xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision d2c733b429f9b300576494295eda134073e2dd23)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576                                  DAG.getIntPtrConstant(RoundBits, DL));
577     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578                    CallConv);
579 
580     if (DAG.getDataLayout().isBigEndian())
581       // The odd parts were reversed by getCopyToParts - unreverse them.
582       std::reverse(Parts + RoundParts, Parts + NumParts);
583 
584     NumParts = RoundParts;
585     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587   }
588 
589   // The number of parts is a power of 2.  Repeatedly bisect the value using
590   // EXTRACT_ELEMENT.
591   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592                          EVT::getIntegerVT(*DAG.getContext(),
593                                            ValueVT.getSizeInBits()),
594                          Val);
595 
596   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597     for (unsigned i = 0; i < NumParts; i += StepSize) {
598       unsigned ThisBits = StepSize * PartBits / 2;
599       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600       SDValue &Part0 = Parts[i];
601       SDValue &Part1 = Parts[i+StepSize/2];
602 
603       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
607 
608       if (ThisBits == PartBits && ThisVT != PartVT) {
609         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
611       }
612     }
613   }
614 
615   if (DAG.getDataLayout().isBigEndian())
616     std::reverse(Parts, Parts + OrigNumParts);
617 }
618 
619 static SDValue widenVectorToPartType(SelectionDAG &DAG,
620                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
621   if (!PartVT.isVector())
622     return SDValue();
623 
624   EVT ValueVT = Val.getValueType();
625   unsigned PartNumElts = PartVT.getVectorNumElements();
626   unsigned ValueNumElts = ValueVT.getVectorNumElements();
627   if (PartNumElts > ValueNumElts &&
628       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
629     EVT ElementVT = PartVT.getVectorElementType();
630     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631     // undef elements.
632     SmallVector<SDValue, 16> Ops;
633     DAG.ExtractVectorElements(Val, Ops);
634     SDValue EltUndef = DAG.getUNDEF(ElementVT);
635     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
636       Ops.push_back(EltUndef);
637 
638     // FIXME: Use CONCAT for 2x -> 4x.
639     return DAG.getBuildVector(PartVT, DL, Ops);
640   }
641 
642   return SDValue();
643 }
644 
645 /// getCopyToPartsVector - Create a series of nodes that contain the specified
646 /// value split into legal parts.
647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
648                                  SDValue Val, SDValue *Parts, unsigned NumParts,
649                                  MVT PartVT, const Value *V,
650                                  Optional<CallingConv::ID> CallConv) {
651   EVT ValueVT = Val.getValueType();
652   assert(ValueVT.isVector() && "Not a vector");
653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
654   const bool IsABIRegCopy = CallConv.hasValue();
655 
656   if (NumParts == 1) {
657     EVT PartEVT = PartVT;
658     if (PartEVT == ValueVT) {
659       // Nothing to do.
660     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
661       // Bitconvert vector->vector case.
662       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
663     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
664       Val = Widened;
665     } else if (PartVT.isVector() &&
666                PartEVT.getVectorElementType().bitsGE(
667                  ValueVT.getVectorElementType()) &&
668                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
669 
670       // Promoted vector extract
671       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
672     } else {
673       if (ValueVT.getVectorNumElements() == 1) {
674         Val = DAG.getNode(
675             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
676             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
677       } else {
678         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
679                "lossy conversion of vector to scalar type");
680         EVT IntermediateType =
681             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
682         Val = DAG.getBitcast(IntermediateType, Val);
683         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
684       }
685     }
686 
687     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
688     Parts[0] = Val;
689     return;
690   }
691 
692   // Handle a multi-element vector.
693   EVT IntermediateVT;
694   MVT RegisterVT;
695   unsigned NumIntermediates;
696   unsigned NumRegs;
697   if (IsABIRegCopy) {
698     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
699         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
700         NumIntermediates, RegisterVT);
701   } else {
702     NumRegs =
703         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
704                                    NumIntermediates, RegisterVT);
705   }
706 
707   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
708   NumParts = NumRegs; // Silence a compiler warning.
709   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
710 
711   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
712     IntermediateVT.getVectorNumElements() : 1;
713 
714   // Convert the vector to the appropiate type if necessary.
715   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
716 
717   EVT BuiltVectorTy = EVT::getVectorVT(
718       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
719   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
720   if (ValueVT != BuiltVectorTy) {
721     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
722       Val = Widened;
723 
724     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
725   }
726 
727   // Split the vector into intermediate operands.
728   SmallVector<SDValue, 8> Ops(NumIntermediates);
729   for (unsigned i = 0; i != NumIntermediates; ++i) {
730     if (IntermediateVT.isVector()) {
731       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
732                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
733     } else {
734       Ops[i] = DAG.getNode(
735           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736           DAG.getConstant(i, DL, IdxVT));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
826           !RegisterVT.isInteger())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getScalarSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() &&
941            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
942     // Put the register class of the virtual registers in the flag word.  That
943     // way, later passes can recompute register class constraints for inline
944     // assembly as well as normal instructions.
945     // Don't do this for tied operands that can use the regclass information
946     // from the def.
947     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
948     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
949     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
950   }
951 
952   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
953   Ops.push_back(Res);
954 
955   if (Code == InlineAsm::Kind_Clobber) {
956     // Clobbers should always have a 1:1 mapping with registers, and may
957     // reference registers that have illegal (e.g. vector) types. Hence, we
958     // shouldn't try to apply any sort of splitting logic to them.
959     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
960            "No 1:1 mapping from clobbers to regs?");
961     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
962     (void)SP;
963     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
964       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
965       assert(
966           (Regs[I] != SP ||
967            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
968           "If we clobbered the stack pointer, MFI should know about it.");
969     }
970     return;
971   }
972 
973   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
974     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
975     MVT RegisterVT = RegVTs[Value];
976     for (unsigned i = 0; i != NumRegs; ++i) {
977       assert(Reg < Regs.size() && "Mismatch in # registers expected");
978       unsigned TheReg = Regs[Reg++];
979       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
980     }
981   }
982 }
983 
984 SmallVector<std::pair<unsigned, unsigned>, 4>
985 RegsForValue::getRegsAndSizes() const {
986   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
987   unsigned I = 0;
988   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
989     unsigned RegCount = std::get<0>(CountAndVT);
990     MVT RegisterVT = std::get<1>(CountAndVT);
991     unsigned RegisterSize = RegisterVT.getSizeInBits();
992     for (unsigned E = I + RegCount; I != E; ++I)
993       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
994   }
995   return OutVec;
996 }
997 
998 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
999                                const TargetLibraryInfo *li) {
1000   AA = aa;
1001   GFI = gfi;
1002   LibInfo = li;
1003   DL = &DAG.getDataLayout();
1004   Context = DAG.getContext();
1005   LPadToCallSiteMap.clear();
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   CurInst = nullptr;
1014   HasTailCall = false;
1015   SDNodeOrder = LowestSDNodeOrder;
1016   StatepointLowering.clear();
1017 }
1018 
1019 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1020   DanglingDebugInfoMap.clear();
1021 }
1022 
1023 SDValue SelectionDAGBuilder::getRoot() {
1024   if (PendingLoads.empty())
1025     return DAG.getRoot();
1026 
1027   if (PendingLoads.size() == 1) {
1028     SDValue Root = PendingLoads[0];
1029     DAG.setRoot(Root);
1030     PendingLoads.clear();
1031     return Root;
1032   }
1033 
1034   // Otherwise, we have to make a token factor node.
1035   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1036   PendingLoads.clear();
1037   DAG.setRoot(Root);
1038   return Root;
1039 }
1040 
1041 SDValue SelectionDAGBuilder::getControlRoot() {
1042   SDValue Root = DAG.getRoot();
1043 
1044   if (PendingExports.empty())
1045     return Root;
1046 
1047   // Turn all of the CopyToReg chains into one factored node.
1048   if (Root.getOpcode() != ISD::EntryToken) {
1049     unsigned i = 0, e = PendingExports.size();
1050     for (; i != e; ++i) {
1051       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1052       if (PendingExports[i].getNode()->getOperand(0) == Root)
1053         break;  // Don't add the root if we already indirectly depend on it.
1054     }
1055 
1056     if (i == e)
1057       PendingExports.push_back(Root);
1058   }
1059 
1060   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1061                      PendingExports);
1062   PendingExports.clear();
1063   DAG.setRoot(Root);
1064   return Root;
1065 }
1066 
1067 void SelectionDAGBuilder::visit(const Instruction &I) {
1068   // Set up outgoing PHI node register values before emitting the terminator.
1069   if (I.isTerminator()) {
1070     HandlePHINodesInSuccessorBlocks(I.getParent());
1071   }
1072 
1073   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1074   if (!isa<DbgInfoIntrinsic>(I))
1075     ++SDNodeOrder;
1076 
1077   CurInst = &I;
1078 
1079   visit(I.getOpcode(), I);
1080 
1081   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1082     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1083     // maps to this instruction.
1084     // TODO: We could handle all flags (nsw, etc) here.
1085     // TODO: If an IR instruction maps to >1 node, only the final node will have
1086     //       flags set.
1087     if (SDNode *Node = getNodeForIRValue(&I)) {
1088       SDNodeFlags IncomingFlags;
1089       IncomingFlags.copyFMF(*FPMO);
1090       if (!Node->getFlags().isDefined())
1091         Node->setFlags(IncomingFlags);
1092       else
1093         Node->intersectFlagsWith(IncomingFlags);
1094     }
1095   }
1096 
1097   if (!I.isTerminator() && !HasTailCall &&
1098       !isStatepoint(&I)) // statepoints handle their exports internally
1099     CopyToExportRegsIfNeeded(&I);
1100 
1101   CurInst = nullptr;
1102 }
1103 
1104 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1105   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1106 }
1107 
1108 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1109   // Note: this doesn't use InstVisitor, because it has to work with
1110   // ConstantExpr's in addition to instructions.
1111   switch (Opcode) {
1112   default: llvm_unreachable("Unknown instruction type encountered!");
1113     // Build the switch statement using the Instruction.def file.
1114 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1115     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1116 #include "llvm/IR/Instruction.def"
1117   }
1118 }
1119 
1120 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1121                                                 const DIExpression *Expr) {
1122   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1123     const DbgValueInst *DI = DDI.getDI();
1124     DIVariable *DanglingVariable = DI->getVariable();
1125     DIExpression *DanglingExpr = DI->getExpression();
1126     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1127       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1128       return true;
1129     }
1130     return false;
1131   };
1132 
1133   for (auto &DDIMI : DanglingDebugInfoMap) {
1134     DanglingDebugInfoVector &DDIV = DDIMI.second;
1135     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1136   }
1137 }
1138 
1139 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1140 // generate the debug data structures now that we've seen its definition.
1141 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1142                                                    SDValue Val) {
1143   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1144   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1145     return;
1146 
1147   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1148   for (auto &DDI : DDIV) {
1149     const DbgValueInst *DI = DDI.getDI();
1150     assert(DI && "Ill-formed DanglingDebugInfo");
1151     DebugLoc dl = DDI.getdl();
1152     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1153     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1154     DILocalVariable *Variable = DI->getVariable();
1155     DIExpression *Expr = DI->getExpression();
1156     assert(Variable->isValidLocationForIntrinsic(dl) &&
1157            "Expected inlined-at fields to agree");
1158     SDDbgValue *SDV;
1159     if (Val.getNode()) {
1160       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1161         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1162                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1163         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1164         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1165         // inserted after the definition of Val when emitting the instructions
1166         // after ISel. An alternative could be to teach
1167         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1168         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1169                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1170                    << ValSDNodeOrder << "\n");
1171         SDV = getDbgValue(Val, Variable, Expr, dl,
1172                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1173         DAG.AddDbgValue(SDV, Val.getNode(), false);
1174       } else
1175         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1176                           << "in EmitFuncArgumentDbgValue\n");
1177     } else
1178       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1179   }
1180   DDIV.clear();
1181 }
1182 
1183 /// getCopyFromRegs - If there was virtual register allocated for the value V
1184 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1185 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1186   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1187   SDValue Result;
1188 
1189   if (It != FuncInfo.ValueMap.end()) {
1190     unsigned InReg = It->second;
1191 
1192     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1193                      DAG.getDataLayout(), InReg, Ty,
1194                      None); // This is not an ABI copy.
1195     SDValue Chain = DAG.getEntryNode();
1196     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1197                                  V);
1198     resolveDanglingDebugInfo(V, Result);
1199   }
1200 
1201   return Result;
1202 }
1203 
1204 /// getValue - Return an SDValue for the given Value.
1205 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1206   // If we already have an SDValue for this value, use it. It's important
1207   // to do this first, so that we don't create a CopyFromReg if we already
1208   // have a regular SDValue.
1209   SDValue &N = NodeMap[V];
1210   if (N.getNode()) return N;
1211 
1212   // If there's a virtual register allocated and initialized for this
1213   // value, use it.
1214   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1215     return copyFromReg;
1216 
1217   // Otherwise create a new SDValue and remember it.
1218   SDValue Val = getValueImpl(V);
1219   NodeMap[V] = Val;
1220   resolveDanglingDebugInfo(V, Val);
1221   return Val;
1222 }
1223 
1224 // Return true if SDValue exists for the given Value
1225 bool SelectionDAGBuilder::findValue(const Value *V) const {
1226   return (NodeMap.find(V) != NodeMap.end()) ||
1227     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1228 }
1229 
1230 /// getNonRegisterValue - Return an SDValue for the given Value, but
1231 /// don't look in FuncInfo.ValueMap for a virtual register.
1232 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1233   // If we already have an SDValue for this value, use it.
1234   SDValue &N = NodeMap[V];
1235   if (N.getNode()) {
1236     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1237       // Remove the debug location from the node as the node is about to be used
1238       // in a location which may differ from the original debug location.  This
1239       // is relevant to Constant and ConstantFP nodes because they can appear
1240       // as constant expressions inside PHI nodes.
1241       N->setDebugLoc(DebugLoc());
1242     }
1243     return N;
1244   }
1245 
1246   // Otherwise create a new SDValue and remember it.
1247   SDValue Val = getValueImpl(V);
1248   NodeMap[V] = Val;
1249   resolveDanglingDebugInfo(V, Val);
1250   return Val;
1251 }
1252 
1253 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1254 /// Create an SDValue for the given value.
1255 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1257 
1258   if (const Constant *C = dyn_cast<Constant>(V)) {
1259     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1260 
1261     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1262       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1263 
1264     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1265       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1266 
1267     if (isa<ConstantPointerNull>(C)) {
1268       unsigned AS = V->getType()->getPointerAddressSpace();
1269       return DAG.getConstant(0, getCurSDLoc(),
1270                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1271     }
1272 
1273     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1274       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1275 
1276     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1277       return DAG.getUNDEF(VT);
1278 
1279     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1280       visit(CE->getOpcode(), *CE);
1281       SDValue N1 = NodeMap[V];
1282       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1283       return N1;
1284     }
1285 
1286     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1287       SmallVector<SDValue, 4> Constants;
1288       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1289            OI != OE; ++OI) {
1290         SDNode *Val = getValue(*OI).getNode();
1291         // If the operand is an empty aggregate, there are no values.
1292         if (!Val) continue;
1293         // Add each leaf value from the operand to the Constants list
1294         // to form a flattened list of all the values.
1295         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1296           Constants.push_back(SDValue(Val, i));
1297       }
1298 
1299       return DAG.getMergeValues(Constants, getCurSDLoc());
1300     }
1301 
1302     if (const ConstantDataSequential *CDS =
1303           dyn_cast<ConstantDataSequential>(C)) {
1304       SmallVector<SDValue, 4> Ops;
1305       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1306         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1307         // Add each leaf value from the operand to the Constants list
1308         // to form a flattened list of all the values.
1309         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1310           Ops.push_back(SDValue(Val, i));
1311       }
1312 
1313       if (isa<ArrayType>(CDS->getType()))
1314         return DAG.getMergeValues(Ops, getCurSDLoc());
1315       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1316     }
1317 
1318     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1319       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1320              "Unknown struct or array constant!");
1321 
1322       SmallVector<EVT, 4> ValueVTs;
1323       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1324       unsigned NumElts = ValueVTs.size();
1325       if (NumElts == 0)
1326         return SDValue(); // empty struct
1327       SmallVector<SDValue, 4> Constants(NumElts);
1328       for (unsigned i = 0; i != NumElts; ++i) {
1329         EVT EltVT = ValueVTs[i];
1330         if (isa<UndefValue>(C))
1331           Constants[i] = DAG.getUNDEF(EltVT);
1332         else if (EltVT.isFloatingPoint())
1333           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1334         else
1335           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1336       }
1337 
1338       return DAG.getMergeValues(Constants, getCurSDLoc());
1339     }
1340 
1341     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1342       return DAG.getBlockAddress(BA, VT);
1343 
1344     VectorType *VecTy = cast<VectorType>(V->getType());
1345     unsigned NumElements = VecTy->getNumElements();
1346 
1347     // Now that we know the number and type of the elements, get that number of
1348     // elements into the Ops array based on what kind of constant it is.
1349     SmallVector<SDValue, 16> Ops;
1350     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1351       for (unsigned i = 0; i != NumElements; ++i)
1352         Ops.push_back(getValue(CV->getOperand(i)));
1353     } else {
1354       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1355       EVT EltVT =
1356           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1357 
1358       SDValue Op;
1359       if (EltVT.isFloatingPoint())
1360         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1361       else
1362         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1363       Ops.assign(NumElements, Op);
1364     }
1365 
1366     // Create a BUILD_VECTOR node.
1367     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1368   }
1369 
1370   // If this is a static alloca, generate it as the frameindex instead of
1371   // computation.
1372   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1373     DenseMap<const AllocaInst*, int>::iterator SI =
1374       FuncInfo.StaticAllocaMap.find(AI);
1375     if (SI != FuncInfo.StaticAllocaMap.end())
1376       return DAG.getFrameIndex(SI->second,
1377                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1378   }
1379 
1380   // If this is an instruction which fast-isel has deferred, select it now.
1381   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1382     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1383 
1384     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1385                      Inst->getType(), getABIRegCopyCC(V));
1386     SDValue Chain = DAG.getEntryNode();
1387     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1388   }
1389 
1390   llvm_unreachable("Can't get register for value!");
1391 }
1392 
1393 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1394   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1395   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1396   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1397   bool IsSEH = isAsynchronousEHPersonality(Pers);
1398   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1399   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1400   if (!IsSEH)
1401     CatchPadMBB->setIsEHScopeEntry();
1402   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1403   if (IsMSVCCXX || IsCoreCLR)
1404     CatchPadMBB->setIsEHFuncletEntry();
1405   // Wasm does not need catchpads anymore
1406   if (!IsWasmCXX)
1407     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1408                             getControlRoot()));
1409 }
1410 
1411 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1412   // Update machine-CFG edge.
1413   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1414   FuncInfo.MBB->addSuccessor(TargetMBB);
1415 
1416   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1417   bool IsSEH = isAsynchronousEHPersonality(Pers);
1418   if (IsSEH) {
1419     // If this is not a fall-through branch or optimizations are switched off,
1420     // emit the branch.
1421     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1422         TM.getOptLevel() == CodeGenOpt::None)
1423       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1424                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1425     return;
1426   }
1427 
1428   // Figure out the funclet membership for the catchret's successor.
1429   // This will be used by the FuncletLayout pass to determine how to order the
1430   // BB's.
1431   // A 'catchret' returns to the outer scope's color.
1432   Value *ParentPad = I.getCatchSwitchParentPad();
1433   const BasicBlock *SuccessorColor;
1434   if (isa<ConstantTokenNone>(ParentPad))
1435     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1436   else
1437     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1438   assert(SuccessorColor && "No parent funclet for catchret!");
1439   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1440   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1441 
1442   // Create the terminator node.
1443   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1444                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1445                             DAG.getBasicBlock(SuccessorColorMBB));
1446   DAG.setRoot(Ret);
1447 }
1448 
1449 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1450   // Don't emit any special code for the cleanuppad instruction. It just marks
1451   // the start of an EH scope/funclet.
1452   FuncInfo.MBB->setIsEHScopeEntry();
1453   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1454   if (Pers != EHPersonality::Wasm_CXX) {
1455     FuncInfo.MBB->setIsEHFuncletEntry();
1456     FuncInfo.MBB->setIsCleanupFuncletEntry();
1457   }
1458 }
1459 
1460 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1461 /// many places it could ultimately go. In the IR, we have a single unwind
1462 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1463 /// This function skips over imaginary basic blocks that hold catchswitch
1464 /// instructions, and finds all the "real" machine
1465 /// basic block destinations. As those destinations may not be successors of
1466 /// EHPadBB, here we also calculate the edge probability to those destinations.
1467 /// The passed-in Prob is the edge probability to EHPadBB.
1468 static void findUnwindDestinations(
1469     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1470     BranchProbability Prob,
1471     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1472         &UnwindDests) {
1473   EHPersonality Personality =
1474     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1475   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1476   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1477   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1478   bool IsSEH = isAsynchronousEHPersonality(Personality);
1479 
1480   while (EHPadBB) {
1481     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1482     BasicBlock *NewEHPadBB = nullptr;
1483     if (isa<LandingPadInst>(Pad)) {
1484       // Stop on landingpads. They are not funclets.
1485       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1486       break;
1487     } else if (isa<CleanupPadInst>(Pad)) {
1488       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1489       // personalities.
1490       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1491       UnwindDests.back().first->setIsEHScopeEntry();
1492       if (!IsWasmCXX)
1493         UnwindDests.back().first->setIsEHFuncletEntry();
1494       break;
1495     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1496       // Add the catchpad handlers to the possible destinations.
1497       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1498         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1499         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1500         if (IsMSVCCXX || IsCoreCLR)
1501           UnwindDests.back().first->setIsEHFuncletEntry();
1502         if (!IsSEH)
1503           UnwindDests.back().first->setIsEHScopeEntry();
1504       }
1505       NewEHPadBB = CatchSwitch->getUnwindDest();
1506     } else {
1507       continue;
1508     }
1509 
1510     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1511     if (BPI && NewEHPadBB)
1512       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1513     EHPadBB = NewEHPadBB;
1514   }
1515 }
1516 
1517 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1518   // Update successor info.
1519   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1520   auto UnwindDest = I.getUnwindDest();
1521   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1522   BranchProbability UnwindDestProb =
1523       (BPI && UnwindDest)
1524           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1525           : BranchProbability::getZero();
1526   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1527   for (auto &UnwindDest : UnwindDests) {
1528     UnwindDest.first->setIsEHPad();
1529     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1530   }
1531   FuncInfo.MBB->normalizeSuccProbs();
1532 
1533   // Create the terminator node.
1534   SDValue Ret =
1535       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1536   DAG.setRoot(Ret);
1537 }
1538 
1539 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1540   report_fatal_error("visitCatchSwitch not yet implemented!");
1541 }
1542 
1543 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1544   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1545   auto &DL = DAG.getDataLayout();
1546   SDValue Chain = getControlRoot();
1547   SmallVector<ISD::OutputArg, 8> Outs;
1548   SmallVector<SDValue, 8> OutVals;
1549 
1550   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1551   // lower
1552   //
1553   //   %val = call <ty> @llvm.experimental.deoptimize()
1554   //   ret <ty> %val
1555   //
1556   // differently.
1557   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1558     LowerDeoptimizingReturn();
1559     return;
1560   }
1561 
1562   if (!FuncInfo.CanLowerReturn) {
1563     unsigned DemoteReg = FuncInfo.DemoteRegister;
1564     const Function *F = I.getParent()->getParent();
1565 
1566     // Emit a store of the return value through the virtual register.
1567     // Leave Outs empty so that LowerReturn won't try to load return
1568     // registers the usual way.
1569     SmallVector<EVT, 1> PtrValueVTs;
1570     ComputeValueVTs(TLI, DL,
1571                     F->getReturnType()->getPointerTo(
1572                         DAG.getDataLayout().getAllocaAddrSpace()),
1573                     PtrValueVTs);
1574 
1575     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1576                                         DemoteReg, PtrValueVTs[0]);
1577     SDValue RetOp = getValue(I.getOperand(0));
1578 
1579     SmallVector<EVT, 4> ValueVTs;
1580     SmallVector<uint64_t, 4> Offsets;
1581     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1582     unsigned NumValues = ValueVTs.size();
1583 
1584     SmallVector<SDValue, 4> Chains(NumValues);
1585     for (unsigned i = 0; i != NumValues; ++i) {
1586       // An aggregate return value cannot wrap around the address space, so
1587       // offsets to its parts don't wrap either.
1588       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1589       Chains[i] = DAG.getStore(
1590           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1591           // FIXME: better loc info would be nice.
1592           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1593     }
1594 
1595     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1596                         MVT::Other, Chains);
1597   } else if (I.getNumOperands() != 0) {
1598     SmallVector<EVT, 4> ValueVTs;
1599     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1600     unsigned NumValues = ValueVTs.size();
1601     if (NumValues) {
1602       SDValue RetOp = getValue(I.getOperand(0));
1603 
1604       const Function *F = I.getParent()->getParent();
1605 
1606       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1607       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1608                                           Attribute::SExt))
1609         ExtendKind = ISD::SIGN_EXTEND;
1610       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1611                                                Attribute::ZExt))
1612         ExtendKind = ISD::ZERO_EXTEND;
1613 
1614       LLVMContext &Context = F->getContext();
1615       bool RetInReg = F->getAttributes().hasAttribute(
1616           AttributeList::ReturnIndex, Attribute::InReg);
1617 
1618       for (unsigned j = 0; j != NumValues; ++j) {
1619         EVT VT = ValueVTs[j];
1620 
1621         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1622           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1623 
1624         CallingConv::ID CC = F->getCallingConv();
1625 
1626         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1627         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1628         SmallVector<SDValue, 4> Parts(NumParts);
1629         getCopyToParts(DAG, getCurSDLoc(),
1630                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1631                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1632 
1633         // 'inreg' on function refers to return value
1634         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1635         if (RetInReg)
1636           Flags.setInReg();
1637 
1638         // Propagate extension type if any
1639         if (ExtendKind == ISD::SIGN_EXTEND)
1640           Flags.setSExt();
1641         else if (ExtendKind == ISD::ZERO_EXTEND)
1642           Flags.setZExt();
1643 
1644         for (unsigned i = 0; i < NumParts; ++i) {
1645           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1646                                         VT, /*isfixed=*/true, 0, 0));
1647           OutVals.push_back(Parts[i]);
1648         }
1649       }
1650     }
1651   }
1652 
1653   // Push in swifterror virtual register as the last element of Outs. This makes
1654   // sure swifterror virtual register will be returned in the swifterror
1655   // physical register.
1656   const Function *F = I.getParent()->getParent();
1657   if (TLI.supportSwiftError() &&
1658       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1659     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1660     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1661     Flags.setSwiftError();
1662     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1663                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1664                                   true /*isfixed*/, 1 /*origidx*/,
1665                                   0 /*partOffs*/));
1666     // Create SDNode for the swifterror virtual register.
1667     OutVals.push_back(
1668         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1669                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1670                         EVT(TLI.getPointerTy(DL))));
1671   }
1672 
1673   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1674   CallingConv::ID CallConv =
1675     DAG.getMachineFunction().getFunction().getCallingConv();
1676   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1677       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1678 
1679   // Verify that the target's LowerReturn behaved as expected.
1680   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1681          "LowerReturn didn't return a valid chain!");
1682 
1683   // Update the DAG with the new chain value resulting from return lowering.
1684   DAG.setRoot(Chain);
1685 }
1686 
1687 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1688 /// created for it, emit nodes to copy the value into the virtual
1689 /// registers.
1690 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1691   // Skip empty types
1692   if (V->getType()->isEmptyTy())
1693     return;
1694 
1695   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1696   if (VMI != FuncInfo.ValueMap.end()) {
1697     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1698     CopyValueToVirtualRegister(V, VMI->second);
1699   }
1700 }
1701 
1702 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1703 /// the current basic block, add it to ValueMap now so that we'll get a
1704 /// CopyTo/FromReg.
1705 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1706   // No need to export constants.
1707   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1708 
1709   // Already exported?
1710   if (FuncInfo.isExportedInst(V)) return;
1711 
1712   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1713   CopyValueToVirtualRegister(V, Reg);
1714 }
1715 
1716 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1717                                                      const BasicBlock *FromBB) {
1718   // The operands of the setcc have to be in this block.  We don't know
1719   // how to export them from some other block.
1720   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1721     // Can export from current BB.
1722     if (VI->getParent() == FromBB)
1723       return true;
1724 
1725     // Is already exported, noop.
1726     return FuncInfo.isExportedInst(V);
1727   }
1728 
1729   // If this is an argument, we can export it if the BB is the entry block or
1730   // if it is already exported.
1731   if (isa<Argument>(V)) {
1732     if (FromBB == &FromBB->getParent()->getEntryBlock())
1733       return true;
1734 
1735     // Otherwise, can only export this if it is already exported.
1736     return FuncInfo.isExportedInst(V);
1737   }
1738 
1739   // Otherwise, constants can always be exported.
1740   return true;
1741 }
1742 
1743 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1744 BranchProbability
1745 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1746                                         const MachineBasicBlock *Dst) const {
1747   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1748   const BasicBlock *SrcBB = Src->getBasicBlock();
1749   const BasicBlock *DstBB = Dst->getBasicBlock();
1750   if (!BPI) {
1751     // If BPI is not available, set the default probability as 1 / N, where N is
1752     // the number of successors.
1753     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1754     return BranchProbability(1, SuccSize);
1755   }
1756   return BPI->getEdgeProbability(SrcBB, DstBB);
1757 }
1758 
1759 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1760                                                MachineBasicBlock *Dst,
1761                                                BranchProbability Prob) {
1762   if (!FuncInfo.BPI)
1763     Src->addSuccessorWithoutProb(Dst);
1764   else {
1765     if (Prob.isUnknown())
1766       Prob = getEdgeProbability(Src, Dst);
1767     Src->addSuccessor(Dst, Prob);
1768   }
1769 }
1770 
1771 static bool InBlock(const Value *V, const BasicBlock *BB) {
1772   if (const Instruction *I = dyn_cast<Instruction>(V))
1773     return I->getParent() == BB;
1774   return true;
1775 }
1776 
1777 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1778 /// This function emits a branch and is used at the leaves of an OR or an
1779 /// AND operator tree.
1780 void
1781 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1782                                                   MachineBasicBlock *TBB,
1783                                                   MachineBasicBlock *FBB,
1784                                                   MachineBasicBlock *CurBB,
1785                                                   MachineBasicBlock *SwitchBB,
1786                                                   BranchProbability TProb,
1787                                                   BranchProbability FProb,
1788                                                   bool InvertCond) {
1789   const BasicBlock *BB = CurBB->getBasicBlock();
1790 
1791   // If the leaf of the tree is a comparison, merge the condition into
1792   // the caseblock.
1793   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1794     // The operands of the cmp have to be in this block.  We don't know
1795     // how to export them from some other block.  If this is the first block
1796     // of the sequence, no exporting is needed.
1797     if (CurBB == SwitchBB ||
1798         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1799          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1800       ISD::CondCode Condition;
1801       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1802         ICmpInst::Predicate Pred =
1803             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1804         Condition = getICmpCondCode(Pred);
1805       } else {
1806         const FCmpInst *FC = cast<FCmpInst>(Cond);
1807         FCmpInst::Predicate Pred =
1808             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1809         Condition = getFCmpCondCode(Pred);
1810         if (TM.Options.NoNaNsFPMath)
1811           Condition = getFCmpCodeWithoutNaN(Condition);
1812       }
1813 
1814       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1815                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1816       SwitchCases.push_back(CB);
1817       return;
1818     }
1819   }
1820 
1821   // Create a CaseBlock record representing this branch.
1822   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1823   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1824                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1825   SwitchCases.push_back(CB);
1826 }
1827 
1828 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1829                                                MachineBasicBlock *TBB,
1830                                                MachineBasicBlock *FBB,
1831                                                MachineBasicBlock *CurBB,
1832                                                MachineBasicBlock *SwitchBB,
1833                                                Instruction::BinaryOps Opc,
1834                                                BranchProbability TProb,
1835                                                BranchProbability FProb,
1836                                                bool InvertCond) {
1837   // Skip over not part of the tree and remember to invert op and operands at
1838   // next level.
1839   Value *NotCond;
1840   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
1841       InBlock(NotCond, CurBB->getBasicBlock())) {
1842     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1843                          !InvertCond);
1844     return;
1845   }
1846 
1847   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1848   // Compute the effective opcode for Cond, taking into account whether it needs
1849   // to be inverted, e.g.
1850   //   and (not (or A, B)), C
1851   // gets lowered as
1852   //   and (and (not A, not B), C)
1853   unsigned BOpc = 0;
1854   if (BOp) {
1855     BOpc = BOp->getOpcode();
1856     if (InvertCond) {
1857       if (BOpc == Instruction::And)
1858         BOpc = Instruction::Or;
1859       else if (BOpc == Instruction::Or)
1860         BOpc = Instruction::And;
1861     }
1862   }
1863 
1864   // If this node is not part of the or/and tree, emit it as a branch.
1865   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1866       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1867       BOp->getParent() != CurBB->getBasicBlock() ||
1868       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1869       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1870     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1871                                  TProb, FProb, InvertCond);
1872     return;
1873   }
1874 
1875   //  Create TmpBB after CurBB.
1876   MachineFunction::iterator BBI(CurBB);
1877   MachineFunction &MF = DAG.getMachineFunction();
1878   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1879   CurBB->getParent()->insert(++BBI, TmpBB);
1880 
1881   if (Opc == Instruction::Or) {
1882     // Codegen X | Y as:
1883     // BB1:
1884     //   jmp_if_X TBB
1885     //   jmp TmpBB
1886     // TmpBB:
1887     //   jmp_if_Y TBB
1888     //   jmp FBB
1889     //
1890 
1891     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1892     // The requirement is that
1893     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1894     //     = TrueProb for original BB.
1895     // Assuming the original probabilities are A and B, one choice is to set
1896     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1897     // A/(1+B) and 2B/(1+B). This choice assumes that
1898     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1899     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1900     // TmpBB, but the math is more complicated.
1901 
1902     auto NewTrueProb = TProb / 2;
1903     auto NewFalseProb = TProb / 2 + FProb;
1904     // Emit the LHS condition.
1905     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1906                          NewTrueProb, NewFalseProb, InvertCond);
1907 
1908     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1909     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1910     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1911     // Emit the RHS condition into TmpBB.
1912     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1913                          Probs[0], Probs[1], InvertCond);
1914   } else {
1915     assert(Opc == Instruction::And && "Unknown merge op!");
1916     // Codegen X & Y as:
1917     // BB1:
1918     //   jmp_if_X TmpBB
1919     //   jmp FBB
1920     // TmpBB:
1921     //   jmp_if_Y TBB
1922     //   jmp FBB
1923     //
1924     //  This requires creation of TmpBB after CurBB.
1925 
1926     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1927     // The requirement is that
1928     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1929     //     = FalseProb for original BB.
1930     // Assuming the original probabilities are A and B, one choice is to set
1931     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1932     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1933     // TrueProb for BB1 * FalseProb for TmpBB.
1934 
1935     auto NewTrueProb = TProb + FProb / 2;
1936     auto NewFalseProb = FProb / 2;
1937     // Emit the LHS condition.
1938     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1939                          NewTrueProb, NewFalseProb, InvertCond);
1940 
1941     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1942     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1943     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1944     // Emit the RHS condition into TmpBB.
1945     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1946                          Probs[0], Probs[1], InvertCond);
1947   }
1948 }
1949 
1950 /// If the set of cases should be emitted as a series of branches, return true.
1951 /// If we should emit this as a bunch of and/or'd together conditions, return
1952 /// false.
1953 bool
1954 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1955   if (Cases.size() != 2) return true;
1956 
1957   // If this is two comparisons of the same values or'd or and'd together, they
1958   // will get folded into a single comparison, so don't emit two blocks.
1959   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1960        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1961       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1962        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1963     return false;
1964   }
1965 
1966   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1967   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1968   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1969       Cases[0].CC == Cases[1].CC &&
1970       isa<Constant>(Cases[0].CmpRHS) &&
1971       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1972     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1973       return false;
1974     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1975       return false;
1976   }
1977 
1978   return true;
1979 }
1980 
1981 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1982   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1983 
1984   // Update machine-CFG edges.
1985   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1986 
1987   if (I.isUnconditional()) {
1988     // Update machine-CFG edges.
1989     BrMBB->addSuccessor(Succ0MBB);
1990 
1991     // If this is not a fall-through branch or optimizations are switched off,
1992     // emit the branch.
1993     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1994       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1995                               MVT::Other, getControlRoot(),
1996                               DAG.getBasicBlock(Succ0MBB)));
1997 
1998     return;
1999   }
2000 
2001   // If this condition is one of the special cases we handle, do special stuff
2002   // now.
2003   const Value *CondVal = I.getCondition();
2004   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2005 
2006   // If this is a series of conditions that are or'd or and'd together, emit
2007   // this as a sequence of branches instead of setcc's with and/or operations.
2008   // As long as jumps are not expensive, this should improve performance.
2009   // For example, instead of something like:
2010   //     cmp A, B
2011   //     C = seteq
2012   //     cmp D, E
2013   //     F = setle
2014   //     or C, F
2015   //     jnz foo
2016   // Emit:
2017   //     cmp A, B
2018   //     je foo
2019   //     cmp D, E
2020   //     jle foo
2021   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2022     Instruction::BinaryOps Opcode = BOp->getOpcode();
2023     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2024         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2025         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2026       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2027                            Opcode,
2028                            getEdgeProbability(BrMBB, Succ0MBB),
2029                            getEdgeProbability(BrMBB, Succ1MBB),
2030                            /*InvertCond=*/false);
2031       // If the compares in later blocks need to use values not currently
2032       // exported from this block, export them now.  This block should always
2033       // be the first entry.
2034       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2035 
2036       // Allow some cases to be rejected.
2037       if (ShouldEmitAsBranches(SwitchCases)) {
2038         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2039           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2040           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2041         }
2042 
2043         // Emit the branch for this block.
2044         visitSwitchCase(SwitchCases[0], BrMBB);
2045         SwitchCases.erase(SwitchCases.begin());
2046         return;
2047       }
2048 
2049       // Okay, we decided not to do this, remove any inserted MBB's and clear
2050       // SwitchCases.
2051       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2052         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2053 
2054       SwitchCases.clear();
2055     }
2056   }
2057 
2058   // Create a CaseBlock record representing this branch.
