1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfo.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GCStrategy.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 524 525 bool Smaller = ValueVT.bitsLE(PartVT); 526 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 527 DL, PartVT, Val); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), 554 TLI.getVectorIdxTy())); 555 else 556 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i, TLI.getVectorIdxTy())); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 namespace { 580 /// RegsForValue - This struct represents the registers (physical or virtual) 581 /// that a particular set of values is assigned, and the type information 582 /// about the value. The most common situation is to represent one value at a 583 /// time, but struct or array values are handled element-wise as multiple 584 /// values. The splitting of aggregates is performed recursively, so that we 585 /// never have aggregate-typed registers. The values at this point do not 586 /// necessarily have legal types, so each value may require one or more 587 /// registers of some legal type. 588 /// 589 struct RegsForValue { 590 /// ValueVTs - The value types of the values, which may not be legal, and 591 /// may need be promoted or synthesized from one or more registers. 592 /// 593 SmallVector<EVT, 4> ValueVTs; 594 595 /// RegVTs - The value types of the registers. This is the same size as 596 /// ValueVTs and it records, for each value, what the type of the assigned 597 /// register or registers are. (Individual values are never synthesized 598 /// from more than one type of register.) 599 /// 600 /// With virtual registers, the contents of RegVTs is redundant with TLI's 601 /// getRegisterType member function, however when with physical registers 602 /// it is necessary to have a separate record of the types. 603 /// 604 SmallVector<MVT, 4> RegVTs; 605 606 /// Regs - This list holds the registers assigned to the values. 607 /// Each legal or promoted value requires one register, and each 608 /// expanded value requires multiple registers. 609 /// 610 SmallVector<unsigned, 4> Regs; 611 612 RegsForValue() {} 613 614 RegsForValue(const SmallVector<unsigned, 4> ®s, 615 MVT regvt, EVT valuevt) 616 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 617 618 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 619 unsigned Reg, Type *Ty) { 620 ComputeValueVTs(tli, Ty, ValueVTs); 621 622 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 623 EVT ValueVT = ValueVTs[Value]; 624 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 625 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 626 for (unsigned i = 0; i != NumRegs; ++i) 627 Regs.push_back(Reg + i); 628 RegVTs.push_back(RegisterVT); 629 Reg += NumRegs; 630 } 631 } 632 633 /// append - Add the specified values to this one. 634 void append(const RegsForValue &RHS) { 635 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 636 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 637 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 638 } 639 640 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 641 /// this value and returns the result as a ValueVTs value. This uses 642 /// Chain/Flag as the input and updates them for the output Chain/Flag. 643 /// If the Flag pointer is NULL, no flag is used. 644 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 645 SDLoc dl, 646 SDValue &Chain, SDValue *Flag, 647 const Value *V = nullptr) const; 648 649 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 650 /// specified value into the registers specified by this object. This uses 651 /// Chain/Flag as the input and updates them for the output Chain/Flag. 652 /// If the Flag pointer is NULL, no flag is used. 653 void 654 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 655 SDValue *Flag, const Value *V, 656 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 657 658 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 659 /// operand list. This adds the code marker, matching input operand index 660 /// (if applicable), and includes the number of values added into it. 661 void AddInlineAsmOperands(unsigned Kind, 662 bool HasMatching, unsigned MatchingIdx, 663 SelectionDAG &DAG, 664 std::vector<SDValue> &Ops) const; 665 }; 666 } 667 668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 669 /// this value and returns the result as a ValueVT value. This uses 670 /// Chain/Flag as the input and updates them for the output Chain/Flag. 671 /// If the Flag pointer is NULL, no flag is used. 672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 673 FunctionLoweringInfo &FuncInfo, 674 SDLoc dl, 675 SDValue &Chain, SDValue *Flag, 676 const Value *V) const { 677 // A Value with type {} or [0 x %t] needs no registers. 678 if (ValueVTs.empty()) 679 return SDValue(); 680 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Assemble the legal parts into the final values. 684 SmallVector<SDValue, 4> Values(ValueVTs.size()); 685 SmallVector<SDValue, 8> Parts; 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 // Copy the legal parts from the registers. 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 MVT RegisterVT = RegVTs[Value]; 691 692 Parts.resize(NumRegs); 693 for (unsigned i = 0; i != NumRegs; ++i) { 694 SDValue P; 695 if (!Flag) { 696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 697 } else { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 699 *Flag = P.getValue(2); 700 } 701 702 Chain = P.getValue(1); 703 Parts[i] = P; 704 705 // If the source register was virtual and if we know something about it, 706 // add an assert node. 707 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 708 !RegisterVT.isInteger() || RegisterVT.isVector()) 709 continue; 710 711 const FunctionLoweringInfo::LiveOutInfo *LOI = 712 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 713 if (!LOI) 714 continue; 715 716 unsigned RegSize = RegisterVT.getSizeInBits(); 717 unsigned NumSignBits = LOI->NumSignBits; 718 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 719 720 if (NumZeroBits == RegSize) { 721 // The current value is a zero. 722 // Explicitly express that as it would be easier for 723 // optimizations to kick in. 724 Parts[i] = DAG.getConstant(0, RegisterVT); 725 continue; 726 } 727 728 // FIXME: We capture more information than the dag can represent. For 729 // now, just use the tightest assertzext/assertsext possible. 730 bool isSExt = true; 731 EVT FromVT(MVT::Other); 732 if (NumSignBits == RegSize) 733 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 734 else if (NumZeroBits >= RegSize-1) 735 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 736 else if (NumSignBits > RegSize-8) 737 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 738 else if (NumZeroBits >= RegSize-8) 739 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 740 else if (NumSignBits > RegSize-16) 741 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 742 else if (NumZeroBits >= RegSize-16) 743 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 744 else if (NumSignBits > RegSize-32) 745 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 746 else if (NumZeroBits >= RegSize-32) 747 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 748 else 749 continue; 750 751 // Add an assertion node. 752 assert(FromVT != MVT::Other); 753 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 754 RegisterVT, P, DAG.getValueType(FromVT)); 755 } 756 757 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 758 NumRegs, RegisterVT, ValueVT, V); 759 Part += NumRegs; 760 Parts.clear(); 761 } 762 763 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 764 } 765 766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 767 /// specified value into the registers specified by this object. This uses 768 /// Chain/Flag as the input and updates them for the output Chain/Flag. 769 /// If the Flag pointer is NULL, no flag is used. 770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 771 SDValue &Chain, SDValue *Flag, const Value *V, 772 ISD::NodeType PreferredExtendType) const { 773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 774 ISD::NodeType ExtendKind = PreferredExtendType; 775 776 // Get the list of the values's legal parts. 777 unsigned NumRegs = Regs.size(); 778 SmallVector<SDValue, 8> Parts(NumRegs); 779 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 780 EVT ValueVT = ValueVTs[Value]; 781 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 782 MVT RegisterVT = RegVTs[Value]; 783 784 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 785 ExtendKind = ISD::ZERO_EXTEND; 786 787 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 788 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 789 Part += NumParts; 790 } 791 792 // Copy the parts into the registers. 793 SmallVector<SDValue, 8> Chains(NumRegs); 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 SDValue Part; 796 if (!Flag) { 797 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 798 } else { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 800 *Flag = Part.getValue(1); 801 } 802 803 Chains[i] = Part.getValue(0); 804 } 805 806 if (NumRegs == 1 || Flag) 807 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 808 // flagged to it. That is the CopyToReg nodes and the user are considered 809 // a single scheduling unit. If we create a TokenFactor and return it as 810 // chain, then the TokenFactor is both a predecessor (operand) of the 811 // user as well as a successor (the TF operands are flagged to the user). 812 // c1, f1 = CopyToReg 813 // c2, f2 = CopyToReg 814 // c3 = TokenFactor c1, c2 815 // ... 816 // = op c3, ..., f2 817 Chain = Chains[NumRegs-1]; 818 else 819 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 820 } 821 822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 823 /// operand list. This adds the code marker and includes the number of 824 /// values added into it. 825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 826 unsigned MatchingIdx, 827 SelectionDAG &DAG, 828 std::vector<SDValue> &Ops) const { 829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 830 831 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 832 if (HasMatching) 833 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 834 else if (!Regs.empty() && 835 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 836 // Put the register class of the virtual registers in the flag word. That 837 // way, later passes can recompute register class constraints for inline 838 // assembly as well as normal instructions. 839 // Don't do this for tied operands that can use the regclass information 840 // from the def. 841 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 842 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 843 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 844 } 845 846 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 847 Ops.push_back(Res); 848 849 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 unsigned TheReg = Regs[Reg++]; 856 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 857 858 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 859 // If we clobbered the stack pointer, MFI should know about it. 860 assert(DAG.getMachineFunction().getFrameInfo()-> 861 hasInlineAsmWithSPAdjust()); 862 } 863 } 864 } 865 } 866 867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 868 const TargetLibraryInfo *li) { 869 AA = &aa; 870 GFI = gfi; 871 LibInfo = li; 872 DL = DAG.getSubtarget().getDataLayout(); 873 Context = DAG.getContext(); 874 LPadToCallSiteMap.clear(); 875 } 876 877 /// clear - Clear out the current SelectionDAG and the associated 878 /// state and prepare this SelectionDAGBuilder object to be used 879 /// for a new block. This doesn't clear out information about 880 /// additional blocks that are needed to complete switch lowering 881 /// or PHI node updating; that information is cleared out as it is 882 /// consumed. 883 void SelectionDAGBuilder::clear() { 884 NodeMap.clear(); 885 UnusedArgNodeMap.clear(); 886 PendingLoads.clear(); 887 PendingExports.clear(); 888 CurInst = nullptr; 889 HasTailCall = false; 890 SDNodeOrder = LowestSDNodeOrder; 891 StatepointLowering.clear(); 892 } 893 894 /// clearDanglingDebugInfo - Clear the dangling debug information 895 /// map. This function is separated from the clear so that debug 896 /// information that is dangling in a basic block can be properly 897 /// resolved in a different basic block. This allows the 898 /// SelectionDAG to resolve dangling debug information attached 899 /// to PHI nodes. 900 void SelectionDAGBuilder::clearDanglingDebugInfo() { 901 DanglingDebugInfoMap.clear(); 902 } 903 904 /// getRoot - Return the current virtual root of the Selection DAG, 905 /// flushing any PendingLoad items. This must be done before emitting 906 /// a store or any other node that may need to be ordered after any 907 /// prior load instructions. 908 /// 909 SDValue SelectionDAGBuilder::getRoot() { 910 if (PendingLoads.empty()) 911 return DAG.getRoot(); 912 913 if (PendingLoads.size() == 1) { 914 SDValue Root = PendingLoads[0]; 915 DAG.setRoot(Root); 916 PendingLoads.clear(); 917 return Root; 918 } 919 920 // Otherwise, we have to make a token factor node. 921 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 922 PendingLoads); 923 PendingLoads.clear(); 924 DAG.setRoot(Root); 925 return Root; 926 } 927 928 /// getControlRoot - Similar to getRoot, but instead of flushing all the 929 /// PendingLoad items, flush all the PendingExports items. It is necessary 930 /// to do this before emitting a terminator instruction. 931 /// 932 SDValue SelectionDAGBuilder::getControlRoot() { 933 SDValue Root = DAG.getRoot(); 934 935 if (PendingExports.empty()) 936 return Root; 937 938 // Turn all of the CopyToReg chains into one factored node. 939 if (Root.getOpcode() != ISD::EntryToken) { 940 unsigned i = 0, e = PendingExports.size(); 941 for (; i != e; ++i) { 942 assert(PendingExports[i].getNode()->getNumOperands() > 1); 943 if (PendingExports[i].getNode()->getOperand(0) == Root) 944 break; // Don't add the root if we already indirectly depend on it. 945 } 946 947 if (i == e) 948 PendingExports.push_back(Root); 949 } 950 951 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 952 PendingExports); 953 PendingExports.clear(); 954 DAG.setRoot(Root); 955 return Root; 956 } 957 958 void SelectionDAGBuilder::visit(const Instruction &I) { 959 // Set up outgoing PHI node register values before emitting the terminator. 960 if (isa<TerminatorInst>(&I)) 961 HandlePHINodesInSuccessorBlocks(I.getParent()); 962 963 ++SDNodeOrder; 964 965 CurInst = &I; 966 967 visit(I.getOpcode(), I); 968 969 if (!isa<TerminatorInst>(&I) && !HasTailCall) 970 CopyToExportRegsIfNeeded(&I); 971 972 CurInst = nullptr; 973 } 974 975 void SelectionDAGBuilder::visitPHI(const PHINode &) { 976 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 977 } 978 979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 980 // Note: this doesn't use InstVisitor, because it has to work with 981 // ConstantExpr's in addition to instructions. 982 switch (Opcode) { 983 default: llvm_unreachable("Unknown instruction type encountered!"); 984 // Build the switch statement using the Instruction.def file. 985 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 986 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 987 #include "llvm/IR/Instruction.def" 988 } 989 } 990 991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 992 // generate the debug data structures now that we've seen its definition. 993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 994 SDValue Val) { 995 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 996 if (DDI.getDI()) { 997 const DbgValueInst *DI = DDI.getDI(); 998 DebugLoc dl = DDI.getdl(); 999 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1000 MDNode *Variable = DI->getVariable(); 1001 MDNode *Expr = DI->getExpression(); 1002 uint64_t Offset = DI->getOffset(); 1003 // A dbg.value for an alloca is always indirect. 1004 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1005 SDDbgValue *SDV; 1006 if (Val.getNode()) { 1007 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1008 Val)) { 1009 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1010 IsIndirect, Offset, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getValue - Return an SDValue for the given Value. 1020 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1021 // If we already have an SDValue for this value, use it. It's important 1022 // to do this first, so that we don't create a CopyFromReg if we already 1023 // have a regular SDValue. 1024 SDValue &N = NodeMap[V]; 1025 if (N.getNode()) return N; 1026 1027 // If there's a virtual register allocated and initialized for this 1028 // value, use it. 1029 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1030 if (It != FuncInfo.ValueMap.end()) { 1031 unsigned InReg = It->second; 1032 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1033 V->getType()); 1034 SDValue Chain = DAG.getEntryNode(); 1035 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1036 resolveDanglingDebugInfo(V, N); 1037 return N; 1038 } 1039 1040 // Otherwise create a new SDValue and remember it. 1041 SDValue Val = getValueImpl(V); 1042 NodeMap[V] = Val; 1043 resolveDanglingDebugInfo(V, Val); 1044 return Val; 1045 } 1046 1047 /// getNonRegisterValue - Return an SDValue for the given Value, but 1048 /// don't look in FuncInfo.ValueMap for a virtual register. 1049 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1050 // If we already have an SDValue for this value, use it. 1051 SDValue &N = NodeMap[V]; 1052 if (N.getNode()) return N; 1053 1054 // Otherwise create a new SDValue and remember it. 1055 SDValue Val = getValueImpl(V); 1056 NodeMap[V] = Val; 1057 resolveDanglingDebugInfo(V, Val); 1058 return Val; 1059 } 1060 1061 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1062 /// Create an SDValue for the given value. 1063 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1065 1066 if (const Constant *C = dyn_cast<Constant>(V)) { 1067 EVT VT = TLI.getValueType(V->getType(), true); 1068 1069 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1070 return DAG.getConstant(*CI, VT); 1071 1072 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1073 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1074 1075 if (isa<ConstantPointerNull>(C)) { 1076 unsigned AS = V->getType()->getPointerAddressSpace(); 1077 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1078 } 1079 1080 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1081 return DAG.getConstantFP(*CFP, VT); 1082 1083 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1084 return DAG.getUNDEF(VT); 1085 1086 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1087 visit(CE->getOpcode(), *CE); 1088 SDValue N1 = NodeMap[V]; 1089 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1090 return N1; 1091 } 1092 1093 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1094 SmallVector<SDValue, 4> Constants; 1095 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1096 OI != OE; ++OI) { 1097 SDNode *Val = getValue(*OI).getNode(); 1098 // If the operand is an empty aggregate, there are no values. 1099 if (!Val) continue; 1100 // Add each leaf value from the operand to the Constants list 1101 // to form a flattened list of all the values. 1102 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1103 Constants.push_back(SDValue(Val, i)); 1104 } 1105 1106 return DAG.getMergeValues(Constants, getCurSDLoc()); 1107 } 1108 1109 if (const ConstantDataSequential *CDS = 1110 dyn_cast<ConstantDataSequential>(C)) { 1111 SmallVector<SDValue, 4> Ops; 1112 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1113 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1114 // Add each leaf value from the operand to the Constants list 1115 // to form a flattened list of all the values. 