167   const bool IsIndirectFunctionCall =
168       IsCallInst && !IsInLineAsm &&
169       !static_cast<const CallInst *>(V)->getCalledFunction();
170   // It is possible that the call instruction is an inline asm statement or an
171   // indirect function call in which case the return value of
172   // getCalledFunction() would be nullptr.
173   const bool IsInstrinsicCall =
174       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
175       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
176           Intrinsic::not_intrinsic;
177 
178   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
179 }
180 
181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
182                                       const SDValue *Parts, unsigned NumParts,
183                                       MVT PartVT, EVT ValueVT, const Value *V,
184                                       bool IsABIRegCopy);
185 
186 /// getCopyFromParts - Create a value that contains the specified legal parts
187 /// combined into the value they represent.  If the parts combine to a type
188 /// larger than ValueVT then AssertOp can be used to specify whether the extra
189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
190 /// (ISD::AssertSext).
191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
192                                 const SDValue *Parts, unsigned NumParts,
193                                 MVT PartVT, EVT ValueVT, const Value *V,
194                                 Optional<ISD::NodeType> AssertOp = None,
195                                 bool IsABIRegCopy = false) {
196   if (ValueVT.isVector())
197     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
198                                   PartVT, ValueVT, V, IsABIRegCopy);
199 
200   assert(NumParts > 0 && "No parts to assemble!");
201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
202   SDValue Val = Parts[0];
203 
204   if (NumParts > 1) {
205     // Assemble the value from multiple parts.
206     if (ValueVT.isInteger()) {
207       unsigned PartBits = PartVT.getSizeInBits();
208       unsigned ValueBits = ValueVT.getSizeInBits();
209 
210       // Assemble the power of 2 part.
211       unsigned RoundParts = NumParts & (NumParts - 1) ?
212         1 << Log2_32(NumParts) : NumParts;
213       unsigned RoundBits = PartBits * RoundParts;
214       EVT RoundVT = RoundBits == ValueBits ?
215         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
216       SDValue Lo, Hi;
217 
218       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
219 
220       if (RoundParts > 2) {
221         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
222                               PartVT, HalfVT, V);
223         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
224                               RoundParts / 2, PartVT, HalfVT, V);
225       } else {
226         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
227         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
228       }
229 
230       if (DAG.getDataLayout().isBigEndian())
231         std::swap(Lo, Hi);
232 
233       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
234 
235       if (RoundParts < NumParts) {
236         // Assemble the trailing non-power-of-2 part.
237         unsigned OddParts = NumParts - RoundParts;
238         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
239         Hi = getCopyFromParts(DAG, DL,
240                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
241 
242         // Combine the round and odd parts.
243         Lo = Val;
244         if (DAG.getDataLayout().isBigEndian())
245           std::swap(Lo, Hi);
246         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
247         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
248         Hi =
249             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
250                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
251                                         TLI.getPointerTy(DAG.getDataLayout())));
252         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
253         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
254       }
255     } else if (PartVT.isFloatingPoint()) {
256       // FP split into multiple FP parts (for ppcf128)
257       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
258              "Unexpected split");
259       SDValue Lo, Hi;
260       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
261       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
262       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
263         std::swap(Lo, Hi);
264       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
265     } else {
266       // FP split into integer parts (soft fp)
267       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
268              !PartVT.isVector() && "Unexpected split");
269       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
270       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
271     }
272   }
273 
274   // There is now one part, held in Val.  Correct it to match ValueVT.
275   // PartEVT is the type of the register class that holds the value.
276   // ValueVT is the type of the inline asm operation.
277   EVT PartEVT = Val.getValueType();
278 
279   if (PartEVT == ValueVT)
280     return Val;
281 
282   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
283       ValueVT.bitsLT(PartEVT)) {
284     // For an FP value in an integer part, we need to truncate to the right
285     // width first.
286     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
287     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
288   }
289 
290   // Handle types that have the same size.
291   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
292     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
293 
294   // Handle types with different sizes.
295   if (PartEVT.isInteger() && ValueVT.isInteger()) {
296     if (ValueVT.bitsLT(PartEVT)) {
297       // For a truncate, see if we have any information to
298       // indicate whether the truncated bits will always be
299       // zero or sign-extension.
300       if (AssertOp.hasValue())
301         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
302                           DAG.getValueType(ValueVT));
303       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
304     }
305     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
306   }
307 
308   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
309     // FP_ROUND's are always exact here.
310     if (ValueVT.bitsLT(Val.getValueType()))
311       return DAG.getNode(
312           ISD::FP_ROUND, DL, ValueVT, Val,
313           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
314 
315     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
316   }
317 
318   llvm_unreachable("Unknown mismatch!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (isa<InlineAsm>(CI->getCalledValue()))
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       bool IsABIRegCopy) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
359           RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
380                                   PartVT, IntermediateVT, V);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
389                                   PartVT, IntermediateVT, V);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
396                          (IntermediateVT.isVector()
397                               ? IntermediateVT.getVectorNumElements() * NumParts
398                               : NumIntermediates));
399     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
400                                                 : ISD::BUILD_VECTOR,
401                       DL, BuiltVectorTy, Ops);
402   }
403 
404   // There is now one part, held in Val.  Correct it to match ValueVT.
405   EVT PartEVT = Val.getValueType();
406 
407   if (PartEVT == ValueVT)
408     return Val;
409 
410   if (PartEVT.isVector()) {
411     // If the element type of the source/dest vectors are the same, but the
412     // parts vector has more elements than the value vector, then we have a
413     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
414     // elements we want.
415     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
416       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
417              "Cannot narrow, it would be a lossy transformation");
418       return DAG.getNode(
419           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
420           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
421     }
422 
423     // Vector/Vector bitcast.
424     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
425       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
426 
427     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
428       "Cannot handle this kind of promotion");
429     // Promoted vector extract
430     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
431 
432   }
433 
434   // Trivial bitcast if the types are the same size and the destination
435   // vector type is legal.
436   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
437       TLI.isTypeLegal(ValueVT))
438     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440   if (ValueVT.getVectorNumElements() != 1) {
441      // Certain ABIs require that vectors are passed as integers. For vectors
442      // are the same size, this is an obvious bitcast.
443      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
444        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
446        // Bitcast Val back the original type and extract the corresponding
447        // vector we want.
448        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
449        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
450                                            ValueVT.getVectorElementType(), Elts);
451        Val = DAG.getBitcast(WiderVecType, Val);
452        return DAG.getNode(
453            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
454            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
455      }
456 
457      diagnosePossiblyInvalidConstraint(
458          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
459      return DAG.getUNDEF(ValueVT);
460   }
461 
462   // Handle cases such as i8 -> <1 x i1>
463   EVT ValueSVT = ValueVT.getVectorElementType();
464   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
465     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467 
468   return DAG.getBuildVector(ValueVT, DL, Val);
469 }
470 
471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
472                                  SDValue Val, SDValue *Parts, unsigned NumParts,
473                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
474 
475 /// getCopyToParts - Create a series of nodes that contain the specified value
476 /// split into legal parts.  If the parts contain more bits than Val, then, for
477 /// integers, ExtendKind can be used to specify how to generate the extra bits.
478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
479                            SDValue *Parts, unsigned NumParts, MVT PartVT,
480                            const Value *V,
481                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
482                            bool IsABIRegCopy = false) {
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 IsABIRegCopy);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566                                  DAG.getIntPtrConstant(RoundBits, DL));
567     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
568 
569     if (DAG.getDataLayout().isBigEndian())
570       // The odd parts were reversed by getCopyToParts - unreverse them.
571       std::reverse(Parts + RoundParts, Parts + NumParts);
572 
573     NumParts = RoundParts;
574     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
575     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
576   }
577 
578   // The number of parts is a power of 2.  Repeatedly bisect the value using
579   // EXTRACT_ELEMENT.
580   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
581                          EVT::getIntegerVT(*DAG.getContext(),
582                                            ValueVT.getSizeInBits()),
583                          Val);
584 
585   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
586     for (unsigned i = 0; i < NumParts; i += StepSize) {
587       unsigned ThisBits = StepSize * PartBits / 2;
588       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
589       SDValue &Part0 = Parts[i];
590       SDValue &Part1 = Parts[i+StepSize/2];
591 
592       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
594       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
596 
597       if (ThisBits == PartBits && ThisVT != PartVT) {
598         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
599         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
600       }
601     }
602   }
603 
604   if (DAG.getDataLayout().isBigEndian())
605     std::reverse(Parts, Parts + OrigNumParts);
606 }
607 
608 
609 /// getCopyToPartsVector - Create a series of nodes that contain the specified
610 /// value split into legal parts.
611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
612                                  SDValue Val, SDValue *Parts, unsigned NumParts,
613                                  MVT PartVT, const Value *V,
614                                  bool IsABIRegCopy) {
615   EVT ValueVT = Val.getValueType();
616   assert(ValueVT.isVector() && "Not a vector");
617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618 
619   if (NumParts == 1) {
620     EVT PartEVT = PartVT;
621     if (PartEVT == ValueVT) {
622       // Nothing to do.
623     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
624       // Bitconvert vector->vector case.
625       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
626     } else if (PartVT.isVector() &&
627                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
628                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
629       EVT ElementVT = PartVT.getVectorElementType();
630       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631       // undef elements.
632       SmallVector<SDValue, 16> Ops;
633       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
634         Ops.push_back(DAG.getNode(
635             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
636             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
637 
638       for (unsigned i = ValueVT.getVectorNumElements(),
639            e = PartVT.getVectorNumElements(); i != e; ++i)
640         Ops.push_back(DAG.getUNDEF(ElementVT));
641 
642       Val = DAG.getBuildVector(PartVT, DL, Ops);
643 
644       // FIXME: Use CONCAT for 2x -> 4x.
645 
646       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
647       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
648     } else if (PartVT.isVector() &&
649                PartEVT.getVectorElementType().bitsGE(
650                  ValueVT.getVectorElementType()) &&
651                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
652 
653       // Promoted vector extract
654       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
655     } else {
656       if (ValueVT.getVectorNumElements() == 1) {
657         Val = DAG.getNode(
658             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
659             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
660       } else {
661         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
662                "lossy conversion of vector to scalar type");
663         EVT IntermediateType =
664             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
665         Val = DAG.getBitcast(IntermediateType, Val);
666         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667       }
668     }
669 
670     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
671     Parts[0] = Val;
672     return;
673   }
674 
675   // Handle a multi-element vector.
676   EVT IntermediateVT;
677   MVT RegisterVT;
678   unsigned NumIntermediates;
679   unsigned NumRegs;
680   if (IsABIRegCopy) {
681     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
682         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
683         RegisterVT);
684   } else {
685     NumRegs =
686         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
687                                    NumIntermediates, RegisterVT);
688   }
689   unsigned NumElements = ValueVT.getVectorNumElements();
690 
691   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
692   NumParts = NumRegs; // Silence a compiler warning.
693   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
694 
695   // Convert the vector to the appropiate type if necessary.
696   unsigned DestVectorNoElts =
697       NumIntermediates *
698       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
699   EVT BuiltVectorTy = EVT::getVectorVT(
700       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
701   if (Val.getValueType() != BuiltVectorTy)
702     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
703 
704   // Split the vector into intermediate operands.
705   SmallVector<SDValue, 8> Ops(NumIntermediates);
706   for (unsigned i = 0; i != NumIntermediates; ++i) {
707     if (IntermediateVT.isVector())
708       Ops[i] =
709           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
710                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
711                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
712     else
713       Ops[i] = DAG.getNode(
714           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
715           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
716   }
717 
718   // Split the intermediate operands into legal parts.
719   if (NumParts == NumIntermediates) {
720     // If the register was not expanded, promote or copy the value,
721     // as appropriate.
722     for (unsigned i = 0; i != NumParts; ++i)
723       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
724   } else if (NumParts > 0) {
725     // If the intermediate type was expanded, split each the value into
726     // legal parts.
727     assert(NumIntermediates != 0 && "division by zero");
728     assert(NumParts % NumIntermediates == 0 &&
729            "Must expand into a divisible number of parts!");
730     unsigned Factor = NumParts / NumIntermediates;
731     for (unsigned i = 0; i != NumIntermediates; ++i)
732       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
733   }
734 }
735 
736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
737                            EVT valuevt, bool IsABIMangledValue)
738     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
739       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
740 
741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
742                            const DataLayout &DL, unsigned Reg, Type *Ty,
743                            bool IsABIMangledValue) {
744   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
745 
746   IsABIMangled = IsABIMangledValue;
747 
748   for (EVT ValueVT : ValueVTs) {
749     unsigned NumRegs = IsABIMangledValue
750                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
751                            : TLI.getNumRegisters(Context, ValueVT);
752     MVT RegisterVT = IsABIMangledValue
753                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
754                          : TLI.getRegisterType(Context, ValueVT);
755     for (unsigned i = 0; i != NumRegs; ++i)
756       Regs.push_back(Reg + i);
757     RegVTs.push_back(RegisterVT);
758     RegCount.push_back(NumRegs);
759     Reg += NumRegs;
760   }
761 }
762 
763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
764                                       FunctionLoweringInfo &FuncInfo,
765                                       const SDLoc &dl, SDValue &Chain,
766                                       SDValue *Flag, const Value *V) const {
767   // A Value with type {} or [0 x %t] needs no registers.
768   if (ValueVTs.empty())
769     return SDValue();
770 
771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
772 
773   // Assemble the legal parts into the final values.
774   SmallVector<SDValue, 4> Values(ValueVTs.size());
775   SmallVector<SDValue, 8> Parts;
776   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
777     // Copy the legal parts from the registers.
778     EVT ValueVT = ValueVTs[Value];
779     unsigned NumRegs = RegCount[Value];
780     MVT RegisterVT = IsABIMangled
781                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
782                          : RegVTs[Value];
783 
784     Parts.resize(NumRegs);
785     for (unsigned i = 0; i != NumRegs; ++i) {
786       SDValue P;
787       if (!Flag) {
788         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
789       } else {
790         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
791         *Flag = P.getValue(2);
792       }
793 
794       Chain = P.getValue(1);
795       Parts[i] = P;
796 
797       // If the source register was virtual and if we know something about it,
798       // add an assert node.
799       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
800           !RegisterVT.isInteger() || RegisterVT.isVector())
801         continue;
802 
803       const FunctionLoweringInfo::LiveOutInfo *LOI =
804         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
805       if (!LOI)
806         continue;
807 
808       unsigned RegSize = RegisterVT.getSizeInBits();
809       unsigned NumSignBits = LOI->NumSignBits;
810       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
811 
812       if (NumZeroBits == RegSize) {
813         // The current value is a zero.
814         // Explicitly express that as it would be easier for
815         // optimizations to kick in.
816         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
817         continue;
818       }
819 
820       // FIXME: We capture more information than the dag can represent.  For
821       // now, just use the tightest assertzext/assertsext possible.
822       bool isSExt = true;
823       EVT FromVT(MVT::Other);
824       if (NumSignBits == RegSize) {
825         isSExt = true;   // ASSERT SEXT 1
826         FromVT = MVT::i1;
827       } else if (NumZeroBits >= RegSize - 1) {
828         isSExt = false;  // ASSERT ZEXT 1
829         FromVT = MVT::i1;
830       } else if (NumSignBits > RegSize - 8) {
831         isSExt = true;   // ASSERT SEXT 8
832         FromVT = MVT::i8;
833       } else if (NumZeroBits >= RegSize - 8) {
834         isSExt = false;  // ASSERT ZEXT 8
835         FromVT = MVT::i8;
836       } else if (NumSignBits > RegSize - 16) {
837         isSExt = true;   // ASSERT SEXT 16
838         FromVT = MVT::i16;
839       } else if (NumZeroBits >= RegSize - 16) {
840         isSExt = false;  // ASSERT ZEXT 16
841         FromVT = MVT::i16;
842       } else if (NumSignBits > RegSize - 32) {
843         isSExt = true;   // ASSERT SEXT 32
844         FromVT = MVT::i32;
845       } else if (NumZeroBits >= RegSize - 32) {
846         isSExt = false;  // ASSERT ZEXT 32
847         FromVT = MVT::i32;
848       } else {
849         continue;
850       }
851       // Add an assertion node.
852       assert(FromVT != MVT::Other);
853       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
854                              RegisterVT, P, DAG.getValueType(FromVT));
855     }
856 
857     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
858                                      NumRegs, RegisterVT, ValueVT, V);
859     Part += NumRegs;
860     Parts.clear();
861   }
862 
863   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
864 }
865 
866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
867                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
868                                  const Value *V,
869                                  ISD::NodeType PreferredExtendType) const {
870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
871   ISD::NodeType ExtendKind = PreferredExtendType;
872 
873   // Get the list of the values's legal parts.
874   unsigned NumRegs = Regs.size();
875   SmallVector<SDValue, 8> Parts(NumRegs);
876   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
877     unsigned NumParts = RegCount[Value];
878 
879     MVT RegisterVT = IsABIMangled
880                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
881                          : RegVTs[Value];
882 
883     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
884       ExtendKind = ISD::ZERO_EXTEND;
885 
886     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
887                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
888     Part += NumParts;
889   }
890 
891   // Copy the parts into the registers.
892   SmallVector<SDValue, 8> Chains(NumRegs);
893   for (unsigned i = 0; i != NumRegs; ++i) {
894     SDValue Part;
895     if (!Flag) {
896       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
897     } else {
898       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
899       *Flag = Part.getValue(1);
900     }
901 
902     Chains[i] = Part.getValue(0);
903   }
904 
905   if (NumRegs == 1 || Flag)
906     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
907     // flagged to it. That is the CopyToReg nodes and the user are considered
908     // a single scheduling unit. If we create a TokenFactor and return it as
909     // chain, then the TokenFactor is both a predecessor (operand) of the
910     // user as well as a successor (the TF operands are flagged to the user).
911     // c1, f1 = CopyToReg
912     // c2, f2 = CopyToReg
913     // c3     = TokenFactor c1, c2
914     // ...
915     //        = op c3, ..., f2
916     Chain = Chains[NumRegs-1];
917   else
918     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
919 }
920 
921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
922                                         unsigned MatchingIdx, const SDLoc &dl,
923                                         SelectionDAG &DAG,
924                                         std::vector<SDValue> &Ops) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926 
927   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
928   if (HasMatching)
929     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
930   else if (!Regs.empty() &&
931            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
932     // Put the register class of the virtual registers in the flag word.  That
933     // way, later passes can recompute register class constraints for inline
934     // assembly as well as normal instructions.
935     // Don't do this for tied operands that can use the regclass information
936     // from the def.
937     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
938     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
939     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
940   }
941 
942   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
943   Ops.push_back(Res);
944 
945   if (Code == InlineAsm::Kind_Clobber) {
946     // Clobbers should always have a 1:1 mapping with registers, and may
947     // reference registers that have illegal (e.g. vector) types. Hence, we
948     // shouldn't try to apply any sort of splitting logic to them.
949     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
950            "No 1:1 mapping from clobbers to regs?");
951     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
952     (void)SP;
953     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
954       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
955       assert(
956           (Regs[I] != SP ||
957            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
958           "If we clobbered the stack pointer, MFI should know about it.");
959     }
960     return;
961   }
962 
963   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
965     MVT RegisterVT = RegVTs[Value];
966     for (unsigned i = 0; i != NumRegs; ++i) {
967       assert(Reg < Regs.size() && "Mismatch in # registers expected");
968       unsigned TheReg = Regs[Reg++];
969       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
970     }
971   }
972 }
973 
974 SmallVector<std::pair<unsigned, unsigned>, 4>
975 RegsForValue::getRegsAndSizes() const {
976   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
977   unsigned I = 0;
978   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
979     unsigned RegCount = std::get<0>(CountAndVT);
980     MVT RegisterVT = std::get<1>(CountAndVT);
981     unsigned RegisterSize = RegisterVT.getSizeInBits();
982     for (unsigned E = I + RegCount; I != E; ++I)
983       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
984   }
985   return OutVec;
986 }
987 
988 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
989                                const TargetLibraryInfo *li) {
990   AA = aa;
991   GFI = gfi;
992   LibInfo = li;
993   DL = &DAG.getDataLayout();
994   Context = DAG.getContext();
995   LPadToCallSiteMap.clear();
996 }
997 
998 void SelectionDAGBuilder::clear() {
999   NodeMap.clear();
1000   UnusedArgNodeMap.clear();
1001   PendingLoads.clear();
1002   PendingExports.clear();
1003   CurInst = nullptr;
1004   HasTailCall = false;
1005   SDNodeOrder = LowestSDNodeOrder;
1006   StatepointLowering.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1010   DanglingDebugInfoMap.clear();
1011 }
1012 
1013 SDValue SelectionDAGBuilder::getRoot() {
1014   if (PendingLoads.empty())
1015     return DAG.getRoot();
1016 
1017   if (PendingLoads.size() == 1) {
1018     SDValue Root = PendingLoads[0];
1019     DAG.setRoot(Root);
1020     PendingLoads.clear();
1021     return Root;
1022   }
1023 
1024   // Otherwise, we have to make a token factor node.
1025   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1026                              PendingLoads);
1027   PendingLoads.clear();
1028   DAG.setRoot(Root);
1029   return Root;
1030 }
1031 
1032 SDValue SelectionDAGBuilder::getControlRoot() {
1033   SDValue Root = DAG.getRoot();
1034 
1035   if (PendingExports.empty())
1036     return Root;
1037 
1038   // Turn all of the CopyToReg chains into one factored node.
1039   if (Root.getOpcode() != ISD::EntryToken) {
1040     unsigned i = 0, e = PendingExports.size();
1041     for (; i != e; ++i) {
1042       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1043       if (PendingExports[i].getNode()->getOperand(0) == Root)
1044         break;  // Don't add the root if we already indirectly depend on it.
1045     }
1046 
1047     if (i == e)
1048       PendingExports.push_back(Root);
1049   }
1050 
1051   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1052                      PendingExports);
1053   PendingExports.clear();
1054   DAG.setRoot(Root);
1055   return Root;
1056 }
1057 
1058 void SelectionDAGBuilder::visit(const Instruction &I) {
1059   // Set up outgoing PHI node register values before emitting the terminator.
1060   if (isa<TerminatorInst>(&I)) {
1061     HandlePHINodesInSuccessorBlocks(I.getParent());
1062   }
1063 
1064   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1065   if (!isa<DbgInfoIntrinsic>(I))
1066     ++SDNodeOrder;
1067 
1068   CurInst = &I;
1069 
1070   visit(I.getOpcode(), I);
1071 
1072   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1073       !isStatepoint(&I)) // statepoints handle their exports internally
1074     CopyToExportRegsIfNeeded(&I);
1075 
1076   CurInst = nullptr;
1077 }
1078 
1079 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1080   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1081 }
1082 
1083 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1084   // Note: this doesn't use InstVisitor, because it has to work with
1085   // ConstantExpr's in addition to instructions.
1086   switch (Opcode) {
1087   default: llvm_unreachable("Unknown instruction type encountered!");
1088     // Build the switch statement using the Instruction.def file.
1089 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1090     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1091 #include "llvm/IR/Instruction.def"
1092   }
1093 }
1094 
1095 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1096                                                 const DIExpression *Expr) {
1097   for (auto &DDIMI : DanglingDebugInfoMap)
1098     for (auto &DDI : DDIMI.second)
1099       if (DDI.getDI()) {
1100         const DbgValueInst *DI = DDI.getDI();
1101         DIVariable *DanglingVariable = DI->getVariable();
1102         DIExpression *DanglingExpr = DI->getExpression();
1103         if (DanglingVariable == Variable &&
1104             Expr->fragmentsOverlap(DanglingExpr)) {
1105           LLVM_DEBUG(dbgs()
1106                      << "Dropping dangling debug info for " << *DI << "\n");
1107           DDI = DanglingDebugInfo();
1108         }
1109       }
1110 }
1111 
1112 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1113 // generate the debug data structures now that we've seen its definition.
1114 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1115                                                    SDValue Val) {
1116   DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V];
1117   for (auto &DDI : DDIV) {
1118     if (!DDI.getDI())
1119       continue;
1120     const DbgValueInst *DI = DDI.getDI();
1121     DebugLoc dl = DDI.getdl();
1122     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1123     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1124     DILocalVariable *Variable = DI->getVariable();
1125     DIExpression *Expr = DI->getExpression();
1126     assert(Variable->isValidLocationForIntrinsic(dl) &&
1127            "Expected inlined-at fields to agree");
1128     SDDbgValue *SDV;
1129     if (Val.getNode()) {
1130       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1131         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1132                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1133         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1134         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1135         // inserted after the definition of Val when emitting the instructions
1136         // after ISel. An alternative could be to teach
1137         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1138         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1139                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1140                    << ValSDNodeOrder << "\n");
1141         SDV = getDbgValue(Val, Variable, Expr, dl,
1142                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1143         DAG.AddDbgValue(SDV, Val.getNode(), false);
1144       } else
1145         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1146                           << "in EmitFuncArgumentDbgValue\n");
1147     } else
1148       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1149   }
1150   DanglingDebugInfoMap[V].clear();
1151 }
1152 
1153 /// getCopyFromRegs - If there was virtual register allocated for the value V
1154 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1155 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1156   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1157   SDValue Result;
1158 
1159   if (It != FuncInfo.ValueMap.end()) {
1160     unsigned InReg = It->second;
1161 
1162     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1163                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1164     SDValue Chain = DAG.getEntryNode();
1165     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1166                                  V);
1167     resolveDanglingDebugInfo(V, Result);
1168   }
1169 
1170   return Result;
1171 }
1172 
1173 /// getValue - Return an SDValue for the given Value.
1174 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1175   // If we already have an SDValue for this value, use it. It's important
1176   // to do this first, so that we don't create a CopyFromReg if we already
1177   // have a regular SDValue.
1178   SDValue &N = NodeMap[V];
1179   if (N.getNode()) return N;
1180 
1181   // If there's a virtual register allocated and initialized for this
1182   // value, use it.
1183   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1184     return copyFromReg;
1185 
1186   // Otherwise create a new SDValue and remember it.
1187   SDValue Val = getValueImpl(V);
1188   NodeMap[V] = Val;
1189   resolveDanglingDebugInfo(V, Val);
1190   return Val;
1191 }
1192 
1193 // Return true if SDValue exists for the given Value
1194 bool SelectionDAGBuilder::findValue(const Value *V) const {
1195   return (NodeMap.find(V) != NodeMap.end()) ||
1196     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1197 }
1198 
1199 /// getNonRegisterValue - Return an SDValue for the given Value, but
1200 /// don't look in FuncInfo.ValueMap for a virtual register.
1201 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1202   // If we already have an SDValue for this value, use it.
1203   SDValue &N = NodeMap[V];
1204   if (N.getNode()) {
1205     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1206       // Remove the debug location from the node as the node is about to be used
1207       // in a location which may differ from the original debug location.  This
1208       // is relevant to Constant and ConstantFP nodes because they can appear
1209       // as constant expressions inside PHI nodes.
1210       N->setDebugLoc(DebugLoc());
1211     }
1212     return N;
1213   }
1214 
1215   // Otherwise create a new SDValue and remember it.
1216   SDValue Val = getValueImpl(V);
1217   NodeMap[V] = Val;
1218   resolveDanglingDebugInfo(V, Val);
1219   return Val;
1220 }
1221 
1222 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1223 /// Create an SDValue for the given value.
1224 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1225   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1226 
1227   if (const Constant *C = dyn_cast<Constant>(V)) {
1228     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1229 
1230     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1231       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1232 
1233     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1234       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1235 
1236     if (isa<ConstantPointerNull>(C)) {
1237       unsigned AS = V->getType()->getPointerAddressSpace();
1238       return DAG.getConstant(0, getCurSDLoc(),
1239                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1240     }
1241 
1242     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1243       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1244 
1245     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1246       return DAG.getUNDEF(VT);
1247 
1248     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1249       visit(CE->getOpcode(), *CE);
1250       SDValue N1 = NodeMap[V];
1251       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1252       return N1;
1253     }
1254 
1255     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1256       SmallVector<SDValue, 4> Constants;
1257       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1258            OI != OE; ++OI) {
1259         SDNode *Val = getValue(*OI).getNode();
1260         // If the operand is an empty aggregate, there are no values.
1261         if (!Val) continue;
1262         // Add each leaf value from the operand to the Constants list
1263         // to form a flattened list of all the values.
1264         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1265           Constants.push_back(SDValue(Val, i));
1266       }
1267 
1268       return DAG.getMergeValues(Constants, getCurSDLoc());
1269     }
1270 
1271     if (const ConstantDataSequential *CDS =
1272           dyn_cast<ConstantDataSequential>(C)) {
1273       SmallVector<SDValue, 4> Ops;
1274       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1275         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1276         // Add each leaf value from the operand to the Constants list
1277         // to form a flattened list of all the values.
1278         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1279           Ops.push_back(SDValue(Val, i));
1280       }
1281 
1282       if (isa<ArrayType>(CDS->getType()))
1283         return DAG.getMergeValues(Ops, getCurSDLoc());
1284       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1285     }
1286 
1287     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1288       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1289              "Unknown struct or array constant!");
1290 
1291       SmallVector<EVT, 4> ValueVTs;
1292       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1293       unsigned NumElts = ValueVTs.size();
1294       if (NumElts == 0)
1295         return SDValue(); // empty struct
1296       SmallVector<SDValue, 4> Constants(NumElts);
1297       for (unsigned i = 0; i != NumElts; ++i) {
1298         EVT EltVT = ValueVTs[i];
1299         if (isa<UndefValue>(C))
1300           Constants[i] = DAG.getUNDEF(EltVT);
1301         else if (EltVT.isFloatingPoint())
1302           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1303         else
1304           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1305       }
1306 
1307       return DAG.getMergeValues(Constants, getCurSDLoc());
1308     }
1309 
1310     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1311       return DAG.getBlockAddress(BA, VT);
1312 
1313     VectorType *VecTy = cast<VectorType>(V->getType());
1314     unsigned NumElements = VecTy->getNumElements();
1315 
1316     // Now that we know the number and type of the elements, get that number of
1317     // elements into the Ops array based on what kind of constant it is.
1318     SmallVector<SDValue, 16> Ops;
1319     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1320       for (unsigned i = 0; i != NumElements; ++i)
1321         Ops.push_back(getValue(CV->getOperand(i)));
1322     } else {
1323       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1324       EVT EltVT =
1325           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1326 
1327       SDValue Op;
1328       if (EltVT.isFloatingPoint())
1329         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1330       else
1331         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1332       Ops.assign(NumElements, Op);
1333     }
1334 
1335     // Create a BUILD_VECTOR node.
1336     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1337   }
1338 
1339   // If this is a static alloca, generate it as the frameindex instead of
1340   // computation.
1341   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1342     DenseMap<const AllocaInst*, int>::iterator SI =
1343       FuncInfo.StaticAllocaMap.find(AI);
1344     if (SI != FuncInfo.StaticAllocaMap.end())
1345       return DAG.getFrameIndex(SI->second,
1346                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1347   }
1348 
1349   // If this is an instruction which fast-isel has deferred, select it now.
1350   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1351     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1352 
1353     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1354                      Inst->getType(), isABIRegCopy(V));
1355     SDValue Chain = DAG.getEntryNode();
1356     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1357   }
1358 
1359   llvm_unreachable("Can't get register for value!");
1360 }
1361 
1362 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1363   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1364   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1365   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1366   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1367   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1368   if (IsMSVCCXX || IsCoreCLR)
1369     CatchPadMBB->setIsEHFuncletEntry();
1370 
1371   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1372 }
1373 
1374 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1375   // Update machine-CFG edge.
1376   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1377   FuncInfo.MBB->addSuccessor(TargetMBB);
1378 
1379   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1380   bool IsSEH = isAsynchronousEHPersonality(Pers);
1381   if (IsSEH) {
1382     // If this is not a fall-through branch or optimizations are switched off,
1383     // emit the branch.
1384     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1385         TM.getOptLevel() == CodeGenOpt::None)
1386       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1387                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1388     return;
1389   }
1390 
1391   // Figure out the funclet membership for the catchret's successor.
1392   // This will be used by the FuncletLayout pass to determine how to order the
1393   // BB's.
1394   // A 'catchret' returns to the outer scope's color.
1395   Value *ParentPad = I.getCatchSwitchParentPad();
1396   const BasicBlock *SuccessorColor;
1397   if (isa<ConstantTokenNone>(ParentPad))
1398     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1399   else
1400     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1401   assert(SuccessorColor && "No parent funclet for catchret!");
1402   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1403   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1404 
1405   // Create the terminator node.
1406   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1407                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1408                             DAG.getBasicBlock(SuccessorColorMBB));
1409   DAG.setRoot(Ret);
1410 }
1411 
1412 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1413   // Don't emit any special code for the cleanuppad instruction. It just marks
1414   // the start of a funclet.
1415   FuncInfo.MBB->setIsEHFuncletEntry();
1416   FuncInfo.MBB->setIsCleanupFuncletEntry();
1417 }
1418 
1419 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1420 /// many places it could ultimately go. In the IR, we have a single unwind
1421 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1422 /// This function skips over imaginary basic blocks that hold catchswitch
1423 /// instructions, and finds all the "real" machine
1424 /// basic block destinations. As those destinations may not be successors of
1425 /// EHPadBB, here we also calculate the edge probability to those destinations.
1426 /// The passed-in Prob is the edge probability to EHPadBB.
1427 static void findUnwindDestinations(
1428     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1429     BranchProbability Prob,
1430     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1431         &UnwindDests) {
1432   EHPersonality Personality =
1433     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1434   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1435   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1436 
1437   while (EHPadBB) {
1438     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1439     BasicBlock *NewEHPadBB = nullptr;
1440     if (isa<LandingPadInst>(Pad)) {
1441       // Stop on landingpads. They are not funclets.
1442       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1443       break;
1444     } else if (isa<CleanupPadInst>(Pad)) {
1445       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1446       // personalities.
1447       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1448       UnwindDests.back().first->setIsEHFuncletEntry();
1449       break;
1450     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1451       // Add the catchpad handlers to the possible destinations.
1452       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1453         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1454         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1455         if (IsMSVCCXX || IsCoreCLR)
1456           UnwindDests.back().first->setIsEHFuncletEntry();
1457       }
1458       NewEHPadBB = CatchSwitch->getUnwindDest();
1459     } else {
1460       continue;
1461     }
1462 
1463     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1464     if (BPI && NewEHPadBB)
1465       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1466     EHPadBB = NewEHPadBB;
1467   }
1468 }
1469 
1470 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1471   // Update successor info.
1472   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1473   auto UnwindDest = I.getUnwindDest();
1474   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1475   BranchProbability UnwindDestProb =
1476       (BPI && UnwindDest)
1477           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1478           : BranchProbability::getZero();
1479   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1480   for (auto &UnwindDest : UnwindDests) {
1481     UnwindDest.first->setIsEHPad();
1482     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1483   }
1484   FuncInfo.MBB->normalizeSuccProbs();
1485 
1486   // Create the terminator node.
1487   SDValue Ret =
1488       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1489   DAG.setRoot(Ret);
1490 }
1491 
1492 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1493   report_fatal_error("visitCatchSwitch not yet implemented!");
1494 }
1495 
1496 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1498   auto &DL = DAG.getDataLayout();
1499   SDValue Chain = getControlRoot();
1500   SmallVector<ISD::OutputArg, 8> Outs;
1501   SmallVector<SDValue, 8> OutVals;
1502 
1503   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1504   // lower
1505   //
1506   //   %val = call <ty> @llvm.experimental.deoptimize()
1507   //   ret <ty> %val
1508   //
1509   // differently.
1510   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1511     LowerDeoptimizingReturn();
1512     return;
1513   }
1514 
1515   if (!FuncInfo.CanLowerReturn) {
1516     unsigned DemoteReg = FuncInfo.DemoteRegister;
1517     const Function *F = I.getParent()->getParent();
1518 
1519     // Emit a store of the return value through the virtual register.
1520     // Leave Outs empty so that LowerReturn won't try to load return
1521     // registers the usual way.
1522     SmallVector<EVT, 1> PtrValueVTs;
1523     ComputeValueVTs(TLI, DL,
1524                     F->getReturnType()->getPointerTo(
1525                         DAG.getDataLayout().getAllocaAddrSpace()),
1526                     PtrValueVTs);
1527 
1528     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1529                                         DemoteReg, PtrValueVTs[0]);
1530     SDValue RetOp = getValue(I.getOperand(0));
1531 
1532     SmallVector<EVT, 4> ValueVTs;
1533     SmallVector<uint64_t, 4> Offsets;
1534     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1535     unsigned NumValues = ValueVTs.size();
1536 
1537     SmallVector<SDValue, 4> Chains(NumValues);
1538     for (unsigned i = 0; i != NumValues; ++i) {
1539       // An aggregate return value cannot wrap around the address space, so
1540       // offsets to its parts don't wrap either.
1541       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1542       Chains[i] = DAG.getStore(
1543           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1544           // FIXME: better loc info would be nice.
1545           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1546     }
1547 
1548     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1549                         MVT::Other, Chains);
1550   } else if (I.getNumOperands() != 0) {
1551     SmallVector<EVT, 4> ValueVTs;
1552     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1553     unsigned NumValues = ValueVTs.size();
1554     if (NumValues) {
1555       SDValue RetOp = getValue(I.getOperand(0));
1556 
1557       const Function *F = I.getParent()->getParent();
1558 
1559       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1560       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1561                                           Attribute::SExt))
1562         ExtendKind = ISD::SIGN_EXTEND;
1563       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1564                                                Attribute::ZExt))
1565         ExtendKind = ISD::ZERO_EXTEND;
1566 
1567       LLVMContext &Context = F->getContext();
1568       bool RetInReg = F->getAttributes().hasAttribute(
1569           AttributeList::ReturnIndex, Attribute::InReg);
1570 
1571       for (unsigned j = 0; j != NumValues; ++j) {
1572         EVT VT = ValueVTs[j];
1573 
1574         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1575           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1576 
1577         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1578         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1579         SmallVector<SDValue, 4> Parts(NumParts);
1580         getCopyToParts(DAG, getCurSDLoc(),
1581                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1582                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1583 
1584         // 'inreg' on function refers to return value
1585         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1586         if (RetInReg)
1587           Flags.setInReg();
1588 
1589         // Propagate extension type if any
1590         if (ExtendKind == ISD::SIGN_EXTEND)
1591           Flags.setSExt();
1592         else if (ExtendKind == ISD::ZERO_EXTEND)
1593           Flags.setZExt();
1594 
1595         for (unsigned i = 0; i < NumParts; ++i) {
1596           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1597                                         VT, /*isfixed=*/true, 0, 0));
1598           OutVals.push_back(Parts[i]);
1599         }
1600       }
1601     }
1602   }
1603 
1604   // Push in swifterror virtual register as the last element of Outs. This makes
1605   // sure swifterror virtual register will be returned in the swifterror
1606   // physical register.
1607   const Function *F = I.getParent()->getParent();
1608   if (TLI.supportSwiftError() &&
1609       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1610     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1611     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1612     Flags.setSwiftError();
1613     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1614                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1615                                   true /*isfixed*/, 1 /*origidx*/,
1616                                   0 /*partOffs*/));
1617     // Create SDNode for the swifterror virtual register.