2059   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2060                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2061 
2062   // Use visitSwitchCase to actually insert the fast branch sequence for this
2063   // cond branch.
2064   visitSwitchCase(CB, BrMBB);
2065 }
2066 
2067 /// visitSwitchCase - Emits the necessary code to represent a single node in
2068 /// the binary search tree resulting from lowering a switch instruction.
2069 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2070                                           MachineBasicBlock *SwitchBB) {
2071   SDValue Cond;
2072   SDValue CondLHS = getValue(CB.CmpLHS);
2073   SDLoc dl = CB.DL;
2074 
2075   // Build the setcc now.
2076   if (!CB.CmpMHS) {
2077     // Fold "(X == true)" to X and "(X == false)" to !X to
2078     // handle common cases produced by branch lowering.
2079     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2080         CB.CC == ISD::SETEQ)
2081       Cond = CondLHS;
2082     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2083              CB.CC == ISD::SETEQ) {
2084       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2085       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2086     } else
2087       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2088   } else {
2089     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2090 
2091     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2092     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2093 
2094     SDValue CmpOp = getValue(CB.CmpMHS);
2095     EVT VT = CmpOp.getValueType();
2096 
2097     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2098       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2099                           ISD::SETLE);
2100     } else {
2101       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2102                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2103       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2104                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2105     }
2106   }
2107 
2108   // Update successor info
2109   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2110   // TrueBB and FalseBB are always different unless the incoming IR is
2111   // degenerate. This only happens when running llc on weird IR.
2112   if (CB.TrueBB != CB.FalseBB)
2113     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2114   SwitchBB->normalizeSuccProbs();
2115 
2116   // If the lhs block is the next block, invert the condition so that we can
2117   // fall through to the lhs instead of the rhs block.
2118   if (CB.TrueBB == NextBlock(SwitchBB)) {
2119     std::swap(CB.TrueBB, CB.FalseBB);
2120     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2121     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2122   }
2123 
2124   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2125                                MVT::Other, getControlRoot(), Cond,
2126                                DAG.getBasicBlock(CB.TrueBB));
2127 
2128   // Insert the false branch. Do this even if it's a fall through branch,
2129   // this makes it easier to do DAG optimizations which require inverting
2130   // the branch condition.
2131   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2132                        DAG.getBasicBlock(CB.FalseBB));
2133 
2134   DAG.setRoot(BrCond);
2135 }
2136 
2137 /// visitJumpTable - Emit JumpTable node in the current MBB
2138 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2139   // Emit the code for the jump table
2140   assert(JT.Reg != -1U && "Should lower JT Header first!");
2141   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2142   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2143                                      JT.Reg, PTy);
2144   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2145   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2146                                     MVT::Other, Index.getValue(1),
2147                                     Table, Index);
2148   DAG.setRoot(BrJumpTable);
2149 }
2150 
2151 /// visitJumpTableHeader - This function emits necessary code to produce index
2152 /// in the JumpTable from switch case.
2153 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2154                                                JumpTableHeader &JTH,
2155                                                MachineBasicBlock *SwitchBB) {
2156   SDLoc dl = getCurSDLoc();
2157 
2158   // Subtract the lowest switch case value from the value being switched on and
2159   // conditional branch to default mbb if the result is greater than the
2160   // difference between smallest and largest cases.
2161   SDValue SwitchOp = getValue(JTH.SValue);
2162   EVT VT = SwitchOp.getValueType();
2163   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2164                             DAG.getConstant(JTH.First, dl, VT));
2165 
2166   // The SDNode we just created, which holds the value being switched on minus
2167   // the smallest case value, needs to be copied to a virtual register so it
2168   // can be used as an index into the jump table in a subsequent basic block.
2169   // This value may be smaller or larger than the target's pointer type, and
2170   // therefore require extension or truncating.
2171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2172   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2173 
2174   unsigned JumpTableReg =
2175       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2176   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2177                                     JumpTableReg, SwitchOp);
2178   JT.Reg = JumpTableReg;
2179 
2180   // Emit the range check for the jump table, and branch to the default block
2181   // for the switch statement if the value being switched on exceeds the largest
2182   // case in the switch.
2183   SDValue CMP = DAG.getSetCC(
2184       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2185                                  Sub.getValueType()),
2186       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2187 
2188   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2189                                MVT::Other, CopyTo, CMP,
2190                                DAG.getBasicBlock(JT.Default));
2191 
2192   // Avoid emitting unnecessary branches to the next block.
2193   if (JT.MBB != NextBlock(SwitchBB))
2194     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2195                          DAG.getBasicBlock(JT.MBB));
2196 
2197   DAG.setRoot(BrCond);
2198 }
2199 
2200 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2201 /// variable if there exists one.
2202 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2203                                  SDValue &Chain) {
2204   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2205   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2206   MachineFunction &MF = DAG.getMachineFunction();
2207   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2208   MachineSDNode *Node =
2209       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2210   if (Global) {
2211     MachinePointerInfo MPInfo(Global);
2212     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2213                  MachineMemOperand::MODereferenceable;
2214     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2215         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2216     DAG.setNodeMemRefs(Node, {MemRef});
2217   }
2218   return SDValue(Node, 0);
2219 }
2220 
2221 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2222 /// tail spliced into a stack protector check success bb.
2223 ///
2224 /// For a high level explanation of how this fits into the stack protector
2225 /// generation see the comment on the declaration of class
2226 /// StackProtectorDescriptor.
2227 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2228                                                   MachineBasicBlock *ParentBB) {
2229 
2230   // First create the loads to the guard/stack slot for the comparison.
2231   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2232   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2233 
2234   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2235   int FI = MFI.getStackProtectorIndex();
2236 
2237   SDValue Guard;
2238   SDLoc dl = getCurSDLoc();
2239   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2240   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2241   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2242 
2243   // Generate code to load the content of the guard slot.
2244   SDValue GuardVal = DAG.getLoad(
2245       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2246       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2247       MachineMemOperand::MOVolatile);
2248 
2249   if (TLI.useStackGuardXorFP())
2250     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2251 
2252   // Retrieve guard check function, nullptr if instrumentation is inlined.
2253   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2254     // The target provides a guard check function to validate the guard value.
2255     // Generate a call to that function with the content of the guard slot as
2256     // argument.
2257     auto *Fn = cast<Function>(GuardCheck);
2258     FunctionType *FnTy = Fn->getFunctionType();
2259     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2260 
2261     TargetLowering::ArgListTy Args;
2262     TargetLowering::ArgListEntry Entry;
2263     Entry.Node = GuardVal;
2264     Entry.Ty = FnTy->getParamType(0);
2265     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2266       Entry.IsInReg = true;
2267     Args.push_back(Entry);
2268 
2269     TargetLowering::CallLoweringInfo CLI(DAG);
2270     CLI.setDebugLoc(getCurSDLoc())
2271       .setChain(DAG.getEntryNode())
2272       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2273                  getValue(GuardCheck), std::move(Args));
2274 
2275     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2276     DAG.setRoot(Result.second);
2277     return;
2278   }
2279 
2280   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2281   // Otherwise, emit a volatile load to retrieve the stack guard value.
2282   SDValue Chain = DAG.getEntryNode();
2283   if (TLI.useLoadStackGuardNode()) {
2284     Guard = getLoadStackGuard(DAG, dl, Chain);
2285   } else {
2286     const Value *IRGuard = TLI.getSDagStackGuard(M);
2287     SDValue GuardPtr = getValue(IRGuard);
2288 
2289     Guard =
2290         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2291                     Align, MachineMemOperand::MOVolatile);
2292   }
2293 
2294   // Perform the comparison via a subtract/getsetcc.
2295   EVT VT = Guard.getValueType();
2296   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2297 
2298   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2299                                                         *DAG.getContext(),
2300                                                         Sub.getValueType()),
2301                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2302 
2303   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2304   // branch to failure MBB.
2305   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2306                                MVT::Other, GuardVal.getOperand(0),
2307                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2308   // Otherwise branch to success MBB.
2309   SDValue Br = DAG.getNode(ISD::BR, dl,
2310                            MVT::Other, BrCond,
2311                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2312 
2313   DAG.setRoot(Br);
2314 }
2315 
2316 /// Codegen the failure basic block for a stack protector check.
2317 ///
2318 /// A failure stack protector machine basic block consists simply of a call to
2319 /// __stack_chk_fail().
2320 ///
2321 /// For a high level explanation of how this fits into the stack protector
2322 /// generation see the comment on the declaration of class
2323 /// StackProtectorDescriptor.
2324 void
2325 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2326   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2327   SDValue Chain =
2328       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2329                       None, false, getCurSDLoc(), false, false).second;
2330   DAG.setRoot(Chain);
2331 }
2332 
2333 /// visitBitTestHeader - This function emits necessary code to produce value
2334 /// suitable for "bit tests"
2335 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2336                                              MachineBasicBlock *SwitchBB) {
2337   SDLoc dl = getCurSDLoc();
2338 
2339   // Subtract the minimum value
2340   SDValue SwitchOp = getValue(B.SValue);
2341   EVT VT = SwitchOp.getValueType();
2342   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2343                             DAG.getConstant(B.First, dl, VT));
2344 
2345   // Check range
2346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2347   SDValue RangeCmp = DAG.getSetCC(
2348       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2349                                  Sub.getValueType()),
2350       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2351 
2352   // Determine the type of the test operands.
2353   bool UsePtrType = false;
2354   if (!TLI.isTypeLegal(VT))
2355     UsePtrType = true;
2356   else {
2357     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2358       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2359         // Switch table case range are encoded into series of masks.
2360         // Just use pointer type, it's guaranteed to fit.
2361         UsePtrType = true;
2362         break;
2363       }
2364   }
2365   if (UsePtrType) {
2366     VT = TLI.getPointerTy(DAG.getDataLayout());
2367     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2368   }
2369 
2370   B.RegVT = VT.getSimpleVT();
2371   B.Reg = FuncInfo.CreateReg(B.RegVT);
2372   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2373 
2374   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2375 
2376   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2377   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2378   SwitchBB->normalizeSuccProbs();
2379 
2380   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2381                                 MVT::Other, CopyTo, RangeCmp,
2382                                 DAG.getBasicBlock(B.Default));
2383 
2384   // Avoid emitting unnecessary branches to the next block.
2385   if (MBB != NextBlock(SwitchBB))
2386     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2387                           DAG.getBasicBlock(MBB));
2388 
2389   DAG.setRoot(BrRange);
2390 }
2391 
2392 /// visitBitTestCase - this function produces one "bit test"
2393 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2394                                            MachineBasicBlock* NextMBB,
2395                                            BranchProbability BranchProbToNext,
2396                                            unsigned Reg,
2397                                            BitTestCase &B,
2398                                            MachineBasicBlock *SwitchBB) {
2399   SDLoc dl = getCurSDLoc();
2400   MVT VT = BB.RegVT;
2401   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2402   SDValue Cmp;
2403   unsigned PopCount = countPopulation(B.Mask);
2404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2405   if (PopCount == 1) {
2406     // Testing for a single bit; just compare the shift count with what it
2407     // would need to be to shift a 1 bit in that position.
2408     Cmp = DAG.getSetCC(
2409         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2410         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2411         ISD::SETEQ);
2412   } else if (PopCount == BB.Range) {
2413     // There is only one zero bit in the range, test for it directly.
2414     Cmp = DAG.getSetCC(
2415         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2416         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2417         ISD::SETNE);
2418   } else {
2419     // Make desired shift
2420     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2421                                     DAG.getConstant(1, dl, VT), ShiftOp);
2422 
2423     // Emit bit tests and jumps
2424     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2425                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2426     Cmp = DAG.getSetCC(
2427         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2428         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2429   }
2430 
2431   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2432   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2433   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2434   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2435   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2436   // one as they are relative probabilities (and thus work more like weights),
2437   // and hence we need to normalize them to let the sum of them become one.
2438   SwitchBB->normalizeSuccProbs();
2439 
2440   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2441                               MVT::Other, getControlRoot(),
2442                               Cmp, DAG.getBasicBlock(B.TargetBB));
2443 
2444   // Avoid emitting unnecessary branches to the next block.
2445   if (NextMBB != NextBlock(SwitchBB))
2446     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2447                         DAG.getBasicBlock(NextMBB));
2448 
2449   DAG.setRoot(BrAnd);
2450 }
2451 
2452 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2453   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2454 
2455   // Retrieve successors. Look through artificial IR level blocks like
2456   // catchswitch for successors.
2457   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2458   const BasicBlock *EHPadBB = I.getSuccessor(1);
2459 
2460   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2461   // have to do anything here to lower funclet bundles.
2462   assert(!I.hasOperandBundlesOtherThan(
2463              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2464          "Cannot lower invokes with arbitrary operand bundles yet!");
2465 
2466   const Value *Callee(I.getCalledValue());
2467   const Function *Fn = dyn_cast<Function>(Callee);
2468   if (isa<InlineAsm>(Callee))
2469     visitInlineAsm(&I);
2470   else if (Fn && Fn->isIntrinsic()) {
2471     switch (Fn->getIntrinsicID()) {
2472     default:
2473       llvm_unreachable("Cannot invoke this intrinsic");
2474     case Intrinsic::donothing:
2475       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2476       break;
2477     case Intrinsic::experimental_patchpoint_void:
2478     case Intrinsic::experimental_patchpoint_i64:
2479       visitPatchpoint(&I, EHPadBB);
2480       break;
2481     case Intrinsic::experimental_gc_statepoint:
2482       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2483       break;
2484     }
2485   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2486     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2487     // Eventually we will support lowering the @llvm.experimental.deoptimize
2488     // intrinsic, and right now there are no plans to support other intrinsics
2489     // with deopt state.
2490     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2491   } else {
2492     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2493   }
2494 
2495   // If the value of the invoke is used outside of its defining block, make it
2496   // available as a virtual register.
2497   // We already took care of the exported value for the statepoint instruction
2498   // during call to the LowerStatepoint.
2499   if (!isStatepoint(I)) {
2500     CopyToExportRegsIfNeeded(&I);
2501   }
2502 
2503   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2504   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2505   BranchProbability EHPadBBProb =
2506       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2507           : BranchProbability::getZero();
2508   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2509 
2510   // Update successor info.
2511   addSuccessorWithProb(InvokeMBB, Return);
2512   for (auto &UnwindDest : UnwindDests) {
2513     UnwindDest.first->setIsEHPad();
2514     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2515   }
2516   InvokeMBB->normalizeSuccProbs();
2517 
2518   // Drop into normal successor.
2519   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2520                           MVT::Other, getControlRoot(),
2521                           DAG.getBasicBlock(Return)));
2522 }
2523 
2524 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2525   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2526 }
2527 
2528 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2529   assert(FuncInfo.MBB->isEHPad() &&
2530          "Call to landingpad not in landing pad!");
2531 
2532   // If there aren't registers to copy the values into (e.g., during SjLj
2533   // exceptions), then don't bother to create these DAG nodes.
2534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2535   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2536   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2537       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2538     return;
2539 
2540   // If landingpad's return type is token type, we don't create DAG nodes
2541   // for its exception pointer and selector value. The extraction of exception
2542   // pointer or selector value from token type landingpads is not currently
2543   // supported.
2544   if (LP.getType()->isTokenTy())
2545     return;
2546 
2547   SmallVector<EVT, 2> ValueVTs;
2548   SDLoc dl = getCurSDLoc();
2549   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2550   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2551 
2552   // Get the two live-in registers as SDValues. The physregs have already been
2553   // copied into virtual registers.
2554   SDValue Ops[2];
2555   if (FuncInfo.ExceptionPointerVirtReg) {
2556     Ops[0] = DAG.getZExtOrTrunc(
2557         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2558                            FuncInfo.ExceptionPointerVirtReg,
2559                            TLI.getPointerTy(DAG.getDataLayout())),
2560         dl, ValueVTs[0]);
2561   } else {
2562     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2563   }
2564   Ops[1] = DAG.getZExtOrTrunc(
2565       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2566                          FuncInfo.ExceptionSelectorVirtReg,
2567                          TLI.getPointerTy(DAG.getDataLayout())),
2568       dl, ValueVTs[1]);
2569 
2570   // Merge into one.
2571   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2572                             DAG.getVTList(ValueVTs), Ops);
2573   setValue(&LP, Res);
2574 }
2575 
2576 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2577 #ifndef NDEBUG
2578   for (const CaseCluster &CC : Clusters)
2579     assert(CC.Low == CC.High && "Input clusters must be single-case");
2580 #endif
2581 
2582   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2583     return a.Low->getValue().slt(b.Low->getValue());
2584   });
2585 
2586   // Merge adjacent clusters with the same destination.
2587   const unsigned N = Clusters.size();
2588   unsigned DstIndex = 0;
2589   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2590     CaseCluster &CC = Clusters[SrcIndex];
2591     const ConstantInt *CaseVal = CC.Low;
2592     MachineBasicBlock *Succ = CC.MBB;
2593 
2594     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2595         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2596       // If this case has the same successor and is a neighbour, merge it into
2597       // the previous cluster.
2598       Clusters[DstIndex - 1].High = CaseVal;
2599       Clusters[DstIndex - 1].Prob += CC.Prob;
2600     } else {
2601       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2602                    sizeof(Clusters[SrcIndex]));
2603     }
2604   }
2605   Clusters.resize(DstIndex);
2606 }
2607 
2608 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2609                                            MachineBasicBlock *Last) {
2610   // Update JTCases.
2611   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2612     if (JTCases[i].first.HeaderBB == First)
2613       JTCases[i].first.HeaderBB = Last;
2614 
2615   // Update BitTestCases.
2616   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2617     if (BitTestCases[i].Parent == First)
2618       BitTestCases[i].Parent = Last;
2619 }
2620 
2621 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2622   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2623 
2624   // Update machine-CFG edges with unique successors.
2625   SmallSet<BasicBlock*, 32> Done;
2626   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2627     BasicBlock *BB = I.getSuccessor(i);
2628     bool Inserted = Done.insert(BB).second;
2629     if (!Inserted)
2630         continue;
2631 
2632     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2633     addSuccessorWithProb(IndirectBrMBB, Succ);
2634   }
2635   IndirectBrMBB->normalizeSuccProbs();
2636 
2637   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2638                           MVT::Other, getControlRoot(),
2639                           getValue(I.getAddress())));
2640 }
2641 
2642 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2643   if (!DAG.getTarget().Options.TrapUnreachable)
2644     return;
2645 
2646   // We may be able to ignore unreachable behind a noreturn call.
2647   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2648     const BasicBlock &BB = *I.getParent();
2649     if (&I != &BB.front()) {
2650       BasicBlock::const_iterator PredI =
2651         std::prev(BasicBlock::const_iterator(&I));
2652       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2653         if (Call->doesNotReturn())
2654           return;
2655       }
2656     }
2657   }
2658 
2659   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2660 }
2661 
2662 void SelectionDAGBuilder::visitFSub(const User &I) {
2663   // -0.0 - X --> fneg
2664   Type *Ty = I.getType();
2665   if (isa<Constant>(I.getOperand(0)) &&
2666       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2667     SDValue Op2 = getValue(I.getOperand(1));
2668     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2669                              Op2.getValueType(), Op2));
2670     return;
2671   }
2672 
2673   visitBinary(I, ISD::FSUB);
2674 }
2675 
2676 /// Checks if the given instruction performs a vector reduction, in which case
2677 /// we have the freedom to alter the elements in the result as long as the
2678 /// reduction of them stays unchanged.
2679 static bool isVectorReductionOp(const User *I) {
2680   const Instruction *Inst = dyn_cast<Instruction>(I);
2681   if (!Inst || !Inst->getType()->isVectorTy())
2682     return false;
2683 
2684   auto OpCode = Inst->getOpcode();
2685   switch (OpCode) {
2686   case Instruction::Add:
2687   case Instruction::Mul:
2688   case Instruction::And:
2689   case Instruction::Or:
2690   case Instruction::Xor:
2691     break;
2692   case Instruction::FAdd:
2693   case Instruction::FMul:
2694     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2695       if (FPOp->getFastMathFlags().isFast())
2696         break;
2697     LLVM_FALLTHROUGH;
2698   default:
2699     return false;
2700   }
2701 
2702   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2703   // Ensure the reduction size is a power of 2.
2704   if (!isPowerOf2_32(ElemNum))
2705     return false;
2706 
2707   unsigned ElemNumToReduce = ElemNum;
2708 
2709   // Do DFS search on the def-use chain from the given instruction. We only
2710   // allow four kinds of operations during the search until we reach the
2711   // instruction that extracts the first element from the vector:
2712   //
2713   //   1. The reduction operation of the same opcode as the given instruction.
2714   //
2715   //   2. PHI node.
2716   //
2717   //   3. ShuffleVector instruction together with a reduction operation that
2718   //      does a partial reduction.
2719   //
2720   //   4. ExtractElement that extracts the first element from the vector, and we
2721   //      stop searching the def-use chain here.
2722   //
2723   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2724   // from 1-3 to the stack to continue the DFS. The given instruction is not
2725   // a reduction operation if we meet any other instructions other than those
2726   // listed above.
2727 
2728   SmallVector<const User *, 16> UsersToVisit{Inst};
2729   SmallPtrSet<const User *, 16> Visited;
2730   bool ReduxExtracted = false;
2731 
2732   while (!UsersToVisit.empty()) {
2733     auto User = UsersToVisit.back();
2734     UsersToVisit.pop_back();
2735     if (!Visited.insert(User).second)
2736       continue;
2737 
2738     for (const auto &U : User->users()) {
2739       auto Inst = dyn_cast<Instruction>(U);
2740       if (!Inst)
2741         return false;
2742 
2743       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2744         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2745           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2746             return false;
2747         UsersToVisit.push_back(U);
2748       } else if (const ShuffleVectorInst *ShufInst =
2749                      dyn_cast<ShuffleVectorInst>(U)) {
2750         // Detect the following pattern: A ShuffleVector instruction together
2751         // with a reduction that do partial reduction on the first and second
2752         // ElemNumToReduce / 2 elements, and store the result in
2753         // ElemNumToReduce / 2 elements in another vector.
2754 
2755         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2756         if (ResultElements < ElemNum)
2757           return false;
2758 
2759         if (ElemNumToReduce == 1)
2760           return false;
2761         if (!isa<UndefValue>(U->getOperand(1)))
2762           return false;
2763         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2764           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2765             return false;
2766         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2767           if (ShufInst->getMaskValue(i) != -1)
2768             return false;
2769 
2770         // There is only one user of this ShuffleVector instruction, which
2771         // must be a reduction operation.
2772         if (!U->hasOneUse())
2773           return false;
2774 
2775         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2776         if (!U2 || U2->getOpcode() != OpCode)
2777           return false;
2778 
2779         // Check operands of the reduction operation.
2780         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2781             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2782           UsersToVisit.push_back(U2);
2783           ElemNumToReduce /= 2;
2784         } else
2785           return false;
2786       } else if (isa<ExtractElementInst>(U)) {
2787         // At this moment we should have reduced all elements in the vector.
2788         if (ElemNumToReduce != 1)
2789           return false;
2790 
2791         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2792         if (!Val || !Val->isZero())
2793           return false;
2794 
2795         ReduxExtracted = true;
2796       } else
2797         return false;
2798     }
2799   }
2800   return ReduxExtracted;
2801 }
2802 
2803 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2804   SDNodeFlags Flags;
2805 
2806   SDValue Op = getValue(I.getOperand(0));
2807   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2808                                     Op, Flags);
2809   setValue(&I, UnNodeValue);
2810 }
2811 
2812 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2813   SDNodeFlags Flags;
2814   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2815     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2816     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2817   }
2818   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2819     Flags.setExact(ExactOp->isExact());
2820   }
2821   if (isVectorReductionOp(&I)) {
2822     Flags.setVectorReduction(true);
2823     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2824   }
2825 
2826   SDValue Op1 = getValue(I.getOperand(0));
2827   SDValue Op2 = getValue(I.getOperand(1));
2828   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2829                                      Op1, Op2, Flags);
2830   setValue(&I, BinNodeValue);
2831 }
2832 
2833 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2834   SDValue Op1 = getValue(I.getOperand(0));
2835   SDValue Op2 = getValue(I.getOperand(1));
2836 
2837   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2838       Op1.getValueType(), DAG.getDataLayout());
2839 
2840   // Coerce the shift amount to the right type if we can.
2841   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2842     unsigned ShiftSize = ShiftTy.getSizeInBits();
2843     unsigned Op2Size = Op2.getValueSizeInBits();
2844     SDLoc DL = getCurSDLoc();
2845 
2846     // If the operand is smaller than the shift count type, promote it.
2847     if (ShiftSize > Op2Size)
2848       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2849 
2850     // If the operand is larger than the shift count type but the shift
2851     // count type has enough bits to represent any shift value, truncate
2852     // it now. This is a common case and it exposes the truncate to
2853     // optimization early.
2854     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2855       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2856     // Otherwise we'll need to temporarily settle for some other convenient
2857     // type.  Type legalization will make adjustments once the shiftee is split.
2858     else
2859       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2860   }
2861 
2862   bool nuw = false;
2863   bool nsw = false;
2864   bool exact = false;
2865 
2866   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2867 
2868     if (const OverflowingBinaryOperator *OFBinOp =
2869             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2870       nuw = OFBinOp->hasNoUnsignedWrap();
2871       nsw = OFBinOp->hasNoSignedWrap();
2872     }
2873     if (const PossiblyExactOperator *ExactOp =
2874             dyn_cast<const PossiblyExactOperator>(&I))
2875       exact = ExactOp->isExact();
2876   }
2877   SDNodeFlags Flags;
2878   Flags.setExact(exact);
2879   Flags.setNoSignedWrap(nsw);
2880   Flags.setNoUnsignedWrap(nuw);
2881   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2882                             Flags);
2883   setValue(&I, Res);
2884 }
2885 
2886 void SelectionDAGBuilder::visitSDiv(const User &I) {
2887   SDValue Op1 = getValue(I.getOperand(0));
2888   SDValue Op2 = getValue(I.getOperand(1));
2889 
2890   SDNodeFlags Flags;
2891   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2892                  cast<PossiblyExactOperator>(&I)->isExact());
2893   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2894                            Op2, Flags));
2895 }
2896 
2897 void SelectionDAGBuilder::visitICmp(const User &I) {
2898   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2899   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2900     predicate = IC->getPredicate();
2901   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2902     predicate = ICmpInst::Predicate(IC->getPredicate());
2903   SDValue Op1 = getValue(I.getOperand(0));
2904   SDValue Op2 = getValue(I.getOperand(1));
2905   ISD::CondCode Opcode = getICmpCondCode(predicate);
2906 
2907   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2908                                                         I.getType());
2909   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2910 }
2911 
2912 void SelectionDAGBuilder::visitFCmp(const User &I) {
2913   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2914   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2915     predicate = FC->getPredicate();
2916   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2917     predicate = FCmpInst::Predicate(FC->getPredicate());
2918   SDValue Op1 = getValue(I.getOperand(0));
2919   SDValue Op2 = getValue(I.getOperand(1));
2920 
2921   ISD::CondCode Condition = getFCmpCondCode(predicate);
2922   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2923   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2924     Condition = getFCmpCodeWithoutNaN(Condition);
2925 
2926   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2927                                                         I.getType());
2928   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2929 }
2930 
2931 // Check if the condition of the select has one use or two users that are both
2932 // selects with the same condition.
2933 static bool hasOnlySelectUsers(const Value *Cond) {
2934   return llvm::all_of(Cond->users(), [](const Value *V) {
2935     return isa<SelectInst>(V);
2936   });
2937 }
2938 
2939 void SelectionDAGBuilder::visitSelect(const User &I) {
2940   SmallVector<EVT, 4> ValueVTs;
2941   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2942                   ValueVTs);
2943   unsigned NumValues = ValueVTs.size();
2944   if (NumValues == 0) return;
2945 
2946   SmallVector<SDValue, 4> Values(NumValues);
2947   SDValue Cond     = getValue(I.getOperand(0));
2948   SDValue LHSVal   = getValue(I.getOperand(1));
2949   SDValue RHSVal   = getValue(I.getOperand(2));
2950   auto BaseOps = {Cond};
2951   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2952     ISD::VSELECT : ISD::SELECT;
2953 
2954   // Min/max matching is only viable if all output VTs are the same.
2955   if (is_splat(ValueVTs)) {
2956     EVT VT = ValueVTs[0];
2957     LLVMContext &Ctx = *DAG.getContext();
2958     auto &TLI = DAG.getTargetLoweringInfo();
2959 
2960     // We care about the legality of the operation after it has been type
2961     // legalized.
2962     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2963            VT != TLI.getTypeToTransformTo(Ctx, VT))
2964       VT = TLI.getTypeToTransformTo(Ctx, VT);
2965 
2966     // If the vselect is legal, assume we want to leave this as a vector setcc +
2967     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2968     // min/max is legal on the scalar type.
2969     bool UseScalarMinMax = VT.isVector() &&
2970       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2971 
2972     Value *LHS, *RHS;
2973     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2974     ISD::NodeType Opc = ISD::DELETED_NODE;
2975     switch (SPR.Flavor) {
2976     case SPF_UMAX:    Opc = ISD::UMAX; break;
2977     case SPF_UMIN:    Opc = ISD::UMIN; break;
2978     case SPF_SMAX:    Opc = ISD::SMAX; break;
2979     case SPF_SMIN:    Opc = ISD::SMIN; break;
2980     case SPF_FMINNUM:
2981       switch (SPR.NaNBehavior) {
2982       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2983       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
2984       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2985       case SPNB_RETURNS_ANY: {
2986         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2987           Opc = ISD::FMINNUM;
2988         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
2989           Opc = ISD::FMINIMUM;
2990         else if (UseScalarMinMax)
2991           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2992             ISD::FMINNUM : ISD::FMINIMUM;
2993         break;
2994       }
2995       }
2996       break;
2997     case SPF_FMAXNUM:
2998       switch (SPR.NaNBehavior) {
2999       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3000       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3001       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3002       case SPNB_RETURNS_ANY:
3003 
3004         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3005           Opc = ISD::FMAXNUM;
3006         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3007           Opc = ISD::FMAXIMUM;
3008         else if (UseScalarMinMax)
3009           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3010             ISD::FMAXNUM : ISD::FMAXIMUM;
3011         break;
3012       }
3013       break;
3014     default: break;
3015     }
3016 
3017     if (Opc != ISD::DELETED_NODE &&
3018         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3019          (UseScalarMinMax &&
3020           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3021         // If the underlying comparison instruction is used by any other
3022         // instruction, the consumed instructions won't be destroyed, so it is
3023         // not profitable to convert to a min/max.
3024         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3025       OpCode = Opc;
3026       LHSVal = getValue(LHS);
3027       RHSVal = getValue(RHS);
3028       BaseOps = {};
3029     }
3030   }
3031 
3032   for (unsigned i = 0; i != NumValues; ++i) {
3033     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3034     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3035     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3036     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3037                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3038                             Ops);
3039   }
3040 
3041   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3042                            DAG.getVTList(ValueVTs), Values));
3043 }
3044 
3045 void SelectionDAGBuilder::visitTrunc(const User &I) {
3046   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3047   SDValue N = getValue(I.getOperand(0));
3048   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3049                                                         I.getType());
3050   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3051 }
3052 
3053 void SelectionDAGBuilder::visitZExt(const User &I) {
3054   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3055   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3056   SDValue N = getValue(I.getOperand(0));
3057   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3058                                                         I.getType());
3059   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3060 }
3061 
3062 void SelectionDAGBuilder::visitSExt(const User &I) {
3063   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3064   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3065   SDValue N = getValue(I.getOperand(0));
3066   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3067                                                         I.getType());
3068   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3069 }
3070 
3071 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3072   // FPTrunc is never a no-op cast, no need to check
3073   SDValue N = getValue(I.getOperand(0));
3074   SDLoc dl = getCurSDLoc();
3075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3076   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3077   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3078                            DAG.getTargetConstant(
3079                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3080 }
3081 
3082 void SelectionDAGBuilder::visitFPExt(const User &I) {
3083   // FPExt is never a no-op cast, no need to check
3084   SDValue N = getValue(I.getOperand(0));
3085   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3086                                                         I.getType());
3087   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3088 }
3089 
3090 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3091   // FPToUI is never a no-op cast, no need to check
3092   SDValue N = getValue(I.getOperand(0));
3093   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3094                                                         I.getType());
3095   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3096 }
3097 
3098 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3099   // FPToSI is never a no-op cast, no need to check
3100   SDValue N = getValue(I.getOperand(0));
3101   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3102                                                         I.getType());
3103   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3104 }
3105 
3106 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3107   // UIToFP is never a no-op cast, no need to check
3108   SDValue N = getValue(I.getOperand(0));
3109   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3110                                                         I.getType());
3111   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3112 }
3113 
3114 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3115   // SIToFP is never a no-op cast, no need to check
3116   SDValue N = getValue(I.getOperand(0));
3117   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3118                                                         I.getType());
3119   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3120 }
3121 
3122 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3123   // What to do depends on the size of the integer and the size of the pointer.
3124   // We can either truncate, zero extend, or no-op, accordingly.
3125   SDValue N = getValue(I.getOperand(0));
3126   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3127                                                         I.getType());
3128   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3129 }
3130 
3131 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3132   // What to do depends on the size of the integer and the size of the pointer.
3133   // We can either truncate, zero extend, or no-op, accordingly.
3134   SDValue N = getValue(I.getOperand(0));
3135   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3136                                                         I.getType());
3137   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3138 }
3139 
3140 void SelectionDAGBuilder::visitBitCast(const User &I) {
3141   SDValue N = getValue(I.getOperand(0));
3142   SDLoc dl = getCurSDLoc();
3143   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3144                                                         I.getType());
3145 
3146   // BitCast assures us that source and destination are the same size so this is
3147   // either a BITCAST or a no-op.
3148   if (DestVT != N.getValueType())
3149     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3150                              DestVT, N)); // convert types.
3151   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3152   // might fold any kind of constant expression to an integer constant and that
3153   // is not what we are looking for. Only recognize a bitcast of a genuine
3154   // constant integer as an opaque constant.
3155   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3156     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3157                                  /*isOpaque*/true));
3158   else
3159     setValue(&I, N);            // noop cast.
3160 }
3161 
3162 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3163   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3164   const Value *SV = I.getOperand(0);
3165   SDValue N = getValue(SV);
3166   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3167 
3168   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3169   unsigned DestAS = I.getType()->getPointerAddressSpace();
3170 
3171   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3172     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3173 
3174   setValue(&I, N);
3175 }
3176 
3177 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3178   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3179   SDValue InVec = getValue(I.getOperand(0));
3180   SDValue InVal = getValue(I.getOperand(1));
3181   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3182                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3183   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3184                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3185                            InVec, InVal, InIdx));
3186 }
3187 
3188 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3189   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3190   SDValue InVec = getValue(I.getOperand(0));
3191   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3192                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3193   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3194                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3195                            InVec, InIdx));
3196 }
3197 
3198 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3199   SDValue Src1 = getValue(I.getOperand(0));
3200   SDValue Src2 = getValue(I.getOperand(1));
3201   SDLoc DL = getCurSDLoc();
3202 
3203   SmallVector<int, 8> Mask;
3204   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3205   unsigned MaskNumElts = Mask.size();
3206 
3207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3208   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3209   EVT SrcVT = Src1.getValueType();
3210   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3211 
3212   if (SrcNumElts == MaskNumElts) {
3213     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3214     return;
3215   }
3216 
3217   // Normalize the shuffle vector since mask and vector length don't match.
3218   if (SrcNumElts < MaskNumElts) {
3219     // Mask is longer than the source vectors. We can use concatenate vector to
3220     // make the mask and vectors lengths match.
3221 
3222     if (MaskNumElts % SrcNumElts == 0) {
3223       // Mask length is a multiple of the source vector length.
3224       // Check if the shuffle is some kind of concatenation of the input
3225       // vectors.
3226       unsigned NumConcat = MaskNumElts / SrcNumElts;
3227       bool IsConcat = true;
3228       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3229       for (unsigned i = 0; i != MaskNumElts; ++i) {
3230         int Idx = Mask[i];
3231         if (Idx < 0)
3232           continue;
3233         // Ensure the indices in each SrcVT sized piece are sequential and that
3234         // the same source is used for the whole piece.
3235         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3236             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3237              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3238           IsConcat = false;
3239           break;
3240         }
3241         // Remember which source this index came from.
3242         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3243       }
3244 
3245       // The shuffle is concatenating multiple vectors together. Just emit
3246       // a CONCAT_VECTORS operation.
3247       if (IsConcat) {
3248         SmallVector<SDValue, 8> ConcatOps;
3249         for (auto Src : ConcatSrcs) {
3250           if (Src < 0)
3251             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3252           else if (Src == 0)
3253             ConcatOps.push_back(Src1);
3254           else
3255             ConcatOps.push_back(Src2);
3256         }
3257         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3258         return;
3259       }
3260     }
3261 
3262     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3263     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3264     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3265                                     PaddedMaskNumElts);
3266 
3267     // Pad both vectors with undefs to make them the same length as the mask.
3268     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3269 
3270     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3271     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3272     MOps1[0] = Src1;
3273     MOps2[0] = Src2;
3274 
3275     Src1 = Src1.isUndef()
3276                ? DAG.getUNDEF(PaddedVT)
3277                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3278     Src2 = Src2.isUndef()
3279                ? DAG.getUNDEF(PaddedVT)
3280                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3281 
3282     // Readjust mask for new input vector length.
3283     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3284     for (unsigned i = 0; i != MaskNumElts; ++i) {
3285       int Idx = Mask[i];
3286       if (Idx >= (int)SrcNumElts)
3287         Idx -= SrcNumElts - PaddedMaskNumElts;
3288       MappedOps[i] = Idx;
3289     }
3290 
3291     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3292 
3293     // If the concatenated vector was padded, extract a subvector with the
3294     // correct number of elements.
3295     if (MaskNumElts != PaddedMaskNumElts)
3296       Result = DAG.getNode(
3297           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3298           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3299 
3300     setValue(&I, Result);
3301     return;
3302   }
3303 
3304   if (SrcNumElts > MaskNumElts) {
3305     // Analyze the access pattern of the vector to see if we can extract
3306     // two subvectors and do the shuffle.