1116 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1117 Ops.push_back(SDValue(Val, i)); 1118 } 1119 1120 if (isa<ArrayType>(CDS->getType())) 1121 return DAG.getMergeValues(Ops, getCurSDLoc()); 1122 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1123 VT, Ops); 1124 } 1125 1126 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1127 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1128 "Unknown struct or array constant!"); 1129 1130 SmallVector<EVT, 4> ValueVTs; 1131 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1132 unsigned NumElts = ValueVTs.size(); 1133 if (NumElts == 0) 1134 return SDValue(); // empty struct 1135 SmallVector<SDValue, 4> Constants(NumElts); 1136 for (unsigned i = 0; i != NumElts; ++i) { 1137 EVT EltVT = ValueVTs[i]; 1138 if (isa<UndefValue>(C)) 1139 Constants[i] = DAG.getUNDEF(EltVT); 1140 else if (EltVT.isFloatingPoint()) 1141 Constants[i] = DAG.getConstantFP(0, EltVT); 1142 else 1143 Constants[i] = DAG.getConstant(0, EltVT); 1144 } 1145 1146 return DAG.getMergeValues(Constants, getCurSDLoc()); 1147 } 1148 1149 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1150 return DAG.getBlockAddress(BA, VT); 1151 1152 VectorType *VecTy = cast<VectorType>(V->getType()); 1153 unsigned NumElements = VecTy->getNumElements(); 1154 1155 // Now that we know the number and type of the elements, get that number of 1156 // elements into the Ops array based on what kind of constant it is. 1157 SmallVector<SDValue, 16> Ops; 1158 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1159 for (unsigned i = 0; i != NumElements; ++i) 1160 Ops.push_back(getValue(CV->getOperand(i))); 1161 } else { 1162 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1163 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1164 1165 SDValue Op; 1166 if (EltVT.isFloatingPoint()) 1167 Op = DAG.getConstantFP(0, EltVT); 1168 else 1169 Op = DAG.getConstant(0, EltVT); 1170 Ops.assign(NumElements, Op); 1171 } 1172 1173 // Create a BUILD_VECTOR node. 1174 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1175 } 1176 1177 // If this is a static alloca, generate it as the frameindex instead of 1178 // computation. 1179 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1180 DenseMap<const AllocaInst*, int>::iterator SI = 1181 FuncInfo.StaticAllocaMap.find(AI); 1182 if (SI != FuncInfo.StaticAllocaMap.end()) 1183 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1184 } 1185 1186 // If this is an instruction which fast-isel has deferred, select it now. 1187 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1188 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1189 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1190 SDValue Chain = DAG.getEntryNode(); 1191 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1192 } 1193 1194 llvm_unreachable("Can't get register for value!"); 1195 } 1196 1197 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1198 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1199 SDValue Chain = getControlRoot(); 1200 SmallVector<ISD::OutputArg, 8> Outs; 1201 SmallVector<SDValue, 8> OutVals; 1202 1203 if (!FuncInfo.CanLowerReturn) { 1204 unsigned DemoteReg = FuncInfo.DemoteRegister; 1205 const Function *F = I.getParent()->getParent(); 1206 1207 // Emit a store of the return value through the virtual register. 1208 // Leave Outs empty so that LowerReturn won't try to load return 1209 // registers the usual way. 1210 SmallVector<EVT, 1> PtrValueVTs; 1211 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1212 PtrValueVTs); 1213 1214 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1215 SDValue RetOp = getValue(I.getOperand(0)); 1216 1217 SmallVector<EVT, 4> ValueVTs; 1218 SmallVector<uint64_t, 4> Offsets; 1219 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1220 unsigned NumValues = ValueVTs.size(); 1221 1222 SmallVector<SDValue, 4> Chains(NumValues); 1223 for (unsigned i = 0; i != NumValues; ++i) { 1224 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1225 RetPtr.getValueType(), RetPtr, 1226 DAG.getIntPtrConstant(Offsets[i])); 1227 Chains[i] = 1228 DAG.getStore(Chain, getCurSDLoc(), 1229 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1230 // FIXME: better loc info would be nice. 1231 Add, MachinePointerInfo(), false, false, 0); 1232 } 1233 1234 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1235 MVT::Other, Chains); 1236 } else if (I.getNumOperands() != 0) { 1237 SmallVector<EVT, 4> ValueVTs; 1238 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1239 unsigned NumValues = ValueVTs.size(); 1240 if (NumValues) { 1241 SDValue RetOp = getValue(I.getOperand(0)); 1242 1243 const Function *F = I.getParent()->getParent(); 1244 1245 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1246 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::SExt)) 1248 ExtendKind = ISD::SIGN_EXTEND; 1249 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1250 Attribute::ZExt)) 1251 ExtendKind = ISD::ZERO_EXTEND; 1252 1253 LLVMContext &Context = F->getContext(); 1254 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1255 Attribute::InReg); 1256 1257 for (unsigned j = 0; j != NumValues; ++j) { 1258 EVT VT = ValueVTs[j]; 1259 1260 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1261 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1262 1263 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1264 MVT PartVT = TLI.getRegisterType(Context, VT); 1265 SmallVector<SDValue, 4> Parts(NumParts); 1266 getCopyToParts(DAG, getCurSDLoc(), 1267 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1268 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1269 1270 // 'inreg' on function refers to return value 1271 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1272 if (RetInReg) 1273 Flags.setInReg(); 1274 1275 // Propagate extension type if any 1276 if (ExtendKind == ISD::SIGN_EXTEND) 1277 Flags.setSExt(); 1278 else if (ExtendKind == ISD::ZERO_EXTEND) 1279 Flags.setZExt(); 1280 1281 for (unsigned i = 0; i < NumParts; ++i) { 1282 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1283 VT, /*isfixed=*/true, 0, 0)); 1284 OutVals.push_back(Parts[i]); 1285 } 1286 } 1287 } 1288 } 1289 1290 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1291 CallingConv::ID CallConv = 1292 DAG.getMachineFunction().getFunction()->getCallingConv(); 1293 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1294 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1295 1296 // Verify that the target's LowerReturn behaved as expected. 1297 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1298 "LowerReturn didn't return a valid chain!"); 1299 1300 // Update the DAG with the new chain value resulting from return lowering. 1301 DAG.setRoot(Chain); 1302 } 1303 1304 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1305 /// created for it, emit nodes to copy the value into the virtual 1306 /// registers. 1307 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1308 // Skip empty types 1309 if (V->getType()->isEmptyTy()) 1310 return; 1311 1312 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1313 if (VMI != FuncInfo.ValueMap.end()) { 1314 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1315 CopyValueToVirtualRegister(V, VMI->second); 1316 } 1317 } 1318 1319 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1320 /// the current basic block, add it to ValueMap now so that we'll get a 1321 /// CopyTo/FromReg. 1322 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1323 // No need to export constants. 1324 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1325 1326 // Already exported? 1327 if (FuncInfo.isExportedInst(V)) return; 1328 1329 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1330 CopyValueToVirtualRegister(V, Reg); 1331 } 1332 1333 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1334 const BasicBlock *FromBB) { 1335 // The operands of the setcc have to be in this block. We don't know 1336 // how to export them from some other block. 1337 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1338 // Can export from current BB. 1339 if (VI->getParent() == FromBB) 1340 return true; 1341 1342 // Is already exported, noop. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // If this is an argument, we can export it if the BB is the entry block or 1347 // if it is already exported. 1348 if (isa<Argument>(V)) { 1349 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1350 return true; 1351 1352 // Otherwise, can only export this if it is already exported. 1353 return FuncInfo.isExportedInst(V); 1354 } 1355 1356 // Otherwise, constants can always be exported. 1357 return true; 1358 } 1359 1360 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1361 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1362 const MachineBasicBlock *Dst) const { 1363 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1364 if (!BPI) 1365 return 0; 1366 const BasicBlock *SrcBB = Src->getBasicBlock(); 1367 const BasicBlock *DstBB = Dst->getBasicBlock(); 1368 return BPI->getEdgeWeight(SrcBB, DstBB); 1369 } 1370 1371 void SelectionDAGBuilder:: 1372 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1373 uint32_t Weight /* = 0 */) { 1374 if (!Weight) 1375 Weight = getEdgeWeight(Src, Dst); 1376 Src->addSuccessor(Dst, Weight); 1377 } 1378 1379 1380 static bool InBlock(const Value *V, const BasicBlock *BB) { 1381 if (const Instruction *I = dyn_cast<Instruction>(V)) 1382 return I->getParent() == BB; 1383 return true; 1384 } 1385 1386 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1387 /// This function emits a branch and is used at the leaves of an OR or an 1388 /// AND operator tree. 1389 /// 1390 void 1391 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1392 MachineBasicBlock *TBB, 1393 MachineBasicBlock *FBB, 1394 MachineBasicBlock *CurBB, 1395 MachineBasicBlock *SwitchBB, 1396 uint32_t TWeight, 1397 uint32_t FWeight) { 1398 const BasicBlock *BB = CurBB->getBasicBlock(); 1399 1400 // If the leaf of the tree is a comparison, merge the condition into 1401 // the caseblock. 1402 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1403 // The operands of the cmp have to be in this block. We don't know 1404 // how to export them from some other block. If this is the first block 1405 // of the sequence, no exporting is needed. 1406 if (CurBB == SwitchBB || 1407 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1408 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1409 ISD::CondCode Condition; 1410 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1411 Condition = getICmpCondCode(IC->getPredicate()); 1412 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1413 Condition = getFCmpCondCode(FC->getPredicate()); 1414 if (TM.Options.NoNaNsFPMath) 1415 Condition = getFCmpCodeWithoutNaN(Condition); 1416 } else { 1417 (void)Condition; // silence warning. 1418 llvm_unreachable("Unknown compare instruction"); 1419 } 1420 1421 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1422 TBB, FBB, CurBB, TWeight, FWeight); 1423 SwitchCases.push_back(CB); 1424 return; 1425 } 1426 } 1427 1428 // Create a CaseBlock record representing this branch. 1429 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1430 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1431 SwitchCases.push_back(CB); 1432 } 1433 1434 /// Scale down both weights to fit into uint32_t. 1435 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1436 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1437 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1438 NewTrue = NewTrue / Scale; 1439 NewFalse = NewFalse / Scale; 1440 } 1441 1442 /// FindMergedConditions - If Cond is an expression like 1443 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1444 MachineBasicBlock *TBB, 1445 MachineBasicBlock *FBB, 1446 MachineBasicBlock *CurBB, 1447 MachineBasicBlock *SwitchBB, 1448 unsigned Opc, uint32_t TWeight, 1449 uint32_t FWeight) { 1450 // If this node is not part of the or/and tree, emit it as a branch. 1451 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1452 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1453 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1454 BOp->getParent() != CurBB->getBasicBlock() || 1455 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1456 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1457 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1458 TWeight, FWeight); 1459 return; 1460 } 1461 1462 // Create TmpBB after CurBB. 1463 MachineFunction::iterator BBI = CurBB; 1464 MachineFunction &MF = DAG.getMachineFunction(); 1465 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1466 CurBB->getParent()->insert(++BBI, TmpBB); 1467 1468 if (Opc == Instruction::Or) { 1469 // Codegen X | Y as: 1470 // BB1: 1471 // jmp_if_X TBB 1472 // jmp TmpBB 1473 // TmpBB: 1474 // jmp_if_Y TBB 1475 // jmp FBB 1476 // 1477 1478 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1479 // The requirement is that 1480 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1481 // = TrueProb for orignal BB. 1482 // Assuming the orignal weights are A and B, one choice is to set BB1's 1483 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1484 // assumes that 1485 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1486 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1487 // TmpBB, but the math is more complicated. 1488 1489 uint64_t NewTrueWeight = TWeight; 1490 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1491 ScaleWeights(NewTrueWeight, NewFalseWeight); 1492 // Emit the LHS condition. 1493 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1494 NewTrueWeight, NewFalseWeight); 1495 1496 NewTrueWeight = TWeight; 1497 NewFalseWeight = 2 * (uint64_t)FWeight; 1498 ScaleWeights(NewTrueWeight, NewFalseWeight); 1499 // Emit the RHS condition into TmpBB. 1500 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1501 NewTrueWeight, NewFalseWeight); 1502 } else { 1503 assert(Opc == Instruction::And && "Unknown merge op!"); 1504 // Codegen X & Y as: 1505 // BB1: 1506 // jmp_if_X TmpBB 1507 // jmp FBB 1508 // TmpBB: 1509 // jmp_if_Y TBB 1510 // jmp FBB 1511 // 1512 // This requires creation of TmpBB after CurBB. 1513 1514 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1515 // The requirement is that 1516 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1517 // = FalseProb for orignal BB. 1518 // Assuming the orignal weights are A and B, one choice is to set BB1's 1519 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1520 // assumes that 1521 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1522 1523 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1524 uint64_t NewFalseWeight = FWeight; 1525 ScaleWeights(NewTrueWeight, NewFalseWeight); 1526 // Emit the LHS condition. 1527 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1528 NewTrueWeight, NewFalseWeight); 1529 1530 NewTrueWeight = 2 * (uint64_t)TWeight; 1531 NewFalseWeight = FWeight; 1532 ScaleWeights(NewTrueWeight, NewFalseWeight); 1533 // Emit the RHS condition into TmpBB. 1534 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1535 NewTrueWeight, NewFalseWeight); 1536 } 1537 } 1538 1539 /// If the set of cases should be emitted as a series of branches, return true. 1540 /// If we should emit this as a bunch of and/or'd together conditions, return 1541 /// false. 1542 bool 1543 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1544 if (Cases.size() != 2) return true; 1545 1546 // If this is two comparisons of the same values or'd or and'd together, they 1547 // will get folded into a single comparison, so don't emit two blocks. 1548 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1549 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1550 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1551 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1552 return false; 1553 } 1554 1555 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1556 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1557 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1558 Cases[0].CC == Cases[1].CC && 1559 isa<Constant>(Cases[0].CmpRHS) && 1560 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1561 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1562 return false; 1563 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1564 return false; 1565 } 1566 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1571 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1572 1573 // Update machine-CFG edges. 1574 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1575 1576 // Figure out which block is immediately after the current one. 1577 MachineBasicBlock *NextBlock = nullptr; 1578 MachineFunction::iterator BBI = BrMBB; 1579 if (++BBI != FuncInfo.MF->end()) 1580 NextBlock = BBI; 1581 1582 if (I.isUnconditional()) { 1583 // Update machine-CFG edges. 1584 BrMBB->addSuccessor(Succ0MBB); 1585 1586 // If this is not a fall-through branch or optimizations are switched off, 1587 // emit the branch. 1588 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1589 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1590 MVT::Other, getControlRoot(), 1591 DAG.getBasicBlock(Succ0MBB))); 1592 1593 return; 1594 } 1595 1596 // If this condition is one of the special cases we handle, do special stuff 1597 // now. 1598 const Value *CondVal = I.getCondition(); 1599 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1600 1601 // If this is a series of conditions that are or'd or and'd together, emit 1602 // this as a sequence of branches instead of setcc's with and/or operations. 1603 // As long as jumps are not expensive, this should improve performance. 1604 // For example, instead of something like: 1605 // cmp A, B 1606 // C = seteq 1607 // cmp D, E 1608 // F = setle 1609 // or C, F 1610 // jnz foo 1611 // Emit: 1612 // cmp A, B 1613 // je foo 1614 // cmp D, E 1615 // jle foo 1616 // 1617 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1618 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1619 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1620 BOp->getOpcode() == Instruction::Or)) { 1621 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1622 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1623 getEdgeWeight(BrMBB, Succ1MBB)); 1624 // If the compares in later blocks need to use values not currently 1625 // exported from this block, export them now. This block should always 1626 // be the first entry. 1627 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1628 1629 // Allow some cases to be rejected. 1630 if (ShouldEmitAsBranches(SwitchCases)) { 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1632 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1633 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1634 } 1635 1636 // Emit the branch for this block. 1637 visitSwitchCase(SwitchCases[0], BrMBB); 1638 SwitchCases.erase(SwitchCases.begin()); 1639 return; 1640 } 1641 1642 // Okay, we decided not to do this, remove any inserted MBB's and clear 1643 // SwitchCases. 1644 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1645 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1646 1647 SwitchCases.clear(); 1648 } 1649 } 1650 1651 // Create a CaseBlock record representing this branch. 1652 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1653 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1654 1655 // Use visitSwitchCase to actually insert the fast branch sequence for this 1656 // cond branch. 1657 visitSwitchCase(CB, BrMBB); 1658 } 1659 1660 /// visitSwitchCase - Emits the necessary code to represent a single node in 1661 /// the binary search tree resulting from lowering a switch instruction. 1662 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1663 MachineBasicBlock *SwitchBB) { 1664 SDValue Cond; 1665 SDValue CondLHS = getValue(CB.CmpLHS); 1666 SDLoc dl = getCurSDLoc(); 1667 1668 // Build the setcc now. 1669 if (!CB.CmpMHS) { 1670 // Fold "(X == true)" to X and "(X == false)" to !X to 1671 // handle common cases produced by branch lowering. 1672 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1673 CB.CC == ISD::SETEQ) 1674 Cond = CondLHS; 1675 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1676 CB.CC == ISD::SETEQ) { 1677 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1678 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1679 } else 1680 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1681 } else { 1682 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1683 1684 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1685 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1686 1687 SDValue CmpOp = getValue(CB.CmpMHS); 1688 EVT VT = CmpOp.getValueType(); 1689 1690 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1691 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1692 ISD::SETLE); 1693 } else { 1694 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1695 VT, CmpOp, DAG.getConstant(Low, VT)); 1696 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1697 DAG.getConstant(High-Low, VT), ISD::SETULE); 1698 } 1699 } 1700 1701 // Update successor info 1702 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1703 // TrueBB and FalseBB are always different unless the incoming IR is 1704 // degenerate. This only happens when running llc on weird IR. 1705 if (CB.TrueBB != CB.FalseBB) 1706 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1707 1708 // Set NextBlock to be the MBB immediately after the current one, if any. 1709 // This is used to avoid emitting unnecessary branches to the next block. 