1618     OutVals.push_back(
1619         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1620                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1621                         EVT(TLI.getPointerTy(DL))));
1622   }
1623 
1624   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1625   CallingConv::ID CallConv =
1626     DAG.getMachineFunction().getFunction().getCallingConv();
1627   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1628       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1629 
1630   // Verify that the target's LowerReturn behaved as expected.
1631   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1632          "LowerReturn didn't return a valid chain!");
1633 
1634   // Update the DAG with the new chain value resulting from return lowering.
1635   DAG.setRoot(Chain);
1636 }
1637 
1638 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1639 /// created for it, emit nodes to copy the value into the virtual
1640 /// registers.
1641 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1642   // Skip empty types
1643   if (V->getType()->isEmptyTy())
1644     return;
1645 
1646   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1647   if (VMI != FuncInfo.ValueMap.end()) {
1648     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1649     CopyValueToVirtualRegister(V, VMI->second);
1650   }
1651 }
1652 
1653 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1654 /// the current basic block, add it to ValueMap now so that we'll get a
1655 /// CopyTo/FromReg.
1656 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1657   // No need to export constants.
1658   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1659 
1660   // Already exported?
1661   if (FuncInfo.isExportedInst(V)) return;
1662 
1663   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1664   CopyValueToVirtualRegister(V, Reg);
1665 }
1666 
1667 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1668                                                      const BasicBlock *FromBB) {
1669   // The operands of the setcc have to be in this block.  We don't know
1670   // how to export them from some other block.
1671   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1672     // Can export from current BB.
1673     if (VI->getParent() == FromBB)
1674       return true;
1675 
1676     // Is already exported, noop.
1677     return FuncInfo.isExportedInst(V);
1678   }
1679 
1680   // If this is an argument, we can export it if the BB is the entry block or
1681   // if it is already exported.
1682   if (isa<Argument>(V)) {
1683     if (FromBB == &FromBB->getParent()->getEntryBlock())
1684       return true;
1685 
1686     // Otherwise, can only export this if it is already exported.
1687     return FuncInfo.isExportedInst(V);
1688   }
1689 
1690   // Otherwise, constants can always be exported.
1691   return true;
1692 }
1693 
1694 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1695 BranchProbability
1696 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1697                                         const MachineBasicBlock *Dst) const {
1698   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1699   const BasicBlock *SrcBB = Src->getBasicBlock();
1700   const BasicBlock *DstBB = Dst->getBasicBlock();
1701   if (!BPI) {
1702     // If BPI is not available, set the default probability as 1 / N, where N is
1703     // the number of successors.
1704     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1705     return BranchProbability(1, SuccSize);
1706   }
1707   return BPI->getEdgeProbability(SrcBB, DstBB);
1708 }
1709 
1710 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1711                                                MachineBasicBlock *Dst,
1712                                                BranchProbability Prob) {
1713   if (!FuncInfo.BPI)
1714     Src->addSuccessorWithoutProb(Dst);
1715   else {
1716     if (Prob.isUnknown())
1717       Prob = getEdgeProbability(Src, Dst);
1718     Src->addSuccessor(Dst, Prob);
1719   }
1720 }
1721 
1722 static bool InBlock(const Value *V, const BasicBlock *BB) {
1723   if (const Instruction *I = dyn_cast<Instruction>(V))
1724     return I->getParent() == BB;
1725   return true;
1726 }
1727 
1728 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1729 /// This function emits a branch and is used at the leaves of an OR or an
1730 /// AND operator tree.
1731 void
1732 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1733                                                   MachineBasicBlock *TBB,
1734                                                   MachineBasicBlock *FBB,
1735                                                   MachineBasicBlock *CurBB,
1736                                                   MachineBasicBlock *SwitchBB,
1737                                                   BranchProbability TProb,
1738                                                   BranchProbability FProb,
1739                                                   bool InvertCond) {
1740   const BasicBlock *BB = CurBB->getBasicBlock();
1741 
1742   // If the leaf of the tree is a comparison, merge the condition into
1743   // the caseblock.
1744   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1745     // The operands of the cmp have to be in this block.  We don't know
1746     // how to export them from some other block.  If this is the first block
1747     // of the sequence, no exporting is needed.
1748     if (CurBB == SwitchBB ||
1749         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1750          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1751       ISD::CondCode Condition;
1752       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1753         ICmpInst::Predicate Pred =
1754             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1755         Condition = getICmpCondCode(Pred);
1756       } else {
1757         const FCmpInst *FC = cast<FCmpInst>(Cond);
1758         FCmpInst::Predicate Pred =
1759             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1760         Condition = getFCmpCondCode(Pred);
1761         if (TM.Options.NoNaNsFPMath)
1762           Condition = getFCmpCodeWithoutNaN(Condition);
1763       }
1764 
1765       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1766                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1767       SwitchCases.push_back(CB);
1768       return;
1769     }
1770   }
1771 
1772   // Create a CaseBlock record representing this branch.
1773   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1774   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1775                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1776   SwitchCases.push_back(CB);
1777 }
1778 
1779 /// FindMergedConditions - If Cond is an expression like
1780 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1781                                                MachineBasicBlock *TBB,
1782                                                MachineBasicBlock *FBB,
1783                                                MachineBasicBlock *CurBB,
1784                                                MachineBasicBlock *SwitchBB,
1785                                                Instruction::BinaryOps Opc,
1786                                                BranchProbability TProb,
1787                                                BranchProbability FProb,
1788                                                bool InvertCond) {
1789   // Skip over not part of the tree and remember to invert op and operands at
1790   // next level.
1791   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1792     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1793     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1794       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1795                            !InvertCond);
1796       return;
1797     }
1798   }
1799 
1800   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1801   // Compute the effective opcode for Cond, taking into account whether it needs
1802   // to be inverted, e.g.
1803   //   and (not (or A, B)), C
1804   // gets lowered as
1805   //   and (and (not A, not B), C)
1806   unsigned BOpc = 0;
1807   if (BOp) {
1808     BOpc = BOp->getOpcode();
1809     if (InvertCond) {
1810       if (BOpc == Instruction::And)
1811         BOpc = Instruction::Or;
1812       else if (BOpc == Instruction::Or)
1813         BOpc = Instruction::And;
1814     }
1815   }
1816 
1817   // If this node is not part of the or/and tree, emit it as a branch.
1818   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1819       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1820       BOp->getParent() != CurBB->getBasicBlock() ||
1821       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1822       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1823     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1824                                  TProb, FProb, InvertCond);
1825     return;
1826   }
1827 
1828   //  Create TmpBB after CurBB.
1829   MachineFunction::iterator BBI(CurBB);
1830   MachineFunction &MF = DAG.getMachineFunction();
1831   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1832   CurBB->getParent()->insert(++BBI, TmpBB);
1833 
1834   if (Opc == Instruction::Or) {
1835     // Codegen X | Y as:
1836     // BB1:
1837     //   jmp_if_X TBB
1838     //   jmp TmpBB
1839     // TmpBB:
1840     //   jmp_if_Y TBB
1841     //   jmp FBB
1842     //
1843 
1844     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1845     // The requirement is that
1846     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1847     //     = TrueProb for original BB.
1848     // Assuming the original probabilities are A and B, one choice is to set
1849     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1850     // A/(1+B) and 2B/(1+B). This choice assumes that
1851     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1852     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1853     // TmpBB, but the math is more complicated.
1854 
1855     auto NewTrueProb = TProb / 2;
1856     auto NewFalseProb = TProb / 2 + FProb;
1857     // Emit the LHS condition.
1858     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1859                          NewTrueProb, NewFalseProb, InvertCond);
1860 
1861     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1862     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1863     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1864     // Emit the RHS condition into TmpBB.
1865     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1866                          Probs[0], Probs[1], InvertCond);
1867   } else {
1868     assert(Opc == Instruction::And && "Unknown merge op!");
1869     // Codegen X & Y as:
1870     // BB1:
1871     //   jmp_if_X TmpBB
1872     //   jmp FBB
1873     // TmpBB:
1874     //   jmp_if_Y TBB
1875     //   jmp FBB
1876     //
1877     //  This requires creation of TmpBB after CurBB.
1878 
1879     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1880     // The requirement is that
1881     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1882     //     = FalseProb for original BB.
1883     // Assuming the original probabilities are A and B, one choice is to set
1884     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1885     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1886     // TrueProb for BB1 * FalseProb for TmpBB.
1887 
1888     auto NewTrueProb = TProb + FProb / 2;
1889     auto NewFalseProb = FProb / 2;
1890     // Emit the LHS condition.
1891     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1892                          NewTrueProb, NewFalseProb, InvertCond);
1893 
1894     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1895     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1896     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1897     // Emit the RHS condition into TmpBB.
1898     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1899                          Probs[0], Probs[1], InvertCond);
1900   }
1901 }
1902 
1903 /// If the set of cases should be emitted as a series of branches, return true.
1904 /// If we should emit this as a bunch of and/or'd together conditions, return
1905 /// false.
1906 bool
1907 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1908   if (Cases.size() != 2) return true;
1909 
1910   // If this is two comparisons of the same values or'd or and'd together, they
1911   // will get folded into a single comparison, so don't emit two blocks.
1912   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1913        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1914       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1915        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1916     return false;
1917   }
1918 
1919   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1920   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1921   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1922       Cases[0].CC == Cases[1].CC &&
1923       isa<Constant>(Cases[0].CmpRHS) &&
1924       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1925     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1926       return false;
1927     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1928       return false;
1929   }
1930 
1931   return true;
1932 }
1933 
1934 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1935   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1936 
1937   // Update machine-CFG edges.
1938   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1939 
1940   if (I.isUnconditional()) {
1941     // Update machine-CFG edges.
1942     BrMBB->addSuccessor(Succ0MBB);
1943 
1944     // If this is not a fall-through branch or optimizations are switched off,
1945     // emit the branch.
1946     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1947       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1948                               MVT::Other, getControlRoot(),
1949                               DAG.getBasicBlock(Succ0MBB)));
1950 
1951     return;
1952   }
1953 
1954   // If this condition is one of the special cases we handle, do special stuff
1955   // now.
1956   const Value *CondVal = I.getCondition();
1957   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1958 
1959   // If this is a series of conditions that are or'd or and'd together, emit
1960   // this as a sequence of branches instead of setcc's with and/or operations.
1961   // As long as jumps are not expensive, this should improve performance.
1962   // For example, instead of something like:
1963   //     cmp A, B
1964   //     C = seteq
1965   //     cmp D, E
1966   //     F = setle
1967   //     or C, F
1968   //     jnz foo
1969   // Emit:
1970   //     cmp A, B
1971   //     je foo
1972   //     cmp D, E
1973   //     jle foo
1974   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1975     Instruction::BinaryOps Opcode = BOp->getOpcode();
1976     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1977         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1978         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1979       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1980                            Opcode,
1981                            getEdgeProbability(BrMBB, Succ0MBB),
1982                            getEdgeProbability(BrMBB, Succ1MBB),
1983                            /*InvertCond=*/false);
1984       // If the compares in later blocks need to use values not currently
1985       // exported from this block, export them now.  This block should always
1986       // be the first entry.
1987       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1988 
1989       // Allow some cases to be rejected.
1990       if (ShouldEmitAsBranches(SwitchCases)) {
1991         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1992           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1993           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1994         }
1995 
1996         // Emit the branch for this block.
1997         visitSwitchCase(SwitchCases[0], BrMBB);
1998         SwitchCases.erase(SwitchCases.begin());
1999         return;
2000       }
2001 
2002       // Okay, we decided not to do this, remove any inserted MBB's and clear
2003       // SwitchCases.
2004       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2005         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2006 
2007       SwitchCases.clear();
2008     }
2009   }
2010 
2011   // Create a CaseBlock record representing this branch.
2012   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2013                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2014 
2015   // Use visitSwitchCase to actually insert the fast branch sequence for this
2016   // cond branch.
2017   visitSwitchCase(CB, BrMBB);
2018 }
2019 
2020 /// visitSwitchCase - Emits the necessary code to represent a single node in
2021 /// the binary search tree resulting from lowering a switch instruction.
2022 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2023                                           MachineBasicBlock *SwitchBB) {
2024   SDValue Cond;
2025   SDValue CondLHS = getValue(CB.CmpLHS);
2026   SDLoc dl = CB.DL;
2027 
2028   // Build the setcc now.
2029   if (!CB.CmpMHS) {
2030     // Fold "(X == true)" to X and "(X == false)" to !X to
2031     // handle common cases produced by branch lowering.
2032     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2033         CB.CC == ISD::SETEQ)
2034       Cond = CondLHS;
2035     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2036              CB.CC == ISD::SETEQ) {
2037       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2038       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2039     } else
2040       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2041   } else {
2042     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2043 
2044     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2045     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2046 
2047     SDValue CmpOp = getValue(CB.CmpMHS);
2048     EVT VT = CmpOp.getValueType();
2049 
2050     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2051       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2052                           ISD::SETLE);
2053     } else {
2054       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2055                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2056       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2057                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2058     }
2059   }
2060 
2061   // Update successor info
2062   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2063   // TrueBB and FalseBB are always different unless the incoming IR is
2064   // degenerate. This only happens when running llc on weird IR.
2065   if (CB.TrueBB != CB.FalseBB)
2066     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2067   SwitchBB->normalizeSuccProbs();
2068 
2069   // If the lhs block is the next block, invert the condition so that we can
2070   // fall through to the lhs instead of the rhs block.
2071   if (CB.TrueBB == NextBlock(SwitchBB)) {
2072     std::swap(CB.TrueBB, CB.FalseBB);
2073     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2074     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2075   }
2076 
2077   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2078                                MVT::Other, getControlRoot(), Cond,
2079                                DAG.getBasicBlock(CB.TrueBB));
2080 
2081   // Insert the false branch. Do this even if it's a fall through branch,
2082   // this makes it easier to do DAG optimizations which require inverting
2083   // the branch condition.
2084   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2085                        DAG.getBasicBlock(CB.FalseBB));
2086 
2087   DAG.setRoot(BrCond);
2088 }
2089 
2090 /// visitJumpTable - Emit JumpTable node in the current MBB
2091 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2092   // Emit the code for the jump table
2093   assert(JT.Reg != -1U && "Should lower JT Header first!");
2094   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2095   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2096                                      JT.Reg, PTy);
2097   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2098   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2099                                     MVT::Other, Index.getValue(1),
2100                                     Table, Index);
2101   DAG.setRoot(BrJumpTable);
2102 }
2103 
2104 /// visitJumpTableHeader - This function emits necessary code to produce index
2105 /// in the JumpTable from switch case.
2106 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2107                                                JumpTableHeader &JTH,
2108                                                MachineBasicBlock *SwitchBB) {
2109   SDLoc dl = getCurSDLoc();
2110 
2111   // Subtract the lowest switch case value from the value being switched on and
2112   // conditional branch to default mbb if the result is greater than the
2113   // difference between smallest and largest cases.
2114   SDValue SwitchOp = getValue(JTH.SValue);
2115   EVT VT = SwitchOp.getValueType();
2116   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2117                             DAG.getConstant(JTH.First, dl, VT));
2118 
2119   // The SDNode we just created, which holds the value being switched on minus
2120   // the smallest case value, needs to be copied to a virtual register so it
2121   // can be used as an index into the jump table in a subsequent basic block.
2122   // This value may be smaller or larger than the target's pointer type, and
2123   // therefore require extension or truncating.
2124   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2125   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2126 
2127   unsigned JumpTableReg =
2128       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2129   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2130                                     JumpTableReg, SwitchOp);
2131   JT.Reg = JumpTableReg;
2132 
2133   // Emit the range check for the jump table, and branch to the default block
2134   // for the switch statement if the value being switched on exceeds the largest
2135   // case in the switch.
2136   SDValue CMP = DAG.getSetCC(
2137       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2138                                  Sub.getValueType()),
2139       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2140 
2141   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2142                                MVT::Other, CopyTo, CMP,
2143                                DAG.getBasicBlock(JT.Default));
2144 
2145   // Avoid emitting unnecessary branches to the next block.
2146   if (JT.MBB != NextBlock(SwitchBB))
2147     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2148                          DAG.getBasicBlock(JT.MBB));
2149 
2150   DAG.setRoot(BrCond);
2151 }
2152 
2153 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2154 /// variable if there exists one.
2155 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2156                                  SDValue &Chain) {
2157   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2158   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2159   MachineFunction &MF = DAG.getMachineFunction();
2160   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2161   MachineSDNode *Node =
2162       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2163   if (Global) {
2164     MachinePointerInfo MPInfo(Global);
2165     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2166     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2167                  MachineMemOperand::MODereferenceable;
2168     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2169                                        DAG.getEVTAlignment(PtrTy));
2170     Node->setMemRefs(MemRefs, MemRefs + 1);
2171   }
2172   return SDValue(Node, 0);
2173 }
2174 
2175 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2176 /// tail spliced into a stack protector check success bb.
2177 ///
2178 /// For a high level explanation of how this fits into the stack protector
2179 /// generation see the comment on the declaration of class
2180 /// StackProtectorDescriptor.
2181 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2182                                                   MachineBasicBlock *ParentBB) {
2183 
2184   // First create the loads to the guard/stack slot for the comparison.
2185   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2186   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2187 
2188   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2189   int FI = MFI.getStackProtectorIndex();
2190 
2191   SDValue Guard;
2192   SDLoc dl = getCurSDLoc();
2193   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2194   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2195   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2196 
2197   // Generate code to load the content of the guard slot.
2198   SDValue GuardVal = DAG.getLoad(
2199       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2200       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2201       MachineMemOperand::MOVolatile);
2202 
2203   if (TLI.useStackGuardXorFP())
2204     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2205 
2206   // Retrieve guard check function, nullptr if instrumentation is inlined.
2207   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2208     // The target provides a guard check function to validate the guard value.
2209     // Generate a call to that function with the content of the guard slot as
2210     // argument.
2211     auto *Fn = cast<Function>(GuardCheck);
2212     FunctionType *FnTy = Fn->getFunctionType();
2213     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2214 
2215     TargetLowering::ArgListTy Args;
2216     TargetLowering::ArgListEntry Entry;
2217     Entry.Node = GuardVal;
2218     Entry.Ty = FnTy->getParamType(0);
2219     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2220       Entry.IsInReg = true;
2221     Args.push_back(Entry);
2222 
2223     TargetLowering::CallLoweringInfo CLI(DAG);
2224     CLI.setDebugLoc(getCurSDLoc())
2225       .setChain(DAG.getEntryNode())
2226       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2227                  getValue(GuardCheck), std::move(Args));
2228 
2229     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2230     DAG.setRoot(Result.second);
2231     return;
2232   }
2233 
2234   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2235   // Otherwise, emit a volatile load to retrieve the stack guard value.
2236   SDValue Chain = DAG.getEntryNode();
2237   if (TLI.useLoadStackGuardNode()) {
2238     Guard = getLoadStackGuard(DAG, dl, Chain);
2239   } else {
2240     const Value *IRGuard = TLI.getSDagStackGuard(M);
2241     SDValue GuardPtr = getValue(IRGuard);
2242 
2243     Guard =
2244         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2245                     Align, MachineMemOperand::MOVolatile);
2246   }
2247 
2248   // Perform the comparison via a subtract/getsetcc.
2249   EVT VT = Guard.getValueType();
2250   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2251 
2252   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2253                                                         *DAG.getContext(),
2254                                                         Sub.getValueType()),
2255                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2256 
2257   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2258   // branch to failure MBB.
2259   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2260                                MVT::Other, GuardVal.getOperand(0),
2261                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2262   // Otherwise branch to success MBB.
2263   SDValue Br = DAG.getNode(ISD::BR, dl,
2264                            MVT::Other, BrCond,
2265                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2266 
2267   DAG.setRoot(Br);
2268 }
2269 
2270 /// Codegen the failure basic block for a stack protector check.
2271 ///
2272 /// A failure stack protector machine basic block consists simply of a call to
2273 /// __stack_chk_fail().
2274 ///
2275 /// For a high level explanation of how this fits into the stack protector
2276 /// generation see the comment on the declaration of class
2277 /// StackProtectorDescriptor.
2278 void
2279 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2280   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2281   SDValue Chain =
2282       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2283                       None, false, getCurSDLoc(), false, false).second;
2284   DAG.setRoot(Chain);
2285 }
2286 
2287 /// visitBitTestHeader - This function emits necessary code to produce value
2288 /// suitable for "bit tests"
2289 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2290                                              MachineBasicBlock *SwitchBB) {
2291   SDLoc dl = getCurSDLoc();
2292 
2293   // Subtract the minimum value
2294   SDValue SwitchOp = getValue(B.SValue);
2295   EVT VT = SwitchOp.getValueType();
2296   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2297                             DAG.getConstant(B.First, dl, VT));
2298 
2299   // Check range
2300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2301   SDValue RangeCmp = DAG.getSetCC(
2302       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2303                                  Sub.getValueType()),
2304       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2305 
2306   // Determine the type of the test operands.
2307   bool UsePtrType = false;
2308   if (!TLI.isTypeLegal(VT))
2309     UsePtrType = true;
2310   else {
2311     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2312       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2313         // Switch table case range are encoded into series of masks.
2314         // Just use pointer type, it's guaranteed to fit.
2315         UsePtrType = true;
2316         break;
2317       }
2318   }
2319   if (UsePtrType) {
2320     VT = TLI.getPointerTy(DAG.getDataLayout());
2321     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2322   }
2323 
2324   B.RegVT = VT.getSimpleVT();
2325   B.Reg = FuncInfo.CreateReg(B.RegVT);
2326   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2327 
2328   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2329 
2330   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2331   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2332   SwitchBB->normalizeSuccProbs();
2333 
2334   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2335                                 MVT::Other, CopyTo, RangeCmp,
2336                                 DAG.getBasicBlock(B.Default));
2337 
2338   // Avoid emitting unnecessary branches to the next block.
2339   if (MBB != NextBlock(SwitchBB))
2340     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2341                           DAG.getBasicBlock(MBB));
2342 
2343   DAG.setRoot(BrRange);
2344 }
2345 
2346 /// visitBitTestCase - this function produces one "bit test"
2347 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2348                                            MachineBasicBlock* NextMBB,
2349                                            BranchProbability BranchProbToNext,
2350                                            unsigned Reg,
2351                                            BitTestCase &B,
2352                                            MachineBasicBlock *SwitchBB) {
2353   SDLoc dl = getCurSDLoc();
2354   MVT VT = BB.RegVT;
2355   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2356   SDValue Cmp;
2357   unsigned PopCount = countPopulation(B.Mask);
2358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2359   if (PopCount == 1) {
2360     // Testing for a single bit; just compare the shift count with what it
2361     // would need to be to shift a 1 bit in that position.
2362     Cmp = DAG.getSetCC(
2363         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2364         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2365         ISD::SETEQ);
2366   } else if (PopCount == BB.Range) {
2367     // There is only one zero bit in the range, test for it directly.
2368     Cmp = DAG.getSetCC(
2369         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2370         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2371         ISD::SETNE);
2372   } else {
2373     // Make desired shift
2374     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2375                                     DAG.getConstant(1, dl, VT), ShiftOp);
2376 
2377     // Emit bit tests and jumps
2378     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2379                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2380     Cmp = DAG.getSetCC(
2381         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2382         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2383   }
2384 
2385   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2386   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2387   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2388   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2389   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2390   // one as they are relative probabilities (and thus work more like weights),
2391   // and hence we need to normalize them to let the sum of them become one.
2392   SwitchBB->normalizeSuccProbs();
2393 
2394   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2395                               MVT::Other, getControlRoot(),
2396                               Cmp, DAG.getBasicBlock(B.TargetBB));
2397 
2398   // Avoid emitting unnecessary branches to the next block.
2399   if (NextMBB != NextBlock(SwitchBB))
2400     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2401                         DAG.getBasicBlock(NextMBB));
2402 
2403   DAG.setRoot(BrAnd);
2404 }
2405 
2406 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2407   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2408 
2409   // Retrieve successors. Look through artificial IR level blocks like
2410   // catchswitch for successors.
2411   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2412   const BasicBlock *EHPadBB = I.getSuccessor(1);
2413 
2414   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2415   // have to do anything here to lower funclet bundles.
2416   assert(!I.hasOperandBundlesOtherThan(
2417              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2418          "Cannot lower invokes with arbitrary operand bundles yet!");
2419 
2420   const Value *Callee(I.getCalledValue());
2421   const Function *Fn = dyn_cast<Function>(Callee);
2422   if (isa<InlineAsm>(Callee))
2423     visitInlineAsm(&I);
2424   else if (Fn && Fn->isIntrinsic()) {
2425     switch (Fn->getIntrinsicID()) {
2426     default:
2427       llvm_unreachable("Cannot invoke this intrinsic");
2428     case Intrinsic::donothing:
2429       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2430       break;
2431     case Intrinsic::experimental_patchpoint_void:
2432     case Intrinsic::experimental_patchpoint_i64:
2433       visitPatchpoint(&I, EHPadBB);
2434       break;
2435     case Intrinsic::experimental_gc_statepoint:
2436       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2437       break;
2438     }
2439   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2440     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2441     // Eventually we will support lowering the @llvm.experimental.deoptimize
2442     // intrinsic, and right now there are no plans to support other intrinsics
2443     // with deopt state.
2444     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2445   } else {
2446     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2447   }
2448 
2449   // If the value of the invoke is used outside of its defining block, make it
2450   // available as a virtual register.
2451   // We already took care of the exported value for the statepoint instruction
2452   // during call to the LowerStatepoint.
2453   if (!isStatepoint(I)) {
2454     CopyToExportRegsIfNeeded(&I);
2455   }
2456 
2457   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2458   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2459   BranchProbability EHPadBBProb =
2460       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2461           : BranchProbability::getZero();
2462   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2463 
2464   // Update successor info.
2465   addSuccessorWithProb(InvokeMBB, Return);
2466   for (auto &UnwindDest : UnwindDests) {
2467     UnwindDest.first->setIsEHPad();
2468     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2469   }
2470   InvokeMBB->normalizeSuccProbs();
2471 
2472   // Drop into normal successor.
2473   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2474                           MVT::Other, getControlRoot(),
2475                           DAG.getBasicBlock(Return)));
2476 }
2477 
2478 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2479   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2480 }
2481 
2482 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2483   assert(FuncInfo.MBB->isEHPad() &&
2484          "Call to landingpad not in landing pad!");
2485 
2486   MachineBasicBlock *MBB = FuncInfo.MBB;
2487   addLandingPadInfo(LP, *MBB);
2488 
2489   // If there aren't registers to copy the values into (e.g., during SjLj
2490   // exceptions), then don't bother to create these DAG nodes.
2491   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2492   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2493   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2494       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2495     return;
2496 
2497   // If landingpad's return type is token type, we don't create DAG nodes
2498   // for its exception pointer and selector value. The extraction of exception
2499   // pointer or selector value from token type landingpads is not currently
2500   // supported.
2501   if (LP.getType()->isTokenTy())
2502     return;
2503 
2504   SmallVector<EVT, 2> ValueVTs;
2505   SDLoc dl = getCurSDLoc();
2506   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2507   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2508 
2509   // Get the two live-in registers as SDValues. The physregs have already been
2510   // copied into virtual registers.
2511   SDValue Ops[2];
2512   if (FuncInfo.ExceptionPointerVirtReg) {
2513     Ops[0] = DAG.getZExtOrTrunc(
2514         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2515                            FuncInfo.ExceptionPointerVirtReg,
2516                            TLI.getPointerTy(DAG.getDataLayout())),
2517         dl, ValueVTs[0]);
2518   } else {
2519     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2520   }
2521   Ops[1] = DAG.getZExtOrTrunc(
2522       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2523                          FuncInfo.ExceptionSelectorVirtReg,
2524                          TLI.getPointerTy(DAG.getDataLayout())),
2525       dl, ValueVTs[1]);
2526 
2527   // Merge into one.
2528   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2529                             DAG.getVTList(ValueVTs), Ops);
2530   setValue(&LP, Res);
2531 }
2532 
2533 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2534 #ifndef NDEBUG
2535   for (const CaseCluster &CC : Clusters)
2536     assert(CC.Low == CC.High && "Input clusters must be single-case");
2537 #endif
2538 
2539   llvm::sort(Clusters.begin(), Clusters.end(),
2540              [](const CaseCluster &a, const CaseCluster &b) {
2541     return a.Low->getValue().slt(b.Low->getValue());
2542   });
2543 
2544   // Merge adjacent clusters with the same destination.
2545   const unsigned N = Clusters.size();
2546   unsigned DstIndex = 0;
2547   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2548     CaseCluster &CC = Clusters[SrcIndex];
2549     const ConstantInt *CaseVal = CC.Low;
2550     MachineBasicBlock *Succ = CC.MBB;
2551 
2552     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2553         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2554       // If this case has the same successor and is a neighbour, merge it into
2555       // the previous cluster.
2556       Clusters[DstIndex - 1].High = CaseVal;
2557       Clusters[DstIndex - 1].Prob += CC.Prob;
2558     } else {
2559       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2560                    sizeof(Clusters[SrcIndex]));
2561     }
2562   }
2563   Clusters.resize(DstIndex);
2564 }
2565 
2566 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2567                                            MachineBasicBlock *Last) {
2568   // Update JTCases.
2569   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2570     if (JTCases[i].first.HeaderBB == First)
2571       JTCases[i].first.HeaderBB = Last;
2572 
2573   // Update BitTestCases.
2574   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2575     if (BitTestCases[i].Parent == First)
2576       BitTestCases[i].Parent = Last;
2577 }
2578 
2579 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2580   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2581 
2582   // Update machine-CFG edges with unique successors.
2583   SmallSet<BasicBlock*, 32> Done;
2584   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2585     BasicBlock *BB = I.getSuccessor(i);
2586     bool Inserted = Done.insert(BB).second;
2587     if (!Inserted)
2588         continue;
2589 
2590     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2591     addSuccessorWithProb(IndirectBrMBB, Succ);
2592   }
2593   IndirectBrMBB->normalizeSuccProbs();
2594 
2595   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2596                           MVT::Other, getControlRoot(),
2597                           getValue(I.getAddress())));
2598 }
2599 
2600 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2601   if (DAG.getTarget().Options.TrapUnreachable)
2602     DAG.setRoot(
2603         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2604 }
2605 
2606 void SelectionDAGBuilder::visitFSub(const User &I) {
2607   // -0.0 - X --> fneg
2608   Type *Ty = I.getType();
2609   if (isa<Constant>(I.getOperand(0)) &&
2610       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2611     SDValue Op2 = getValue(I.getOperand(1));
2612     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2613                              Op2.getValueType(), Op2));
2614     return;
2615   }
2616 
2617   visitBinary(I, ISD::FSUB);
2618 }
2619 
2620 /// Checks if the given instruction performs a vector reduction, in which case
2621 /// we have the freedom to alter the elements in the result as long as the
2622 /// reduction of them stays unchanged.
2623 static bool isVectorReductionOp(const User *I) {
2624   const Instruction *Inst = dyn_cast<Instruction>(I);
2625   if (!Inst || !Inst->getType()->isVectorTy())
2626     return false;
2627 
2628   auto OpCode = Inst->getOpcode();
2629   switch (OpCode) {
2630   case Instruction::Add:
2631   case Instruction::Mul:
2632   case Instruction::And:
2633   case Instruction::Or:
2634   case Instruction::Xor:
2635     break;
2636   case Instruction::FAdd:
2637   case Instruction::FMul:
2638     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2639       if (FPOp->getFastMathFlags().isFast())
2640         break;
2641     LLVM_FALLTHROUGH;
2642   default:
2643     return false;
2644   }
2645 
2646   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2647   unsigned ElemNumToReduce = ElemNum;
2648 
2649   // Do DFS search on the def-use chain from the given instruction. We only
2650   // allow four kinds of operations during the search until we reach the
2651   // instruction that extracts the first element from the vector:
2652   //
2653   //   1. The reduction operation of the same opcode as the given instruction.
2654   //
2655   //   2. PHI node.
2656   //
2657   //   3. ShuffleVector instruction together with a reduction operation that
2658   //      does a partial reduction.
2659   //
2660   //   4. ExtractElement that extracts the first element from the vector, and we
2661   //      stop searching the def-use chain here.
2662   //
2663   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2664   // from 1-3 to the stack to continue the DFS. The given instruction is not
2665   // a reduction operation if we meet any other instructions other than those
2666   // listed above.
2667 
2668   SmallVector<const User *, 16> UsersToVisit{Inst};
2669   SmallPtrSet<const User *, 16> Visited;
2670   bool ReduxExtracted = false;
2671 
2672   while (!UsersToVisit.empty()) {
2673     auto User = UsersToVisit.back();
2674     UsersToVisit.pop_back();
2675     if (!Visited.insert(User).second)
2676       continue;
2677 
2678     for (const auto &U : User->users()) {
2679       auto Inst = dyn_cast<Instruction>(U);
2680       if (!Inst)
2681         return false;
2682 
2683       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2684         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2685           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2686             return false;
2687         UsersToVisit.push_back(U);
2688       } else if (const ShuffleVectorInst *ShufInst =
2689                      dyn_cast<ShuffleVectorInst>(U)) {
2690         // Detect the following pattern: A ShuffleVector instruction together
2691         // with a reduction that do partial reduction on the first and second
2692         // ElemNumToReduce / 2 elements, and store the result in
2693         // ElemNumToReduce / 2 elements in another vector.
2694 
2695         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2696         if (ResultElements < ElemNum)
2697           return false;
2698 
2699         if (ElemNumToReduce == 1)
2700           return false;
2701         if (!isa<UndefValue>(U->getOperand(1)))
2702           return false;
2703         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2704           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2705             return false;
2706         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2707           if (ShufInst->getMaskValue(i) != -1)
2708             return false;
2709 
2710         // There is only one user of this ShuffleVector instruction, which
2711         // must be a reduction operation.
2712         if (!U->hasOneUse())
2713           return false;
2714 
2715         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2716         if (!U2 || U2->getOpcode() != OpCode)
2717           return false;
2718 
2719         // Check operands of the reduction operation.
2720         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2721             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2722           UsersToVisit.push_back(U2);
2723           ElemNumToReduce /= 2;
2724         } else
2725           return false;
2726       } else if (isa<ExtractElementInst>(U)) {
2727         // At this moment we should have reduced all elements in the vector.
2728         if (ElemNumToReduce != 1)
2729           return false;
2730 
2731         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2732         if (!Val || Val->getZExtValue() != 0)
2733           return false;
2734 
2735         ReduxExtracted = true;
2736       } else
2737         return false;
2738     }
2739   }
2740   return ReduxExtracted;
2741 }
2742 
2743 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2744   SDNodeFlags Flags;
2745   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2746     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2747     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2748   }
2749   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2750     Flags.setExact(ExactOp->isExact());
2751   }
2752   if (isVectorReductionOp(&I)) {
2753     Flags.setVectorReduction(true);
2754     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2755   }
2756   if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
2757     Flags.copyFMF(*FPOp);
2758   }
2759 
2760   SDValue Op1 = getValue(I.getOperand(0));
2761   SDValue Op2 = getValue(I.getOperand(1));
2762   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2763                                      Op1, Op2, Flags);
2764   setValue(&I, BinNodeValue);
2765 }
2766 
2767 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2768   SDValue Op1 = getValue(I.getOperand(0));
2769   SDValue Op2 = getValue(I.getOperand(1));
2770 
2771   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2772       Op2.getValueType(), DAG.getDataLayout());
2773 
2774   // Coerce the shift amount to the right type if we can.
2775   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2776     unsigned ShiftSize = ShiftTy.getSizeInBits();
2777     unsigned Op2Size = Op2.getValueSizeInBits();
2778     SDLoc DL = getCurSDLoc();
2779 
2780     // If the operand is smaller than the shift count type, promote it.
2781     if (ShiftSize > Op2Size)
2782       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2783 
2784     // If the operand is larger than the shift count type but the shift
2785     // count type has enough bits to represent any shift value, truncate
2786     // it now. This is a common case and it exposes the truncate to
2787     // optimization early.
2788     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2789       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2790     // Otherwise we'll need to temporarily settle for some other convenient
2791     // type.  Type legalization will make adjustments once the shiftee is split.
2792     else
2793       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2794   }
2795 
2796   bool nuw = false;
2797   bool nsw = false;
2798   bool exact = false;
2799 
2800   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2801 
2802     if (const OverflowingBinaryOperator *OFBinOp =
2803             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2804       nuw = OFBinOp->hasNoUnsignedWrap();
2805       nsw = OFBinOp->hasNoSignedWrap();
2806     }
2807     if (const PossiblyExactOperator *ExactOp =
2808             dyn_cast<const PossiblyExactOperator>(&I))
2809       exact = ExactOp->isExact();
2810   }
2811   SDNodeFlags Flags;
2812   Flags.setExact(exact);
2813   Flags.setNoSignedWrap(nsw);
2814   Flags.setNoUnsignedWrap(nuw);
2815   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2816                             Flags);
2817   setValue(&I, Res);
2818 }
2819 
2820 void SelectionDAGBuilder::visitSDiv(const User &I) {
2821   SDValue Op1 = getValue(I.getOperand(0));
2822   SDValue Op2 = getValue(I.getOperand(1));
2823 
2824   SDNodeFlags Flags;
2825   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2826                  cast<PossiblyExactOperator>(&I)->isExact());
2827   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2828                            Op2, Flags));
2829 }
2830 
2831 void SelectionDAGBuilder::visitICmp(const User &I) {
2832   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2833   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2834     predicate = IC->getPredicate();
2835   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2836     predicate = ICmpInst::Predicate(IC->getPredicate());
2837   SDValue Op1 = getValue(I.getOperand(0));
2838   SDValue Op2 = getValue(I.getOperand(1));
2839   ISD::CondCode Opcode = getICmpCondCode(predicate);
2840 
2841   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2842                                                         I.getType());
2843   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2844 }
2845 
2846 void SelectionDAGBuilder::visitFCmp(const User &I) {
2847   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2848   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2849     predicate = FC->getPredicate();
2850   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2851     predicate = FCmpInst::Predicate(FC->getPredicate());
2852   SDValue Op1 = getValue(I.getOperand(0));
2853   SDValue Op2 = getValue(I.getOperand(1));
2854   ISD::CondCode Condition = getFCmpCondCode(predicate);
2855 
2856   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2857   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2858   // further optimization, but currently FMF is only applicable to binary nodes.
2859   if (TM.Options.NoNaNsFPMath)
2860     Condition = getFCmpCodeWithoutNaN(Condition);
2861   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2862                                                         I.getType());
2863   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2864 }
2865 
2866 // Check if the condition of the select has one use or two users that are both
2867 // selects with the same condition.