3307     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3308     bool CanExtract = true;
3309     for (int Idx : Mask) {
3310       unsigned Input = 0;
3311       if (Idx < 0)
3312         continue;
3313 
3314       if (Idx >= (int)SrcNumElts) {
3315         Input = 1;
3316         Idx -= SrcNumElts;
3317       }
3318 
3319       // If all the indices come from the same MaskNumElts sized portion of
3320       // the sources we can use extract. Also make sure the extract wouldn't
3321       // extract past the end of the source.
3322       int NewStartIdx = alignDown(Idx, MaskNumElts);
3323       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3324           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3325         CanExtract = false;
3326       // Make sure we always update StartIdx as we use it to track if all
3327       // elements are undef.
3328       StartIdx[Input] = NewStartIdx;
3329     }
3330 
3331     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3332       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3333       return;
3334     }
3335     if (CanExtract) {
3336       // Extract appropriate subvector and generate a vector shuffle
3337       for (unsigned Input = 0; Input < 2; ++Input) {
3338         SDValue &Src = Input == 0 ? Src1 : Src2;
3339         if (StartIdx[Input] < 0)
3340           Src = DAG.getUNDEF(VT);
3341         else {
3342           Src = DAG.getNode(
3343               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3344               DAG.getConstant(StartIdx[Input], DL,
3345                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3346         }
3347       }
3348 
3349       // Calculate new mask.
3350       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3351       for (int &Idx : MappedOps) {
3352         if (Idx >= (int)SrcNumElts)
3353           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3354         else if (Idx >= 0)
3355           Idx -= StartIdx[0];
3356       }
3357 
3358       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3359       return;
3360     }
3361   }
3362 
3363   // We can't use either concat vectors or extract subvectors so fall back to
3364   // replacing the shuffle with extract and build vector.
3365   // to insert and build vector.
3366   EVT EltVT = VT.getVectorElementType();
3367   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3368   SmallVector<SDValue,8> Ops;
3369   for (int Idx : Mask) {
3370     SDValue Res;
3371 
3372     if (Idx < 0) {
3373       Res = DAG.getUNDEF(EltVT);
3374     } else {
3375       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3376       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3377 
3378       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3379                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3380     }
3381 
3382     Ops.push_back(Res);
3383   }
3384 
3385   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3386 }
3387 
3388 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3389   ArrayRef<unsigned> Indices;
3390   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3391     Indices = IV->getIndices();
3392   else
3393     Indices = cast<ConstantExpr>(&I)->getIndices();
3394 
3395   const Value *Op0 = I.getOperand(0);
3396   const Value *Op1 = I.getOperand(1);
3397   Type *AggTy = I.getType();
3398   Type *ValTy = Op1->getType();
3399   bool IntoUndef = isa<UndefValue>(Op0);
3400   bool FromUndef = isa<UndefValue>(Op1);
3401 
3402   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3403 
3404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3405   SmallVector<EVT, 4> AggValueVTs;
3406   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3407   SmallVector<EVT, 4> ValValueVTs;
3408   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3409 
3410   unsigned NumAggValues = AggValueVTs.size();
3411   unsigned NumValValues = ValValueVTs.size();
3412   SmallVector<SDValue, 4> Values(NumAggValues);
3413 
3414   // Ignore an insertvalue that produces an empty object
3415   if (!NumAggValues) {
3416     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3417     return;
3418   }
3419 
3420   SDValue Agg = getValue(Op0);
3421   unsigned i = 0;
3422   // Copy the beginning value(s) from the original aggregate.
3423   for (; i != LinearIndex; ++i)
3424     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3425                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3426   // Copy values from the inserted value(s).
3427   if (NumValValues) {
3428     SDValue Val = getValue(Op1);
3429     for (; i != LinearIndex + NumValValues; ++i)
3430       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3431                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3432   }
3433   // Copy remaining value(s) from the original aggregate.
3434   for (; i != NumAggValues; ++i)
3435     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3436                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3437 
3438   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3439                            DAG.getVTList(AggValueVTs), Values));
3440 }
3441 
3442 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3443   ArrayRef<unsigned> Indices;
3444   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3445     Indices = EV->getIndices();
3446   else
3447     Indices = cast<ConstantExpr>(&I)->getIndices();
3448 
3449   const Value *Op0 = I.getOperand(0);
3450   Type *AggTy = Op0->getType();
3451   Type *ValTy = I.getType();
3452   bool OutOfUndef = isa<UndefValue>(Op0);
3453 
3454   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3455 
3456   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3457   SmallVector<EVT, 4> ValValueVTs;
3458   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3459 
3460   unsigned NumValValues = ValValueVTs.size();
3461 
3462   // Ignore a extractvalue that produces an empty object
3463   if (!NumValValues) {
3464     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3465     return;
3466   }
3467 
3468   SmallVector<SDValue, 4> Values(NumValValues);
3469 
3470   SDValue Agg = getValue(Op0);
3471   // Copy out the selected value(s).
3472   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3473     Values[i - LinearIndex] =
3474       OutOfUndef ?
3475         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3476         SDValue(Agg.getNode(), Agg.getResNo() + i);
3477 
3478   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3479                            DAG.getVTList(ValValueVTs), Values));
3480 }
3481 
3482 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3483   Value *Op0 = I.getOperand(0);
3484   // Note that the pointer operand may be a vector of pointers. Take the scalar
3485   // element which holds a pointer.
3486   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3487   SDValue N = getValue(Op0);
3488   SDLoc dl = getCurSDLoc();
3489 
3490   // Normalize Vector GEP - all scalar operands should be converted to the
3491   // splat vector.
3492   unsigned VectorWidth = I.getType()->isVectorTy() ?
3493     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3494 
3495   if (VectorWidth && !N.getValueType().isVector()) {
3496     LLVMContext &Context = *DAG.getContext();
3497     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3498     N = DAG.getSplatBuildVector(VT, dl, N);
3499   }
3500 
3501   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3502        GTI != E; ++GTI) {
3503     const Value *Idx = GTI.getOperand();
3504     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3505       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3506       if (Field) {
3507         // N = N + Offset
3508         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3509 
3510         // In an inbounds GEP with an offset that is nonnegative even when
3511         // interpreted as signed, assume there is no unsigned overflow.
3512         SDNodeFlags Flags;
3513         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3514           Flags.setNoUnsignedWrap(true);
3515 
3516         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3517                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3518       }
3519     } else {
3520       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3521       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3522       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3523 
3524       // If this is a scalar constant or a splat vector of constants,
3525       // handle it quickly.
3526       const auto *CI = dyn_cast<ConstantInt>(Idx);
3527       if (!CI && isa<ConstantDataVector>(Idx) &&
3528           cast<ConstantDataVector>(Idx)->getSplatValue())
3529         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3530 
3531       if (CI) {
3532         if (CI->isZero())
3533           continue;
3534         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3535         LLVMContext &Context = *DAG.getContext();
3536         SDValue OffsVal = VectorWidth ?
3537           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3538           DAG.getConstant(Offs, dl, IdxTy);
3539 
3540         // In an inbouds GEP with an offset that is nonnegative even when
3541         // interpreted as signed, assume there is no unsigned overflow.
3542         SDNodeFlags Flags;
3543         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3544           Flags.setNoUnsignedWrap(true);
3545 
3546         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3547         continue;
3548       }
3549 
3550       // N = N + Idx * ElementSize;
3551       SDValue IdxN = getValue(Idx);
3552 
3553       if (!IdxN.getValueType().isVector() && VectorWidth) {
3554         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3555         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3556       }
3557 
3558       // If the index is smaller or larger than intptr_t, truncate or extend
3559       // it.
3560       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3561 
3562       // If this is a multiply by a power of two, turn it into a shl
3563       // immediately.  This is a very common case.
3564       if (ElementSize != 1) {
3565         if (ElementSize.isPowerOf2()) {
3566           unsigned Amt = ElementSize.logBase2();
3567           IdxN = DAG.getNode(ISD::SHL, dl,
3568                              N.getValueType(), IdxN,
3569                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3570         } else {
3571           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3572           IdxN = DAG.getNode(ISD::MUL, dl,
3573                              N.getValueType(), IdxN, Scale);
3574         }
3575       }
3576 
3577       N = DAG.getNode(ISD::ADD, dl,
3578                       N.getValueType(), N, IdxN);
3579     }
3580   }
3581 
3582   setValue(&I, N);
3583 }
3584 
3585 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3586   // If this is a fixed sized alloca in the entry block of the function,
3587   // allocate it statically on the stack.
3588   if (FuncInfo.StaticAllocaMap.count(&I))
3589     return;   // getValue will auto-populate this.
3590 
3591   SDLoc dl = getCurSDLoc();
3592   Type *Ty = I.getAllocatedType();
3593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3594   auto &DL = DAG.getDataLayout();
3595   uint64_t TySize = DL.getTypeAllocSize(Ty);
3596   unsigned Align =
3597       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3598 
3599   SDValue AllocSize = getValue(I.getArraySize());
3600 
3601   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3602   if (AllocSize.getValueType() != IntPtr)
3603     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3604 
3605   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3606                           AllocSize,
3607                           DAG.getConstant(TySize, dl, IntPtr));
3608 
3609   // Handle alignment.  If the requested alignment is less than or equal to
3610   // the stack alignment, ignore it.  If the size is greater than or equal to
3611   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3612   unsigned StackAlign =
3613       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3614   if (Align <= StackAlign)
3615     Align = 0;
3616 
3617   // Round the size of the allocation up to the stack alignment size
3618   // by add SA-1 to the size. This doesn't overflow because we're computing
3619   // an address inside an alloca.
3620   SDNodeFlags Flags;
3621   Flags.setNoUnsignedWrap(true);
3622   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3623                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3624 
3625   // Mask out the low bits for alignment purposes.
3626   AllocSize =
3627       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3628                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3629 
3630   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3631   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3632   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3633   setValue(&I, DSA);
3634   DAG.setRoot(DSA.getValue(1));
3635 
3636   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3637 }
3638 
3639 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3640   if (I.isAtomic())
3641     return visitAtomicLoad(I);
3642 
3643   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3644   const Value *SV = I.getOperand(0);
3645   if (TLI.supportSwiftError()) {
3646     // Swifterror values can come from either a function parameter with
3647     // swifterror attribute or an alloca with swifterror attribute.
3648     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3649       if (Arg->hasSwiftErrorAttr())
3650         return visitLoadFromSwiftError(I);
3651     }
3652 
3653     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3654       if (Alloca->isSwiftError())
3655         return visitLoadFromSwiftError(I);
3656     }
3657   }
3658 
3659   SDValue Ptr = getValue(SV);
3660 
3661   Type *Ty = I.getType();
3662 
3663   bool isVolatile = I.isVolatile();
3664   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3665   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3666   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3667   unsigned Alignment = I.getAlignment();
3668 
3669   AAMDNodes AAInfo;
3670   I.getAAMetadata(AAInfo);
3671   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3672 
3673   SmallVector<EVT, 4> ValueVTs;
3674   SmallVector<uint64_t, 4> Offsets;
3675   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3676   unsigned NumValues = ValueVTs.size();
3677   if (NumValues == 0)
3678     return;
3679 
3680   SDValue Root;
3681   bool ConstantMemory = false;
3682   if (isVolatile || NumValues > MaxParallelChains)
3683     // Serialize volatile loads with other side effects.
3684     Root = getRoot();
3685   else if (AA &&
3686            AA->pointsToConstantMemory(MemoryLocation(
3687                SV,
3688                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3689                AAInfo))) {
3690     // Do not serialize (non-volatile) loads of constant memory with anything.
3691     Root = DAG.getEntryNode();
3692     ConstantMemory = true;
3693   } else {
3694     // Do not serialize non-volatile loads against each other.
3695     Root = DAG.getRoot();
3696   }
3697 
3698   SDLoc dl = getCurSDLoc();
3699 
3700   if (isVolatile)
3701     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3702 
3703   // An aggregate load cannot wrap around the address space, so offsets to its
3704   // parts don't wrap either.
3705   SDNodeFlags Flags;
3706   Flags.setNoUnsignedWrap(true);
3707 
3708   SmallVector<SDValue, 4> Values(NumValues);
3709   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3710   EVT PtrVT = Ptr.getValueType();
3711   unsigned ChainI = 0;
3712   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3713     // Serializing loads here may result in excessive register pressure, and
3714     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3715     // could recover a bit by hoisting nodes upward in the chain by recognizing
3716     // they are side-effect free or do not alias. The optimizer should really
3717     // avoid this case by converting large object/array copies to llvm.memcpy
3718     // (MaxParallelChains should always remain as failsafe).
3719     if (ChainI == MaxParallelChains) {
3720       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3721       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3722                                   makeArrayRef(Chains.data(), ChainI));
3723       Root = Chain;
3724       ChainI = 0;
3725     }
3726     SDValue A = DAG.getNode(ISD::ADD, dl,
3727                             PtrVT, Ptr,
3728                             DAG.getConstant(Offsets[i], dl, PtrVT),
3729                             Flags);
3730     auto MMOFlags = MachineMemOperand::MONone;
3731     if (isVolatile)
3732       MMOFlags |= MachineMemOperand::MOVolatile;
3733     if (isNonTemporal)
3734       MMOFlags |= MachineMemOperand::MONonTemporal;
3735     if (isInvariant)
3736       MMOFlags |= MachineMemOperand::MOInvariant;
3737     if (isDereferenceable)
3738       MMOFlags |= MachineMemOperand::MODereferenceable;
3739     MMOFlags |= TLI.getMMOFlags(I);
3740 
3741     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3742                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3743                             MMOFlags, AAInfo, Ranges);
3744 
3745     Values[i] = L;
3746     Chains[ChainI] = L.getValue(1);
3747   }
3748 
3749   if (!ConstantMemory) {
3750     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3751                                 makeArrayRef(Chains.data(), ChainI));
3752     if (isVolatile)
3753       DAG.setRoot(Chain);
3754     else
3755       PendingLoads.push_back(Chain);
3756   }
3757 
3758   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3759                            DAG.getVTList(ValueVTs), Values));
3760 }
3761 
3762 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3763   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3764          "call visitStoreToSwiftError when backend supports swifterror");
3765 
3766   SmallVector<EVT, 4> ValueVTs;
3767   SmallVector<uint64_t, 4> Offsets;
3768   const Value *SrcV = I.getOperand(0);
3769   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3770                   SrcV->getType(), ValueVTs, &Offsets);
3771   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3772          "expect a single EVT for swifterror");
3773 
3774   SDValue Src = getValue(SrcV);
3775   // Create a virtual register, then update the virtual register.
3776   unsigned VReg; bool CreatedVReg;
3777   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3778   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3779   // Chain can be getRoot or getControlRoot.
3780   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3781                                       SDValue(Src.getNode(), Src.getResNo()));
3782   DAG.setRoot(CopyNode);
3783   if (CreatedVReg)
3784     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3785 }
3786 
3787 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3788   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3789          "call visitLoadFromSwiftError when backend supports swifterror");
3790 
3791   assert(!I.isVolatile() &&
3792          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3793          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3794          "Support volatile, non temporal, invariant for load_from_swift_error");
3795 
3796   const Value *SV = I.getOperand(0);
3797   Type *Ty = I.getType();
3798   AAMDNodes AAInfo;
3799   I.getAAMetadata(AAInfo);
3800   assert(
3801       (!AA ||
3802        !AA->pointsToConstantMemory(MemoryLocation(
3803            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3804            AAInfo))) &&
3805       "load_from_swift_error should not be constant memory");
3806 
3807   SmallVector<EVT, 4> ValueVTs;
3808   SmallVector<uint64_t, 4> Offsets;
3809   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3810                   ValueVTs, &Offsets);
3811   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3812          "expect a single EVT for swifterror");
3813 
3814   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3815   SDValue L = DAG.getCopyFromReg(
3816       getRoot(), getCurSDLoc(),
3817       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3818       ValueVTs[0]);
3819 
3820   setValue(&I, L);
3821 }
3822 
3823 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3824   if (I.isAtomic())
3825     return visitAtomicStore(I);
3826 
3827   const Value *SrcV = I.getOperand(0);
3828   const Value *PtrV = I.getOperand(1);
3829 
3830   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3831   if (TLI.supportSwiftError()) {
3832     // Swifterror values can come from either a function parameter with
3833     // swifterror attribute or an alloca with swifterror attribute.
3834     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3835       if (Arg->hasSwiftErrorAttr())
3836         return visitStoreToSwiftError(I);
3837     }
3838 
3839     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3840       if (Alloca->isSwiftError())
3841         return visitStoreToSwiftError(I);
3842     }
3843   }
3844 
3845   SmallVector<EVT, 4> ValueVTs;
3846   SmallVector<uint64_t, 4> Offsets;
3847   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3848                   SrcV->getType(), ValueVTs, &Offsets);
3849   unsigned NumValues = ValueVTs.size();
3850   if (NumValues == 0)
3851     return;
3852 
3853   // Get the lowered operands. Note that we do this after
3854   // checking if NumResults is zero, because with zero results
3855   // the operands won't have values in the map.
3856   SDValue Src = getValue(SrcV);
3857   SDValue Ptr = getValue(PtrV);
3858 
3859   SDValue Root = getRoot();
3860   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3861   SDLoc dl = getCurSDLoc();
3862   EVT PtrVT = Ptr.getValueType();
3863   unsigned Alignment = I.getAlignment();
3864   AAMDNodes AAInfo;
3865   I.getAAMetadata(AAInfo);
3866 
3867   auto MMOFlags = MachineMemOperand::MONone;
3868   if (I.isVolatile())
3869     MMOFlags |= MachineMemOperand::MOVolatile;
3870   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3871     MMOFlags |= MachineMemOperand::MONonTemporal;
3872   MMOFlags |= TLI.getMMOFlags(I);
3873 
3874   // An aggregate load cannot wrap around the address space, so offsets to its
3875   // parts don't wrap either.
3876   SDNodeFlags Flags;
3877   Flags.setNoUnsignedWrap(true);
3878 
3879   unsigned ChainI = 0;
3880   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3881     // See visitLoad comments.
3882     if (ChainI == MaxParallelChains) {
3883       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3884                                   makeArrayRef(Chains.data(), ChainI));
3885       Root = Chain;
3886       ChainI = 0;
3887     }
3888     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3889                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3890     SDValue St = DAG.getStore(
3891         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3892         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3893     Chains[ChainI] = St;
3894   }
3895 
3896   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3897                                   makeArrayRef(Chains.data(), ChainI));
3898   DAG.setRoot(StoreNode);
3899 }
3900 
3901 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3902                                            bool IsCompressing) {
3903   SDLoc sdl = getCurSDLoc();
3904 
3905   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3906                            unsigned& Alignment) {
3907     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3908     Src0 = I.getArgOperand(0);
3909     Ptr = I.getArgOperand(1);
3910     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3911     Mask = I.getArgOperand(3);
3912   };
3913   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3914                            unsigned& Alignment) {
3915     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3916     Src0 = I.getArgOperand(0);
3917     Ptr = I.getArgOperand(1);
3918     Mask = I.getArgOperand(2);
3919     Alignment = 0;
3920   };
3921 
3922   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3923   unsigned Alignment;
3924   if (IsCompressing)
3925     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3926   else
3927     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3928 
3929   SDValue Ptr = getValue(PtrOperand);
3930   SDValue Src0 = getValue(Src0Operand);
3931   SDValue Mask = getValue(MaskOperand);
3932 
3933   EVT VT = Src0.getValueType();
3934   if (!Alignment)
3935     Alignment = DAG.getEVTAlignment(VT);
3936 
3937   AAMDNodes AAInfo;
3938   I.getAAMetadata(AAInfo);
3939 
3940   MachineMemOperand *MMO =
3941     DAG.getMachineFunction().
3942     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3943                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3944                           Alignment, AAInfo);
3945   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3946                                          MMO, false /* Truncating */,
3947                                          IsCompressing);
3948   DAG.setRoot(StoreNode);
3949   setValue(&I, StoreNode);
3950 }
3951 
3952 // Get a uniform base for the Gather/Scatter intrinsic.
3953 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3954 // We try to represent it as a base pointer + vector of indices.
3955 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3956 // The first operand of the GEP may be a single pointer or a vector of pointers
3957 // Example:
3958 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3959 //  or
3960 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3961 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3962 //
3963 // When the first GEP operand is a single pointer - it is the uniform base we
3964 // are looking for. If first operand of the GEP is a splat vector - we
3965 // extract the splat value and use it as a uniform base.
3966 // In all other cases the function returns 'false'.
3967 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3968                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3969   SelectionDAG& DAG = SDB->DAG;
3970   LLVMContext &Context = *DAG.getContext();
3971 
3972   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3973   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3974   if (!GEP)
3975     return false;
3976 
3977   const Value *GEPPtr = GEP->getPointerOperand();
3978   if (!GEPPtr->getType()->isVectorTy())
3979     Ptr = GEPPtr;
3980   else if (!(Ptr = getSplatValue(GEPPtr)))
3981     return false;
3982 
3983   unsigned FinalIndex = GEP->getNumOperands() - 1;
3984   Value *IndexVal = GEP->getOperand(FinalIndex);
3985 
3986   // Ensure all the other indices are 0.
3987   for (unsigned i = 1; i < FinalIndex; ++i) {
3988     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3989     if (!C || !C->isZero())
3990       return false;
3991   }
3992 
3993   // The operands of the GEP may be defined in another basic block.
3994   // In this case we'll not find nodes for the operands.
3995   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3996     return false;
3997 
3998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3999   const DataLayout &DL = DAG.getDataLayout();
4000   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4001                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4002   Base = SDB->getValue(Ptr);
4003   Index = SDB->getValue(IndexVal);
4004 
4005   if (!Index.getValueType().isVector()) {
4006     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4007     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4008     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4009   }
4010   return true;
4011 }
4012 
4013 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4014   SDLoc sdl = getCurSDLoc();
4015 
4016   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4017   const Value *Ptr = I.getArgOperand(1);
4018   SDValue Src0 = getValue(I.getArgOperand(0));
4019   SDValue Mask = getValue(I.getArgOperand(3));
4020   EVT VT = Src0.getValueType();
4021   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4022   if (!Alignment)
4023     Alignment = DAG.getEVTAlignment(VT);
4024   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4025 
4026   AAMDNodes AAInfo;
4027   I.getAAMetadata(AAInfo);
4028 
4029   SDValue Base;
4030   SDValue Index;
4031   SDValue Scale;
4032   const Value *BasePtr = Ptr;
4033   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4034 
4035   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4036   MachineMemOperand *MMO = DAG.getMachineFunction().
4037     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4038                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4039                          Alignment, AAInfo);
4040   if (!UniformBase) {
4041     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4042     Index = getValue(Ptr);
4043     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4044   }
4045   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4046   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4047                                          Ops, MMO);
4048   DAG.setRoot(Scatter);
4049   setValue(&I, Scatter);
4050 }
4051 
4052 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4053   SDLoc sdl = getCurSDLoc();
4054 
4055   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4056                            unsigned& Alignment) {
4057     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4058     Ptr = I.getArgOperand(0);
4059     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4060     Mask = I.getArgOperand(2);
4061     Src0 = I.getArgOperand(3);
4062   };
4063   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4064                            unsigned& Alignment) {
4065     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4066     Ptr = I.getArgOperand(0);
4067     Alignment = 0;
4068     Mask = I.getArgOperand(1);
4069     Src0 = I.getArgOperand(2);
4070   };
4071 
4072   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4073   unsigned Alignment;
4074   if (IsExpanding)
4075     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4076   else
4077     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4078 
4079   SDValue Ptr = getValue(PtrOperand);
4080   SDValue Src0 = getValue(Src0Operand);
4081   SDValue Mask = getValue(MaskOperand);
4082 
4083   EVT VT = Src0.getValueType();
4084   if (!Alignment)
4085     Alignment = DAG.getEVTAlignment(VT);
4086 
4087   AAMDNodes AAInfo;
4088   I.getAAMetadata(AAInfo);
4089   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4090 
4091   // Do not serialize masked loads of constant memory with anything.
4092   bool AddToChain =
4093       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4094                  PtrOperand,
4095                  LocationSize::precise(
4096                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4097                  AAInfo));
4098   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4099 
4100   MachineMemOperand *MMO =
4101     DAG.getMachineFunction().
4102     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4103                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4104                           Alignment, AAInfo, Ranges);
4105 
4106   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4107                                    ISD::NON_EXTLOAD, IsExpanding);
4108   if (AddToChain)
4109     PendingLoads.push_back(Load.getValue(1));
4110   setValue(&I, Load);
4111 }
4112 
4113 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4114   SDLoc sdl = getCurSDLoc();
4115 
4116   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4117   const Value *Ptr = I.getArgOperand(0);
4118   SDValue Src0 = getValue(I.getArgOperand(3));
4119   SDValue Mask = getValue(I.getArgOperand(2));
4120 
4121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4122   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4123   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4124   if (!Alignment)
4125     Alignment = DAG.getEVTAlignment(VT);
4126 
4127   AAMDNodes AAInfo;
4128   I.getAAMetadata(AAInfo);
4129   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4130 
4131   SDValue Root = DAG.getRoot();
4132   SDValue Base;
4133   SDValue Index;
4134   SDValue Scale;
4135   const Value *BasePtr = Ptr;
4136   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4137   bool ConstantMemory = false;
4138   if (UniformBase && AA &&
4139       AA->pointsToConstantMemory(
4140           MemoryLocation(BasePtr,
4141                          LocationSize::precise(
4142                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4143                          AAInfo))) {
4144     // Do not serialize (non-volatile) loads of constant memory with anything.
4145     Root = DAG.getEntryNode();
4146     ConstantMemory = true;
4147   }
4148 
4149   MachineMemOperand *MMO =
4150     DAG.getMachineFunction().
4151     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4152                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4153                          Alignment, AAInfo, Ranges);
4154 
4155   if (!UniformBase) {
4156     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4157     Index = getValue(Ptr);
4158     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4159   }
4160   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4161   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4162                                        Ops, MMO);
4163 
4164   SDValue OutChain = Gather.getValue(1);
4165   if (!ConstantMemory)
4166     PendingLoads.push_back(OutChain);
4167   setValue(&I, Gather);
4168 }
4169 
4170 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4171   SDLoc dl = getCurSDLoc();
4172   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4173   AtomicOrdering FailureOrder = I.getFailureOrdering();
4174   SyncScope::ID SSID = I.getSyncScopeID();
4175 
4176   SDValue InChain = getRoot();
4177 
4178   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4179   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4180   SDValue L = DAG.getAtomicCmpSwap(
4181       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4182       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4183       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4184       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4185 
4186   SDValue OutChain = L.getValue(2);
4187 
4188   setValue(&I, L);
4189   DAG.setRoot(OutChain);
4190 }
4191 
4192 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4193   SDLoc dl = getCurSDLoc();
4194   ISD::NodeType NT;
4195   switch (I.getOperation()) {
4196   default: llvm_unreachable("Unknown atomicrmw operation");
4197   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4198   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4199   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4200   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4201   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4202   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4203   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4204   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4205   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4206   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4207   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4208   }
4209   AtomicOrdering Order = I.getOrdering();
4210   SyncScope::ID SSID = I.getSyncScopeID();
4211 
4212   SDValue InChain = getRoot();
4213 
4214   SDValue L =
4215     DAG.getAtomic(NT, dl,
4216                   getValue(I.getValOperand()).getSimpleValueType(),
4217                   InChain,
4218                   getValue(I.getPointerOperand()),
4219                   getValue(I.getValOperand()),
4220                   I.getPointerOperand(),
4221                   /* Alignment=*/ 0, Order, SSID);
4222 
4223   SDValue OutChain = L.getValue(1);
4224 
4225   setValue(&I, L);
4226   DAG.setRoot(OutChain);
4227 }
4228 
4229 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4230   SDLoc dl = getCurSDLoc();
4231   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4232   SDValue Ops[3];
4233   Ops[0] = getRoot();
4234   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4235                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4236   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4237                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4238   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4239 }
4240 
4241 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4242   SDLoc dl = getCurSDLoc();
4243   AtomicOrdering Order = I.getOrdering();
4244   SyncScope::ID SSID = I.getSyncScopeID();
4245 
4246   SDValue InChain = getRoot();
4247 
4248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4249   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4250 
4251   if (!TLI.supportsUnalignedAtomics() &&
4252       I.getAlignment() < VT.getStoreSize())
4253     report_fatal_error("Cannot generate unaligned atomic load");
4254 
4255   MachineMemOperand *MMO =
4256       DAG.getMachineFunction().
4257       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4258                            MachineMemOperand::MOVolatile |
4259                            MachineMemOperand::MOLoad,
4260                            VT.getStoreSize(),
4261                            I.getAlignment() ? I.getAlignment() :
4262                                               DAG.getEVTAlignment(VT),
4263                            AAMDNodes(), nullptr, SSID, Order);
4264 
4265   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4266   SDValue L =
4267       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4268                     getValue(I.getPointerOperand()), MMO);
4269 
4270   SDValue OutChain = L.getValue(1);
4271 
4272   setValue(&I, L);
4273   DAG.setRoot(OutChain);
4274 }
4275 
4276 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4277   SDLoc dl = getCurSDLoc();
4278 
4279   AtomicOrdering Order = I.getOrdering();
4280   SyncScope::ID SSID = I.getSyncScopeID();
4281 
4282   SDValue InChain = getRoot();
4283 
4284   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4285   EVT VT =
4286       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4287 
4288   if (I.getAlignment() < VT.getStoreSize())
4289     report_fatal_error("Cannot generate unaligned atomic store");
4290 
4291   SDValue OutChain =
4292     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4293                   InChain,
4294                   getValue(I.getPointerOperand()),
4295                   getValue(I.getValueOperand()),
4296                   I.getPointerOperand(), I.getAlignment(),
4297                   Order, SSID);
4298 
4299   DAG.setRoot(OutChain);
4300 }
4301 
4302 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4303 /// node.
4304 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4305                                                unsigned Intrinsic) {
4306   // Ignore the callsite's attributes. A specific call site may be marked with
4307   // readnone, but the lowering code will expect the chain based on the
4308   // definition.
4309   const Function *F = I.getCalledFunction();
4310   bool HasChain = !F->doesNotAccessMemory();
4311   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4312 
4313   // Build the operand list.
4314   SmallVector<SDValue, 8> Ops;
4315   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4316     if (OnlyLoad) {
4317       // We don't need to serialize loads against other loads.
4318       Ops.push_back(DAG.getRoot());
4319     } else {
4320       Ops.push_back(getRoot());
4321     }
4322   }
4323 
4324   // Info is set by getTgtMemInstrinsic
4325   TargetLowering::IntrinsicInfo Info;
4326   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4327   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4328                                                DAG.getMachineFunction(),
4329                                                Intrinsic);
4330 
4331   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4332   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4333       Info.opc == ISD::INTRINSIC_W_CHAIN)
4334     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4335                                         TLI.getPointerTy(DAG.getDataLayout())));
4336 
4337   // Add all operands of the call to the operand list.
4338   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4339     SDValue Op = getValue(I.getArgOperand(i));
4340     Ops.push_back(Op);
4341   }
4342 
4343   SmallVector<EVT, 4> ValueVTs;
4344   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4345 
4346   if (HasChain)
4347     ValueVTs.push_back(MVT::Other);
4348 
4349   SDVTList VTs = DAG.getVTList(ValueVTs);
4350 
4351   // Create the node.
4352   SDValue Result;
4353   if (IsTgtIntrinsic) {
4354     // This is target intrinsic that touches memory
4355     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4356       Ops, Info.memVT,
4357       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4358       Info.flags, Info.size);
4359   } else if (!HasChain) {
4360     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4361   } else if (!I.getType()->isVoidTy()) {
4362     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4363   } else {
4364     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4365   }
4366 
4367   if (HasChain) {
4368     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4369     if (OnlyLoad)
4370       PendingLoads.push_back(Chain);
4371     else
4372       DAG.setRoot(Chain);
4373   }
4374 
4375   if (!I.getType()->isVoidTy()) {
4376     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4377       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4378       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4379     } else
4380       Result = lowerRangeToAssertZExt(DAG, I, Result);
4381 
4382     setValue(&I, Result);
4383   }
4384 }
4385 
4386 /// GetSignificand - Get the significand and build it into a floating-point
4387 /// number with exponent of 1:
4388 ///
4389 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4390 ///
4391 /// where Op is the hexadecimal representation of floating point value.
4392 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4393   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4394                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4395   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4396                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4397   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4398 }
4399 
4400 /// GetExponent - Get the exponent:
4401 ///
4402 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4403 ///
4404 /// where Op is the hexadecimal representation of floating point value.
4405 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4406                            const TargetLowering &TLI, const SDLoc &dl) {
4407   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4408                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4409   SDValue t1 = DAG.getNode(
4410       ISD::SRL, dl, MVT::i32, t0,
4411       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4412   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4413                            DAG.getConstant(127, dl, MVT::i32));
4414   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4415 }
4416 
4417 /// getF32Constant - Get 32-bit floating point constant.
4418 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4419                               const SDLoc &dl) {
4420   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4421                            MVT::f32);
4422 }
4423 
4424 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4425                                        SelectionDAG &DAG) {
4426   // TODO: What fast-math-flags should be set on the floating-point nodes?
4427 
4428   //   IntegerPartOfX = ((int32_t)(t0);
4429   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4430 
4431   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4432   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4433   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4434 
4435   //   IntegerPartOfX <<= 23;
4436   IntegerPartOfX = DAG.getNode(
4437       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4438       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4439                                   DAG.getDataLayout())));
4440 
4441   SDValue TwoToFractionalPartOfX;
4442   if (LimitFloatPrecision <= 6) {
4443     // For floating-point precision of 6:
4444     //
4445     //   TwoToFractionalPartOfX =
4446     //     0.997535578f +
4447     //       (0.735607626f + 0.252464424f * x) * x;
4448     //
4449     // error 0.0144103317, which is 6 bits
4450     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4451                              getF32Constant(DAG, 0x3e814304, dl));
4452     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4453                              getF32Constant(DAG, 0x3f3c50c8, dl));
4454     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4455     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4456                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4457   } else if (LimitFloatPrecision <= 12) {
4458     // For floating-point precision of 12:
4459     //
4460     //   TwoToFractionalPartOfX =
4461     //     0.999892986f +
4462     //       (0.696457318f +
4463     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4464     //
4465     // error 0.000107046256, which is 13 to 14 bits
4466     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4467                              getF32Constant(DAG, 0x3da235e3, dl));
4468     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4469                              getF32Constant(DAG, 0x3e65b8f3, dl));
4470     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4471     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4472                              getF32Constant(DAG, 0x3f324b07, dl));
4473     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4474     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4475                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4476   } else { // LimitFloatPrecision <= 18
4477     // For floating-point precision of 18:
4478     //
4479     //   TwoToFractionalPartOfX =
4480     //     0.999999982f +
4481     //       (0.693148872f +
4482     //         (0.240227044f +
4483     //           (0.554906021e-1f +
4484     //             (0.961591928e-2f +
4485     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4486     // error 2.47208000*10^(-7), which is better than 18 bits
4487     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4488                              getF32Constant(DAG, 0x3924b03e, dl));
4489     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4490                              getF32Constant(DAG, 0x3ab24b87, dl));
4491     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4492     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4493                              getF32Constant(DAG, 0x3c1d8c17, dl));
4494     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4495     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4496                              getF32Constant(DAG, 0x3d634a1d, dl));
4497     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4498     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4499                              getF32Constant(DAG, 0x3e75fe14, dl));
4500     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4501     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4502                               getF32Constant(DAG, 0x3f317234, dl));
4503     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4504     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4505                                          getF32Constant(DAG, 0x3f800000, dl));
4506   }
4507 
4508   // Add the exponent into the result in integer domain.
4509   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4510   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4511                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4512 }
4513 
4514 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4515 /// limited-precision mode.
4516 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4517                          const TargetLowering &TLI) {
4518   if (Op.getValueType() == MVT::f32 &&
4519       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4520 
4521     // Put the exponent in the right bit position for later addition to the
4522     // final result:
4523     //
4524     //   #define LOG2OFe 1.4426950f
4525     //   t0 = Op * LOG2OFe
4526 
4527     // TODO: What fast-math-flags should be set here?
4528     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4529                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4530     return getLimitedPrecisionExp2(t0, dl, DAG);
4531   }
4532 
4533   // No special expansion.
4534   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4535 }
4536 
4537 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4538 /// limited-precision mode.
4539 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4540                          const TargetLowering &TLI) {
4541   // TODO: What fast-math-flags should be set on the floating-point nodes?
4542 
4543   if (Op.getValueType() == MVT::f32 &&
4544       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4545     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4546 
4547     // Scale the exponent by log(2) [0.69314718f].
4548     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4549     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4550                                         getF32Constant(DAG, 0x3f317218, dl));
4551 
4552     // Get the significand and build it into a floating-point number with
4553     // exponent of 1.
4554     SDValue X = GetSignificand(DAG, Op1, dl);
4555 
4556     SDValue LogOfMantissa;
4557     if (LimitFloatPrecision <= 6) {
4558       // For floating-point precision of 6:
4559       //
4560       //   LogofMantissa =
4561       //     -1.1609546f +
4562       //       (1.4034025f - 0.23903021f * x) * x;
4563       //
4564       // error 0.0034276066, which is better than 8 bits
4565       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4566                                getF32Constant(DAG, 0xbe74c456, dl));
4567       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4568                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4569       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4570       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4571                                   getF32Constant(DAG, 0x3f949a29, dl));
4572     } else if (LimitFloatPrecision <= 12) {
4573       // For floating-point precision of 12:
4574       //
4575       //   LogOfMantissa =
4576       //     -1.7417939f +
4577       //       (2.8212026f +
4578       //         (-1.4699568f +
4579       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4580       //
4581       // error 0.000061011436, which is 14 bits
4582       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4583                                getF32Constant(DAG, 0xbd67b6d6, dl));
4584       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4585                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4586       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4587       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4588                                getF32Constant(DAG, 0x3fbc278b, dl));
4589       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4590       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4591                                getF32Constant(DAG, 0x40348e95, dl));
4592       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4593       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4594                                   getF32Constant(DAG, 0x3fdef31a, dl));
4595     } else { // LimitFloatPrecision <= 18
4596       // For floating-point precision of 18:
4597       //
4598       //   LogOfMantissa =
4599       //     -2.1072184f +
4600       //       (4.2372794f +
4601       //         (-3.7029485f +
4602       //           (2.2781945f +
4603       //             (-0.87823314f +
4604       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4605       //
4606       // error 0.0000023660568, which is better than 18 bits
4607       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4608                                getF32Constant(DAG, 0xbc91e5ac, dl));
4609       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4610                                getF32Constant(DAG, 0x3e4350aa, dl));
4611       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4612       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4613                                getF32Constant(DAG, 0x3f60d3e3, dl));
4614       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4615       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4616                                getF32Constant(DAG, 0x4011cdf0, dl));
4617       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4618       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4619                                getF32Constant(DAG, 0x406cfd1c, dl));
4620       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4621       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4622                                getF32Constant(DAG, 0x408797cb, dl));
4623       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4624       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4625                                   getF32Constant(DAG, 0x4006dcab, dl));
4626     }
4627 
4628     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4629   }
4630 
4631   // No special expansion.