1710 MachineBasicBlock *NextBlock = nullptr; 1711 MachineFunction::iterator BBI = SwitchBB; 1712 if (++BBI != FuncInfo.MF->end()) 1713 NextBlock = BBI; 1714 1715 // If the lhs block is the next block, invert the condition so that we can 1716 // fall through to the lhs instead of the rhs block. 1717 if (CB.TrueBB == NextBlock) { 1718 std::swap(CB.TrueBB, CB.FalseBB); 1719 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1720 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1721 } 1722 1723 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1724 MVT::Other, getControlRoot(), Cond, 1725 DAG.getBasicBlock(CB.TrueBB)); 1726 1727 // Insert the false branch. Do this even if it's a fall through branch, 1728 // this makes it easier to do DAG optimizations which require inverting 1729 // the branch condition. 1730 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1731 DAG.getBasicBlock(CB.FalseBB)); 1732 1733 DAG.setRoot(BrCond); 1734 } 1735 1736 /// visitJumpTable - Emit JumpTable node in the current MBB 1737 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1738 // Emit the code for the jump table 1739 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1740 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1741 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1742 JT.Reg, PTy); 1743 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1744 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1745 MVT::Other, Index.getValue(1), 1746 Table, Index); 1747 DAG.setRoot(BrJumpTable); 1748 } 1749 1750 /// visitJumpTableHeader - This function emits necessary code to produce index 1751 /// in the JumpTable from switch case. 1752 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1753 JumpTableHeader &JTH, 1754 MachineBasicBlock *SwitchBB) { 1755 // Subtract the lowest switch case value from the value being switched on and 1756 // conditional branch to default mbb if the result is greater than the 1757 // difference between smallest and largest cases. 1758 SDValue SwitchOp = getValue(JTH.SValue); 1759 EVT VT = SwitchOp.getValueType(); 1760 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1761 DAG.getConstant(JTH.First, VT)); 1762 1763 // The SDNode we just created, which holds the value being switched on minus 1764 // the smallest case value, needs to be copied to a virtual register so it 1765 // can be used as an index into the jump table in a subsequent basic block. 1766 // This value may be smaller or larger than the target's pointer type, and 1767 // therefore require extension or truncating. 1768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1769 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1770 1771 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1772 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1773 JumpTableReg, SwitchOp); 1774 JT.Reg = JumpTableReg; 1775 1776 // Emit the range check for the jump table, and branch to the default block 1777 // for the switch statement if the value being switched on exceeds the largest 1778 // case in the switch. 1779 SDValue CMP = 1780 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1781 Sub.getValueType()), 1782 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1783 1784 // Set NextBlock to be the MBB immediately after the current one, if any. 1785 // This is used to avoid emitting unnecessary branches to the next block. 1786 MachineBasicBlock *NextBlock = nullptr; 1787 MachineFunction::iterator BBI = SwitchBB; 1788 1789 if (++BBI != FuncInfo.MF->end()) 1790 NextBlock = BBI; 1791 1792 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1793 MVT::Other, CopyTo, CMP, 1794 DAG.getBasicBlock(JT.Default)); 1795 1796 if (JT.MBB != NextBlock) 1797 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1798 DAG.getBasicBlock(JT.MBB)); 1799 1800 DAG.setRoot(BrCond); 1801 } 1802 1803 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1804 /// tail spliced into a stack protector check success bb. 1805 /// 1806 /// For a high level explanation of how this fits into the stack protector 1807 /// generation see the comment on the declaration of class 1808 /// StackProtectorDescriptor. 1809 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1810 MachineBasicBlock *ParentBB) { 1811 1812 // First create the loads to the guard/stack slot for the comparison. 1813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1814 EVT PtrTy = TLI.getPointerTy(); 1815 1816 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1817 int FI = MFI->getStackProtectorIndex(); 1818 1819 const Value *IRGuard = SPD.getGuard(); 1820 SDValue GuardPtr = getValue(IRGuard); 1821 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1822 1823 unsigned Align = 1824 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1825 1826 SDValue Guard; 1827 1828 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1829 // guard value from the virtual register holding the value. Otherwise, emit a 1830 // volatile load to retrieve the stack guard value. 1831 unsigned GuardReg = SPD.getGuardReg(); 1832 1833 if (GuardReg && TLI.useLoadStackGuardNode()) 1834 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1835 PtrTy); 1836 else 1837 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1838 GuardPtr, MachinePointerInfo(IRGuard, 0), 1839 true, false, false, Align); 1840 1841 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1842 StackSlotPtr, 1843 MachinePointerInfo::getFixedStack(FI), 1844 true, false, false, Align); 1845 1846 // Perform the comparison via a subtract/getsetcc. 1847 EVT VT = Guard.getValueType(); 1848 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1849 1850 SDValue Cmp = 1851 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1852 Sub.getValueType()), 1853 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1854 1855 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1856 // branch to failure MBB. 1857 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1858 MVT::Other, StackSlot.getOperand(0), 1859 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1860 // Otherwise branch to success MBB. 1861 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1862 MVT::Other, BrCond, 1863 DAG.getBasicBlock(SPD.getSuccessMBB())); 1864 1865 DAG.setRoot(Br); 1866 } 1867 1868 /// Codegen the failure basic block for a stack protector check. 1869 /// 1870 /// A failure stack protector machine basic block consists simply of a call to 1871 /// __stack_chk_fail(). 1872 /// 1873 /// For a high level explanation of how this fits into the stack protector 1874 /// generation see the comment on the declaration of class 1875 /// StackProtectorDescriptor. 1876 void 1877 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1879 SDValue Chain = 1880 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1881 nullptr, 0, false, getCurSDLoc(), false, false).second; 1882 DAG.setRoot(Chain); 1883 } 1884 1885 /// visitBitTestHeader - This function emits necessary code to produce value 1886 /// suitable for "bit tests" 1887 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1888 MachineBasicBlock *SwitchBB) { 1889 // Subtract the minimum value 1890 SDValue SwitchOp = getValue(B.SValue); 1891 EVT VT = SwitchOp.getValueType(); 1892 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1893 DAG.getConstant(B.First, VT)); 1894 1895 // Check range 1896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1897 SDValue RangeCmp = 1898 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1899 Sub.getValueType()), 1900 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1901 1902 // Determine the type of the test operands. 1903 bool UsePtrType = false; 1904 if (!TLI.isTypeLegal(VT)) 1905 UsePtrType = true; 1906 else { 1907 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1908 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1909 // Switch table case range are encoded into series of masks. 1910 // Just use pointer type, it's guaranteed to fit. 1911 UsePtrType = true; 1912 break; 1913 } 1914 } 1915 if (UsePtrType) { 1916 VT = TLI.getPointerTy(); 1917 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1918 } 1919 1920 B.RegVT = VT.getSimpleVT(); 1921 B.Reg = FuncInfo.CreateReg(B.RegVT); 1922 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1923 B.Reg, Sub); 1924 1925 // Set NextBlock to be the MBB immediately after the current one, if any. 1926 // This is used to avoid emitting unnecessary branches to the next block. 1927 MachineBasicBlock *NextBlock = nullptr; 1928 MachineFunction::iterator BBI = SwitchBB; 1929 if (++BBI != FuncInfo.MF->end()) 1930 NextBlock = BBI; 1931 1932 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1933 1934 addSuccessorWithWeight(SwitchBB, B.Default); 1935 addSuccessorWithWeight(SwitchBB, MBB); 1936 1937 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1938 MVT::Other, CopyTo, RangeCmp, 1939 DAG.getBasicBlock(B.Default)); 1940 1941 if (MBB != NextBlock) 1942 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1943 DAG.getBasicBlock(MBB)); 1944 1945 DAG.setRoot(BrRange); 1946 } 1947 1948 /// visitBitTestCase - this function produces one "bit test" 1949 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1950 MachineBasicBlock* NextMBB, 1951 uint32_t BranchWeightToNext, 1952 unsigned Reg, 1953 BitTestCase &B, 1954 MachineBasicBlock *SwitchBB) { 1955 MVT VT = BB.RegVT; 1956 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1957 Reg, VT); 1958 SDValue Cmp; 1959 unsigned PopCount = CountPopulation_64(B.Mask); 1960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1961 if (PopCount == 1) { 1962 // Testing for a single bit; just compare the shift count with what it 1963 // would need to be to shift a 1 bit in that position. 1964 Cmp = DAG.getSetCC( 1965 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1966 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1967 } else if (PopCount == BB.Range) { 1968 // There is only one zero bit in the range, test for it directly. 1969 Cmp = DAG.getSetCC( 1970 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1971 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1972 } else { 1973 // Make desired shift 1974 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1975 DAG.getConstant(1, VT), ShiftOp); 1976 1977 // Emit bit tests and jumps 1978 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1979 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1980 Cmp = DAG.getSetCC(getCurSDLoc(), 1981 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1982 DAG.getConstant(0, VT), ISD::SETNE); 1983 } 1984 1985 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1986 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1987 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1988 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1989 1990 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1991 MVT::Other, getControlRoot(), 1992 Cmp, DAG.getBasicBlock(B.TargetBB)); 1993 1994 // Set NextBlock to be the MBB immediately after the current one, if any. 1995 // This is used to avoid emitting unnecessary branches to the next block. 1996 MachineBasicBlock *NextBlock = nullptr; 1997 MachineFunction::iterator BBI = SwitchBB; 1998 if (++BBI != FuncInfo.MF->end()) 1999 NextBlock = BBI; 2000 2001 if (NextMBB != NextBlock) 2002 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 2003 DAG.getBasicBlock(NextMBB)); 2004 2005 DAG.setRoot(BrAnd); 2006 } 2007 2008 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2009 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2010 2011 // Retrieve successors. 2012 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2013 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2014 2015 const Value *Callee(I.getCalledValue()); 2016 const Function *Fn = dyn_cast<Function>(Callee); 2017 if (isa<InlineAsm>(Callee)) 2018 visitInlineAsm(&I); 2019 else if (Fn && Fn->isIntrinsic()) { 2020 switch (Fn->getIntrinsicID()) { 2021 default: 2022 llvm_unreachable("Cannot invoke this intrinsic"); 2023 case Intrinsic::donothing: 2024 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2025 break; 2026 case Intrinsic::experimental_patchpoint_void: 2027 case Intrinsic::experimental_patchpoint_i64: 2028 visitPatchpoint(&I, LandingPad); 2029 break; 2030 } 2031 } else 2032 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2033 2034 // If the value of the invoke is used outside of its defining block, make it 2035 // available as a virtual register. 2036 CopyToExportRegsIfNeeded(&I); 2037 2038 // Update successor info 2039 addSuccessorWithWeight(InvokeMBB, Return); 2040 addSuccessorWithWeight(InvokeMBB, LandingPad); 2041 2042 // Drop into normal successor. 2043 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2044 MVT::Other, getControlRoot(), 2045 DAG.getBasicBlock(Return))); 2046 } 2047 2048 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2049 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2050 } 2051 2052 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2053 assert(FuncInfo.MBB->isLandingPad() && 2054 "Call to landingpad not in landing pad!"); 2055 2056 MachineBasicBlock *MBB = FuncInfo.MBB; 2057 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2058 AddLandingPadInfo(LP, MMI, MBB); 2059 2060 // If there aren't registers to copy the values into (e.g., during SjLj 2061 // exceptions), then don't bother to create these DAG nodes. 2062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2063 if (TLI.getExceptionPointerRegister() == 0 && 2064 TLI.getExceptionSelectorRegister() == 0) 2065 return; 2066 2067 SmallVector<EVT, 2> ValueVTs; 2068 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2069 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2070 2071 // Get the two live-in registers as SDValues. The physregs have already been 2072 // copied into virtual registers. 2073 SDValue Ops[2]; 2074 if (FuncInfo.ExceptionPointerVirtReg) { 2075 Ops[0] = DAG.getZExtOrTrunc( 2076 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2077 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2078 getCurSDLoc(), ValueVTs[0]); 2079 } else { 2080 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2081 } 2082 Ops[1] = DAG.getZExtOrTrunc( 2083 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2084 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2085 getCurSDLoc(), ValueVTs[1]); 2086 2087 // Merge into one. 2088 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2089 DAG.getVTList(ValueVTs), Ops); 2090 setValue(&LP, Res); 2091 } 2092 2093 unsigned 2094 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2095 MachineBasicBlock *LPadBB) { 2096 SDValue Chain = getControlRoot(); 2097 2098 // Get the typeid that we will dispatch on later. 2099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2100 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2101 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2102 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2103 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2104 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2105 2106 // Branch to the main landing pad block. 2107 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2108 ClauseMBB->addSuccessor(LPadBB); 2109 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2110 DAG.getBasicBlock(LPadBB))); 2111 return VReg; 2112 } 2113 2114 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2115 /// small case ranges). 2116 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2117 CaseRecVector& WorkList, 2118 const Value* SV, 2119 MachineBasicBlock *Default, 2120 MachineBasicBlock *SwitchBB) { 2121 // Size is the number of Cases represented by this range. 2122 size_t Size = CR.Range.second - CR.Range.first; 2123 if (Size > 3) 2124 return false; 2125 2126 // Get the MachineFunction which holds the current MBB. This is used when 2127 // inserting any additional MBBs necessary to represent the switch. 2128 MachineFunction *CurMF = FuncInfo.MF; 2129 2130 // Figure out which block is immediately after the current one. 2131 MachineBasicBlock *NextBlock = nullptr; 2132 MachineFunction::iterator BBI = CR.CaseBB; 2133 2134 if (++BBI != FuncInfo.MF->end()) 2135 NextBlock = BBI; 2136 2137 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2138 // If any two of the cases has the same destination, and if one value 2139 // is the same as the other, but has one bit unset that the other has set, 2140 // use bit manipulation to do two compares at once. For example: 2141 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2142 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2143 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2144 if (Size == 2 && CR.CaseBB == SwitchBB) { 2145 Case &Small = *CR.Range.first; 2146 Case &Big = *(CR.Range.second-1); 2147 2148 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2149 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2150 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2151 2152 // Check that there is only one bit different. 2153 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2154 (SmallValue | BigValue) == BigValue) { 2155 // Isolate the common bit. 2156 APInt CommonBit = BigValue & ~SmallValue; 2157 assert((SmallValue | CommonBit) == BigValue && 2158 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2159 2160 SDValue CondLHS = getValue(SV); 2161 EVT VT = CondLHS.getValueType(); 2162 SDLoc DL = getCurSDLoc(); 2163 2164 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2165 DAG.getConstant(CommonBit, VT)); 2166 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2167 Or, DAG.getConstant(BigValue, VT), 2168 ISD::SETEQ); 2169 2170 // Update successor info. 2171 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2172 addSuccessorWithWeight(SwitchBB, Small.BB, 2173 Small.ExtraWeight + Big.ExtraWeight); 2174 addSuccessorWithWeight(SwitchBB, Default, 2175 // The default destination is the first successor in IR. 2176 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2177 2178 // Insert the true branch. 2179 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2180 getControlRoot(), Cond, 2181 DAG.getBasicBlock(Small.BB)); 2182 2183 // Insert the false branch. 2184 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2185 DAG.getBasicBlock(Default)); 2186 2187 DAG.setRoot(BrCond); 2188 return true; 2189 } 2190 } 2191 } 2192 2193 // Order cases by weight so the most likely case will be checked first. 2194 uint32_t UnhandledWeights = 0; 2195 if (BPI) { 2196 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2197 uint32_t IWeight = I->ExtraWeight; 2198 UnhandledWeights += IWeight; 2199 for (CaseItr J = CR.Range.first; J < I; ++J) { 2200 uint32_t JWeight = J->ExtraWeight; 2201 if (IWeight > JWeight) 2202 std::swap(*I, *J); 2203 } 2204 } 2205 } 2206 // Rearrange the case blocks so that the last one falls through if possible. 2207 Case &BackCase = *(CR.Range.second-1); 2208 if (Size > 1 && 2209 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2210 // The last case block won't fall through into 'NextBlock' if we emit the 2211 // branches in this order. See if rearranging a case value would help. 2212 // We start at the bottom as it's the case with the least weight. 2213 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2214 if (I->BB == NextBlock) { 2215 std::swap(*I, BackCase); 2216 break; 2217 } 2218 } 2219 2220 // Create a CaseBlock record representing a conditional branch to 2221 // the Case's target mbb if the value being switched on SV is equal 2222 // to C. 2223 MachineBasicBlock *CurBlock = CR.CaseBB; 2224 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2225 MachineBasicBlock *FallThrough; 2226 if (I != E-1) { 2227 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2228 CurMF->insert(BBI, FallThrough); 2229 2230 // Put SV in a virtual register to make it available from the new blocks. 2231 ExportFromCurrentBlock(SV); 2232 } else { 2233 // If the last case doesn't match, go to the default block. 2234 FallThrough = Default; 2235 } 2236 2237 const Value *RHS, *LHS, *MHS; 2238 ISD::CondCode CC; 2239 if (I->High == I->Low) { 2240 // This is just small small case range :) containing exactly 1 case 2241 CC = ISD::SETEQ; 2242 LHS = SV; RHS = I->High; MHS = nullptr; 2243 } else { 2244 CC = ISD::SETLE; 2245 LHS = I->Low; MHS = SV; RHS = I->High; 2246 } 2247 2248 // The false weight should be sum of all un-handled cases. 