2868 static bool hasOnlySelectUsers(const Value *Cond) {
2869   return llvm::all_of(Cond->users(), [](const Value *V) {
2870     return isa<SelectInst>(V);
2871   });
2872 }
2873 
2874 void SelectionDAGBuilder::visitSelect(const User &I) {
2875   SmallVector<EVT, 4> ValueVTs;
2876   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2877                   ValueVTs);
2878   unsigned NumValues = ValueVTs.size();
2879   if (NumValues == 0) return;
2880 
2881   SmallVector<SDValue, 4> Values(NumValues);
2882   SDValue Cond     = getValue(I.getOperand(0));
2883   SDValue LHSVal   = getValue(I.getOperand(1));
2884   SDValue RHSVal   = getValue(I.getOperand(2));
2885   auto BaseOps = {Cond};
2886   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2887     ISD::VSELECT : ISD::SELECT;
2888 
2889   // Min/max matching is only viable if all output VTs are the same.
2890   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2891     EVT VT = ValueVTs[0];
2892     LLVMContext &Ctx = *DAG.getContext();
2893     auto &TLI = DAG.getTargetLoweringInfo();
2894 
2895     // We care about the legality of the operation after it has been type
2896     // legalized.
2897     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2898            VT != TLI.getTypeToTransformTo(Ctx, VT))
2899       VT = TLI.getTypeToTransformTo(Ctx, VT);
2900 
2901     // If the vselect is legal, assume we want to leave this as a vector setcc +
2902     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2903     // min/max is legal on the scalar type.
2904     bool UseScalarMinMax = VT.isVector() &&
2905       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2906 
2907     Value *LHS, *RHS;
2908     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2909     ISD::NodeType Opc = ISD::DELETED_NODE;
2910     switch (SPR.Flavor) {
2911     case SPF_UMAX:    Opc = ISD::UMAX; break;
2912     case SPF_UMIN:    Opc = ISD::UMIN; break;
2913     case SPF_SMAX:    Opc = ISD::SMAX; break;
2914     case SPF_SMIN:    Opc = ISD::SMIN; break;
2915     case SPF_FMINNUM:
2916       switch (SPR.NaNBehavior) {
2917       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2918       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2919       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2920       case SPNB_RETURNS_ANY: {
2921         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2922           Opc = ISD::FMINNUM;
2923         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2924           Opc = ISD::FMINNAN;
2925         else if (UseScalarMinMax)
2926           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2927             ISD::FMINNUM : ISD::FMINNAN;
2928         break;
2929       }
2930       }
2931       break;
2932     case SPF_FMAXNUM:
2933       switch (SPR.NaNBehavior) {
2934       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2935       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2936       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2937       case SPNB_RETURNS_ANY:
2938 
2939         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2940           Opc = ISD::FMAXNUM;
2941         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2942           Opc = ISD::FMAXNAN;
2943         else if (UseScalarMinMax)
2944           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2945             ISD::FMAXNUM : ISD::FMAXNAN;
2946         break;
2947       }
2948       break;
2949     default: break;
2950     }
2951 
2952     if (Opc != ISD::DELETED_NODE &&
2953         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2954          (UseScalarMinMax &&
2955           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2956         // If the underlying comparison instruction is used by any other
2957         // instruction, the consumed instructions won't be destroyed, so it is
2958         // not profitable to convert to a min/max.
2959         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2960       OpCode = Opc;
2961       LHSVal = getValue(LHS);
2962       RHSVal = getValue(RHS);
2963       BaseOps = {};
2964     }
2965   }
2966 
2967   for (unsigned i = 0; i != NumValues; ++i) {
2968     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2969     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2970     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2971     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2972                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2973                             Ops);
2974   }
2975 
2976   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2977                            DAG.getVTList(ValueVTs), Values));
2978 }
2979 
2980 void SelectionDAGBuilder::visitTrunc(const User &I) {
2981   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2982   SDValue N = getValue(I.getOperand(0));
2983   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2984                                                         I.getType());
2985   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2986 }
2987 
2988 void SelectionDAGBuilder::visitZExt(const User &I) {
2989   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2990   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2991   SDValue N = getValue(I.getOperand(0));
2992   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2993                                                         I.getType());
2994   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2995 }
2996 
2997 void SelectionDAGBuilder::visitSExt(const User &I) {
2998   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2999   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3000   SDValue N = getValue(I.getOperand(0));
3001   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3002                                                         I.getType());
3003   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3004 }
3005 
3006 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3007   // FPTrunc is never a no-op cast, no need to check
3008   SDValue N = getValue(I.getOperand(0));
3009   SDLoc dl = getCurSDLoc();
3010   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3011   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3012   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3013                            DAG.getTargetConstant(
3014                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3015 }
3016 
3017 void SelectionDAGBuilder::visitFPExt(const User &I) {
3018   // FPExt is never a no-op cast, no need to check
3019   SDValue N = getValue(I.getOperand(0));
3020   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3021                                                         I.getType());
3022   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3023 }
3024 
3025 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3026   // FPToUI is never a no-op cast, no need to check
3027   SDValue N = getValue(I.getOperand(0));
3028   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3029                                                         I.getType());
3030   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3031 }
3032 
3033 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3034   // FPToSI is never a no-op cast, no need to check
3035   SDValue N = getValue(I.getOperand(0));
3036   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3037                                                         I.getType());
3038   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3039 }
3040 
3041 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3042   // UIToFP is never a no-op cast, no need to check
3043   SDValue N = getValue(I.getOperand(0));
3044   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3045                                                         I.getType());
3046   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3047 }
3048 
3049 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3050   // SIToFP is never a no-op cast, no need to check
3051   SDValue N = getValue(I.getOperand(0));
3052   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3053                                                         I.getType());
3054   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3055 }
3056 
3057 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3058   // What to do depends on the size of the integer and the size of the pointer.
3059   // We can either truncate, zero extend, or no-op, accordingly.
3060   SDValue N = getValue(I.getOperand(0));
3061   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3062                                                         I.getType());
3063   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3064 }
3065 
3066 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3067   // What to do depends on the size of the integer and the size of the pointer.
3068   // We can either truncate, zero extend, or no-op, accordingly.
3069   SDValue N = getValue(I.getOperand(0));
3070   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3071                                                         I.getType());
3072   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3073 }
3074 
3075 void SelectionDAGBuilder::visitBitCast(const User &I) {
3076   SDValue N = getValue(I.getOperand(0));
3077   SDLoc dl = getCurSDLoc();
3078   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3079                                                         I.getType());
3080 
3081   // BitCast assures us that source and destination are the same size so this is
3082   // either a BITCAST or a no-op.
3083   if (DestVT != N.getValueType())
3084     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3085                              DestVT, N)); // convert types.
3086   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3087   // might fold any kind of constant expression to an integer constant and that
3088   // is not what we are looking for. Only recognize a bitcast of a genuine
3089   // constant integer as an opaque constant.
3090   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3091     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3092                                  /*isOpaque*/true));
3093   else
3094     setValue(&I, N);            // noop cast.
3095 }
3096 
3097 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3098   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3099   const Value *SV = I.getOperand(0);
3100   SDValue N = getValue(SV);
3101   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3102 
3103   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3104   unsigned DestAS = I.getType()->getPointerAddressSpace();
3105 
3106   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3107     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3108 
3109   setValue(&I, N);
3110 }
3111 
3112 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3113   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3114   SDValue InVec = getValue(I.getOperand(0));
3115   SDValue InVal = getValue(I.getOperand(1));
3116   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3117                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3118   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3119                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3120                            InVec, InVal, InIdx));
3121 }
3122 
3123 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3124   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3125   SDValue InVec = getValue(I.getOperand(0));
3126   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3127                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3128   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3129                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3130                            InVec, InIdx));
3131 }
3132 
3133 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3134   SDValue Src1 = getValue(I.getOperand(0));
3135   SDValue Src2 = getValue(I.getOperand(1));
3136   SDLoc DL = getCurSDLoc();
3137 
3138   SmallVector<int, 8> Mask;
3139   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3140   unsigned MaskNumElts = Mask.size();
3141 
3142   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3143   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3144   EVT SrcVT = Src1.getValueType();
3145   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3146 
3147   if (SrcNumElts == MaskNumElts) {
3148     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3149     return;
3150   }
3151 
3152   // Normalize the shuffle vector since mask and vector length don't match.
3153   if (SrcNumElts < MaskNumElts) {
3154     // Mask is longer than the source vectors. We can use concatenate vector to
3155     // make the mask and vectors lengths match.
3156 
3157     if (MaskNumElts % SrcNumElts == 0) {
3158       // Mask length is a multiple of the source vector length.
3159       // Check if the shuffle is some kind of concatenation of the input
3160       // vectors.
3161       unsigned NumConcat = MaskNumElts / SrcNumElts;
3162       bool IsConcat = true;
3163       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3164       for (unsigned i = 0; i != MaskNumElts; ++i) {
3165         int Idx = Mask[i];
3166         if (Idx < 0)
3167           continue;
3168         // Ensure the indices in each SrcVT sized piece are sequential and that
3169         // the same source is used for the whole piece.
3170         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3171             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3172              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3173           IsConcat = false;
3174           break;
3175         }
3176         // Remember which source this index came from.
3177         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3178       }
3179 
3180       // The shuffle is concatenating multiple vectors together. Just emit
3181       // a CONCAT_VECTORS operation.
3182       if (IsConcat) {
3183         SmallVector<SDValue, 8> ConcatOps;
3184         for (auto Src : ConcatSrcs) {
3185           if (Src < 0)
3186             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3187           else if (Src == 0)
3188             ConcatOps.push_back(Src1);
3189           else
3190             ConcatOps.push_back(Src2);
3191         }
3192         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3193         return;
3194       }
3195     }
3196 
3197     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3198     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3199     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3200                                     PaddedMaskNumElts);
3201 
3202     // Pad both vectors with undefs to make them the same length as the mask.
3203     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3204 
3205     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3206     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3207     MOps1[0] = Src1;
3208     MOps2[0] = Src2;
3209 
3210     Src1 = Src1.isUndef()
3211                ? DAG.getUNDEF(PaddedVT)
3212                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3213     Src2 = Src2.isUndef()
3214                ? DAG.getUNDEF(PaddedVT)
3215                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3216 
3217     // Readjust mask for new input vector length.
3218     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3219     for (unsigned i = 0; i != MaskNumElts; ++i) {
3220       int Idx = Mask[i];
3221       if (Idx >= (int)SrcNumElts)
3222         Idx -= SrcNumElts - PaddedMaskNumElts;
3223       MappedOps[i] = Idx;
3224     }
3225 
3226     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3227 
3228     // If the concatenated vector was padded, extract a subvector with the
3229     // correct number of elements.
3230     if (MaskNumElts != PaddedMaskNumElts)
3231       Result = DAG.getNode(
3232           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3233           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3234 
3235     setValue(&I, Result);
3236     return;
3237   }
3238 
3239   if (SrcNumElts > MaskNumElts) {
3240     // Analyze the access pattern of the vector to see if we can extract
3241     // two subvectors and do the shuffle.
3242     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3243     bool CanExtract = true;
3244     for (int Idx : Mask) {
3245       unsigned Input = 0;
3246       if (Idx < 0)
3247         continue;
3248 
3249       if (Idx >= (int)SrcNumElts) {
3250         Input = 1;
3251         Idx -= SrcNumElts;
3252       }
3253 
3254       // If all the indices come from the same MaskNumElts sized portion of
3255       // the sources we can use extract. Also make sure the extract wouldn't
3256       // extract past the end of the source.
3257       int NewStartIdx = alignDown(Idx, MaskNumElts);
3258       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3259           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3260         CanExtract = false;
3261       // Make sure we always update StartIdx as we use it to track if all
3262       // elements are undef.
3263       StartIdx[Input] = NewStartIdx;
3264     }
3265 
3266     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3267       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3268       return;
3269     }
3270     if (CanExtract) {
3271       // Extract appropriate subvector and generate a vector shuffle
3272       for (unsigned Input = 0; Input < 2; ++Input) {
3273         SDValue &Src = Input == 0 ? Src1 : Src2;
3274         if (StartIdx[Input] < 0)
3275           Src = DAG.getUNDEF(VT);
3276         else {
3277           Src = DAG.getNode(
3278               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3279               DAG.getConstant(StartIdx[Input], DL,
3280                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3281         }
3282       }
3283 
3284       // Calculate new mask.
3285       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3286       for (int &Idx : MappedOps) {
3287         if (Idx >= (int)SrcNumElts)
3288           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3289         else if (Idx >= 0)
3290           Idx -= StartIdx[0];
3291       }
3292 
3293       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3294       return;
3295     }
3296   }
3297 
3298   // We can't use either concat vectors or extract subvectors so fall back to
3299   // replacing the shuffle with extract and build vector.
3300   // to insert and build vector.
3301   EVT EltVT = VT.getVectorElementType();
3302   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3303   SmallVector<SDValue,8> Ops;
3304   for (int Idx : Mask) {
3305     SDValue Res;
3306 
3307     if (Idx < 0) {
3308       Res = DAG.getUNDEF(EltVT);
3309     } else {
3310       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3311       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3312 
3313       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3314                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3315     }
3316 
3317     Ops.push_back(Res);
3318   }
3319 
3320   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3321 }
3322 
3323 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3324   ArrayRef<unsigned> Indices;
3325   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3326     Indices = IV->getIndices();
3327   else
3328     Indices = cast<ConstantExpr>(&I)->getIndices();
3329 
3330   const Value *Op0 = I.getOperand(0);
3331   const Value *Op1 = I.getOperand(1);
3332   Type *AggTy = I.getType();
3333   Type *ValTy = Op1->getType();
3334   bool IntoUndef = isa<UndefValue>(Op0);
3335   bool FromUndef = isa<UndefValue>(Op1);
3336 
3337   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3338 
3339   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3340   SmallVector<EVT, 4> AggValueVTs;
3341   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3342   SmallVector<EVT, 4> ValValueVTs;
3343   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3344 
3345   unsigned NumAggValues = AggValueVTs.size();
3346   unsigned NumValValues = ValValueVTs.size();
3347   SmallVector<SDValue, 4> Values(NumAggValues);
3348 
3349   // Ignore an insertvalue that produces an empty object
3350   if (!NumAggValues) {
3351     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3352     return;
3353   }
3354 
3355   SDValue Agg = getValue(Op0);
3356   unsigned i = 0;
3357   // Copy the beginning value(s) from the original aggregate.
3358   for (; i != LinearIndex; ++i)
3359     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3360                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3361   // Copy values from the inserted value(s).
3362   if (NumValValues) {
3363     SDValue Val = getValue(Op1);
3364     for (; i != LinearIndex + NumValValues; ++i)
3365       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3366                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3367   }
3368   // Copy remaining value(s) from the original aggregate.
3369   for (; i != NumAggValues; ++i)
3370     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3371                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3372 
3373   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3374                            DAG.getVTList(AggValueVTs), Values));
3375 }
3376 
3377 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3378   ArrayRef<unsigned> Indices;
3379   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3380     Indices = EV->getIndices();
3381   else
3382     Indices = cast<ConstantExpr>(&I)->getIndices();
3383 
3384   const Value *Op0 = I.getOperand(0);
3385   Type *AggTy = Op0->getType();
3386   Type *ValTy = I.getType();
3387   bool OutOfUndef = isa<UndefValue>(Op0);
3388 
3389   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3390 
3391   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3392   SmallVector<EVT, 4> ValValueVTs;
3393   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3394 
3395   unsigned NumValValues = ValValueVTs.size();
3396 
3397   // Ignore a extractvalue that produces an empty object
3398   if (!NumValValues) {
3399     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3400     return;
3401   }
3402 
3403   SmallVector<SDValue, 4> Values(NumValValues);
3404 
3405   SDValue Agg = getValue(Op0);
3406   // Copy out the selected value(s).
3407   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3408     Values[i - LinearIndex] =
3409       OutOfUndef ?
3410         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3411         SDValue(Agg.getNode(), Agg.getResNo() + i);
3412 
3413   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3414                            DAG.getVTList(ValValueVTs), Values));
3415 }
3416 
3417 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3418   Value *Op0 = I.getOperand(0);
3419   // Note that the pointer operand may be a vector of pointers. Take the scalar
3420   // element which holds a pointer.
3421   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3422   SDValue N = getValue(Op0);
3423   SDLoc dl = getCurSDLoc();
3424 
3425   // Normalize Vector GEP - all scalar operands should be converted to the
3426   // splat vector.
3427   unsigned VectorWidth = I.getType()->isVectorTy() ?
3428     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3429 
3430   if (VectorWidth && !N.getValueType().isVector()) {
3431     LLVMContext &Context = *DAG.getContext();
3432     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3433     N = DAG.getSplatBuildVector(VT, dl, N);
3434   }
3435 
3436   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3437        GTI != E; ++GTI) {
3438     const Value *Idx = GTI.getOperand();
3439     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3440       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3441       if (Field) {
3442         // N = N + Offset
3443         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3444 
3445         // In an inbounds GEP with an offset that is nonnegative even when
3446         // interpreted as signed, assume there is no unsigned overflow.
3447         SDNodeFlags Flags;
3448         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3449           Flags.setNoUnsignedWrap(true);
3450 
3451         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3452                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3453       }
3454     } else {
3455       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3456       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3457       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3458 
3459       // If this is a scalar constant or a splat vector of constants,
3460       // handle it quickly.
3461       const auto *CI = dyn_cast<ConstantInt>(Idx);
3462       if (!CI && isa<ConstantDataVector>(Idx) &&
3463           cast<ConstantDataVector>(Idx)->getSplatValue())
3464         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3465 
3466       if (CI) {
3467         if (CI->isZero())
3468           continue;
3469         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3470         LLVMContext &Context = *DAG.getContext();
3471         SDValue OffsVal = VectorWidth ?
3472           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3473           DAG.getConstant(Offs, dl, IdxTy);
3474 
3475         // In an inbouds GEP with an offset that is nonnegative even when
3476         // interpreted as signed, assume there is no unsigned overflow.
3477         SDNodeFlags Flags;
3478         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3479           Flags.setNoUnsignedWrap(true);
3480 
3481         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3482         continue;
3483       }
3484 
3485       // N = N + Idx * ElementSize;
3486       SDValue IdxN = getValue(Idx);
3487 
3488       if (!IdxN.getValueType().isVector() && VectorWidth) {
3489         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3490         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3491       }
3492 
3493       // If the index is smaller or larger than intptr_t, truncate or extend
3494       // it.
3495       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3496 
3497       // If this is a multiply by a power of two, turn it into a shl
3498       // immediately.  This is a very common case.
3499       if (ElementSize != 1) {
3500         if (ElementSize.isPowerOf2()) {
3501           unsigned Amt = ElementSize.logBase2();
3502           IdxN = DAG.getNode(ISD::SHL, dl,
3503                              N.getValueType(), IdxN,
3504                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3505         } else {
3506           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3507           IdxN = DAG.getNode(ISD::MUL, dl,
3508                              N.getValueType(), IdxN, Scale);
3509         }
3510       }
3511 
3512       N = DAG.getNode(ISD::ADD, dl,
3513                       N.getValueType(), N, IdxN);
3514     }
3515   }
3516 
3517   setValue(&I, N);
3518 }
3519 
3520 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3521   // If this is a fixed sized alloca in the entry block of the function,
3522   // allocate it statically on the stack.
3523   if (FuncInfo.StaticAllocaMap.count(&I))
3524     return;   // getValue will auto-populate this.
3525 
3526   SDLoc dl = getCurSDLoc();
3527   Type *Ty = I.getAllocatedType();
3528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3529   auto &DL = DAG.getDataLayout();
3530   uint64_t TySize = DL.getTypeAllocSize(Ty);
3531   unsigned Align =
3532       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3533 
3534   SDValue AllocSize = getValue(I.getArraySize());
3535 
3536   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3537   if (AllocSize.getValueType() != IntPtr)
3538     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3539 
3540   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3541                           AllocSize,
3542                           DAG.getConstant(TySize, dl, IntPtr));
3543 
3544   // Handle alignment.  If the requested alignment is less than or equal to
3545   // the stack alignment, ignore it.  If the size is greater than or equal to
3546   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3547   unsigned StackAlign =
3548       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3549   if (Align <= StackAlign)
3550     Align = 0;
3551 
3552   // Round the size of the allocation up to the stack alignment size
3553   // by add SA-1 to the size. This doesn't overflow because we're computing
3554   // an address inside an alloca.
3555   SDNodeFlags Flags;
3556   Flags.setNoUnsignedWrap(true);
3557   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3558                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3559 
3560   // Mask out the low bits for alignment purposes.
3561   AllocSize =
3562       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3563                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3564 
3565   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3566   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3567   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3568   setValue(&I, DSA);
3569   DAG.setRoot(DSA.getValue(1));
3570 
3571   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3572 }
3573 
3574 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3575   if (I.isAtomic())
3576     return visitAtomicLoad(I);
3577 
3578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3579   const Value *SV = I.getOperand(0);
3580   if (TLI.supportSwiftError()) {
3581     // Swifterror values can come from either a function parameter with
3582     // swifterror attribute or an alloca with swifterror attribute.
3583     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3584       if (Arg->hasSwiftErrorAttr())
3585         return visitLoadFromSwiftError(I);
3586     }
3587 
3588     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3589       if (Alloca->isSwiftError())
3590         return visitLoadFromSwiftError(I);
3591     }
3592   }
3593 
3594   SDValue Ptr = getValue(SV);
3595 
3596   Type *Ty = I.getType();
3597 
3598   bool isVolatile = I.isVolatile();
3599   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3600   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3601   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3602   unsigned Alignment = I.getAlignment();
3603 
3604   AAMDNodes AAInfo;
3605   I.getAAMetadata(AAInfo);
3606   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3607 
3608   SmallVector<EVT, 4> ValueVTs;
3609   SmallVector<uint64_t, 4> Offsets;
3610   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3611   unsigned NumValues = ValueVTs.size();
3612   if (NumValues == 0)
3613     return;
3614 
3615   SDValue Root;
3616   bool ConstantMemory = false;
3617   if (isVolatile || NumValues > MaxParallelChains)
3618     // Serialize volatile loads with other side effects.
3619     Root = getRoot();
3620   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3621                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3622     // Do not serialize (non-volatile) loads of constant memory with anything.
3623     Root = DAG.getEntryNode();
3624     ConstantMemory = true;
3625   } else {
3626     // Do not serialize non-volatile loads against each other.
3627     Root = DAG.getRoot();
3628   }
3629 
3630   SDLoc dl = getCurSDLoc();
3631 
3632   if (isVolatile)
3633     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3634 
3635   // An aggregate load cannot wrap around the address space, so offsets to its
3636   // parts don't wrap either.
3637   SDNodeFlags Flags;
3638   Flags.setNoUnsignedWrap(true);
3639 
3640   SmallVector<SDValue, 4> Values(NumValues);
3641   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3642   EVT PtrVT = Ptr.getValueType();
3643   unsigned ChainI = 0;
3644   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3645     // Serializing loads here may result in excessive register pressure, and
3646     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3647     // could recover a bit by hoisting nodes upward in the chain by recognizing
3648     // they are side-effect free or do not alias. The optimizer should really
3649     // avoid this case by converting large object/array copies to llvm.memcpy
3650     // (MaxParallelChains should always remain as failsafe).
3651     if (ChainI == MaxParallelChains) {
3652       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3653       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3654                                   makeArrayRef(Chains.data(), ChainI));
3655       Root = Chain;
3656       ChainI = 0;
3657     }
3658     SDValue A = DAG.getNode(ISD::ADD, dl,
3659                             PtrVT, Ptr,
3660                             DAG.getConstant(Offsets[i], dl, PtrVT),
3661                             Flags);
3662     auto MMOFlags = MachineMemOperand::MONone;
3663     if (isVolatile)
3664       MMOFlags |= MachineMemOperand::MOVolatile;
3665     if (isNonTemporal)
3666       MMOFlags |= MachineMemOperand::MONonTemporal;
3667     if (isInvariant)
3668       MMOFlags |= MachineMemOperand::MOInvariant;
3669     if (isDereferenceable)
3670       MMOFlags |= MachineMemOperand::MODereferenceable;
3671     MMOFlags |= TLI.getMMOFlags(I);
3672 
3673     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3674                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3675                             MMOFlags, AAInfo, Ranges);
3676 
3677     Values[i] = L;
3678     Chains[ChainI] = L.getValue(1);
3679   }
3680 
3681   if (!ConstantMemory) {
3682     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3683                                 makeArrayRef(Chains.data(), ChainI));
3684     if (isVolatile)
3685       DAG.setRoot(Chain);
3686     else
3687       PendingLoads.push_back(Chain);
3688   }
3689 
3690   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3691                            DAG.getVTList(ValueVTs), Values));
3692 }
3693 
3694 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3695   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3696          "call visitStoreToSwiftError when backend supports swifterror");
3697 
3698   SmallVector<EVT, 4> ValueVTs;
3699   SmallVector<uint64_t, 4> Offsets;
3700   const Value *SrcV = I.getOperand(0);
3701   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3702                   SrcV->getType(), ValueVTs, &Offsets);
3703   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3704          "expect a single EVT for swifterror");
3705 
3706   SDValue Src = getValue(SrcV);
3707   // Create a virtual register, then update the virtual register.
3708   unsigned VReg; bool CreatedVReg;
3709   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3710   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3711   // Chain can be getRoot or getControlRoot.
3712   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3713                                       SDValue(Src.getNode(), Src.getResNo()));
3714   DAG.setRoot(CopyNode);
3715   if (CreatedVReg)
3716     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3717 }
3718 
3719 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3720   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3721          "call visitLoadFromSwiftError when backend supports swifterror");
3722 
3723   assert(!I.isVolatile() &&
3724          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3725          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3726          "Support volatile, non temporal, invariant for load_from_swift_error");
3727 
3728   const Value *SV = I.getOperand(0);
3729   Type *Ty = I.getType();
3730   AAMDNodes AAInfo;
3731   I.getAAMetadata(AAInfo);
3732   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3733              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3734          "load_from_swift_error should not be constant memory");
3735 
3736   SmallVector<EVT, 4> ValueVTs;
3737   SmallVector<uint64_t, 4> Offsets;
3738   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3739                   ValueVTs, &Offsets);
3740   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3741          "expect a single EVT for swifterror");
3742 
3743   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3744   SDValue L = DAG.getCopyFromReg(
3745       getRoot(), getCurSDLoc(),
3746       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3747       ValueVTs[0]);
3748 
3749   setValue(&I, L);
3750 }
3751 
3752 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3753   if (I.isAtomic())
3754     return visitAtomicStore(I);
3755 
3756   const Value *SrcV = I.getOperand(0);
3757   const Value *PtrV = I.getOperand(1);
3758 
3759   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3760   if (TLI.supportSwiftError()) {
3761     // Swifterror values can come from either a function parameter with
3762     // swifterror attribute or an alloca with swifterror attribute.
3763     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3764       if (Arg->hasSwiftErrorAttr())
3765         return visitStoreToSwiftError(I);
3766     }
3767 
3768     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3769       if (Alloca->isSwiftError())
3770         return visitStoreToSwiftError(I);
3771     }
3772   }
3773 
3774   SmallVector<EVT, 4> ValueVTs;
3775   SmallVector<uint64_t, 4> Offsets;
3776   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3777                   SrcV->getType(), ValueVTs, &Offsets);
3778   unsigned NumValues = ValueVTs.size();
3779   if (NumValues == 0)
3780     return;
3781 
3782   // Get the lowered operands. Note that we do this after
3783   // checking if NumResults is zero, because with zero results
3784   // the operands won't have values in the map.
3785   SDValue Src = getValue(SrcV);
3786   SDValue Ptr = getValue(PtrV);
3787 
3788   SDValue Root = getRoot();
3789   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3790   SDLoc dl = getCurSDLoc();
3791   EVT PtrVT = Ptr.getValueType();
3792   unsigned Alignment = I.getAlignment();
3793   AAMDNodes AAInfo;
3794   I.getAAMetadata(AAInfo);
3795 
3796   auto MMOFlags = MachineMemOperand::MONone;
3797   if (I.isVolatile())
3798     MMOFlags |= MachineMemOperand::MOVolatile;
3799   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3800     MMOFlags |= MachineMemOperand::MONonTemporal;
3801   MMOFlags |= TLI.getMMOFlags(I);
3802 
3803   // An aggregate load cannot wrap around the address space, so offsets to its
3804   // parts don't wrap either.
3805   SDNodeFlags Flags;
3806   Flags.setNoUnsignedWrap(true);
3807 
3808   unsigned ChainI = 0;
3809   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3810     // See visitLoad comments.
3811     if (ChainI == MaxParallelChains) {
3812       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3813                                   makeArrayRef(Chains.data(), ChainI));
3814       Root = Chain;
3815       ChainI = 0;
3816     }
3817     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3818                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3819     SDValue St = DAG.getStore(
3820         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3821         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3822     Chains[ChainI] = St;
3823   }
3824 
3825   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3826                                   makeArrayRef(Chains.data(), ChainI));
3827   DAG.setRoot(StoreNode);
3828 }
3829 
3830 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3831                                            bool IsCompressing) {
3832   SDLoc sdl = getCurSDLoc();
3833 
3834   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3835                            unsigned& Alignment) {
3836     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3837     Src0 = I.getArgOperand(0);
3838     Ptr = I.getArgOperand(1);
3839     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3840     Mask = I.getArgOperand(3);
3841   };
3842   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3843                            unsigned& Alignment) {
3844     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3845     Src0 = I.getArgOperand(0);
3846     Ptr = I.getArgOperand(1);
3847     Mask = I.getArgOperand(2);
3848     Alignment = 0;
3849   };
3850 
3851   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3852   unsigned Alignment;
3853   if (IsCompressing)
3854     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3855   else
3856     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3857 
3858   SDValue Ptr = getValue(PtrOperand);
3859   SDValue Src0 = getValue(Src0Operand);
3860   SDValue Mask = getValue(MaskOperand);
3861 
3862   EVT VT = Src0.getValueType();
3863   if (!Alignment)
3864     Alignment = DAG.getEVTAlignment(VT);
3865 
3866   AAMDNodes AAInfo;
3867   I.getAAMetadata(AAInfo);
3868 
3869   MachineMemOperand *MMO =
3870     DAG.getMachineFunction().
3871     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3872                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3873                           Alignment, AAInfo);
3874   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3875                                          MMO, false /* Truncating */,
3876                                          IsCompressing);
3877   DAG.setRoot(StoreNode);
3878   setValue(&I, StoreNode);
3879 }
3880 
3881 // Get a uniform base for the Gather/Scatter intrinsic.
3882 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3883 // We try to represent it as a base pointer + vector of indices.
3884 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3885 // The first operand of the GEP may be a single pointer or a vector of pointers
3886 // Example:
3887 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3888 //  or
3889 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3890 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3891 //
3892 // When the first GEP operand is a single pointer - it is the uniform base we
3893 // are looking for. If first operand of the GEP is a splat vector - we
3894 // extract the splat value and use it as a uniform base.
3895 // In all other cases the function returns 'false'.
3896 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3897                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3898   SelectionDAG& DAG = SDB->DAG;
3899   LLVMContext &Context = *DAG.getContext();
3900 
3901   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3902   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3903   if (!GEP)
3904     return false;
3905 
3906   const Value *GEPPtr = GEP->getPointerOperand();
3907   if (!GEPPtr->getType()->isVectorTy())
3908     Ptr = GEPPtr;
3909   else if (!(Ptr = getSplatValue(GEPPtr)))
3910     return false;
3911 
3912   unsigned FinalIndex = GEP->getNumOperands() - 1;
3913   Value *IndexVal = GEP->getOperand(FinalIndex);
3914 
3915   // Ensure all the other indices are 0.
3916   for (unsigned i = 1; i < FinalIndex; ++i) {
3917     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3918     if (!C || !C->isZero())
3919       return false;
3920   }
3921 
3922   // The operands of the GEP may be defined in another basic block.
3923   // In this case we'll not find nodes for the operands.
3924   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3925     return false;
3926 
3927   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3928   const DataLayout &DL = DAG.getDataLayout();
3929   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3930                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3931   Base = SDB->getValue(Ptr);
3932   Index = SDB->getValue(IndexVal);
3933 
3934   if (!Index.getValueType().isVector()) {
3935     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3936     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3937     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3938   }
3939   return true;
3940 }
3941 
3942 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3943   SDLoc sdl = getCurSDLoc();
3944 
3945   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3946   const Value *Ptr = I.getArgOperand(1);
3947   SDValue Src0 = getValue(I.getArgOperand(0));
3948   SDValue Mask = getValue(I.getArgOperand(3));
3949   EVT VT = Src0.getValueType();
3950   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3951   if (!Alignment)
3952     Alignment = DAG.getEVTAlignment(VT);
3953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3954 
3955   AAMDNodes AAInfo;
3956   I.getAAMetadata(AAInfo);
3957 
3958   SDValue Base;
3959   SDValue Index;
3960   SDValue Scale;
3961   const Value *BasePtr = Ptr;
3962   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
3963 
3964   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3965   MachineMemOperand *MMO = DAG.getMachineFunction().
3966     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3967                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3968                          Alignment, AAInfo);
3969   if (!UniformBase) {
3970     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3971     Index = getValue(Ptr);
3972     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3973   }
3974   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
3975   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3976                                          Ops, MMO);
3977   DAG.setRoot(Scatter);
3978   setValue(&I, Scatter);
3979 }
3980 
3981 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3982   SDLoc sdl = getCurSDLoc();
3983 
3984   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3985                            unsigned& Alignment) {
3986     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3987     Ptr = I.getArgOperand(0);
3988     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3989     Mask = I.getArgOperand(2);
3990     Src0 = I.getArgOperand(3);
3991   };
3992   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3993                            unsigned& Alignment) {
3994     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3995     Ptr = I.getArgOperand(0);
3996     Alignment = 0;
3997     Mask = I.getArgOperand(1);
3998     Src0 = I.getArgOperand(2);
3999   };
4000 
4001   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4002   unsigned Alignment;
4003   if (IsExpanding)
4004     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4005   else
4006     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4007 
4008   SDValue Ptr = getValue(PtrOperand);
4009   SDValue Src0 = getValue(Src0Operand);
4010   SDValue Mask = getValue(MaskOperand);
4011 
4012   EVT VT = Src0.getValueType();
4013   if (!Alignment)
4014     Alignment = DAG.getEVTAlignment(VT);
4015 
4016   AAMDNodes AAInfo;
4017   I.getAAMetadata(AAInfo);
4018   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4019 
4020   // Do not serialize masked loads of constant memory with anything.
4021   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4022       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4023   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4024 
4025   MachineMemOperand *MMO =
4026     DAG.getMachineFunction().
4027     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4028                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4029                           Alignment, AAInfo, Ranges);
4030 
4031   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4032                                    ISD::NON_EXTLOAD, IsExpanding);
4033   if (AddToChain) {
4034     SDValue OutChain = Load.getValue(1);
4035     DAG.setRoot(OutChain);
4036   }
4037   setValue(&I, Load);
4038 }
4039 
4040 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4041   SDLoc sdl = getCurSDLoc();
4042 
4043   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4044   const Value *Ptr = I.getArgOperand(0);
4045   SDValue Src0 = getValue(I.getArgOperand(3));
4046   SDValue Mask = getValue(I.getArgOperand(2));
4047 
4048   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4049   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4050   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4051   if (!Alignment)
4052     Alignment = DAG.getEVTAlignment(VT);
4053 
4054   AAMDNodes AAInfo;
4055   I.getAAMetadata(AAInfo);
4056   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4057 
4058   SDValue Root = DAG.getRoot();
4059   SDValue Base;
4060   SDValue Index;
4061   SDValue Scale;
4062   const Value *BasePtr = Ptr;
4063   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4064   bool ConstantMemory = false;
4065   if (UniformBase &&
4066       AA && AA->pointsToConstantMemory(MemoryLocation(
4067           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4068           AAInfo))) {
4069     // Do not serialize (non-volatile) loads of constant memory with anything.
4070     Root = DAG.getEntryNode();
4071     ConstantMemory = true;
4072   }
4073 
4074   MachineMemOperand *MMO =
4075     DAG.getMachineFunction().
4076     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4077                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4078                          Alignment, AAInfo, Ranges);
4079 
4080   if (!UniformBase) {
4081     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4082     Index = getValue(Ptr);
4083     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4084   }
4085   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4086   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4087                                        Ops, MMO);
4088 
4089   SDValue OutChain = Gather.getValue(1);
4090   if (!ConstantMemory)
4091     PendingLoads.push_back(OutChain);
4092   setValue(&I, Gather);
4093 }
4094 
4095 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4096   SDLoc dl = getCurSDLoc();
4097   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4098   AtomicOrdering FailureOrder = I.getFailureOrdering();
4099   SyncScope::ID SSID = I.getSyncScopeID();
4100 
4101   SDValue InChain = getRoot();
4102 
4103   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4104   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4105   SDValue L = DAG.getAtomicCmpSwap(
4106       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4107       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4108       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4109       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4110 
4111   SDValue OutChain = L.getValue(2);
4112 
4113   setValue(&I, L);
4114   DAG.setRoot(OutChain);
4115 }
4116 
4117 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4118   SDLoc dl = getCurSDLoc();
4119   ISD::NodeType NT;
4120   switch (I.getOperation()) {
4121   default: llvm_unreachable("Unknown atomicrmw operation");
4122   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4123   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4124   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4125   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4126   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4127   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4128   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4129   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4130   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4131   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4132   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4133   }
4134   AtomicOrdering Order = I.getOrdering();
4135   SyncScope::ID SSID = I.getSyncScopeID();
4136 
4137   SDValue InChain = getRoot();
4138 
4139   SDValue L =
4140     DAG.getAtomic(NT, dl,
4141                   getValue(I.getValOperand()).getSimpleValueType(),
4142                   InChain,
4143                   getValue(I.getPointerOperand()),
4144                   getValue(I.getValOperand()),
4145                   I.getPointerOperand(),
4146                   /* Alignment=*/ 0, Order, SSID);
4147 
4148   SDValue OutChain = L.getValue(1);
4149 
4150   setValue(&I, L);
4151   DAG.setRoot(OutChain);
4152 }
4153 
4154 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4155   SDLoc dl = getCurSDLoc();
4156   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4157   SDValue Ops[3];
4158   Ops[0] = getRoot();
4159   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4160                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4161   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4162                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4163   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4164 }
4165 
4166 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4167   SDLoc dl = getCurSDLoc();
4168   AtomicOrdering Order = I.getOrdering();
4169   SyncScope::ID SSID = I.getSyncScopeID();
4170 
4171   SDValue InChain = getRoot();
4172 
4173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4174   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4175 
4176   if (!TLI.supportsUnalignedAtomics() &&
4177       I.getAlignment() < VT.getStoreSize())
4178     report_fatal_error("Cannot generate unaligned atomic load");
4179 
4180   MachineMemOperand *MMO =
4181       DAG.getMachineFunction().
4182       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4183                            MachineMemOperand::MOVolatile |
4184                            MachineMemOperand::MOLoad,
4185                            VT.getStoreSize(),
4186                            I.getAlignment() ? I.getAlignment() :
4187                                               DAG.getEVTAlignment(VT),
4188                            AAMDNodes(), nullptr, SSID, Order);
4189 
4190   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4191   SDValue L =
4192       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4193                     getValue(I.getPointerOperand()), MMO);
4194 
4195   SDValue OutChain = L.getValue(1);
4196 
4197   setValue(&I, L);
4198   DAG.setRoot(OutChain);
4199 }
4200 
4201 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4202   SDLoc dl = getCurSDLoc();
4203 
4204   AtomicOrdering Order = I.getOrdering();
4205   SyncScope::ID SSID = I.getSyncScopeID();
4206 
4207   SDValue InChain = getRoot();
4208 
4209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4210   EVT VT =
4211       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4212 
4213   if (I.getAlignment() < VT.getStoreSize())
4214     report_fatal_error("Cannot generate unaligned atomic store");
4215 
4216   SDValue OutChain =
4217     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4218                   InChain,
4219                   getValue(I.getPointerOperand()),
4220                   getValue(I.getValueOperand()),
4221                   I.getPointerOperand(), I.getAlignment(),
4222                   Order, SSID);
4223 
4224   DAG.setRoot(OutChain);
4225 }
4226 
4227 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4228 /// node.