4632   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4633 }
4634 
4635 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4636 /// limited-precision mode.
4637 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4638                           const TargetLowering &TLI) {
4639   // TODO: What fast-math-flags should be set on the floating-point nodes?
4640 
4641   if (Op.getValueType() == MVT::f32 &&
4642       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4643     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4644 
4645     // Get the exponent.
4646     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4647 
4648     // Get the significand and build it into a floating-point number with
4649     // exponent of 1.
4650     SDValue X = GetSignificand(DAG, Op1, dl);
4651 
4652     // Different possible minimax approximations of significand in
4653     // floating-point for various degrees of accuracy over [1,2].
4654     SDValue Log2ofMantissa;
4655     if (LimitFloatPrecision <= 6) {
4656       // For floating-point precision of 6:
4657       //
4658       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4659       //
4660       // error 0.0049451742, which is more than 7 bits
4661       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4662                                getF32Constant(DAG, 0xbeb08fe0, dl));
4663       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4664                                getF32Constant(DAG, 0x40019463, dl));
4665       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4666       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4667                                    getF32Constant(DAG, 0x3fd6633d, dl));
4668     } else if (LimitFloatPrecision <= 12) {
4669       // For floating-point precision of 12:
4670       //
4671       //   Log2ofMantissa =
4672       //     -2.51285454f +
4673       //       (4.07009056f +
4674       //         (-2.12067489f +
4675       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4676       //
4677       // error 0.0000876136000, which is better than 13 bits
4678       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4679                                getF32Constant(DAG, 0xbda7262e, dl));
4680       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4681                                getF32Constant(DAG, 0x3f25280b, dl));
4682       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4683       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4684                                getF32Constant(DAG, 0x4007b923, dl));
4685       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4686       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4687                                getF32Constant(DAG, 0x40823e2f, dl));
4688       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4689       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4690                                    getF32Constant(DAG, 0x4020d29c, dl));
4691     } else { // LimitFloatPrecision <= 18
4692       // For floating-point precision of 18:
4693       //
4694       //   Log2ofMantissa =
4695       //     -3.0400495f +
4696       //       (6.1129976f +
4697       //         (-5.3420409f +
4698       //           (3.2865683f +
4699       //             (-1.2669343f +
4700       //               (0.27515199f -
4701       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4702       //
4703       // error 0.0000018516, which is better than 18 bits
4704       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4705                                getF32Constant(DAG, 0xbcd2769e, dl));
4706       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4707                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4708       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4709       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4710                                getF32Constant(DAG, 0x3fa22ae7, dl));
4711       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4712       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4713                                getF32Constant(DAG, 0x40525723, dl));
4714       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4715       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4716                                getF32Constant(DAG, 0x40aaf200, dl));
4717       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4718       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4719                                getF32Constant(DAG, 0x40c39dad, dl));
4720       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4721       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4722                                    getF32Constant(DAG, 0x4042902c, dl));
4723     }
4724 
4725     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4726   }
4727 
4728   // No special expansion.
4729   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4730 }
4731 
4732 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4733 /// limited-precision mode.
4734 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4735                            const TargetLowering &TLI) {
4736   // TODO: What fast-math-flags should be set on the floating-point nodes?
4737 
4738   if (Op.getValueType() == MVT::f32 &&
4739       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4740     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4741 
4742     // Scale the exponent by log10(2) [0.30102999f].
4743     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4744     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4745                                         getF32Constant(DAG, 0x3e9a209a, dl));
4746 
4747     // Get the significand and build it into a floating-point number with
4748     // exponent of 1.
4749     SDValue X = GetSignificand(DAG, Op1, dl);
4750 
4751     SDValue Log10ofMantissa;
4752     if (LimitFloatPrecision <= 6) {
4753       // For floating-point precision of 6:
4754       //
4755       //   Log10ofMantissa =
4756       //     -0.50419619f +
4757       //       (0.60948995f - 0.10380950f * x) * x;
4758       //
4759       // error 0.0014886165, which is 6 bits
4760       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4761                                getF32Constant(DAG, 0xbdd49a13, dl));
4762       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4763                                getF32Constant(DAG, 0x3f1c0789, dl));
4764       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4765       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4766                                     getF32Constant(DAG, 0x3f011300, dl));
4767     } else if (LimitFloatPrecision <= 12) {
4768       // For floating-point precision of 12:
4769       //
4770       //   Log10ofMantissa =
4771       //     -0.64831180f +
4772       //       (0.91751397f +
4773       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4774       //
4775       // error 0.00019228036, which is better than 12 bits
4776       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4777                                getF32Constant(DAG, 0x3d431f31, dl));
4778       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4779                                getF32Constant(DAG, 0x3ea21fb2, dl));
4780       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4781       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4782                                getF32Constant(DAG, 0x3f6ae232, dl));
4783       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4784       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4785                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4786     } else { // LimitFloatPrecision <= 18
4787       // For floating-point precision of 18:
4788       //
4789       //   Log10ofMantissa =
4790       //     -0.84299375f +
4791       //       (1.5327582f +
4792       //         (-1.0688956f +
4793       //           (0.49102474f +
4794       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4795       //
4796       // error 0.0000037995730, which is better than 18 bits
4797       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4798                                getF32Constant(DAG, 0x3c5d51ce, dl));
4799       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4800                                getF32Constant(DAG, 0x3e00685a, dl));
4801       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4802       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4803                                getF32Constant(DAG, 0x3efb6798, dl));
4804       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4805       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4806                                getF32Constant(DAG, 0x3f88d192, dl));
4807       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4808       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4809                                getF32Constant(DAG, 0x3fc4316c, dl));
4810       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4811       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4812                                     getF32Constant(DAG, 0x3f57ce70, dl));
4813     }
4814 
4815     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4816   }
4817 
4818   // No special expansion.
4819   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4820 }
4821 
4822 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4823 /// limited-precision mode.
4824 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4825                           const TargetLowering &TLI) {
4826   if (Op.getValueType() == MVT::f32 &&
4827       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4828     return getLimitedPrecisionExp2(Op, dl, DAG);
4829 
4830   // No special expansion.
4831   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4832 }
4833 
4834 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4835 /// limited-precision mode with x == 10.0f.
4836 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4837                          SelectionDAG &DAG, const TargetLowering &TLI) {
4838   bool IsExp10 = false;
4839   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4840       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4841     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4842       APFloat Ten(10.0f);
4843       IsExp10 = LHSC->isExactlyValue(Ten);
4844     }
4845   }
4846 
4847   // TODO: What fast-math-flags should be set on the FMUL node?
4848   if (IsExp10) {
4849     // Put the exponent in the right bit position for later addition to the
4850     // final result:
4851     //
4852     //   #define LOG2OF10 3.3219281f
4853     //   t0 = Op * LOG2OF10;
4854     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4855                              getF32Constant(DAG, 0x40549a78, dl));
4856     return getLimitedPrecisionExp2(t0, dl, DAG);
4857   }
4858 
4859   // No special expansion.
4860   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4861 }
4862 
4863 /// ExpandPowI - Expand a llvm.powi intrinsic.
4864 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4865                           SelectionDAG &DAG) {
4866   // If RHS is a constant, we can expand this out to a multiplication tree,
4867   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4868   // optimizing for size, we only want to do this if the expansion would produce
4869   // a small number of multiplies, otherwise we do the full expansion.
4870   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4871     // Get the exponent as a positive value.
4872     unsigned Val = RHSC->getSExtValue();
4873     if ((int)Val < 0) Val = -Val;
4874 
4875     // powi(x, 0) -> 1.0
4876     if (Val == 0)
4877       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4878 
4879     const Function &F = DAG.getMachineFunction().getFunction();
4880     if (!F.optForSize() ||
4881         // If optimizing for size, don't insert too many multiplies.
4882         // This inserts up to 5 multiplies.
4883         countPopulation(Val) + Log2_32(Val) < 7) {
4884       // We use the simple binary decomposition method to generate the multiply
4885       // sequence.  There are more optimal ways to do this (for example,
4886       // powi(x,15) generates one more multiply than it should), but this has
4887       // the benefit of being both really simple and much better than a libcall.
4888       SDValue Res;  // Logically starts equal to 1.0
4889       SDValue CurSquare = LHS;
4890       // TODO: Intrinsics should have fast-math-flags that propagate to these
4891       // nodes.
4892       while (Val) {
4893         if (Val & 1) {
4894           if (Res.getNode())
4895             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4896           else
4897             Res = CurSquare;  // 1.0*CurSquare.
4898         }
4899 
4900         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4901                                 CurSquare, CurSquare);
4902         Val >>= 1;
4903       }
4904 
4905       // If the original was negative, invert the result, producing 1/(x*x*x).
4906       if (RHSC->getSExtValue() < 0)
4907         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4908                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4909       return Res;
4910     }
4911   }
4912 
4913   // Otherwise, expand to a libcall.
4914   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4915 }
4916 
4917 // getUnderlyingArgReg - Find underlying register used for a truncated or
4918 // bitcasted argument.
4919 static unsigned getUnderlyingArgReg(const SDValue &N) {
4920   switch (N.getOpcode()) {
4921   case ISD::CopyFromReg:
4922     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4923   case ISD::BITCAST:
4924   case ISD::AssertZext:
4925   case ISD::AssertSext:
4926   case ISD::TRUNCATE:
4927     return getUnderlyingArgReg(N.getOperand(0));
4928   default:
4929     return 0;
4930   }
4931 }
4932 
4933 /// If the DbgValueInst is a dbg_value of a function argument, create the
4934 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4935 /// instruction selection, they will be inserted to the entry BB.
4936 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4937     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4938     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4939   const Argument *Arg = dyn_cast<Argument>(V);
4940   if (!Arg)
4941     return false;
4942 
4943   MachineFunction &MF = DAG.getMachineFunction();
4944   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4945 
4946   bool IsIndirect = false;
4947   Optional<MachineOperand> Op;
4948   // Some arguments' frame index is recorded during argument lowering.
4949   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4950   if (FI != std::numeric_limits<int>::max())
4951     Op = MachineOperand::CreateFI(FI);
4952 
4953   if (!Op && N.getNode()) {
4954     unsigned Reg = getUnderlyingArgReg(N);
4955     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4956       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4957       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4958       if (PR)
4959         Reg = PR;
4960     }
4961     if (Reg) {
4962       Op = MachineOperand::CreateReg(Reg, false);
4963       IsIndirect = IsDbgDeclare;
4964     }
4965   }
4966 
4967   if (!Op && N.getNode())
4968     // Check if frame index is available.
4969     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4970       if (FrameIndexSDNode *FINode =
4971           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4972         Op = MachineOperand::CreateFI(FINode->getIndex());
4973 
4974   if (!Op) {
4975     // Check if ValueMap has reg number.
4976     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4977     if (VMI != FuncInfo.ValueMap.end()) {
4978       const auto &TLI = DAG.getTargetLoweringInfo();
4979       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4980                        V->getType(), getABIRegCopyCC(V));
4981       if (RFV.occupiesMultipleRegs()) {
4982         unsigned Offset = 0;
4983         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4984           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4985           auto FragmentExpr = DIExpression::createFragmentExpression(
4986               Expr, Offset, RegAndSize.second);
4987           if (!FragmentExpr)
4988             continue;
4989           FuncInfo.ArgDbgValues.push_back(
4990               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4991                       Op->getReg(), Variable, *FragmentExpr));
4992           Offset += RegAndSize.second;
4993         }
4994         return true;
4995       }
4996       Op = MachineOperand::CreateReg(VMI->second, false);
4997       IsIndirect = IsDbgDeclare;
4998     }
4999   }
5000 
5001   if (!Op)
5002     return false;
5003 
5004   assert(Variable->isValidLocationForIntrinsic(DL) &&
5005          "Expected inlined-at fields to agree");
5006   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5007   FuncInfo.ArgDbgValues.push_back(
5008       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5009               *Op, Variable, Expr));
5010 
5011   return true;
5012 }
5013 
5014 /// Return the appropriate SDDbgValue based on N.
5015 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5016                                              DILocalVariable *Variable,
5017                                              DIExpression *Expr,
5018                                              const DebugLoc &dl,
5019                                              unsigned DbgSDNodeOrder) {
5020   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5021     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5022     // stack slot locations.
5023     //
5024     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5025     // debug values here after optimization:
5026     //
5027     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5028     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5029     //
5030     // Both describe the direct values of their associated variables.
5031     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5032                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5033   }
5034   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5035                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5036 }
5037 
5038 // VisualStudio defines setjmp as _setjmp
5039 #if defined(_MSC_VER) && defined(setjmp) && \
5040                          !defined(setjmp_undefined_for_msvc)
5041 #  pragma push_macro("setjmp")
5042 #  undef setjmp
5043 #  define setjmp_undefined_for_msvc
5044 #endif
5045 
5046 /// Lower the call to the specified intrinsic function. If we want to emit this
5047 /// as a call to a named external function, return the name. Otherwise, lower it
5048 /// and return null.
5049 const char *
5050 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5051   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5052   SDLoc sdl = getCurSDLoc();
5053   DebugLoc dl = getCurDebugLoc();
5054   SDValue Res;
5055 
5056   switch (Intrinsic) {
5057   default:
5058     // By default, turn this into a target intrinsic node.
5059     visitTargetIntrinsic(I, Intrinsic);
5060     return nullptr;
5061   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5062   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5063   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5064   case Intrinsic::returnaddress:
5065     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5066                              TLI.getPointerTy(DAG.getDataLayout()),
5067                              getValue(I.getArgOperand(0))));
5068     return nullptr;
5069   case Intrinsic::addressofreturnaddress:
5070     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5071                              TLI.getPointerTy(DAG.getDataLayout())));
5072     return nullptr;
5073   case Intrinsic::sponentry:
5074     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5075                              TLI.getPointerTy(DAG.getDataLayout())));
5076     return nullptr;
5077   case Intrinsic::frameaddress:
5078     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5079                              TLI.getPointerTy(DAG.getDataLayout()),
5080                              getValue(I.getArgOperand(0))));
5081     return nullptr;
5082   case Intrinsic::read_register: {
5083     Value *Reg = I.getArgOperand(0);
5084     SDValue Chain = getRoot();
5085     SDValue RegName =
5086         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5087     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5088     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5089       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5090     setValue(&I, Res);
5091     DAG.setRoot(Res.getValue(1));
5092     return nullptr;
5093   }
5094   case Intrinsic::write_register: {
5095     Value *Reg = I.getArgOperand(0);
5096     Value *RegValue = I.getArgOperand(1);
5097     SDValue Chain = getRoot();
5098     SDValue RegName =
5099         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5100     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5101                             RegName, getValue(RegValue)));
5102     return nullptr;
5103   }
5104   case Intrinsic::setjmp:
5105     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5106   case Intrinsic::longjmp:
5107     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5108   case Intrinsic::memcpy: {
5109     const auto &MCI = cast<MemCpyInst>(I);
5110     SDValue Op1 = getValue(I.getArgOperand(0));
5111     SDValue Op2 = getValue(I.getArgOperand(1));
5112     SDValue Op3 = getValue(I.getArgOperand(2));
5113     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5114     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5115     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5116     unsigned Align = MinAlign(DstAlign, SrcAlign);
5117     bool isVol = MCI.isVolatile();
5118     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5119     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5120     // node.
5121     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5122                                false, isTC,
5123                                MachinePointerInfo(I.getArgOperand(0)),
5124                                MachinePointerInfo(I.getArgOperand(1)));
5125     updateDAGForMaybeTailCall(MC);
5126     return nullptr;
5127   }
5128   case Intrinsic::memset: {
5129     const auto &MSI = cast<MemSetInst>(I);
5130     SDValue Op1 = getValue(I.getArgOperand(0));
5131     SDValue Op2 = getValue(I.getArgOperand(1));
5132     SDValue Op3 = getValue(I.getArgOperand(2));
5133     // @llvm.memset defines 0 and 1 to both mean no alignment.
5134     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5135     bool isVol = MSI.isVolatile();
5136     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5137     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5138                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5139     updateDAGForMaybeTailCall(MS);
5140     return nullptr;
5141   }
5142   case Intrinsic::memmove: {
5143     const auto &MMI = cast<MemMoveInst>(I);
5144     SDValue Op1 = getValue(I.getArgOperand(0));
5145     SDValue Op2 = getValue(I.getArgOperand(1));
5146     SDValue Op3 = getValue(I.getArgOperand(2));
5147     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5148     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5149     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5150     unsigned Align = MinAlign(DstAlign, SrcAlign);
5151     bool isVol = MMI.isVolatile();
5152     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5153     // FIXME: Support passing different dest/src alignments to the memmove DAG
5154     // node.
5155     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5156                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5157                                 MachinePointerInfo(I.getArgOperand(1)));
5158     updateDAGForMaybeTailCall(MM);
5159     return nullptr;
5160   }
5161   case Intrinsic::memcpy_element_unordered_atomic: {
5162     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5163     SDValue Dst = getValue(MI.getRawDest());
5164     SDValue Src = getValue(MI.getRawSource());
5165     SDValue Length = getValue(MI.getLength());
5166 
5167     unsigned DstAlign = MI.getDestAlignment();
5168     unsigned SrcAlign = MI.getSourceAlignment();
5169     Type *LengthTy = MI.getLength()->getType();
5170     unsigned ElemSz = MI.getElementSizeInBytes();
5171     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5172     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5173                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5174                                      MachinePointerInfo(MI.getRawDest()),
5175                                      MachinePointerInfo(MI.getRawSource()));
5176     updateDAGForMaybeTailCall(MC);
5177     return nullptr;
5178   }
5179   case Intrinsic::memmove_element_unordered_atomic: {
5180     auto &MI = cast<AtomicMemMoveInst>(I);
5181     SDValue Dst = getValue(MI.getRawDest());
5182     SDValue Src = getValue(MI.getRawSource());
5183     SDValue Length = getValue(MI.getLength());
5184 
5185     unsigned DstAlign = MI.getDestAlignment();
5186     unsigned SrcAlign = MI.getSourceAlignment();
5187     Type *LengthTy = MI.getLength()->getType();
5188     unsigned ElemSz = MI.getElementSizeInBytes();
5189     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5190     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5191                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5192                                       MachinePointerInfo(MI.getRawDest()),
5193                                       MachinePointerInfo(MI.getRawSource()));
5194     updateDAGForMaybeTailCall(MC);
5195     return nullptr;
5196   }
5197   case Intrinsic::memset_element_unordered_atomic: {
5198     auto &MI = cast<AtomicMemSetInst>(I);
5199     SDValue Dst = getValue(MI.getRawDest());
5200     SDValue Val = getValue(MI.getValue());
5201     SDValue Length = getValue(MI.getLength());
5202 
5203     unsigned DstAlign = MI.getDestAlignment();
5204     Type *LengthTy = MI.getLength()->getType();
5205     unsigned ElemSz = MI.getElementSizeInBytes();
5206     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5207     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5208                                      LengthTy, ElemSz, isTC,
5209                                      MachinePointerInfo(MI.getRawDest()));
5210     updateDAGForMaybeTailCall(MC);
5211     return nullptr;
5212   }
5213   case Intrinsic::dbg_addr:
5214   case Intrinsic::dbg_declare: {
5215     const auto &DI = cast<DbgVariableIntrinsic>(I);
5216     DILocalVariable *Variable = DI.getVariable();
5217     DIExpression *Expression = DI.getExpression();
5218     dropDanglingDebugInfo(Variable, Expression);
5219     assert(Variable && "Missing variable");
5220 
5221     // Check if address has undef value.
5222     const Value *Address = DI.getVariableLocation();
5223     if (!Address || isa<UndefValue>(Address) ||
5224         (Address->use_empty() && !isa<Argument>(Address))) {
5225       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5226       return nullptr;
5227     }
5228 
5229     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5230 
5231     // Check if this variable can be described by a frame index, typically
5232     // either as a static alloca or a byval parameter.
5233     int FI = std::numeric_limits<int>::max();
5234     if (const auto *AI =
5235             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5236       if (AI->isStaticAlloca()) {
5237         auto I = FuncInfo.StaticAllocaMap.find(AI);
5238         if (I != FuncInfo.StaticAllocaMap.end())
5239           FI = I->second;
5240       }
5241     } else if (const auto *Arg = dyn_cast<Argument>(
5242                    Address->stripInBoundsConstantOffsets())) {
5243       FI = FuncInfo.getArgumentFrameIndex(Arg);
5244     }
5245 
5246     // llvm.dbg.addr is control dependent and always generates indirect
5247     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5248     // the MachineFunction variable table.
5249     if (FI != std::numeric_limits<int>::max()) {
5250       if (Intrinsic == Intrinsic::dbg_addr) {
5251         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5252             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5253         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5254       }
5255       return nullptr;
5256     }
5257 
5258     SDValue &N = NodeMap[Address];
5259     if (!N.getNode() && isa<Argument>(Address))
5260       // Check unused arguments map.
5261       N = UnusedArgNodeMap[Address];
5262     SDDbgValue *SDV;
5263     if (N.getNode()) {
5264       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5265         Address = BCI->getOperand(0);
5266       // Parameters are handled specially.
5267       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5268       if (isParameter && FINode) {
5269         // Byval parameter. We have a frame index at this point.
5270         SDV =
5271             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5272                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5273       } else if (isa<Argument>(Address)) {
5274         // Address is an argument, so try to emit its dbg value using
5275         // virtual register info from the FuncInfo.ValueMap.
5276         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5277         return nullptr;
5278       } else {
5279         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5280                               true, dl, SDNodeOrder);
5281       }
5282       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5283     } else {
5284       // If Address is an argument then try to emit its dbg value using
5285       // virtual register info from the FuncInfo.ValueMap.
5286       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5287                                     N)) {
5288         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5289       }
5290     }
5291     return nullptr;
5292   }
5293   case Intrinsic::dbg_label: {
5294     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5295     DILabel *Label = DI.getLabel();
5296     assert(Label && "Missing label");
5297 
5298     SDDbgLabel *SDV;
5299     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5300     DAG.AddDbgLabel(SDV);
5301     return nullptr;
5302   }
5303   case Intrinsic::dbg_value: {
5304     const DbgValueInst &DI = cast<DbgValueInst>(I);
5305     assert(DI.getVariable() && "Missing variable");
5306 
5307     DILocalVariable *Variable = DI.getVariable();
5308     DIExpression *Expression = DI.getExpression();
5309     dropDanglingDebugInfo(Variable, Expression);
5310     const Value *V = DI.getValue();
5311     if (!V)
5312       return nullptr;
5313 
5314     SDDbgValue *SDV;
5315     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
5316         isa<ConstantPointerNull>(V)) {
5317       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5318       DAG.AddDbgValue(SDV, nullptr, false);
5319       return nullptr;
5320     }
5321 
5322     // Do not use getValue() in here; we don't want to generate code at
5323     // this point if it hasn't been done yet.
5324     SDValue N = NodeMap[V];
5325     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5326       N = UnusedArgNodeMap[V];
5327     if (N.getNode()) {
5328       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5329         return nullptr;
5330       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5331       DAG.AddDbgValue(SDV, N.getNode(), false);
5332       return nullptr;
5333     }
5334 
5335     // The value is not used in this block yet (or it would have an SDNode).
5336     // We still want the value to appear for the user if possible -- if it has
5337     // an associated VReg, we can refer to that instead.
5338     if (!isa<Argument>(V)) {
5339       auto VMI = FuncInfo.ValueMap.find(V);
5340       if (VMI != FuncInfo.ValueMap.end()) {
5341         unsigned Reg = VMI->second;
5342         // If this is a PHI node, it may be split up into several MI PHI nodes
5343         // (in FunctionLoweringInfo::set).
5344         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5345                          V->getType(), None);
5346         if (RFV.occupiesMultipleRegs()) {
5347           unsigned Offset = 0;
5348           unsigned BitsToDescribe = 0;
5349           if (auto VarSize = Variable->getSizeInBits())
5350             BitsToDescribe = *VarSize;
5351           if (auto Fragment = Expression->getFragmentInfo())
5352             BitsToDescribe = Fragment->SizeInBits;
5353           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5354             unsigned RegisterSize = RegAndSize.second;
5355             // Bail out if all bits are described already.
5356             if (Offset >= BitsToDescribe)
5357               break;
5358             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5359                 ? BitsToDescribe - Offset
5360                 : RegisterSize;
5361             auto FragmentExpr = DIExpression::createFragmentExpression(
5362                 Expression, Offset, FragmentSize);
5363             if (!FragmentExpr)
5364                 continue;
5365             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5366                                       false, dl, SDNodeOrder);
5367             DAG.AddDbgValue(SDV, nullptr, false);
5368             Offset += RegisterSize;
5369           }
5370         } else {
5371           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5372                                     SDNodeOrder);
5373           DAG.AddDbgValue(SDV, nullptr, false);
5374         }
5375         return nullptr;
5376       }
5377     }
5378 
5379     // TODO: When we get here we will either drop the dbg.value completely, or
5380     // we try to move it forward by letting it dangle for awhile. So we should
5381     // probably add an extra DbgValue to the DAG here, with a reference to
5382     // "noreg", to indicate that we have lost the debug location for the
5383     // variable.
5384 
5385     if (!V->use_empty() ) {
5386       // Do not call getValue(V) yet, as we don't want to generate code.
5387       // Remember it for later.
5388       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5389       return nullptr;
5390     }
5391 
5392     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5393     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5394     return nullptr;
5395   }
5396 
5397   case Intrinsic::eh_typeid_for: {
5398     // Find the type id for the given typeinfo.
5399     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5400     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5401     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5402     setValue(&I, Res);
5403     return nullptr;
5404   }
5405 
5406   case Intrinsic::eh_return_i32:
5407   case Intrinsic::eh_return_i64:
5408     DAG.getMachineFunction().setCallsEHReturn(true);
5409     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5410                             MVT::Other,
5411                             getControlRoot(),
5412                             getValue(I.getArgOperand(0)),
5413                             getValue(I.getArgOperand(1))));
5414     return nullptr;
5415   case Intrinsic::eh_unwind_init:
5416     DAG.getMachineFunction().setCallsUnwindInit(true);
5417     return nullptr;
5418   case Intrinsic::eh_dwarf_cfa:
5419     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5420                              TLI.getPointerTy(DAG.getDataLayout()),
5421                              getValue(I.getArgOperand(0))));
5422     return nullptr;
5423   case Intrinsic::eh_sjlj_callsite: {
5424     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5425     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5426     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5427     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5428 
5429     MMI.setCurrentCallSite(CI->getZExtValue());
5430     return nullptr;
5431   }
5432   case Intrinsic::eh_sjlj_functioncontext: {
5433     // Get and store the index of the function context.
5434     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5435     AllocaInst *FnCtx =
5436       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5437     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5438     MFI.setFunctionContextIndex(FI);
5439     return nullptr;
5440   }
5441   case Intrinsic::eh_sjlj_setjmp: {
5442     SDValue Ops[2];
5443     Ops[0] = getRoot();
5444     Ops[1] = getValue(I.getArgOperand(0));
5445     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5446                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5447     setValue(&I, Op.getValue(0));
5448     DAG.setRoot(Op.getValue(1));
5449     return nullptr;
5450   }
5451   case Intrinsic::eh_sjlj_longjmp:
5452     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5453                             getRoot(), getValue(I.getArgOperand(0))));
5454     return nullptr;
5455   case Intrinsic::eh_sjlj_setup_dispatch:
5456     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5457                             getRoot()));
5458     return nullptr;
5459   case Intrinsic::masked_gather:
5460     visitMaskedGather(I);
5461     return nullptr;
5462   case Intrinsic::masked_load:
5463     visitMaskedLoad(I);
5464     return nullptr;
5465   case Intrinsic::masked_scatter:
5466     visitMaskedScatter(I);
5467     return nullptr;
5468   case Intrinsic::masked_store:
5469     visitMaskedStore(I);
5470     return nullptr;
5471   case Intrinsic::masked_expandload:
5472     visitMaskedLoad(I, true /* IsExpanding */);
5473     return nullptr;
5474   case Intrinsic::masked_compressstore:
5475     visitMaskedStore(I, true /* IsCompressing */);
5476     return nullptr;
5477   case Intrinsic::x86_mmx_pslli_w:
5478   case Intrinsic::x86_mmx_pslli_d:
5479   case Intrinsic::x86_mmx_pslli_q:
5480   case Intrinsic::x86_mmx_psrli_w:
5481   case Intrinsic::x86_mmx_psrli_d:
5482   case Intrinsic::x86_mmx_psrli_q:
5483   case Intrinsic::x86_mmx_psrai_w:
5484   case Intrinsic::x86_mmx_psrai_d: {
5485     SDValue ShAmt = getValue(I.getArgOperand(1));
5486     if (isa<ConstantSDNode>(ShAmt)) {
5487       visitTargetIntrinsic(I, Intrinsic);
5488       return nullptr;
5489     }
5490     unsigned NewIntrinsic = 0;
5491     EVT ShAmtVT = MVT::v2i32;
5492     switch (Intrinsic) {
5493     case Intrinsic::x86_mmx_pslli_w:
5494       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5495       break;
5496     case Intrinsic::x86_mmx_pslli_d:
5497       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5498       break;
5499     case Intrinsic::x86_mmx_pslli_q:
5500       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5501       break;
5502     case Intrinsic::x86_mmx_psrli_w:
5503       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5504       break;
5505     case Intrinsic::x86_mmx_psrli_d:
5506       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5507       break;
5508     case Intrinsic::x86_mmx_psrli_q:
5509       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5510       break;
5511     case Intrinsic::x86_mmx_psrai_w:
5512       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5513       break;
5514     case Intrinsic::x86_mmx_psrai_d:
5515       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5516       break;
5517     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5518     }
5519 
5520     // The vector shift intrinsics with scalars uses 32b shift amounts but
5521     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5522     // to be zero.
5523     // We must do this early because v2i32 is not a legal type.
5524     SDValue ShOps[2];
5525     ShOps[0] = ShAmt;
5526     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5527     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5528     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5529     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5530     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5531                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5532                        getValue(I.getArgOperand(0)), ShAmt);
5533     setValue(&I, Res);
5534     return nullptr;
5535   }
5536   case Intrinsic::powi:
5537     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5538                             getValue(I.getArgOperand(1)), DAG));
5539     return nullptr;
5540   case Intrinsic::log:
5541     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5542     return nullptr;
5543   case Intrinsic::log2:
5544     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5545     return nullptr;
5546   case Intrinsic::log10:
5547     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5548     return nullptr;
5549   case Intrinsic::exp:
5550     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5551     return nullptr;
5552   case Intrinsic::exp2:
5553     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5554     return nullptr;
5555   case Intrinsic::pow:
5556     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5557                            getValue(I.getArgOperand(1)), DAG, TLI));
5558     return nullptr;
5559   case Intrinsic::sqrt:
5560   case Intrinsic::fabs:
5561   case Intrinsic::sin:
5562   case Intrinsic::cos:
5563   case Intrinsic::floor:
5564   case Intrinsic::ceil:
5565   case Intrinsic::trunc:
5566   case Intrinsic::rint:
5567   case Intrinsic::nearbyint:
5568   case Intrinsic::round:
5569   case Intrinsic::canonicalize: {
5570     unsigned Opcode;
5571     switch (Intrinsic) {
5572     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5573     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5574     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5575     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5576     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5577     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5578     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5579     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5580     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5581     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5582     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5583     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5584     }
5585 
5586     setValue(&I, DAG.getNode(Opcode, sdl,
5587                              getValue(I.getArgOperand(0)).getValueType(),
5588                              getValue(I.getArgOperand(0))));
5589     return nullptr;
5590   }
5591   case Intrinsic::minnum: {
5592     auto VT = getValue(I.getArgOperand(0)).getValueType();
5593     unsigned Opc =
5594         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5595             ? ISD::FMINIMUM
5596             : ISD::FMINNUM;
5597     setValue(&I, DAG.getNode(Opc, sdl, VT,
5598                              getValue(I.getArgOperand(0)),
5599                              getValue(I.getArgOperand(1))));
5600     return nullptr;
5601   }
5602   case Intrinsic::maxnum: {
5603     auto VT = getValue(I.getArgOperand(0)).getValueType();
5604     unsigned Opc =
5605         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5606             ? ISD::FMAXIMUM
5607             : ISD::FMAXNUM;
5608     setValue(&I, DAG.getNode(Opc, sdl, VT,
5609                              getValue(I.getArgOperand(0)),
5610                              getValue(I.getArgOperand(1))));
5611     return nullptr;
5612   }
5613   case Intrinsic::minimum:
5614     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5615                              getValue(I.getArgOperand(0)).getValueType(),
5616                              getValue(I.getArgOperand(0)),
5617                              getValue(I.getArgOperand(1))));
5618     return nullptr;
5619   case Intrinsic::maximum:
5620     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5621                              getValue(I.getArgOperand(0)).getValueType(),
5622                              getValue(I.getArgOperand(0)),
5623                              getValue(I.getArgOperand(1))));
5624     return nullptr;
5625   case Intrinsic::copysign:
5626     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5627                              getValue(I.getArgOperand(0)).getValueType(),
5628                              getValue(I.getArgOperand(0)),
5629                              getValue(I.getArgOperand(1))));
5630     return nullptr;
5631   case Intrinsic::fma:
5632     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5633                              getValue(I.getArgOperand(0)).getValueType(),
5634                              getValue(I.getArgOperand(0)),
5635                              getValue(I.getArgOperand(1)),
5636                              getValue(I.getArgOperand(2))));
5637     return nullptr;
5638   case Intrinsic::experimental_constrained_fadd:
5639   case Intrinsic::experimental_constrained_fsub:
5640   case Intrinsic::experimental_constrained_fmul:
5641   case Intrinsic::experimental_constrained_fdiv:
5642   case Intrinsic::experimental_constrained_frem:
5643   case Intrinsic::experimental_constrained_fma:
5644   case Intrinsic::experimental_constrained_sqrt:
5645   case Intrinsic::experimental_constrained_pow:
5646   case Intrinsic::experimental_constrained_powi:
5647   case Intrinsic::experimental_constrained_sin:
5648   case Intrinsic::experimental_constrained_cos:
5649   case Intrinsic::experimental_constrained_exp:
5650   case Intrinsic::experimental_constrained_exp2:
5651   case Intrinsic::experimental_constrained_log:
5652   case Intrinsic::experimental_constrained_log10:
5653   case Intrinsic::experimental_constrained_log2:
5654   case Intrinsic::experimental_constrained_rint:
5655   case Intrinsic::experimental_constrained_nearbyint:
5656   case Intrinsic::experimental_constrained_maxnum:
5657   case Intrinsic::experimental_constrained_minnum:
5658   case Intrinsic::experimental_constrained_ceil:
5659   case Intrinsic::experimental_constrained_floor:
5660   case Intrinsic::experimental_constrained_round:
5661   case Intrinsic::experimental_constrained_trunc:
5662     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5663     return nullptr;
5664   case Intrinsic::fmuladd: {
5665     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5666     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5667         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5668       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5669                                getValue(I.getArgOperand(0)).getValueType(),
5670                                getValue(I.getArgOperand(0)),
5671                                getValue(I.getArgOperand(1)),
5672                                getValue(I.getArgOperand(2))));
5673     } else {
5674       // TODO: Intrinsic calls should have fast-math-flags.
5675       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5676                                 getValue(I.getArgOperand(0)).getValueType(),
5677                                 getValue(I.getArgOperand(0)),
5678                                 getValue(I.getArgOperand(1)));
5679       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5680                                 getValue(I.getArgOperand(0)).getValueType(),
5681                                 Mul,
5682                                 getValue(I.getArgOperand(2)));
5683       setValue(&I, Add);
5684     }
5685     return nullptr;
5686   }
5687   case Intrinsic::convert_to_fp16:
5688     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5689                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5690                                          getValue(I.getArgOperand(0)),
5691                                          DAG.getTargetConstant(0, sdl,
5692                                                                MVT::i32))));
5693     return nullptr;
5694   case Intrinsic::convert_from_fp16:
5695     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5696                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5697                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5698                                          getValue(I.getArgOperand(0)))));
5699     return nullptr;
5700   case Intrinsic::pcmarker: {
5701     SDValue Tmp = getValue(I.getArgOperand(0));
5702     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5703     return nullptr;
5704   }
5705   case Intrinsic::readcyclecounter: {
5706     SDValue Op = getRoot();
5707     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5708                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5709     setValue(&I, Res);
5710     DAG.setRoot(Res.getValue(1));
5711     return nullptr;
5712   }
5713   case Intrinsic::bitreverse:
5714     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5715                              getValue(I.getArgOperand(0)).getValueType(),
5716                              getValue(I.getArgOperand(0))));
5717     return nullptr;
5718   case Intrinsic::bswap:
5719     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5720                              getValue(I.getArgOperand(0)).getValueType(),
5721                              getValue(I.getArgOperand(0))));
5722     return nullptr;
5723   case Intrinsic::cttz: {
5724     SDValue Arg = getValue(I.getArgOperand(0));
5725     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5726     EVT Ty = Arg.getValueType();
5727     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5728                              sdl, Ty, Arg));
5729     return nullptr;
5730   }
5731   case Intrinsic::ctlz: {
5732     SDValue Arg = getValue(I.getArgOperand(0));
5733     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5734     EVT Ty = Arg.getValueType();
5735     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5736                              sdl, Ty, Arg));
5737     return nullptr;
5738   }
5739   case Intrinsic::ctpop: {
5740     SDValue Arg = getValue(I.getArgOperand(0));
5741     EVT Ty = Arg.getValueType();
5742     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5743     return nullptr;
5744   }
5745   case Intrinsic::fshl:
5746   case Intrinsic::fshr: {
5747     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5748     SDValue X = getValue(I.getArgOperand(0));
5749     SDValue Y = getValue(I.getArgOperand(1));
5750     SDValue Z = getValue(I.getArgOperand(2));
5751     EVT VT = X.getValueType();
5752     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5753     SDValue Zero = DAG.getConstant(0, sdl, VT);
5754     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5755 
5756     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
5757     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
5758       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
5759       return nullptr;
5760     }
5761 
5762     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5763     // avoid the select that is necessary in the general case to filter out
5764     // the 0-shift possibility that leads to UB.