2249 UnhandledWeights -= I->ExtraWeight; 2250 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2251 /* me */ CurBlock, 2252 /* trueweight */ I->ExtraWeight, 2253 /* falseweight */ UnhandledWeights); 2254 2255 // If emitting the first comparison, just call visitSwitchCase to emit the 2256 // code into the current block. Otherwise, push the CaseBlock onto the 2257 // vector to be later processed by SDISel, and insert the node's MBB 2258 // before the next MBB. 2259 if (CurBlock == SwitchBB) 2260 visitSwitchCase(CB, SwitchBB); 2261 else 2262 SwitchCases.push_back(CB); 2263 2264 CurBlock = FallThrough; 2265 } 2266 2267 return true; 2268 } 2269 2270 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2271 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2272 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2273 } 2274 2275 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2276 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2277 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2278 return (LastExt - FirstExt + 1ULL); 2279 } 2280 2281 /// handleJTSwitchCase - Emit jumptable for current switch case range 2282 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2283 CaseRecVector &WorkList, 2284 const Value *SV, 2285 MachineBasicBlock *Default, 2286 MachineBasicBlock *SwitchBB) { 2287 Case& FrontCase = *CR.Range.first; 2288 Case& BackCase = *(CR.Range.second-1); 2289 2290 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2291 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2292 2293 APInt TSize(First.getBitWidth(), 0); 2294 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2295 TSize += I->size(); 2296 2297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2298 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2299 return false; 2300 2301 APInt Range = ComputeRange(First, Last); 2302 // The density is TSize / Range. Require at least 40%. 2303 // It should not be possible for IntTSize to saturate for sane code, but make 2304 // sure we handle Range saturation correctly. 2305 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2306 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2307 if (IntTSize * 10 < IntRange * 4) 2308 return false; 2309 2310 DEBUG(dbgs() << "Lowering jump table\n" 2311 << "First entry: " << First << ". Last entry: " << Last << '\n' 2312 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2313 2314 // Get the MachineFunction which holds the current MBB. This is used when 2315 // inserting any additional MBBs necessary to represent the switch. 2316 MachineFunction *CurMF = FuncInfo.MF; 2317 2318 // Figure out which block is immediately after the current one. 2319 MachineFunction::iterator BBI = CR.CaseBB; 2320 ++BBI; 2321 2322 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2323 2324 // Create a new basic block to hold the code for loading the address 2325 // of the jump table, and jumping to it. Update successor information; 2326 // we will either branch to the default case for the switch, or the jump 2327 // table. 2328 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2329 CurMF->insert(BBI, JumpTableBB); 2330 2331 addSuccessorWithWeight(CR.CaseBB, Default); 2332 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2333 2334 // Build a vector of destination BBs, corresponding to each target 2335 // of the jump table. If the value of the jump table slot corresponds to 2336 // a case statement, push the case's BB onto the vector, otherwise, push 2337 // the default BB. 2338 std::vector<MachineBasicBlock*> DestBBs; 2339 APInt TEI = First; 2340 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2341 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2342 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2343 2344 if (Low.sle(TEI) && TEI.sle(High)) { 2345 DestBBs.push_back(I->BB); 2346 if (TEI==High) 2347 ++I; 2348 } else { 2349 DestBBs.push_back(Default); 2350 } 2351 } 2352 2353 // Calculate weight for each unique destination in CR. 2354 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2355 if (FuncInfo.BPI) 2356 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2357 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2358 DestWeights.find(I->BB); 2359 if (Itr != DestWeights.end()) 2360 Itr->second += I->ExtraWeight; 2361 else 2362 DestWeights[I->BB] = I->ExtraWeight; 2363 } 2364 2365 // Update successor info. Add one edge to each unique successor. 2366 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2367 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2368 E = DestBBs.end(); I != E; ++I) { 2369 if (!SuccsHandled[(*I)->getNumber()]) { 2370 SuccsHandled[(*I)->getNumber()] = true; 2371 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2372 DestWeights.find(*I); 2373 addSuccessorWithWeight(JumpTableBB, *I, 2374 Itr != DestWeights.end() ? Itr->second : 0); 2375 } 2376 } 2377 2378 // Create a jump table index for this jump table. 2379 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2380 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2381 ->createJumpTableIndex(DestBBs); 2382 2383 // Set the jump table information so that we can codegen it as a second 2384 // MachineBasicBlock 2385 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2386 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2387 if (CR.CaseBB == SwitchBB) 2388 visitJumpTableHeader(JT, JTH, SwitchBB); 2389 2390 JTCases.push_back(JumpTableBlock(JTH, JT)); 2391 return true; 2392 } 2393 2394 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2395 /// 2 subtrees. 2396 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2397 CaseRecVector& WorkList, 2398 const Value* SV, 2399 MachineBasicBlock* SwitchBB) { 2400 Case& FrontCase = *CR.Range.first; 2401 Case& BackCase = *(CR.Range.second-1); 2402 2403 // Size is the number of Cases represented by this range. 2404 unsigned Size = CR.Range.second - CR.Range.first; 2405 2406 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2407 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2408 double FMetric = 0; 2409 CaseItr Pivot = CR.Range.first + Size/2; 2410 2411 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2412 // (heuristically) allow us to emit JumpTable's later. 2413 APInt TSize(First.getBitWidth(), 0); 2414 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2415 I!=E; ++I) 2416 TSize += I->size(); 2417 2418 APInt LSize = FrontCase.size(); 2419 APInt RSize = TSize-LSize; 2420 DEBUG(dbgs() << "Selecting best pivot: \n" 2421 << "First: " << First << ", Last: " << Last <<'\n' 2422 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2423 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2424 J!=E; ++I, ++J) { 2425 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2426 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2427 APInt Range = ComputeRange(LEnd, RBegin); 2428 assert((Range - 2ULL).isNonNegative() && 2429 "Invalid case distance"); 2430 // Use volatile double here to avoid excess precision issues on some hosts, 2431 // e.g. that use 80-bit X87 registers. 2432 volatile double LDensity = 2433 LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble(); 2434 volatile double RDensity = 2435 RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble(); 2436 volatile double Metric = Range.logBase2() * (LDensity + RDensity); 2437 // Should always split in some non-trivial place 2438 DEBUG(dbgs() <<"=>Step\n" 2439 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2440 << "LDensity: " << LDensity 2441 << ", RDensity: " << RDensity << '\n' 2442 << "Metric: " << Metric << '\n'); 2443 if (FMetric < Metric) { 2444 Pivot = J; 2445 FMetric = Metric; 2446 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2447 } 2448 2449 LSize += J->size(); 2450 RSize -= J->size(); 2451 } 2452 2453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2454 if (areJTsAllowed(TLI)) { 2455 // If our case is dense we *really* should handle it earlier! 2456 assert((FMetric > 0) && "Should handle dense range earlier!"); 2457 } else { 2458 Pivot = CR.Range.first + Size/2; 2459 } 2460 splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB); 2461 return true; 2462 } 2463 2464 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot, 2465 CaseRecVector &WorkList, 2466 const Value *SV, 2467 MachineBasicBlock *SwitchBB) { 2468 // Get the MachineFunction which holds the current MBB. This is used when 2469 // inserting any additional MBBs necessary to represent the switch. 2470 MachineFunction *CurMF = FuncInfo.MF; 2471 2472 // Figure out which block is immediately after the current one. 2473 MachineFunction::iterator BBI = CR.CaseBB; 2474 ++BBI; 2475 2476 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2477 2478 CaseRange LHSR(CR.Range.first, Pivot); 2479 CaseRange RHSR(Pivot, CR.Range.second); 2480 const Constant *C = Pivot->Low; 2481 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2482 2483 // We know that we branch to the LHS if the Value being switched on is 2484 // less than the Pivot value, C. We use this to optimize our binary 2485 // tree a bit, by recognizing that if SV is greater than or equal to the 2486 // LHS's Case Value, and that Case Value is exactly one less than the 2487 // Pivot's Value, then we can branch directly to the LHS's Target, 2488 // rather than creating a leaf node for it. 2489 if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE && 2490 cast<ConstantInt>(C)->getValue() == 2491 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2492 TrueBB = LHSR.first->BB; 2493 } else { 2494 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2495 CurMF->insert(BBI, TrueBB); 2496 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2497 2498 // Put SV in a virtual register to make it available from the new blocks. 2499 ExportFromCurrentBlock(SV); 2500 } 2501 2502 // Similar to the optimization above, if the Value being switched on is 2503 // known to be less than the Constant CR.LT, and the current Case Value 2504 // is CR.LT - 1, then we can branch directly to the target block for 2505 // the current Case Value, rather than emitting a RHS leaf node for it. 2506 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2507 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2508 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2509 FalseBB = RHSR.first->BB; 2510 } else { 2511 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2512 CurMF->insert(BBI, FalseBB); 2513 WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR)); 2514 2515 // Put SV in a virtual register to make it available from the new blocks. 2516 ExportFromCurrentBlock(SV); 2517 } 2518 2519 // Create a CaseBlock record representing a conditional branch to 2520 // the LHS node if the value being switched on SV is less than C. 2521 // Otherwise, branch to LHS. 2522 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2523 2524 if (CR.CaseBB == SwitchBB) 2525 visitSwitchCase(CB, SwitchBB); 2526 else 2527 SwitchCases.push_back(CB); 2528 } 2529 2530 /// handleBitTestsSwitchCase - if current case range has few destination and 2531 /// range span less, than machine word bitwidth, encode case range into series 2532 /// of masks and emit bit tests with these masks. 2533 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2534 CaseRecVector& WorkList, 2535 const Value* SV, 2536 MachineBasicBlock* Default, 2537 MachineBasicBlock* SwitchBB) { 2538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2539 EVT PTy = TLI.getPointerTy(); 2540 unsigned IntPtrBits = PTy.getSizeInBits(); 2541 2542 Case& FrontCase = *CR.Range.first; 2543 Case& BackCase = *(CR.Range.second-1); 2544 2545 // Get the MachineFunction which holds the current MBB. This is used when 2546 // inserting any additional MBBs necessary to represent the switch. 2547 MachineFunction *CurMF = FuncInfo.MF; 2548 2549 // If target does not have legal shift left, do not emit bit tests at all. 2550 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2551 return false; 2552 2553 size_t numCmps = 0; 2554 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2555 // Single case counts one, case range - two. 2556 numCmps += (I->Low == I->High ? 1 : 2); 2557 } 2558 2559 // Count unique destinations 2560 SmallSet<MachineBasicBlock*, 4> Dests; 2561 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2562 Dests.insert(I->BB); 2563 if (Dests.size() > 3) 2564 // Don't bother the code below, if there are too much unique destinations 2565 return false; 2566 } 2567 DEBUG(dbgs() << "Total number of unique destinations: " 2568 << Dests.size() << '\n' 2569 << "Total number of comparisons: " << numCmps << '\n'); 2570 2571 // Compute span of values. 2572 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2573 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2574 APInt cmpRange = maxValue - minValue; 2575 2576 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2577 << "Low bound: " << minValue << '\n' 2578 << "High bound: " << maxValue << '\n'); 2579 2580 if (cmpRange.uge(IntPtrBits) || 2581 (!(Dests.size() == 1 && numCmps >= 3) && 2582 !(Dests.size() == 2 && numCmps >= 5) && 2583 !(Dests.size() >= 3 && numCmps >= 6))) 2584 return false; 2585 2586 DEBUG(dbgs() << "Emitting bit tests\n"); 2587 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2588 2589 // Optimize the case where all the case values fit in a 2590 // word without having to subtract minValue. In this case, 2591 // we can optimize away the subtraction. 2592 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2593 cmpRange = maxValue; 2594 } else { 2595 lowBound = minValue; 2596 } 2597 2598 CaseBitsVector CasesBits; 2599 unsigned i, count = 0; 2600 2601 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2602 MachineBasicBlock* Dest = I->BB; 2603 for (i = 0; i < count; ++i) 2604 if (Dest == CasesBits[i].BB) 2605 break; 2606 2607 if (i == count) { 2608 assert((count < 3) && "Too much destinations to test!"); 2609 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2610 count++; 2611 } 2612 2613 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2614 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2615 2616 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2617 uint64_t hi = (highValue - lowBound).getZExtValue(); 2618 CasesBits[i].ExtraWeight += I->ExtraWeight; 2619 2620 for (uint64_t j = lo; j <= hi; j++) { 2621 CasesBits[i].Mask |= 1ULL << j; 2622 CasesBits[i].Bits++; 2623 } 2624 2625 } 2626 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2627 2628 BitTestInfo BTC; 2629 2630 // Figure out which block is immediately after the current one. 2631 MachineFunction::iterator BBI = CR.CaseBB; 2632 ++BBI; 2633 2634 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2635 2636 DEBUG(dbgs() << "Cases:\n"); 2637 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2638 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2639 << ", Bits: " << CasesBits[i].Bits 2640 << ", BB: " << CasesBits[i].BB << '\n'); 2641 2642 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2643 CurMF->insert(BBI, CaseBB); 2644 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2645 CaseBB, 2646 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2647 2648 // Put SV in a virtual register to make it available from the new blocks. 2649 ExportFromCurrentBlock(SV); 2650 } 2651 2652 BitTestBlock BTB(lowBound, cmpRange, SV, 2653 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2654 CR.CaseBB, Default, std::move(BTC)); 2655 2656 if (CR.CaseBB == SwitchBB) 2657 visitBitTestHeader(BTB, SwitchBB); 2658 2659 BitTestCases.push_back(std::move(BTB)); 2660 2661 return true; 2662 } 2663 2664 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2665 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2666 const SwitchInst& SI) { 2667 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2668 // Start with "simple" cases. 2669 for (SwitchInst::ConstCaseIt i : SI.cases()) { 2670 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2671 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2672 2673 uint32_t ExtraWeight = 2674 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2675 2676 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2677 SMBB, ExtraWeight)); 2678 } 2679 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2680 2681 // Merge case into clusters 2682 if (Cases.size() >= 2) 2683 // Must recompute end() each iteration because it may be 2684 // invalidated by erase if we hold on to it 2685 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2686 J != Cases.end(); ) { 2687 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2688 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2689 MachineBasicBlock* nextBB = J->BB; 2690 MachineBasicBlock* currentBB = I->BB; 2691 2692 // If the two neighboring cases go to the same destination, merge them 2693 // into a single case. 2694 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2695 I->High = J->High; 2696 I->ExtraWeight += J->ExtraWeight; 2697 J = Cases.erase(J); 2698 } else { 2699 I = J++; 2700 } 2701 } 2702 2703 DEBUG({ 2704 size_t numCmps = 0; 2705 for (auto &I : Cases) 2706 // A range counts double, since it requires two compares. 2707 numCmps += I.Low != I.High ? 2 : 1; 2708 2709 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2710 << ". Total compares: " << numCmps << '\n'; 2711 }); 2712 } 2713 2714 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2715 MachineBasicBlock *Last) { 2716 // Update JTCases. 2717 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2718 if (JTCases[i].first.HeaderBB == First) 2719 JTCases[i].first.HeaderBB = Last; 2720 2721 // Update BitTestCases. 2722 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2723 if (BitTestCases[i].Parent == First) 2724 BitTestCases[i].Parent = Last; 2725 } 2726 2727 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2728 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2729 2730 // Figure out which block is immediately after the current one. 2731 MachineBasicBlock *NextBlock = nullptr; 2732 if (SwitchMBB + 1 != FuncInfo.MF->end()) 2733 NextBlock = SwitchMBB + 1; 2734 2735 2736 // Create a vector of Cases, sorted so that we can efficiently create a binary 2737 // search tree from them. 2738 CaseVector Cases; 2739 Clusterify(Cases, SI); 2740 2741 // Get the default destination MBB. 2742 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2743 2744 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2745 !Cases.empty()) { 2746 // Replace an unreachable default destination with the most popular case 2747 // destination. 2748 DenseMap<const BasicBlock *, unsigned> Popularity; 2749 unsigned MaxPop = 0; 2750 const BasicBlock *MaxBB = nullptr; 2751 for (auto I : SI.cases()) { 2752 const BasicBlock *BB = I.getCaseSuccessor(); 2753 if (++Popularity[BB] > MaxPop) { 2754 MaxPop = Popularity[BB]; 2755 MaxBB = BB; 2756 } 2757 } 2758 2759 // Set new default. 2760 assert(MaxPop > 0); 2761 assert(MaxBB); 2762 Default = FuncInfo.MBBMap[MaxBB]; 2763 2764 // Remove cases that were pointing to the destination that is now the default. 2765 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2766 [&](const Case &C) { return C.BB == Default; }), 2767 Cases.end()); 2768 } 2769 2770 // If there is only the default destination, go there directly. 2771 if (Cases.empty()) { 2772 // Update machine-CFG edges. 2773 SwitchMBB->addSuccessor(Default); 2774 2775 // If this is not a fall-through branch, emit the branch. 2776 if (Default != NextBlock) { 2777 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2778 getControlRoot(), DAG.getBasicBlock(Default))); 2779 } 2780 return; 2781 } 2782 2783 // Get the Value to be switched on. 2784 const Value *SV = SI.getCondition(); 2785 2786 // Push the initial CaseRec onto the worklist 2787 CaseRecVector WorkList; 2788 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2789 CaseRange(Cases.begin(),Cases.end()))); 2790 2791 while (!WorkList.empty()) { 2792 // Grab a record representing a case range to process off the worklist 2793 CaseRec CR = WorkList.back(); 2794 WorkList.pop_back(); 2795 2796 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2797 continue; 2798 2799 // If the range has few cases (two or less) emit a series of specific 2800 // tests. 2801 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2802 continue; 2803 2804 // If the switch has more than N blocks, and is at least 40% dense, and the 2805 // target supports indirect branches, then emit a jump table rather than 2806 // lowering the switch to a binary tree of conditional branches. 