4229 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4230                                                unsigned Intrinsic) {
4231   // Ignore the callsite's attributes. A specific call site may be marked with
4232   // readnone, but the lowering code will expect the chain based on the
4233   // definition.
4234   const Function *F = I.getCalledFunction();
4235   bool HasChain = !F->doesNotAccessMemory();
4236   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4237 
4238   // Build the operand list.
4239   SmallVector<SDValue, 8> Ops;
4240   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4241     if (OnlyLoad) {
4242       // We don't need to serialize loads against other loads.
4243       Ops.push_back(DAG.getRoot());
4244     } else {
4245       Ops.push_back(getRoot());
4246     }
4247   }
4248 
4249   // Info is set by getTgtMemInstrinsic
4250   TargetLowering::IntrinsicInfo Info;
4251   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4252   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4253                                                DAG.getMachineFunction(),
4254                                                Intrinsic);
4255 
4256   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4257   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4258       Info.opc == ISD::INTRINSIC_W_CHAIN)
4259     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4260                                         TLI.getPointerTy(DAG.getDataLayout())));
4261 
4262   // Add all operands of the call to the operand list.
4263   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4264     SDValue Op = getValue(I.getArgOperand(i));
4265     Ops.push_back(Op);
4266   }
4267 
4268   SmallVector<EVT, 4> ValueVTs;
4269   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4270 
4271   if (HasChain)
4272     ValueVTs.push_back(MVT::Other);
4273 
4274   SDVTList VTs = DAG.getVTList(ValueVTs);
4275 
4276   // Create the node.
4277   SDValue Result;
4278   if (IsTgtIntrinsic) {
4279     // This is target intrinsic that touches memory
4280     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4281       Ops, Info.memVT,
4282       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4283       Info.flags, Info.size);
4284   } else if (!HasChain) {
4285     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4286   } else if (!I.getType()->isVoidTy()) {
4287     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4288   } else {
4289     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4290   }
4291 
4292   if (HasChain) {
4293     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4294     if (OnlyLoad)
4295       PendingLoads.push_back(Chain);
4296     else
4297       DAG.setRoot(Chain);
4298   }
4299 
4300   if (!I.getType()->isVoidTy()) {
4301     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4302       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4303       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4304     } else
4305       Result = lowerRangeToAssertZExt(DAG, I, Result);
4306 
4307     setValue(&I, Result);
4308   }
4309 }
4310 
4311 /// GetSignificand - Get the significand and build it into a floating-point
4312 /// number with exponent of 1:
4313 ///
4314 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4315 ///
4316 /// where Op is the hexadecimal representation of floating point value.
4317 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4318   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4319                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4320   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4321                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4322   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4323 }
4324 
4325 /// GetExponent - Get the exponent:
4326 ///
4327 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4328 ///
4329 /// where Op is the hexadecimal representation of floating point value.
4330 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4331                            const TargetLowering &TLI, const SDLoc &dl) {
4332   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4333                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4334   SDValue t1 = DAG.getNode(
4335       ISD::SRL, dl, MVT::i32, t0,
4336       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4337   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4338                            DAG.getConstant(127, dl, MVT::i32));
4339   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4340 }
4341 
4342 /// getF32Constant - Get 32-bit floating point constant.
4343 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4344                               const SDLoc &dl) {
4345   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4346                            MVT::f32);
4347 }
4348 
4349 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4350                                        SelectionDAG &DAG) {
4351   // TODO: What fast-math-flags should be set on the floating-point nodes?
4352 
4353   //   IntegerPartOfX = ((int32_t)(t0);
4354   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4355 
4356   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4357   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4358   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4359 
4360   //   IntegerPartOfX <<= 23;
4361   IntegerPartOfX = DAG.getNode(
4362       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4363       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4364                                   DAG.getDataLayout())));
4365 
4366   SDValue TwoToFractionalPartOfX;
4367   if (LimitFloatPrecision <= 6) {
4368     // For floating-point precision of 6:
4369     //
4370     //   TwoToFractionalPartOfX =
4371     //     0.997535578f +
4372     //       (0.735607626f + 0.252464424f * x) * x;
4373     //
4374     // error 0.0144103317, which is 6 bits
4375     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4376                              getF32Constant(DAG, 0x3e814304, dl));
4377     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4378                              getF32Constant(DAG, 0x3f3c50c8, dl));
4379     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4380     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4381                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4382   } else if (LimitFloatPrecision <= 12) {
4383     // For floating-point precision of 12:
4384     //
4385     //   TwoToFractionalPartOfX =
4386     //     0.999892986f +
4387     //       (0.696457318f +
4388     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4389     //
4390     // error 0.000107046256, which is 13 to 14 bits
4391     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4392                              getF32Constant(DAG, 0x3da235e3, dl));
4393     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4394                              getF32Constant(DAG, 0x3e65b8f3, dl));
4395     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4396     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4397                              getF32Constant(DAG, 0x3f324b07, dl));
4398     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4399     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4400                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4401   } else { // LimitFloatPrecision <= 18
4402     // For floating-point precision of 18:
4403     //
4404     //   TwoToFractionalPartOfX =
4405     //     0.999999982f +
4406     //       (0.693148872f +
4407     //         (0.240227044f +
4408     //           (0.554906021e-1f +
4409     //             (0.961591928e-2f +
4410     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4411     // error 2.47208000*10^(-7), which is better than 18 bits
4412     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4413                              getF32Constant(DAG, 0x3924b03e, dl));
4414     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4415                              getF32Constant(DAG, 0x3ab24b87, dl));
4416     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4417     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4418                              getF32Constant(DAG, 0x3c1d8c17, dl));
4419     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4420     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4421                              getF32Constant(DAG, 0x3d634a1d, dl));
4422     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4423     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4424                              getF32Constant(DAG, 0x3e75fe14, dl));
4425     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4426     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4427                               getF32Constant(DAG, 0x3f317234, dl));
4428     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4429     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4430                                          getF32Constant(DAG, 0x3f800000, dl));
4431   }
4432 
4433   // Add the exponent into the result in integer domain.
4434   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4435   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4436                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4437 }
4438 
4439 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4440 /// limited-precision mode.
4441 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4442                          const TargetLowering &TLI) {
4443   if (Op.getValueType() == MVT::f32 &&
4444       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4445 
4446     // Put the exponent in the right bit position for later addition to the
4447     // final result:
4448     //
4449     //   #define LOG2OFe 1.4426950f
4450     //   t0 = Op * LOG2OFe
4451 
4452     // TODO: What fast-math-flags should be set here?
4453     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4454                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4455     return getLimitedPrecisionExp2(t0, dl, DAG);
4456   }
4457 
4458   // No special expansion.
4459   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4460 }
4461 
4462 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4463 /// limited-precision mode.
4464 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4465                          const TargetLowering &TLI) {
4466   // TODO: What fast-math-flags should be set on the floating-point nodes?
4467 
4468   if (Op.getValueType() == MVT::f32 &&
4469       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4470     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4471 
4472     // Scale the exponent by log(2) [0.69314718f].
4473     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4474     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4475                                         getF32Constant(DAG, 0x3f317218, dl));
4476 
4477     // Get the significand and build it into a floating-point number with
4478     // exponent of 1.
4479     SDValue X = GetSignificand(DAG, Op1, dl);
4480 
4481     SDValue LogOfMantissa;
4482     if (LimitFloatPrecision <= 6) {
4483       // For floating-point precision of 6:
4484       //
4485       //   LogofMantissa =
4486       //     -1.1609546f +
4487       //       (1.4034025f - 0.23903021f * x) * x;
4488       //
4489       // error 0.0034276066, which is better than 8 bits
4490       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4491                                getF32Constant(DAG, 0xbe74c456, dl));
4492       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4493                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4494       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4495       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4496                                   getF32Constant(DAG, 0x3f949a29, dl));
4497     } else if (LimitFloatPrecision <= 12) {
4498       // For floating-point precision of 12:
4499       //
4500       //   LogOfMantissa =
4501       //     -1.7417939f +
4502       //       (2.8212026f +
4503       //         (-1.4699568f +
4504       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4505       //
4506       // error 0.000061011436, which is 14 bits
4507       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4508                                getF32Constant(DAG, 0xbd67b6d6, dl));
4509       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4510                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4511       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4512       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4513                                getF32Constant(DAG, 0x3fbc278b, dl));
4514       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4515       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4516                                getF32Constant(DAG, 0x40348e95, dl));
4517       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4518       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4519                                   getF32Constant(DAG, 0x3fdef31a, dl));
4520     } else { // LimitFloatPrecision <= 18
4521       // For floating-point precision of 18:
4522       //
4523       //   LogOfMantissa =
4524       //     -2.1072184f +
4525       //       (4.2372794f +
4526       //         (-3.7029485f +
4527       //           (2.2781945f +
4528       //             (-0.87823314f +
4529       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4530       //
4531       // error 0.0000023660568, which is better than 18 bits
4532       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4533                                getF32Constant(DAG, 0xbc91e5ac, dl));
4534       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4535                                getF32Constant(DAG, 0x3e4350aa, dl));
4536       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4537       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4538                                getF32Constant(DAG, 0x3f60d3e3, dl));
4539       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4540       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4541                                getF32Constant(DAG, 0x4011cdf0, dl));
4542       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4543       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4544                                getF32Constant(DAG, 0x406cfd1c, dl));
4545       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4546       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4547                                getF32Constant(DAG, 0x408797cb, dl));
4548       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4549       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4550                                   getF32Constant(DAG, 0x4006dcab, dl));
4551     }
4552 
4553     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4554   }
4555 
4556   // No special expansion.
4557   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4558 }
4559 
4560 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4561 /// limited-precision mode.
4562 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4563                           const TargetLowering &TLI) {
4564   // TODO: What fast-math-flags should be set on the floating-point nodes?
4565 
4566   if (Op.getValueType() == MVT::f32 &&
4567       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4568     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4569 
4570     // Get the exponent.
4571     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4572 
4573     // Get the significand and build it into a floating-point number with
4574     // exponent of 1.
4575     SDValue X = GetSignificand(DAG, Op1, dl);
4576 
4577     // Different possible minimax approximations of significand in
4578     // floating-point for various degrees of accuracy over [1,2].
4579     SDValue Log2ofMantissa;
4580     if (LimitFloatPrecision <= 6) {
4581       // For floating-point precision of 6:
4582       //
4583       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4584       //
4585       // error 0.0049451742, which is more than 7 bits
4586       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4587                                getF32Constant(DAG, 0xbeb08fe0, dl));
4588       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4589                                getF32Constant(DAG, 0x40019463, dl));
4590       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4591       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4592                                    getF32Constant(DAG, 0x3fd6633d, dl));
4593     } else if (LimitFloatPrecision <= 12) {
4594       // For floating-point precision of 12:
4595       //
4596       //   Log2ofMantissa =
4597       //     -2.51285454f +
4598       //       (4.07009056f +
4599       //         (-2.12067489f +
4600       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4601       //
4602       // error 0.0000876136000, which is better than 13 bits
4603       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4604                                getF32Constant(DAG, 0xbda7262e, dl));
4605       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4606                                getF32Constant(DAG, 0x3f25280b, dl));
4607       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4608       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4609                                getF32Constant(DAG, 0x4007b923, dl));
4610       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4611       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4612                                getF32Constant(DAG, 0x40823e2f, dl));
4613       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4614       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4615                                    getF32Constant(DAG, 0x4020d29c, dl));
4616     } else { // LimitFloatPrecision <= 18
4617       // For floating-point precision of 18:
4618       //
4619       //   Log2ofMantissa =
4620       //     -3.0400495f +
4621       //       (6.1129976f +
4622       //         (-5.3420409f +
4623       //           (3.2865683f +
4624       //             (-1.2669343f +
4625       //               (0.27515199f -
4626       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4627       //
4628       // error 0.0000018516, which is better than 18 bits
4629       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4630                                getF32Constant(DAG, 0xbcd2769e, dl));
4631       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4632                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4633       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4634       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4635                                getF32Constant(DAG, 0x3fa22ae7, dl));
4636       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4637       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4638                                getF32Constant(DAG, 0x40525723, dl));
4639       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4640       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4641                                getF32Constant(DAG, 0x40aaf200, dl));
4642       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4643       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4644                                getF32Constant(DAG, 0x40c39dad, dl));
4645       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4646       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4647                                    getF32Constant(DAG, 0x4042902c, dl));
4648     }
4649 
4650     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4651   }
4652 
4653   // No special expansion.
4654   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4655 }
4656 
4657 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4658 /// limited-precision mode.
4659 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4660                            const TargetLowering &TLI) {
4661   // TODO: What fast-math-flags should be set on the floating-point nodes?
4662 
4663   if (Op.getValueType() == MVT::f32 &&
4664       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4665     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4666 
4667     // Scale the exponent by log10(2) [0.30102999f].
4668     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4669     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4670                                         getF32Constant(DAG, 0x3e9a209a, dl));
4671 
4672     // Get the significand and build it into a floating-point number with
4673     // exponent of 1.
4674     SDValue X = GetSignificand(DAG, Op1, dl);
4675 
4676     SDValue Log10ofMantissa;
4677     if (LimitFloatPrecision <= 6) {
4678       // For floating-point precision of 6:
4679       //
4680       //   Log10ofMantissa =
4681       //     -0.50419619f +
4682       //       (0.60948995f - 0.10380950f * x) * x;
4683       //
4684       // error 0.0014886165, which is 6 bits
4685       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4686                                getF32Constant(DAG, 0xbdd49a13, dl));
4687       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4688                                getF32Constant(DAG, 0x3f1c0789, dl));
4689       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4690       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4691                                     getF32Constant(DAG, 0x3f011300, dl));
4692     } else if (LimitFloatPrecision <= 12) {
4693       // For floating-point precision of 12:
4694       //
4695       //   Log10ofMantissa =
4696       //     -0.64831180f +
4697       //       (0.91751397f +
4698       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4699       //
4700       // error 0.00019228036, which is better than 12 bits
4701       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4702                                getF32Constant(DAG, 0x3d431f31, dl));
4703       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4704                                getF32Constant(DAG, 0x3ea21fb2, dl));
4705       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4706       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4707                                getF32Constant(DAG, 0x3f6ae232, dl));
4708       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4709       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4710                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4711     } else { // LimitFloatPrecision <= 18
4712       // For floating-point precision of 18:
4713       //
4714       //   Log10ofMantissa =
4715       //     -0.84299375f +
4716       //       (1.5327582f +
4717       //         (-1.0688956f +
4718       //           (0.49102474f +
4719       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4720       //
4721       // error 0.0000037995730, which is better than 18 bits
4722       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4723                                getF32Constant(DAG, 0x3c5d51ce, dl));
4724       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4725                                getF32Constant(DAG, 0x3e00685a, dl));
4726       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4727       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4728                                getF32Constant(DAG, 0x3efb6798, dl));
4729       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4730       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4731                                getF32Constant(DAG, 0x3f88d192, dl));
4732       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4733       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4734                                getF32Constant(DAG, 0x3fc4316c, dl));
4735       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4736       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4737                                     getF32Constant(DAG, 0x3f57ce70, dl));
4738     }
4739 
4740     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4741   }
4742 
4743   // No special expansion.
4744   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4745 }
4746 
4747 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4748 /// limited-precision mode.
4749 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4750                           const TargetLowering &TLI) {
4751   if (Op.getValueType() == MVT::f32 &&
4752       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4753     return getLimitedPrecisionExp2(Op, dl, DAG);
4754 
4755   // No special expansion.
4756   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4757 }
4758 
4759 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4760 /// limited-precision mode with x == 10.0f.
4761 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4762                          SelectionDAG &DAG, const TargetLowering &TLI) {
4763   bool IsExp10 = false;
4764   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4765       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4766     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4767       APFloat Ten(10.0f);
4768       IsExp10 = LHSC->isExactlyValue(Ten);
4769     }
4770   }
4771 
4772   // TODO: What fast-math-flags should be set on the FMUL node?
4773   if (IsExp10) {
4774     // Put the exponent in the right bit position for later addition to the
4775     // final result:
4776     //
4777     //   #define LOG2OF10 3.3219281f
4778     //   t0 = Op * LOG2OF10;
4779     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4780                              getF32Constant(DAG, 0x40549a78, dl));
4781     return getLimitedPrecisionExp2(t0, dl, DAG);
4782   }
4783 
4784   // No special expansion.
4785   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4786 }
4787 
4788 /// ExpandPowI - Expand a llvm.powi intrinsic.
4789 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4790                           SelectionDAG &DAG) {
4791   // If RHS is a constant, we can expand this out to a multiplication tree,
4792   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4793   // optimizing for size, we only want to do this if the expansion would produce
4794   // a small number of multiplies, otherwise we do the full expansion.
4795   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4796     // Get the exponent as a positive value.
4797     unsigned Val = RHSC->getSExtValue();
4798     if ((int)Val < 0) Val = -Val;
4799 
4800     // powi(x, 0) -> 1.0
4801     if (Val == 0)
4802       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4803 
4804     const Function &F = DAG.getMachineFunction().getFunction();
4805     if (!F.optForSize() ||
4806         // If optimizing for size, don't insert too many multiplies.
4807         // This inserts up to 5 multiplies.
4808         countPopulation(Val) + Log2_32(Val) < 7) {
4809       // We use the simple binary decomposition method to generate the multiply
4810       // sequence.  There are more optimal ways to do this (for example,
4811       // powi(x,15) generates one more multiply than it should), but this has
4812       // the benefit of being both really simple and much better than a libcall.
4813       SDValue Res;  // Logically starts equal to 1.0
4814       SDValue CurSquare = LHS;
4815       // TODO: Intrinsics should have fast-math-flags that propagate to these
4816       // nodes.
4817       while (Val) {
4818         if (Val & 1) {
4819           if (Res.getNode())
4820             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4821           else
4822             Res = CurSquare;  // 1.0*CurSquare.
4823         }
4824 
4825         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4826                                 CurSquare, CurSquare);
4827         Val >>= 1;
4828       }
4829 
4830       // If the original was negative, invert the result, producing 1/(x*x*x).
4831       if (RHSC->getSExtValue() < 0)
4832         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4833                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4834       return Res;
4835     }
4836   }
4837 
4838   // Otherwise, expand to a libcall.
4839   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4840 }
4841 
4842 // getUnderlyingArgReg - Find underlying register used for a truncated or
4843 // bitcasted argument.
4844 static unsigned getUnderlyingArgReg(const SDValue &N) {
4845   switch (N.getOpcode()) {
4846   case ISD::CopyFromReg:
4847     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4848   case ISD::BITCAST:
4849   case ISD::AssertZext:
4850   case ISD::AssertSext:
4851   case ISD::TRUNCATE:
4852     return getUnderlyingArgReg(N.getOperand(0));
4853   default:
4854     return 0;
4855   }
4856 }
4857 
4858 /// If the DbgValueInst is a dbg_value of a function argument, create the
4859 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4860 /// instruction selection, they will be inserted to the entry BB.
4861 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4862     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4863     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4864   const Argument *Arg = dyn_cast<Argument>(V);
4865   if (!Arg)
4866     return false;
4867 
4868   MachineFunction &MF = DAG.getMachineFunction();
4869   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4870 
4871   bool IsIndirect = false;
4872   Optional<MachineOperand> Op;
4873   // Some arguments' frame index is recorded during argument lowering.
4874   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4875   if (FI != std::numeric_limits<int>::max())
4876     Op = MachineOperand::CreateFI(FI);
4877 
4878   if (!Op && N.getNode()) {
4879     unsigned Reg = getUnderlyingArgReg(N);
4880     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4881       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4882       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4883       if (PR)
4884         Reg = PR;
4885     }
4886     if (Reg) {
4887       Op = MachineOperand::CreateReg(Reg, false);
4888       IsIndirect = IsDbgDeclare;
4889     }
4890   }
4891 
4892   if (!Op && N.getNode())
4893     // Check if frame index is available.
4894     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4895       if (FrameIndexSDNode *FINode =
4896           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4897         Op = MachineOperand::CreateFI(FINode->getIndex());
4898 
4899   if (!Op) {
4900     // Check if ValueMap has reg number.
4901     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4902     if (VMI != FuncInfo.ValueMap.end()) {
4903       const auto &TLI = DAG.getTargetLoweringInfo();
4904       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4905                        V->getType(), isABIRegCopy(V));
4906       if (RFV.occupiesMultipleRegs()) {
4907         unsigned Offset = 0;
4908         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4909           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4910           auto FragmentExpr = DIExpression::createFragmentExpression(
4911               Expr, Offset, RegAndSize.second);
4912           if (!FragmentExpr)
4913             continue;
4914           FuncInfo.ArgDbgValues.push_back(
4915               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4916                       Op->getReg(), Variable, *FragmentExpr));
4917           Offset += RegAndSize.second;
4918         }
4919         return true;
4920       }
4921       Op = MachineOperand::CreateReg(VMI->second, false);
4922       IsIndirect = IsDbgDeclare;
4923     }
4924   }
4925 
4926   if (!Op)
4927     return false;
4928 
4929   assert(Variable->isValidLocationForIntrinsic(DL) &&
4930          "Expected inlined-at fields to agree");
4931   if (Op->isReg())
4932     FuncInfo.ArgDbgValues.push_back(
4933         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4934                 Op->getReg(), Variable, Expr));
4935   else
4936     FuncInfo.ArgDbgValues.push_back(
4937         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4938             .add(*Op)
4939             .addImm(0)
4940             .addMetadata(Variable)
4941             .addMetadata(Expr));
4942 
4943   return true;
4944 }
4945 
4946 /// Return the appropriate SDDbgValue based on N.
4947 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4948                                              DILocalVariable *Variable,
4949                                              DIExpression *Expr,
4950                                              const DebugLoc &dl,
4951                                              unsigned DbgSDNodeOrder) {
4952   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4953     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4954     // stack slot locations as such instead of as indirectly addressed
4955     // locations.
4956     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4957                                      DbgSDNodeOrder);
4958   }
4959   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4960                          DbgSDNodeOrder);
4961 }
4962 
4963 // VisualStudio defines setjmp as _setjmp
4964 #if defined(_MSC_VER) && defined(setjmp) && \
4965                          !defined(setjmp_undefined_for_msvc)
4966 #  pragma push_macro("setjmp")
4967 #  undef setjmp
4968 #  define setjmp_undefined_for_msvc
4969 #endif
4970 
4971 /// Lower the call to the specified intrinsic function. If we want to emit this
4972 /// as a call to a named external function, return the name. Otherwise, lower it
4973 /// and return null.
4974 const char *
4975 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4976   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4977   SDLoc sdl = getCurSDLoc();
4978   DebugLoc dl = getCurDebugLoc();
4979   SDValue Res;
4980 
4981   switch (Intrinsic) {
4982   default:
4983     // By default, turn this into a target intrinsic node.
4984     visitTargetIntrinsic(I, Intrinsic);
4985     return nullptr;
4986   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4987   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4988   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4989   case Intrinsic::returnaddress:
4990     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4991                              TLI.getPointerTy(DAG.getDataLayout()),
4992                              getValue(I.getArgOperand(0))));
4993     return nullptr;
4994   case Intrinsic::addressofreturnaddress:
4995     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4996                              TLI.getPointerTy(DAG.getDataLayout())));
4997     return nullptr;
4998   case Intrinsic::frameaddress:
4999     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5000                              TLI.getPointerTy(DAG.getDataLayout()),
5001                              getValue(I.getArgOperand(0))));
5002     return nullptr;
5003   case Intrinsic::read_register: {
5004     Value *Reg = I.getArgOperand(0);
5005     SDValue Chain = getRoot();
5006     SDValue RegName =
5007         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5008     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5009     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5010       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5011     setValue(&I, Res);
5012     DAG.setRoot(Res.getValue(1));
5013     return nullptr;
5014   }
5015   case Intrinsic::write_register: {
5016     Value *Reg = I.getArgOperand(0);
5017     Value *RegValue = I.getArgOperand(1);
5018     SDValue Chain = getRoot();
5019     SDValue RegName =
5020         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5021     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5022                             RegName, getValue(RegValue)));
5023     return nullptr;
5024   }
5025   case Intrinsic::setjmp:
5026     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5027   case Intrinsic::longjmp:
5028     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5029   case Intrinsic::memcpy: {
5030     const auto &MCI = cast<MemCpyInst>(I);
5031     SDValue Op1 = getValue(I.getArgOperand(0));
5032     SDValue Op2 = getValue(I.getArgOperand(1));
5033     SDValue Op3 = getValue(I.getArgOperand(2));
5034     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5035     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5036     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5037     unsigned Align = MinAlign(DstAlign, SrcAlign);
5038     bool isVol = MCI.isVolatile();
5039     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5040     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5041     // node.
5042     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5043                                false, isTC,
5044                                MachinePointerInfo(I.getArgOperand(0)),
5045                                MachinePointerInfo(I.getArgOperand(1)));
5046     updateDAGForMaybeTailCall(MC);
5047     return nullptr;
5048   }
5049   case Intrinsic::memset: {
5050     const auto &MSI = cast<MemSetInst>(I);
5051     SDValue Op1 = getValue(I.getArgOperand(0));
5052     SDValue Op2 = getValue(I.getArgOperand(1));
5053     SDValue Op3 = getValue(I.getArgOperand(2));
5054     // @llvm.memset defines 0 and 1 to both mean no alignment.
5055     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5056     bool isVol = MSI.isVolatile();
5057     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5058     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5059                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5060     updateDAGForMaybeTailCall(MS);
5061     return nullptr;
5062   }
5063   case Intrinsic::memmove: {
5064     const auto &MMI = cast<MemMoveInst>(I);
5065     SDValue Op1 = getValue(I.getArgOperand(0));
5066     SDValue Op2 = getValue(I.getArgOperand(1));
5067     SDValue Op3 = getValue(I.getArgOperand(2));
5068     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5069     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5070     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5071     unsigned Align = MinAlign(DstAlign, SrcAlign);
5072     bool isVol = MMI.isVolatile();
5073     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5074     // FIXME: Support passing different dest/src alignments to the memmove DAG
5075     // node.
5076     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5077                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5078                                 MachinePointerInfo(I.getArgOperand(1)));
5079     updateDAGForMaybeTailCall(MM);
5080     return nullptr;
5081   }
5082   case Intrinsic::memcpy_element_unordered_atomic: {
5083     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5084     SDValue Dst = getValue(MI.getRawDest());
5085     SDValue Src = getValue(MI.getRawSource());
5086     SDValue Length = getValue(MI.getLength());
5087 
5088     unsigned DstAlign = MI.getDestAlignment();
5089     unsigned SrcAlign = MI.getSourceAlignment();
5090     Type *LengthTy = MI.getLength()->getType();
5091     unsigned ElemSz = MI.getElementSizeInBytes();
5092     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5093     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5094                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5095                                      MachinePointerInfo(MI.getRawDest()),
5096                                      MachinePointerInfo(MI.getRawSource()));
5097     updateDAGForMaybeTailCall(MC);
5098     return nullptr;
5099   }
5100   case Intrinsic::memmove_element_unordered_atomic: {
5101     auto &MI = cast<AtomicMemMoveInst>(I);
5102     SDValue Dst = getValue(MI.getRawDest());
5103     SDValue Src = getValue(MI.getRawSource());
5104     SDValue Length = getValue(MI.getLength());
5105 
5106     unsigned DstAlign = MI.getDestAlignment();
5107     unsigned SrcAlign = MI.getSourceAlignment();
5108     Type *LengthTy = MI.getLength()->getType();
5109     unsigned ElemSz = MI.getElementSizeInBytes();
5110     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5111     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5112                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5113                                       MachinePointerInfo(MI.getRawDest()),
5114                                       MachinePointerInfo(MI.getRawSource()));
5115     updateDAGForMaybeTailCall(MC);
5116     return nullptr;
5117   }
5118   case Intrinsic::memset_element_unordered_atomic: {
5119     auto &MI = cast<AtomicMemSetInst>(I);
5120     SDValue Dst = getValue(MI.getRawDest());
5121     SDValue Val = getValue(MI.getValue());
5122     SDValue Length = getValue(MI.getLength());
5123 
5124     unsigned DstAlign = MI.getDestAlignment();
5125     Type *LengthTy = MI.getLength()->getType();
5126     unsigned ElemSz = MI.getElementSizeInBytes();
5127     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5128     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5129                                      LengthTy, ElemSz, isTC,
5130                                      MachinePointerInfo(MI.getRawDest()));
5131     updateDAGForMaybeTailCall(MC);
5132     return nullptr;
5133   }
5134   case Intrinsic::dbg_addr:
5135   case Intrinsic::dbg_declare: {
5136     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5137     DILocalVariable *Variable = DI.getVariable();
5138     DIExpression *Expression = DI.getExpression();
5139     dropDanglingDebugInfo(Variable, Expression);
5140     assert(Variable && "Missing variable");
5141 
5142     // Check if address has undef value.
5143     const Value *Address = DI.getVariableLocation();
5144     if (!Address || isa<UndefValue>(Address) ||
5145         (Address->use_empty() && !isa<Argument>(Address))) {
5146       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5147       return nullptr;
5148     }
5149 
5150     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5151 
5152     // Check if this variable can be described by a frame index, typically
5153     // either as a static alloca or a byval parameter.
5154     int FI = std::numeric_limits<int>::max();
5155     if (const auto *AI =
5156             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5157       if (AI->isStaticAlloca()) {
5158         auto I = FuncInfo.StaticAllocaMap.find(AI);
5159         if (I != FuncInfo.StaticAllocaMap.end())
5160           FI = I->second;
5161       }
5162     } else if (const auto *Arg = dyn_cast<Argument>(
5163                    Address->stripInBoundsConstantOffsets())) {
5164       FI = FuncInfo.getArgumentFrameIndex(Arg);
5165     }
5166 
5167     // llvm.dbg.addr is control dependent and always generates indirect
5168     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5169     // the MachineFunction variable table.
5170     if (FI != std::numeric_limits<int>::max()) {
5171       if (Intrinsic == Intrinsic::dbg_addr) {
5172          SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5173                                                      FI, dl, SDNodeOrder);
5174          DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5175       }
5176       return nullptr;
5177     }
5178 
5179     SDValue &N = NodeMap[Address];
5180     if (!N.getNode() && isa<Argument>(Address))
5181       // Check unused arguments map.
5182       N = UnusedArgNodeMap[Address];
5183     SDDbgValue *SDV;
5184     if (N.getNode()) {
5185       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5186         Address = BCI->getOperand(0);
5187       // Parameters are handled specially.
5188       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5189       if (isParameter && FINode) {
5190         // Byval parameter. We have a frame index at this point.
5191         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5192                                         FINode->getIndex(), dl, SDNodeOrder);
5193       } else if (isa<Argument>(Address)) {
5194         // Address is an argument, so try to emit its dbg value using
5195         // virtual register info from the FuncInfo.ValueMap.
5196         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5197         return nullptr;
5198       } else {
5199         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5200                               true, dl, SDNodeOrder);
5201       }
5202       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5203     } else {
5204       // If Address is an argument then try to emit its dbg value using
5205       // virtual register info from the FuncInfo.ValueMap.
5206       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5207                                     N)) {
5208         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5209       }
5210     }
5211     return nullptr;
5212   }
5213   case Intrinsic::dbg_label: {
5214     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5215     DILabel *Label = DI.getLabel();
5216     assert(Label && "Missing label");
5217 
5218     SDDbgLabel *SDV;
5219     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5220     DAG.AddDbgLabel(SDV);
5221     return nullptr;
5222   }
5223   case Intrinsic::dbg_value: {
5224     const DbgValueInst &DI = cast<DbgValueInst>(I);
5225     assert(DI.getVariable() && "Missing variable");
5226 
5227     DILocalVariable *Variable = DI.getVariable();
5228     DIExpression *Expression = DI.getExpression();
5229     dropDanglingDebugInfo(Variable, Expression);
5230     const Value *V = DI.getValue();
5231     if (!V)
5232       return nullptr;
5233 
5234     SDDbgValue *SDV;
5235     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5236       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5237       DAG.AddDbgValue(SDV, nullptr, false);
5238       return nullptr;
5239     }
5240 
5241     // Do not use getValue() in here; we don't want to generate code at
5242     // this point if it hasn't been done yet.
5243     SDValue N = NodeMap[V];
5244     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5245       N = UnusedArgNodeMap[V];
5246     if (N.getNode()) {
5247       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5248         return nullptr;
5249       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5250       DAG.AddDbgValue(SDV, N.getNode(), false);
5251       return nullptr;
5252     }
5253 
5254     // PHI nodes have already been selected, so we should know which VReg that
5255     // is assigns to already.
5256     if (isa<PHINode>(V)) {
5257       auto VMI = FuncInfo.ValueMap.find(V);
5258       if (VMI != FuncInfo.ValueMap.end()) {
5259         unsigned Reg = VMI->second;
5260         // The PHI node may be split up into several MI PHI nodes (in
5261         // FunctionLoweringInfo::set).
5262         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5263                          V->getType(), false);
5264         if (RFV.occupiesMultipleRegs()) {
5265           unsigned Offset = 0;
5266           unsigned BitsToDescribe = 0;
5267           if (auto VarSize = Variable->getSizeInBits())
5268             BitsToDescribe = *VarSize;
5269           if (auto Fragment = Expression->getFragmentInfo())
5270             BitsToDescribe = Fragment->SizeInBits;
5271           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5272             unsigned RegisterSize = RegAndSize.second;
5273             // Bail out if all bits are described already.
5274             if (Offset >= BitsToDescribe)
5275               break;
5276             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5277                 ? BitsToDescribe - Offset
5278                 : RegisterSize;
5279             auto FragmentExpr = DIExpression::createFragmentExpression(
5280                 Expression, Offset, FragmentSize);
5281             if (!FragmentExpr)
5282                 continue;
5283             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5284                                       false, dl, SDNodeOrder);
5285             DAG.AddDbgValue(SDV, nullptr, false);
5286             Offset += RegisterSize;
5287           }
5288         } else {
5289           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5290                                     SDNodeOrder);
5291           DAG.AddDbgValue(SDV, nullptr, false);
5292         }
5293         return nullptr;
5294       }
5295     }
5296 
5297     // TODO: When we get here we will either drop the dbg.value completely, or
5298     // we try to move it forward by letting it dangle for awhile. So we should
5299     // probably add an extra DbgValue to the DAG here, with a reference to
5300     // "noreg", to indicate that we have lost the debug location for the
5301     // variable.
5302 
5303     if (!V->use_empty() ) {
5304       // Do not call getValue(V) yet, as we don't want to generate code.
5305       // Remember it for later.
5306       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5307       DanglingDebugInfoMap[V].push_back(DDI);
5308       return nullptr;
5309     }
5310 
5311     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5312     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5313     return nullptr;
5314   }
5315 
5316   case Intrinsic::eh_typeid_for: {
5317     // Find the type id for the given typeinfo.
5318     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5319     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5320     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5321     setValue(&I, Res);
5322     return nullptr;
5323   }
5324 
5325   case Intrinsic::eh_return_i32:
5326   case Intrinsic::eh_return_i64:
5327     DAG.getMachineFunction().setCallsEHReturn(true);
5328     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5329                             MVT::Other,
5330                             getControlRoot(),
5331                             getValue(I.getArgOperand(0)),
5332                             getValue(I.getArgOperand(1))));
5333     return nullptr;
5334   case Intrinsic::eh_unwind_init:
5335     DAG.getMachineFunction().setCallsUnwindInit(true);
5336     return nullptr;
5337   case Intrinsic::eh_dwarf_cfa:
5338     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5339                              TLI.getPointerTy(DAG.getDataLayout()),
5340                              getValue(I.getArgOperand(0))));
5341     return nullptr;
5342   case Intrinsic::eh_sjlj_callsite: {
5343     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5344     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5345     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5346     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5347 
5348     MMI.setCurrentCallSite(CI->getZExtValue());
5349     return nullptr;
5350   }
5351   case Intrinsic::eh_sjlj_functioncontext: {
5352     // Get and store the index of the function context.
5353     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5354     AllocaInst *FnCtx =
5355       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5356     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5357     MFI.setFunctionContextIndex(FI);
5358     return nullptr;
5359   }
5360   case Intrinsic::eh_sjlj_setjmp: {
5361     SDValue Ops[2];
5362     Ops[0] = getRoot();
5363     Ops[1] = getValue(I.getArgOperand(0));
5364     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5365                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5366     setValue(&I, Op.getValue(0));
5367     DAG.setRoot(Op.getValue(1));
5368     return nullptr;
5369   }
5370   case Intrinsic::eh_sjlj_longjmp:
5371     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5372                             getRoot(), getValue(I.getArgOperand(0))));
5373     return nullptr;
5374   case Intrinsic::eh_sjlj_setup_dispatch:
5375     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5376                             getRoot()));
5377     return nullptr;
5378   case Intrinsic::masked_gather:
5379     visitMaskedGather(I);
5380     return nullptr;
5381   case Intrinsic::masked_load:
5382     visitMaskedLoad(I);
5383     return nullptr;
5384   case Intrinsic::masked_scatter:
5385     visitMaskedScatter(I);
5386     return nullptr;
5387   case Intrinsic::masked_store:
5388     visitMaskedStore(I);
5389     return nullptr;
5390   case Intrinsic::masked_expandload:
5391     visitMaskedLoad(I, true /* IsExpanding */);
5392     return nullptr;
5393   case Intrinsic::masked_compressstore:
5394     visitMaskedStore(I, true /* IsCompressing */);
5395     return nullptr;
5396   case Intrinsic::x86_mmx_pslli_w:
5397   case Intrinsic::x86_mmx_pslli_d:
5398   case Intrinsic::x86_mmx_pslli_q:
5399   case Intrinsic::x86_mmx_psrli_w:
5400   case Intrinsic::x86_mmx_psrli_d:
5401   case Intrinsic::x86_mmx_psrli_q:
5402   case Intrinsic::x86_mmx_psrai_w:
5403   case Intrinsic::x86_mmx_psrai_d: {
5404     SDValue ShAmt = getValue(I.getArgOperand(1));
5405     if (isa<ConstantSDNode>(ShAmt)) {
5406       visitTargetIntrinsic(I, Intrinsic);
5407       return nullptr;
5408     }
5409     unsigned NewIntrinsic = 0;
5410     EVT ShAmtVT = MVT::v2i32;
5411     switch (Intrinsic) {
5412     case Intrinsic::x86_mmx_pslli_w:
5413       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5414       break;
5415     case Intrinsic::x86_mmx_pslli_d:
5416       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5417       break;
5418     case Intrinsic::x86_mmx_pslli_q:
5419       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5420       break;
5421     case Intrinsic::x86_mmx_psrli_w:
5422       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5423       break;
5424     case Intrinsic::x86_mmx_psrli_d:
5425       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5426       break;
5427     case Intrinsic::x86_mmx_psrli_q:
5428       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5429       break;
5430     case Intrinsic::x86_mmx_psrai_w:
5431       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5432       break;
5433     case Intrinsic::x86_mmx_psrai_d:
5434       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5435       break;
5436     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5437     }
5438 
5439     // The vector shift intrinsics with scalars uses 32b shift amounts but
5440     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5441     // to be zero.