5765     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5766       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5767       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5768         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5769         return nullptr;
5770       }
5771 
5772       // Some targets only rotate one way. Try the opposite direction.
5773       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5774       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5775         // Negate the shift amount because it is safe to ignore the high bits.
5776         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5777         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5778         return nullptr;
5779       }
5780 
5781       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5782       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5783       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5784       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5785       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5786       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5787       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5788       return nullptr;
5789     }
5790 
5791     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5792     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5793     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5794     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5795     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5796     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5797 
5798     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5799     // and that is undefined. We must compare and select to avoid UB.
5800     EVT CCVT = MVT::i1;
5801     if (VT.isVector())
5802       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5803 
5804     // For fshl, 0-shift returns the 1st arg (X).
5805     // For fshr, 0-shift returns the 2nd arg (Y).
5806     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5807     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5808     return nullptr;
5809   }
5810   case Intrinsic::sadd_sat: {
5811     SDValue Op1 = getValue(I.getArgOperand(0));
5812     SDValue Op2 = getValue(I.getArgOperand(1));
5813     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5814     return nullptr;
5815   }
5816   case Intrinsic::uadd_sat: {
5817     SDValue Op1 = getValue(I.getArgOperand(0));
5818     SDValue Op2 = getValue(I.getArgOperand(1));
5819     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5820     return nullptr;
5821   }
5822   case Intrinsic::ssub_sat: {
5823     SDValue Op1 = getValue(I.getArgOperand(0));
5824     SDValue Op2 = getValue(I.getArgOperand(1));
5825     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5826     return nullptr;
5827   }
5828   case Intrinsic::usub_sat: {
5829     SDValue Op1 = getValue(I.getArgOperand(0));
5830     SDValue Op2 = getValue(I.getArgOperand(1));
5831     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5832     return nullptr;
5833   }
5834   case Intrinsic::smul_fix: {
5835     SDValue Op1 = getValue(I.getArgOperand(0));
5836     SDValue Op2 = getValue(I.getArgOperand(1));
5837     SDValue Op3 = getValue(I.getArgOperand(2));
5838     setValue(&I,
5839              DAG.getNode(ISD::SMULFIX, sdl, Op1.getValueType(), Op1, Op2, Op3));
5840     return nullptr;
5841   }
5842   case Intrinsic::stacksave: {
5843     SDValue Op = getRoot();
5844     Res = DAG.getNode(
5845         ISD::STACKSAVE, sdl,
5846         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5847     setValue(&I, Res);
5848     DAG.setRoot(Res.getValue(1));
5849     return nullptr;
5850   }
5851   case Intrinsic::stackrestore:
5852     Res = getValue(I.getArgOperand(0));
5853     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5854     return nullptr;
5855   case Intrinsic::get_dynamic_area_offset: {
5856     SDValue Op = getRoot();
5857     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5858     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5859     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5860     // target.
5861     if (PtrTy != ResTy)
5862       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5863                          " intrinsic!");
5864     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5865                       Op);
5866     DAG.setRoot(Op);
5867     setValue(&I, Res);
5868     return nullptr;
5869   }
5870   case Intrinsic::stackguard: {
5871     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5872     MachineFunction &MF = DAG.getMachineFunction();
5873     const Module &M = *MF.getFunction().getParent();
5874     SDValue Chain = getRoot();
5875     if (TLI.useLoadStackGuardNode()) {
5876       Res = getLoadStackGuard(DAG, sdl, Chain);
5877     } else {
5878       const Value *Global = TLI.getSDagStackGuard(M);
5879       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5880       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5881                         MachinePointerInfo(Global, 0), Align,
5882                         MachineMemOperand::MOVolatile);
5883     }
5884     if (TLI.useStackGuardXorFP())
5885       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5886     DAG.setRoot(Chain);
5887     setValue(&I, Res);
5888     return nullptr;
5889   }
5890   case Intrinsic::stackprotector: {
5891     // Emit code into the DAG to store the stack guard onto the stack.
5892     MachineFunction &MF = DAG.getMachineFunction();
5893     MachineFrameInfo &MFI = MF.getFrameInfo();
5894     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5895     SDValue Src, Chain = getRoot();
5896 
5897     if (TLI.useLoadStackGuardNode())
5898       Src = getLoadStackGuard(DAG, sdl, Chain);
5899     else
5900       Src = getValue(I.getArgOperand(0));   // The guard's value.
5901 
5902     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5903 
5904     int FI = FuncInfo.StaticAllocaMap[Slot];
5905     MFI.setStackProtectorIndex(FI);
5906 
5907     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5908 
5909     // Store the stack protector onto the stack.
5910     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5911                                                  DAG.getMachineFunction(), FI),
5912                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5913     setValue(&I, Res);
5914     DAG.setRoot(Res);
5915     return nullptr;
5916   }
5917   case Intrinsic::objectsize: {
5918     // If we don't know by now, we're never going to know.
5919     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5920 
5921     assert(CI && "Non-constant type in __builtin_object_size?");
5922 
5923     SDValue Arg = getValue(I.getCalledValue());
5924     EVT Ty = Arg.getValueType();
5925 
5926     if (CI->isZero())
5927       Res = DAG.getConstant(-1ULL, sdl, Ty);
5928     else
5929       Res = DAG.getConstant(0, sdl, Ty);
5930 
5931     setValue(&I, Res);
5932     return nullptr;
5933   }
5934 
5935   case Intrinsic::is_constant:
5936     // If this wasn't constant-folded away by now, then it's not a
5937     // constant.
5938     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
5939     return nullptr;
5940 
5941   case Intrinsic::annotation:
5942   case Intrinsic::ptr_annotation:
5943   case Intrinsic::launder_invariant_group:
5944   case Intrinsic::strip_invariant_group:
5945     // Drop the intrinsic, but forward the value
5946     setValue(&I, getValue(I.getOperand(0)));
5947     return nullptr;
5948   case Intrinsic::assume:
5949   case Intrinsic::var_annotation:
5950   case Intrinsic::sideeffect:
5951     // Discard annotate attributes, assumptions, and artificial side-effects.
5952     return nullptr;
5953 
5954   case Intrinsic::codeview_annotation: {
5955     // Emit a label associated with this metadata.
5956     MachineFunction &MF = DAG.getMachineFunction();
5957     MCSymbol *Label =
5958         MF.getMMI().getContext().createTempSymbol("annotation", true);
5959     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5960     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5961     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5962     DAG.setRoot(Res);
5963     return nullptr;
5964   }
5965 
5966   case Intrinsic::init_trampoline: {
5967     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5968 
5969     SDValue Ops[6];
5970     Ops[0] = getRoot();
5971     Ops[1] = getValue(I.getArgOperand(0));
5972     Ops[2] = getValue(I.getArgOperand(1));
5973     Ops[3] = getValue(I.getArgOperand(2));
5974     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5975     Ops[5] = DAG.getSrcValue(F);
5976 
5977     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5978 
5979     DAG.setRoot(Res);
5980     return nullptr;
5981   }
5982   case Intrinsic::adjust_trampoline:
5983     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5984                              TLI.getPointerTy(DAG.getDataLayout()),
5985                              getValue(I.getArgOperand(0))));
5986     return nullptr;
5987   case Intrinsic::gcroot: {
5988     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5989            "only valid in functions with gc specified, enforced by Verifier");
5990     assert(GFI && "implied by previous");
5991     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5992     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5993 
5994     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5995     GFI->addStackRoot(FI->getIndex(), TypeMap);
5996     return nullptr;
5997   }
5998   case Intrinsic::gcread:
5999   case Intrinsic::gcwrite:
6000     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6001   case Intrinsic::flt_rounds:
6002     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6003     return nullptr;
6004 
6005   case Intrinsic::expect:
6006     // Just replace __builtin_expect(exp, c) with EXP.
6007     setValue(&I, getValue(I.getArgOperand(0)));
6008     return nullptr;
6009 
6010   case Intrinsic::debugtrap:
6011   case Intrinsic::trap: {
6012     StringRef TrapFuncName =
6013         I.getAttributes()
6014             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6015             .getValueAsString();
6016     if (TrapFuncName.empty()) {
6017       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6018         ISD::TRAP : ISD::DEBUGTRAP;
6019       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6020       return nullptr;
6021     }
6022     TargetLowering::ArgListTy Args;
6023 
6024     TargetLowering::CallLoweringInfo CLI(DAG);
6025     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6026         CallingConv::C, I.getType(),
6027         DAG.getExternalSymbol(TrapFuncName.data(),
6028                               TLI.getPointerTy(DAG.getDataLayout())),
6029         std::move(Args));
6030 
6031     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6032     DAG.setRoot(Result.second);
6033     return nullptr;
6034   }
6035 
6036   case Intrinsic::uadd_with_overflow:
6037   case Intrinsic::sadd_with_overflow:
6038   case Intrinsic::usub_with_overflow:
6039   case Intrinsic::ssub_with_overflow:
6040   case Intrinsic::umul_with_overflow:
6041   case Intrinsic::smul_with_overflow: {
6042     ISD::NodeType Op;
6043     switch (Intrinsic) {
6044     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6045     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6046     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6047     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6048     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6049     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6050     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6051     }
6052     SDValue Op1 = getValue(I.getArgOperand(0));
6053     SDValue Op2 = getValue(I.getArgOperand(1));
6054 
6055     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
6056     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6057     return nullptr;
6058   }
6059   case Intrinsic::prefetch: {
6060     SDValue Ops[5];
6061     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6062     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6063     Ops[0] = DAG.getRoot();
6064     Ops[1] = getValue(I.getArgOperand(0));
6065     Ops[2] = getValue(I.getArgOperand(1));
6066     Ops[3] = getValue(I.getArgOperand(2));
6067     Ops[4] = getValue(I.getArgOperand(3));
6068     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6069                                              DAG.getVTList(MVT::Other), Ops,
6070                                              EVT::getIntegerVT(*Context, 8),
6071                                              MachinePointerInfo(I.getArgOperand(0)),
6072                                              0, /* align */
6073                                              Flags);
6074 
6075     // Chain the prefetch in parallell with any pending loads, to stay out of
6076     // the way of later optimizations.
6077     PendingLoads.push_back(Result);
6078     Result = getRoot();
6079     DAG.setRoot(Result);
6080     return nullptr;
6081   }
6082   case Intrinsic::lifetime_start:
6083   case Intrinsic::lifetime_end: {
6084     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6085     // Stack coloring is not enabled in O0, discard region information.
6086     if (TM.getOptLevel() == CodeGenOpt::None)
6087       return nullptr;
6088 
6089     SmallVector<Value *, 4> Allocas;
6090     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
6091 
6092     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6093            E = Allocas.end(); Object != E; ++Object) {
6094       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6095 
6096       // Could not find an Alloca.
6097       if (!LifetimeObject)
6098         continue;
6099 
6100       // First check that the Alloca is static, otherwise it won't have a
6101       // valid frame index.
6102       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6103       if (SI == FuncInfo.StaticAllocaMap.end())
6104         return nullptr;
6105 
6106       int FI = SI->second;
6107 
6108       SDValue Ops[2];
6109       Ops[0] = getRoot();
6110       Ops[1] =
6111           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6112       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6113 
6114       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6115       DAG.setRoot(Res);
6116     }
6117     return nullptr;
6118   }
6119   case Intrinsic::invariant_start:
6120     // Discard region information.
6121     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6122     return nullptr;
6123   case Intrinsic::invariant_end:
6124     // Discard region information.
6125     return nullptr;
6126   case Intrinsic::clear_cache:
6127     return TLI.getClearCacheBuiltinName();
6128   case Intrinsic::donothing:
6129     // ignore
6130     return nullptr;
6131   case Intrinsic::experimental_stackmap:
6132     visitStackmap(I);
6133     return nullptr;
6134   case Intrinsic::experimental_patchpoint_void:
6135   case Intrinsic::experimental_patchpoint_i64:
6136     visitPatchpoint(&I);
6137     return nullptr;
6138   case Intrinsic::experimental_gc_statepoint:
6139     LowerStatepoint(ImmutableStatepoint(&I));
6140     return nullptr;
6141   case Intrinsic::experimental_gc_result:
6142     visitGCResult(cast<GCResultInst>(I));
6143     return nullptr;
6144   case Intrinsic::experimental_gc_relocate:
6145     visitGCRelocate(cast<GCRelocateInst>(I));
6146     return nullptr;
6147   case Intrinsic::instrprof_increment:
6148     llvm_unreachable("instrprof failed to lower an increment");
6149   case Intrinsic::instrprof_value_profile:
6150     llvm_unreachable("instrprof failed to lower a value profiling call");
6151   case Intrinsic::localescape: {
6152     MachineFunction &MF = DAG.getMachineFunction();
6153     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6154 
6155     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6156     // is the same on all targets.
6157     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6158       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6159       if (isa<ConstantPointerNull>(Arg))
6160         continue; // Skip null pointers. They represent a hole in index space.
6161       AllocaInst *Slot = cast<AllocaInst>(Arg);
6162       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6163              "can only escape static allocas");
6164       int FI = FuncInfo.StaticAllocaMap[Slot];
6165       MCSymbol *FrameAllocSym =
6166           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6167               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6168       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6169               TII->get(TargetOpcode::LOCAL_ESCAPE))
6170           .addSym(FrameAllocSym)
6171           .addFrameIndex(FI);
6172     }
6173 
6174     MF.setHasLocalEscape(true);
6175 
6176     return nullptr;
6177   }
6178 
6179   case Intrinsic::localrecover: {
6180     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6181     MachineFunction &MF = DAG.getMachineFunction();
6182     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6183 
6184     // Get the symbol that defines the frame offset.
6185     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6186     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6187     unsigned IdxVal =
6188         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6189     MCSymbol *FrameAllocSym =
6190         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6191             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6192 
6193     // Create a MCSymbol for the label to avoid any target lowering
6194     // that would make this PC relative.
6195     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6196     SDValue OffsetVal =
6197         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6198 
6199     // Add the offset to the FP.
6200     Value *FP = I.getArgOperand(1);
6201     SDValue FPVal = getValue(FP);
6202     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6203     setValue(&I, Add);
6204 
6205     return nullptr;
6206   }
6207 
6208   case Intrinsic::eh_exceptionpointer:
6209   case Intrinsic::eh_exceptioncode: {
6210     // Get the exception pointer vreg, copy from it, and resize it to fit.
6211     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6212     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6213     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6214     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6215     SDValue N =
6216         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6217     if (Intrinsic == Intrinsic::eh_exceptioncode)
6218       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6219     setValue(&I, N);
6220     return nullptr;
6221   }
6222   case Intrinsic::xray_customevent: {
6223     // Here we want to make sure that the intrinsic behaves as if it has a
6224     // specific calling convention, and only for x86_64.
6225     // FIXME: Support other platforms later.
6226     const auto &Triple = DAG.getTarget().getTargetTriple();
6227     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6228       return nullptr;
6229 
6230     SDLoc DL = getCurSDLoc();
6231     SmallVector<SDValue, 8> Ops;
6232 
6233     // We want to say that we always want the arguments in registers.
6234     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6235     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6236     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6237     SDValue Chain = getRoot();
6238     Ops.push_back(LogEntryVal);
6239     Ops.push_back(StrSizeVal);
6240     Ops.push_back(Chain);
6241 
6242     // We need to enforce the calling convention for the callsite, so that
6243     // argument ordering is enforced correctly, and that register allocation can
6244     // see that some registers may be assumed clobbered and have to preserve
6245     // them across calls to the intrinsic.
6246     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6247                                            DL, NodeTys, Ops);
6248     SDValue patchableNode = SDValue(MN, 0);
6249     DAG.setRoot(patchableNode);
6250     setValue(&I, patchableNode);
6251     return nullptr;
6252   }
6253   case Intrinsic::xray_typedevent: {
6254     // Here we want to make sure that the intrinsic behaves as if it has a
6255     // specific calling convention, and only for x86_64.
6256     // FIXME: Support other platforms later.
6257     const auto &Triple = DAG.getTarget().getTargetTriple();
6258     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6259       return nullptr;
6260 
6261     SDLoc DL = getCurSDLoc();
6262     SmallVector<SDValue, 8> Ops;
6263 
6264     // We want to say that we always want the arguments in registers.
6265     // It's unclear to me how manipulating the selection DAG here forces callers
6266     // to provide arguments in registers instead of on the stack.
6267     SDValue LogTypeId = getValue(I.getArgOperand(0));
6268     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6269     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6270     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6271     SDValue Chain = getRoot();
6272     Ops.push_back(LogTypeId);
6273     Ops.push_back(LogEntryVal);
6274     Ops.push_back(StrSizeVal);
6275     Ops.push_back(Chain);
6276 
6277     // We need to enforce the calling convention for the callsite, so that
6278     // argument ordering is enforced correctly, and that register allocation can
6279     // see that some registers may be assumed clobbered and have to preserve
6280     // them across calls to the intrinsic.
6281     MachineSDNode *MN = DAG.getMachineNode(
6282         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6283     SDValue patchableNode = SDValue(MN, 0);
6284     DAG.setRoot(patchableNode);
6285     setValue(&I, patchableNode);
6286     return nullptr;
6287   }
6288   case Intrinsic::experimental_deoptimize:
6289     LowerDeoptimizeCall(&I);
6290     return nullptr;
6291 
6292   case Intrinsic::experimental_vector_reduce_fadd:
6293   case Intrinsic::experimental_vector_reduce_fmul:
6294   case Intrinsic::experimental_vector_reduce_add:
6295   case Intrinsic::experimental_vector_reduce_mul:
6296   case Intrinsic::experimental_vector_reduce_and:
6297   case Intrinsic::experimental_vector_reduce_or:
6298   case Intrinsic::experimental_vector_reduce_xor:
6299   case Intrinsic::experimental_vector_reduce_smax:
6300   case Intrinsic::experimental_vector_reduce_smin:
6301   case Intrinsic::experimental_vector_reduce_umax:
6302   case Intrinsic::experimental_vector_reduce_umin:
6303   case Intrinsic::experimental_vector_reduce_fmax:
6304   case Intrinsic::experimental_vector_reduce_fmin:
6305     visitVectorReduce(I, Intrinsic);
6306     return nullptr;
6307 
6308   case Intrinsic::icall_branch_funnel: {
6309     SmallVector<SDValue, 16> Ops;
6310     Ops.push_back(DAG.getRoot());
6311     Ops.push_back(getValue(I.getArgOperand(0)));
6312 
6313     int64_t Offset;
6314     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6315         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6316     if (!Base)
6317       report_fatal_error(
6318           "llvm.icall.branch.funnel operand must be a GlobalValue");
6319     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6320 
6321     struct BranchFunnelTarget {
6322       int64_t Offset;
6323       SDValue Target;
6324     };
6325     SmallVector<BranchFunnelTarget, 8> Targets;
6326 
6327     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6328       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6329           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6330       if (ElemBase != Base)
6331         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6332                            "to the same GlobalValue");
6333 
6334       SDValue Val = getValue(I.getArgOperand(Op + 1));
6335       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6336       if (!GA)
6337         report_fatal_error(
6338             "llvm.icall.branch.funnel operand must be a GlobalValue");
6339       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6340                                      GA->getGlobal(), getCurSDLoc(),
6341                                      Val.getValueType(), GA->getOffset())});
6342     }
6343     llvm::sort(Targets,
6344                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6345                  return T1.Offset < T2.Offset;
6346                });
6347 
6348     for (auto &T : Targets) {
6349       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6350       Ops.push_back(T.Target);
6351     }
6352 
6353     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6354                                  getCurSDLoc(), MVT::Other, Ops),
6355               0);
6356     DAG.setRoot(N);
6357     setValue(&I, N);
6358     HasTailCall = true;
6359     return nullptr;
6360   }
6361 
6362   case Intrinsic::wasm_landingpad_index:
6363     // Information this intrinsic contained has been transferred to
6364     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6365     // delete it now.
6366     return nullptr;
6367   }
6368 }
6369 
6370 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6371     const ConstrainedFPIntrinsic &FPI) {
6372   SDLoc sdl = getCurSDLoc();
6373   unsigned Opcode;
6374   switch (FPI.getIntrinsicID()) {
6375   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6376   case Intrinsic::experimental_constrained_fadd:
6377     Opcode = ISD::STRICT_FADD;
6378     break;
6379   case Intrinsic::experimental_constrained_fsub:
6380     Opcode = ISD::STRICT_FSUB;
6381     break;
6382   case Intrinsic::experimental_constrained_fmul:
6383     Opcode = ISD::STRICT_FMUL;
6384     break;
6385   case Intrinsic::experimental_constrained_fdiv:
6386     Opcode = ISD::STRICT_FDIV;
6387     break;
6388   case Intrinsic::experimental_constrained_frem:
6389     Opcode = ISD::STRICT_FREM;
6390     break;
6391   case Intrinsic::experimental_constrained_fma:
6392     Opcode = ISD::STRICT_FMA;
6393     break;
6394   case Intrinsic::experimental_constrained_sqrt:
6395     Opcode = ISD::STRICT_FSQRT;
6396     break;
6397   case Intrinsic::experimental_constrained_pow:
6398     Opcode = ISD::STRICT_FPOW;
6399     break;
6400   case Intrinsic::experimental_constrained_powi:
6401     Opcode = ISD::STRICT_FPOWI;
6402     break;
6403   case Intrinsic::experimental_constrained_sin:
6404     Opcode = ISD::STRICT_FSIN;
6405     break;
6406   case Intrinsic::experimental_constrained_cos:
6407     Opcode = ISD::STRICT_FCOS;
6408     break;
6409   case Intrinsic::experimental_constrained_exp:
6410     Opcode = ISD::STRICT_FEXP;
6411     break;
6412   case Intrinsic::experimental_constrained_exp2:
6413     Opcode = ISD::STRICT_FEXP2;
6414     break;
6415   case Intrinsic::experimental_constrained_log:
6416     Opcode = ISD::STRICT_FLOG;
6417     break;
6418   case Intrinsic::experimental_constrained_log10:
6419     Opcode = ISD::STRICT_FLOG10;
6420     break;
6421   case Intrinsic::experimental_constrained_log2:
6422     Opcode = ISD::STRICT_FLOG2;
6423     break;
6424   case Intrinsic::experimental_constrained_rint:
6425     Opcode = ISD::STRICT_FRINT;
6426     break;
6427   case Intrinsic::experimental_constrained_nearbyint:
6428     Opcode = ISD::STRICT_FNEARBYINT;
6429     break;
6430   case Intrinsic::experimental_constrained_maxnum:
6431     Opcode = ISD::STRICT_FMAXNUM;
6432     break;
6433   case Intrinsic::experimental_constrained_minnum:
6434     Opcode = ISD::STRICT_FMINNUM;
6435     break;
6436   case Intrinsic::experimental_constrained_ceil:
6437     Opcode = ISD::STRICT_FCEIL;
6438     break;
6439   case Intrinsic::experimental_constrained_floor:
6440     Opcode = ISD::STRICT_FFLOOR;
6441     break;
6442   case Intrinsic::experimental_constrained_round:
6443     Opcode = ISD::STRICT_FROUND;
6444     break;
6445   case Intrinsic::experimental_constrained_trunc:
6446     Opcode = ISD::STRICT_FTRUNC;
6447     break;
6448   }
6449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6450   SDValue Chain = getRoot();
6451   SmallVector<EVT, 4> ValueVTs;
6452   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6453   ValueVTs.push_back(MVT::Other); // Out chain
6454 
6455   SDVTList VTs = DAG.getVTList(ValueVTs);
6456   SDValue Result;
6457   if (FPI.isUnaryOp())
6458     Result = DAG.getNode(Opcode, sdl, VTs,
6459                          { Chain, getValue(FPI.getArgOperand(0)) });
6460   else if (FPI.isTernaryOp())
6461     Result = DAG.getNode(Opcode, sdl, VTs,
6462                          { Chain, getValue(FPI.getArgOperand(0)),
6463                                   getValue(FPI.getArgOperand(1)),
6464                                   getValue(FPI.getArgOperand(2)) });
6465   else
6466     Result = DAG.getNode(Opcode, sdl, VTs,
6467                          { Chain, getValue(FPI.getArgOperand(0)),
6468                            getValue(FPI.getArgOperand(1))  });
6469 
6470   assert(Result.getNode()->getNumValues() == 2);
6471   SDValue OutChain = Result.getValue(1);
6472   DAG.setRoot(OutChain);
6473   SDValue FPResult = Result.getValue(0);
6474   setValue(&FPI, FPResult);
6475 }
6476 
6477 std::pair<SDValue, SDValue>
6478 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6479                                     const BasicBlock *EHPadBB) {
6480   MachineFunction &MF = DAG.getMachineFunction();
6481   MachineModuleInfo &MMI = MF.getMMI();
6482   MCSymbol *BeginLabel = nullptr;
6483 
6484   if (EHPadBB) {
6485     // Insert a label before the invoke call to mark the try range.  This can be
6486     // used to detect deletion of the invoke via the MachineModuleInfo.
6487     BeginLabel = MMI.getContext().createTempSymbol();
6488 
6489     // For SjLj, keep track of which landing pads go with which invokes
6490     // so as to maintain the ordering of pads in the LSDA.
6491     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6492     if (CallSiteIndex) {
6493       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6494       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6495 
6496       // Now that the call site is handled, stop tracking it.
6497       MMI.setCurrentCallSite(0);
6498     }
6499 
6500     // Both PendingLoads and PendingExports must be flushed here;
6501     // this call might not return.
6502     (void)getRoot();
6503     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6504 
6505     CLI.setChain(getRoot());
6506   }
6507   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6508   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6509 
6510   assert((CLI.IsTailCall || Result.second.getNode()) &&
6511          "Non-null chain expected with non-tail call!");
6512   assert((Result.second.getNode() || !Result.first.getNode()) &&
6513          "Null value expected with tail call!");
6514 
6515   if (!Result.second.getNode()) {
6516     // As a special case, a null chain means that a tail call has been emitted
6517     // and the DAG root is already updated.
6518     HasTailCall = true;
6519 
6520     // Since there's no actual continuation from this block, nothing can be
6521     // relying on us setting vregs for them.
6522     PendingExports.clear();
6523   } else {
6524     DAG.setRoot(Result.second);
6525   }
6526 
6527   if (EHPadBB) {
6528     // Insert a label at the end of the invoke call to mark the try range.  This
6529     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6530     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6531     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6532 
6533     // Inform MachineModuleInfo of range.
6534     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6535     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6536     // actually use outlined funclets and their LSDA info style.
6537     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6538       assert(CLI.CS);
6539       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6540       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6541                                 BeginLabel, EndLabel);
6542     } else if (!isScopedEHPersonality(Pers)) {
6543       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6544     }
6545   }
6546 
6547   return Result;
6548 }
6549 
6550 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6551                                       bool isTailCall,
6552                                       const BasicBlock *EHPadBB) {
6553   auto &DL = DAG.getDataLayout();
6554   FunctionType *FTy = CS.getFunctionType();
6555   Type *RetTy = CS.getType();
6556 
6557   TargetLowering::ArgListTy Args;
6558   Args.reserve(CS.arg_size());
6559 
6560   const Value *SwiftErrorVal = nullptr;
6561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6562 
6563   // We can't tail call inside a function with a swifterror argument. Lowering
6564   // does not support this yet. It would have to move into the swifterror
6565   // register before the call.
6566   auto *Caller = CS.getInstruction()->getParent()->getParent();
6567   if (TLI.supportSwiftError() &&
6568       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6569     isTailCall = false;
6570 
6571   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6572        i != e; ++i) {
6573     TargetLowering::ArgListEntry Entry;
6574     const Value *V = *i;
6575 
6576     // Skip empty types
6577     if (V->getType()->isEmptyTy())
6578       continue;
6579 
6580     SDValue ArgNode = getValue(V);
6581     Entry.Node = ArgNode; Entry.Ty = V->getType();
6582 
6583     Entry.setAttributes(&CS, i - CS.arg_begin());
6584 
6585     // Use swifterror virtual register as input to the call.
6586     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6587       SwiftErrorVal = V;
6588       // We find the virtual register for the actual swifterror argument.
6589       // Instead of using the Value, we use the virtual register instead.
6590       Entry.Node = DAG.getRegister(FuncInfo
6591                                        .getOrCreateSwiftErrorVRegUseAt(
6592                                            CS.getInstruction(), FuncInfo.MBB, V)
6593                                        .first,
6594                                    EVT(TLI.getPointerTy(DL)));
6595     }
6596 
6597     Args.push_back(Entry);
6598 
6599     // If we have an explicit sret argument that is an Instruction, (i.e., it
6600     // might point to function-local memory), we can't meaningfully tail-call.
6601     if (Entry.IsSRet && isa<Instruction>(V))
6602       isTailCall = false;
6603   }
6604 
6605   // Check if target-independent constraints permit a tail call here.
6606   // Target-dependent constraints are checked within TLI->LowerCallTo.
6607   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6608     isTailCall = false;
6609 
6610   // Disable tail calls if there is an swifterror argument. Targets have not
6611   // been updated to support tail calls.
6612   if (TLI.supportSwiftError() && SwiftErrorVal)
6613     isTailCall = false;
6614 
6615   TargetLowering::CallLoweringInfo CLI(DAG);
6616   CLI.setDebugLoc(getCurSDLoc())
6617       .setChain(getRoot())
6618       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6619       .setTailCall(isTailCall)
6620       .setConvergent(CS.isConvergent());
6621   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6622 
6623   if (Result.first.getNode()) {
6624     const Instruction *Inst = CS.getInstruction();
6625     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6626     setValue(Inst, Result.first);
6627   }
6628 
6629   // The last element of CLI.InVals has the SDValue for swifterror return.
6630   // Here we copy it to a virtual register and update SwiftErrorMap for
6631   // book-keeping.
6632   if (SwiftErrorVal && TLI.supportSwiftError()) {
6633     // Get the last element of InVals.
6634     SDValue Src = CLI.InVals.back();
6635     unsigned VReg; bool CreatedVReg;
6636     std::tie(VReg, CreatedVReg) =
6637         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6638     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6639     // We update the virtual register for the actual swifterror argument.
6640     if (CreatedVReg)
6641       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6642     DAG.setRoot(CopyNode);
6643   }
6644 }
6645 
6646 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6647                              SelectionDAGBuilder &Builder) {
6648   // Check to see if this load can be trivially constant folded, e.g. if the
6649   // input is from a string literal.
6650   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6651     // Cast pointer to the type we really want to load.
6652     Type *LoadTy =
6653         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6654     if (LoadVT.isVector())
6655       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6656 
6657     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6658                                          PointerType::getUnqual(LoadTy));
6659 
6660     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6661             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6662       return Builder.getValue(LoadCst);
6663   }
6664 
6665   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6666   // still constant memory, the input chain can be the entry node.
6667   SDValue Root;
6668   bool ConstantMemory = false;
6669 
6670   // Do not serialize (non-volatile) loads of constant memory with anything.
6671   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6672     Root = Builder.DAG.getEntryNode();
6673     ConstantMemory = true;
6674   } else {
6675     // Do not serialize non-volatile loads against each other.
6676     Root = Builder.DAG.getRoot();
6677   }
6678 
6679   SDValue Ptr = Builder.getValue(PtrVal);
6680   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6681                                         Ptr, MachinePointerInfo(PtrVal),
6682                                         /* Alignment = */ 1);
6683 
6684   if (!ConstantMemory)
6685     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6686   return LoadVal;
6687 }
6688 
6689 /// Record the value for an instruction that produces an integer result,
6690 /// converting the type where necessary.
6691 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6692                                                   SDValue Value,
6693                                                   bool IsSigned) {
6694   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6695                                                     I.getType(), true);
6696   if (IsSigned)
6697     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6698   else
6699     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6700   setValue(&I, Value);
6701 }
6702 
6703 /// See if we can lower a memcmp call into an optimized form. If so, return
6704 /// true and lower it. Otherwise return false, and it will be lowered like a
6705 /// normal call.
6706 /// The caller already checked that \p I calls the appropriate LibFunc with a
6707 /// correct prototype.
6708 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6709   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6710   const Value *Size = I.getArgOperand(2);
6711   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6712   if (CSize && CSize->getZExtValue() == 0) {
6713     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6714                                                           I.getType(), true);
6715     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6716     return true;
6717   }
6718 
6719   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6720   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6721       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6722       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6723   if (Res.first.getNode()) {
6724     processIntegerCallValue(I, Res.first, true);
6725     PendingLoads.push_back(Res.second);
6726     return true;
6727   }
6728 
6729   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6730   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6731   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6732     return false;
6733 
6734   // If the target has a fast compare for the given size, it will return a
6735   // preferred load type for that size. Require that the load VT is legal and
6736   // that the target supports unaligned loads of that type. Otherwise, return
6737   // INVALID.
6738   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6739     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6740     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6741     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6742       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6743       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6744       // TODO: Check alignment of src and dest ptrs.
6745       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6746       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6747       if (!TLI.isTypeLegal(LVT) ||
6748           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6749           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6750         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6751     }
6752 
6753     return LVT;
6754   };
6755 
6756   // This turns into unaligned loads. We only do this if the target natively
6757   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6758   // we'll only produce a small number of byte loads.
6759   MVT LoadVT;
6760   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6761   switch (NumBitsToCompare) {
6762   default:
6763     return false;
6764   case 16:
6765     LoadVT = MVT::i16;
6766     break;
6767   case 32:
6768     LoadVT = MVT::i32;
6769     break;
6770   case 64:
6771   case 128:
6772   case 256:
6773     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6774     break;
6775   }
6776 
6777   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6778     return false;
6779 
6780   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6781   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6782 
6783   // Bitcast to a wide integer type if the loads are vectors.
6784   if (LoadVT.isVector()) {
6785     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6786     LoadL = DAG.getBitcast(CmpVT, LoadL);
6787     LoadR = DAG.getBitcast(CmpVT, LoadR);
6788   }
6789 
6790   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6791   processIntegerCallValue(I, Cmp, false);
6792   return true;
6793 }
6794 
6795 /// See if we can lower a memchr call into an optimized form. If so, return
6796 /// true and lower it. Otherwise return false, and it will be lowered like a
6797 /// normal call.
6798 /// The caller already checked that \p I calls the appropriate LibFunc with a
6799 /// correct prototype.
6800 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6801   const Value *Src = I.getArgOperand(0);
6802   const Value *Char = I.getArgOperand(1);
6803   const Value *Length = I.getArgOperand(2);
6804 
6805   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6806   std::pair<SDValue, SDValue> Res =
6807     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6808                                 getValue(Src), getValue(Char), getValue(Length),
6809                                 MachinePointerInfo(Src));
6810   if (Res.first.getNode()) {
6811     setValue(&I, Res.first);
6812     PendingLoads.push_back(Res.second);
6813     return true;
6814   }
6815 
6816   return false;
6817 }
6818 
6819 /// See if we can lower a mempcpy call into an optimized form. If so, return
6820 /// true and lower it. Otherwise return false, and it will be lowered like a
6821 /// normal call.
6822 /// The caller already checked that \p I calls the appropriate LibFunc with a
6823 /// correct prototype.
6824 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6825   SDValue Dst = getValue(I.getArgOperand(0));
6826   SDValue Src = getValue(I.getArgOperand(1));
6827   SDValue Size = getValue(I.getArgOperand(2));
6828 
6829   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6830   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6831   unsigned Align = std::min(DstAlign, SrcAlign);
6832   if (Align == 0) // Alignment of one or both could not be inferred.
6833     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6834 
6835   bool isVol = false;
6836   SDLoc sdl = getCurSDLoc();
6837 
6838   // In the mempcpy context we need to pass in a false value for isTailCall
6839   // because the return pointer needs to be adjusted by the size of
6840   // the copied memory.
6841   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6842                              false, /*isTailCall=*/false,
6843                              MachinePointerInfo(I.getArgOperand(0)),
6844                              MachinePointerInfo(I.getArgOperand(1)));
6845   assert(MC.getNode() != nullptr &&
6846          "** memcpy should not be lowered as TailCall in mempcpy context **");
6847   DAG.setRoot(MC);
6848 
6849   // Check if Size needs to be truncated or extended.
6850   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6851 
6852   // Adjust return pointer to point just past the last dst byte.
6853   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6854                                     Dst, Size);
6855   setValue(&I, DstPlusSize);
6856   return true;
6857 }
6858 
6859 /// See if we can lower a strcpy call into an optimized form.  If so, return
6860 /// true and lower it, otherwise return false and it will be lowered like a
6861 /// normal call.
6862 /// The caller already checked that \p I calls the appropriate LibFunc with a
6863 /// correct prototype.
6864 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6865   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6866 
6867   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6868   std::pair<SDValue, SDValue> Res =
6869     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6870                                 getValue(Arg0), getValue(Arg1),
6871                                 MachinePointerInfo(Arg0),
6872                                 MachinePointerInfo(Arg1), isStpcpy);
6873   if (Res.first.getNode()) {
6874     setValue(&I, Res.first);
6875     DAG.setRoot(Res.second);
6876     return true;
6877   }
6878 
6879   return false;
6880 }
6881 
6882 /// See if we can lower a strcmp call into an optimized form.  If so, return
6883 /// true and lower it, otherwise return false and it will be lowered like a
6884 /// normal call.
6885 /// The caller already checked that \p I calls the appropriate LibFunc with a
6886 /// correct prototype.
6887 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6888   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6889 
6890   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6891   std::pair<SDValue, SDValue> Res =
6892     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6893                                 getValue(Arg0), getValue(Arg1),
6894                                 MachinePointerInfo(Arg0),
6895                                 MachinePointerInfo(Arg1));
6896   if (Res.first.getNode()) {
6897     processIntegerCallValue(I, Res.first, true);
6898     PendingLoads.push_back(Res.second);
6899     return true;
6900   }
6901 
6902   return false;
6903 }
6904 
6905 /// See if we can lower a strlen call into an optimized form.  If so, return
6906 /// true and lower it, otherwise return false and it will be lowered like a
6907 /// normal call.
6908 /// The caller already checked that \p I calls the appropriate LibFunc with a
6909 /// correct prototype.