2807 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2808 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2809 continue; 2810 2811 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2812 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2813 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2814 } 2815 } 2816 2817 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2818 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2819 2820 // Update machine-CFG edges with unique successors. 2821 SmallSet<BasicBlock*, 32> Done; 2822 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2823 BasicBlock *BB = I.getSuccessor(i); 2824 bool Inserted = Done.insert(BB).second; 2825 if (!Inserted) 2826 continue; 2827 2828 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2829 addSuccessorWithWeight(IndirectBrMBB, Succ); 2830 } 2831 2832 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2833 MVT::Other, getControlRoot(), 2834 getValue(I.getAddress()))); 2835 } 2836 2837 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2838 if (DAG.getTarget().Options.TrapUnreachable) 2839 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2840 } 2841 2842 void SelectionDAGBuilder::visitFSub(const User &I) { 2843 // -0.0 - X --> fneg 2844 Type *Ty = I.getType(); 2845 if (isa<Constant>(I.getOperand(0)) && 2846 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2847 SDValue Op2 = getValue(I.getOperand(1)); 2848 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2849 Op2.getValueType(), Op2)); 2850 return; 2851 } 2852 2853 visitBinary(I, ISD::FSUB); 2854 } 2855 2856 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2857 SDValue Op1 = getValue(I.getOperand(0)); 2858 SDValue Op2 = getValue(I.getOperand(1)); 2859 2860 bool nuw = false; 2861 bool nsw = false; 2862 bool exact = false; 2863 if (const OverflowingBinaryOperator *OFBinOp = 2864 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2865 nuw = OFBinOp->hasNoUnsignedWrap(); 2866 nsw = OFBinOp->hasNoSignedWrap(); 2867 } 2868 if (const PossiblyExactOperator *ExactOp = 2869 dyn_cast<const PossiblyExactOperator>(&I)) 2870 exact = ExactOp->isExact(); 2871 2872 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2873 Op1, Op2, nuw, nsw, exact); 2874 setValue(&I, BinNodeValue); 2875 } 2876 2877 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2878 SDValue Op1 = getValue(I.getOperand(0)); 2879 SDValue Op2 = getValue(I.getOperand(1)); 2880 2881 EVT ShiftTy = 2882 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2883 2884 // Coerce the shift amount to the right type if we can. 2885 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2886 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2887 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2888 SDLoc DL = getCurSDLoc(); 2889 2890 // If the operand is smaller than the shift count type, promote it. 2891 if (ShiftSize > Op2Size) 2892 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2893 2894 // If the operand is larger than the shift count type but the shift 2895 // count type has enough bits to represent any shift value, truncate 2896 // it now. This is a common case and it exposes the truncate to 2897 // optimization early. 2898 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2899 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2900 // Otherwise we'll need to temporarily settle for some other convenient 2901 // type. Type legalization will make adjustments once the shiftee is split. 2902 else 2903 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2904 } 2905 2906 bool nuw = false; 2907 bool nsw = false; 2908 bool exact = false; 2909 2910 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2911 2912 if (const OverflowingBinaryOperator *OFBinOp = 2913 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2914 nuw = OFBinOp->hasNoUnsignedWrap(); 2915 nsw = OFBinOp->hasNoSignedWrap(); 2916 } 2917 if (const PossiblyExactOperator *ExactOp = 2918 dyn_cast<const PossiblyExactOperator>(&I)) 2919 exact = ExactOp->isExact(); 2920 } 2921 2922 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2923 nuw, nsw, exact); 2924 setValue(&I, Res); 2925 } 2926 2927 void SelectionDAGBuilder::visitSDiv(const User &I) { 2928 SDValue Op1 = getValue(I.getOperand(0)); 2929 SDValue Op2 = getValue(I.getOperand(1)); 2930 2931 // Turn exact SDivs into multiplications. 2932 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2933 // exact bit. 2934 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2935 !isa<ConstantSDNode>(Op1) && 2936 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2937 setValue(&I, DAG.getTargetLoweringInfo() 2938 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2939 else 2940 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2941 Op1, Op2)); 2942 } 2943 2944 void SelectionDAGBuilder::visitICmp(const User &I) { 2945 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2946 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2947 predicate = IC->getPredicate(); 2948 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2949 predicate = ICmpInst::Predicate(IC->getPredicate()); 2950 SDValue Op1 = getValue(I.getOperand(0)); 2951 SDValue Op2 = getValue(I.getOperand(1)); 2952 ISD::CondCode Opcode = getICmpCondCode(predicate); 2953 2954 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2955 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2956 } 2957 2958 void SelectionDAGBuilder::visitFCmp(const User &I) { 2959 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2960 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2961 predicate = FC->getPredicate(); 2962 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2963 predicate = FCmpInst::Predicate(FC->getPredicate()); 2964 SDValue Op1 = getValue(I.getOperand(0)); 2965 SDValue Op2 = getValue(I.getOperand(1)); 2966 ISD::CondCode Condition = getFCmpCondCode(predicate); 2967 if (TM.Options.NoNaNsFPMath) 2968 Condition = getFCmpCodeWithoutNaN(Condition); 2969 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2970 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2971 } 2972 2973 void SelectionDAGBuilder::visitSelect(const User &I) { 2974 SmallVector<EVT, 4> ValueVTs; 2975 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2976 unsigned NumValues = ValueVTs.size(); 2977 if (NumValues == 0) return; 2978 2979 SmallVector<SDValue, 4> Values(NumValues); 2980 SDValue Cond = getValue(I.getOperand(0)); 2981 SDValue TrueVal = getValue(I.getOperand(1)); 2982 SDValue FalseVal = getValue(I.getOperand(2)); 2983 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2984 ISD::VSELECT : ISD::SELECT; 2985 2986 for (unsigned i = 0; i != NumValues; ++i) 2987 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2988 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2989 Cond, 2990 SDValue(TrueVal.getNode(), 2991 TrueVal.getResNo() + i), 2992 SDValue(FalseVal.getNode(), 2993 FalseVal.getResNo() + i)); 2994 2995 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2996 DAG.getVTList(ValueVTs), Values)); 2997 } 2998 2999 void SelectionDAGBuilder::visitTrunc(const User &I) { 3000 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3001 SDValue N = getValue(I.getOperand(0)); 3002 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3003 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3004 } 3005 3006 void SelectionDAGBuilder::visitZExt(const User &I) { 3007 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3008 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3009 SDValue N = getValue(I.getOperand(0)); 3010 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3011 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3012 } 3013 3014 void SelectionDAGBuilder::visitSExt(const User &I) { 3015 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3016 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3017 SDValue N = getValue(I.getOperand(0)); 3018 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3019 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3020 } 3021 3022 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3023 // FPTrunc is never a no-op cast, no need to check 3024 SDValue N = getValue(I.getOperand(0)); 3025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3026 EVT DestVT = TLI.getValueType(I.getType()); 3027 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 3028 DAG.getTargetConstant(0, TLI.getPointerTy()))); 3029 } 3030 3031 void SelectionDAGBuilder::visitFPExt(const User &I) { 3032 // FPExt is never a no-op cast, no need to check 3033 SDValue N = getValue(I.getOperand(0)); 3034 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3035 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3036 } 3037 3038 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3039 // FPToUI is never a no-op cast, no need to check 3040 SDValue N = getValue(I.getOperand(0)); 3041 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3042 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3043 } 3044 3045 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3046 // FPToSI is never a no-op cast, no need to check 3047 SDValue N = getValue(I.getOperand(0)); 3048 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3049 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3050 } 3051 3052 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3053 // UIToFP is never a no-op cast, no need to check 3054 SDValue N = getValue(I.getOperand(0)); 3055 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3056 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3057 } 3058 3059 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3060 // SIToFP is never a no-op cast, no need to check 3061 SDValue N = getValue(I.getOperand(0)); 3062 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3063 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3064 } 3065 3066 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3067 // What to do depends on the size of the integer and the size of the pointer. 3068 // We can either truncate, zero extend, or no-op, accordingly. 3069 SDValue N = getValue(I.getOperand(0)); 3070 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3071 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3072 } 3073 3074 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3075 // What to do depends on the size of the integer and the size of the pointer. 3076 // We can either truncate, zero extend, or no-op, accordingly. 3077 SDValue N = getValue(I.getOperand(0)); 3078 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3079 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3080 } 3081 3082 void SelectionDAGBuilder::visitBitCast(const User &I) { 3083 SDValue N = getValue(I.getOperand(0)); 3084 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3085 3086 // BitCast assures us that source and destination are the same size so this is 3087 // either a BITCAST or a no-op. 3088 if (DestVT != N.getValueType()) 3089 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3090 DestVT, N)); // convert types. 3091 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3092 // might fold any kind of constant expression to an integer constant and that 3093 // is not what we are looking for. Only regcognize a bitcast of a genuine 3094 // constant integer as an opaque constant. 3095 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3096 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3097 /*isOpaque*/true)); 3098 else 3099 setValue(&I, N); // noop cast. 3100 } 3101 3102 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3104 const Value *SV = I.getOperand(0); 3105 SDValue N = getValue(SV); 3106 EVT DestVT = TLI.getValueType(I.getType()); 3107 3108 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3109 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3110 3111 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3112 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3113 3114 setValue(&I, N); 3115 } 3116 3117 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3119 SDValue InVec = getValue(I.getOperand(0)); 3120 SDValue InVal = getValue(I.getOperand(1)); 3121 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3122 getCurSDLoc(), TLI.getVectorIdxTy()); 3123 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3124 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3125 } 3126 3127 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3128 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3129 SDValue InVec = getValue(I.getOperand(0)); 3130 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3131 getCurSDLoc(), TLI.getVectorIdxTy()); 3132 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3133 TLI.getValueType(I.getType()), InVec, InIdx)); 3134 } 3135 3136 // Utility for visitShuffleVector - Return true if every element in Mask, 3137 // beginning from position Pos and ending in Pos+Size, falls within the 3138 // specified sequential range [L, L+Pos). or is undef. 3139 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3140 unsigned Pos, unsigned Size, int Low) { 3141 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3142 if (Mask[i] >= 0 && Mask[i] != Low) 3143 return false; 3144 return true; 3145 } 3146 3147 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3148 SDValue Src1 = getValue(I.getOperand(0)); 3149 SDValue Src2 = getValue(I.getOperand(1)); 3150 3151 SmallVector<int, 8> Mask; 3152 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3153 unsigned MaskNumElts = Mask.size(); 3154 3155 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3156 EVT VT = TLI.getValueType(I.getType()); 3157 EVT SrcVT = Src1.getValueType(); 3158 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3159 3160 if (SrcNumElts == MaskNumElts) { 3161 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3162 &Mask[0])); 3163 return; 3164 } 3165 3166 // Normalize the shuffle vector since mask and vector length don't match. 3167 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3168 // Mask is longer than the source vectors and is a multiple of the source 3169 // vectors. We can use concatenate vector to make the mask and vectors 3170 // lengths match. 3171 if (SrcNumElts*2 == MaskNumElts) { 3172 // First check for Src1 in low and Src2 in high 3173 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3174 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3175 // The shuffle is concatenating two vectors together. 3176 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3177 VT, Src1, Src2)); 3178 return; 3179 } 3180 // Then check for Src2 in low and Src1 in high 3181 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3182 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3183 // The shuffle is concatenating two vectors together. 3184 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3185 VT, Src2, Src1)); 3186 return; 3187 } 3188 } 3189 3190 // Pad both vectors with undefs to make them the same length as the mask. 3191 unsigned NumConcat = MaskNumElts / SrcNumElts; 3192 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3193 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3194 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3195 3196 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3197 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3198 MOps1[0] = Src1; 3199 MOps2[0] = Src2; 3200 3201 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3202 getCurSDLoc(), VT, MOps1); 3203 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3204 getCurSDLoc(), VT, MOps2); 3205 3206 // Readjust mask for new input vector length. 3207 SmallVector<int, 8> MappedOps; 3208 for (unsigned i = 0; i != MaskNumElts; ++i) { 3209 int Idx = Mask[i]; 3210 if (Idx >= (int)SrcNumElts) 3211 Idx -= SrcNumElts - MaskNumElts; 3212 MappedOps.push_back(Idx); 3213 } 3214 3215 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3216 &MappedOps[0])); 3217 return; 3218 } 3219 3220 if (SrcNumElts > MaskNumElts) { 3221 // Analyze the access pattern of the vector to see if we can extract 3222 // two subvectors and do the shuffle. The analysis is done by calculating 3223 // the range of elements the mask access on both vectors. 3224 int MinRange[2] = { static_cast<int>(SrcNumElts), 3225 static_cast<int>(SrcNumElts)}; 3226 int MaxRange[2] = {-1, -1}; 3227 3228 for (unsigned i = 0; i != MaskNumElts; ++i) { 3229 int Idx = Mask[i]; 3230 unsigned Input = 0; 3231 if (Idx < 0) 3232 continue; 3233 3234 if (Idx >= (int)SrcNumElts) { 3235 Input = 1; 3236 Idx -= SrcNumElts; 3237 } 3238 if (Idx > MaxRange[Input]) 3239 MaxRange[Input] = Idx; 3240 if (Idx < MinRange[Input]) 3241 MinRange[Input] = Idx; 3242 } 3243 3244 // Check if the access is smaller than the vector size and can we find 3245 // a reasonable extract index. 3246 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3247 // Extract. 3248 int StartIdx[2]; // StartIdx to extract from 3249 for (unsigned Input = 0; Input < 2; ++Input) { 3250 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3251 RangeUse[Input] = 0; // Unused 3252 StartIdx[Input] = 0; 3253 continue; 3254 } 3255 3256 // Find a good start index that is a multiple of the mask length. Then 3257 // see if the rest of the elements are in range. 3258 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3259 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3260 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3261 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3262 } 3263 3264 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3265 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3266 return; 3267 } 3268 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3269 // Extract appropriate subvector and generate a vector shuffle 3270 for (unsigned Input = 0; Input < 2; ++Input) { 3271 SDValue &Src = Input == 0 ? Src1 : Src2; 3272 if (RangeUse[Input] == 0) 3273 Src = DAG.getUNDEF(VT); 3274 else 3275 Src = DAG.getNode( 3276 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3277 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3278 } 3279 3280 // Calculate new mask. 3281 SmallVector<int, 8> MappedOps; 3282 for (unsigned i = 0; i != MaskNumElts; ++i) { 3283 int Idx = Mask[i]; 3284 if (Idx >= 0) { 3285 if (Idx < (int)SrcNumElts) 3286 Idx -= StartIdx[0]; 3287 else 3288 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3289 } 3290 MappedOps.push_back(Idx); 3291 } 3292 3293 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3294 &MappedOps[0])); 3295 return; 3296 } 3297 } 3298 3299 // We can't use either concat vectors or extract subvectors so fall back to 3300 // replacing the shuffle with extract and build vector. 3301 // to insert and build vector. 3302 EVT EltVT = VT.getVectorElementType(); 3303 EVT IdxVT = TLI.getVectorIdxTy(); 3304 SmallVector<SDValue,8> Ops; 3305 for (unsigned i = 0; i != MaskNumElts; ++i) { 3306 int Idx = Mask[i]; 3307 SDValue Res; 3308 3309 if (Idx < 0) { 3310 Res = DAG.getUNDEF(EltVT); 3311 } else { 3312 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3313 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3314 3315 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3316 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3317 } 3318 3319 Ops.push_back(Res); 3320 } 3321 3322 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3323 } 3324 3325 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3326 const Value *Op0 = I.getOperand(0); 3327 const Value *Op1 = I.getOperand(1); 3328 Type *AggTy = I.getType(); 3329 Type *ValTy = Op1->getType(); 3330 bool IntoUndef = isa<UndefValue>(Op0); 3331 bool FromUndef = isa<UndefValue>(Op1); 3332 3333 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3334 3335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3336 SmallVector<EVT, 4> AggValueVTs; 3337 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3338 SmallVector<EVT, 4> ValValueVTs; 3339 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3340 3341 unsigned NumAggValues = AggValueVTs.size(); 3342 unsigned NumValValues = ValValueVTs.size(); 3343 SmallVector<SDValue, 4> Values(NumAggValues); 3344 3345 // Ignore an insertvalue that produces an empty object 3346 if (!NumAggValues) { 3347 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3348 return; 3349 } 3350 3351 SDValue Agg = getValue(Op0); 3352 unsigned i = 0; 3353 // Copy the beginning value(s) from the original aggregate. 