5442     // We must do this early because v2i32 is not a legal type.
5443     SDValue ShOps[2];
5444     ShOps[0] = ShAmt;
5445     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5446     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5447     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5448     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5449     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5450                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5451                        getValue(I.getArgOperand(0)), ShAmt);
5452     setValue(&I, Res);
5453     return nullptr;
5454   }
5455   case Intrinsic::powi:
5456     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5457                             getValue(I.getArgOperand(1)), DAG));
5458     return nullptr;
5459   case Intrinsic::log:
5460     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5461     return nullptr;
5462   case Intrinsic::log2:
5463     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5464     return nullptr;
5465   case Intrinsic::log10:
5466     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5467     return nullptr;
5468   case Intrinsic::exp:
5469     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5470     return nullptr;
5471   case Intrinsic::exp2:
5472     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5473     return nullptr;
5474   case Intrinsic::pow:
5475     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5476                            getValue(I.getArgOperand(1)), DAG, TLI));
5477     return nullptr;
5478   case Intrinsic::sqrt:
5479   case Intrinsic::fabs:
5480   case Intrinsic::sin:
5481   case Intrinsic::cos:
5482   case Intrinsic::floor:
5483   case Intrinsic::ceil:
5484   case Intrinsic::trunc:
5485   case Intrinsic::rint:
5486   case Intrinsic::nearbyint:
5487   case Intrinsic::round:
5488   case Intrinsic::canonicalize: {
5489     unsigned Opcode;
5490     switch (Intrinsic) {
5491     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5492     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5493     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5494     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5495     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5496     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5497     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5498     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5499     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5500     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5501     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5502     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5503     }
5504 
5505     setValue(&I, DAG.getNode(Opcode, sdl,
5506                              getValue(I.getArgOperand(0)).getValueType(),
5507                              getValue(I.getArgOperand(0))));
5508     return nullptr;
5509   }
5510   case Intrinsic::minnum: {
5511     auto VT = getValue(I.getArgOperand(0)).getValueType();
5512     unsigned Opc =
5513         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5514             ? ISD::FMINNAN
5515             : ISD::FMINNUM;
5516     setValue(&I, DAG.getNode(Opc, sdl, VT,
5517                              getValue(I.getArgOperand(0)),
5518                              getValue(I.getArgOperand(1))));
5519     return nullptr;
5520   }
5521   case Intrinsic::maxnum: {
5522     auto VT = getValue(I.getArgOperand(0)).getValueType();
5523     unsigned Opc =
5524         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5525             ? ISD::FMAXNAN
5526             : ISD::FMAXNUM;
5527     setValue(&I, DAG.getNode(Opc, sdl, VT,
5528                              getValue(I.getArgOperand(0)),
5529                              getValue(I.getArgOperand(1))));
5530     return nullptr;
5531   }
5532   case Intrinsic::copysign:
5533     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5534                              getValue(I.getArgOperand(0)).getValueType(),
5535                              getValue(I.getArgOperand(0)),
5536                              getValue(I.getArgOperand(1))));
5537     return nullptr;
5538   case Intrinsic::fma:
5539     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5540                              getValue(I.getArgOperand(0)).getValueType(),
5541                              getValue(I.getArgOperand(0)),
5542                              getValue(I.getArgOperand(1)),
5543                              getValue(I.getArgOperand(2))));
5544     return nullptr;
5545   case Intrinsic::experimental_constrained_fadd:
5546   case Intrinsic::experimental_constrained_fsub:
5547   case Intrinsic::experimental_constrained_fmul:
5548   case Intrinsic::experimental_constrained_fdiv:
5549   case Intrinsic::experimental_constrained_frem:
5550   case Intrinsic::experimental_constrained_fma:
5551   case Intrinsic::experimental_constrained_sqrt:
5552   case Intrinsic::experimental_constrained_pow:
5553   case Intrinsic::experimental_constrained_powi:
5554   case Intrinsic::experimental_constrained_sin:
5555   case Intrinsic::experimental_constrained_cos:
5556   case Intrinsic::experimental_constrained_exp:
5557   case Intrinsic::experimental_constrained_exp2:
5558   case Intrinsic::experimental_constrained_log:
5559   case Intrinsic::experimental_constrained_log10:
5560   case Intrinsic::experimental_constrained_log2:
5561   case Intrinsic::experimental_constrained_rint:
5562   case Intrinsic::experimental_constrained_nearbyint:
5563     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5564     return nullptr;
5565   case Intrinsic::fmuladd: {
5566     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5567     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5568         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5569       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5570                                getValue(I.getArgOperand(0)).getValueType(),
5571                                getValue(I.getArgOperand(0)),
5572                                getValue(I.getArgOperand(1)),
5573                                getValue(I.getArgOperand(2))));
5574     } else {
5575       // TODO: Intrinsic calls should have fast-math-flags.
5576       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5577                                 getValue(I.getArgOperand(0)).getValueType(),
5578                                 getValue(I.getArgOperand(0)),
5579                                 getValue(I.getArgOperand(1)));
5580       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5581                                 getValue(I.getArgOperand(0)).getValueType(),
5582                                 Mul,
5583                                 getValue(I.getArgOperand(2)));
5584       setValue(&I, Add);
5585     }
5586     return nullptr;
5587   }
5588   case Intrinsic::convert_to_fp16:
5589     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5590                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5591                                          getValue(I.getArgOperand(0)),
5592                                          DAG.getTargetConstant(0, sdl,
5593                                                                MVT::i32))));
5594     return nullptr;
5595   case Intrinsic::convert_from_fp16:
5596     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5597                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5598                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5599                                          getValue(I.getArgOperand(0)))));
5600     return nullptr;
5601   case Intrinsic::pcmarker: {
5602     SDValue Tmp = getValue(I.getArgOperand(0));
5603     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5604     return nullptr;
5605   }
5606   case Intrinsic::readcyclecounter: {
5607     SDValue Op = getRoot();
5608     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5609                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5610     setValue(&I, Res);
5611     DAG.setRoot(Res.getValue(1));
5612     return nullptr;
5613   }
5614   case Intrinsic::bitreverse:
5615     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5616                              getValue(I.getArgOperand(0)).getValueType(),
5617                              getValue(I.getArgOperand(0))));
5618     return nullptr;
5619   case Intrinsic::bswap:
5620     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5621                              getValue(I.getArgOperand(0)).getValueType(),
5622                              getValue(I.getArgOperand(0))));
5623     return nullptr;
5624   case Intrinsic::cttz: {
5625     SDValue Arg = getValue(I.getArgOperand(0));
5626     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5627     EVT Ty = Arg.getValueType();
5628     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5629                              sdl, Ty, Arg));
5630     return nullptr;
5631   }
5632   case Intrinsic::ctlz: {
5633     SDValue Arg = getValue(I.getArgOperand(0));
5634     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5635     EVT Ty = Arg.getValueType();
5636     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5637                              sdl, Ty, Arg));
5638     return nullptr;
5639   }
5640   case Intrinsic::ctpop: {
5641     SDValue Arg = getValue(I.getArgOperand(0));
5642     EVT Ty = Arg.getValueType();
5643     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5644     return nullptr;
5645   }
5646   case Intrinsic::stacksave: {
5647     SDValue Op = getRoot();
5648     Res = DAG.getNode(
5649         ISD::STACKSAVE, sdl,
5650         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5651     setValue(&I, Res);
5652     DAG.setRoot(Res.getValue(1));
5653     return nullptr;
5654   }
5655   case Intrinsic::stackrestore:
5656     Res = getValue(I.getArgOperand(0));
5657     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5658     return nullptr;
5659   case Intrinsic::get_dynamic_area_offset: {
5660     SDValue Op = getRoot();
5661     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5662     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5663     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5664     // target.
5665     if (PtrTy != ResTy)
5666       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5667                          " intrinsic!");
5668     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5669                       Op);
5670     DAG.setRoot(Op);
5671     setValue(&I, Res);
5672     return nullptr;
5673   }
5674   case Intrinsic::stackguard: {
5675     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5676     MachineFunction &MF = DAG.getMachineFunction();
5677     const Module &M = *MF.getFunction().getParent();
5678     SDValue Chain = getRoot();
5679     if (TLI.useLoadStackGuardNode()) {
5680       Res = getLoadStackGuard(DAG, sdl, Chain);
5681     } else {
5682       const Value *Global = TLI.getSDagStackGuard(M);
5683       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5684       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5685                         MachinePointerInfo(Global, 0), Align,
5686                         MachineMemOperand::MOVolatile);
5687     }
5688     if (TLI.useStackGuardXorFP())
5689       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5690     DAG.setRoot(Chain);
5691     setValue(&I, Res);
5692     return nullptr;
5693   }
5694   case Intrinsic::stackprotector: {
5695     // Emit code into the DAG to store the stack guard onto the stack.
5696     MachineFunction &MF = DAG.getMachineFunction();
5697     MachineFrameInfo &MFI = MF.getFrameInfo();
5698     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5699     SDValue Src, Chain = getRoot();
5700 
5701     if (TLI.useLoadStackGuardNode())
5702       Src = getLoadStackGuard(DAG, sdl, Chain);
5703     else
5704       Src = getValue(I.getArgOperand(0));   // The guard's value.
5705 
5706     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5707 
5708     int FI = FuncInfo.StaticAllocaMap[Slot];
5709     MFI.setStackProtectorIndex(FI);
5710 
5711     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5712 
5713     // Store the stack protector onto the stack.
5714     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5715                                                  DAG.getMachineFunction(), FI),
5716                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5717     setValue(&I, Res);
5718     DAG.setRoot(Res);
5719     return nullptr;
5720   }
5721   case Intrinsic::objectsize: {
5722     // If we don't know by now, we're never going to know.
5723     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5724 
5725     assert(CI && "Non-constant type in __builtin_object_size?");
5726 
5727     SDValue Arg = getValue(I.getCalledValue());
5728     EVT Ty = Arg.getValueType();
5729 
5730     if (CI->isZero())
5731       Res = DAG.getConstant(-1ULL, sdl, Ty);
5732     else
5733       Res = DAG.getConstant(0, sdl, Ty);
5734 
5735     setValue(&I, Res);
5736     return nullptr;
5737   }
5738   case Intrinsic::annotation:
5739   case Intrinsic::ptr_annotation:
5740   case Intrinsic::launder_invariant_group:
5741     // Drop the intrinsic, but forward the value
5742     setValue(&I, getValue(I.getOperand(0)));
5743     return nullptr;
5744   case Intrinsic::assume:
5745   case Intrinsic::var_annotation:
5746   case Intrinsic::sideeffect:
5747     // Discard annotate attributes, assumptions, and artificial side-effects.
5748     return nullptr;
5749 
5750   case Intrinsic::codeview_annotation: {
5751     // Emit a label associated with this metadata.
5752     MachineFunction &MF = DAG.getMachineFunction();
5753     MCSymbol *Label =
5754         MF.getMMI().getContext().createTempSymbol("annotation", true);
5755     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5756     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5757     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5758     DAG.setRoot(Res);
5759     return nullptr;
5760   }
5761 
5762   case Intrinsic::init_trampoline: {
5763     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5764 
5765     SDValue Ops[6];
5766     Ops[0] = getRoot();
5767     Ops[1] = getValue(I.getArgOperand(0));
5768     Ops[2] = getValue(I.getArgOperand(1));
5769     Ops[3] = getValue(I.getArgOperand(2));
5770     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5771     Ops[5] = DAG.getSrcValue(F);
5772 
5773     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5774 
5775     DAG.setRoot(Res);
5776     return nullptr;
5777   }
5778   case Intrinsic::adjust_trampoline:
5779     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5780                              TLI.getPointerTy(DAG.getDataLayout()),
5781                              getValue(I.getArgOperand(0))));
5782     return nullptr;
5783   case Intrinsic::gcroot: {
5784     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5785            "only valid in functions with gc specified, enforced by Verifier");
5786     assert(GFI && "implied by previous");
5787     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5788     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5789 
5790     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5791     GFI->addStackRoot(FI->getIndex(), TypeMap);
5792     return nullptr;
5793   }
5794   case Intrinsic::gcread:
5795   case Intrinsic::gcwrite:
5796     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5797   case Intrinsic::flt_rounds:
5798     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5799     return nullptr;
5800 
5801   case Intrinsic::expect:
5802     // Just replace __builtin_expect(exp, c) with EXP.
5803     setValue(&I, getValue(I.getArgOperand(0)));
5804     return nullptr;
5805 
5806   case Intrinsic::debugtrap:
5807   case Intrinsic::trap: {
5808     StringRef TrapFuncName =
5809         I.getAttributes()
5810             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5811             .getValueAsString();
5812     if (TrapFuncName.empty()) {
5813       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5814         ISD::TRAP : ISD::DEBUGTRAP;
5815       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5816       return nullptr;
5817     }
5818     TargetLowering::ArgListTy Args;
5819 
5820     TargetLowering::CallLoweringInfo CLI(DAG);
5821     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5822         CallingConv::C, I.getType(),
5823         DAG.getExternalSymbol(TrapFuncName.data(),
5824                               TLI.getPointerTy(DAG.getDataLayout())),
5825         std::move(Args));
5826 
5827     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5828     DAG.setRoot(Result.second);
5829     return nullptr;
5830   }
5831 
5832   case Intrinsic::uadd_with_overflow:
5833   case Intrinsic::sadd_with_overflow:
5834   case Intrinsic::usub_with_overflow:
5835   case Intrinsic::ssub_with_overflow:
5836   case Intrinsic::umul_with_overflow:
5837   case Intrinsic::smul_with_overflow: {
5838     ISD::NodeType Op;
5839     switch (Intrinsic) {
5840     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5841     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5842     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5843     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5844     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5845     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5846     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5847     }
5848     SDValue Op1 = getValue(I.getArgOperand(0));
5849     SDValue Op2 = getValue(I.getArgOperand(1));
5850 
5851     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5852     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5853     return nullptr;
5854   }
5855   case Intrinsic::prefetch: {
5856     SDValue Ops[5];
5857     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5858     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5859     Ops[0] = DAG.getRoot();
5860     Ops[1] = getValue(I.getArgOperand(0));
5861     Ops[2] = getValue(I.getArgOperand(1));
5862     Ops[3] = getValue(I.getArgOperand(2));
5863     Ops[4] = getValue(I.getArgOperand(3));
5864     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5865                                              DAG.getVTList(MVT::Other), Ops,
5866                                              EVT::getIntegerVT(*Context, 8),
5867                                              MachinePointerInfo(I.getArgOperand(0)),
5868                                              0, /* align */
5869                                              Flags);
5870 
5871     // Chain the prefetch in parallell with any pending loads, to stay out of
5872     // the way of later optimizations.
5873     PendingLoads.push_back(Result);
5874     Result = getRoot();
5875     DAG.setRoot(Result);
5876     return nullptr;
5877   }
5878   case Intrinsic::lifetime_start:
5879   case Intrinsic::lifetime_end: {
5880     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5881     // Stack coloring is not enabled in O0, discard region information.
5882     if (TM.getOptLevel() == CodeGenOpt::None)
5883       return nullptr;
5884 
5885     SmallVector<Value *, 4> Allocas;
5886     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5887 
5888     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5889            E = Allocas.end(); Object != E; ++Object) {
5890       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5891 
5892       // Could not find an Alloca.
5893       if (!LifetimeObject)
5894         continue;
5895 
5896       // First check that the Alloca is static, otherwise it won't have a
5897       // valid frame index.
5898       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5899       if (SI == FuncInfo.StaticAllocaMap.end())
5900         return nullptr;
5901 
5902       int FI = SI->second;
5903 
5904       SDValue Ops[2];
5905       Ops[0] = getRoot();
5906       Ops[1] =
5907           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5908       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5909 
5910       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5911       DAG.setRoot(Res);
5912     }
5913     return nullptr;
5914   }
5915   case Intrinsic::invariant_start:
5916     // Discard region information.
5917     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5918     return nullptr;
5919   case Intrinsic::invariant_end:
5920     // Discard region information.
5921     return nullptr;
5922   case Intrinsic::clear_cache:
5923     return TLI.getClearCacheBuiltinName();
5924   case Intrinsic::donothing:
5925     // ignore
5926     return nullptr;
5927   case Intrinsic::experimental_stackmap:
5928     visitStackmap(I);
5929     return nullptr;
5930   case Intrinsic::experimental_patchpoint_void:
5931   case Intrinsic::experimental_patchpoint_i64:
5932     visitPatchpoint(&I);
5933     return nullptr;
5934   case Intrinsic::experimental_gc_statepoint:
5935     LowerStatepoint(ImmutableStatepoint(&I));
5936     return nullptr;
5937   case Intrinsic::experimental_gc_result:
5938     visitGCResult(cast<GCResultInst>(I));
5939     return nullptr;
5940   case Intrinsic::experimental_gc_relocate:
5941     visitGCRelocate(cast<GCRelocateInst>(I));
5942     return nullptr;
5943   case Intrinsic::instrprof_increment:
5944     llvm_unreachable("instrprof failed to lower an increment");
5945   case Intrinsic::instrprof_value_profile:
5946     llvm_unreachable("instrprof failed to lower a value profiling call");
5947   case Intrinsic::localescape: {
5948     MachineFunction &MF = DAG.getMachineFunction();
5949     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5950 
5951     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5952     // is the same on all targets.
5953     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5954       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5955       if (isa<ConstantPointerNull>(Arg))
5956         continue; // Skip null pointers. They represent a hole in index space.
5957       AllocaInst *Slot = cast<AllocaInst>(Arg);
5958       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5959              "can only escape static allocas");
5960       int FI = FuncInfo.StaticAllocaMap[Slot];
5961       MCSymbol *FrameAllocSym =
5962           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5963               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5964       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5965               TII->get(TargetOpcode::LOCAL_ESCAPE))
5966           .addSym(FrameAllocSym)
5967           .addFrameIndex(FI);
5968     }
5969 
5970     return nullptr;
5971   }
5972 
5973   case Intrinsic::localrecover: {
5974     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5975     MachineFunction &MF = DAG.getMachineFunction();
5976     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5977 
5978     // Get the symbol that defines the frame offset.
5979     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5980     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5981     unsigned IdxVal =
5982         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
5983     MCSymbol *FrameAllocSym =
5984         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5985             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5986 
5987     // Create a MCSymbol for the label to avoid any target lowering
5988     // that would make this PC relative.
5989     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5990     SDValue OffsetVal =
5991         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5992 
5993     // Add the offset to the FP.
5994     Value *FP = I.getArgOperand(1);
5995     SDValue FPVal = getValue(FP);
5996     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5997     setValue(&I, Add);
5998 
5999     return nullptr;
6000   }
6001 
6002   case Intrinsic::eh_exceptionpointer:
6003   case Intrinsic::eh_exceptioncode: {
6004     // Get the exception pointer vreg, copy from it, and resize it to fit.
6005     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6006     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6007     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6008     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6009     SDValue N =
6010         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6011     if (Intrinsic == Intrinsic::eh_exceptioncode)
6012       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6013     setValue(&I, N);
6014     return nullptr;
6015   }
6016   case Intrinsic::xray_customevent: {
6017     // Here we want to make sure that the intrinsic behaves as if it has a
6018     // specific calling convention, and only for x86_64.
6019     // FIXME: Support other platforms later.
6020     const auto &Triple = DAG.getTarget().getTargetTriple();
6021     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6022       return nullptr;
6023 
6024     SDLoc DL = getCurSDLoc();
6025     SmallVector<SDValue, 8> Ops;
6026 
6027     // We want to say that we always want the arguments in registers.
6028     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6029     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6030     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6031     SDValue Chain = getRoot();
6032     Ops.push_back(LogEntryVal);
6033     Ops.push_back(StrSizeVal);
6034     Ops.push_back(Chain);
6035 
6036     // We need to enforce the calling convention for the callsite, so that
6037     // argument ordering is enforced correctly, and that register allocation can
6038     // see that some registers may be assumed clobbered and have to preserve
6039     // them across calls to the intrinsic.
6040     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6041                                            DL, NodeTys, Ops);
6042     SDValue patchableNode = SDValue(MN, 0);
6043     DAG.setRoot(patchableNode);
6044     setValue(&I, patchableNode);
6045     return nullptr;
6046   }
6047   case Intrinsic::xray_typedevent: {
6048     // Here we want to make sure that the intrinsic behaves as if it has a
6049     // specific calling convention, and only for x86_64.
6050     // FIXME: Support other platforms later.
6051     const auto &Triple = DAG.getTarget().getTargetTriple();
6052     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6053       return nullptr;
6054 
6055     SDLoc DL = getCurSDLoc();
6056     SmallVector<SDValue, 8> Ops;
6057 
6058     // We want to say that we always want the arguments in registers.
6059     // It's unclear to me how manipulating the selection DAG here forces callers
6060     // to provide arguments in registers instead of on the stack.
6061     SDValue LogTypeId = getValue(I.getArgOperand(0));
6062     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6063     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6064     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6065     SDValue Chain = getRoot();
6066     Ops.push_back(LogTypeId);
6067     Ops.push_back(LogEntryVal);
6068     Ops.push_back(StrSizeVal);
6069     Ops.push_back(Chain);
6070 
6071     // We need to enforce the calling convention for the callsite, so that
6072     // argument ordering is enforced correctly, and that register allocation can
6073     // see that some registers may be assumed clobbered and have to preserve
6074     // them across calls to the intrinsic.
6075     MachineSDNode *MN = DAG.getMachineNode(
6076         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6077     SDValue patchableNode = SDValue(MN, 0);
6078     DAG.setRoot(patchableNode);
6079     setValue(&I, patchableNode);
6080     return nullptr;
6081   }
6082   case Intrinsic::experimental_deoptimize:
6083     LowerDeoptimizeCall(&I);
6084     return nullptr;
6085 
6086   case Intrinsic::experimental_vector_reduce_fadd:
6087   case Intrinsic::experimental_vector_reduce_fmul:
6088   case Intrinsic::experimental_vector_reduce_add:
6089   case Intrinsic::experimental_vector_reduce_mul:
6090   case Intrinsic::experimental_vector_reduce_and:
6091   case Intrinsic::experimental_vector_reduce_or:
6092   case Intrinsic::experimental_vector_reduce_xor:
6093   case Intrinsic::experimental_vector_reduce_smax:
6094   case Intrinsic::experimental_vector_reduce_smin:
6095   case Intrinsic::experimental_vector_reduce_umax:
6096   case Intrinsic::experimental_vector_reduce_umin:
6097   case Intrinsic::experimental_vector_reduce_fmax:
6098   case Intrinsic::experimental_vector_reduce_fmin:
6099     visitVectorReduce(I, Intrinsic);
6100     return nullptr;
6101 
6102   case Intrinsic::icall_branch_funnel: {
6103     SmallVector<SDValue, 16> Ops;
6104     Ops.push_back(DAG.getRoot());
6105     Ops.push_back(getValue(I.getArgOperand(0)));
6106 
6107     int64_t Offset;
6108     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6109         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6110     if (!Base)
6111       report_fatal_error(
6112           "llvm.icall.branch.funnel operand must be a GlobalValue");
6113     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6114 
6115     struct BranchFunnelTarget {
6116       int64_t Offset;
6117       SDValue Target;
6118     };
6119     SmallVector<BranchFunnelTarget, 8> Targets;
6120 
6121     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6122       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6123           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6124       if (ElemBase != Base)
6125         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6126                            "to the same GlobalValue");
6127 
6128       SDValue Val = getValue(I.getArgOperand(Op + 1));
6129       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6130       if (!GA)
6131         report_fatal_error(
6132             "llvm.icall.branch.funnel operand must be a GlobalValue");
6133       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6134                                      GA->getGlobal(), getCurSDLoc(),
6135                                      Val.getValueType(), GA->getOffset())});
6136     }
6137     llvm::sort(Targets.begin(), Targets.end(),
6138                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6139                  return T1.Offset < T2.Offset;
6140                });
6141 
6142     for (auto &T : Targets) {
6143       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6144       Ops.push_back(T.Target);
6145     }
6146 
6147     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6148                                  getCurSDLoc(), MVT::Other, Ops),
6149               0);
6150     DAG.setRoot(N);
6151     setValue(&I, N);
6152     HasTailCall = true;
6153     return nullptr;
6154   }
6155   }
6156 }
6157 
6158 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6159     const ConstrainedFPIntrinsic &FPI) {
6160   SDLoc sdl = getCurSDLoc();
6161   unsigned Opcode;
6162   switch (FPI.getIntrinsicID()) {
6163   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6164   case Intrinsic::experimental_constrained_fadd:
6165     Opcode = ISD::STRICT_FADD;
6166     break;
6167   case Intrinsic::experimental_constrained_fsub:
6168     Opcode = ISD::STRICT_FSUB;
6169     break;
6170   case Intrinsic::experimental_constrained_fmul:
6171     Opcode = ISD::STRICT_FMUL;
6172     break;
6173   case Intrinsic::experimental_constrained_fdiv:
6174     Opcode = ISD::STRICT_FDIV;
6175     break;
6176   case Intrinsic::experimental_constrained_frem:
6177     Opcode = ISD::STRICT_FREM;
6178     break;
6179   case Intrinsic::experimental_constrained_fma:
6180     Opcode = ISD::STRICT_FMA;
6181     break;
6182   case Intrinsic::experimental_constrained_sqrt:
6183     Opcode = ISD::STRICT_FSQRT;
6184     break;
6185   case Intrinsic::experimental_constrained_pow:
6186     Opcode = ISD::STRICT_FPOW;
6187     break;
6188   case Intrinsic::experimental_constrained_powi:
6189     Opcode = ISD::STRICT_FPOWI;
6190     break;
6191   case Intrinsic::experimental_constrained_sin:
6192     Opcode = ISD::STRICT_FSIN;
6193     break;
6194   case Intrinsic::experimental_constrained_cos:
6195     Opcode = ISD::STRICT_FCOS;
6196     break;
6197   case Intrinsic::experimental_constrained_exp:
6198     Opcode = ISD::STRICT_FEXP;
6199     break;
6200   case Intrinsic::experimental_constrained_exp2:
6201     Opcode = ISD::STRICT_FEXP2;
6202     break;
6203   case Intrinsic::experimental_constrained_log:
6204     Opcode = ISD::STRICT_FLOG;
6205     break;
6206   case Intrinsic::experimental_constrained_log10:
6207     Opcode = ISD::STRICT_FLOG10;
6208     break;
6209   case Intrinsic::experimental_constrained_log2:
6210     Opcode = ISD::STRICT_FLOG2;
6211     break;
6212   case Intrinsic::experimental_constrained_rint:
6213     Opcode = ISD::STRICT_FRINT;
6214     break;
6215   case Intrinsic::experimental_constrained_nearbyint:
6216     Opcode = ISD::STRICT_FNEARBYINT;
6217     break;
6218   }
6219   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6220   SDValue Chain = getRoot();
6221   SmallVector<EVT, 4> ValueVTs;
6222   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6223   ValueVTs.push_back(MVT::Other); // Out chain
6224 
6225   SDVTList VTs = DAG.getVTList(ValueVTs);
6226   SDValue Result;
6227   if (FPI.isUnaryOp())
6228     Result = DAG.getNode(Opcode, sdl, VTs,
6229                          { Chain, getValue(FPI.getArgOperand(0)) });
6230   else if (FPI.isTernaryOp())
6231     Result = DAG.getNode(Opcode, sdl, VTs,
6232                          { Chain, getValue(FPI.getArgOperand(0)),
6233                                   getValue(FPI.getArgOperand(1)),
6234                                   getValue(FPI.getArgOperand(2)) });
6235   else
6236     Result = DAG.getNode(Opcode, sdl, VTs,
6237                          { Chain, getValue(FPI.getArgOperand(0)),
6238                            getValue(FPI.getArgOperand(1))  });
6239 
6240   assert(Result.getNode()->getNumValues() == 2);
6241   SDValue OutChain = Result.getValue(1);
6242   DAG.setRoot(OutChain);
6243   SDValue FPResult = Result.getValue(0);
6244   setValue(&FPI, FPResult);
6245 }
6246 
6247 std::pair<SDValue, SDValue>
6248 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6249                                     const BasicBlock *EHPadBB) {
6250   MachineFunction &MF = DAG.getMachineFunction();
6251   MachineModuleInfo &MMI = MF.getMMI();
6252   MCSymbol *BeginLabel = nullptr;
6253 
6254   if (EHPadBB) {
6255     // Insert a label before the invoke call to mark the try range.  This can be
6256     // used to detect deletion of the invoke via the MachineModuleInfo.
6257     BeginLabel = MMI.getContext().createTempSymbol();
6258 
6259     // For SjLj, keep track of which landing pads go with which invokes
6260     // so as to maintain the ordering of pads in the LSDA.
6261     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6262     if (CallSiteIndex) {
6263       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6264       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6265 
6266       // Now that the call site is handled, stop tracking it.
6267       MMI.setCurrentCallSite(0);
6268     }
6269 
6270     // Both PendingLoads and PendingExports must be flushed here;
6271     // this call might not return.
6272     (void)getRoot();
6273     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6274 
6275     CLI.setChain(getRoot());
6276   }
6277   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6278   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6279 
6280   assert((CLI.IsTailCall || Result.second.getNode()) &&
6281          "Non-null chain expected with non-tail call!");
6282   assert((Result.second.getNode() || !Result.first.getNode()) &&
6283          "Null value expected with tail call!");
6284 
6285   if (!Result.second.getNode()) {
6286     // As a special case, a null chain means that a tail call has been emitted
6287     // and the DAG root is already updated.
6288     HasTailCall = true;
6289 
6290     // Since there's no actual continuation from this block, nothing can be
6291     // relying on us setting vregs for them.
6292     PendingExports.clear();
6293   } else {
6294     DAG.setRoot(Result.second);
6295   }
6296 
6297   if (EHPadBB) {
6298     // Insert a label at the end of the invoke call to mark the try range.  This
6299     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6300     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6301     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6302 
6303     // Inform MachineModuleInfo of range.
6304     if (MF.hasEHFunclets()) {
6305       assert(CLI.CS);
6306       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6307       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6308                                 BeginLabel, EndLabel);
6309     } else {
6310       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6311     }
6312   }
6313 
6314   return Result;
6315 }
6316 
6317 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6318                                       bool isTailCall,
6319                                       const BasicBlock *EHPadBB) {
6320   auto &DL = DAG.getDataLayout();
6321   FunctionType *FTy = CS.getFunctionType();
6322   Type *RetTy = CS.getType();
6323 
6324   TargetLowering::ArgListTy Args;
6325   Args.reserve(CS.arg_size());
6326 
6327   const Value *SwiftErrorVal = nullptr;
6328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6329 
6330   // We can't tail call inside a function with a swifterror argument. Lowering
6331   // does not support this yet. It would have to move into the swifterror
6332   // register before the call.
6333   auto *Caller = CS.getInstruction()->getParent()->getParent();
6334   if (TLI.supportSwiftError() &&
6335       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6336     isTailCall = false;
6337 
6338   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6339        i != e; ++i) {
6340     TargetLowering::ArgListEntry Entry;
6341     const Value *V = *i;
6342 
6343     // Skip empty types
6344     if (V->getType()->isEmptyTy())
6345       continue;
6346 
6347     SDValue ArgNode = getValue(V);
6348     Entry.Node = ArgNode; Entry.Ty = V->getType();
6349 
6350     Entry.setAttributes(&CS, i - CS.arg_begin());
6351 
6352     // Use swifterror virtual register as input to the call.
6353     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6354       SwiftErrorVal = V;
6355       // We find the virtual register for the actual swifterror argument.
6356       // Instead of using the Value, we use the virtual register instead.
6357       Entry.Node = DAG.getRegister(FuncInfo
6358                                        .getOrCreateSwiftErrorVRegUseAt(
6359                                            CS.getInstruction(), FuncInfo.MBB, V)
6360                                        .first,
6361                                    EVT(TLI.getPointerTy(DL)));
6362     }
6363 
6364     Args.push_back(Entry);
6365 
6366     // If we have an explicit sret argument that is an Instruction, (i.e., it
6367     // might point to function-local memory), we can't meaningfully tail-call.
6368     if (Entry.IsSRet && isa<Instruction>(V))
6369       isTailCall = false;
6370   }
6371 
6372   // Check if target-independent constraints permit a tail call here.
6373   // Target-dependent constraints are checked within TLI->LowerCallTo.
6374   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6375     isTailCall = false;
6376 
6377   // Disable tail calls if there is an swifterror argument. Targets have not
6378   // been updated to support tail calls.
6379   if (TLI.supportSwiftError() && SwiftErrorVal)
6380     isTailCall = false;
6381 
6382   TargetLowering::CallLoweringInfo CLI(DAG);
6383   CLI.setDebugLoc(getCurSDLoc())
6384       .setChain(getRoot())
6385       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6386       .setTailCall(isTailCall)
6387       .setConvergent(CS.isConvergent());
6388   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6389 
6390   if (Result.first.getNode()) {
6391     const Instruction *Inst = CS.getInstruction();
6392     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6393     setValue(Inst, Result.first);
6394   }
6395 
6396   // The last element of CLI.InVals has the SDValue for swifterror return.
6397   // Here we copy it to a virtual register and update SwiftErrorMap for
6398   // book-keeping.
6399   if (SwiftErrorVal && TLI.supportSwiftError()) {
6400     // Get the last element of InVals.
6401     SDValue Src = CLI.InVals.back();
6402     unsigned VReg; bool CreatedVReg;
6403     std::tie(VReg, CreatedVReg) =
6404         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6405     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6406     // We update the virtual register for the actual swifterror argument.
6407     if (CreatedVReg)
6408       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6409     DAG.setRoot(CopyNode);
6410   }
6411 }
6412 
6413 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6414                              SelectionDAGBuilder &Builder) {
6415   // Check to see if this load can be trivially constant folded, e.g. if the
6416   // input is from a string literal.
6417   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6418     // Cast pointer to the type we really want to load.
6419     Type *LoadTy =
6420         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6421     if (LoadVT.isVector())
6422       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6423 
6424     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6425                                          PointerType::getUnqual(LoadTy));
6426 
6427     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6428             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6429       return Builder.getValue(LoadCst);
6430   }
6431 
6432   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6433   // still constant memory, the input chain can be the entry node.
6434   SDValue Root;
6435   bool ConstantMemory = false;
6436 
6437   // Do not serialize (non-volatile) loads of constant memory with anything.
6438   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6439     Root = Builder.DAG.getEntryNode();
6440     ConstantMemory = true;
6441   } else {
6442     // Do not serialize non-volatile loads against each other.
6443     Root = Builder.DAG.getRoot();
6444   }
6445 
6446   SDValue Ptr = Builder.getValue(PtrVal);
6447   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6448                                         Ptr, MachinePointerInfo(PtrVal),
6449                                         /* Alignment = */ 1);
6450 
6451   if (!ConstantMemory)
6452     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6453   return LoadVal;
6454 }
6455 
6456 /// Record the value for an instruction that produces an integer result,
6457 /// converting the type where necessary.
6458 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6459                                                   SDValue Value,
6460                                                   bool IsSigned) {
6461   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6462                                                     I.getType(), true);
6463   if (IsSigned)
6464     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6465   else
6466     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6467   setValue(&I, Value);
6468 }
6469 
6470 /// See if we can lower a memcmp call into an optimized form. If so, return
6471 /// true and lower it. Otherwise return false, and it will be lowered like a
6472 /// normal call.
6473 /// The caller already checked that \p I calls the appropriate LibFunc with a
6474 /// correct prototype.
6475 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6476   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6477   const Value *Size = I.getArgOperand(2);
6478   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6479   if (CSize && CSize->getZExtValue() == 0) {
6480     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6481                                                           I.getType(), true);
6482     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6483     return true;
6484   }
6485 
6486   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6487   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6488       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6489       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6490   if (Res.first.getNode()) {
6491     processIntegerCallValue(I, Res.first, true);
6492     PendingLoads.push_back(Res.second);
6493     return true;
6494   }
6495 
6496   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6497   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6498   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6499     return false;
6500 
6501   // If the target has a fast compare for the given size, it will return a
6502   // preferred load type for that size. Require that the load VT is legal and
6503   // that the target supports unaligned loads of that type. Otherwise, return
6504   // INVALID.
6505   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6506     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6507     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6508     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6509       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6510       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6511       // TODO: Check alignment of src and dest ptrs.
6512       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6513       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6514       if (!TLI.isTypeLegal(LVT) ||
6515           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6516           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6517         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6518     }
6519 
6520     return LVT;
6521   };
6522 
6523   // This turns into unaligned loads. We only do this if the target natively
6524   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6525   // we'll only produce a small number of byte loads.
6526   MVT LoadVT;
6527   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6528   switch (NumBitsToCompare) {
6529   default:
6530     return false;
6531   case 16:
6532     LoadVT = MVT::i16;
6533     break;
6534   case 32:
6535     LoadVT = MVT::i32;
6536     break;
6537   case 64:
6538   case 128:
6539   case 256:
6540     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6541     break;
6542   }
6543 
6544   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6545     return false;
6546 
6547   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6548   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6549 
6550   // Bitcast to a wide integer type if the loads are vectors.
6551   if (LoadVT.isVector()) {
6552     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6553     LoadL = DAG.getBitcast(CmpVT, LoadL);
6554     LoadR = DAG.getBitcast(CmpVT, LoadR);
6555   }
6556 
6557   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6558   processIntegerCallValue(I, Cmp, false);
6559   return true;
6560 }
6561 
6562 /// See if we can lower a memchr call into an optimized form. If so, return
6563 /// true and lower it. Otherwise return false, and it will be lowered like a
6564 /// normal call.
6565 /// The caller already checked that \p I calls the appropriate LibFunc with a
6566 /// correct prototype.