6910 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6911   const Value *Arg0 = I.getArgOperand(0);
6912 
6913   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6914   std::pair<SDValue, SDValue> Res =
6915     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6916                                 getValue(Arg0), MachinePointerInfo(Arg0));
6917   if (Res.first.getNode()) {
6918     processIntegerCallValue(I, Res.first, false);
6919     PendingLoads.push_back(Res.second);
6920     return true;
6921   }
6922 
6923   return false;
6924 }
6925 
6926 /// See if we can lower a strnlen call into an optimized form.  If so, return
6927 /// true and lower it, otherwise return false and it will be lowered like a
6928 /// normal call.
6929 /// The caller already checked that \p I calls the appropriate LibFunc with a
6930 /// correct prototype.
6931 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6932   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6933 
6934   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6935   std::pair<SDValue, SDValue> Res =
6936     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6937                                  getValue(Arg0), getValue(Arg1),
6938                                  MachinePointerInfo(Arg0));
6939   if (Res.first.getNode()) {
6940     processIntegerCallValue(I, Res.first, false);
6941     PendingLoads.push_back(Res.second);
6942     return true;
6943   }
6944 
6945   return false;
6946 }
6947 
6948 /// See if we can lower a unary floating-point operation into an SDNode with
6949 /// the specified Opcode.  If so, return true and lower it, otherwise return
6950 /// false and it will be lowered like a normal call.
6951 /// The caller already checked that \p I calls the appropriate LibFunc with a
6952 /// correct prototype.
6953 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6954                                               unsigned Opcode) {
6955   // We already checked this call's prototype; verify it doesn't modify errno.
6956   if (!I.onlyReadsMemory())
6957     return false;
6958 
6959   SDValue Tmp = getValue(I.getArgOperand(0));
6960   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6961   return true;
6962 }
6963 
6964 /// See if we can lower a binary floating-point operation into an SDNode with
6965 /// the specified Opcode. If so, return true and lower it. Otherwise return
6966 /// false, and it will be lowered like a normal call.
6967 /// The caller already checked that \p I calls the appropriate LibFunc with a
6968 /// correct prototype.
6969 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6970                                                unsigned Opcode) {
6971   // We already checked this call's prototype; verify it doesn't modify errno.
6972   if (!I.onlyReadsMemory())
6973     return false;
6974 
6975   SDValue Tmp0 = getValue(I.getArgOperand(0));
6976   SDValue Tmp1 = getValue(I.getArgOperand(1));
6977   EVT VT = Tmp0.getValueType();
6978   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6979   return true;
6980 }
6981 
6982 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6983   // Handle inline assembly differently.
6984   if (isa<InlineAsm>(I.getCalledValue())) {
6985     visitInlineAsm(&I);
6986     return;
6987   }
6988 
6989   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6990   computeUsesVAFloatArgument(I, MMI);
6991 
6992   const char *RenameFn = nullptr;
6993   if (Function *F = I.getCalledFunction()) {
6994     if (F->isDeclaration()) {
6995       // Is this an LLVM intrinsic or a target-specific intrinsic?
6996       unsigned IID = F->getIntrinsicID();
6997       if (!IID)
6998         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6999           IID = II->getIntrinsicID(F);
7000 
7001       if (IID) {
7002         RenameFn = visitIntrinsicCall(I, IID);
7003         if (!RenameFn)
7004           return;
7005       }
7006     }
7007 
7008     // Check for well-known libc/libm calls.  If the function is internal, it
7009     // can't be a library call.  Don't do the check if marked as nobuiltin for
7010     // some reason or the call site requires strict floating point semantics.
7011     LibFunc Func;
7012     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7013         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7014         LibInfo->hasOptimizedCodeGen(Func)) {
7015       switch (Func) {
7016       default: break;
7017       case LibFunc_copysign:
7018       case LibFunc_copysignf:
7019       case LibFunc_copysignl:
7020         // We already checked this call's prototype; verify it doesn't modify
7021         // errno.
7022         if (I.onlyReadsMemory()) {
7023           SDValue LHS = getValue(I.getArgOperand(0));
7024           SDValue RHS = getValue(I.getArgOperand(1));
7025           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7026                                    LHS.getValueType(), LHS, RHS));
7027           return;
7028         }
7029         break;
7030       case LibFunc_fabs:
7031       case LibFunc_fabsf:
7032       case LibFunc_fabsl:
7033         if (visitUnaryFloatCall(I, ISD::FABS))
7034           return;
7035         break;
7036       case LibFunc_fmin:
7037       case LibFunc_fminf:
7038       case LibFunc_fminl:
7039         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7040           return;
7041         break;
7042       case LibFunc_fmax:
7043       case LibFunc_fmaxf:
7044       case LibFunc_fmaxl:
7045         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7046           return;
7047         break;
7048       case LibFunc_sin:
7049       case LibFunc_sinf:
7050       case LibFunc_sinl:
7051         if (visitUnaryFloatCall(I, ISD::FSIN))
7052           return;
7053         break;
7054       case LibFunc_cos:
7055       case LibFunc_cosf:
7056       case LibFunc_cosl:
7057         if (visitUnaryFloatCall(I, ISD::FCOS))
7058           return;
7059         break;
7060       case LibFunc_sqrt:
7061       case LibFunc_sqrtf:
7062       case LibFunc_sqrtl:
7063       case LibFunc_sqrt_finite:
7064       case LibFunc_sqrtf_finite:
7065       case LibFunc_sqrtl_finite:
7066         if (visitUnaryFloatCall(I, ISD::FSQRT))
7067           return;
7068         break;
7069       case LibFunc_floor:
7070       case LibFunc_floorf:
7071       case LibFunc_floorl:
7072         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7073           return;
7074         break;
7075       case LibFunc_nearbyint:
7076       case LibFunc_nearbyintf:
7077       case LibFunc_nearbyintl:
7078         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7079           return;
7080         break;
7081       case LibFunc_ceil:
7082       case LibFunc_ceilf:
7083       case LibFunc_ceill:
7084         if (visitUnaryFloatCall(I, ISD::FCEIL))
7085           return;
7086         break;
7087       case LibFunc_rint:
7088       case LibFunc_rintf:
7089       case LibFunc_rintl:
7090         if (visitUnaryFloatCall(I, ISD::FRINT))
7091           return;
7092         break;
7093       case LibFunc_round:
7094       case LibFunc_roundf:
7095       case LibFunc_roundl:
7096         if (visitUnaryFloatCall(I, ISD::FROUND))
7097           return;
7098         break;
7099       case LibFunc_trunc:
7100       case LibFunc_truncf:
7101       case LibFunc_truncl:
7102         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7103           return;
7104         break;
7105       case LibFunc_log2:
7106       case LibFunc_log2f:
7107       case LibFunc_log2l:
7108         if (visitUnaryFloatCall(I, ISD::FLOG2))
7109           return;
7110         break;
7111       case LibFunc_exp2:
7112       case LibFunc_exp2f:
7113       case LibFunc_exp2l:
7114         if (visitUnaryFloatCall(I, ISD::FEXP2))
7115           return;
7116         break;
7117       case LibFunc_memcmp:
7118         if (visitMemCmpCall(I))
7119           return;
7120         break;
7121       case LibFunc_mempcpy:
7122         if (visitMemPCpyCall(I))
7123           return;
7124         break;
7125       case LibFunc_memchr:
7126         if (visitMemChrCall(I))
7127           return;
7128         break;
7129       case LibFunc_strcpy:
7130         if (visitStrCpyCall(I, false))
7131           return;
7132         break;
7133       case LibFunc_stpcpy:
7134         if (visitStrCpyCall(I, true))
7135           return;
7136         break;
7137       case LibFunc_strcmp:
7138         if (visitStrCmpCall(I))
7139           return;
7140         break;
7141       case LibFunc_strlen:
7142         if (visitStrLenCall(I))
7143           return;
7144         break;
7145       case LibFunc_strnlen:
7146         if (visitStrNLenCall(I))
7147           return;
7148         break;
7149       }
7150     }
7151   }
7152 
7153   SDValue Callee;
7154   if (!RenameFn)
7155     Callee = getValue(I.getCalledValue());
7156   else
7157     Callee = DAG.getExternalSymbol(
7158         RenameFn,
7159         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7160 
7161   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7162   // have to do anything here to lower funclet bundles.
7163   assert(!I.hasOperandBundlesOtherThan(
7164              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7165          "Cannot lower calls with arbitrary operand bundles!");
7166 
7167   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7168     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7169   else
7170     // Check if we can potentially perform a tail call. More detailed checking
7171     // is be done within LowerCallTo, after more information about the call is
7172     // known.
7173     LowerCallTo(&I, Callee, I.isTailCall());
7174 }
7175 
7176 namespace {
7177 
7178 /// AsmOperandInfo - This contains information for each constraint that we are
7179 /// lowering.
7180 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7181 public:
7182   /// CallOperand - If this is the result output operand or a clobber
7183   /// this is null, otherwise it is the incoming operand to the CallInst.
7184   /// This gets modified as the asm is processed.
7185   SDValue CallOperand;
7186 
7187   /// AssignedRegs - If this is a register or register class operand, this
7188   /// contains the set of register corresponding to the operand.
7189   RegsForValue AssignedRegs;
7190 
7191   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7192     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7193   }
7194 
7195   /// Whether or not this operand accesses memory
7196   bool hasMemory(const TargetLowering &TLI) const {
7197     // Indirect operand accesses access memory.
7198     if (isIndirect)
7199       return true;
7200 
7201     for (const auto &Code : Codes)
7202       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7203         return true;
7204 
7205     return false;
7206   }
7207 
7208   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7209   /// corresponds to.  If there is no Value* for this operand, it returns
7210   /// MVT::Other.
7211   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7212                            const DataLayout &DL) const {
7213     if (!CallOperandVal) return MVT::Other;
7214 
7215     if (isa<BasicBlock>(CallOperandVal))
7216       return TLI.getPointerTy(DL);
7217 
7218     llvm::Type *OpTy = CallOperandVal->getType();
7219 
7220     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7221     // If this is an indirect operand, the operand is a pointer to the
7222     // accessed type.
7223     if (isIndirect) {
7224       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7225       if (!PtrTy)
7226         report_fatal_error("Indirect operand for inline asm not a pointer!");
7227       OpTy = PtrTy->getElementType();
7228     }
7229 
7230     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7231     if (StructType *STy = dyn_cast<StructType>(OpTy))
7232       if (STy->getNumElements() == 1)
7233         OpTy = STy->getElementType(0);
7234 
7235     // If OpTy is not a single value, it may be a struct/union that we
7236     // can tile with integers.
7237     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7238       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7239       switch (BitSize) {
7240       default: break;
7241       case 1:
7242       case 8:
7243       case 16:
7244       case 32:
7245       case 64:
7246       case 128:
7247         OpTy = IntegerType::get(Context, BitSize);
7248         break;
7249       }
7250     }
7251 
7252     return TLI.getValueType(DL, OpTy, true);
7253   }
7254 };
7255 
7256 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7257 
7258 } // end anonymous namespace
7259 
7260 /// Make sure that the output operand \p OpInfo and its corresponding input
7261 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7262 /// out).
7263 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7264                                SDISelAsmOperandInfo &MatchingOpInfo,
7265                                SelectionDAG &DAG) {
7266   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7267     return;
7268 
7269   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7270   const auto &TLI = DAG.getTargetLoweringInfo();
7271 
7272   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7273       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7274                                        OpInfo.ConstraintVT);
7275   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7276       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7277                                        MatchingOpInfo.ConstraintVT);
7278   if ((OpInfo.ConstraintVT.isInteger() !=
7279        MatchingOpInfo.ConstraintVT.isInteger()) ||
7280       (MatchRC.second != InputRC.second)) {
7281     // FIXME: error out in a more elegant fashion
7282     report_fatal_error("Unsupported asm: input constraint"
7283                        " with a matching output constraint of"
7284                        " incompatible type!");
7285   }
7286   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7287 }
7288 
7289 /// Get a direct memory input to behave well as an indirect operand.
7290 /// This may introduce stores, hence the need for a \p Chain.
7291 /// \return The (possibly updated) chain.
7292 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7293                                         SDISelAsmOperandInfo &OpInfo,
7294                                         SelectionDAG &DAG) {
7295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7296 
7297   // If we don't have an indirect input, put it in the constpool if we can,
7298   // otherwise spill it to a stack slot.
7299   // TODO: This isn't quite right. We need to handle these according to
7300   // the addressing mode that the constraint wants. Also, this may take
7301   // an additional register for the computation and we don't want that
7302   // either.
7303 
7304   // If the operand is a float, integer, or vector constant, spill to a
7305   // constant pool entry to get its address.
7306   const Value *OpVal = OpInfo.CallOperandVal;
7307   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7308       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7309     OpInfo.CallOperand = DAG.getConstantPool(
7310         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7311     return Chain;
7312   }
7313 
7314   // Otherwise, create a stack slot and emit a store to it before the asm.
7315   Type *Ty = OpVal->getType();
7316   auto &DL = DAG.getDataLayout();
7317   uint64_t TySize = DL.getTypeAllocSize(Ty);
7318   unsigned Align = DL.getPrefTypeAlignment(Ty);
7319   MachineFunction &MF = DAG.getMachineFunction();
7320   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7321   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7322   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7323                        MachinePointerInfo::getFixedStack(MF, SSFI));
7324   OpInfo.CallOperand = StackSlot;
7325 
7326   return Chain;
7327 }
7328 
7329 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7330 /// specified operand.  We prefer to assign virtual registers, to allow the
7331 /// register allocator to handle the assignment process.  However, if the asm
7332 /// uses features that we can't model on machineinstrs, we have SDISel do the
7333 /// allocation.  This produces generally horrible, but correct, code.
7334 ///
7335 ///   OpInfo describes the operand
7336 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7337 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7338                                  SDISelAsmOperandInfo &OpInfo,
7339                                  SDISelAsmOperandInfo &RefOpInfo) {
7340   LLVMContext &Context = *DAG.getContext();
7341   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7342 
7343   MachineFunction &MF = DAG.getMachineFunction();
7344   SmallVector<unsigned, 4> Regs;
7345   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7346 
7347   // If this is a constraint for a single physreg, or a constraint for a
7348   // register class, find it.
7349   unsigned AssignedReg;
7350   const TargetRegisterClass *RC;
7351   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7352       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7353   // RC is unset only on failure. Return immediately.
7354   if (!RC)
7355     return;
7356 
7357   // Get the actual register value type.  This is important, because the user
7358   // may have asked for (e.g.) the AX register in i32 type.  We need to
7359   // remember that AX is actually i16 to get the right extension.
7360   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7361 
7362   if (OpInfo.ConstraintVT != MVT::Other) {
7363     // If this is an FP operand in an integer register (or visa versa), or more
7364     // generally if the operand value disagrees with the register class we plan
7365     // to stick it in, fix the operand type.
7366     //
7367     // If this is an input value, the bitcast to the new type is done now.
7368     // Bitcast for output value is done at the end of visitInlineAsm().
7369     if ((OpInfo.Type == InlineAsm::isOutput ||
7370          OpInfo.Type == InlineAsm::isInput) &&
7371         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7372       // Try to convert to the first EVT that the reg class contains.  If the
7373       // types are identical size, use a bitcast to convert (e.g. two differing
7374       // vector types).  Note: output bitcast is done at the end of
7375       // visitInlineAsm().
7376       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7377         // Exclude indirect inputs while they are unsupported because the code
7378         // to perform the load is missing and thus OpInfo.CallOperand still
7379         // refers to the input address rather than the pointed-to value.
7380         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7381           OpInfo.CallOperand =
7382               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7383         OpInfo.ConstraintVT = RegVT;
7384         // If the operand is an FP value and we want it in integer registers,
7385         // use the corresponding integer type. This turns an f64 value into
7386         // i64, which can be passed with two i32 values on a 32-bit machine.
7387       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7388         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7389         if (OpInfo.Type == InlineAsm::isInput)
7390           OpInfo.CallOperand =
7391               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7392         OpInfo.ConstraintVT = VT;
7393       }
7394     }
7395   }
7396 
7397   // No need to allocate a matching input constraint since the constraint it's
7398   // matching to has already been allocated.
7399   if (OpInfo.isMatchingInputConstraint())
7400     return;
7401 
7402   EVT ValueVT = OpInfo.ConstraintVT;
7403   if (OpInfo.ConstraintVT == MVT::Other)
7404     ValueVT = RegVT;
7405 
7406   // Initialize NumRegs.
7407   unsigned NumRegs = 1;
7408   if (OpInfo.ConstraintVT != MVT::Other)
7409     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7410 
7411   // If this is a constraint for a specific physical register, like {r17},
7412   // assign it now.
7413 
7414   // If this associated to a specific register, initialize iterator to correct
7415   // place. If virtual, make sure we have enough registers
7416 
7417   // Initialize iterator if necessary
7418   TargetRegisterClass::iterator I = RC->begin();
7419   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7420 
7421   // Do not check for single registers.
7422   if (AssignedReg) {
7423       for (; *I != AssignedReg; ++I)
7424         assert(I != RC->end() && "AssignedReg should be member of RC");
7425   }
7426 
7427   for (; NumRegs; --NumRegs, ++I) {
7428     assert(I != RC->end() && "Ran out of registers to allocate!");
7429     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7430     Regs.push_back(R);
7431   }
7432 
7433   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7434 }
7435 
7436 static unsigned
7437 findMatchingInlineAsmOperand(unsigned OperandNo,
7438                              const std::vector<SDValue> &AsmNodeOperands) {
7439   // Scan until we find the definition we already emitted of this operand.
7440   unsigned CurOp = InlineAsm::Op_FirstOperand;
7441   for (; OperandNo; --OperandNo) {
7442     // Advance to the next operand.
7443     unsigned OpFlag =
7444         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7445     assert((InlineAsm::isRegDefKind(OpFlag) ||
7446             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7447             InlineAsm::isMemKind(OpFlag)) &&
7448            "Skipped past definitions?");
7449     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7450   }
7451   return CurOp;
7452 }
7453 
7454 namespace {
7455 
7456 class ExtraFlags {
7457   unsigned Flags = 0;
7458 
7459 public:
7460   explicit ExtraFlags(ImmutableCallSite CS) {
7461     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7462     if (IA->hasSideEffects())
7463       Flags |= InlineAsm::Extra_HasSideEffects;
7464     if (IA->isAlignStack())
7465       Flags |= InlineAsm::Extra_IsAlignStack;
7466     if (CS.isConvergent())
7467       Flags |= InlineAsm::Extra_IsConvergent;
7468     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7469   }
7470 
7471   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7472     // Ideally, we would only check against memory constraints.  However, the
7473     // meaning of an Other constraint can be target-specific and we can't easily
7474     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7475     // for Other constraints as well.
7476     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7477         OpInfo.ConstraintType == TargetLowering::C_Other) {
7478       if (OpInfo.Type == InlineAsm::isInput)
7479         Flags |= InlineAsm::Extra_MayLoad;
7480       else if (OpInfo.Type == InlineAsm::isOutput)
7481         Flags |= InlineAsm::Extra_MayStore;
7482       else if (OpInfo.Type == InlineAsm::isClobber)
7483         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7484     }
7485   }
7486 
7487   unsigned get() const { return Flags; }
7488 };
7489 
7490 } // end anonymous namespace
7491 
7492 /// visitInlineAsm - Handle a call to an InlineAsm object.
7493 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7494   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7495 
7496   /// ConstraintOperands - Information about all of the constraints.
7497   SDISelAsmOperandInfoVector ConstraintOperands;
7498 
7499   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7500   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7501       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7502 
7503   bool hasMemory = false;
7504 
7505   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7506   ExtraFlags ExtraInfo(CS);
7507 
7508   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7509   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7510   for (auto &T : TargetConstraints) {
7511     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7512     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7513 
7514     // Compute the value type for each operand.
7515     if (OpInfo.Type == InlineAsm::isInput ||
7516         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7517       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7518 
7519       // Process the call argument. BasicBlocks are labels, currently appearing
7520       // only in asm's.
7521       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7522         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7523       } else {
7524         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7525       }
7526 
7527       OpInfo.ConstraintVT =
7528           OpInfo
7529               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7530               .getSimpleVT();
7531     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7532       // The return value of the call is this value.  As such, there is no
7533       // corresponding argument.
7534       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7535       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7536         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7537             DAG.getDataLayout(), STy->getElementType(ResNo));
7538       } else {
7539         assert(ResNo == 0 && "Asm only has one result!");
7540         OpInfo.ConstraintVT =
7541             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7542       }
7543       ++ResNo;
7544     } else {
7545       OpInfo.ConstraintVT = MVT::Other;
7546     }
7547 
7548     if (!hasMemory)
7549       hasMemory = OpInfo.hasMemory(TLI);
7550 
7551     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7552     // FIXME: Could we compute this on OpInfo rather than T?
7553 
7554     // Compute the constraint code and ConstraintType to use.
7555     TLI.ComputeConstraintToUse(T, SDValue());
7556 
7557     ExtraInfo.update(T);
7558   }
7559 
7560   SDValue Chain, Flag;
7561 
7562   // We won't need to flush pending loads if this asm doesn't touch
7563   // memory and is nonvolatile.
7564   if (hasMemory || IA->hasSideEffects())
7565     Chain = getRoot();
7566   else
7567     Chain = DAG.getRoot();
7568 
7569   // Second pass over the constraints: compute which constraint option to use
7570   // and assign registers to constraints that want a specific physreg.
7571   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7572     // If this is an output operand with a matching input operand, look up the
7573     // matching input. If their types mismatch, e.g. one is an integer, the
7574     // other is floating point, or their sizes are different, flag it as an
7575     // error.
7576     if (OpInfo.hasMatchingInput()) {
7577       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7578       patchMatchingInput(OpInfo, Input, DAG);
7579     }
7580 
7581     // Compute the constraint code and ConstraintType to use.
7582     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7583 
7584     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7585         OpInfo.Type == InlineAsm::isClobber)
7586       continue;
7587 
7588     // If this is a memory input, and if the operand is not indirect, do what we
7589     // need to provide an address for the memory input.
7590     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7591         !OpInfo.isIndirect) {
7592       assert((OpInfo.isMultipleAlternative ||
7593               (OpInfo.Type == InlineAsm::isInput)) &&
7594              "Can only indirectify direct input operands!");
7595 
7596       // Memory operands really want the address of the value.
7597       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7598 
7599       // There is no longer a Value* corresponding to this operand.
7600       OpInfo.CallOperandVal = nullptr;
7601 
7602       // It is now an indirect operand.
7603       OpInfo.isIndirect = true;
7604     }
7605 
7606     // If this constraint is for a specific register, allocate it before
7607     // anything else.
7608     SDISelAsmOperandInfo &RefOpInfo =
7609         OpInfo.isMatchingInputConstraint()
7610             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7611             : OpInfo;
7612     if (RefOpInfo.ConstraintType == TargetLowering::C_Register)
7613       GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7614   }
7615 
7616   // Third pass - Loop over all of the operands, assigning virtual or physregs
7617   // to register class operands.
7618   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7619     SDISelAsmOperandInfo &RefOpInfo =
7620         OpInfo.isMatchingInputConstraint()
7621             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7622             : OpInfo;
7623 
7624     // C_Register operands have already been allocated, Other/Memory don't need
7625     // to be.
7626     if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7627       GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7628   }
7629 
7630   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7631   std::vector<SDValue> AsmNodeOperands;
7632   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7633   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7634       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7635 
7636   // If we have a !srcloc metadata node associated with it, we want to attach
7637   // this to the ultimately generated inline asm machineinstr.  To do this, we
7638   // pass in the third operand as this (potentially null) inline asm MDNode.
7639   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7640   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7641 
7642   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7643   // bits as operand 3.
7644   AsmNodeOperands.push_back(DAG.getTargetConstant(
7645       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7646 
7647   // Loop over all of the inputs, copying the operand values into the
7648   // appropriate registers and processing the output regs.
7649   RegsForValue RetValRegs;
7650 
7651   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7652   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7653 
7654   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7655     switch (OpInfo.Type) {
7656     case InlineAsm::isOutput:
7657       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7658           OpInfo.ConstraintType != TargetLowering::C_Register) {
7659         // Memory output, or 'other' output (e.g. 'X' constraint).
7660         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7661 
7662         unsigned ConstraintID =
7663             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7664         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7665                "Failed to convert memory constraint code to constraint id.");
7666 
7667         // Add information to the INLINEASM node to know about this output.
7668         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7669         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7670         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7671                                                         MVT::i32));
7672         AsmNodeOperands.push_back(OpInfo.CallOperand);
7673         break;
7674       }
7675 
7676       // Otherwise, this is a register or register class output.
7677 
7678       // Copy the output from the appropriate register.  Find a register that
7679       // we can use.
7680       if (OpInfo.AssignedRegs.Regs.empty()) {
7681         emitInlineAsmError(
7682             CS, "couldn't allocate output register for constraint '" +
7683                     Twine(OpInfo.ConstraintCode) + "'");
7684         return;
7685       }
7686 
7687       // If this is an indirect operand, store through the pointer after the
7688       // asm.
7689       if (OpInfo.isIndirect) {
7690         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7691                                                       OpInfo.CallOperandVal));
7692       } else {
7693         // This is the result value of the call.
7694         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7695         // Concatenate this output onto the outputs list.
7696         RetValRegs.append(OpInfo.AssignedRegs);
7697       }
7698 
7699       // Add information to the INLINEASM node to know that this register is
7700       // set.
7701       OpInfo.AssignedRegs
7702           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7703                                     ? InlineAsm::Kind_RegDefEarlyClobber
7704                                     : InlineAsm::Kind_RegDef,
7705                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7706       break;
7707 
7708     case InlineAsm::isInput: {
7709       SDValue InOperandVal = OpInfo.CallOperand;
7710 
7711       if (OpInfo.isMatchingInputConstraint()) {
7712         // If this is required to match an output register we have already set,
7713         // just use its register.
7714         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7715                                                   AsmNodeOperands);
7716         unsigned OpFlag =
7717           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7718         if (InlineAsm::isRegDefKind(OpFlag) ||
7719             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7720           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7721           if (OpInfo.isIndirect) {
7722             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7723             emitInlineAsmError(CS, "inline asm not supported yet:"
7724                                    " don't know how to handle tied "
7725                                    "indirect register inputs");
7726             return;
7727           }
7728 
7729           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7730           SmallVector<unsigned, 4> Regs;
7731 
7732           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
7733             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
7734             MachineRegisterInfo &RegInfo =
7735                 DAG.getMachineFunction().getRegInfo();
7736             for (unsigned i = 0; i != NumRegs; ++i)
7737               Regs.push_back(RegInfo.createVirtualRegister(RC));
7738           } else {
7739             emitInlineAsmError(CS, "inline asm error: This value type register "
7740                                    "class is not natively supported!");
7741             return;
7742           }
7743 
7744           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7745 
7746           SDLoc dl = getCurSDLoc();
7747           // Use the produced MatchedRegs object to
7748           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7749                                     CS.getInstruction());
7750           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7751                                            true, OpInfo.getMatchedOperand(), dl,
7752                                            DAG, AsmNodeOperands);
7753           break;
7754         }
7755 
7756         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7757         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7758                "Unexpected number of operands");
7759         // Add information to the INLINEASM node to know about this input.
7760         // See InlineAsm.h isUseOperandTiedToDef.
7761         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7762         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7763                                                     OpInfo.getMatchedOperand());
7764         AsmNodeOperands.push_back(DAG.getTargetConstant(
7765             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7766         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7767         break;
7768       }
7769 
7770       // Treat indirect 'X' constraint as memory.
7771       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7772           OpInfo.isIndirect)
7773         OpInfo.ConstraintType = TargetLowering::C_Memory;
7774 
7775       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7776         std::vector<SDValue> Ops;
7777         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7778                                           Ops, DAG);
7779         if (Ops.empty()) {
7780           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7781                                      Twine(OpInfo.ConstraintCode) + "'");
7782           return;
7783         }
7784 
7785         // Add information to the INLINEASM node to know about this input.
7786         unsigned ResOpType =
7787           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7788         AsmNodeOperands.push_back(DAG.getTargetConstant(
7789             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7790         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7791         break;
7792       }
7793 
7794       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7795         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7796         assert(InOperandVal.getValueType() ==
7797                    TLI.getPointerTy(DAG.getDataLayout()) &&
7798                "Memory operands expect pointer values");
7799 
7800         unsigned ConstraintID =
7801             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7802         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7803                "Failed to convert memory constraint code to constraint id.");
7804 
7805         // Add information to the INLINEASM node to know about this input.
7806         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7807         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7808         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7809                                                         getCurSDLoc(),
7810                                                         MVT::i32));
7811         AsmNodeOperands.push_back(InOperandVal);
7812         break;
7813       }
7814 
7815       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7816               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7817              "Unknown constraint type!");
7818 
7819       // TODO: Support this.
7820       if (OpInfo.isIndirect) {
7821         emitInlineAsmError(
7822             CS, "Don't know how to handle indirect register inputs yet "
7823                 "for constraint '" +
7824                     Twine(OpInfo.ConstraintCode) + "'");
7825         return;
7826       }
7827 
7828       // Copy the input into the appropriate registers.
7829       if (OpInfo.AssignedRegs.Regs.empty()) {
7830         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7831                                    Twine(OpInfo.ConstraintCode) + "'");
7832         return;
7833       }
7834 
7835       SDLoc dl = getCurSDLoc();
7836 
7837       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7838                                         Chain, &Flag, CS.getInstruction());
7839 
7840       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7841                                                dl, DAG, AsmNodeOperands);
7842       break;
7843     }
7844     case InlineAsm::isClobber:
7845       // Add the clobbered value to the operand list, so that the register
7846       // allocator is aware that the physreg got clobbered.
7847       if (!OpInfo.AssignedRegs.Regs.empty())
7848         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7849                                                  false, 0, getCurSDLoc(), DAG,
7850                                                  AsmNodeOperands);
7851       break;
7852     }
7853   }
7854 
7855   // Finish up input operands.  Set the input chain and add the flag last.
7856   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7857   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7858 
7859   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7860                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7861   Flag = Chain.getValue(1);
7862 
7863   // If this asm returns a register value, copy the result from that register
7864   // and set it as the value of the call.
7865   if (!RetValRegs.Regs.empty()) {
7866     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7867                                              Chain, &Flag, CS.getInstruction());
7868 
7869     llvm::Type *CSResultType = CS.getType();
7870     unsigned numRet;
7871     ArrayRef<Type *> ResultTypes;
7872     SmallVector<SDValue, 1> ResultValues(1);
7873     if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) {
7874       numRet = StructResult->getNumElements();
7875       assert(Val->getNumOperands() == numRet &&
7876              "Mismatch in number of output operands in asm result");
7877       ResultTypes = StructResult->elements();
7878       ArrayRef<SDUse> ValueUses = Val->ops();
7879       ResultValues.resize(numRet);
7880       std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(),
7881                      [](const SDUse &u) -> SDValue { return u.get(); });
7882     } else {
7883       numRet = 1;
7884       ResultValues[0] = Val;
7885       ResultTypes = makeArrayRef(CSResultType);
7886     }
7887     SmallVector<EVT, 1> ResultVTs(numRet);
7888     for (unsigned i = 0; i < numRet; i++) {
7889       EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]);
7890       SDValue Val = ResultValues[i];
7891       assert(ResultTypes[i]->isSized() && "Unexpected unsized type");
7892       // If the type of the inline asm call site return value is different but
7893       // has same size as the type of the asm output bitcast it.  One example
7894       // of this is for vectors with different width / number of elements.
7895       // This can happen for register classes that can contain multiple
7896       // different value types.  The preg or vreg allocated may not have the
7897       // same VT as was expected.
7898       //
7899       // This can also happen for a return value that disagrees with the
7900       // register class it is put in, eg. a double in a general-purpose
7901       // register on a 32-bit machine.
7902       if (ResultVT != Val.getValueType() &&
7903           ResultVT.getSizeInBits() == Val.getValueSizeInBits())
7904         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val);
7905       else if (ResultVT != Val.getValueType() && ResultVT.isInteger() &&
7906                Val.getValueType().isInteger()) {
7907         // If a result value was tied to an input value, the computed result
7908         // may have a wider width than the expected result.  Extract the
7909         // relevant portion.
7910         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val);
7911       }
7912 
7913       assert(ResultVT == Val.getValueType() && "Asm result value mismatch!");
7914       ResultVTs[i] = ResultVT;
7915       ResultValues[i] = Val;
7916     }
7917 
7918     Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7919                       DAG.getVTList(ResultVTs), ResultValues);
7920     setValue(CS.getInstruction(), Val);
7921     // Don't need to use this as a chain in this case.
7922     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7923       return;
7924   }
7925 
7926   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7927 
7928   // Process indirect outputs, first output all of the flagged copies out of
7929   // physregs.
7930   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7931     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7932     const Value *Ptr = IndirectStoresToEmit[i].second;
7933     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7934                                              Chain, &Flag, IA);
7935     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7936   }
7937 
7938   // Emit the non-flagged stores from the physregs.
7939   SmallVector<SDValue, 8> OutChains;
7940   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7941     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7942                                getValue(StoresToEmit[i].second),
7943                                MachinePointerInfo(StoresToEmit[i].second));
7944     OutChains.push_back(Val);
7945   }
7946 
7947   if (!OutChains.empty())
7948     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7949 
7950   DAG.setRoot(Chain);
7951 }
7952 
7953 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7954                                              const Twine &Message) {
7955   LLVMContext &Ctx = *DAG.getContext();
7956   Ctx.emitError(CS.getInstruction(), Message);
7957 
7958   // Make sure we leave the DAG in a valid state
7959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7960   SmallVector<EVT, 1> ValueVTs;
7961   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7962 
7963   if (ValueVTs.empty())
7964     return;
7965 
7966   SmallVector<SDValue, 1> Ops;
7967   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7968     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7969 
7970   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7971 }
7972 
7973 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7974   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7975                           MVT::Other, getRoot(),
7976                           getValue(I.getArgOperand(0)),
7977                           DAG.getSrcValue(I.getArgOperand(0))));
7978 }
7979 
7980 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7982   const DataLayout &DL = DAG.getDataLayout();
7983   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7984                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7985                            DAG.getSrcValue(I.getOperand(0)),
7986                            DL.getABITypeAlignment(I.getType()));
7987   setValue(&I, V);
7988   DAG.setRoot(V.getValue(1));
7989 }
7990 
7991 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7992   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7993                           MVT::Other, getRoot(),
7994                           getValue(I.getArgOperand(0)),
7995                           DAG.getSrcValue(I.getArgOperand(0))));
7996 }
7997 
7998 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7999   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8000                           MVT::Other, getRoot(),
8001                           getValue(I.getArgOperand(0)),
8002                           getValue(I.getArgOperand(1)),
8003                           DAG.getSrcValue(I.getArgOperand(0)),
8004                           DAG.getSrcValue(I.getArgOperand(1))));
8005 }
8006 
8007 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8008                                                     const Instruction &I,
8009                                                     SDValue Op) {
8010   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8011   if (!Range)
8012     return Op;
8013 
8014   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8015   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8016     return Op;
8017 
8018   APInt Lo = CR.getUnsignedMin();
8019   if (!Lo.isMinValue())
8020     return Op;
8021 
8022   APInt Hi = CR.getUnsignedMax();
8023   unsigned Bits = std::max(Hi.getActiveBits(),
8024                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8025 
8026   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8027 
8028   SDLoc SL = getCurSDLoc();
8029 
8030   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8031                              DAG.getValueType(SmallVT));
8032   unsigned NumVals = Op.getNode()->getNumValues();
8033   if (NumVals == 1)
8034     return ZExt;
8035 
8036   SmallVector<SDValue, 4> Ops;
8037 
8038   Ops.push_back(ZExt);
8039   for (unsigned I = 1; I != NumVals; ++I)
8040     Ops.push_back(Op.getValue(I));
8041 
8042   return DAG.getMergeValues(Ops, SL);
8043 }
8044 
8045 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8046 /// the call being lowered.
8047 ///
8048 /// This is a helper for lowering intrinsics that follow a target calling
8049 /// convention or require stack pointer adjustment. Only a subset of the
8050 /// intrinsic's operands need to participate in the calling convention.
8051 void SelectionDAGBuilder::populateCallLoweringInfo(
8052     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
8053     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8054     bool IsPatchPoint) {
8055   TargetLowering::ArgListTy Args;
8056   Args.reserve(NumArgs);
8057 
8058   // Populate the argument list.
8059   // Attributes for args start at offset 1, after the return attribute.
8060   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8061        ArgI != ArgE; ++ArgI) {
8062     const Value *V = CS->getOperand(ArgI);
8063 
8064     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8065 
8066     TargetLowering::ArgListEntry Entry;
8067     Entry.Node = getValue(V);
8068     Entry.Ty = V->getType();
8069     Entry.setAttributes(&CS, ArgI);
8070     Args.push_back(Entry);
8071   }
8072 
8073   CLI.setDebugLoc(getCurSDLoc())
8074       .setChain(getRoot())
8075       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
8076       .setDiscardResult(CS->use_empty())
8077       .setIsPatchPoint(IsPatchPoint);
8078 }
8079 
8080 /// Add a stack map intrinsic call's live variable operands to a stackmap
8081 /// or patchpoint target node's operand list.
8082 ///
8083 /// Constants are converted to TargetConstants purely as an optimization to
8084 /// avoid constant materialization and register allocation.
8085 ///
8086 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8087 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8088 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8089 /// address materialization and register allocation, but may also be required
8090 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8091 /// alloca in the entry block, then the runtime may assume that the alloca's
8092 /// StackMap location can be read immediately after compilation and that the
8093 /// location is valid at any point during execution (this is similar to the
8094 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8095 /// only available in a register, then the runtime would need to trap when
8096 /// execution reaches the StackMap in order to read the alloca's location.
8097 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8098                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8099                                 SelectionDAGBuilder &Builder) {
8100   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8101     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8102     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8103       Ops.push_back(
8104         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8105       Ops.push_back(
8106         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8107     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8108       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8109       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8110           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8111     } else
8112       Ops.push_back(OpVal);
8113   }
8114 }
8115 
8116 /// Lower llvm.experimental.stackmap directly to its target opcode.
8117 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8118   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8119   //                                  [live variables...])
8120 
8121   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8122 
8123   SDValue Chain, InFlag, Callee, NullPtr;
8124   SmallVector<SDValue, 32> Ops;
8125 
8126   SDLoc DL = getCurSDLoc();
8127   Callee = getValue(CI.getCalledValue());
8128   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8129 
8130   // The stackmap intrinsic only records the live variables (the arguemnts
8131   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8132   // intrinsic, this won't be lowered to a function call. This means we don't
8133   // have to worry about calling conventions and target specific lowering code.