3354 for (; i != LinearIndex; ++i) 3355 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3356 SDValue(Agg.getNode(), Agg.getResNo() + i); 3357 // Copy values from the inserted value(s). 3358 if (NumValValues) { 3359 SDValue Val = getValue(Op1); 3360 for (; i != LinearIndex + NumValValues; ++i) 3361 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3362 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3363 } 3364 // Copy remaining value(s) from the original aggregate. 3365 for (; i != NumAggValues; ++i) 3366 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3367 SDValue(Agg.getNode(), Agg.getResNo() + i); 3368 3369 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3370 DAG.getVTList(AggValueVTs), Values)); 3371 } 3372 3373 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3374 const Value *Op0 = I.getOperand(0); 3375 Type *AggTy = Op0->getType(); 3376 Type *ValTy = I.getType(); 3377 bool OutOfUndef = isa<UndefValue>(Op0); 3378 3379 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3380 3381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3382 SmallVector<EVT, 4> ValValueVTs; 3383 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3384 3385 unsigned NumValValues = ValValueVTs.size(); 3386 3387 // Ignore a extractvalue that produces an empty object 3388 if (!NumValValues) { 3389 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3390 return; 3391 } 3392 3393 SmallVector<SDValue, 4> Values(NumValValues); 3394 3395 SDValue Agg = getValue(Op0); 3396 // Copy out the selected value(s). 3397 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3398 Values[i - LinearIndex] = 3399 OutOfUndef ? 3400 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3401 SDValue(Agg.getNode(), Agg.getResNo() + i); 3402 3403 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3404 DAG.getVTList(ValValueVTs), Values)); 3405 } 3406 3407 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3408 Value *Op0 = I.getOperand(0); 3409 // Note that the pointer operand may be a vector of pointers. Take the scalar 3410 // element which holds a pointer. 3411 Type *Ty = Op0->getType()->getScalarType(); 3412 unsigned AS = Ty->getPointerAddressSpace(); 3413 SDValue N = getValue(Op0); 3414 3415 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3416 OI != E; ++OI) { 3417 const Value *Idx = *OI; 3418 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3419 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3420 if (Field) { 3421 // N = N + Offset 3422 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3423 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3424 DAG.getConstant(Offset, N.getValueType())); 3425 } 3426 3427 Ty = StTy->getElementType(Field); 3428 } else { 3429 Ty = cast<SequentialType>(Ty)->getElementType(); 3430 3431 // If this is a constant subscript, handle it quickly. 3432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3433 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3434 if (CI->isZero()) continue; 3435 uint64_t Offs = 3436 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3437 SDValue OffsVal; 3438 EVT PTy = TLI.getPointerTy(AS); 3439 unsigned PtrBits = PTy.getSizeInBits(); 3440 if (PtrBits < 64) 3441 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3442 DAG.getConstant(Offs, MVT::i64)); 3443 else 3444 OffsVal = DAG.getConstant(Offs, PTy); 3445 3446 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3447 OffsVal); 3448 continue; 3449 } 3450 3451 // N = N + Idx * ElementSize; 3452 APInt ElementSize = 3453 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3454 SDValue IdxN = getValue(Idx); 3455 3456 // If the index is smaller or larger than intptr_t, truncate or extend 3457 // it. 3458 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3459 3460 // If this is a multiply by a power of two, turn it into a shl 3461 // immediately. This is a very common case. 3462 if (ElementSize != 1) { 3463 if (ElementSize.isPowerOf2()) { 3464 unsigned Amt = ElementSize.logBase2(); 3465 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3466 N.getValueType(), IdxN, 3467 DAG.getConstant(Amt, IdxN.getValueType())); 3468 } else { 3469 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3470 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3471 N.getValueType(), IdxN, Scale); 3472 } 3473 } 3474 3475 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3476 N.getValueType(), N, IdxN); 3477 } 3478 } 3479 3480 setValue(&I, N); 3481 } 3482 3483 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3484 // If this is a fixed sized alloca in the entry block of the function, 3485 // allocate it statically on the stack. 3486 if (FuncInfo.StaticAllocaMap.count(&I)) 3487 return; // getValue will auto-populate this. 3488 3489 Type *Ty = I.getAllocatedType(); 3490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3491 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3492 unsigned Align = 3493 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3494 I.getAlignment()); 3495 3496 SDValue AllocSize = getValue(I.getArraySize()); 3497 3498 EVT IntPtr = TLI.getPointerTy(); 3499 if (AllocSize.getValueType() != IntPtr) 3500 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3501 3502 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3503 AllocSize, 3504 DAG.getConstant(TySize, IntPtr)); 3505 3506 // Handle alignment. If the requested alignment is less than or equal to 3507 // the stack alignment, ignore it. If the size is greater than or equal to 3508 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3509 unsigned StackAlign = 3510 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3511 if (Align <= StackAlign) 3512 Align = 0; 3513 3514 // Round the size of the allocation up to the stack alignment size 3515 // by add SA-1 to the size. 3516 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3517 AllocSize.getValueType(), AllocSize, 3518 DAG.getIntPtrConstant(StackAlign-1)); 3519 3520 // Mask out the low bits for alignment purposes. 3521 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3522 AllocSize.getValueType(), AllocSize, 3523 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3524 3525 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3526 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3527 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3528 setValue(&I, DSA); 3529 DAG.setRoot(DSA.getValue(1)); 3530 3531 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3532 } 3533 3534 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3535 if (I.isAtomic()) 3536 return visitAtomicLoad(I); 3537 3538 const Value *SV = I.getOperand(0); 3539 SDValue Ptr = getValue(SV); 3540 3541 Type *Ty = I.getType(); 3542 3543 bool isVolatile = I.isVolatile(); 3544 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3545 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3546 unsigned Alignment = I.getAlignment(); 3547 3548 AAMDNodes AAInfo; 3549 I.getAAMetadata(AAInfo); 3550 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3551 3552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3553 SmallVector<EVT, 4> ValueVTs; 3554 SmallVector<uint64_t, 4> Offsets; 3555 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3556 unsigned NumValues = ValueVTs.size(); 3557 if (NumValues == 0) 3558 return; 3559 3560 SDValue Root; 3561 bool ConstantMemory = false; 3562 if (isVolatile || NumValues > MaxParallelChains) 3563 // Serialize volatile loads with other side effects. 3564 Root = getRoot(); 3565 else if (AA->pointsToConstantMemory( 3566 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3567 // Do not serialize (non-volatile) loads of constant memory with anything. 3568 Root = DAG.getEntryNode(); 3569 ConstantMemory = true; 3570 } else { 3571 // Do not serialize non-volatile loads against each other. 3572 Root = DAG.getRoot(); 3573 } 3574 3575 if (isVolatile) 3576 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3577 3578 SmallVector<SDValue, 4> Values(NumValues); 3579 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3580 NumValues)); 3581 EVT PtrVT = Ptr.getValueType(); 3582 unsigned ChainI = 0; 3583 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3584 // Serializing loads here may result in excessive register pressure, and 3585 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3586 // could recover a bit by hoisting nodes upward in the chain by recognizing 3587 // they are side-effect free or do not alias. The optimizer should really 3588 // avoid this case by converting large object/array copies to llvm.memcpy 3589 // (MaxParallelChains should always remain as failsafe). 3590 if (ChainI == MaxParallelChains) { 3591 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3592 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3593 makeArrayRef(Chains.data(), ChainI)); 3594 Root = Chain; 3595 ChainI = 0; 3596 } 3597 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3598 PtrVT, Ptr, 3599 DAG.getConstant(Offsets[i], PtrVT)); 3600 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3601 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3602 isNonTemporal, isInvariant, Alignment, AAInfo, 3603 Ranges); 3604 3605 Values[i] = L; 3606 Chains[ChainI] = L.getValue(1); 3607 } 3608 3609 if (!ConstantMemory) { 3610 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3611 makeArrayRef(Chains.data(), ChainI)); 3612 if (isVolatile) 3613 DAG.setRoot(Chain); 3614 else 3615 PendingLoads.push_back(Chain); 3616 } 3617 3618 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3619 DAG.getVTList(ValueVTs), Values)); 3620 } 3621 3622 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3623 if (I.isAtomic()) 3624 return visitAtomicStore(I); 3625 3626 const Value *SrcV = I.getOperand(0); 3627 const Value *PtrV = I.getOperand(1); 3628 3629 SmallVector<EVT, 4> ValueVTs; 3630 SmallVector<uint64_t, 4> Offsets; 3631 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3632 ValueVTs, &Offsets); 3633 unsigned NumValues = ValueVTs.size(); 3634 if (NumValues == 0) 3635 return; 3636 3637 // Get the lowered operands. Note that we do this after 3638 // checking if NumResults is zero, because with zero results 3639 // the operands won't have values in the map. 3640 SDValue Src = getValue(SrcV); 3641 SDValue Ptr = getValue(PtrV); 3642 3643 SDValue Root = getRoot(); 3644 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3645 NumValues)); 3646 EVT PtrVT = Ptr.getValueType(); 3647 bool isVolatile = I.isVolatile(); 3648 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3649 unsigned Alignment = I.getAlignment(); 3650 3651 AAMDNodes AAInfo; 3652 I.getAAMetadata(AAInfo); 3653 3654 unsigned ChainI = 0; 3655 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3656 // See visitLoad comments. 3657 if (ChainI == MaxParallelChains) { 3658 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3659 makeArrayRef(Chains.data(), ChainI)); 3660 Root = Chain; 3661 ChainI = 0; 3662 } 3663 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3664 DAG.getConstant(Offsets[i], PtrVT)); 3665 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3666 SDValue(Src.getNode(), Src.getResNo() + i), 3667 Add, MachinePointerInfo(PtrV, Offsets[i]), 3668 isVolatile, isNonTemporal, Alignment, AAInfo); 3669 Chains[ChainI] = St; 3670 } 3671 3672 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3673 makeArrayRef(Chains.data(), ChainI)); 3674 DAG.setRoot(StoreNode); 3675 } 3676 3677 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3678 SDLoc sdl = getCurSDLoc(); 3679 3680 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3681 Value *PtrOperand = I.getArgOperand(1); 3682 SDValue Ptr = getValue(PtrOperand); 3683 SDValue Src0 = getValue(I.getArgOperand(0)); 3684 SDValue Mask = getValue(I.getArgOperand(3)); 3685 EVT VT = Src0.getValueType(); 3686 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3687 if (!Alignment) 3688 Alignment = DAG.getEVTAlignment(VT); 3689 3690 AAMDNodes AAInfo; 3691 I.getAAMetadata(AAInfo); 3692 3693 MachineMemOperand *MMO = 3694 DAG.getMachineFunction(). 3695 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3696 MachineMemOperand::MOStore, VT.getStoreSize(), 3697 Alignment, AAInfo); 3698 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, MMO); 3699 DAG.setRoot(StoreNode); 3700 setValue(&I, StoreNode); 3701 } 3702 3703 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3704 SDLoc sdl = getCurSDLoc(); 3705 3706 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3707 Value *PtrOperand = I.getArgOperand(0); 3708 SDValue Ptr = getValue(PtrOperand); 3709 SDValue Src0 = getValue(I.getArgOperand(3)); 3710 SDValue Mask = getValue(I.getArgOperand(2)); 3711 3712 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3713 EVT VT = TLI.getValueType(I.getType()); 3714 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3715 if (!Alignment) 3716 Alignment = DAG.getEVTAlignment(VT); 3717 3718 AAMDNodes AAInfo; 3719 I.getAAMetadata(AAInfo); 3720 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3721 3722 SDValue InChain = DAG.getRoot(); 3723 if (AA->pointsToConstantMemory( 3724 AliasAnalysis::Location(PtrOperand, 3725 AA->getTypeStoreSize(I.getType()), 3726 AAInfo))) { 3727 // Do not serialize (non-volatile) loads of constant memory with anything. 3728 InChain = DAG.getEntryNode(); 3729 } 3730 3731 MachineMemOperand *MMO = 3732 DAG.getMachineFunction(). 3733 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3734 MachineMemOperand::MOLoad, VT.getStoreSize(), 3735 Alignment, AAInfo, Ranges); 3736 3737 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, MMO); 3738 SDValue OutChain = Load.getValue(1); 3739 DAG.setRoot(OutChain); 3740 setValue(&I, Load); 3741 } 3742 3743 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3744 SDLoc dl = getCurSDLoc(); 3745 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3746 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3747 SynchronizationScope Scope = I.getSynchScope(); 3748 3749 SDValue InChain = getRoot(); 3750 3751 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3752 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3753 SDValue L = DAG.getAtomicCmpSwap( 3754 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3755 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3756 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3757 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3758 3759 SDValue OutChain = L.getValue(2); 3760 3761 setValue(&I, L); 3762 DAG.setRoot(OutChain); 3763 } 3764 3765 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3766 SDLoc dl = getCurSDLoc(); 3767 ISD::NodeType NT; 3768 switch (I.getOperation()) { 3769 default: llvm_unreachable("Unknown atomicrmw operation"); 3770 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3771 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3772 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3773 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3774 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3775 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3776 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3777 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3778 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3779 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3780 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3781 } 3782 AtomicOrdering Order = I.getOrdering(); 3783 SynchronizationScope Scope = I.getSynchScope(); 3784 3785 SDValue InChain = getRoot(); 3786 3787 SDValue L = 3788 DAG.getAtomic(NT, dl, 3789 getValue(I.getValOperand()).getSimpleValueType(), 3790 InChain, 3791 getValue(I.getPointerOperand()), 3792 getValue(I.getValOperand()), 3793 I.getPointerOperand(), 3794 /* Alignment=*/ 0, Order, Scope); 3795 3796 SDValue OutChain = L.getValue(1); 3797 3798 setValue(&I, L); 3799 DAG.setRoot(OutChain); 3800 } 3801 3802 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3803 SDLoc dl = getCurSDLoc(); 3804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3805 SDValue Ops[3]; 3806 Ops[0] = getRoot(); 3807 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3808 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3809 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3810 } 3811 3812 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3813 SDLoc dl = getCurSDLoc(); 3814 AtomicOrdering Order = I.getOrdering(); 3815 SynchronizationScope Scope = I.getSynchScope(); 3816 3817 SDValue InChain = getRoot(); 3818 3819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3820 EVT VT = TLI.getValueType(I.getType()); 3821 3822 if (I.getAlignment() < VT.getSizeInBits() / 8) 3823 report_fatal_error("Cannot generate unaligned atomic load"); 3824 3825 MachineMemOperand *MMO = 3826 DAG.getMachineFunction(). 3827 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3828 MachineMemOperand::MOVolatile | 3829 MachineMemOperand::MOLoad, 3830 VT.getStoreSize(), 3831 I.getAlignment() ? I.getAlignment() : 3832 DAG.getEVTAlignment(VT)); 3833 3834 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3835 SDValue L = 3836 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3837 getValue(I.getPointerOperand()), MMO, 3838 Order, Scope); 3839 3840 SDValue OutChain = L.getValue(1); 3841 3842 setValue(&I, L); 3843 DAG.setRoot(OutChain); 3844 } 3845 3846 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3847 SDLoc dl = getCurSDLoc(); 3848 3849 AtomicOrdering Order = I.getOrdering(); 3850 SynchronizationScope Scope = I.getSynchScope(); 3851 3852 SDValue InChain = getRoot(); 3853 3854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3855 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3856 3857 if (I.getAlignment() < VT.getSizeInBits() / 8) 3858 report_fatal_error("Cannot generate unaligned atomic store"); 3859 3860 SDValue OutChain = 3861 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3862 InChain, 3863 getValue(I.getPointerOperand()), 3864 getValue(I.getValueOperand()), 3865 I.getPointerOperand(), I.getAlignment(), 3866 Order, Scope); 3867 3868 DAG.setRoot(OutChain); 3869 } 3870 3871 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3872 /// node. 3873 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3874 unsigned Intrinsic) { 3875 bool HasChain = !I.doesNotAccessMemory(); 3876 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3877 3878 // Build the operand list. 3879 SmallVector<SDValue, 8> Ops; 3880 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3881 if (OnlyLoad) { 3882 // We don't need to serialize loads against other loads. 3883 Ops.push_back(DAG.getRoot()); 3884 } else { 3885 Ops.push_back(getRoot()); 3886 } 3887 } 3888 3889 // Info is set by getTgtMemInstrinsic 3890 TargetLowering::IntrinsicInfo Info; 3891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3892 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3893 3894 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3895 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3896 Info.opc == ISD::INTRINSIC_W_CHAIN) 3897 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3898 3899 // Add all operands of the call to the operand list. 3900 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3901 SDValue Op = getValue(I.getArgOperand(i)); 3902 Ops.push_back(Op); 3903 } 3904 3905 SmallVector<EVT, 4> ValueVTs; 3906 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3907 3908 if (HasChain) 3909 ValueVTs.push_back(MVT::Other); 3910 3911 SDVTList VTs = DAG.getVTList(ValueVTs); 3912 3913 // Create the node. 3914 SDValue Result; 3915 if (IsTgtIntrinsic) { 3916 // This is target intrinsic that touches memory 3917 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3918 VTs, Ops, Info.memVT, 3919 MachinePointerInfo(Info.ptrVal, Info.offset), 3920 Info.align, Info.vol, 3921 Info.readMem, Info.writeMem, Info.size); 3922 } else if (!HasChain) { 3923 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3924 } else if (!I.getType()->isVoidTy()) { 3925 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3926 } else { 3927 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3928 } 3929 3930 if (HasChain) { 3931 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3932 if (OnlyLoad) 3933 PendingLoads.push_back(Chain); 3934 else 3935 DAG.setRoot(Chain); 3936 } 3937 3938 if (!I.getType()->isVoidTy()) { 3939 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3940 EVT VT = TLI.getValueType(PTy); 3941 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3942 } 3943 3944 setValue(&I, Result); 3945 } 3946 } 3947 3948 /// GetSignificand - Get the significand and build it into a floating-point 3949 /// number with exponent of 1: 3950 /// 3951 /// Op = (Op & 0x007fffff) | 0x3f800000; 3952 /// 3953 /// where Op is the hexadecimal representation of floating point value. 