6567 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6568   const Value *Src = I.getArgOperand(0);
6569   const Value *Char = I.getArgOperand(1);
6570   const Value *Length = I.getArgOperand(2);
6571 
6572   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6573   std::pair<SDValue, SDValue> Res =
6574     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6575                                 getValue(Src), getValue(Char), getValue(Length),
6576                                 MachinePointerInfo(Src));
6577   if (Res.first.getNode()) {
6578     setValue(&I, Res.first);
6579     PendingLoads.push_back(Res.second);
6580     return true;
6581   }
6582 
6583   return false;
6584 }
6585 
6586 /// See if we can lower a mempcpy call into an optimized form. If so, return
6587 /// true and lower it. Otherwise return false, and it will be lowered like a
6588 /// normal call.
6589 /// The caller already checked that \p I calls the appropriate LibFunc with a
6590 /// correct prototype.
6591 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6592   SDValue Dst = getValue(I.getArgOperand(0));
6593   SDValue Src = getValue(I.getArgOperand(1));
6594   SDValue Size = getValue(I.getArgOperand(2));
6595 
6596   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6597   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6598   unsigned Align = std::min(DstAlign, SrcAlign);
6599   if (Align == 0) // Alignment of one or both could not be inferred.
6600     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6601 
6602   bool isVol = false;
6603   SDLoc sdl = getCurSDLoc();
6604 
6605   // In the mempcpy context we need to pass in a false value for isTailCall
6606   // because the return pointer needs to be adjusted by the size of
6607   // the copied memory.
6608   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6609                              false, /*isTailCall=*/false,
6610                              MachinePointerInfo(I.getArgOperand(0)),
6611                              MachinePointerInfo(I.getArgOperand(1)));
6612   assert(MC.getNode() != nullptr &&
6613          "** memcpy should not be lowered as TailCall in mempcpy context **");
6614   DAG.setRoot(MC);
6615 
6616   // Check if Size needs to be truncated or extended.
6617   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6618 
6619   // Adjust return pointer to point just past the last dst byte.
6620   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6621                                     Dst, Size);
6622   setValue(&I, DstPlusSize);
6623   return true;
6624 }
6625 
6626 /// See if we can lower a strcpy call into an optimized form.  If so, return
6627 /// true and lower it, otherwise return false and it will be lowered like a
6628 /// normal call.
6629 /// The caller already checked that \p I calls the appropriate LibFunc with a
6630 /// correct prototype.
6631 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6632   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6633 
6634   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6635   std::pair<SDValue, SDValue> Res =
6636     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6637                                 getValue(Arg0), getValue(Arg1),
6638                                 MachinePointerInfo(Arg0),
6639                                 MachinePointerInfo(Arg1), isStpcpy);
6640   if (Res.first.getNode()) {
6641     setValue(&I, Res.first);
6642     DAG.setRoot(Res.second);
6643     return true;
6644   }
6645 
6646   return false;
6647 }
6648 
6649 /// See if we can lower a strcmp call into an optimized form.  If so, return
6650 /// true and lower it, otherwise return false and it will be lowered like a
6651 /// normal call.
6652 /// The caller already checked that \p I calls the appropriate LibFunc with a
6653 /// correct prototype.
6654 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6655   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6656 
6657   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6658   std::pair<SDValue, SDValue> Res =
6659     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6660                                 getValue(Arg0), getValue(Arg1),
6661                                 MachinePointerInfo(Arg0),
6662                                 MachinePointerInfo(Arg1));
6663   if (Res.first.getNode()) {
6664     processIntegerCallValue(I, Res.first, true);
6665     PendingLoads.push_back(Res.second);
6666     return true;
6667   }
6668 
6669   return false;
6670 }
6671 
6672 /// See if we can lower a strlen call into an optimized form.  If so, return
6673 /// true and lower it, otherwise return false and it will be lowered like a
6674 /// normal call.
6675 /// The caller already checked that \p I calls the appropriate LibFunc with a
6676 /// correct prototype.
6677 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6678   const Value *Arg0 = I.getArgOperand(0);
6679 
6680   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6681   std::pair<SDValue, SDValue> Res =
6682     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6683                                 getValue(Arg0), MachinePointerInfo(Arg0));
6684   if (Res.first.getNode()) {
6685     processIntegerCallValue(I, Res.first, false);
6686     PendingLoads.push_back(Res.second);
6687     return true;
6688   }
6689 
6690   return false;
6691 }
6692 
6693 /// See if we can lower a strnlen call into an optimized form.  If so, return
6694 /// true and lower it, otherwise return false and it will be lowered like a
6695 /// normal call.
6696 /// The caller already checked that \p I calls the appropriate LibFunc with a
6697 /// correct prototype.
6698 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6699   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6700 
6701   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6702   std::pair<SDValue, SDValue> Res =
6703     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6704                                  getValue(Arg0), getValue(Arg1),
6705                                  MachinePointerInfo(Arg0));
6706   if (Res.first.getNode()) {
6707     processIntegerCallValue(I, Res.first, false);
6708     PendingLoads.push_back(Res.second);
6709     return true;
6710   }
6711 
6712   return false;
6713 }
6714 
6715 /// See if we can lower a unary floating-point operation into an SDNode with
6716 /// the specified Opcode.  If so, return true and lower it, otherwise return
6717 /// false and it will be lowered like a normal call.
6718 /// The caller already checked that \p I calls the appropriate LibFunc with a
6719 /// correct prototype.
6720 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6721                                               unsigned Opcode) {
6722   // We already checked this call's prototype; verify it doesn't modify errno.
6723   if (!I.onlyReadsMemory())
6724     return false;
6725 
6726   SDValue Tmp = getValue(I.getArgOperand(0));
6727   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6728   return true;
6729 }
6730 
6731 /// See if we can lower a binary floating-point operation into an SDNode with
6732 /// the specified Opcode. If so, return true and lower it. Otherwise return
6733 /// false, and it will be lowered like a normal call.
6734 /// The caller already checked that \p I calls the appropriate LibFunc with a
6735 /// correct prototype.
6736 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6737                                                unsigned Opcode) {
6738   // We already checked this call's prototype; verify it doesn't modify errno.
6739   if (!I.onlyReadsMemory())
6740     return false;
6741 
6742   SDValue Tmp0 = getValue(I.getArgOperand(0));
6743   SDValue Tmp1 = getValue(I.getArgOperand(1));
6744   EVT VT = Tmp0.getValueType();
6745   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6746   return true;
6747 }
6748 
6749 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6750   // Handle inline assembly differently.
6751   if (isa<InlineAsm>(I.getCalledValue())) {
6752     visitInlineAsm(&I);
6753     return;
6754   }
6755 
6756   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6757   computeUsesVAFloatArgument(I, MMI);
6758 
6759   const char *RenameFn = nullptr;
6760   if (Function *F = I.getCalledFunction()) {
6761     if (F->isDeclaration()) {
6762       // Is this an LLVM intrinsic or a target-specific intrinsic?
6763       unsigned IID = F->getIntrinsicID();
6764       if (!IID)
6765         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6766           IID = II->getIntrinsicID(F);
6767 
6768       if (IID) {
6769         RenameFn = visitIntrinsicCall(I, IID);
6770         if (!RenameFn)
6771           return;
6772       }
6773     }
6774 
6775     // Check for well-known libc/libm calls.  If the function is internal, it
6776     // can't be a library call.  Don't do the check if marked as nobuiltin for
6777     // some reason or the call site requires strict floating point semantics.
6778     LibFunc Func;
6779     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6780         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6781         LibInfo->hasOptimizedCodeGen(Func)) {
6782       switch (Func) {
6783       default: break;
6784       case LibFunc_copysign:
6785       case LibFunc_copysignf:
6786       case LibFunc_copysignl:
6787         // We already checked this call's prototype; verify it doesn't modify
6788         // errno.
6789         if (I.onlyReadsMemory()) {
6790           SDValue LHS = getValue(I.getArgOperand(0));
6791           SDValue RHS = getValue(I.getArgOperand(1));
6792           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6793                                    LHS.getValueType(), LHS, RHS));
6794           return;
6795         }
6796         break;
6797       case LibFunc_fabs:
6798       case LibFunc_fabsf:
6799       case LibFunc_fabsl:
6800         if (visitUnaryFloatCall(I, ISD::FABS))
6801           return;
6802         break;
6803       case LibFunc_fmin:
6804       case LibFunc_fminf:
6805       case LibFunc_fminl:
6806         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6807           return;
6808         break;
6809       case LibFunc_fmax:
6810       case LibFunc_fmaxf:
6811       case LibFunc_fmaxl:
6812         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6813           return;
6814         break;
6815       case LibFunc_sin:
6816       case LibFunc_sinf:
6817       case LibFunc_sinl:
6818         if (visitUnaryFloatCall(I, ISD::FSIN))
6819           return;
6820         break;
6821       case LibFunc_cos:
6822       case LibFunc_cosf:
6823       case LibFunc_cosl:
6824         if (visitUnaryFloatCall(I, ISD::FCOS))
6825           return;
6826         break;
6827       case LibFunc_sqrt:
6828       case LibFunc_sqrtf:
6829       case LibFunc_sqrtl:
6830       case LibFunc_sqrt_finite:
6831       case LibFunc_sqrtf_finite:
6832       case LibFunc_sqrtl_finite:
6833         if (visitUnaryFloatCall(I, ISD::FSQRT))
6834           return;
6835         break;
6836       case LibFunc_floor:
6837       case LibFunc_floorf:
6838       case LibFunc_floorl:
6839         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6840           return;
6841         break;
6842       case LibFunc_nearbyint:
6843       case LibFunc_nearbyintf:
6844       case LibFunc_nearbyintl:
6845         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6846           return;
6847         break;
6848       case LibFunc_ceil:
6849       case LibFunc_ceilf:
6850       case LibFunc_ceill:
6851         if (visitUnaryFloatCall(I, ISD::FCEIL))
6852           return;
6853         break;
6854       case LibFunc_rint:
6855       case LibFunc_rintf:
6856       case LibFunc_rintl:
6857         if (visitUnaryFloatCall(I, ISD::FRINT))
6858           return;
6859         break;
6860       case LibFunc_round:
6861       case LibFunc_roundf:
6862       case LibFunc_roundl:
6863         if (visitUnaryFloatCall(I, ISD::FROUND))
6864           return;
6865         break;
6866       case LibFunc_trunc:
6867       case LibFunc_truncf:
6868       case LibFunc_truncl:
6869         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6870           return;
6871         break;
6872       case LibFunc_log2:
6873       case LibFunc_log2f:
6874       case LibFunc_log2l:
6875         if (visitUnaryFloatCall(I, ISD::FLOG2))
6876           return;
6877         break;
6878       case LibFunc_exp2:
6879       case LibFunc_exp2f:
6880       case LibFunc_exp2l:
6881         if (visitUnaryFloatCall(I, ISD::FEXP2))
6882           return;
6883         break;
6884       case LibFunc_memcmp:
6885         if (visitMemCmpCall(I))
6886           return;
6887         break;
6888       case LibFunc_mempcpy:
6889         if (visitMemPCpyCall(I))
6890           return;
6891         break;
6892       case LibFunc_memchr:
6893         if (visitMemChrCall(I))
6894           return;
6895         break;
6896       case LibFunc_strcpy:
6897         if (visitStrCpyCall(I, false))
6898           return;
6899         break;
6900       case LibFunc_stpcpy:
6901         if (visitStrCpyCall(I, true))
6902           return;
6903         break;
6904       case LibFunc_strcmp:
6905         if (visitStrCmpCall(I))
6906           return;
6907         break;
6908       case LibFunc_strlen:
6909         if (visitStrLenCall(I))
6910           return;
6911         break;
6912       case LibFunc_strnlen:
6913         if (visitStrNLenCall(I))
6914           return;
6915         break;
6916       }
6917     }
6918   }
6919 
6920   SDValue Callee;
6921   if (!RenameFn)
6922     Callee = getValue(I.getCalledValue());
6923   else
6924     Callee = DAG.getExternalSymbol(
6925         RenameFn,
6926         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6927 
6928   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6929   // have to do anything here to lower funclet bundles.
6930   assert(!I.hasOperandBundlesOtherThan(
6931              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6932          "Cannot lower calls with arbitrary operand bundles!");
6933 
6934   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6935     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6936   else
6937     // Check if we can potentially perform a tail call. More detailed checking
6938     // is be done within LowerCallTo, after more information about the call is
6939     // known.
6940     LowerCallTo(&I, Callee, I.isTailCall());
6941 }
6942 
6943 namespace {
6944 
6945 /// AsmOperandInfo - This contains information for each constraint that we are
6946 /// lowering.
6947 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6948 public:
6949   /// CallOperand - If this is the result output operand or a clobber
6950   /// this is null, otherwise it is the incoming operand to the CallInst.
6951   /// This gets modified as the asm is processed.
6952   SDValue CallOperand;
6953 
6954   /// AssignedRegs - If this is a register or register class operand, this
6955   /// contains the set of register corresponding to the operand.
6956   RegsForValue AssignedRegs;
6957 
6958   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6959     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6960   }
6961 
6962   /// Whether or not this operand accesses memory
6963   bool hasMemory(const TargetLowering &TLI) const {
6964     // Indirect operand accesses access memory.
6965     if (isIndirect)
6966       return true;
6967 
6968     for (const auto &Code : Codes)
6969       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6970         return true;
6971 
6972     return false;
6973   }
6974 
6975   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6976   /// corresponds to.  If there is no Value* for this operand, it returns
6977   /// MVT::Other.
6978   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6979                            const DataLayout &DL) const {
6980     if (!CallOperandVal) return MVT::Other;
6981 
6982     if (isa<BasicBlock>(CallOperandVal))
6983       return TLI.getPointerTy(DL);
6984 
6985     llvm::Type *OpTy = CallOperandVal->getType();
6986 
6987     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6988     // If this is an indirect operand, the operand is a pointer to the
6989     // accessed type.
6990     if (isIndirect) {
6991       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6992       if (!PtrTy)
6993         report_fatal_error("Indirect operand for inline asm not a pointer!");
6994       OpTy = PtrTy->getElementType();
6995     }
6996 
6997     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6998     if (StructType *STy = dyn_cast<StructType>(OpTy))
6999       if (STy->getNumElements() == 1)
7000         OpTy = STy->getElementType(0);
7001 
7002     // If OpTy is not a single value, it may be a struct/union that we
7003     // can tile with integers.
7004     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7005       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7006       switch (BitSize) {
7007       default: break;
7008       case 1:
7009       case 8:
7010       case 16:
7011       case 32:
7012       case 64:
7013       case 128:
7014         OpTy = IntegerType::get(Context, BitSize);
7015         break;
7016       }
7017     }
7018 
7019     return TLI.getValueType(DL, OpTy, true);
7020   }
7021 };
7022 
7023 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7024 
7025 } // end anonymous namespace
7026 
7027 /// Make sure that the output operand \p OpInfo and its corresponding input
7028 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7029 /// out).
7030 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7031                                SDISelAsmOperandInfo &MatchingOpInfo,
7032                                SelectionDAG &DAG) {
7033   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7034     return;
7035 
7036   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7037   const auto &TLI = DAG.getTargetLoweringInfo();
7038 
7039   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7040       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7041                                        OpInfo.ConstraintVT);
7042   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7043       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7044                                        MatchingOpInfo.ConstraintVT);
7045   if ((OpInfo.ConstraintVT.isInteger() !=
7046        MatchingOpInfo.ConstraintVT.isInteger()) ||
7047       (MatchRC.second != InputRC.second)) {
7048     // FIXME: error out in a more elegant fashion
7049     report_fatal_error("Unsupported asm: input constraint"
7050                        " with a matching output constraint of"
7051                        " incompatible type!");
7052   }
7053   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7054 }
7055 
7056 /// Get a direct memory input to behave well as an indirect operand.
7057 /// This may introduce stores, hence the need for a \p Chain.
7058 /// \return The (possibly updated) chain.
7059 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7060                                         SDISelAsmOperandInfo &OpInfo,
7061                                         SelectionDAG &DAG) {
7062   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7063 
7064   // If we don't have an indirect input, put it in the constpool if we can,
7065   // otherwise spill it to a stack slot.
7066   // TODO: This isn't quite right. We need to handle these according to
7067   // the addressing mode that the constraint wants. Also, this may take
7068   // an additional register for the computation and we don't want that
7069   // either.
7070 
7071   // If the operand is a float, integer, or vector constant, spill to a
7072   // constant pool entry to get its address.
7073   const Value *OpVal = OpInfo.CallOperandVal;
7074   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7075       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7076     OpInfo.CallOperand = DAG.getConstantPool(
7077         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7078     return Chain;
7079   }
7080 
7081   // Otherwise, create a stack slot and emit a store to it before the asm.
7082   Type *Ty = OpVal->getType();
7083   auto &DL = DAG.getDataLayout();
7084   uint64_t TySize = DL.getTypeAllocSize(Ty);
7085   unsigned Align = DL.getPrefTypeAlignment(Ty);
7086   MachineFunction &MF = DAG.getMachineFunction();
7087   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7088   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7089   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7090                        MachinePointerInfo::getFixedStack(MF, SSFI));
7091   OpInfo.CallOperand = StackSlot;
7092 
7093   return Chain;
7094 }
7095 
7096 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7097 /// specified operand.  We prefer to assign virtual registers, to allow the
7098 /// register allocator to handle the assignment process.  However, if the asm
7099 /// uses features that we can't model on machineinstrs, we have SDISel do the
7100 /// allocation.  This produces generally horrible, but correct, code.
7101 ///
7102 ///   OpInfo describes the operand.
7103 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7104                                  const SDLoc &DL,
7105                                  SDISelAsmOperandInfo &OpInfo) {
7106   LLVMContext &Context = *DAG.getContext();
7107 
7108   MachineFunction &MF = DAG.getMachineFunction();
7109   SmallVector<unsigned, 4> Regs;
7110   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7111 
7112   // If this is a constraint for a single physreg, or a constraint for a
7113   // register class, find it.
7114   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7115       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
7116                                        OpInfo.ConstraintVT);
7117 
7118   unsigned NumRegs = 1;
7119   if (OpInfo.ConstraintVT != MVT::Other) {
7120     // If this is a FP input in an integer register (or visa versa) insert a bit
7121     // cast of the input value.  More generally, handle any case where the input
7122     // value disagrees with the register class we plan to stick this in.
7123     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
7124         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7125       // Try to convert to the first EVT that the reg class contains.  If the
7126       // types are identical size, use a bitcast to convert (e.g. two differing
7127       // vector types).
7128       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7129       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
7130         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7131                                          RegVT, OpInfo.CallOperand);
7132         OpInfo.ConstraintVT = RegVT;
7133       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7134         // If the input is a FP value and we want it in FP registers, do a
7135         // bitcast to the corresponding integer type.  This turns an f64 value
7136         // into i64, which can be passed with two i32 values on a 32-bit
7137         // machine.
7138         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7139         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7140                                          RegVT, OpInfo.CallOperand);
7141         OpInfo.ConstraintVT = RegVT;
7142       }
7143     }
7144 
7145     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7146   }
7147 
7148   MVT RegVT;
7149   EVT ValueVT = OpInfo.ConstraintVT;
7150 
7151   // If this is a constraint for a specific physical register, like {r17},
7152   // assign it now.
7153   if (unsigned AssignedReg = PhysReg.first) {
7154     const TargetRegisterClass *RC = PhysReg.second;
7155     if (OpInfo.ConstraintVT == MVT::Other)
7156       ValueVT = *TRI.legalclasstypes_begin(*RC);
7157 
7158     // Get the actual register value type.  This is important, because the user
7159     // may have asked for (e.g.) the AX register in i32 type.  We need to
7160     // remember that AX is actually i16 to get the right extension.
7161     RegVT = *TRI.legalclasstypes_begin(*RC);
7162 
7163     // This is a explicit reference to a physical register.
7164     Regs.push_back(AssignedReg);
7165 
7166     // If this is an expanded reference, add the rest of the regs to Regs.
7167     if (NumRegs != 1) {
7168       TargetRegisterClass::iterator I = RC->begin();
7169       for (; *I != AssignedReg; ++I)
7170         assert(I != RC->end() && "Didn't find reg!");
7171 
7172       // Already added the first reg.
7173       --NumRegs; ++I;
7174       for (; NumRegs; --NumRegs, ++I) {
7175         assert(I != RC->end() && "Ran out of registers to allocate!");
7176         Regs.push_back(*I);
7177       }
7178     }
7179 
7180     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7181     return;
7182   }
7183 
7184   // Otherwise, if this was a reference to an LLVM register class, create vregs
7185   // for this reference.
7186   if (const TargetRegisterClass *RC = PhysReg.second) {
7187     RegVT = *TRI.legalclasstypes_begin(*RC);
7188     if (OpInfo.ConstraintVT == MVT::Other)
7189       ValueVT = RegVT;
7190 
7191     // Create the appropriate number of virtual registers.
7192     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7193     for (; NumRegs; --NumRegs)
7194       Regs.push_back(RegInfo.createVirtualRegister(RC));
7195 
7196     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7197     return;
7198   }
7199 
7200   // Otherwise, we couldn't allocate enough registers for this.
7201 }
7202 
7203 static unsigned
7204 findMatchingInlineAsmOperand(unsigned OperandNo,
7205                              const std::vector<SDValue> &AsmNodeOperands) {
7206   // Scan until we find the definition we already emitted of this operand.
7207   unsigned CurOp = InlineAsm::Op_FirstOperand;
7208   for (; OperandNo; --OperandNo) {
7209     // Advance to the next operand.
7210     unsigned OpFlag =
7211         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7212     assert((InlineAsm::isRegDefKind(OpFlag) ||
7213             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7214             InlineAsm::isMemKind(OpFlag)) &&
7215            "Skipped past definitions?");
7216     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7217   }
7218   return CurOp;
7219 }
7220 
7221 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7222 /// \return true if it has succeeded, false otherwise
7223 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7224                               MVT RegVT, SelectionDAG &DAG) {
7225   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7226   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7227   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7228     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7229       Regs.push_back(RegInfo.createVirtualRegister(RC));
7230     else
7231       return false;
7232   }
7233   return true;
7234 }
7235 
7236 namespace {
7237 
7238 class ExtraFlags {
7239   unsigned Flags = 0;
7240 
7241 public:
7242   explicit ExtraFlags(ImmutableCallSite CS) {
7243     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7244     if (IA->hasSideEffects())
7245       Flags |= InlineAsm::Extra_HasSideEffects;
7246     if (IA->isAlignStack())
7247       Flags |= InlineAsm::Extra_IsAlignStack;
7248     if (CS.isConvergent())
7249       Flags |= InlineAsm::Extra_IsConvergent;
7250     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7251   }
7252 
7253   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7254     // Ideally, we would only check against memory constraints.  However, the
7255     // meaning of an Other constraint can be target-specific and we can't easily
7256     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7257     // for Other constraints as well.
7258     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7259         OpInfo.ConstraintType == TargetLowering::C_Other) {
7260       if (OpInfo.Type == InlineAsm::isInput)
7261         Flags |= InlineAsm::Extra_MayLoad;
7262       else if (OpInfo.Type == InlineAsm::isOutput)
7263         Flags |= InlineAsm::Extra_MayStore;
7264       else if (OpInfo.Type == InlineAsm::isClobber)
7265         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7266     }
7267   }
7268 
7269   unsigned get() const { return Flags; }
7270 };
7271 
7272 } // end anonymous namespace
7273 
7274 /// visitInlineAsm - Handle a call to an InlineAsm object.
7275 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7276   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7277 
7278   /// ConstraintOperands - Information about all of the constraints.
7279   SDISelAsmOperandInfoVector ConstraintOperands;
7280 
7281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7282   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7283       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7284 
7285   bool hasMemory = false;
7286 
7287   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7288   ExtraFlags ExtraInfo(CS);
7289 
7290   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7291   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7292   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7293     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7294     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7295 
7296     MVT OpVT = MVT::Other;
7297 
7298     // Compute the value type for each operand.
7299     if (OpInfo.Type == InlineAsm::isInput ||
7300         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7301       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7302 
7303       // Process the call argument. BasicBlocks are labels, currently appearing
7304       // only in asm's.
7305       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7306         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7307       } else {
7308         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7309       }
7310 
7311       OpVT =
7312           OpInfo
7313               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7314               .getSimpleVT();
7315     }
7316 
7317     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7318       // The return value of the call is this value.  As such, there is no
7319       // corresponding argument.
7320       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7321       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7322         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7323                                       STy->getElementType(ResNo));
7324       } else {
7325         assert(ResNo == 0 && "Asm only has one result!");
7326         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7327       }
7328       ++ResNo;
7329     }
7330 
7331     OpInfo.ConstraintVT = OpVT;
7332 
7333     if (!hasMemory)
7334       hasMemory = OpInfo.hasMemory(TLI);
7335 
7336     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7337     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7338     auto TargetConstraint = TargetConstraints[i];
7339 
7340     // Compute the constraint code and ConstraintType to use.
7341     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7342 
7343     ExtraInfo.update(TargetConstraint);
7344   }
7345 
7346   SDValue Chain, Flag;
7347 
7348   // We won't need to flush pending loads if this asm doesn't touch
7349   // memory and is nonvolatile.
7350   if (hasMemory || IA->hasSideEffects())
7351     Chain = getRoot();
7352   else
7353     Chain = DAG.getRoot();
7354 
7355   // Second pass over the constraints: compute which constraint option to use
7356   // and assign registers to constraints that want a specific physreg.
7357   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7358     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7359 
7360     // If this is an output operand with a matching input operand, look up the
7361     // matching input. If their types mismatch, e.g. one is an integer, the
7362     // other is floating point, or their sizes are different, flag it as an
7363     // error.
7364     if (OpInfo.hasMatchingInput()) {
7365       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7366       patchMatchingInput(OpInfo, Input, DAG);
7367     }
7368 
7369     // Compute the constraint code and ConstraintType to use.
7370     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7371 
7372     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7373         OpInfo.Type == InlineAsm::isClobber)
7374       continue;
7375 
7376     // If this is a memory input, and if the operand is not indirect, do what we
7377     // need to provide an address for the memory input.
7378     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7379         !OpInfo.isIndirect) {
7380       assert((OpInfo.isMultipleAlternative ||
7381               (OpInfo.Type == InlineAsm::isInput)) &&
7382              "Can only indirectify direct input operands!");
7383 
7384       // Memory operands really want the address of the value.
7385       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7386 
7387       // There is no longer a Value* corresponding to this operand.
7388       OpInfo.CallOperandVal = nullptr;
7389 
7390       // It is now an indirect operand.
7391       OpInfo.isIndirect = true;
7392     }
7393 
7394     // If this constraint is for a specific register, allocate it before
7395     // anything else.
7396     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7397       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7398   }
7399 
7400   // Third pass - Loop over all of the operands, assigning virtual or physregs
7401   // to register class operands.
7402   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7403     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7404 
7405     // C_Register operands have already been allocated, Other/Memory don't need
7406     // to be.
7407     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7408       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7409   }
7410 
7411   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7412   std::vector<SDValue> AsmNodeOperands;
7413   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7414   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7415       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7416 
7417   // If we have a !srcloc metadata node associated with it, we want to attach
7418   // this to the ultimately generated inline asm machineinstr.  To do this, we
7419   // pass in the third operand as this (potentially null) inline asm MDNode.
7420   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7421   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7422 
7423   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7424   // bits as operand 3.
7425   AsmNodeOperands.push_back(DAG.getTargetConstant(
7426       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7427 
7428   // Loop over all of the inputs, copying the operand values into the
7429   // appropriate registers and processing the output regs.
7430   RegsForValue RetValRegs;
7431 
7432   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7433   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7434 
7435   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7436     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7437 
7438     switch (OpInfo.Type) {
7439     case InlineAsm::isOutput:
7440       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7441           OpInfo.ConstraintType != TargetLowering::C_Register) {
7442         // Memory output, or 'other' output (e.g. 'X' constraint).
7443         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7444 
7445         unsigned ConstraintID =
7446             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7447         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7448                "Failed to convert memory constraint code to constraint id.");
7449 
7450         // Add information to the INLINEASM node to know about this output.
7451         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7452         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7453         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7454                                                         MVT::i32));
7455         AsmNodeOperands.push_back(OpInfo.CallOperand);
7456         break;
7457       }
7458 
7459       // Otherwise, this is a register or register class output.
7460 
7461       // Copy the output from the appropriate register.  Find a register that
7462       // we can use.
7463       if (OpInfo.AssignedRegs.Regs.empty()) {
7464         emitInlineAsmError(
7465             CS, "couldn't allocate output register for constraint '" +
7466                     Twine(OpInfo.ConstraintCode) + "'");
7467         return;
7468       }
7469 
7470       // If this is an indirect operand, store through the pointer after the
7471       // asm.
7472       if (OpInfo.isIndirect) {
7473         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7474                                                       OpInfo.CallOperandVal));
7475       } else {
7476         // This is the result value of the call.
7477         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7478         // Concatenate this output onto the outputs list.
7479         RetValRegs.append(OpInfo.AssignedRegs);
7480       }
7481 
7482       // Add information to the INLINEASM node to know that this register is
7483       // set.
7484       OpInfo.AssignedRegs
7485           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7486                                     ? InlineAsm::Kind_RegDefEarlyClobber
7487                                     : InlineAsm::Kind_RegDef,
7488                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7489       break;
7490 
7491     case InlineAsm::isInput: {
7492       SDValue InOperandVal = OpInfo.CallOperand;
7493 
7494       if (OpInfo.isMatchingInputConstraint()) {
7495         // If this is required to match an output register we have already set,
7496         // just use its register.
7497         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7498                                                   AsmNodeOperands);
7499         unsigned OpFlag =
7500           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7501         if (InlineAsm::isRegDefKind(OpFlag) ||
7502             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7503           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7504           if (OpInfo.isIndirect) {
7505             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7506             emitInlineAsmError(CS, "inline asm not supported yet:"
7507                                    " don't know how to handle tied "
7508                                    "indirect register inputs");
7509             return;
7510           }
7511 
7512           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7513           SmallVector<unsigned, 4> Regs;
7514 
7515           if (!createVirtualRegs(Regs,
7516                                  InlineAsm::getNumOperandRegisters(OpFlag),
7517                                  RegVT, DAG)) {
7518             emitInlineAsmError(CS, "inline asm error: This value type register "
7519                                    "class is not natively supported!");
7520             return;
7521           }
7522 
7523           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7524 
7525           SDLoc dl = getCurSDLoc();
7526           // Use the produced MatchedRegs object to
7527           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7528                                     CS.getInstruction());
7529           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7530                                            true, OpInfo.getMatchedOperand(), dl,
7531                                            DAG, AsmNodeOperands);
7532           break;
7533         }
7534 
7535         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7536         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7537                "Unexpected number of operands");
7538         // Add information to the INLINEASM node to know about this input.
7539         // See InlineAsm.h isUseOperandTiedToDef.
7540         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7541         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7542                                                     OpInfo.getMatchedOperand());
7543         AsmNodeOperands.push_back(DAG.getTargetConstant(
7544             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7545         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7546         break;
7547       }
7548 
7549       // Treat indirect 'X' constraint as memory.
7550       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7551           OpInfo.isIndirect)
7552         OpInfo.ConstraintType = TargetLowering::C_Memory;
7553 
7554       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7555         std::vector<SDValue> Ops;
7556         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7557                                           Ops, DAG);
7558         if (Ops.empty()) {
7559           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7560                                      Twine(OpInfo.ConstraintCode) + "'");
7561           return;
7562         }
7563 
7564         // Add information to the INLINEASM node to know about this input.
7565         unsigned ResOpType =
7566           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7567         AsmNodeOperands.push_back(DAG.getTargetConstant(
7568             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7569         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7570         break;
7571       }
7572 
7573       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7574         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7575         assert(InOperandVal.getValueType() ==
7576                    TLI.getPointerTy(DAG.getDataLayout()) &&
7577                "Memory operands expect pointer values");
7578 
7579         unsigned ConstraintID =
7580             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7581         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7582                "Failed to convert memory constraint code to constraint id.");
7583 
7584         // Add information to the INLINEASM node to know about this input.
7585         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7586         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7587         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7588                                                         getCurSDLoc(),
7589                                                         MVT::i32));
7590         AsmNodeOperands.push_back(InOperandVal);
7591         break;
7592       }
7593 
7594       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7595               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7596              "Unknown constraint type!");
7597 
7598       // TODO: Support this.
7599       if (OpInfo.isIndirect) {
7600         emitInlineAsmError(
7601             CS, "Don't know how to handle indirect register inputs yet "
7602                 "for constraint '" +
7603                     Twine(OpInfo.ConstraintCode) + "'");
7604         return;
7605       }
7606 
7607       // Copy the input into the appropriate registers.
7608       if (OpInfo.AssignedRegs.Regs.empty()) {
7609         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7610                                    Twine(OpInfo.ConstraintCode) + "'");
7611         return;
7612       }
7613 
7614       SDLoc dl = getCurSDLoc();
7615 
7616       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7617                                         Chain, &Flag, CS.getInstruction());
7618 
7619       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7620                                                dl, DAG, AsmNodeOperands);
7621       break;
7622     }
7623     case InlineAsm::isClobber:
7624       // Add the clobbered value to the operand list, so that the register
7625       // allocator is aware that the physreg got clobbered.
7626       if (!OpInfo.AssignedRegs.Regs.empty())
7627         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7628                                                  false, 0, getCurSDLoc(), DAG,
7629                                                  AsmNodeOperands);
7630       break;
7631     }
7632   }
7633 
7634   // Finish up input operands.  Set the input chain and add the flag last.
7635   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7636   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7637 
7638   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7639                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7640   Flag = Chain.getValue(1);
7641 
7642   // If this asm returns a register value, copy the result from that register
7643   // and set it as the value of the call.
7644   if (!RetValRegs.Regs.empty()) {
7645     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7646                                              Chain, &Flag, CS.getInstruction());
7647 
7648     // FIXME: Why don't we do this for inline asms with MRVs?
7649     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7650       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7651 
7652       // If any of the results of the inline asm is a vector, it may have the
7653       // wrong width/num elts.  This can happen for register classes that can
7654       // contain multiple different value types.  The preg or vreg allocated may
7655       // not have the same VT as was expected.  Convert it to the right type
7656       // with bit_convert.
7657       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7658         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7659                           ResultType, Val);
7660 
7661       } else if (ResultType != Val.getValueType() &&
7662                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7663         // If a result value was tied to an input value, the computed result may
7664         // have a wider width than the expected result.  Extract the relevant
7665         // portion.
7666         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7667       }
7668 
7669       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7670     }
7671 
7672     setValue(CS.getInstruction(), Val);
7673     // Don't need to use this as a chain in this case.
7674     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7675       return;
7676   }
7677 
7678   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7679 
7680   // Process indirect outputs, first output all of the flagged copies out of
7681   // physregs.
7682   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7683     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7684     const Value *Ptr = IndirectStoresToEmit[i].second;
7685     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7686                                              Chain, &Flag, IA);
7687     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7688   }
7689 
7690   // Emit the non-flagged stores from the physregs.
7691   SmallVector<SDValue, 8> OutChains;
7692   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7693     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7694                                getValue(StoresToEmit[i].second),
7695                                MachinePointerInfo(StoresToEmit[i].second));
7696     OutChains.push_back(Val);
7697   }
7698 
7699   if (!OutChains.empty())
7700     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7701 
7702   DAG.setRoot(Chain);
7703 }
7704 
7705 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7706                                              const Twine &Message) {
7707   LLVMContext &Ctx = *DAG.getContext();
7708   Ctx.emitError(CS.getInstruction(), Message);
7709 
7710   // Make sure we leave the DAG in a valid state
7711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7712   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7713   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7714 }
7715 
7716 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7717   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7718                           MVT::Other, getRoot(),
7719                           getValue(I.getArgOperand(0)),
7720                           DAG.getSrcValue(I.getArgOperand(0))));
7721 }
7722 
7723 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7724   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7725   const DataLayout &DL = DAG.getDataLayout();
7726   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7727                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7728                            DAG.getSrcValue(I.getOperand(0)),
7729                            DL.getABITypeAlignment(I.getType()));
7730   setValue(&I, V);
7731   DAG.setRoot(V.getValue(1));
7732 }
7733 
7734 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7735   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7736                           MVT::Other, getRoot(),
7737                           getValue(I.getArgOperand(0)),
7738                           DAG.getSrcValue(I.getArgOperand(0))));
7739 }
7740 
7741 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7742   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7743                           MVT::Other, getRoot(),
7744                           getValue(I.getArgOperand(0)),
7745                           getValue(I.getArgOperand(1)),
7746                           DAG.getSrcValue(I.getArgOperand(0)),
7747                           DAG.getSrcValue(I.getArgOperand(1))));
7748 }
7749 
7750 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7751                                                     const Instruction &I,
7752                                                     SDValue Op) {
7753   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7754   if (!Range)
7755     return Op;
7756 
7757   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7758   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7759     return Op;
7760 
7761   APInt Lo = CR.getUnsignedMin();
7762   if (!Lo.isMinValue())
7763     return Op;
7764 
7765   APInt Hi = CR.getUnsignedMax();
7766   unsigned Bits = Hi.getActiveBits();
7767 
7768   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7769 
7770   SDLoc SL = getCurSDLoc();
7771 
7772   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7773                              DAG.getValueType(SmallVT));
7774   unsigned NumVals = Op.getNode()->getNumValues();
7775   if (NumVals == 1)
7776     return ZExt;
7777 
7778   SmallVector<SDValue, 4> Ops;
7779 
7780   Ops.push_back(ZExt);
7781   for (unsigned I = 1; I != NumVals; ++I)
7782     Ops.push_back(Op.getValue(I));
7783 
7784   return DAG.getMergeValues(Ops, SL);
7785 }
7786 
7787 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7788 /// the call being lowered.
7789 ///
7790 /// This is a helper for lowering intrinsics that follow a target calling
7791 /// convention or require stack pointer adjustment. Only a subset of the
7792 /// intrinsic's operands need to participate in the calling convention.
7793 void SelectionDAGBuilder::populateCallLoweringInfo(
7794     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7795     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7796     bool IsPatchPoint) {
7797   TargetLowering::ArgListTy Args;
7798   Args.reserve(NumArgs);
7799 
7800   // Populate the argument list.
7801   // Attributes for args start at offset 1, after the return attribute.
7802   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7803        ArgI != ArgE; ++ArgI) {
7804     const Value *V = CS->getOperand(ArgI);
7805 
7806     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7807 
7808     TargetLowering::ArgListEntry Entry;
7809     Entry.Node = getValue(V);
7810     Entry.Ty = V->getType();
7811     Entry.setAttributes(&CS, ArgI);
7812     Args.push_back(Entry);
7813   }
7814 
7815   CLI.setDebugLoc(getCurSDLoc())
7816       .setChain(getRoot())
7817       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7818       .setDiscardResult(CS->use_empty())
7819       .setIsPatchPoint(IsPatchPoint);
7820 }
7821 
7822 /// Add a stack map intrinsic call's live variable operands to a stackmap
7823 /// or patchpoint target node's operand list.
7824 ///
7825 /// Constants are converted to TargetConstants purely as an optimization to
7826 /// avoid constant materialization and register allocation.