8134   // Instead we perform the call lowering right here.
8135   //
8136   // chain, flag = CALLSEQ_START(chain, 0, 0)
8137   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8138   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8139   //
8140   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8141   InFlag = Chain.getValue(1);
8142 
8143   // Add the <id> and <numBytes> constants.
8144   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8145   Ops.push_back(DAG.getTargetConstant(
8146                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8147   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8148   Ops.push_back(DAG.getTargetConstant(
8149                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8150                   MVT::i32));
8151 
8152   // Push live variables for the stack map.
8153   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8154 
8155   // We are not pushing any register mask info here on the operands list,
8156   // because the stackmap doesn't clobber anything.
8157 
8158   // Push the chain and the glue flag.
8159   Ops.push_back(Chain);
8160   Ops.push_back(InFlag);
8161 
8162   // Create the STACKMAP node.
8163   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8164   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8165   Chain = SDValue(SM, 0);
8166   InFlag = Chain.getValue(1);
8167 
8168   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8169 
8170   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8171 
8172   // Set the root to the target-lowered call chain.
8173   DAG.setRoot(Chain);
8174 
8175   // Inform the Frame Information that we have a stackmap in this function.
8176   FuncInfo.MF->getFrameInfo().setHasStackMap();
8177 }
8178 
8179 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8180 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8181                                           const BasicBlock *EHPadBB) {
8182   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8183   //                                                 i32 <numBytes>,
8184   //                                                 i8* <target>,
8185   //                                                 i32 <numArgs>,
8186   //                                                 [Args...],
8187   //                                                 [live variables...])
8188 
8189   CallingConv::ID CC = CS.getCallingConv();
8190   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8191   bool HasDef = !CS->getType()->isVoidTy();
8192   SDLoc dl = getCurSDLoc();
8193   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8194 
8195   // Handle immediate and symbolic callees.
8196   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8197     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8198                                    /*isTarget=*/true);
8199   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8200     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8201                                          SDLoc(SymbolicCallee),
8202                                          SymbolicCallee->getValueType(0));
8203 
8204   // Get the real number of arguments participating in the call <numArgs>
8205   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8206   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8207 
8208   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8209   // Intrinsics include all meta-operands up to but not including CC.
8210   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8211   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8212          "Not enough arguments provided to the patchpoint intrinsic");
8213 
8214   // For AnyRegCC the arguments are lowered later on manually.
8215   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8216   Type *ReturnTy =
8217     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8218 
8219   TargetLowering::CallLoweringInfo CLI(DAG);
8220   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8221                            true);
8222   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8223 
8224   SDNode *CallEnd = Result.second.getNode();
8225   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8226     CallEnd = CallEnd->getOperand(0).getNode();
8227 
8228   /// Get a call instruction from the call sequence chain.
8229   /// Tail calls are not allowed.
8230   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8231          "Expected a callseq node.");
8232   SDNode *Call = CallEnd->getOperand(0).getNode();
8233   bool HasGlue = Call->getGluedNode();
8234 
8235   // Replace the target specific call node with the patchable intrinsic.
8236   SmallVector<SDValue, 8> Ops;
8237 
8238   // Add the <id> and <numBytes> constants.
8239   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8240   Ops.push_back(DAG.getTargetConstant(
8241                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8242   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8243   Ops.push_back(DAG.getTargetConstant(
8244                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8245                   MVT::i32));
8246 
8247   // Add the callee.
8248   Ops.push_back(Callee);
8249 
8250   // Adjust <numArgs> to account for any arguments that have been passed on the
8251   // stack instead.
8252   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8253   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8254   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8255   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8256 
8257   // Add the calling convention
8258   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8259 
8260   // Add the arguments we omitted previously. The register allocator should
8261   // place these in any free register.
8262   if (IsAnyRegCC)
8263     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8264       Ops.push_back(getValue(CS.getArgument(i)));
8265 
8266   // Push the arguments from the call instruction up to the register mask.
8267   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8268   Ops.append(Call->op_begin() + 2, e);
8269 
8270   // Push live variables for the stack map.
8271   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8272 
8273   // Push the register mask info.
8274   if (HasGlue)
8275     Ops.push_back(*(Call->op_end()-2));
8276   else
8277     Ops.push_back(*(Call->op_end()-1));
8278 
8279   // Push the chain (this is originally the first operand of the call, but
8280   // becomes now the last or second to last operand).
8281   Ops.push_back(*(Call->op_begin()));
8282 
8283   // Push the glue flag (last operand).
8284   if (HasGlue)
8285     Ops.push_back(*(Call->op_end()-1));
8286 
8287   SDVTList NodeTys;
8288   if (IsAnyRegCC && HasDef) {
8289     // Create the return types based on the intrinsic definition
8290     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8291     SmallVector<EVT, 3> ValueVTs;
8292     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8293     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8294 
8295     // There is always a chain and a glue type at the end
8296     ValueVTs.push_back(MVT::Other);
8297     ValueVTs.push_back(MVT::Glue);
8298     NodeTys = DAG.getVTList(ValueVTs);
8299   } else
8300     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8301 
8302   // Replace the target specific call node with a PATCHPOINT node.
8303   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8304                                          dl, NodeTys, Ops);
8305 
8306   // Update the NodeMap.
8307   if (HasDef) {
8308     if (IsAnyRegCC)
8309       setValue(CS.getInstruction(), SDValue(MN, 0));
8310     else
8311       setValue(CS.getInstruction(), Result.first);
8312   }
8313 
8314   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8315   // call sequence. Furthermore the location of the chain and glue can change
8316   // when the AnyReg calling convention is used and the intrinsic returns a
8317   // value.
8318   if (IsAnyRegCC && HasDef) {
8319     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8320     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8321     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8322   } else
8323     DAG.ReplaceAllUsesWith(Call, MN);
8324   DAG.DeleteNode(Call);
8325 
8326   // Inform the Frame Information that we have a patchpoint in this function.
8327   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8328 }
8329 
8330 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8331                                             unsigned Intrinsic) {
8332   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8333   SDValue Op1 = getValue(I.getArgOperand(0));
8334   SDValue Op2;
8335   if (I.getNumArgOperands() > 1)
8336     Op2 = getValue(I.getArgOperand(1));
8337   SDLoc dl = getCurSDLoc();
8338   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8339   SDValue Res;
8340   FastMathFlags FMF;
8341   if (isa<FPMathOperator>(I))
8342     FMF = I.getFastMathFlags();
8343 
8344   switch (Intrinsic) {
8345   case Intrinsic::experimental_vector_reduce_fadd:
8346     if (FMF.isFast())
8347       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8348     else
8349       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8350     break;
8351   case Intrinsic::experimental_vector_reduce_fmul:
8352     if (FMF.isFast())
8353       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8354     else
8355       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8356     break;
8357   case Intrinsic::experimental_vector_reduce_add:
8358     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8359     break;
8360   case Intrinsic::experimental_vector_reduce_mul:
8361     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8362     break;
8363   case Intrinsic::experimental_vector_reduce_and:
8364     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8365     break;
8366   case Intrinsic::experimental_vector_reduce_or:
8367     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8368     break;
8369   case Intrinsic::experimental_vector_reduce_xor:
8370     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8371     break;
8372   case Intrinsic::experimental_vector_reduce_smax:
8373     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8374     break;
8375   case Intrinsic::experimental_vector_reduce_smin:
8376     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8377     break;
8378   case Intrinsic::experimental_vector_reduce_umax:
8379     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8380     break;
8381   case Intrinsic::experimental_vector_reduce_umin:
8382     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8383     break;
8384   case Intrinsic::experimental_vector_reduce_fmax:
8385     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8386     break;
8387   case Intrinsic::experimental_vector_reduce_fmin:
8388     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8389     break;
8390   default:
8391     llvm_unreachable("Unhandled vector reduce intrinsic");
8392   }
8393   setValue(&I, Res);
8394 }
8395 
8396 /// Returns an AttributeList representing the attributes applied to the return
8397 /// value of the given call.
8398 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8399   SmallVector<Attribute::AttrKind, 2> Attrs;
8400   if (CLI.RetSExt)
8401     Attrs.push_back(Attribute::SExt);
8402   if (CLI.RetZExt)
8403     Attrs.push_back(Attribute::ZExt);
8404   if (CLI.IsInReg)
8405     Attrs.push_back(Attribute::InReg);
8406 
8407   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8408                             Attrs);
8409 }
8410 
8411 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8412 /// implementation, which just calls LowerCall.
8413 /// FIXME: When all targets are
8414 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8415 std::pair<SDValue, SDValue>
8416 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8417   // Handle the incoming return values from the call.
8418   CLI.Ins.clear();
8419   Type *OrigRetTy = CLI.RetTy;
8420   SmallVector<EVT, 4> RetTys;
8421   SmallVector<uint64_t, 4> Offsets;
8422   auto &DL = CLI.DAG.getDataLayout();
8423   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8424 
8425   if (CLI.IsPostTypeLegalization) {
8426     // If we are lowering a libcall after legalization, split the return type.
8427     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8428     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8429     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8430       EVT RetVT = OldRetTys[i];
8431       uint64_t Offset = OldOffsets[i];
8432       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8433       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8434       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8435       RetTys.append(NumRegs, RegisterVT);
8436       for (unsigned j = 0; j != NumRegs; ++j)
8437         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8438     }
8439   }
8440 
8441   SmallVector<ISD::OutputArg, 4> Outs;
8442   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8443 
8444   bool CanLowerReturn =
8445       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8446                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8447 
8448   SDValue DemoteStackSlot;
8449   int DemoteStackIdx = -100;
8450   if (!CanLowerReturn) {
8451     // FIXME: equivalent assert?
8452     // assert(!CS.hasInAllocaArgument() &&
8453     //        "sret demotion is incompatible with inalloca");
8454     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8455     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8456     MachineFunction &MF = CLI.DAG.getMachineFunction();
8457     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8458     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8459                                               DL.getAllocaAddrSpace());
8460 
8461     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8462     ArgListEntry Entry;
8463     Entry.Node = DemoteStackSlot;
8464     Entry.Ty = StackSlotPtrType;
8465     Entry.IsSExt = false;
8466     Entry.IsZExt = false;
8467     Entry.IsInReg = false;
8468     Entry.IsSRet = true;
8469     Entry.IsNest = false;
8470     Entry.IsByVal = false;
8471     Entry.IsReturned = false;
8472     Entry.IsSwiftSelf = false;
8473     Entry.IsSwiftError = false;
8474     Entry.Alignment = Align;
8475     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8476     CLI.NumFixedArgs += 1;
8477     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8478 
8479     // sret demotion isn't compatible with tail-calls, since the sret argument
8480     // points into the callers stack frame.
8481     CLI.IsTailCall = false;
8482   } else {
8483     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8484       EVT VT = RetTys[I];
8485       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8486                                                      CLI.CallConv, VT);
8487       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8488                                                        CLI.CallConv, VT);
8489       for (unsigned i = 0; i != NumRegs; ++i) {
8490         ISD::InputArg MyFlags;
8491         MyFlags.VT = RegisterVT;
8492         MyFlags.ArgVT = VT;
8493         MyFlags.Used = CLI.IsReturnValueUsed;
8494         if (CLI.RetSExt)
8495           MyFlags.Flags.setSExt();
8496         if (CLI.RetZExt)
8497           MyFlags.Flags.setZExt();
8498         if (CLI.IsInReg)
8499           MyFlags.Flags.setInReg();
8500         CLI.Ins.push_back(MyFlags);
8501       }
8502     }
8503   }
8504 
8505   // We push in swifterror return as the last element of CLI.Ins.
8506   ArgListTy &Args = CLI.getArgs();
8507   if (supportSwiftError()) {
8508     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8509       if (Args[i].IsSwiftError) {
8510         ISD::InputArg MyFlags;
8511         MyFlags.VT = getPointerTy(DL);
8512         MyFlags.ArgVT = EVT(getPointerTy(DL));
8513         MyFlags.Flags.setSwiftError();
8514         CLI.Ins.push_back(MyFlags);
8515       }
8516     }
8517   }
8518 
8519   // Handle all of the outgoing arguments.
8520   CLI.Outs.clear();
8521   CLI.OutVals.clear();
8522   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8523     SmallVector<EVT, 4> ValueVTs;
8524     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8525     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8526     Type *FinalType = Args[i].Ty;
8527     if (Args[i].IsByVal)
8528       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8529     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8530         FinalType, CLI.CallConv, CLI.IsVarArg);
8531     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8532          ++Value) {
8533       EVT VT = ValueVTs[Value];
8534       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8535       SDValue Op = SDValue(Args[i].Node.getNode(),
8536                            Args[i].Node.getResNo() + Value);
8537       ISD::ArgFlagsTy Flags;
8538 
8539       // Certain targets (such as MIPS), may have a different ABI alignment
8540       // for a type depending on the context. Give the target a chance to
8541       // specify the alignment it wants.
8542       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8543 
8544       if (Args[i].IsZExt)
8545         Flags.setZExt();
8546       if (Args[i].IsSExt)
8547         Flags.setSExt();
8548       if (Args[i].IsInReg) {
8549         // If we are using vectorcall calling convention, a structure that is
8550         // passed InReg - is surely an HVA
8551         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8552             isa<StructType>(FinalType)) {
8553           // The first value of a structure is marked
8554           if (0 == Value)
8555             Flags.setHvaStart();
8556           Flags.setHva();
8557         }
8558         // Set InReg Flag
8559         Flags.setInReg();
8560       }
8561       if (Args[i].IsSRet)
8562         Flags.setSRet();
8563       if (Args[i].IsSwiftSelf)
8564         Flags.setSwiftSelf();
8565       if (Args[i].IsSwiftError)
8566         Flags.setSwiftError();
8567       if (Args[i].IsByVal)
8568         Flags.setByVal();
8569       if (Args[i].IsInAlloca) {
8570         Flags.setInAlloca();
8571         // Set the byval flag for CCAssignFn callbacks that don't know about
8572         // inalloca.  This way we can know how many bytes we should've allocated
8573         // and how many bytes a callee cleanup function will pop.  If we port
8574         // inalloca to more targets, we'll have to add custom inalloca handling
8575         // in the various CC lowering callbacks.
8576         Flags.setByVal();
8577       }
8578       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8579         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8580         Type *ElementTy = Ty->getElementType();
8581         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8582         // For ByVal, alignment should come from FE.  BE will guess if this
8583         // info is not there but there are cases it cannot get right.
8584         unsigned FrameAlign;
8585         if (Args[i].Alignment)
8586           FrameAlign = Args[i].Alignment;
8587         else
8588           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8589         Flags.setByValAlign(FrameAlign);
8590       }
8591       if (Args[i].IsNest)
8592         Flags.setNest();
8593       if (NeedsRegBlock)
8594         Flags.setInConsecutiveRegs();
8595       Flags.setOrigAlign(OriginalAlignment);
8596 
8597       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8598                                                  CLI.CallConv, VT);
8599       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8600                                                         CLI.CallConv, VT);
8601       SmallVector<SDValue, 4> Parts(NumParts);
8602       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8603 
8604       if (Args[i].IsSExt)
8605         ExtendKind = ISD::SIGN_EXTEND;
8606       else if (Args[i].IsZExt)
8607         ExtendKind = ISD::ZERO_EXTEND;
8608 
8609       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8610       // for now.
8611       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8612           CanLowerReturn) {
8613         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8614                "unexpected use of 'returned'");
8615         // Before passing 'returned' to the target lowering code, ensure that
8616         // either the register MVT and the actual EVT are the same size or that
8617         // the return value and argument are extended in the same way; in these
8618         // cases it's safe to pass the argument register value unchanged as the
8619         // return register value (although it's at the target's option whether
8620         // to do so)
8621         // TODO: allow code generation to take advantage of partially preserved
8622         // registers rather than clobbering the entire register when the
8623         // parameter extension method is not compatible with the return
8624         // extension method
8625         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8626             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8627              CLI.RetZExt == Args[i].IsZExt))
8628           Flags.setReturned();
8629       }
8630 
8631       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8632                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8633 
8634       for (unsigned j = 0; j != NumParts; ++j) {
8635         // if it isn't first piece, alignment must be 1
8636         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8637                                i < CLI.NumFixedArgs,
8638                                i, j*Parts[j].getValueType().getStoreSize());
8639         if (NumParts > 1 && j == 0)
8640           MyFlags.Flags.setSplit();
8641         else if (j != 0) {
8642           MyFlags.Flags.setOrigAlign(1);
8643           if (j == NumParts - 1)
8644             MyFlags.Flags.setSplitEnd();
8645         }
8646 
8647         CLI.Outs.push_back(MyFlags);
8648         CLI.OutVals.push_back(Parts[j]);
8649       }
8650 
8651       if (NeedsRegBlock && Value == NumValues - 1)
8652         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8653     }
8654   }
8655 
8656   SmallVector<SDValue, 4> InVals;
8657   CLI.Chain = LowerCall(CLI, InVals);
8658 
8659   // Update CLI.InVals to use outside of this function.
8660   CLI.InVals = InVals;
8661 
8662   // Verify that the target's LowerCall behaved as expected.
8663   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8664          "LowerCall didn't return a valid chain!");
8665   assert((!CLI.IsTailCall || InVals.empty()) &&
8666          "LowerCall emitted a return value for a tail call!");
8667   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8668          "LowerCall didn't emit the correct number of values!");
8669 
8670   // For a tail call, the return value is merely live-out and there aren't
8671   // any nodes in the DAG representing it. Return a special value to
8672   // indicate that a tail call has been emitted and no more Instructions
8673   // should be processed in the current block.
8674   if (CLI.IsTailCall) {
8675     CLI.DAG.setRoot(CLI.Chain);
8676     return std::make_pair(SDValue(), SDValue());
8677   }
8678 
8679 #ifndef NDEBUG
8680   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8681     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8682     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8683            "LowerCall emitted a value with the wrong type!");
8684   }
8685 #endif
8686 
8687   SmallVector<SDValue, 4> ReturnValues;
8688   if (!CanLowerReturn) {
8689     // The instruction result is the result of loading from the
8690     // hidden sret parameter.
8691     SmallVector<EVT, 1> PVTs;
8692     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8693 
8694     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8695     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8696     EVT PtrVT = PVTs[0];
8697 
8698     unsigned NumValues = RetTys.size();
8699     ReturnValues.resize(NumValues);
8700     SmallVector<SDValue, 4> Chains(NumValues);
8701 
8702     // An aggregate return value cannot wrap around the address space, so
8703     // offsets to its parts don't wrap either.
8704     SDNodeFlags Flags;
8705     Flags.setNoUnsignedWrap(true);
8706 
8707     for (unsigned i = 0; i < NumValues; ++i) {
8708       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8709                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8710                                                         PtrVT), Flags);
8711       SDValue L = CLI.DAG.getLoad(
8712           RetTys[i], CLI.DL, CLI.Chain, Add,
8713           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8714                                             DemoteStackIdx, Offsets[i]),
8715           /* Alignment = */ 1);
8716       ReturnValues[i] = L;
8717       Chains[i] = L.getValue(1);
8718     }
8719 
8720     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8721   } else {
8722     // Collect the legal value parts into potentially illegal values
8723     // that correspond to the original function's return values.
8724     Optional<ISD::NodeType> AssertOp;
8725     if (CLI.RetSExt)
8726       AssertOp = ISD::AssertSext;
8727     else if (CLI.RetZExt)
8728       AssertOp = ISD::AssertZext;
8729     unsigned CurReg = 0;
8730     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8731       EVT VT = RetTys[I];
8732       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8733                                                      CLI.CallConv, VT);
8734       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8735                                                        CLI.CallConv, VT);
8736 
8737       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8738                                               NumRegs, RegisterVT, VT, nullptr,
8739                                               CLI.CallConv, AssertOp));
8740       CurReg += NumRegs;
8741     }
8742 
8743     // For a function returning void, there is no return value. We can't create
8744     // such a node, so we just return a null return value in that case. In
8745     // that case, nothing will actually look at the value.
8746     if (ReturnValues.empty())
8747       return std::make_pair(SDValue(), CLI.Chain);
8748   }
8749 
8750   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8751                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8752   return std::make_pair(Res, CLI.Chain);
8753 }
8754 
8755 void TargetLowering::LowerOperationWrapper(SDNode *N,
8756                                            SmallVectorImpl<SDValue> &Results,
8757                                            SelectionDAG &DAG) const {
8758   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8759     Results.push_back(Res);
8760 }
8761 
8762 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8763   llvm_unreachable("LowerOperation not implemented for this target!");
8764 }
8765 
8766 void
8767 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8768   SDValue Op = getNonRegisterValue(V);
8769   assert((Op.getOpcode() != ISD::CopyFromReg ||
8770           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8771          "Copy from a reg to the same reg!");
8772   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8773 
8774   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8775   // If this is an InlineAsm we have to match the registers required, not the
8776   // notional registers required by the type.
8777 
8778   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8779                    None); // This is not an ABI copy.
8780   SDValue Chain = DAG.getEntryNode();
8781 
8782   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8783                               FuncInfo.PreferredExtendType.end())
8784                                  ? ISD::ANY_EXTEND
8785                                  : FuncInfo.PreferredExtendType[V];
8786   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8787   PendingExports.push_back(Chain);
8788 }
8789 
8790 #include "llvm/CodeGen/SelectionDAGISel.h"
8791 
8792 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8793 /// entry block, return true.  This includes arguments used by switches, since
8794 /// the switch may expand into multiple basic blocks.
8795 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8796   // With FastISel active, we may be splitting blocks, so force creation
8797   // of virtual registers for all non-dead arguments.
8798   if (FastISel)
8799     return A->use_empty();
8800 
8801   const BasicBlock &Entry = A->getParent()->front();
8802   for (const User *U : A->users())
8803     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8804       return false;  // Use not in entry block.
8805 
8806   return true;
8807 }
8808 
8809 using ArgCopyElisionMapTy =
8810     DenseMap<const Argument *,
8811              std::pair<const AllocaInst *, const StoreInst *>>;
8812 
8813 /// Scan the entry block of the function in FuncInfo for arguments that look
8814 /// like copies into a local alloca. Record any copied arguments in
8815 /// ArgCopyElisionCandidates.
8816 static void
8817 findArgumentCopyElisionCandidates(const DataLayout &DL,
8818                                   FunctionLoweringInfo *FuncInfo,
8819                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8820   // Record the state of every static alloca used in the entry block. Argument
8821   // allocas are all used in the entry block, so we need approximately as many
8822   // entries as we have arguments.
8823   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8824   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8825   unsigned NumArgs = FuncInfo->Fn->arg_size();
8826   StaticAllocas.reserve(NumArgs * 2);
8827 
8828   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8829     if (!V)
8830       return nullptr;
8831     V = V->stripPointerCasts();
8832     const auto *AI = dyn_cast<AllocaInst>(V);
8833     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8834       return nullptr;
8835     auto Iter = StaticAllocas.insert({AI, Unknown});
8836     return &Iter.first->second;
8837   };
8838 
8839   // Look for stores of arguments to static allocas. Look through bitcasts and
8840   // GEPs to handle type coercions, as long as the alloca is fully initialized
8841   // by the store. Any non-store use of an alloca escapes it and any subsequent
8842   // unanalyzed store might write it.
8843   // FIXME: Handle structs initialized with multiple stores.
8844   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8845     // Look for stores, and handle non-store uses conservatively.
8846     const auto *SI = dyn_cast<StoreInst>(&I);
8847     if (!SI) {
8848       // We will look through cast uses, so ignore them completely.
8849       if (I.isCast())
8850         continue;
8851       // Ignore debug info intrinsics, they don't escape or store to allocas.
8852       if (isa<DbgInfoIntrinsic>(I))
8853         continue;
8854       // This is an unknown instruction. Assume it escapes or writes to all
8855       // static alloca operands.
8856       for (const Use &U : I.operands()) {
8857         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8858           *Info = StaticAllocaInfo::Clobbered;
8859       }
8860       continue;
8861     }
8862 
8863     // If the stored value is a static alloca, mark it as escaped.
8864     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8865       *Info = StaticAllocaInfo::Clobbered;
8866 
8867     // Check if the destination is a static alloca.
8868     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8869     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8870     if (!Info)
8871       continue;
8872     const AllocaInst *AI = cast<AllocaInst>(Dst);
8873 
8874     // Skip allocas that have been initialized or clobbered.
8875     if (*Info != StaticAllocaInfo::Unknown)
8876       continue;
8877 
8878     // Check if the stored value is an argument, and that this store fully
8879     // initializes the alloca. Don't elide copies from the same argument twice.
8880     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8881     const auto *Arg = dyn_cast<Argument>(Val);
8882     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8883         Arg->getType()->isEmptyTy() ||
8884         DL.getTypeStoreSize(Arg->getType()) !=
8885             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8886         ArgCopyElisionCandidates.count(Arg)) {
8887       *Info = StaticAllocaInfo::Clobbered;
8888       continue;
8889     }
8890 
8891     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8892                       << '\n');
8893 
8894     // Mark this alloca and store for argument copy elision.
8895     *Info = StaticAllocaInfo::Elidable;
8896     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8897 
8898     // Stop scanning if we've seen all arguments. This will happen early in -O0
8899     // builds, which is useful, because -O0 builds have large entry blocks and
8900     // many allocas.
8901     if (ArgCopyElisionCandidates.size() == NumArgs)
8902       break;
8903   }
8904 }
8905 
8906 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8907 /// ArgVal is a load from a suitable fixed stack object.
8908 static void tryToElideArgumentCopy(
8909     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8910     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8911     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8912     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8913     SDValue ArgVal, bool &ArgHasUses) {
8914   // Check if this is a load from a fixed stack object.
8915   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8916   if (!LNode)
8917     return;
8918   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8919   if (!FINode)
8920     return;
8921 
8922   // Check that the fixed stack object is the right size and alignment.
8923   // Look at the alignment that the user wrote on the alloca instead of looking
8924   // at the stack object.
8925   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8926   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8927   const AllocaInst *AI = ArgCopyIter->second.first;
8928   int FixedIndex = FINode->getIndex();
8929   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8930   int OldIndex = AllocaIndex;
8931   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8932   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8933     LLVM_DEBUG(
8934         dbgs() << "  argument copy elision failed due to bad fixed stack "
8935                   "object size\n");
8936     return;
8937   }
8938   unsigned RequiredAlignment = AI->getAlignment();
8939   if (!RequiredAlignment) {
8940     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8941         AI->getAllocatedType());
8942   }
8943   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8944     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8945                          "greater than stack argument alignment ("
8946                       << RequiredAlignment << " vs "
8947                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8948     return;
8949   }
8950 
8951   // Perform the elision. Delete the old stack object and replace its only use
8952   // in the variable info map. Mark the stack object as mutable.
8953   LLVM_DEBUG({
8954     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8955            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8956            << '\n';
8957   });
8958   MFI.RemoveStackObject(OldIndex);
8959   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8960   AllocaIndex = FixedIndex;
8961   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8962   Chains.push_back(ArgVal.getValue(1));
8963 
8964   // Avoid emitting code for the store implementing the copy.
8965   const StoreInst *SI = ArgCopyIter->second.second;
8966   ElidedArgCopyInstrs.insert(SI);
8967 
8968   // Check for uses of the argument again so that we can avoid exporting ArgVal
8969   // if it is't used by anything other than the store.
8970   for (const Value *U : Arg.users()) {
8971     if (U != SI) {
8972       ArgHasUses = true;
8973       break;
8974     }
8975   }
8976 }
8977 
8978 void SelectionDAGISel::LowerArguments(const Function &F) {
8979   SelectionDAG &DAG = SDB->DAG;
8980   SDLoc dl = SDB->getCurSDLoc();
8981   const DataLayout &DL = DAG.getDataLayout();
8982   SmallVector<ISD::InputArg, 16> Ins;
8983 
8984   if (!FuncInfo->CanLowerReturn) {
8985     // Put in an sret pointer parameter before all the other parameters.
8986     SmallVector<EVT, 1> ValueVTs;
8987     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8988                     F.getReturnType()->getPointerTo(
8989                         DAG.getDataLayout().getAllocaAddrSpace()),
8990                     ValueVTs);
8991 
8992     // NOTE: Assuming that a pointer will never break down to more than one VT
8993     // or one register.
8994     ISD::ArgFlagsTy Flags;
8995     Flags.setSRet();
8996     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8997     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8998                          ISD::InputArg::NoArgIndex, 0);
8999     Ins.push_back(RetArg);
9000   }
9001 
9002   // Look for stores of arguments to static allocas. Mark such arguments with a
9003   // flag to ask the target to give us the memory location of that argument if
9004   // available.
9005   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9006   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9007 
9008   // Set up the incoming argument description vector.
9009   for (const Argument &Arg : F.args()) {
9010     unsigned ArgNo = Arg.getArgNo();
9011     SmallVector<EVT, 4> ValueVTs;
9012     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9013     bool isArgValueUsed = !Arg.use_empty();
9014     unsigned PartBase = 0;
9015     Type *FinalType = Arg.getType();
9016     if (Arg.hasAttribute(Attribute::ByVal))
9017       FinalType = cast<PointerType>(FinalType)->getElementType();
9018     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9019         FinalType, F.getCallingConv(), F.isVarArg());
9020     for (unsigned Value = 0, NumValues = ValueVTs.size();
9021          Value != NumValues; ++Value) {
9022       EVT VT = ValueVTs[Value];
9023       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9024       ISD::ArgFlagsTy Flags;
9025 
9026       // Certain targets (such as MIPS), may have a different ABI alignment
9027       // for a type depending on the context. Give the target a chance to
9028       // specify the alignment it wants.
9029       unsigned OriginalAlignment =
9030           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9031 
9032       if (Arg.hasAttribute(Attribute::ZExt))
9033         Flags.setZExt();
9034       if (Arg.hasAttribute(Attribute::SExt))
9035         Flags.setSExt();
9036       if (Arg.hasAttribute(Attribute::InReg)) {
9037         // If we are using vectorcall calling convention, a structure that is
9038         // passed InReg - is surely an HVA
9039         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9040             isa<StructType>(Arg.getType())) {
9041           // The first value of a structure is marked
9042           if (0 == Value)
9043             Flags.setHvaStart();
9044           Flags.setHva();
9045         }
9046         // Set InReg Flag
9047         Flags.setInReg();
9048       }
9049       if (Arg.hasAttribute(Attribute::StructRet))
9050         Flags.setSRet();
9051       if (Arg.hasAttribute(Attribute::SwiftSelf))
9052         Flags.setSwiftSelf();
9053       if (Arg.hasAttribute(Attribute::SwiftError))
9054         Flags.setSwiftError();
9055       if (Arg.hasAttribute(Attribute::ByVal))
9056         Flags.setByVal();
9057       if (Arg.hasAttribute(Attribute::InAlloca)) {
9058         Flags.setInAlloca();
9059         // Set the byval flag for CCAssignFn callbacks that don't know about
9060         // inalloca.  This way we can know how many bytes we should've allocated
9061         // and how many bytes a callee cleanup function will pop.  If we port
9062         // inalloca to more targets, we'll have to add custom inalloca handling
9063         // in the various CC lowering callbacks.
9064         Flags.setByVal();
9065       }
9066       if (F.getCallingConv() == CallingConv::X86_INTR) {
9067         // IA Interrupt passes frame (1st parameter) by value in the stack.
9068         if (ArgNo == 0)
9069           Flags.setByVal();
9070       }
9071       if (Flags.isByVal() || Flags.isInAlloca()) {
9072         PointerType *Ty = cast<PointerType>(Arg.getType());
9073         Type *ElementTy = Ty->getElementType();
9074         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9075         // For ByVal, alignment should be passed from FE.  BE will guess if
9076         // this info is not there but there are cases it cannot get right.
9077         unsigned FrameAlign;
9078         if (Arg.getParamAlignment())
9079           FrameAlign = Arg.getParamAlignment();
9080         else
9081           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9082         Flags.setByValAlign(FrameAlign);
9083       }
9084       if (Arg.hasAttribute(Attribute::Nest))
9085         Flags.setNest();
9086       if (NeedsRegBlock)
9087         Flags.setInConsecutiveRegs();
9088       Flags.setOrigAlign(OriginalAlignment);
9089       if (ArgCopyElisionCandidates.count(&Arg))
9090         Flags.setCopyElisionCandidate();
9091 
9092       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9093           *CurDAG->getContext(), F.getCallingConv(), VT);
9094       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9095           *CurDAG->getContext(), F.getCallingConv(), VT);
9096       for (unsigned i = 0; i != NumRegs; ++i) {
9097         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9098                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9099         if (NumRegs > 1 && i == 0)
9100           MyFlags.Flags.setSplit();
9101         // if it isn't first piece, alignment must be 1
9102         else if (i > 0) {
9103           MyFlags.Flags.setOrigAlign(1);
9104           if (i == NumRegs - 1)
9105             MyFlags.Flags.setSplitEnd();
9106         }
9107         Ins.push_back(MyFlags);
9108       }
9109       if (NeedsRegBlock && Value == NumValues - 1)
9110         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9111       PartBase += VT.getStoreSize();
9112     }
9113   }
9114 
9115   // Call the target to set up the argument values.
9116   SmallVector<SDValue, 8> InVals;
9117   SDValue NewRoot = TLI->LowerFormalArguments(
9118       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9119 
9120   // Verify that the target's LowerFormalArguments behaved as expected.
9121   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9122          "LowerFormalArguments didn't return a valid chain!");
9123   assert(InVals.size() == Ins.size() &&
9124          "LowerFormalArguments didn't emit the correct number of values!");
9125   LLVM_DEBUG({
9126     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9127       assert(InVals[i].getNode() &&
9128              "LowerFormalArguments emitted a null value!");
9129       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9130              "LowerFormalArguments emitted a value with the wrong type!");
9131     }
9132   });
9133 
9134   // Update the DAG with the new chain value resulting from argument lowering.
9135   DAG.setRoot(NewRoot);
9136 
9137   // Set up the argument values.
9138   unsigned i = 0;
9139   if (!FuncInfo->CanLowerReturn) {
9140     // Create a virtual register for the sret pointer, and put in a copy
9141     // from the sret argument into it.
9142     SmallVector<EVT, 1> ValueVTs;
9143     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9144                     F.getReturnType()->getPointerTo(
9145                         DAG.getDataLayout().getAllocaAddrSpace()),
9146                     ValueVTs);
9147     MVT VT = ValueVTs[0].getSimpleVT();
9148     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9149     Optional<ISD::NodeType> AssertOp = None;
9150     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9151                                         nullptr, F.getCallingConv(), AssertOp);
9152 
9153     MachineFunction& MF = SDB->DAG.getMachineFunction();
9154     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9155     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9156     FuncInfo->DemoteRegister = SRetReg;
9157     NewRoot =
9158         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9159     DAG.setRoot(NewRoot);
9160 
9161     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9162     ++i;
9163   }
9164 
9165   SmallVector<SDValue, 4> Chains;
9166   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9167   for (const Argument &Arg : F.args()) {
9168     SmallVector<SDValue, 4> ArgValues;
9169     SmallVector<EVT, 4> ValueVTs;
9170     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9171     unsigned NumValues = ValueVTs.size();
9172     if (NumValues == 0)
9173       continue;
9174 
9175     bool ArgHasUses = !Arg.use_empty();
9176 
9177     // Elide the copying store if the target loaded this argument from a
9178     // suitable fixed stack object.
9179     if (Ins[i].Flags.isCopyElisionCandidate()) {
9180       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9181                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9182                              InVals[i], ArgHasUses);
9183     }
9184 
9185     // If this argument is unused then remember its value. It is used to generate
9186     // debugging information.
9187     bool isSwiftErrorArg =
9188         TLI->supportSwiftError() &&
9189         Arg.hasAttribute(Attribute::SwiftError);
9190     if (!ArgHasUses && !isSwiftErrorArg) {
9191       SDB->setUnusedArgValue(&Arg, InVals[i]);
9192 
9193       // Also remember any frame index for use in FastISel.
9194       if (FrameIndexSDNode *FI =
9195           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9196         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9197     }
9198 
9199     for (unsigned Val = 0; Val != NumValues; ++Val) {
9200       EVT VT = ValueVTs[Val];
9201       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9202                                                       F.getCallingConv(), VT);
9203       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9204           *CurDAG->getContext(), F.getCallingConv(), VT);
9205 
9206       // Even an apparant 'unused' swifterror argument needs to be returned. So
9207       // we do generate a copy for it that can be used on return from the
9208       // function.
9209       if (ArgHasUses || isSwiftErrorArg) {
9210         Optional<ISD::NodeType> AssertOp;
9211         if (Arg.hasAttribute(Attribute::SExt))
9212           AssertOp = ISD::AssertSext;
9213         else if (Arg.hasAttribute(Attribute::ZExt))
9214           AssertOp = ISD::AssertZext;
9215 
9216         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9217                                              PartVT, VT, nullptr,
9218                                              F.getCallingConv(), AssertOp));
9219       }
9220 
9221       i += NumParts;
9222     }
9223 
9224     // We don't need to do anything else for unused arguments.
9225     if (ArgValues.empty())
9226       continue;
9227 
9228     // Note down frame index.
9229     if (FrameIndexSDNode *FI =
9230         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9231       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9232 
9233     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9234                                      SDB->getCurSDLoc());
9235 
9236     SDB->setValue(&Arg, Res);
9237     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9238       // We want to associate the argument with the frame index, among
9239       // involved operands, that correspond to the lowest address. The
9240       // getCopyFromParts function, called earlier, is swapping the order of
9241       // the operands to BUILD_PAIR depending on endianness. The result of
9242       // that swapping is that the least significant bits of the argument will
9243       // be in the first operand of the BUILD_PAIR node, and the most
9244       // significant bits will be in the second operand.
9245       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9246       if (LoadSDNode *LNode =
9247           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9248         if (FrameIndexSDNode *FI =
9249             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9250           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9251     }
9252 
9253     // Update the SwiftErrorVRegDefMap.
9254     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9255       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9256       if (TargetRegisterInfo::isVirtualRegister(Reg))
9257         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9258                                            FuncInfo->SwiftErrorArg, Reg);
9259     }
9260 
9261     // If this argument is live outside of the entry block, insert a copy from
9262     // wherever we got it to the vreg that other BB's will reference it as.
9263     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9264       // If we can, though, try to skip creating an unnecessary vreg.