3954 static SDValue 3955 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3956 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3957 DAG.getConstant(0x007fffff, MVT::i32)); 3958 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3959 DAG.getConstant(0x3f800000, MVT::i32)); 3960 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3961 } 3962 3963 /// GetExponent - Get the exponent: 3964 /// 3965 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3966 /// 3967 /// where Op is the hexadecimal representation of floating point value. 3968 static SDValue 3969 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3970 SDLoc dl) { 3971 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3972 DAG.getConstant(0x7f800000, MVT::i32)); 3973 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3974 DAG.getConstant(23, TLI.getPointerTy())); 3975 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3976 DAG.getConstant(127, MVT::i32)); 3977 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3978 } 3979 3980 /// getF32Constant - Get 32-bit floating point constant. 3981 static SDValue 3982 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3983 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3984 MVT::f32); 3985 } 3986 3987 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3988 /// limited-precision mode. 3989 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3990 const TargetLowering &TLI) { 3991 if (Op.getValueType() == MVT::f32 && 3992 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3993 3994 // Put the exponent in the right bit position for later addition to the 3995 // final result: 3996 // 3997 // #define LOG2OFe 1.4426950f 3998 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3999 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4000 getF32Constant(DAG, 0x3fb8aa3b)); 4001 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4002 4003 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 4004 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4005 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4006 4007 // IntegerPartOfX <<= 23; 4008 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4009 DAG.getConstant(23, TLI.getPointerTy())); 4010 4011 SDValue TwoToFracPartOfX; 4012 if (LimitFloatPrecision <= 6) { 4013 // For floating-point precision of 6: 4014 // 4015 // TwoToFractionalPartOfX = 4016 // 0.997535578f + 4017 // (0.735607626f + 0.252464424f * x) * x; 4018 // 4019 // error 0.0144103317, which is 6 bits 4020 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4021 getF32Constant(DAG, 0x3e814304)); 4022 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4023 getF32Constant(DAG, 0x3f3c50c8)); 4024 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4025 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4026 getF32Constant(DAG, 0x3f7f5e7e)); 4027 } else if (LimitFloatPrecision <= 12) { 4028 // For floating-point precision of 12: 4029 // 4030 // TwoToFractionalPartOfX = 4031 // 0.999892986f + 4032 // (0.696457318f + 4033 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4034 // 4035 // 0.000107046256 error, which is 13 to 14 bits 4036 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4037 getF32Constant(DAG, 0x3da235e3)); 4038 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4039 getF32Constant(DAG, 0x3e65b8f3)); 4040 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4041 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4042 getF32Constant(DAG, 0x3f324b07)); 4043 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4044 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4045 getF32Constant(DAG, 0x3f7ff8fd)); 4046 } else { // LimitFloatPrecision <= 18 4047 // For floating-point precision of 18: 4048 // 4049 // TwoToFractionalPartOfX = 4050 // 0.999999982f + 4051 // (0.693148872f + 4052 // (0.240227044f + 4053 // (0.554906021e-1f + 4054 // (0.961591928e-2f + 4055 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4056 // 4057 // error 2.47208000*10^(-7), which is better than 18 bits 4058 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4059 getF32Constant(DAG, 0x3924b03e)); 4060 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4061 getF32Constant(DAG, 0x3ab24b87)); 4062 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4063 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4064 getF32Constant(DAG, 0x3c1d8c17)); 4065 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4066 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4067 getF32Constant(DAG, 0x3d634a1d)); 4068 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4069 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4070 getF32Constant(DAG, 0x3e75fe14)); 4071 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4072 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4073 getF32Constant(DAG, 0x3f317234)); 4074 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4075 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4076 getF32Constant(DAG, 0x3f800000)); 4077 } 4078 4079 // Add the exponent into the result in integer domain. 4080 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4081 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4082 DAG.getNode(ISD::ADD, dl, MVT::i32, 4083 t13, IntegerPartOfX)); 4084 } 4085 4086 // No special expansion. 4087 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4088 } 4089 4090 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4091 /// limited-precision mode. 4092 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4093 const TargetLowering &TLI) { 4094 if (Op.getValueType() == MVT::f32 && 4095 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4096 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4097 4098 // Scale the exponent by log(2) [0.69314718f]. 4099 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4100 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4101 getF32Constant(DAG, 0x3f317218)); 4102 4103 // Get the significand and build it into a floating-point number with 4104 // exponent of 1. 4105 SDValue X = GetSignificand(DAG, Op1, dl); 4106 4107 SDValue LogOfMantissa; 4108 if (LimitFloatPrecision <= 6) { 4109 // For floating-point precision of 6: 4110 // 4111 // LogofMantissa = 4112 // -1.1609546f + 4113 // (1.4034025f - 0.23903021f * x) * x; 4114 // 4115 // error 0.0034276066, which is better than 8 bits 4116 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4117 getF32Constant(DAG, 0xbe74c456)); 4118 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4119 getF32Constant(DAG, 0x3fb3a2b1)); 4120 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4121 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4122 getF32Constant(DAG, 0x3f949a29)); 4123 } else if (LimitFloatPrecision <= 12) { 4124 // For floating-point precision of 12: 4125 // 4126 // LogOfMantissa = 4127 // -1.7417939f + 4128 // (2.8212026f + 4129 // (-1.4699568f + 4130 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4131 // 4132 // error 0.000061011436, which is 14 bits 4133 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4134 getF32Constant(DAG, 0xbd67b6d6)); 4135 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4136 getF32Constant(DAG, 0x3ee4f4b8)); 4137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4138 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4139 getF32Constant(DAG, 0x3fbc278b)); 4140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4141 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4142 getF32Constant(DAG, 0x40348e95)); 4143 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4144 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4145 getF32Constant(DAG, 0x3fdef31a)); 4146 } else { // LimitFloatPrecision <= 18 4147 // For floating-point precision of 18: 4148 // 4149 // LogOfMantissa = 4150 // -2.1072184f + 4151 // (4.2372794f + 4152 // (-3.7029485f + 4153 // (2.2781945f + 4154 // (-0.87823314f + 4155 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4156 // 4157 // error 0.0000023660568, which is better than 18 bits 4158 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4159 getF32Constant(DAG, 0xbc91e5ac)); 4160 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4161 getF32Constant(DAG, 0x3e4350aa)); 4162 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4163 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4164 getF32Constant(DAG, 0x3f60d3e3)); 4165 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4166 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4167 getF32Constant(DAG, 0x4011cdf0)); 4168 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4169 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4170 getF32Constant(DAG, 0x406cfd1c)); 4171 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4172 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4173 getF32Constant(DAG, 0x408797cb)); 4174 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4175 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4176 getF32Constant(DAG, 0x4006dcab)); 4177 } 4178 4179 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4180 } 4181 4182 // No special expansion. 4183 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4184 } 4185 4186 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4187 /// limited-precision mode. 4188 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4189 const TargetLowering &TLI) { 4190 if (Op.getValueType() == MVT::f32 && 4191 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4192 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4193 4194 // Get the exponent. 4195 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4196 4197 // Get the significand and build it into a floating-point number with 4198 // exponent of 1. 4199 SDValue X = GetSignificand(DAG, Op1, dl); 4200 4201 // Different possible minimax approximations of significand in 4202 // floating-point for various degrees of accuracy over [1,2]. 4203 SDValue Log2ofMantissa; 4204 if (LimitFloatPrecision <= 6) { 4205 // For floating-point precision of 6: 4206 // 4207 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4208 // 4209 // error 0.0049451742, which is more than 7 bits 4210 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4211 getF32Constant(DAG, 0xbeb08fe0)); 4212 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4213 getF32Constant(DAG, 0x40019463)); 4214 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4215 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4216 getF32Constant(DAG, 0x3fd6633d)); 4217 } else if (LimitFloatPrecision <= 12) { 4218 // For floating-point precision of 12: 4219 // 4220 // Log2ofMantissa = 4221 // -2.51285454f + 4222 // (4.07009056f + 4223 // (-2.12067489f + 4224 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4225 // 4226 // error 0.0000876136000, which is better than 13 bits 4227 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4228 getF32Constant(DAG, 0xbda7262e)); 4229 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4230 getF32Constant(DAG, 0x3f25280b)); 4231 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4232 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4233 getF32Constant(DAG, 0x4007b923)); 4234 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4235 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4236 getF32Constant(DAG, 0x40823e2f)); 4237 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4238 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4239 getF32Constant(DAG, 0x4020d29c)); 4240 } else { // LimitFloatPrecision <= 18 4241 // For floating-point precision of 18: 4242 // 4243 // Log2ofMantissa = 4244 // -3.0400495f + 4245 // (6.1129976f + 4246 // (-5.3420409f + 4247 // (3.2865683f + 4248 // (-1.2669343f + 4249 // (0.27515199f - 4250 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4251 // 4252 // error 0.0000018516, which is better than 18 bits 4253 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4254 getF32Constant(DAG, 0xbcd2769e)); 4255 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4256 getF32Constant(DAG, 0x3e8ce0b9)); 4257 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4258 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4259 getF32Constant(DAG, 0x3fa22ae7)); 4260 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4261 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4262 getF32Constant(DAG, 0x40525723)); 4263 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4264 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4265 getF32Constant(DAG, 0x40aaf200)); 4266 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4267 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4268 getF32Constant(DAG, 0x40c39dad)); 4269 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4270 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4271 getF32Constant(DAG, 0x4042902c)); 4272 } 4273 4274 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4275 } 4276 4277 // No special expansion. 4278 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4279 } 4280 4281 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4282 /// limited-precision mode. 4283 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4284 const TargetLowering &TLI) { 4285 if (Op.getValueType() == MVT::f32 && 4286 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4287 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4288 4289 // Scale the exponent by log10(2) [0.30102999f]. 4290 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4291 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4292 getF32Constant(DAG, 0x3e9a209a)); 4293 4294 // Get the significand and build it into a floating-point number with 4295 // exponent of 1. 4296 SDValue X = GetSignificand(DAG, Op1, dl); 4297 4298 SDValue Log10ofMantissa; 4299 if (LimitFloatPrecision <= 6) { 4300 // For floating-point precision of 6: 4301 // 4302 // Log10ofMantissa = 4303 // -0.50419619f + 4304 // (0.60948995f - 0.10380950f * x) * x; 4305 // 4306 // error 0.0014886165, which is 6 bits 4307 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4308 getF32Constant(DAG, 0xbdd49a13)); 4309 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4310 getF32Constant(DAG, 0x3f1c0789)); 4311 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4312 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4313 getF32Constant(DAG, 0x3f011300)); 4314 } else if (LimitFloatPrecision <= 12) { 4315 // For floating-point precision of 12: 4316 // 4317 // Log10ofMantissa = 4318 // -0.64831180f + 4319 // (0.91751397f + 4320 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4321 // 4322 // error 0.00019228036, which is better than 12 bits 4323 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4324 getF32Constant(DAG, 0x3d431f31)); 4325 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4326 getF32Constant(DAG, 0x3ea21fb2)); 4327 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4328 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4329 getF32Constant(DAG, 0x3f6ae232)); 4330 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4331 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4332 getF32Constant(DAG, 0x3f25f7c3)); 4333 } else { // LimitFloatPrecision <= 18 4334 // For floating-point precision of 18: 4335 // 4336 // Log10ofMantissa = 4337 // -0.84299375f + 4338 // (1.5327582f + 4339 // (-1.0688956f + 4340 // (0.49102474f + 4341 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4342 // 4343 // error 0.0000037995730, which is better than 18 bits 4344 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4345 getF32Constant(DAG, 0x3c5d51ce)); 4346 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4347 getF32Constant(DAG, 0x3e00685a)); 4348 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4349 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4350 getF32Constant(DAG, 0x3efb6798)); 4351 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4352 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4353 getF32Constant(DAG, 0x3f88d192)); 4354 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4355 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4356 getF32Constant(DAG, 0x3fc4316c)); 4357 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4358 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4359 getF32Constant(DAG, 0x3f57ce70)); 4360 } 4361 4362 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4363 } 4364 4365 // No special expansion. 4366 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4367 } 4368 4369 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4370 /// limited-precision mode. 4371 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4372 const TargetLowering &TLI) { 4373 if (Op.getValueType() == MVT::f32 && 4374 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4375 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4376 4377 // FractionalPartOfX = x - (float)IntegerPartOfX; 4378 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4379 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4380 4381 // IntegerPartOfX <<= 23; 4382 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4383 DAG.getConstant(23, TLI.getPointerTy())); 4384 4385 SDValue TwoToFractionalPartOfX; 4386 if (LimitFloatPrecision <= 6) { 4387 // For floating-point precision of 6: 4388 // 4389 // TwoToFractionalPartOfX = 4390 // 0.997535578f + 4391 // (0.735607626f + 0.252464424f * x) * x; 4392 // 4393 // error 0.0144103317, which is 6 bits 4394 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4395 getF32Constant(DAG, 0x3e814304)); 4396 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4397 getF32Constant(DAG, 0x3f3c50c8)); 4398 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4399 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4400 getF32Constant(DAG, 0x3f7f5e7e)); 4401 } else if (LimitFloatPrecision <= 12) { 4402 // For floating-point precision of 12: 4403 // 4404 // TwoToFractionalPartOfX = 4405 // 0.999892986f + 4406 // (0.696457318f + 4407 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4408 // 4409 // error 0.000107046256, which is 13 to 14 bits 4410 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4411 getF32Constant(DAG, 0x3da235e3)); 4412 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4413 getF32Constant(DAG, 0x3e65b8f3)); 4414 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4415 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4416 getF32Constant(DAG, 0x3f324b07)); 4417 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4418 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4419 getF32Constant(DAG, 0x3f7ff8fd)); 4420 } else { // LimitFloatPrecision <= 18 4421 // For floating-point precision of 18: 4422 // 4423 // TwoToFractionalPartOfX = 4424 // 0.999999982f + 4425 // (0.693148872f + 4426 // (0.240227044f + 4427 // (0.554906021e-1f + 4428 // (0.961591928e-2f + 4429 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4430 // error 2.47208000*10^(-7), which is better than 18 bits 4431 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4432 getF32Constant(DAG, 0x3924b03e)); 4433 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4434 getF32Constant(DAG, 0x3ab24b87)); 4435 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4436 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4437 getF32Constant(DAG, 0x3c1d8c17)); 4438 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4439 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4440 getF32Constant(DAG, 0x3d634a1d)); 4441 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4442 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4443 getF32Constant(DAG, 0x3e75fe14)); 4444 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4445 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4446 getF32Constant(DAG, 0x3f317234)); 4447 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4448 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4449 getF32Constant(DAG, 0x3f800000)); 4450 } 4451 4452 // Add the exponent into the result in integer domain. 4453 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4454 TwoToFractionalPartOfX); 4455 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4456 DAG.getNode(ISD::ADD, dl, MVT::i32, 4457 t13, IntegerPartOfX)); 4458 } 4459 4460 // No special expansion. 