7827 ///
7828 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7829 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7830 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7831 /// address materialization and register allocation, but may also be required
7832 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7833 /// alloca in the entry block, then the runtime may assume that the alloca's
7834 /// StackMap location can be read immediately after compilation and that the
7835 /// location is valid at any point during execution (this is similar to the
7836 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7837 /// only available in a register, then the runtime would need to trap when
7838 /// execution reaches the StackMap in order to read the alloca's location.
7839 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7840                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7841                                 SelectionDAGBuilder &Builder) {
7842   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7843     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7844     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7845       Ops.push_back(
7846         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7847       Ops.push_back(
7848         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7849     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7850       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7851       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7852           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7853     } else
7854       Ops.push_back(OpVal);
7855   }
7856 }
7857 
7858 /// Lower llvm.experimental.stackmap directly to its target opcode.
7859 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7860   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7861   //                                  [live variables...])
7862 
7863   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7864 
7865   SDValue Chain, InFlag, Callee, NullPtr;
7866   SmallVector<SDValue, 32> Ops;
7867 
7868   SDLoc DL = getCurSDLoc();
7869   Callee = getValue(CI.getCalledValue());
7870   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7871 
7872   // The stackmap intrinsic only records the live variables (the arguemnts
7873   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7874   // intrinsic, this won't be lowered to a function call. This means we don't
7875   // have to worry about calling conventions and target specific lowering code.
7876   // Instead we perform the call lowering right here.
7877   //
7878   // chain, flag = CALLSEQ_START(chain, 0, 0)
7879   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7880   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7881   //
7882   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7883   InFlag = Chain.getValue(1);
7884 
7885   // Add the <id> and <numBytes> constants.
7886   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7887   Ops.push_back(DAG.getTargetConstant(
7888                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7889   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7890   Ops.push_back(DAG.getTargetConstant(
7891                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7892                   MVT::i32));
7893 
7894   // Push live variables for the stack map.
7895   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7896 
7897   // We are not pushing any register mask info here on the operands list,
7898   // because the stackmap doesn't clobber anything.
7899 
7900   // Push the chain and the glue flag.
7901   Ops.push_back(Chain);
7902   Ops.push_back(InFlag);
7903 
7904   // Create the STACKMAP node.
7905   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7906   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7907   Chain = SDValue(SM, 0);
7908   InFlag = Chain.getValue(1);
7909 
7910   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7911 
7912   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7913 
7914   // Set the root to the target-lowered call chain.
7915   DAG.setRoot(Chain);
7916 
7917   // Inform the Frame Information that we have a stackmap in this function.
7918   FuncInfo.MF->getFrameInfo().setHasStackMap();
7919 }
7920 
7921 /// Lower llvm.experimental.patchpoint directly to its target opcode.
7922 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7923                                           const BasicBlock *EHPadBB) {
7924   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7925   //                                                 i32 <numBytes>,
7926   //                                                 i8* <target>,
7927   //                                                 i32 <numArgs>,
7928   //                                                 [Args...],
7929   //                                                 [live variables...])
7930 
7931   CallingConv::ID CC = CS.getCallingConv();
7932   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7933   bool HasDef = !CS->getType()->isVoidTy();
7934   SDLoc dl = getCurSDLoc();
7935   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7936 
7937   // Handle immediate and symbolic callees.
7938   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7939     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7940                                    /*isTarget=*/true);
7941   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7942     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7943                                          SDLoc(SymbolicCallee),
7944                                          SymbolicCallee->getValueType(0));
7945 
7946   // Get the real number of arguments participating in the call <numArgs>
7947   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7948   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7949 
7950   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7951   // Intrinsics include all meta-operands up to but not including CC.
7952   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7953   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7954          "Not enough arguments provided to the patchpoint intrinsic");
7955 
7956   // For AnyRegCC the arguments are lowered later on manually.
7957   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7958   Type *ReturnTy =
7959     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7960 
7961   TargetLowering::CallLoweringInfo CLI(DAG);
7962   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7963                            true);
7964   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7965 
7966   SDNode *CallEnd = Result.second.getNode();
7967   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7968     CallEnd = CallEnd->getOperand(0).getNode();
7969 
7970   /// Get a call instruction from the call sequence chain.
7971   /// Tail calls are not allowed.
7972   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7973          "Expected a callseq node.");
7974   SDNode *Call = CallEnd->getOperand(0).getNode();
7975   bool HasGlue = Call->getGluedNode();
7976 
7977   // Replace the target specific call node with the patchable intrinsic.
7978   SmallVector<SDValue, 8> Ops;
7979 
7980   // Add the <id> and <numBytes> constants.
7981   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7982   Ops.push_back(DAG.getTargetConstant(
7983                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7984   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7985   Ops.push_back(DAG.getTargetConstant(
7986                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7987                   MVT::i32));
7988 
7989   // Add the callee.
7990   Ops.push_back(Callee);
7991 
7992   // Adjust <numArgs> to account for any arguments that have been passed on the
7993   // stack instead.
7994   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7995   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7996   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7997   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7998 
7999   // Add the calling convention
8000   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8001 
8002   // Add the arguments we omitted previously. The register allocator should
8003   // place these in any free register.
8004   if (IsAnyRegCC)
8005     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8006       Ops.push_back(getValue(CS.getArgument(i)));
8007 
8008   // Push the arguments from the call instruction up to the register mask.
8009   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8010   Ops.append(Call->op_begin() + 2, e);
8011 
8012   // Push live variables for the stack map.
8013   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8014 
8015   // Push the register mask info.
8016   if (HasGlue)
8017     Ops.push_back(*(Call->op_end()-2));
8018   else
8019     Ops.push_back(*(Call->op_end()-1));
8020 
8021   // Push the chain (this is originally the first operand of the call, but
8022   // becomes now the last or second to last operand).
8023   Ops.push_back(*(Call->op_begin()));
8024 
8025   // Push the glue flag (last operand).
8026   if (HasGlue)
8027     Ops.push_back(*(Call->op_end()-1));
8028 
8029   SDVTList NodeTys;
8030   if (IsAnyRegCC && HasDef) {
8031     // Create the return types based on the intrinsic definition
8032     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8033     SmallVector<EVT, 3> ValueVTs;
8034     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8035     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8036 
8037     // There is always a chain and a glue type at the end
8038     ValueVTs.push_back(MVT::Other);
8039     ValueVTs.push_back(MVT::Glue);
8040     NodeTys = DAG.getVTList(ValueVTs);
8041   } else
8042     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8043 
8044   // Replace the target specific call node with a PATCHPOINT node.
8045   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8046                                          dl, NodeTys, Ops);
8047 
8048   // Update the NodeMap.
8049   if (HasDef) {
8050     if (IsAnyRegCC)
8051       setValue(CS.getInstruction(), SDValue(MN, 0));
8052     else
8053       setValue(CS.getInstruction(), Result.first);
8054   }
8055 
8056   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8057   // call sequence. Furthermore the location of the chain and glue can change
8058   // when the AnyReg calling convention is used and the intrinsic returns a
8059   // value.
8060   if (IsAnyRegCC && HasDef) {
8061     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8062     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8063     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8064   } else
8065     DAG.ReplaceAllUsesWith(Call, MN);
8066   DAG.DeleteNode(Call);
8067 
8068   // Inform the Frame Information that we have a patchpoint in this function.
8069   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8070 }
8071 
8072 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8073                                             unsigned Intrinsic) {
8074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8075   SDValue Op1 = getValue(I.getArgOperand(0));
8076   SDValue Op2;
8077   if (I.getNumArgOperands() > 1)
8078     Op2 = getValue(I.getArgOperand(1));
8079   SDLoc dl = getCurSDLoc();
8080   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8081   SDValue Res;
8082   FastMathFlags FMF;
8083   if (isa<FPMathOperator>(I))
8084     FMF = I.getFastMathFlags();
8085   SDNodeFlags SDFlags;
8086   SDFlags.setNoNaNs(FMF.noNaNs());
8087 
8088   switch (Intrinsic) {
8089   case Intrinsic::experimental_vector_reduce_fadd:
8090     if (FMF.isFast())
8091       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8092     else
8093       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8094     break;
8095   case Intrinsic::experimental_vector_reduce_fmul:
8096     if (FMF.isFast())
8097       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8098     else
8099       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8100     break;
8101   case Intrinsic::experimental_vector_reduce_add:
8102     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8103     break;
8104   case Intrinsic::experimental_vector_reduce_mul:
8105     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8106     break;
8107   case Intrinsic::experimental_vector_reduce_and:
8108     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8109     break;
8110   case Intrinsic::experimental_vector_reduce_or:
8111     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8112     break;
8113   case Intrinsic::experimental_vector_reduce_xor:
8114     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8115     break;
8116   case Intrinsic::experimental_vector_reduce_smax:
8117     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8118     break;
8119   case Intrinsic::experimental_vector_reduce_smin:
8120     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8121     break;
8122   case Intrinsic::experimental_vector_reduce_umax:
8123     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8124     break;
8125   case Intrinsic::experimental_vector_reduce_umin:
8126     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8127     break;
8128   case Intrinsic::experimental_vector_reduce_fmax:
8129     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
8130     break;
8131   case Intrinsic::experimental_vector_reduce_fmin:
8132     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
8133     break;
8134   default:
8135     llvm_unreachable("Unhandled vector reduce intrinsic");
8136   }
8137   setValue(&I, Res);
8138 }
8139 
8140 /// Returns an AttributeList representing the attributes applied to the return
8141 /// value of the given call.
8142 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8143   SmallVector<Attribute::AttrKind, 2> Attrs;
8144   if (CLI.RetSExt)
8145     Attrs.push_back(Attribute::SExt);
8146   if (CLI.RetZExt)
8147     Attrs.push_back(Attribute::ZExt);
8148   if (CLI.IsInReg)
8149     Attrs.push_back(Attribute::InReg);
8150 
8151   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8152                             Attrs);
8153 }
8154 
8155 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8156 /// implementation, which just calls LowerCall.
8157 /// FIXME: When all targets are
8158 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8159 std::pair<SDValue, SDValue>
8160 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8161   // Handle the incoming return values from the call.
8162   CLI.Ins.clear();
8163   Type *OrigRetTy = CLI.RetTy;
8164   SmallVector<EVT, 4> RetTys;
8165   SmallVector<uint64_t, 4> Offsets;
8166   auto &DL = CLI.DAG.getDataLayout();
8167   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8168 
8169   if (CLI.IsPostTypeLegalization) {
8170     // If we are lowering a libcall after legalization, split the return type.
8171     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8172     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8173     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8174       EVT RetVT = OldRetTys[i];
8175       uint64_t Offset = OldOffsets[i];
8176       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8177       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8178       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8179       RetTys.append(NumRegs, RegisterVT);
8180       for (unsigned j = 0; j != NumRegs; ++j)
8181         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8182     }
8183   }
8184 
8185   SmallVector<ISD::OutputArg, 4> Outs;
8186   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8187 
8188   bool CanLowerReturn =
8189       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8190                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8191 
8192   SDValue DemoteStackSlot;
8193   int DemoteStackIdx = -100;
8194   if (!CanLowerReturn) {
8195     // FIXME: equivalent assert?
8196     // assert(!CS.hasInAllocaArgument() &&
8197     //        "sret demotion is incompatible with inalloca");
8198     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8199     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8200     MachineFunction &MF = CLI.DAG.getMachineFunction();
8201     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8202     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8203 
8204     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8205     ArgListEntry Entry;
8206     Entry.Node = DemoteStackSlot;
8207     Entry.Ty = StackSlotPtrType;
8208     Entry.IsSExt = false;
8209     Entry.IsZExt = false;
8210     Entry.IsInReg = false;
8211     Entry.IsSRet = true;
8212     Entry.IsNest = false;
8213     Entry.IsByVal = false;
8214     Entry.IsReturned = false;
8215     Entry.IsSwiftSelf = false;
8216     Entry.IsSwiftError = false;
8217     Entry.Alignment = Align;
8218     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8219     CLI.NumFixedArgs += 1;
8220     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8221 
8222     // sret demotion isn't compatible with tail-calls, since the sret argument
8223     // points into the callers stack frame.
8224     CLI.IsTailCall = false;
8225   } else {
8226     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8227       EVT VT = RetTys[I];
8228       MVT RegisterVT =
8229           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8230       unsigned NumRegs =
8231           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8232       for (unsigned i = 0; i != NumRegs; ++i) {
8233         ISD::InputArg MyFlags;
8234         MyFlags.VT = RegisterVT;
8235         MyFlags.ArgVT = VT;
8236         MyFlags.Used = CLI.IsReturnValueUsed;
8237         if (CLI.RetSExt)
8238           MyFlags.Flags.setSExt();
8239         if (CLI.RetZExt)
8240           MyFlags.Flags.setZExt();
8241         if (CLI.IsInReg)
8242           MyFlags.Flags.setInReg();
8243         CLI.Ins.push_back(MyFlags);
8244       }
8245     }
8246   }
8247 
8248   // We push in swifterror return as the last element of CLI.Ins.
8249   ArgListTy &Args = CLI.getArgs();
8250   if (supportSwiftError()) {
8251     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8252       if (Args[i].IsSwiftError) {
8253         ISD::InputArg MyFlags;
8254         MyFlags.VT = getPointerTy(DL);
8255         MyFlags.ArgVT = EVT(getPointerTy(DL));
8256         MyFlags.Flags.setSwiftError();
8257         CLI.Ins.push_back(MyFlags);
8258       }
8259     }
8260   }
8261 
8262   // Handle all of the outgoing arguments.
8263   CLI.Outs.clear();
8264   CLI.OutVals.clear();
8265   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8266     SmallVector<EVT, 4> ValueVTs;
8267     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8268     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8269     Type *FinalType = Args[i].Ty;
8270     if (Args[i].IsByVal)
8271       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8272     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8273         FinalType, CLI.CallConv, CLI.IsVarArg);
8274     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8275          ++Value) {
8276       EVT VT = ValueVTs[Value];
8277       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8278       SDValue Op = SDValue(Args[i].Node.getNode(),
8279                            Args[i].Node.getResNo() + Value);
8280       ISD::ArgFlagsTy Flags;
8281 
8282       // Certain targets (such as MIPS), may have a different ABI alignment
8283       // for a type depending on the context. Give the target a chance to
8284       // specify the alignment it wants.
8285       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8286 
8287       if (Args[i].IsZExt)
8288         Flags.setZExt();
8289       if (Args[i].IsSExt)
8290         Flags.setSExt();
8291       if (Args[i].IsInReg) {
8292         // If we are using vectorcall calling convention, a structure that is
8293         // passed InReg - is surely an HVA
8294         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8295             isa<StructType>(FinalType)) {
8296           // The first value of a structure is marked
8297           if (0 == Value)
8298             Flags.setHvaStart();
8299           Flags.setHva();
8300         }
8301         // Set InReg Flag
8302         Flags.setInReg();
8303       }
8304       if (Args[i].IsSRet)
8305         Flags.setSRet();
8306       if (Args[i].IsSwiftSelf)
8307         Flags.setSwiftSelf();
8308       if (Args[i].IsSwiftError)
8309         Flags.setSwiftError();
8310       if (Args[i].IsByVal)
8311         Flags.setByVal();
8312       if (Args[i].IsInAlloca) {
8313         Flags.setInAlloca();
8314         // Set the byval flag for CCAssignFn callbacks that don't know about
8315         // inalloca.  This way we can know how many bytes we should've allocated
8316         // and how many bytes a callee cleanup function will pop.  If we port
8317         // inalloca to more targets, we'll have to add custom inalloca handling
8318         // in the various CC lowering callbacks.
8319         Flags.setByVal();
8320       }
8321       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8322         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8323         Type *ElementTy = Ty->getElementType();
8324         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8325         // For ByVal, alignment should come from FE.  BE will guess if this
8326         // info is not there but there are cases it cannot get right.
8327         unsigned FrameAlign;
8328         if (Args[i].Alignment)
8329           FrameAlign = Args[i].Alignment;
8330         else
8331           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8332         Flags.setByValAlign(FrameAlign);
8333       }
8334       if (Args[i].IsNest)
8335         Flags.setNest();
8336       if (NeedsRegBlock)
8337         Flags.setInConsecutiveRegs();
8338       Flags.setOrigAlign(OriginalAlignment);
8339 
8340       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8341       unsigned NumParts =
8342           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8343       SmallVector<SDValue, 4> Parts(NumParts);
8344       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8345 
8346       if (Args[i].IsSExt)
8347         ExtendKind = ISD::SIGN_EXTEND;
8348       else if (Args[i].IsZExt)
8349         ExtendKind = ISD::ZERO_EXTEND;
8350 
8351       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8352       // for now.
8353       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8354           CanLowerReturn) {
8355         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8356                "unexpected use of 'returned'");
8357         // Before passing 'returned' to the target lowering code, ensure that
8358         // either the register MVT and the actual EVT are the same size or that
8359         // the return value and argument are extended in the same way; in these
8360         // cases it's safe to pass the argument register value unchanged as the
8361         // return register value (although it's at the target's option whether
8362         // to do so)
8363         // TODO: allow code generation to take advantage of partially preserved
8364         // registers rather than clobbering the entire register when the
8365         // parameter extension method is not compatible with the return
8366         // extension method
8367         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8368             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8369              CLI.RetZExt == Args[i].IsZExt))
8370           Flags.setReturned();
8371       }
8372 
8373       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8374                      CLI.CS.getInstruction(), ExtendKind, true);
8375 
8376       for (unsigned j = 0; j != NumParts; ++j) {
8377         // if it isn't first piece, alignment must be 1
8378         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8379                                i < CLI.NumFixedArgs,
8380                                i, j*Parts[j].getValueType().getStoreSize());
8381         if (NumParts > 1 && j == 0)
8382           MyFlags.Flags.setSplit();
8383         else if (j != 0) {
8384           MyFlags.Flags.setOrigAlign(1);
8385           if (j == NumParts - 1)
8386             MyFlags.Flags.setSplitEnd();
8387         }
8388 
8389         CLI.Outs.push_back(MyFlags);
8390         CLI.OutVals.push_back(Parts[j]);
8391       }
8392 
8393       if (NeedsRegBlock && Value == NumValues - 1)
8394         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8395     }
8396   }
8397 
8398   SmallVector<SDValue, 4> InVals;
8399   CLI.Chain = LowerCall(CLI, InVals);
8400 
8401   // Update CLI.InVals to use outside of this function.
8402   CLI.InVals = InVals;
8403 
8404   // Verify that the target's LowerCall behaved as expected.
8405   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8406          "LowerCall didn't return a valid chain!");
8407   assert((!CLI.IsTailCall || InVals.empty()) &&
8408          "LowerCall emitted a return value for a tail call!");
8409   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8410          "LowerCall didn't emit the correct number of values!");
8411 
8412   // For a tail call, the return value is merely live-out and there aren't
8413   // any nodes in the DAG representing it. Return a special value to
8414   // indicate that a tail call has been emitted and no more Instructions
8415   // should be processed in the current block.
8416   if (CLI.IsTailCall) {
8417     CLI.DAG.setRoot(CLI.Chain);
8418     return std::make_pair(SDValue(), SDValue());
8419   }
8420 
8421 #ifndef NDEBUG
8422   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8423     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8424     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8425            "LowerCall emitted a value with the wrong type!");
8426   }
8427 #endif
8428 
8429   SmallVector<SDValue, 4> ReturnValues;
8430   if (!CanLowerReturn) {
8431     // The instruction result is the result of loading from the
8432     // hidden sret parameter.
8433     SmallVector<EVT, 1> PVTs;
8434     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8435 
8436     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8437     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8438     EVT PtrVT = PVTs[0];
8439 
8440     unsigned NumValues = RetTys.size();
8441     ReturnValues.resize(NumValues);
8442     SmallVector<SDValue, 4> Chains(NumValues);
8443 
8444     // An aggregate return value cannot wrap around the address space, so
8445     // offsets to its parts don't wrap either.
8446     SDNodeFlags Flags;
8447     Flags.setNoUnsignedWrap(true);
8448 
8449     for (unsigned i = 0; i < NumValues; ++i) {
8450       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8451                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8452                                                         PtrVT), Flags);
8453       SDValue L = CLI.DAG.getLoad(
8454           RetTys[i], CLI.DL, CLI.Chain, Add,
8455           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8456                                             DemoteStackIdx, Offsets[i]),
8457           /* Alignment = */ 1);
8458       ReturnValues[i] = L;
8459       Chains[i] = L.getValue(1);
8460     }
8461 
8462     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8463   } else {
8464     // Collect the legal value parts into potentially illegal values
8465     // that correspond to the original function's return values.
8466     Optional<ISD::NodeType> AssertOp;
8467     if (CLI.RetSExt)
8468       AssertOp = ISD::AssertSext;
8469     else if (CLI.RetZExt)
8470       AssertOp = ISD::AssertZext;
8471     unsigned CurReg = 0;
8472     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8473       EVT VT = RetTys[I];
8474       MVT RegisterVT =
8475           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8476       unsigned NumRegs =
8477           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8478 
8479       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8480                                               NumRegs, RegisterVT, VT, nullptr,
8481                                               AssertOp, true));
8482       CurReg += NumRegs;
8483     }
8484 
8485     // For a function returning void, there is no return value. We can't create
8486     // such a node, so we just return a null return value in that case. In
8487     // that case, nothing will actually look at the value.
8488     if (ReturnValues.empty())
8489       return std::make_pair(SDValue(), CLI.Chain);
8490   }
8491 
8492   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8493                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8494   return std::make_pair(Res, CLI.Chain);
8495 }
8496 
8497 void TargetLowering::LowerOperationWrapper(SDNode *N,
8498                                            SmallVectorImpl<SDValue> &Results,
8499                                            SelectionDAG &DAG) const {
8500   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8501     Results.push_back(Res);
8502 }
8503 
8504 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8505   llvm_unreachable("LowerOperation not implemented for this target!");
8506 }
8507 
8508 void
8509 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8510   SDValue Op = getNonRegisterValue(V);
8511   assert((Op.getOpcode() != ISD::CopyFromReg ||
8512           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8513          "Copy from a reg to the same reg!");
8514   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8515 
8516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8517   // If this is an InlineAsm we have to match the registers required, not the
8518   // notional registers required by the type.
8519 
8520   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8521                    V->getType(), isABIRegCopy(V));
8522   SDValue Chain = DAG.getEntryNode();
8523 
8524   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8525                               FuncInfo.PreferredExtendType.end())
8526                                  ? ISD::ANY_EXTEND
8527                                  : FuncInfo.PreferredExtendType[V];
8528   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8529   PendingExports.push_back(Chain);
8530 }
8531 
8532 #include "llvm/CodeGen/SelectionDAGISel.h"
8533 
8534 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8535 /// entry block, return true.  This includes arguments used by switches, since
8536 /// the switch may expand into multiple basic blocks.
8537 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8538   // With FastISel active, we may be splitting blocks, so force creation
8539   // of virtual registers for all non-dead arguments.
8540   if (FastISel)
8541     return A->use_empty();
8542 
8543   const BasicBlock &Entry = A->getParent()->front();
8544   for (const User *U : A->users())
8545     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8546       return false;  // Use not in entry block.
8547 
8548   return true;
8549 }
8550 
8551 using ArgCopyElisionMapTy =
8552     DenseMap<const Argument *,
8553              std::pair<const AllocaInst *, const StoreInst *>>;
8554 
8555 /// Scan the entry block of the function in FuncInfo for arguments that look
8556 /// like copies into a local alloca. Record any copied arguments in
8557 /// ArgCopyElisionCandidates.
8558 static void
8559 findArgumentCopyElisionCandidates(const DataLayout &DL,
8560                                   FunctionLoweringInfo *FuncInfo,
8561                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8562   // Record the state of every static alloca used in the entry block. Argument
8563   // allocas are all used in the entry block, so we need approximately as many
8564   // entries as we have arguments.
8565   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8566   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8567   unsigned NumArgs = FuncInfo->Fn->arg_size();
8568   StaticAllocas.reserve(NumArgs * 2);
8569 
8570   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8571     if (!V)
8572       return nullptr;
8573     V = V->stripPointerCasts();
8574     const auto *AI = dyn_cast<AllocaInst>(V);
8575     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8576       return nullptr;
8577     auto Iter = StaticAllocas.insert({AI, Unknown});
8578     return &Iter.first->second;
8579   };
8580 
8581   // Look for stores of arguments to static allocas. Look through bitcasts and
8582   // GEPs to handle type coercions, as long as the alloca is fully initialized
8583   // by the store. Any non-store use of an alloca escapes it and any subsequent
8584   // unanalyzed store might write it.
8585   // FIXME: Handle structs initialized with multiple stores.
8586   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8587     // Look for stores, and handle non-store uses conservatively.
8588     const auto *SI = dyn_cast<StoreInst>(&I);
8589     if (!SI) {
8590       // We will look through cast uses, so ignore them completely.
8591       if (I.isCast())
8592         continue;
8593       // Ignore debug info intrinsics, they don't escape or store to allocas.
8594       if (isa<DbgInfoIntrinsic>(I))
8595         continue;
8596       // This is an unknown instruction. Assume it escapes or writes to all
8597       // static alloca operands.
8598       for (const Use &U : I.operands()) {
8599         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8600           *Info = StaticAllocaInfo::Clobbered;
8601       }
8602       continue;
8603     }
8604 
8605     // If the stored value is a static alloca, mark it as escaped.
8606     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8607       *Info = StaticAllocaInfo::Clobbered;
8608 
8609     // Check if the destination is a static alloca.
8610     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8611     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8612     if (!Info)
8613       continue;
8614     const AllocaInst *AI = cast<AllocaInst>(Dst);
8615 
8616     // Skip allocas that have been initialized or clobbered.
8617     if (*Info != StaticAllocaInfo::Unknown)
8618       continue;
8619 
8620     // Check if the stored value is an argument, and that this store fully
8621     // initializes the alloca. Don't elide copies from the same argument twice.
8622     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8623     const auto *Arg = dyn_cast<Argument>(Val);
8624     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8625         Arg->getType()->isEmptyTy() ||
8626         DL.getTypeStoreSize(Arg->getType()) !=
8627             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8628         ArgCopyElisionCandidates.count(Arg)) {
8629       *Info = StaticAllocaInfo::Clobbered;
8630       continue;
8631     }
8632 
8633     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8634                       << '\n');
8635 
8636     // Mark this alloca and store for argument copy elision.
8637     *Info = StaticAllocaInfo::Elidable;
8638     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8639 
8640     // Stop scanning if we've seen all arguments. This will happen early in -O0
8641     // builds, which is useful, because -O0 builds have large entry blocks and
8642     // many allocas.
8643     if (ArgCopyElisionCandidates.size() == NumArgs)
8644       break;
8645   }
8646 }
8647 
8648 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8649 /// ArgVal is a load from a suitable fixed stack object.
8650 static void tryToElideArgumentCopy(
8651     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8652     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8653     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8654     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8655     SDValue ArgVal, bool &ArgHasUses) {
8656   // Check if this is a load from a fixed stack object.
8657   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8658   if (!LNode)
8659     return;
8660   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8661   if (!FINode)
8662     return;
8663 
8664   // Check that the fixed stack object is the right size and alignment.
8665   // Look at the alignment that the user wrote on the alloca instead of looking
8666   // at the stack object.
8667   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8668   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8669   const AllocaInst *AI = ArgCopyIter->second.first;
8670   int FixedIndex = FINode->getIndex();
8671   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8672   int OldIndex = AllocaIndex;
8673   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8674   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8675     LLVM_DEBUG(
8676         dbgs() << "  argument copy elision failed due to bad fixed stack "
8677                   "object size\n");
8678     return;
8679   }
8680   unsigned RequiredAlignment = AI->getAlignment();
8681   if (!RequiredAlignment) {
8682     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8683         AI->getAllocatedType());
8684   }
8685   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8686     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8687                          "greater than stack argument alignment ("
8688                       << RequiredAlignment << " vs "
8689                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8690     return;
8691   }
8692 
8693   // Perform the elision. Delete the old stack object and replace its only use
8694   // in the variable info map. Mark the stack object as mutable.
8695   LLVM_DEBUG({
8696     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8697            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8698            << '\n';
8699   });
8700   MFI.RemoveStackObject(OldIndex);
8701   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8702   AllocaIndex = FixedIndex;
8703   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8704   Chains.push_back(ArgVal.getValue(1));
8705 
8706   // Avoid emitting code for the store implementing the copy.
8707   const StoreInst *SI = ArgCopyIter->second.second;
8708   ElidedArgCopyInstrs.insert(SI);
8709 
8710   // Check for uses of the argument again so that we can avoid exporting ArgVal
8711   // if it is't used by anything other than the store.
8712   for (const Value *U : Arg.users()) {
8713     if (U != SI) {
8714       ArgHasUses = true;
8715       break;
8716     }
8717   }
8718 }
8719 
8720 void SelectionDAGISel::LowerArguments(const Function &F) {
8721   SelectionDAG &DAG = SDB->DAG;
8722   SDLoc dl = SDB->getCurSDLoc();
8723   const DataLayout &DL = DAG.getDataLayout();
8724   SmallVector<ISD::InputArg, 16> Ins;
8725 
8726   if (!FuncInfo->CanLowerReturn) {
8727     // Put in an sret pointer parameter before all the other parameters.
8728     SmallVector<EVT, 1> ValueVTs;
8729     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8730                     F.getReturnType()->getPointerTo(
8731                         DAG.getDataLayout().getAllocaAddrSpace()),
8732                     ValueVTs);
8733 
8734     // NOTE: Assuming that a pointer will never break down to more than one VT
8735     // or one register.
8736     ISD::ArgFlagsTy Flags;
8737     Flags.setSRet();
8738     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8739     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8740                          ISD::InputArg::NoArgIndex, 0);
8741     Ins.push_back(RetArg);
8742   }
8743 
8744   // Look for stores of arguments to static allocas. Mark such arguments with a
8745   // flag to ask the target to give us the memory location of that argument if
8746   // available.
8747   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8748   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8749 
8750   // Set up the incoming argument description vector.
8751   for (const Argument &Arg : F.args()) {
8752     unsigned ArgNo = Arg.getArgNo();
8753     SmallVector<EVT, 4> ValueVTs;
8754     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8755     bool isArgValueUsed = !Arg.use_empty();
8756     unsigned PartBase = 0;
8757     Type *FinalType = Arg.getType();
8758     if (Arg.hasAttribute(Attribute::ByVal))
8759       FinalType = cast<PointerType>(FinalType)->getElementType();
8760     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8761         FinalType, F.getCallingConv(), F.isVarArg());
8762     for (unsigned Value = 0, NumValues = ValueVTs.size();
8763          Value != NumValues; ++Value) {
8764       EVT VT = ValueVTs[Value];
8765       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8766       ISD::ArgFlagsTy Flags;
8767 
8768       // Certain targets (such as MIPS), may have a different ABI alignment
8769       // for a type depending on the context. Give the target a chance to
8770       // specify the alignment it wants.
8771       unsigned OriginalAlignment =
8772           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8773 
8774       if (Arg.hasAttribute(Attribute::ZExt))
8775         Flags.setZExt();
8776       if (Arg.hasAttribute(Attribute::SExt))
8777         Flags.setSExt();
8778       if (Arg.hasAttribute(Attribute::InReg)) {
8779         // If we are using vectorcall calling convention, a structure that is
8780         // passed InReg - is surely an HVA
8781         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8782             isa<StructType>(Arg.getType())) {
8783           // The first value of a structure is marked
8784           if (0 == Value)
8785             Flags.setHvaStart();
8786           Flags.setHva();
8787         }
8788         // Set InReg Flag
8789         Flags.setInReg();
8790       }
8791       if (Arg.hasAttribute(Attribute::StructRet))
8792         Flags.setSRet();
8793       if (Arg.hasAttribute(Attribute::SwiftSelf))
8794         Flags.setSwiftSelf();
8795       if (Arg.hasAttribute(Attribute::SwiftError))
8796         Flags.setSwiftError();
8797       if (Arg.hasAttribute(Attribute::ByVal))
8798         Flags.setByVal();
8799       if (Arg.hasAttribute(Attribute::InAlloca)) {
8800         Flags.setInAlloca();
8801         // Set the byval flag for CCAssignFn callbacks that don't know about
8802         // inalloca.  This way we can know how many bytes we should've allocated
8803         // and how many bytes a callee cleanup function will pop.  If we port
8804         // inalloca to more targets, we'll have to add custom inalloca handling
8805         // in the various CC lowering callbacks.
8806         Flags.setByVal();
8807       }
8808       if (F.getCallingConv() == CallingConv::X86_INTR) {
8809         // IA Interrupt passes frame (1st parameter) by value in the stack.
8810         if (ArgNo == 0)
8811           Flags.setByVal();
8812       }
8813       if (Flags.isByVal() || Flags.isInAlloca()) {
8814         PointerType *Ty = cast<PointerType>(Arg.getType());
8815         Type *ElementTy = Ty->getElementType();
8816         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8817         // For ByVal, alignment should be passed from FE.  BE will guess if
8818         // this info is not there but there are cases it cannot get right.
8819         unsigned FrameAlign;
8820         if (Arg.getParamAlignment())
8821           FrameAlign = Arg.getParamAlignment();
8822         else
8823           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8824         Flags.setByValAlign(FrameAlign);
8825       }
8826       if (Arg.hasAttribute(Attribute::Nest))
8827         Flags.setNest();
8828       if (NeedsRegBlock)
8829         Flags.setInConsecutiveRegs();
8830       Flags.setOrigAlign(OriginalAlignment);
8831       if (ArgCopyElisionCandidates.count(&Arg))
8832         Flags.setCopyElisionCandidate();
8833 
8834       MVT RegisterVT =
8835           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8836       unsigned NumRegs =
8837           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8838       for (unsigned i = 0; i != NumRegs; ++i) {
8839         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8840                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8841         if (NumRegs > 1 && i == 0)
8842           MyFlags.Flags.setSplit();
8843         // if it isn't first piece, alignment must be 1
8844         else if (i > 0) {
8845           MyFlags.Flags.setOrigAlign(1);
8846           if (i == NumRegs - 1)
8847             MyFlags.Flags.setSplitEnd();
8848         }
8849         Ins.push_back(MyFlags);
8850       }
8851       if (NeedsRegBlock && Value == NumValues - 1)
8852         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8853       PartBase += VT.getStoreSize();
8854     }
8855   }
8856 
8857   // Call the target to set up the argument values.
8858   SmallVector<SDValue, 8> InVals;
8859   SDValue NewRoot = TLI->LowerFormalArguments(
8860       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8861 
8862   // Verify that the target's LowerFormalArguments behaved as expected.
8863   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8864          "LowerFormalArguments didn't return a valid chain!");
8865   assert(InVals.size() == Ins.size() &&
8866          "LowerFormalArguments didn't emit the correct number of values!");
8867   LLVM_DEBUG({
8868     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8869       assert(InVals[i].getNode() &&
8870              "LowerFormalArguments emitted a null value!");
8871       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8872              "LowerFormalArguments emitted a value with the wrong type!");
8873     }
8874   });
8875 
8876   // Update the DAG with the new chain value resulting from argument lowering.
8877   DAG.setRoot(NewRoot);
8878 
8879   // Set up the argument values.
8880   unsigned i = 0;
8881   if (!FuncInfo->CanLowerReturn) {
8882     // Create a virtual register for the sret pointer, and put in a copy
8883     // from the sret argument into it.
8884     SmallVector<EVT, 1> ValueVTs;
8885     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8886                     F.getReturnType()->getPointerTo(
8887                         DAG.getDataLayout().getAllocaAddrSpace()),
8888                     ValueVTs);
8889     MVT VT = ValueVTs[0].getSimpleVT();
8890     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8891     Optional<ISD::NodeType> AssertOp = None;
8892     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8893                                         RegVT, VT, nullptr, AssertOp);
8894 
8895     MachineFunction& MF = SDB->DAG.getMachineFunction();
8896     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8897     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8898     FuncInfo->DemoteRegister = SRetReg;
8899     NewRoot =
8900         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8901     DAG.setRoot(NewRoot);
8902 
8903     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8904     ++i;
8905   }
8906 
8907   SmallVector<SDValue, 4> Chains;
8908   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8909   for (const Argument &Arg : F.args()) {
8910     SmallVector<SDValue, 4> ArgValues;
8911     SmallVector<EVT, 4> ValueVTs;
8912     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8913     unsigned NumValues = ValueVTs.size();
8914     if (NumValues == 0)
8915       continue;
8916 
8917     bool ArgHasUses = !Arg.use_empty();
8918 
8919     // Elide the copying store if the target loaded this argument from a
8920     // suitable fixed stack object.
8921     if (Ins[i].Flags.isCopyElisionCandidate()) {
8922       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8923                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8924                              InVals[i], ArgHasUses);
8925     }
8926 
8927     // If this argument is unused then remember its value. It is used to generate
8928     // debugging information.
8929     bool isSwiftErrorArg =
8930         TLI->supportSwiftError() &&
8931         Arg.hasAttribute(Attribute::SwiftError);
8932     if (!ArgHasUses && !isSwiftErrorArg) {
8933       SDB->setUnusedArgValue(&Arg, InVals[i]);
8934 
8935       // Also remember any frame index for use in FastISel.
8936       if (FrameIndexSDNode *FI =
8937           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8938         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8939     }
8940 
8941     for (unsigned Val = 0; Val != NumValues; ++Val) {
8942       EVT VT = ValueVTs[Val];
8943       MVT PartVT =
8944           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8945       unsigned NumParts =
8946           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8947 
8948       // Even an apparant 'unused' swifterror argument needs to be returned. So
8949       // we do generate a copy for it that can be used on return from the
8950       // function.
8951       if (ArgHasUses || isSwiftErrorArg) {
8952         Optional<ISD::NodeType> AssertOp;
8953         if (Arg.hasAttribute(Attribute::SExt))
8954           AssertOp = ISD::AssertSext;
8955         else if (Arg.hasAttribute(Attribute::ZExt))
8956           AssertOp = ISD::AssertZext;
8957 
8958         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8959                                              PartVT, VT, nullptr, AssertOp,
8960                                              true));
8961       }
8962 
8963       i += NumParts;
8964     }
8965 
8966     // We don't need to do anything else for unused arguments.
8967     if (ArgValues.empty())
8968       continue;
8969 
8970     // Note down frame index.
8971     if (FrameIndexSDNode *FI =
8972         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8973       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8974 
8975     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8976                                      SDB->getCurSDLoc());
8977 
8978     SDB->setValue(&Arg, Res);
8979     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8980       // We want to associate the argument with the frame index, among
8981       // involved operands, that correspond to the lowest address. The
8982       // getCopyFromParts function, called earlier, is swapping the order of
8983       // the operands to BUILD_PAIR depending on endianness. The result of
8984       // that swapping is that the least significant bits of the argument will
8985       // be in the first operand of the BUILD_PAIR node, and the most
8986       // significant bits will be in the second operand.
8987       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8988       if (LoadSDNode *LNode =
8989           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
8990         if (FrameIndexSDNode *FI =
8991             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8992           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8993     }
8994 
8995     // Update the SwiftErrorVRegDefMap.