9265       // FIXME: This isn't very clean... it would be nice to make this more
9266       // general.  It's also subtly incompatible with the hacks FastISel
9267       // uses with vregs.
9268       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9269       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9270         FuncInfo->ValueMap[&Arg] = Reg;
9271         continue;
9272       }
9273     }
9274     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9275       FuncInfo->InitializeRegForValue(&Arg);
9276       SDB->CopyToExportRegsIfNeeded(&Arg);
9277     }
9278   }
9279 
9280   if (!Chains.empty()) {
9281     Chains.push_back(NewRoot);
9282     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9283   }
9284 
9285   DAG.setRoot(NewRoot);
9286 
9287   assert(i == InVals.size() && "Argument register count mismatch!");
9288 
9289   // If any argument copy elisions occurred and we have debug info, update the
9290   // stale frame indices used in the dbg.declare variable info table.
9291   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9292   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9293     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9294       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9295       if (I != ArgCopyElisionFrameIndexMap.end())
9296         VI.Slot = I->second;
9297     }
9298   }
9299 
9300   // Finally, if the target has anything special to do, allow it to do so.
9301   EmitFunctionEntryCode();
9302 }
9303 
9304 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9305 /// ensure constants are generated when needed.  Remember the virtual registers
9306 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9307 /// directly add them, because expansion might result in multiple MBB's for one
9308 /// BB.  As such, the start of the BB might correspond to a different MBB than
9309 /// the end.
9310 void
9311 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9312   const Instruction *TI = LLVMBB->getTerminator();
9313 
9314   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9315 
9316   // Check PHI nodes in successors that expect a value to be available from this
9317   // block.
9318   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9319     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9320     if (!isa<PHINode>(SuccBB->begin())) continue;
9321     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9322 
9323     // If this terminator has multiple identical successors (common for
9324     // switches), only handle each succ once.
9325     if (!SuccsHandled.insert(SuccMBB).second)
9326       continue;
9327 
9328     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9329 
9330     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9331     // nodes and Machine PHI nodes, but the incoming operands have not been
9332     // emitted yet.
9333     for (const PHINode &PN : SuccBB->phis()) {
9334       // Ignore dead phi's.
9335       if (PN.use_empty())
9336         continue;
9337 
9338       // Skip empty types
9339       if (PN.getType()->isEmptyTy())
9340         continue;
9341 
9342       unsigned Reg;
9343       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9344 
9345       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9346         unsigned &RegOut = ConstantsOut[C];
9347         if (RegOut == 0) {
9348           RegOut = FuncInfo.CreateRegs(C->getType());
9349           CopyValueToVirtualRegister(C, RegOut);
9350         }
9351         Reg = RegOut;
9352       } else {
9353         DenseMap<const Value *, unsigned>::iterator I =
9354           FuncInfo.ValueMap.find(PHIOp);
9355         if (I != FuncInfo.ValueMap.end())
9356           Reg = I->second;
9357         else {
9358           assert(isa<AllocaInst>(PHIOp) &&
9359                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9360                  "Didn't codegen value into a register!??");
9361           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9362           CopyValueToVirtualRegister(PHIOp, Reg);
9363         }
9364       }
9365 
9366       // Remember that this register needs to added to the machine PHI node as
9367       // the input for this MBB.
9368       SmallVector<EVT, 4> ValueVTs;
9369       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9370       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9371       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9372         EVT VT = ValueVTs[vti];
9373         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9374         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9375           FuncInfo.PHINodesToUpdate.push_back(
9376               std::make_pair(&*MBBI++, Reg + i));
9377         Reg += NumRegisters;
9378       }
9379     }
9380   }
9381 
9382   ConstantsOut.clear();
9383 }
9384 
9385 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9386 /// is 0.
9387 MachineBasicBlock *
9388 SelectionDAGBuilder::StackProtectorDescriptor::
9389 AddSuccessorMBB(const BasicBlock *BB,
9390                 MachineBasicBlock *ParentMBB,
9391                 bool IsLikely,
9392                 MachineBasicBlock *SuccMBB) {
9393   // If SuccBB has not been created yet, create it.
9394   if (!SuccMBB) {
9395     MachineFunction *MF = ParentMBB->getParent();
9396     MachineFunction::iterator BBI(ParentMBB);
9397     SuccMBB = MF->CreateMachineBasicBlock(BB);
9398     MF->insert(++BBI, SuccMBB);
9399   }
9400   // Add it as a successor of ParentMBB.
9401   ParentMBB->addSuccessor(
9402       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9403   return SuccMBB;
9404 }
9405 
9406 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9407   MachineFunction::iterator I(MBB);
9408   if (++I == FuncInfo.MF->end())
9409     return nullptr;
9410   return &*I;
9411 }
9412 
9413 /// During lowering new call nodes can be created (such as memset, etc.).
9414 /// Those will become new roots of the current DAG, but complications arise
9415 /// when they are tail calls. In such cases, the call lowering will update
9416 /// the root, but the builder still needs to know that a tail call has been
9417 /// lowered in order to avoid generating an additional return.
9418 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9419   // If the node is null, we do have a tail call.
9420   if (MaybeTC.getNode() != nullptr)
9421     DAG.setRoot(MaybeTC);
9422   else
9423     HasTailCall = true;
9424 }
9425 
9426 uint64_t
9427 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9428                                        unsigned First, unsigned Last) const {
9429   assert(Last >= First);
9430   const APInt &LowCase = Clusters[First].Low->getValue();
9431   const APInt &HighCase = Clusters[Last].High->getValue();
9432   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9433 
9434   // FIXME: A range of consecutive cases has 100% density, but only requires one
9435   // comparison to lower. We should discriminate against such consecutive ranges
9436   // in jump tables.
9437 
9438   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9439 }
9440 
9441 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9442     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9443     unsigned Last) const {
9444   assert(Last >= First);
9445   assert(TotalCases[Last] >= TotalCases[First]);
9446   uint64_t NumCases =
9447       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9448   return NumCases;
9449 }
9450 
9451 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9452                                          unsigned First, unsigned Last,
9453                                          const SwitchInst *SI,
9454                                          MachineBasicBlock *DefaultMBB,
9455                                          CaseCluster &JTCluster) {
9456   assert(First <= Last);
9457 
9458   auto Prob = BranchProbability::getZero();
9459   unsigned NumCmps = 0;
9460   std::vector<MachineBasicBlock*> Table;
9461   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9462 
9463   // Initialize probabilities in JTProbs.
9464   for (unsigned I = First; I <= Last; ++I)
9465     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9466 
9467   for (unsigned I = First; I <= Last; ++I) {
9468     assert(Clusters[I].Kind == CC_Range);
9469     Prob += Clusters[I].Prob;
9470     const APInt &Low = Clusters[I].Low->getValue();
9471     const APInt &High = Clusters[I].High->getValue();
9472     NumCmps += (Low == High) ? 1 : 2;
9473     if (I != First) {
9474       // Fill the gap between this and the previous cluster.
9475       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9476       assert(PreviousHigh.slt(Low));
9477       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9478       for (uint64_t J = 0; J < Gap; J++)
9479         Table.push_back(DefaultMBB);
9480     }
9481     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9482     for (uint64_t J = 0; J < ClusterSize; ++J)
9483       Table.push_back(Clusters[I].MBB);
9484     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9485   }
9486 
9487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9488   unsigned NumDests = JTProbs.size();
9489   if (TLI.isSuitableForBitTests(
9490           NumDests, NumCmps, Clusters[First].Low->getValue(),
9491           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9492     // Clusters[First..Last] should be lowered as bit tests instead.
9493     return false;
9494   }
9495 
9496   // Create the MBB that will load from and jump through the table.
9497   // Note: We create it here, but it's not inserted into the function yet.
9498   MachineFunction *CurMF = FuncInfo.MF;
9499   MachineBasicBlock *JumpTableMBB =
9500       CurMF->CreateMachineBasicBlock(SI->getParent());
9501 
9502   // Add successors. Note: use table order for determinism.
9503   SmallPtrSet<MachineBasicBlock *, 8> Done;
9504   for (MachineBasicBlock *Succ : Table) {
9505     if (Done.count(Succ))
9506       continue;
9507     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9508     Done.insert(Succ);
9509   }
9510   JumpTableMBB->normalizeSuccProbs();
9511 
9512   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9513                      ->createJumpTableIndex(Table);
9514 
9515   // Set up the jump table info.
9516   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9517   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9518                       Clusters[Last].High->getValue(), SI->getCondition(),
9519                       nullptr, false);
9520   JTCases.emplace_back(std::move(JTH), std::move(JT));
9521 
9522   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9523                                      JTCases.size() - 1, Prob);
9524   return true;
9525 }
9526 
9527 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9528                                          const SwitchInst *SI,
9529                                          MachineBasicBlock *DefaultMBB) {
9530 #ifndef NDEBUG
9531   // Clusters must be non-empty, sorted, and only contain Range clusters.
9532   assert(!Clusters.empty());
9533   for (CaseCluster &C : Clusters)
9534     assert(C.Kind == CC_Range);
9535   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9536     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9537 #endif
9538 
9539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9540   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9541     return;
9542 
9543   const int64_t N = Clusters.size();
9544   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9545   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9546 
9547   if (N < 2 || N < MinJumpTableEntries)
9548     return;
9549 
9550   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9551   SmallVector<unsigned, 8> TotalCases(N);
9552   for (unsigned i = 0; i < N; ++i) {
9553     const APInt &Hi = Clusters[i].High->getValue();
9554     const APInt &Lo = Clusters[i].Low->getValue();
9555     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9556     if (i != 0)
9557       TotalCases[i] += TotalCases[i - 1];
9558   }
9559 
9560   // Cheap case: the whole range may be suitable for jump table.
9561   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9562   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9563   assert(NumCases < UINT64_MAX / 100);
9564   assert(Range >= NumCases);
9565   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9566     CaseCluster JTCluster;
9567     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9568       Clusters[0] = JTCluster;
9569       Clusters.resize(1);
9570       return;
9571     }
9572   }
9573 
9574   // The algorithm below is not suitable for -O0.
9575   if (TM.getOptLevel() == CodeGenOpt::None)
9576     return;
9577 
9578   // Split Clusters into minimum number of dense partitions. The algorithm uses
9579   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9580   // for the Case Statement'" (1994), but builds the MinPartitions array in
9581   // reverse order to make it easier to reconstruct the partitions in ascending
9582   // order. In the choice between two optimal partitionings, it picks the one
9583   // which yields more jump tables.
9584 
9585   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9586   SmallVector<unsigned, 8> MinPartitions(N);
9587   // LastElement[i] is the last element of the partition starting at i.
9588   SmallVector<unsigned, 8> LastElement(N);
9589   // PartitionsScore[i] is used to break ties when choosing between two
9590   // partitionings resulting in the same number of partitions.
9591   SmallVector<unsigned, 8> PartitionsScore(N);
9592   // For PartitionsScore, a small number of comparisons is considered as good as
9593   // a jump table and a single comparison is considered better than a jump
9594   // table.
9595   enum PartitionScores : unsigned {
9596     NoTable = 0,
9597     Table = 1,
9598     FewCases = 1,
9599     SingleCase = 2
9600   };
9601 
9602   // Base case: There is only one way to partition Clusters[N-1].
9603   MinPartitions[N - 1] = 1;
9604   LastElement[N - 1] = N - 1;
9605   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9606 
9607   // Note: loop indexes are signed to avoid underflow.
9608   for (int64_t i = N - 2; i >= 0; i--) {
9609     // Find optimal partitioning of Clusters[i..N-1].
9610     // Baseline: Put Clusters[i] into a partition on its own.
9611     MinPartitions[i] = MinPartitions[i + 1] + 1;
9612     LastElement[i] = i;
9613     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9614 
9615     // Search for a solution that results in fewer partitions.
9616     for (int64_t j = N - 1; j > i; j--) {
9617       // Try building a partition from Clusters[i..j].
9618       uint64_t Range = getJumpTableRange(Clusters, i, j);
9619       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9620       assert(NumCases < UINT64_MAX / 100);
9621       assert(Range >= NumCases);
9622       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9623         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9624         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9625         int64_t NumEntries = j - i + 1;
9626 
9627         if (NumEntries == 1)
9628           Score += PartitionScores::SingleCase;
9629         else if (NumEntries <= SmallNumberOfEntries)
9630           Score += PartitionScores::FewCases;
9631         else if (NumEntries >= MinJumpTableEntries)
9632           Score += PartitionScores::Table;
9633 
9634         // If this leads to fewer partitions, or to the same number of
9635         // partitions with better score, it is a better partitioning.
9636         if (NumPartitions < MinPartitions[i] ||
9637             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9638           MinPartitions[i] = NumPartitions;
9639           LastElement[i] = j;
9640           PartitionsScore[i] = Score;
9641         }
9642       }
9643     }
9644   }
9645 
9646   // Iterate over the partitions, replacing some with jump tables in-place.
9647   unsigned DstIndex = 0;
9648   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9649     Last = LastElement[First];
9650     assert(Last >= First);
9651     assert(DstIndex <= First);
9652     unsigned NumClusters = Last - First + 1;
9653 
9654     CaseCluster JTCluster;
9655     if (NumClusters >= MinJumpTableEntries &&
9656         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9657       Clusters[DstIndex++] = JTCluster;
9658     } else {
9659       for (unsigned I = First; I <= Last; ++I)
9660         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9661     }
9662   }
9663   Clusters.resize(DstIndex);
9664 }
9665 
9666 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9667                                         unsigned First, unsigned Last,
9668                                         const SwitchInst *SI,
9669                                         CaseCluster &BTCluster) {
9670   assert(First <= Last);
9671   if (First == Last)
9672     return false;
9673 
9674   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9675   unsigned NumCmps = 0;
9676   for (int64_t I = First; I <= Last; ++I) {
9677     assert(Clusters[I].Kind == CC_Range);
9678     Dests.set(Clusters[I].MBB->getNumber());
9679     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9680   }
9681   unsigned NumDests = Dests.count();
9682 
9683   APInt Low = Clusters[First].Low->getValue();
9684   APInt High = Clusters[Last].High->getValue();
9685   assert(Low.slt(High));
9686 
9687   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9688   const DataLayout &DL = DAG.getDataLayout();
9689   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9690     return false;
9691 
9692   APInt LowBound;
9693   APInt CmpRange;
9694 
9695   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9696   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9697          "Case range must fit in bit mask!");
9698 
9699   // Check if the clusters cover a contiguous range such that no value in the
9700   // range will jump to the default statement.
9701   bool ContiguousRange = true;
9702   for (int64_t I = First + 1; I <= Last; ++I) {
9703     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9704       ContiguousRange = false;
9705       break;
9706     }
9707   }
9708 
9709   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9710     // Optimize the case where all the case values fit in a word without having
9711     // to subtract minValue. In this case, we can optimize away the subtraction.
9712     LowBound = APInt::getNullValue(Low.getBitWidth());
9713     CmpRange = High;
9714     ContiguousRange = false;
9715   } else {
9716     LowBound = Low;
9717     CmpRange = High - Low;
9718   }
9719 
9720   CaseBitsVector CBV;
9721   auto TotalProb = BranchProbability::getZero();
9722   for (unsigned i = First; i <= Last; ++i) {
9723     // Find the CaseBits for this destination.
9724     unsigned j;
9725     for (j = 0; j < CBV.size(); ++j)
9726       if (CBV[j].BB == Clusters[i].MBB)
9727         break;
9728     if (j == CBV.size())
9729       CBV.push_back(
9730           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9731     CaseBits *CB = &CBV[j];
9732 
9733     // Update Mask, Bits and ExtraProb.
9734     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9735     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9736     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9737     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9738     CB->Bits += Hi - Lo + 1;
9739     CB->ExtraProb += Clusters[i].Prob;
9740     TotalProb += Clusters[i].Prob;
9741   }
9742 
9743   BitTestInfo BTI;
9744   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
9745     // Sort by probability first, number of bits second, bit mask third.
9746     if (a.ExtraProb != b.ExtraProb)
9747       return a.ExtraProb > b.ExtraProb;
9748     if (a.Bits != b.Bits)
9749       return a.Bits > b.Bits;
9750     return a.Mask < b.Mask;
9751   });
9752 
9753   for (auto &CB : CBV) {
9754     MachineBasicBlock *BitTestBB =
9755         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9756     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9757   }
9758   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9759                             SI->getCondition(), -1U, MVT::Other, false,
9760                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9761                             TotalProb);
9762 
9763   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9764                                     BitTestCases.size() - 1, TotalProb);
9765   return true;
9766 }
9767 
9768 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9769                                               const SwitchInst *SI) {
9770 // Partition Clusters into as few subsets as possible, where each subset has a
9771 // range that fits in a machine word and has <= 3 unique destinations.
9772 
9773 #ifndef NDEBUG
9774   // Clusters must be sorted and contain Range or JumpTable clusters.
9775   assert(!Clusters.empty());
9776   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9777   for (const CaseCluster &C : Clusters)
9778     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9779   for (unsigned i = 1; i < Clusters.size(); ++i)
9780     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9781 #endif
9782 
9783   // The algorithm below is not suitable for -O0.
9784   if (TM.getOptLevel() == CodeGenOpt::None)
9785     return;
9786 
9787   // If target does not have legal shift left, do not emit bit tests at all.
9788   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9789   const DataLayout &DL = DAG.getDataLayout();
9790 
9791   EVT PTy = TLI.getPointerTy(DL);
9792   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9793     return;
9794 
9795   int BitWidth = PTy.getSizeInBits();
9796   const int64_t N = Clusters.size();
9797 
9798   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9799   SmallVector<unsigned, 8> MinPartitions(N);
9800   // LastElement[i] is the last element of the partition starting at i.
9801   SmallVector<unsigned, 8> LastElement(N);
9802 
9803   // FIXME: This might not be the best algorithm for finding bit test clusters.
9804 
9805   // Base case: There is only one way to partition Clusters[N-1].
9806   MinPartitions[N - 1] = 1;
9807   LastElement[N - 1] = N - 1;
9808 
9809   // Note: loop indexes are signed to avoid underflow.
9810   for (int64_t i = N - 2; i >= 0; --i) {
9811     // Find optimal partitioning of Clusters[i..N-1].
9812     // Baseline: Put Clusters[i] into a partition on its own.
9813     MinPartitions[i] = MinPartitions[i + 1] + 1;
9814     LastElement[i] = i;
9815 
9816     // Search for a solution that results in fewer partitions.
9817     // Note: the search is limited by BitWidth, reducing time complexity.
9818     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9819       // Try building a partition from Clusters[i..j].
9820 
9821       // Check the range.
9822       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9823                                Clusters[j].High->getValue(), DL))
9824         continue;
9825 
9826       // Check nbr of destinations and cluster types.
9827       // FIXME: This works, but doesn't seem very efficient.
9828       bool RangesOnly = true;
9829       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9830       for (int64_t k = i; k <= j; k++) {
9831         if (Clusters[k].Kind != CC_Range) {
9832           RangesOnly = false;
9833           break;
9834         }
9835         Dests.set(Clusters[k].MBB->getNumber());
9836       }
9837       if (!RangesOnly || Dests.count() > 3)
9838         break;
9839 
9840       // Check if it's a better partition.
9841       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9842       if (NumPartitions < MinPartitions[i]) {
9843         // Found a better partition.
9844         MinPartitions[i] = NumPartitions;
9845         LastElement[i] = j;
9846       }
9847     }
9848   }
9849 
9850   // Iterate over the partitions, replacing with bit-test clusters in-place.
9851   unsigned DstIndex = 0;
9852   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9853     Last = LastElement[First];
9854     assert(First <= Last);
9855     assert(DstIndex <= First);
9856 
9857     CaseCluster BitTestCluster;
9858     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9859       Clusters[DstIndex++] = BitTestCluster;
9860     } else {
9861       size_t NumClusters = Last - First + 1;
9862       std::memmove(&Clusters[DstIndex], &Clusters[First],
9863                    sizeof(Clusters[0]) * NumClusters);
9864       DstIndex += NumClusters;
9865     }
9866   }
9867   Clusters.resize(DstIndex);
9868 }
9869 
9870 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9871                                         MachineBasicBlock *SwitchMBB,
9872                                         MachineBasicBlock *DefaultMBB) {
9873   MachineFunction *CurMF = FuncInfo.MF;
9874   MachineBasicBlock *NextMBB = nullptr;
9875   MachineFunction::iterator BBI(W.MBB);
9876   if (++BBI != FuncInfo.MF->end())
9877     NextMBB = &*BBI;
9878 
9879   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9880 
9881   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9882 
9883   if (Size == 2 && W.MBB == SwitchMBB) {
9884     // If any two of the cases has the same destination, and if one value
9885     // is the same as the other, but has one bit unset that the other has set,
9886     // use bit manipulation to do two compares at once.  For example:
9887     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9888     // TODO: This could be extended to merge any 2 cases in switches with 3
9889     // cases.
9890     // TODO: Handle cases where W.CaseBB != SwitchBB.
9891     CaseCluster &Small = *W.FirstCluster;
9892     CaseCluster &Big = *W.LastCluster;
9893 
9894     if (Small.Low == Small.High && Big.Low == Big.High &&
9895         Small.MBB == Big.MBB) {
9896       const APInt &SmallValue = Small.Low->getValue();
9897       const APInt &BigValue = Big.Low->getValue();
9898 
9899       // Check that there is only one bit different.
9900       APInt CommonBit = BigValue ^ SmallValue;
9901       if (CommonBit.isPowerOf2()) {
9902         SDValue CondLHS = getValue(Cond);
9903         EVT VT = CondLHS.getValueType();
9904         SDLoc DL = getCurSDLoc();
9905 
9906         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9907                                  DAG.getConstant(CommonBit, DL, VT));
9908         SDValue Cond = DAG.getSetCC(
9909             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9910             ISD::SETEQ);
9911 
9912         // Update successor info.
9913         // Both Small and Big will jump to Small.BB, so we sum up the
9914         // probabilities.
9915         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9916         if (BPI)
9917           addSuccessorWithProb(
9918               SwitchMBB, DefaultMBB,
9919               // The default destination is the first successor in IR.
9920               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9921         else
9922           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9923 
9924         // Insert the true branch.
9925         SDValue BrCond =
9926             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9927                         DAG.getBasicBlock(Small.MBB));
9928         // Insert the false branch.
9929         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9930                              DAG.getBasicBlock(DefaultMBB));
9931 
9932         DAG.setRoot(BrCond);
9933         return;
9934       }
9935     }
9936   }
9937 
9938   if (TM.getOptLevel() != CodeGenOpt::None) {
9939     // Here, we order cases by probability so the most likely case will be
9940     // checked first. However, two clusters can have the same probability in
9941     // which case their relative ordering is non-deterministic. So we use Low
9942     // as a tie-breaker as clusters are guaranteed to never overlap.
9943     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9944                [](const CaseCluster &a, const CaseCluster &b) {
9945       return a.Prob != b.Prob ?
9946              a.Prob > b.Prob :
9947              a.Low->getValue().slt(b.Low->getValue());
9948     });
9949 
9950     // Rearrange the case blocks so that the last one falls through if possible
9951     // without changing the order of probabilities.
9952     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9953       --I;
9954       if (I->Prob > W.LastCluster->Prob)
9955         break;
9956       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9957         std::swap(*I, *W.LastCluster);
9958         break;
9959       }
9960     }
9961   }
9962 
9963   // Compute total probability.
9964   BranchProbability DefaultProb = W.DefaultProb;
9965   BranchProbability UnhandledProbs = DefaultProb;
9966   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9967     UnhandledProbs += I->Prob;
9968 
9969   MachineBasicBlock *CurMBB = W.MBB;
9970   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9971     MachineBasicBlock *Fallthrough;
9972     if (I == W.LastCluster) {
9973       // For the last cluster, fall through to the default destination.
9974       Fallthrough = DefaultMBB;
9975     } else {
9976       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9977       CurMF->insert(BBI, Fallthrough);
9978       // Put Cond in a virtual register to make it available from the new blocks.
9979       ExportFromCurrentBlock(Cond);
9980     }
9981     UnhandledProbs -= I->Prob;
9982 
9983     switch (I->Kind) {
9984       case CC_JumpTable: {
9985         // FIXME: Optimize away range check based on pivot comparisons.
9986         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9987         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9988 
9989         // The jump block hasn't been inserted yet; insert it here.
9990         MachineBasicBlock *JumpMBB = JT->MBB;
9991         CurMF->insert(BBI, JumpMBB);
9992 
9993         auto JumpProb = I->Prob;
9994         auto FallthroughProb = UnhandledProbs;
9995 
9996         // If the default statement is a target of the jump table, we evenly
9997         // distribute the default probability to successors of CurMBB. Also
9998         // update the probability on the edge from JumpMBB to Fallthrough.
9999         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10000                                               SE = JumpMBB->succ_end();
10001              SI != SE; ++SI) {
10002           if (*SI == DefaultMBB) {
10003             JumpProb += DefaultProb / 2;
10004             FallthroughProb -= DefaultProb / 2;
10005             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10006             JumpMBB->normalizeSuccProbs();
10007             break;
10008           }
10009         }
10010 
10011         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10012         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10013         CurMBB->normalizeSuccProbs();
10014 
10015         // The jump table header will be inserted in our current block, do the
10016         // range check, and fall through to our fallthrough block.
10017         JTH->HeaderBB = CurMBB;
10018         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10019 
10020         // If we're in the right place, emit the jump table header right now.
10021         if (CurMBB == SwitchMBB) {
10022           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10023           JTH->Emitted = true;
10024         }
10025         break;
10026       }
10027       case CC_BitTests: {
10028         // FIXME: Optimize away range check based on pivot comparisons.
10029         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10030 
10031         // The bit test blocks haven't been inserted yet; insert them here.
10032         for (BitTestCase &BTC : BTB->Cases)
10033           CurMF->insert(BBI, BTC.ThisBB);
10034 
10035         // Fill in fields of the BitTestBlock.
10036         BTB->Parent = CurMBB;
10037         BTB->Default = Fallthrough;
10038 
10039         BTB->DefaultProb = UnhandledProbs;
10040         // If the cases in bit test don't form a contiguous range, we evenly
10041         // distribute the probability on the edge to Fallthrough to two
10042         // successors of CurMBB.
10043         if (!BTB->ContiguousRange) {
10044           BTB->Prob += DefaultProb / 2;
10045           BTB->DefaultProb -= DefaultProb / 2;
10046         }
10047 
10048         // If we're in the right place, emit the bit test header right now.
10049         if (CurMBB == SwitchMBB) {
10050           visitBitTestHeader(*BTB, SwitchMBB);
10051           BTB->Emitted = true;
10052         }
10053         break;
10054       }
10055       case CC_Range: {
10056         const Value *RHS, *LHS, *MHS;
10057         ISD::CondCode CC;
10058         if (I->Low == I->High) {
10059           // Check Cond == I->Low.
10060           CC = ISD::SETEQ;
10061           LHS = Cond;
10062           RHS=I->Low;
10063           MHS = nullptr;
10064         } else {
10065           // Check I->Low <= Cond <= I->High.
10066           CC = ISD::SETLE;
10067           LHS = I->Low;
10068           MHS = Cond;
10069           RHS = I->High;
10070         }
10071 
10072         // The false probability is the sum of all unhandled cases.
10073         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10074                      getCurSDLoc(), I->Prob, UnhandledProbs);
10075 
10076         if (CurMBB == SwitchMBB)
10077           visitSwitchCase(CB, SwitchMBB);
10078         else
10079           SwitchCases.push_back(CB);
10080 
10081         break;
10082       }
10083     }
10084     CurMBB = Fallthrough;
10085   }
10086 }
10087 
10088 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10089                                               CaseClusterIt First,
10090                                               CaseClusterIt Last) {
10091   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10092     if (X.Prob != CC.Prob)
10093       return X.Prob > CC.Prob;
10094 
10095     // Ties are broken by comparing the case value.
10096     return X.Low->getValue().slt(CC.Low->getValue());
10097   });
10098 }
10099 
10100 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10101                                         const SwitchWorkListItem &W,
10102                                         Value *Cond,
10103                                         MachineBasicBlock *SwitchMBB) {
10104   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10105          "Clusters not sorted?");
10106 
10107   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10108 
10109   // Balance the tree based on branch probabilities to create a near-optimal (in
10110   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10111   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10112   CaseClusterIt LastLeft = W.FirstCluster;
10113   CaseClusterIt FirstRight = W.LastCluster;
10114   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10115   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10116 
10117   // Move LastLeft and FirstRight towards each other from opposite directions to
10118   // find a partitioning of the clusters which balances the probability on both
10119   // sides. If LeftProb and RightProb are equal, alternate which side is
10120   // taken to ensure 0-probability nodes are distributed evenly.
10121   unsigned I = 0;
10122   while (LastLeft + 1 < FirstRight) {
10123     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10124       LeftProb += (++LastLeft)->Prob;
10125     else
10126       RightProb += (--FirstRight)->Prob;
10127     I++;
10128   }
10129 
10130   while (true) {
10131     // Our binary search tree differs from a typical BST in that ours can have up
10132     // to three values in each leaf. The pivot selection above doesn't take that
10133     // into account, which means the tree might require more nodes and be less
10134     // efficient. We compensate for this here.
10135 
10136     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10137     unsigned NumRight = W.LastCluster - FirstRight + 1;
10138 
10139     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10140       // If one side has less than 3 clusters, and the other has more than 3,
10141       // consider taking a cluster from the other side.
10142 
10143       if (NumLeft < NumRight) {
10144         // Consider moving the first cluster on the right to the left side.
10145         CaseCluster &CC = *FirstRight;
10146         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10147         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10148         if (LeftSideRank <= RightSideRank) {
10149           // Moving the cluster to the left does not demote it.
10150           ++LastLeft;
10151           ++FirstRight;
10152           continue;
10153         }
10154       } else {
10155         assert(NumRight < NumLeft);
10156         // Consider moving the last element on the left to the right side.
10157         CaseCluster &CC = *LastLeft;
10158         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10159         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10160         if (RightSideRank <= LeftSideRank) {
10161           // Moving the cluster to the right does not demot it.
10162           --LastLeft;
10163           --FirstRight;
10164           continue;
10165         }
10166       }
10167     }
10168     break;
10169   }
10170 
10171   assert(LastLeft + 1 == FirstRight);
10172   assert(LastLeft >= W.FirstCluster);
10173   assert(FirstRight <= W.LastCluster);
10174 
10175   // Use the first element on the right as pivot since we will make less-than
10176   // comparisons against it.
10177   CaseClusterIt PivotCluster = FirstRight;
10178   assert(PivotCluster > W.FirstCluster);
10179   assert(PivotCluster <= W.LastCluster);
10180 
10181   CaseClusterIt FirstLeft = W.FirstCluster;
10182   CaseClusterIt LastRight = W.LastCluster;
10183 
10184   const ConstantInt *Pivot = PivotCluster->Low;
10185 
10186   // New blocks will be inserted immediately after the current one.
10187   MachineFunction::iterator BBI(W.MBB);
10188   ++BBI;
10189 
10190   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10191   // we can branch to its destination directly if it's squeezed exactly in
10192   // between the known lower bound and Pivot - 1.
10193   MachineBasicBlock *LeftMBB;
10194   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10195       FirstLeft->Low == W.GE &&
10196       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10197     LeftMBB = FirstLeft->MBB;
10198   } else {
10199     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10200     FuncInfo.MF->insert(BBI, LeftMBB);
10201     WorkList.push_back(
10202         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10203     // Put Cond in a virtual register to make it available from the new blocks.
10204     ExportFromCurrentBlock(Cond);
10205   }
10206 
10207   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10208   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10209   // directly if RHS.High equals the current upper bound.
10210   MachineBasicBlock *RightMBB;
10211   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10212       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10213     RightMBB = FirstRight->MBB;
10214   } else {
10215     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10216     FuncInfo.MF->insert(BBI, RightMBB);
10217     WorkList.push_back(
10218         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10219     // Put Cond in a virtual register to make it available from the new blocks.
10220     ExportFromCurrentBlock(Cond);
10221   }
10222 
10223   // Create the CaseBlock record that will be used to lower the branch.
10224   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10225                getCurSDLoc(), LeftProb, RightProb);
10226 
10227   if (W.MBB == SwitchMBB)
10228     visitSwitchCase(CB, SwitchMBB);
10229   else
10230     SwitchCases.push_back(CB);
10231 }
10232 
10233 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10234 // from the swith statement.
10235 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10236                                             BranchProbability PeeledCaseProb) {
10237   if (PeeledCaseProb == BranchProbability::getOne())
10238     return BranchProbability::getZero();
10239   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10240 
10241   uint32_t Numerator = CaseProb.getNumerator();
10242   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10243   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10244 }
10245 
10246 // Try to peel the top probability case if it exceeds the threshold.
10247 // Return current MachineBasicBlock for the switch statement if the peeling
10248 // does not occur.
10249 // If the peeling is performed, return the newly created MachineBasicBlock
10250 // for the peeled switch statement. Also update Clusters to remove the peeled
10251 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10252 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10253     const SwitchInst &SI, CaseClusterVector &Clusters,
10254     BranchProbability &PeeledCaseProb) {
10255   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10256   // Don't perform if there is only one cluster or optimizing for size.
10257   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10258       TM.getOptLevel() == CodeGenOpt::None ||
10259       SwitchMBB->getParent()->getFunction().optForMinSize())
10260     return SwitchMBB;
10261 
10262   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10263   unsigned PeeledCaseIndex = 0;
10264   bool SwitchPeeled = false;
10265   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10266     CaseCluster &CC = Clusters[Index];
10267     if (CC.Prob < TopCaseProb)
10268       continue;
10269     TopCaseProb = CC.Prob;
10270     PeeledCaseIndex = Index;
10271     SwitchPeeled = true;
10272   }
10273   if (!SwitchPeeled)
10274     return SwitchMBB;
10275 
10276   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10277                     << TopCaseProb << "\n");
10278 
10279   // Record the MBB for the peeled switch statement.
10280   MachineFunction::iterator BBI(SwitchMBB);
10281   ++BBI;
10282   MachineBasicBlock *PeeledSwitchMBB =
10283       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10284   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10285 
10286   ExportFromCurrentBlock(SI.getCondition());
10287   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10288   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10289                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10290   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10291 
10292   Clusters.erase(PeeledCaseIt);
10293   for (CaseCluster &CC : Clusters) {
10294     LLVM_DEBUG(
10295         dbgs() << "Scale the probablity for one cluster, before scaling: "
10296                << CC.Prob << "\n");
10297     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10298     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10299   }
10300   PeeledCaseProb = TopCaseProb;
10301   return PeeledSwitchMBB;
10302 }
10303 
10304 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10305   // Extract cases from the switch.
10306   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10307   CaseClusterVector Clusters;
10308   Clusters.reserve(SI.getNumCases());
10309   for (auto I : SI.cases()) {
10310     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10311     const ConstantInt *CaseVal = I.getCaseValue();
10312     BranchProbability Prob =
10313         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10314             : BranchProbability(1, SI.getNumCases() + 1);
10315     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10316   }
10317 
10318   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10319 
10320   // Cluster adjacent cases with the same destination. We do this at all
10321   // optimization levels because it's cheap to do and will make codegen faster
10322   // if there are many clusters.
10323   sortAndRangeify(Clusters);
10324 
10325   if (TM.getOptLevel() != CodeGenOpt::None) {
10326     // Replace an unreachable default with the most popular destination.
10327     // FIXME: Exploit unreachable default more aggressively.
10328     bool UnreachableDefault =
10329         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10330     if (UnreachableDefault && !Clusters.empty()) {
10331       DenseMap<const BasicBlock *, unsigned> Popularity;
10332       unsigned MaxPop = 0;
10333       const BasicBlock *MaxBB = nullptr;
10334       for (auto I : SI.cases()) {
10335         const BasicBlock *BB = I.getCaseSuccessor();
10336         if (++Popularity[BB] > MaxPop) {
10337           MaxPop = Popularity[BB];
10338           MaxBB = BB;
10339         }
10340       }
10341       // Set new default.
10342       assert(MaxPop > 0 && MaxBB);
10343       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10344 
10345       // Remove cases that were pointing to the destination that is now the
10346       // default.
10347       CaseClusterVector New;
10348       New.reserve(Clusters.size());
10349       for (CaseCluster &CC : Clusters) {
10350         if (CC.MBB != DefaultMBB)
10351           New.push_back(CC);
10352       }
10353       Clusters = std::move(New);
10354     }
10355   }
10356 
10357   // The branch probablity of the peeled case.
10358   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10359   MachineBasicBlock *PeeledSwitchMBB =
10360       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10361 
10362   // If there is only the default destination, jump there directly.
10363   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10364   if (Clusters.empty()) {
10365     assert(PeeledSwitchMBB == SwitchMBB);
10366     SwitchMBB->addSuccessor(DefaultMBB);
10367     if (DefaultMBB != NextBlock(SwitchMBB)) {
10368       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10369                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10370     }
10371     return;
10372   }
10373 
10374   findJumpTables(Clusters, &SI, DefaultMBB);
10375   findBitTestClusters(Clusters, &SI);
10376 
10377   LLVM_DEBUG({
10378     dbgs() << "Case clusters: ";
10379     for (const CaseCluster &C : Clusters) {
10380       if (C.Kind == CC_JumpTable)
10381         dbgs() << "JT:";
10382       if (C.Kind == CC_BitTests)
10383         dbgs() << "BT:";
10384 
10385       C.Low->getValue().print(dbgs(), true);
10386       if (C.Low != C.High) {
10387         dbgs() << '-';
10388         C.High->getValue().print(dbgs(), true);
10389       }
10390       dbgs() << ' ';
10391     }
10392     dbgs() << '\n';
10393   });
10394 
10395   assert(!Clusters.empty());
10396   SwitchWorkList WorkList;
10397   CaseClusterIt First = Clusters.begin();
10398   CaseClusterIt Last = Clusters.end() - 1;
10399   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10400   // Scale the branchprobability for DefaultMBB if the peel occurs and
10401   // DefaultMBB is not replaced.
10402   if (PeeledCaseProb != BranchProbability::getZero() &&
10403       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10404     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10405   WorkList.push_back(
10406       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10407 
10408   while (!WorkList.empty()) {
10409     SwitchWorkListItem W = WorkList.back();
10410     WorkList.pop_back();
10411     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10412 
10413     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10414         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10415       // For optimized builds, lower large range as a balanced binary tree.
10416       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10417       continue;
10418     }
10419 
10420     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10421   }
10422 }
10423