8996     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8997       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8998       if (TargetRegisterInfo::isVirtualRegister(Reg))
8999         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9000                                            FuncInfo->SwiftErrorArg, Reg);
9001     }
9002 
9003     // If this argument is live outside of the entry block, insert a copy from
9004     // wherever we got it to the vreg that other BB's will reference it as.
9005     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9006       // If we can, though, try to skip creating an unnecessary vreg.
9007       // FIXME: This isn't very clean... it would be nice to make this more
9008       // general.  It's also subtly incompatible with the hacks FastISel
9009       // uses with vregs.
9010       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9011       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9012         FuncInfo->ValueMap[&Arg] = Reg;
9013         continue;
9014       }
9015     }
9016     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9017       FuncInfo->InitializeRegForValue(&Arg);
9018       SDB->CopyToExportRegsIfNeeded(&Arg);
9019     }
9020   }
9021 
9022   if (!Chains.empty()) {
9023     Chains.push_back(NewRoot);
9024     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9025   }
9026 
9027   DAG.setRoot(NewRoot);
9028 
9029   assert(i == InVals.size() && "Argument register count mismatch!");
9030 
9031   // If any argument copy elisions occurred and we have debug info, update the
9032   // stale frame indices used in the dbg.declare variable info table.
9033   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9034   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9035     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9036       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9037       if (I != ArgCopyElisionFrameIndexMap.end())
9038         VI.Slot = I->second;
9039     }
9040   }
9041 
9042   // Finally, if the target has anything special to do, allow it to do so.
9043   EmitFunctionEntryCode();
9044 }
9045 
9046 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9047 /// ensure constants are generated when needed.  Remember the virtual registers
9048 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9049 /// directly add them, because expansion might result in multiple MBB's for one
9050 /// BB.  As such, the start of the BB might correspond to a different MBB than
9051 /// the end.
9052 void
9053 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9054   const TerminatorInst *TI = LLVMBB->getTerminator();
9055 
9056   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9057 
9058   // Check PHI nodes in successors that expect a value to be available from this
9059   // block.
9060   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9061     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9062     if (!isa<PHINode>(SuccBB->begin())) continue;
9063     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9064 
9065     // If this terminator has multiple identical successors (common for
9066     // switches), only handle each succ once.
9067     if (!SuccsHandled.insert(SuccMBB).second)
9068       continue;
9069 
9070     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9071 
9072     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9073     // nodes and Machine PHI nodes, but the incoming operands have not been
9074     // emitted yet.
9075     for (const PHINode &PN : SuccBB->phis()) {
9076       // Ignore dead phi's.
9077       if (PN.use_empty())
9078         continue;
9079 
9080       // Skip empty types
9081       if (PN.getType()->isEmptyTy())
9082         continue;
9083 
9084       unsigned Reg;
9085       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9086 
9087       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9088         unsigned &RegOut = ConstantsOut[C];
9089         if (RegOut == 0) {
9090           RegOut = FuncInfo.CreateRegs(C->getType());
9091           CopyValueToVirtualRegister(C, RegOut);
9092         }
9093         Reg = RegOut;
9094       } else {
9095         DenseMap<const Value *, unsigned>::iterator I =
9096           FuncInfo.ValueMap.find(PHIOp);
9097         if (I != FuncInfo.ValueMap.end())
9098           Reg = I->second;
9099         else {
9100           assert(isa<AllocaInst>(PHIOp) &&
9101                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9102                  "Didn't codegen value into a register!??");
9103           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9104           CopyValueToVirtualRegister(PHIOp, Reg);
9105         }
9106       }
9107 
9108       // Remember that this register needs to added to the machine PHI node as
9109       // the input for this MBB.
9110       SmallVector<EVT, 4> ValueVTs;
9111       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9112       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9113       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9114         EVT VT = ValueVTs[vti];
9115         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9116         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9117           FuncInfo.PHINodesToUpdate.push_back(
9118               std::make_pair(&*MBBI++, Reg + i));
9119         Reg += NumRegisters;
9120       }
9121     }
9122   }
9123 
9124   ConstantsOut.clear();
9125 }
9126 
9127 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9128 /// is 0.
9129 MachineBasicBlock *
9130 SelectionDAGBuilder::StackProtectorDescriptor::
9131 AddSuccessorMBB(const BasicBlock *BB,
9132                 MachineBasicBlock *ParentMBB,
9133                 bool IsLikely,
9134                 MachineBasicBlock *SuccMBB) {
9135   // If SuccBB has not been created yet, create it.
9136   if (!SuccMBB) {
9137     MachineFunction *MF = ParentMBB->getParent();
9138     MachineFunction::iterator BBI(ParentMBB);
9139     SuccMBB = MF->CreateMachineBasicBlock(BB);
9140     MF->insert(++BBI, SuccMBB);
9141   }
9142   // Add it as a successor of ParentMBB.
9143   ParentMBB->addSuccessor(
9144       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9145   return SuccMBB;
9146 }
9147 
9148 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9149   MachineFunction::iterator I(MBB);
9150   if (++I == FuncInfo.MF->end())
9151     return nullptr;
9152   return &*I;
9153 }
9154 
9155 /// During lowering new call nodes can be created (such as memset, etc.).
9156 /// Those will become new roots of the current DAG, but complications arise
9157 /// when they are tail calls. In such cases, the call lowering will update
9158 /// the root, but the builder still needs to know that a tail call has been
9159 /// lowered in order to avoid generating an additional return.
9160 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9161   // If the node is null, we do have a tail call.
9162   if (MaybeTC.getNode() != nullptr)
9163     DAG.setRoot(MaybeTC);
9164   else
9165     HasTailCall = true;
9166 }
9167 
9168 uint64_t
9169 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9170                                        unsigned First, unsigned Last) const {
9171   assert(Last >= First);
9172   const APInt &LowCase = Clusters[First].Low->getValue();
9173   const APInt &HighCase = Clusters[Last].High->getValue();
9174   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9175 
9176   // FIXME: A range of consecutive cases has 100% density, but only requires one
9177   // comparison to lower. We should discriminate against such consecutive ranges
9178   // in jump tables.
9179 
9180   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9181 }
9182 
9183 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9184     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9185     unsigned Last) const {
9186   assert(Last >= First);
9187   assert(TotalCases[Last] >= TotalCases[First]);
9188   uint64_t NumCases =
9189       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9190   return NumCases;
9191 }
9192 
9193 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9194                                          unsigned First, unsigned Last,
9195                                          const SwitchInst *SI,
9196                                          MachineBasicBlock *DefaultMBB,
9197                                          CaseCluster &JTCluster) {
9198   assert(First <= Last);
9199 
9200   auto Prob = BranchProbability::getZero();
9201   unsigned NumCmps = 0;
9202   std::vector<MachineBasicBlock*> Table;
9203   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9204 
9205   // Initialize probabilities in JTProbs.
9206   for (unsigned I = First; I <= Last; ++I)
9207     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9208 
9209   for (unsigned I = First; I <= Last; ++I) {
9210     assert(Clusters[I].Kind == CC_Range);
9211     Prob += Clusters[I].Prob;
9212     const APInt &Low = Clusters[I].Low->getValue();
9213     const APInt &High = Clusters[I].High->getValue();
9214     NumCmps += (Low == High) ? 1 : 2;
9215     if (I != First) {
9216       // Fill the gap between this and the previous cluster.
9217       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9218       assert(PreviousHigh.slt(Low));
9219       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9220       for (uint64_t J = 0; J < Gap; J++)
9221         Table.push_back(DefaultMBB);
9222     }
9223     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9224     for (uint64_t J = 0; J < ClusterSize; ++J)
9225       Table.push_back(Clusters[I].MBB);
9226     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9227   }
9228 
9229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9230   unsigned NumDests = JTProbs.size();
9231   if (TLI.isSuitableForBitTests(
9232           NumDests, NumCmps, Clusters[First].Low->getValue(),
9233           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9234     // Clusters[First..Last] should be lowered as bit tests instead.
9235     return false;
9236   }
9237 
9238   // Create the MBB that will load from and jump through the table.
9239   // Note: We create it here, but it's not inserted into the function yet.
9240   MachineFunction *CurMF = FuncInfo.MF;
9241   MachineBasicBlock *JumpTableMBB =
9242       CurMF->CreateMachineBasicBlock(SI->getParent());
9243 
9244   // Add successors. Note: use table order for determinism.
9245   SmallPtrSet<MachineBasicBlock *, 8> Done;
9246   for (MachineBasicBlock *Succ : Table) {
9247     if (Done.count(Succ))
9248       continue;
9249     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9250     Done.insert(Succ);
9251   }
9252   JumpTableMBB->normalizeSuccProbs();
9253 
9254   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9255                      ->createJumpTableIndex(Table);
9256 
9257   // Set up the jump table info.
9258   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9259   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9260                       Clusters[Last].High->getValue(), SI->getCondition(),
9261                       nullptr, false);
9262   JTCases.emplace_back(std::move(JTH), std::move(JT));
9263 
9264   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9265                                      JTCases.size() - 1, Prob);
9266   return true;
9267 }
9268 
9269 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9270                                          const SwitchInst *SI,
9271                                          MachineBasicBlock *DefaultMBB) {
9272 #ifndef NDEBUG
9273   // Clusters must be non-empty, sorted, and only contain Range clusters.
9274   assert(!Clusters.empty());
9275   for (CaseCluster &C : Clusters)
9276     assert(C.Kind == CC_Range);
9277   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9278     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9279 #endif
9280 
9281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9282   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9283     return;
9284 
9285   const int64_t N = Clusters.size();
9286   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9287   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9288 
9289   if (N < 2 || N < MinJumpTableEntries)
9290     return;
9291 
9292   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9293   SmallVector<unsigned, 8> TotalCases(N);
9294   for (unsigned i = 0; i < N; ++i) {
9295     const APInt &Hi = Clusters[i].High->getValue();
9296     const APInt &Lo = Clusters[i].Low->getValue();
9297     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9298     if (i != 0)
9299       TotalCases[i] += TotalCases[i - 1];
9300   }
9301 
9302   // Cheap case: the whole range may be suitable for jump table.
9303   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9304   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9305   assert(NumCases < UINT64_MAX / 100);
9306   assert(Range >= NumCases);
9307   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9308     CaseCluster JTCluster;
9309     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9310       Clusters[0] = JTCluster;
9311       Clusters.resize(1);
9312       return;
9313     }
9314   }
9315 
9316   // The algorithm below is not suitable for -O0.
9317   if (TM.getOptLevel() == CodeGenOpt::None)
9318     return;
9319 
9320   // Split Clusters into minimum number of dense partitions. The algorithm uses
9321   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9322   // for the Case Statement'" (1994), but builds the MinPartitions array in
9323   // reverse order to make it easier to reconstruct the partitions in ascending
9324   // order. In the choice between two optimal partitionings, it picks the one
9325   // which yields more jump tables.
9326 
9327   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9328   SmallVector<unsigned, 8> MinPartitions(N);
9329   // LastElement[i] is the last element of the partition starting at i.
9330   SmallVector<unsigned, 8> LastElement(N);
9331   // PartitionsScore[i] is used to break ties when choosing between two
9332   // partitionings resulting in the same number of partitions.
9333   SmallVector<unsigned, 8> PartitionsScore(N);
9334   // For PartitionsScore, a small number of comparisons is considered as good as
9335   // a jump table and a single comparison is considered better than a jump
9336   // table.
9337   enum PartitionScores : unsigned {
9338     NoTable = 0,
9339     Table = 1,
9340     FewCases = 1,
9341     SingleCase = 2
9342   };
9343 
9344   // Base case: There is only one way to partition Clusters[N-1].
9345   MinPartitions[N - 1] = 1;
9346   LastElement[N - 1] = N - 1;
9347   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9348 
9349   // Note: loop indexes are signed to avoid underflow.
9350   for (int64_t i = N - 2; i >= 0; i--) {
9351     // Find optimal partitioning of Clusters[i..N-1].
9352     // Baseline: Put Clusters[i] into a partition on its own.
9353     MinPartitions[i] = MinPartitions[i + 1] + 1;
9354     LastElement[i] = i;
9355     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9356 
9357     // Search for a solution that results in fewer partitions.
9358     for (int64_t j = N - 1; j > i; j--) {
9359       // Try building a partition from Clusters[i..j].
9360       uint64_t Range = getJumpTableRange(Clusters, i, j);
9361       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9362       assert(NumCases < UINT64_MAX / 100);
9363       assert(Range >= NumCases);
9364       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9365         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9366         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9367         int64_t NumEntries = j - i + 1;
9368 
9369         if (NumEntries == 1)
9370           Score += PartitionScores::SingleCase;
9371         else if (NumEntries <= SmallNumberOfEntries)
9372           Score += PartitionScores::FewCases;
9373         else if (NumEntries >= MinJumpTableEntries)
9374           Score += PartitionScores::Table;
9375 
9376         // If this leads to fewer partitions, or to the same number of
9377         // partitions with better score, it is a better partitioning.
9378         if (NumPartitions < MinPartitions[i] ||
9379             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9380           MinPartitions[i] = NumPartitions;
9381           LastElement[i] = j;
9382           PartitionsScore[i] = Score;
9383         }
9384       }
9385     }
9386   }
9387 
9388   // Iterate over the partitions, replacing some with jump tables in-place.
9389   unsigned DstIndex = 0;
9390   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9391     Last = LastElement[First];
9392     assert(Last >= First);
9393     assert(DstIndex <= First);
9394     unsigned NumClusters = Last - First + 1;
9395 
9396     CaseCluster JTCluster;
9397     if (NumClusters >= MinJumpTableEntries &&
9398         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9399       Clusters[DstIndex++] = JTCluster;
9400     } else {
9401       for (unsigned I = First; I <= Last; ++I)
9402         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9403     }
9404   }
9405   Clusters.resize(DstIndex);
9406 }
9407 
9408 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9409                                         unsigned First, unsigned Last,
9410                                         const SwitchInst *SI,
9411                                         CaseCluster &BTCluster) {
9412   assert(First <= Last);
9413   if (First == Last)
9414     return false;
9415 
9416   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9417   unsigned NumCmps = 0;
9418   for (int64_t I = First; I <= Last; ++I) {
9419     assert(Clusters[I].Kind == CC_Range);
9420     Dests.set(Clusters[I].MBB->getNumber());
9421     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9422   }
9423   unsigned NumDests = Dests.count();
9424 
9425   APInt Low = Clusters[First].Low->getValue();
9426   APInt High = Clusters[Last].High->getValue();
9427   assert(Low.slt(High));
9428 
9429   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9430   const DataLayout &DL = DAG.getDataLayout();
9431   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9432     return false;
9433 
9434   APInt LowBound;
9435   APInt CmpRange;
9436 
9437   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9438   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9439          "Case range must fit in bit mask!");
9440 
9441   // Check if the clusters cover a contiguous range such that no value in the
9442   // range will jump to the default statement.
9443   bool ContiguousRange = true;
9444   for (int64_t I = First + 1; I <= Last; ++I) {
9445     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9446       ContiguousRange = false;
9447       break;
9448     }
9449   }
9450 
9451   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9452     // Optimize the case where all the case values fit in a word without having
9453     // to subtract minValue. In this case, we can optimize away the subtraction.
9454     LowBound = APInt::getNullValue(Low.getBitWidth());
9455     CmpRange = High;
9456     ContiguousRange = false;
9457   } else {
9458     LowBound = Low;
9459     CmpRange = High - Low;
9460   }
9461 
9462   CaseBitsVector CBV;
9463   auto TotalProb = BranchProbability::getZero();
9464   for (unsigned i = First; i <= Last; ++i) {
9465     // Find the CaseBits for this destination.
9466     unsigned j;
9467     for (j = 0; j < CBV.size(); ++j)
9468       if (CBV[j].BB == Clusters[i].MBB)
9469         break;
9470     if (j == CBV.size())
9471       CBV.push_back(
9472           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9473     CaseBits *CB = &CBV[j];
9474 
9475     // Update Mask, Bits and ExtraProb.
9476     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9477     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9478     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9479     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9480     CB->Bits += Hi - Lo + 1;
9481     CB->ExtraProb += Clusters[i].Prob;
9482     TotalProb += Clusters[i].Prob;
9483   }
9484 
9485   BitTestInfo BTI;
9486   llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9487     // Sort by probability first, number of bits second, bit mask third.
9488     if (a.ExtraProb != b.ExtraProb)
9489       return a.ExtraProb > b.ExtraProb;
9490     if (a.Bits != b.Bits)
9491       return a.Bits > b.Bits;
9492     return a.Mask < b.Mask;
9493   });
9494 
9495   for (auto &CB : CBV) {
9496     MachineBasicBlock *BitTestBB =
9497         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9498     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9499   }
9500   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9501                             SI->getCondition(), -1U, MVT::Other, false,
9502                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9503                             TotalProb);
9504 
9505   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9506                                     BitTestCases.size() - 1, TotalProb);
9507   return true;
9508 }
9509 
9510 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9511                                               const SwitchInst *SI) {
9512 // Partition Clusters into as few subsets as possible, where each subset has a
9513 // range that fits in a machine word and has <= 3 unique destinations.
9514 
9515 #ifndef NDEBUG
9516   // Clusters must be sorted and contain Range or JumpTable clusters.
9517   assert(!Clusters.empty());
9518   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9519   for (const CaseCluster &C : Clusters)
9520     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9521   for (unsigned i = 1; i < Clusters.size(); ++i)
9522     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9523 #endif
9524 
9525   // The algorithm below is not suitable for -O0.
9526   if (TM.getOptLevel() == CodeGenOpt::None)
9527     return;
9528 
9529   // If target does not have legal shift left, do not emit bit tests at all.
9530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9531   const DataLayout &DL = DAG.getDataLayout();
9532 
9533   EVT PTy = TLI.getPointerTy(DL);
9534   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9535     return;
9536 
9537   int BitWidth = PTy.getSizeInBits();
9538   const int64_t N = Clusters.size();
9539 
9540   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9541   SmallVector<unsigned, 8> MinPartitions(N);
9542   // LastElement[i] is the last element of the partition starting at i.
9543   SmallVector<unsigned, 8> LastElement(N);
9544 
9545   // FIXME: This might not be the best algorithm for finding bit test clusters.
9546 
9547   // Base case: There is only one way to partition Clusters[N-1].
9548   MinPartitions[N - 1] = 1;
9549   LastElement[N - 1] = N - 1;
9550 
9551   // Note: loop indexes are signed to avoid underflow.
9552   for (int64_t i = N - 2; i >= 0; --i) {
9553     // Find optimal partitioning of Clusters[i..N-1].
9554     // Baseline: Put Clusters[i] into a partition on its own.
9555     MinPartitions[i] = MinPartitions[i + 1] + 1;
9556     LastElement[i] = i;
9557 
9558     // Search for a solution that results in fewer partitions.
9559     // Note: the search is limited by BitWidth, reducing time complexity.
9560     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9561       // Try building a partition from Clusters[i..j].
9562 
9563       // Check the range.
9564       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9565                                Clusters[j].High->getValue(), DL))
9566         continue;
9567 
9568       // Check nbr of destinations and cluster types.
9569       // FIXME: This works, but doesn't seem very efficient.
9570       bool RangesOnly = true;
9571       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9572       for (int64_t k = i; k <= j; k++) {
9573         if (Clusters[k].Kind != CC_Range) {
9574           RangesOnly = false;
9575           break;
9576         }
9577         Dests.set(Clusters[k].MBB->getNumber());
9578       }
9579       if (!RangesOnly || Dests.count() > 3)
9580         break;
9581 
9582       // Check if it's a better partition.
9583       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9584       if (NumPartitions < MinPartitions[i]) {
9585         // Found a better partition.
9586         MinPartitions[i] = NumPartitions;
9587         LastElement[i] = j;
9588       }
9589     }
9590   }
9591 
9592   // Iterate over the partitions, replacing with bit-test clusters in-place.
9593   unsigned DstIndex = 0;
9594   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9595     Last = LastElement[First];
9596     assert(First <= Last);
9597     assert(DstIndex <= First);
9598 
9599     CaseCluster BitTestCluster;
9600     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9601       Clusters[DstIndex++] = BitTestCluster;
9602     } else {
9603       size_t NumClusters = Last - First + 1;
9604       std::memmove(&Clusters[DstIndex], &Clusters[First],
9605                    sizeof(Clusters[0]) * NumClusters);
9606       DstIndex += NumClusters;
9607     }
9608   }
9609   Clusters.resize(DstIndex);
9610 }
9611 
9612 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9613                                         MachineBasicBlock *SwitchMBB,
9614                                         MachineBasicBlock *DefaultMBB) {
9615   MachineFunction *CurMF = FuncInfo.MF;
9616   MachineBasicBlock *NextMBB = nullptr;
9617   MachineFunction::iterator BBI(W.MBB);
9618   if (++BBI != FuncInfo.MF->end())
9619     NextMBB = &*BBI;
9620 
9621   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9622 
9623   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9624 
9625   if (Size == 2 && W.MBB == SwitchMBB) {
9626     // If any two of the cases has the same destination, and if one value
9627     // is the same as the other, but has one bit unset that the other has set,
9628     // use bit manipulation to do two compares at once.  For example:
9629     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9630     // TODO: This could be extended to merge any 2 cases in switches with 3
9631     // cases.
9632     // TODO: Handle cases where W.CaseBB != SwitchBB.
9633     CaseCluster &Small = *W.FirstCluster;
9634     CaseCluster &Big = *W.LastCluster;
9635 
9636     if (Small.Low == Small.High && Big.Low == Big.High &&
9637         Small.MBB == Big.MBB) {
9638       const APInt &SmallValue = Small.Low->getValue();
9639       const APInt &BigValue = Big.Low->getValue();
9640 
9641       // Check that there is only one bit different.
9642       APInt CommonBit = BigValue ^ SmallValue;
9643       if (CommonBit.isPowerOf2()) {
9644         SDValue CondLHS = getValue(Cond);
9645         EVT VT = CondLHS.getValueType();
9646         SDLoc DL = getCurSDLoc();
9647 
9648         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9649                                  DAG.getConstant(CommonBit, DL, VT));
9650         SDValue Cond = DAG.getSetCC(
9651             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9652             ISD::SETEQ);
9653 
9654         // Update successor info.
9655         // Both Small and Big will jump to Small.BB, so we sum up the
9656         // probabilities.
9657         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9658         if (BPI)
9659           addSuccessorWithProb(
9660               SwitchMBB, DefaultMBB,
9661               // The default destination is the first successor in IR.
9662               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9663         else
9664           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9665 
9666         // Insert the true branch.
9667         SDValue BrCond =
9668             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9669                         DAG.getBasicBlock(Small.MBB));
9670         // Insert the false branch.
9671         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9672                              DAG.getBasicBlock(DefaultMBB));
9673 
9674         DAG.setRoot(BrCond);
9675         return;
9676       }
9677     }
9678   }
9679 
9680   if (TM.getOptLevel() != CodeGenOpt::None) {
9681     // Here, we order cases by probability so the most likely case will be
9682     // checked first. However, two clusters can have the same probability in
9683     // which case their relative ordering is non-deterministic. So we use Low
9684     // as a tie-breaker as clusters are guaranteed to never overlap.
9685     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9686                [](const CaseCluster &a, const CaseCluster &b) {
9687       return a.Prob != b.Prob ?
9688              a.Prob > b.Prob :
9689              a.Low->getValue().slt(b.Low->getValue());
9690     });
9691 
9692     // Rearrange the case blocks so that the last one falls through if possible
9693     // without changing the order of probabilities.
9694     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9695       --I;
9696       if (I->Prob > W.LastCluster->Prob)
9697         break;
9698       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9699         std::swap(*I, *W.LastCluster);
9700         break;
9701       }
9702     }
9703   }
9704 
9705   // Compute total probability.
9706   BranchProbability DefaultProb = W.DefaultProb;
9707   BranchProbability UnhandledProbs = DefaultProb;
9708   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9709     UnhandledProbs += I->Prob;
9710 
9711   MachineBasicBlock *CurMBB = W.MBB;
9712   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9713     MachineBasicBlock *Fallthrough;
9714     if (I == W.LastCluster) {
9715       // For the last cluster, fall through to the default destination.
9716       Fallthrough = DefaultMBB;
9717     } else {
9718       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9719       CurMF->insert(BBI, Fallthrough);
9720       // Put Cond in a virtual register to make it available from the new blocks.
9721       ExportFromCurrentBlock(Cond);
9722     }
9723     UnhandledProbs -= I->Prob;
9724 
9725     switch (I->Kind) {
9726       case CC_JumpTable: {
9727         // FIXME: Optimize away range check based on pivot comparisons.
9728         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9729         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9730 
9731         // The jump block hasn't been inserted yet; insert it here.
9732         MachineBasicBlock *JumpMBB = JT->MBB;
9733         CurMF->insert(BBI, JumpMBB);
9734 
9735         auto JumpProb = I->Prob;
9736         auto FallthroughProb = UnhandledProbs;
9737 
9738         // If the default statement is a target of the jump table, we evenly
9739         // distribute the default probability to successors of CurMBB. Also
9740         // update the probability on the edge from JumpMBB to Fallthrough.
9741         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9742                                               SE = JumpMBB->succ_end();
9743              SI != SE; ++SI) {
9744           if (*SI == DefaultMBB) {
9745             JumpProb += DefaultProb / 2;
9746             FallthroughProb -= DefaultProb / 2;
9747             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9748             JumpMBB->normalizeSuccProbs();
9749             break;
9750           }
9751         }
9752 
9753         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9754         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9755         CurMBB->normalizeSuccProbs();
9756 
9757         // The jump table header will be inserted in our current block, do the
9758         // range check, and fall through to our fallthrough block.
9759         JTH->HeaderBB = CurMBB;
9760         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9761 
9762         // If we're in the right place, emit the jump table header right now.
9763         if (CurMBB == SwitchMBB) {
9764           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9765           JTH->Emitted = true;
9766         }
9767         break;
9768       }
9769       case CC_BitTests: {
9770         // FIXME: Optimize away range check based on pivot comparisons.
9771         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9772 
9773         // The bit test blocks haven't been inserted yet; insert them here.
9774         for (BitTestCase &BTC : BTB->Cases)
9775           CurMF->insert(BBI, BTC.ThisBB);
9776 
9777         // Fill in fields of the BitTestBlock.
9778         BTB->Parent = CurMBB;
9779         BTB->Default = Fallthrough;
9780 
9781         BTB->DefaultProb = UnhandledProbs;
9782         // If the cases in bit test don't form a contiguous range, we evenly
9783         // distribute the probability on the edge to Fallthrough to two
9784         // successors of CurMBB.
9785         if (!BTB->ContiguousRange) {
9786           BTB->Prob += DefaultProb / 2;
9787           BTB->DefaultProb -= DefaultProb / 2;
9788         }
9789 
9790         // If we're in the right place, emit the bit test header right now.
9791         if (CurMBB == SwitchMBB) {
9792           visitBitTestHeader(*BTB, SwitchMBB);
9793           BTB->Emitted = true;
9794         }
9795         break;
9796       }
9797       case CC_Range: {
9798         const Value *RHS, *LHS, *MHS;
9799         ISD::CondCode CC;
9800         if (I->Low == I->High) {
9801           // Check Cond == I->Low.
9802           CC = ISD::SETEQ;
9803           LHS = Cond;
9804           RHS=I->Low;
9805           MHS = nullptr;
9806         } else {
9807           // Check I->Low <= Cond <= I->High.
9808           CC = ISD::SETLE;
9809           LHS = I->Low;
9810           MHS = Cond;
9811           RHS = I->High;
9812         }
9813 
9814         // The false probability is the sum of all unhandled cases.
9815         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9816                      getCurSDLoc(), I->Prob, UnhandledProbs);
9817 
9818         if (CurMBB == SwitchMBB)
9819           visitSwitchCase(CB, SwitchMBB);
9820         else
9821           SwitchCases.push_back(CB);
9822 
9823         break;
9824       }
9825     }
9826     CurMBB = Fallthrough;
9827   }
9828 }
9829 
9830 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9831                                               CaseClusterIt First,
9832                                               CaseClusterIt Last) {
9833   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9834     if (X.Prob != CC.Prob)
9835       return X.Prob > CC.Prob;
9836 
9837     // Ties are broken by comparing the case value.
9838     return X.Low->getValue().slt(CC.Low->getValue());
9839   });
9840 }
9841 
9842 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9843                                         const SwitchWorkListItem &W,
9844                                         Value *Cond,
9845                                         MachineBasicBlock *SwitchMBB) {
9846   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9847          "Clusters not sorted?");
9848 
9849   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9850 
9851   // Balance the tree based on branch probabilities to create a near-optimal (in
9852   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9853   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9854   CaseClusterIt LastLeft = W.FirstCluster;
9855   CaseClusterIt FirstRight = W.LastCluster;
9856   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9857   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9858 
9859   // Move LastLeft and FirstRight towards each other from opposite directions to
9860   // find a partitioning of the clusters which balances the probability on both
9861   // sides. If LeftProb and RightProb are equal, alternate which side is
9862   // taken to ensure 0-probability nodes are distributed evenly.
9863   unsigned I = 0;
9864   while (LastLeft + 1 < FirstRight) {
9865     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9866       LeftProb += (++LastLeft)->Prob;
9867     else
9868       RightProb += (--FirstRight)->Prob;
9869     I++;
9870   }
9871 
9872   while (true) {
9873     // Our binary search tree differs from a typical BST in that ours can have up
9874     // to three values in each leaf. The pivot selection above doesn't take that
9875     // into account, which means the tree might require more nodes and be less
9876     // efficient. We compensate for this here.
9877 
9878     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9879     unsigned NumRight = W.LastCluster - FirstRight + 1;
9880 
9881     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9882       // If one side has less than 3 clusters, and the other has more than 3,
9883       // consider taking a cluster from the other side.
9884 
9885       if (NumLeft < NumRight) {
9886         // Consider moving the first cluster on the right to the left side.
9887         CaseCluster &CC = *FirstRight;
9888         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9889         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9890         if (LeftSideRank <= RightSideRank) {
9891           // Moving the cluster to the left does not demote it.
9892           ++LastLeft;
9893           ++FirstRight;
9894           continue;
9895         }
9896       } else {
9897         assert(NumRight < NumLeft);
9898         // Consider moving the last element on the left to the right side.
9899         CaseCluster &CC = *LastLeft;
9900         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9901         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9902         if (RightSideRank <= LeftSideRank) {
9903           // Moving the cluster to the right does not demot it.
9904           --LastLeft;
9905           --FirstRight;
9906           continue;
9907         }
9908       }
9909     }
9910     break;
9911   }
9912 
9913   assert(LastLeft + 1 == FirstRight);
9914   assert(LastLeft >= W.FirstCluster);
9915   assert(FirstRight <= W.LastCluster);
9916 
9917   // Use the first element on the right as pivot since we will make less-than
9918   // comparisons against it.
9919   CaseClusterIt PivotCluster = FirstRight;
9920   assert(PivotCluster > W.FirstCluster);
9921   assert(PivotCluster <= W.LastCluster);
9922 
9923   CaseClusterIt FirstLeft = W.FirstCluster;
9924   CaseClusterIt LastRight = W.LastCluster;
9925 
9926   const ConstantInt *Pivot = PivotCluster->Low;
9927 
9928   // New blocks will be inserted immediately after the current one.
9929   MachineFunction::iterator BBI(W.MBB);
9930   ++BBI;
9931 
9932   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9933   // we can branch to its destination directly if it's squeezed exactly in
9934   // between the known lower bound and Pivot - 1.
9935   MachineBasicBlock *LeftMBB;
9936   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9937       FirstLeft->Low == W.GE &&
9938       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9939     LeftMBB = FirstLeft->MBB;
9940   } else {
9941     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9942     FuncInfo.MF->insert(BBI, LeftMBB);
9943     WorkList.push_back(
9944         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9945     // Put Cond in a virtual register to make it available from the new blocks.
9946     ExportFromCurrentBlock(Cond);
9947   }
9948 
9949   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9950   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9951   // directly if RHS.High equals the current upper bound.
9952   MachineBasicBlock *RightMBB;
9953   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9954       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9955     RightMBB = FirstRight->MBB;
9956   } else {
9957     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9958     FuncInfo.MF->insert(BBI, RightMBB);
9959     WorkList.push_back(
9960         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9961     // Put Cond in a virtual register to make it available from the new blocks.
9962     ExportFromCurrentBlock(Cond);
9963   }
9964 
9965   // Create the CaseBlock record that will be used to lower the branch.
9966   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9967                getCurSDLoc(), LeftProb, RightProb);
9968 
9969   if (W.MBB == SwitchMBB)
9970     visitSwitchCase(CB, SwitchMBB);
9971   else
9972     SwitchCases.push_back(CB);
9973 }
9974 
9975 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
9976 // from the swith statement.
9977 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
9978                                             BranchProbability PeeledCaseProb) {
9979   if (PeeledCaseProb == BranchProbability::getOne())
9980     return BranchProbability::getZero();
9981   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
9982 
9983   uint32_t Numerator = CaseProb.getNumerator();
9984   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
9985   return BranchProbability(Numerator, std::max(Numerator, Denominator));
9986 }
9987 
9988 // Try to peel the top probability case if it exceeds the threshold.
9989 // Return current MachineBasicBlock for the switch statement if the peeling
9990 // does not occur.
9991 // If the peeling is performed, return the newly created MachineBasicBlock
9992 // for the peeled switch statement. Also update Clusters to remove the peeled
9993 // case. PeeledCaseProb is the BranchProbability for the peeled case.
9994 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
9995     const SwitchInst &SI, CaseClusterVector &Clusters,
9996     BranchProbability &PeeledCaseProb) {
9997   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9998   // Don't perform if there is only one cluster or optimizing for size.
9999   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10000       TM.getOptLevel() == CodeGenOpt::None ||
10001       SwitchMBB->getParent()->getFunction().optForMinSize())
10002     return SwitchMBB;
10003 
10004   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10005   unsigned PeeledCaseIndex = 0;
10006   bool SwitchPeeled = false;
10007   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10008     CaseCluster &CC = Clusters[Index];
10009     if (CC.Prob < TopCaseProb)
10010       continue;
10011     TopCaseProb = CC.Prob;
10012     PeeledCaseIndex = Index;
10013     SwitchPeeled = true;
10014   }
10015   if (!SwitchPeeled)
10016     return SwitchMBB;
10017 
10018   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10019                     << TopCaseProb << "\n");
10020 
10021   // Record the MBB for the peeled switch statement.
10022   MachineFunction::iterator BBI(SwitchMBB);
10023   ++BBI;
10024   MachineBasicBlock *PeeledSwitchMBB =
10025       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10026   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10027 
10028   ExportFromCurrentBlock(SI.getCondition());
10029   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10030   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10031                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10032   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10033 
10034   Clusters.erase(PeeledCaseIt);
10035   for (CaseCluster &CC : Clusters) {
10036     LLVM_DEBUG(
10037         dbgs() << "Scale the probablity for one cluster, before scaling: "
10038                << CC.Prob << "\n");
10039     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10040     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10041   }
10042   PeeledCaseProb = TopCaseProb;
10043   return PeeledSwitchMBB;
10044 }
10045 
10046 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10047   // Extract cases from the switch.
10048   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10049   CaseClusterVector Clusters;
10050   Clusters.reserve(SI.getNumCases());
10051   for (auto I : SI.cases()) {
10052     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10053     const ConstantInt *CaseVal = I.getCaseValue();
10054     BranchProbability Prob =
10055         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10056             : BranchProbability(1, SI.getNumCases() + 1);
10057     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10058   }
10059 
10060   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10061 
10062   // Cluster adjacent cases with the same destination. We do this at all
10063   // optimization levels because it's cheap to do and will make codegen faster
10064   // if there are many clusters.
10065   sortAndRangeify(Clusters);
10066 
10067   if (TM.getOptLevel() != CodeGenOpt::None) {
10068     // Replace an unreachable default with the most popular destination.
10069     // FIXME: Exploit unreachable default more aggressively.
10070     bool UnreachableDefault =
10071         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10072     if (UnreachableDefault && !Clusters.empty()) {
10073       DenseMap<const BasicBlock *, unsigned> Popularity;
10074       unsigned MaxPop = 0;
10075       const BasicBlock *MaxBB = nullptr;
10076       for (auto I : SI.cases()) {
10077         const BasicBlock *BB = I.getCaseSuccessor();
10078         if (++Popularity[BB] > MaxPop) {
10079           MaxPop = Popularity[BB];
10080           MaxBB = BB;
10081         }
10082       }
10083       // Set new default.
10084       assert(MaxPop > 0 && MaxBB);
10085       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10086 
10087       // Remove cases that were pointing to the destination that is now the
10088       // default.
10089       CaseClusterVector New;
10090       New.reserve(Clusters.size());
10091       for (CaseCluster &CC : Clusters) {
10092         if (CC.MBB != DefaultMBB)
10093           New.push_back(CC);
10094       }
10095       Clusters = std::move(New);
10096     }
10097   }
10098 
10099   // The branch probablity of the peeled case.
10100   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10101   MachineBasicBlock *PeeledSwitchMBB =
10102       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10103 
10104   // If there is only the default destination, jump there directly.
10105   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10106   if (Clusters.empty()) {
10107     assert(PeeledSwitchMBB == SwitchMBB);
10108     SwitchMBB->addSuccessor(DefaultMBB);
10109     if (DefaultMBB != NextBlock(SwitchMBB)) {
10110       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10111                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10112     }
10113     return;
10114   }
10115 
10116   findJumpTables(Clusters, &SI, DefaultMBB);
10117   findBitTestClusters(Clusters, &SI);
10118 
10119   LLVM_DEBUG({
10120     dbgs() << "Case clusters: ";
10121     for (const CaseCluster &C : Clusters) {
10122       if (C.Kind == CC_JumpTable)
10123         dbgs() << "JT:";
10124       if (C.Kind == CC_BitTests)
10125         dbgs() << "BT:";
10126 
10127       C.Low->getValue().print(dbgs(), true);
10128       if (C.Low != C.High) {
10129         dbgs() << '-';
10130         C.High->getValue().print(dbgs(), true);
10131       }
10132       dbgs() << ' ';
10133     }
10134     dbgs() << '\n';
10135   });
10136 
10137   assert(!Clusters.empty());
10138   SwitchWorkList WorkList;
10139   CaseClusterIt First = Clusters.begin();
10140   CaseClusterIt Last = Clusters.end() - 1;
10141   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10142   // Scale the branchprobability for DefaultMBB if the peel occurs and
10143   // DefaultMBB is not replaced.
10144   if (PeeledCaseProb != BranchProbability::getZero() &&
10145       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10146     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10147   WorkList.push_back(
10148       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10149 
10150   while (!WorkList.empty()) {
10151     SwitchWorkListItem W = WorkList.back();
10152     WorkList.pop_back();
10153     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10154 
10155     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10156         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10157       // For optimized builds, lower large range as a balanced binary tree.
10158       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10159       continue;
10160     }
10161 
10162     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10163   }
10164 }
10165