4461 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4462 } 4463 4464 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4465 /// limited-precision mode with x == 10.0f. 4466 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4467 SelectionDAG &DAG, const TargetLowering &TLI) { 4468 bool IsExp10 = false; 4469 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4470 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4471 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4472 APFloat Ten(10.0f); 4473 IsExp10 = LHSC->isExactlyValue(Ten); 4474 } 4475 } 4476 4477 if (IsExp10) { 4478 // Put the exponent in the right bit position for later addition to the 4479 // final result: 4480 // 4481 // #define LOG2OF10 3.3219281f 4482 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4483 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4484 getF32Constant(DAG, 0x40549a78)); 4485 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4486 4487 // FractionalPartOfX = x - (float)IntegerPartOfX; 4488 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4489 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4490 4491 // IntegerPartOfX <<= 23; 4492 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4493 DAG.getConstant(23, TLI.getPointerTy())); 4494 4495 SDValue TwoToFractionalPartOfX; 4496 if (LimitFloatPrecision <= 6) { 4497 // For floating-point precision of 6: 4498 // 4499 // twoToFractionalPartOfX = 4500 // 0.997535578f + 4501 // (0.735607626f + 0.252464424f * x) * x; 4502 // 4503 // error 0.0144103317, which is 6 bits 4504 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4505 getF32Constant(DAG, 0x3e814304)); 4506 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4507 getF32Constant(DAG, 0x3f3c50c8)); 4508 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4509 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4510 getF32Constant(DAG, 0x3f7f5e7e)); 4511 } else if (LimitFloatPrecision <= 12) { 4512 // For floating-point precision of 12: 4513 // 4514 // TwoToFractionalPartOfX = 4515 // 0.999892986f + 4516 // (0.696457318f + 4517 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4518 // 4519 // error 0.000107046256, which is 13 to 14 bits 4520 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4521 getF32Constant(DAG, 0x3da235e3)); 4522 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4523 getF32Constant(DAG, 0x3e65b8f3)); 4524 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4525 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4526 getF32Constant(DAG, 0x3f324b07)); 4527 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4528 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4529 getF32Constant(DAG, 0x3f7ff8fd)); 4530 } else { // LimitFloatPrecision <= 18 4531 // For floating-point precision of 18: 4532 // 4533 // TwoToFractionalPartOfX = 4534 // 0.999999982f + 4535 // (0.693148872f + 4536 // (0.240227044f + 4537 // (0.554906021e-1f + 4538 // (0.961591928e-2f + 4539 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4540 // error 2.47208000*10^(-7), which is better than 18 bits 4541 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4542 getF32Constant(DAG, 0x3924b03e)); 4543 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4544 getF32Constant(DAG, 0x3ab24b87)); 4545 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4546 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4547 getF32Constant(DAG, 0x3c1d8c17)); 4548 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4549 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4550 getF32Constant(DAG, 0x3d634a1d)); 4551 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4552 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4553 getF32Constant(DAG, 0x3e75fe14)); 4554 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4555 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4556 getF32Constant(DAG, 0x3f317234)); 4557 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4558 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4559 getF32Constant(DAG, 0x3f800000)); 4560 } 4561 4562 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4563 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4564 DAG.getNode(ISD::ADD, dl, MVT::i32, 4565 t13, IntegerPartOfX)); 4566 } 4567 4568 // No special expansion. 4569 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4570 } 4571 4572 4573 /// ExpandPowI - Expand a llvm.powi intrinsic. 4574 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4575 SelectionDAG &DAG) { 4576 // If RHS is a constant, we can expand this out to a multiplication tree, 4577 // otherwise we end up lowering to a call to __powidf2 (for example). When 4578 // optimizing for size, we only want to do this if the expansion would produce 4579 // a small number of multiplies, otherwise we do the full expansion. 4580 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4581 // Get the exponent as a positive value. 4582 unsigned Val = RHSC->getSExtValue(); 4583 if ((int)Val < 0) Val = -Val; 4584 4585 // powi(x, 0) -> 1.0 4586 if (Val == 0) 4587 return DAG.getConstantFP(1.0, LHS.getValueType()); 4588 4589 const Function *F = DAG.getMachineFunction().getFunction(); 4590 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4591 Attribute::OptimizeForSize) || 4592 // If optimizing for size, don't insert too many multiplies. This 4593 // inserts up to 5 multiplies. 4594 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4595 // We use the simple binary decomposition method to generate the multiply 4596 // sequence. There are more optimal ways to do this (for example, 4597 // powi(x,15) generates one more multiply than it should), but this has 4598 // the benefit of being both really simple and much better than a libcall. 4599 SDValue Res; // Logically starts equal to 1.0 4600 SDValue CurSquare = LHS; 4601 while (Val) { 4602 if (Val & 1) { 4603 if (Res.getNode()) 4604 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4605 else 4606 Res = CurSquare; // 1.0*CurSquare. 4607 } 4608 4609 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4610 CurSquare, CurSquare); 4611 Val >>= 1; 4612 } 4613 4614 // If the original was negative, invert the result, producing 1/(x*x*x). 4615 if (RHSC->getSExtValue() < 0) 4616 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4617 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4618 return Res; 4619 } 4620 } 4621 4622 // Otherwise, expand to a libcall. 4623 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4624 } 4625 4626 // getTruncatedArgReg - Find underlying register used for an truncated 4627 // argument. 4628 static unsigned getTruncatedArgReg(const SDValue &N) { 4629 if (N.getOpcode() != ISD::TRUNCATE) 4630 return 0; 4631 4632 const SDValue &Ext = N.getOperand(0); 4633 if (Ext.getOpcode() == ISD::AssertZext || 4634 Ext.getOpcode() == ISD::AssertSext) { 4635 const SDValue &CFR = Ext.getOperand(0); 4636 if (CFR.getOpcode() == ISD::CopyFromReg) 4637 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4638 if (CFR.getOpcode() == ISD::TRUNCATE) 4639 return getTruncatedArgReg(CFR); 4640 } 4641 return 0; 4642 } 4643 4644 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4645 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4646 /// At the end of instruction selection, they will be inserted to the entry BB. 4647 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4648 MDNode *Variable, 4649 MDNode *Expr, int64_t Offset, 4650 bool IsIndirect, 4651 const SDValue &N) { 4652 const Argument *Arg = dyn_cast<Argument>(V); 4653 if (!Arg) 4654 return false; 4655 4656 MachineFunction &MF = DAG.getMachineFunction(); 4657 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4658 4659 // Ignore inlined function arguments here. 4660 DIVariable DV(Variable); 4661 if (DV.isInlinedFnArgument(MF.getFunction())) 4662 return false; 4663 4664 Optional<MachineOperand> Op; 4665 // Some arguments' frame index is recorded during argument lowering. 4666 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4667 Op = MachineOperand::CreateFI(FI); 4668 4669 if (!Op && N.getNode()) { 4670 unsigned Reg; 4671 if (N.getOpcode() == ISD::CopyFromReg) 4672 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4673 else 4674 Reg = getTruncatedArgReg(N); 4675 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4676 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4677 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4678 if (PR) 4679 Reg = PR; 4680 } 4681 if (Reg) 4682 Op = MachineOperand::CreateReg(Reg, false); 4683 } 4684 4685 if (!Op) { 4686 // Check if ValueMap has reg number. 4687 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4688 if (VMI != FuncInfo.ValueMap.end()) 4689 Op = MachineOperand::CreateReg(VMI->second, false); 4690 } 4691 4692 if (!Op && N.getNode()) 4693 // Check if frame index is available. 4694 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4695 if (FrameIndexSDNode *FINode = 4696 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4697 Op = MachineOperand::CreateFI(FINode->getIndex()); 4698 4699 if (!Op) 4700 return false; 4701 4702 if (Op->isReg()) 4703 FuncInfo.ArgDbgValues.push_back( 4704 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4705 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4706 else 4707 FuncInfo.ArgDbgValues.push_back( 4708 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4709 .addOperand(*Op) 4710 .addImm(Offset) 4711 .addMetadata(Variable) 4712 .addMetadata(Expr)); 4713 4714 return true; 4715 } 4716 4717 // VisualStudio defines setjmp as _setjmp 4718 #if defined(_MSC_VER) && defined(setjmp) && \ 4719 !defined(setjmp_undefined_for_msvc) 4720 # pragma push_macro("setjmp") 4721 # undef setjmp 4722 # define setjmp_undefined_for_msvc 4723 #endif 4724 4725 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4726 /// we want to emit this as a call to a named external function, return the name 4727 /// otherwise lower it and return null. 4728 const char * 4729 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4731 SDLoc sdl = getCurSDLoc(); 4732 DebugLoc dl = getCurDebugLoc(); 4733 SDValue Res; 4734 4735 switch (Intrinsic) { 4736 default: 4737 // By default, turn this into a target intrinsic node. 4738 visitTargetIntrinsic(I, Intrinsic); 4739 return nullptr; 4740 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4741 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4742 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4743 case Intrinsic::returnaddress: 4744 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4745 getValue(I.getArgOperand(0)))); 4746 return nullptr; 4747 case Intrinsic::frameaddress: 4748 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4749 getValue(I.getArgOperand(0)))); 4750 return nullptr; 4751 case Intrinsic::read_register: { 4752 Value *Reg = I.getArgOperand(0); 4753 SDValue RegName = 4754 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4755 EVT VT = TLI.getValueType(I.getType()); 4756 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4757 return nullptr; 4758 } 4759 case Intrinsic::write_register: { 4760 Value *Reg = I.getArgOperand(0); 4761 Value *RegValue = I.getArgOperand(1); 4762 SDValue Chain = getValue(RegValue).getOperand(0); 4763 SDValue RegName = 4764 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4765 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4766 RegName, getValue(RegValue))); 4767 return nullptr; 4768 } 4769 case Intrinsic::setjmp: 4770 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4771 case Intrinsic::longjmp: 4772 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4773 case Intrinsic::memcpy: { 4774 // Assert for address < 256 since we support only user defined address 4775 // spaces. 4776 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4777 < 256 && 4778 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4779 < 256 && 4780 "Unknown address space"); 4781 SDValue Op1 = getValue(I.getArgOperand(0)); 4782 SDValue Op2 = getValue(I.getArgOperand(1)); 4783 SDValue Op3 = getValue(I.getArgOperand(2)); 4784 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4785 if (!Align) 4786 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4787 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4788 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4789 MachinePointerInfo(I.getArgOperand(0)), 4790 MachinePointerInfo(I.getArgOperand(1)))); 4791 return nullptr; 4792 } 4793 case Intrinsic::memset: { 4794 // Assert for address < 256 since we support only user defined address 4795 // spaces. 4796 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4797 < 256 && 4798 "Unknown address space"); 4799 SDValue Op1 = getValue(I.getArgOperand(0)); 4800 SDValue Op2 = getValue(I.getArgOperand(1)); 4801 SDValue Op3 = getValue(I.getArgOperand(2)); 4802 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4803 if (!Align) 4804 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4805 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4806 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4807 MachinePointerInfo(I.getArgOperand(0)))); 4808 return nullptr; 4809 } 4810 case Intrinsic::memmove: { 4811 // Assert for address < 256 since we support only user defined address 4812 // spaces. 4813 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4814 < 256 && 4815 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4816 < 256 && 4817 "Unknown address space"); 4818 SDValue Op1 = getValue(I.getArgOperand(0)); 4819 SDValue Op2 = getValue(I.getArgOperand(1)); 4820 SDValue Op3 = getValue(I.getArgOperand(2)); 4821 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4822 if (!Align) 4823 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4824 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4825 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4826 MachinePointerInfo(I.getArgOperand(0)), 4827 MachinePointerInfo(I.getArgOperand(1)))); 4828 return nullptr; 4829 } 4830 case Intrinsic::dbg_declare: { 4831 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4832 MDNode *Variable = DI.getVariable(); 4833 MDNode *Expression = DI.getExpression(); 4834 const Value *Address = DI.getAddress(); 4835 DIVariable DIVar(Variable); 4836 assert((!DIVar || DIVar.isVariable()) && 4837 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4838 if (!Address || !DIVar) { 4839 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4840 return nullptr; 4841 } 4842 4843 // Check if address has undef value. 4844 if (isa<UndefValue>(Address) || 4845 (Address->use_empty() && !isa<Argument>(Address))) { 4846 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4847 return nullptr; 4848 } 4849 4850 SDValue &N = NodeMap[Address]; 4851 if (!N.getNode() && isa<Argument>(Address)) 4852 // Check unused arguments map. 4853 N = UnusedArgNodeMap[Address]; 4854 SDDbgValue *SDV; 4855 if (N.getNode()) { 4856 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4857 Address = BCI->getOperand(0); 4858 // Parameters are handled specially. 4859 bool isParameter = 4860 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4861 isa<Argument>(Address)); 4862 4863 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4864 4865 if (isParameter && !AI) { 4866 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4867 if (FINode) 4868 // Byval parameter. We have a frame index at this point. 4869 SDV = DAG.getFrameIndexDbgValue( 4870 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4871 else { 4872 // Address is an argument, so try to emit its dbg value using 4873 // virtual register info from the FuncInfo.ValueMap. 4874 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4875 return nullptr; 4876 } 4877 } else if (AI) 4878 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4879 true, 0, dl, SDNodeOrder); 4880 else { 4881 // Can't do anything with other non-AI cases yet. 4882 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4883 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4884 DEBUG(Address->dump()); 4885 return nullptr; 4886 } 4887 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4888 } else { 4889 // If Address is an argument then try to emit its dbg value using 4890 // virtual register info from the FuncInfo.ValueMap. 4891 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4892 N)) { 4893 // If variable is pinned by a alloca in dominating bb then 4894 // use StaticAllocaMap. 4895 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4896 if (AI->getParent() != DI.getParent()) { 4897 DenseMap<const AllocaInst*, int>::iterator SI = 4898 FuncInfo.StaticAllocaMap.find(AI); 4899 if (SI != FuncInfo.StaticAllocaMap.end()) { 4900 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4901 0, dl, SDNodeOrder); 4902 DAG.AddDbgValue(SDV, nullptr, false); 4903 return nullptr; 4904 } 4905 } 4906 } 4907 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4908 } 4909 } 4910 return nullptr; 4911 } 4912 case Intrinsic::dbg_value: { 4913 const DbgValueInst &DI = cast<DbgValueInst>(I); 4914 DIVariable DIVar(DI.getVariable()); 4915 assert((!DIVar || DIVar.isVariable()) && 4916 "Variable in DbgValueInst should be either null or a DIVariable."); 4917 if (!DIVar) 4918 return nullptr; 4919 4920 MDNode *Variable = DI.getVariable(); 4921 MDNode *Expression = DI.getExpression(); 4922 uint64_t Offset = DI.getOffset(); 4923 const Value *V = DI.getValue(); 4924 if (!V) 4925 return nullptr; 4926 4927 SDDbgValue *SDV; 4928 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4929 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4930 SDNodeOrder); 4931 DAG.AddDbgValue(SDV, nullptr, false); 4932 } else { 4933 // Do not use getValue() in here; we don't want to generate code at 4934 // this point if it hasn't been done yet. 4935 SDValue N = NodeMap[V]; 4936 if (!N.getNode() && isa<Argument>(V)) 4937 // Check unused arguments map. 4938 N = UnusedArgNodeMap[V]; 4939 if (N.getNode()) { 4940 // A dbg.value for an alloca is always indirect. 4941 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4942 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4943 IsIndirect, N)) { 4944 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4945 IsIndirect, Offset, dl, SDNodeOrder); 4946 DAG.AddDbgValue(SDV, N.getNode(), false); 4947 } 4948 } else if (!V->use_empty() ) { 4949 // Do not call getValue(V) yet, as we don't want to generate code. 4950 // Remember it for later. 4951 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4952 DanglingDebugInfoMap[V] = DDI; 4953 } else { 4954 // We may expand this to cover more cases. One case where we have no 4955 // data available is an unreferenced parameter. 4956 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4957 } 4958 } 4959 4960 // Build a debug info table entry. 4961 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4962 V = BCI->getOperand(0); 4963 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4964 // Don't handle byval struct arguments or VLAs, for example. 4965 if (!AI) { 4966 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4967 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4968 return nullptr; 4969 } 4970 DenseMap<const AllocaInst*, int>::iterator SI = 4971 FuncInfo.StaticAllocaMap.find(AI); 4972 if (SI == FuncInfo.StaticAllocaMap.end()) 4973 return nullptr; // VLAs. 4974 return nullptr; 4975 } 4976 4977 case Intrinsic::eh_typeid_for: { 4978 // Find the type id for the given typeinfo. 4979 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4980 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4981 Res = DAG.getConstant(TypeID, MVT::i32); 4982 setValue(&I, Res); 4983 return nullptr; 4984 } 4985 4986 case Intrinsic::eh_return_i32: 4987 case Intrinsic::eh_return_i64: 4988 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4989 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4990 MVT::Other, 4991 getControlRoot(), 4992 getValue(I.getArgOperand(0)), 4993 getValue(I.getArgOperand(1)))); 4994 return nullptr; 4995 case Intrinsic::eh_unwind_init: 4996 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4997 return nullptr; 4998 case Intrinsic::eh_dwarf_cfa: { 4999 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 5000 TLI.getPointerTy()); 5001 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 5002 CfaArg.getValueType(), 5003 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 5004 CfaArg.getValueType()), 5005 CfaArg); 5006 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 5007 DAG.getConstant(0, TLI.getPointerTy())); 5008 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 5009 FA, Offset)); 5010 return nullptr; 5011 } 5012 case Intrinsic::eh_sjlj_callsite: { 5013 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5014 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5015 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5016 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5017 5018 MMI.setCurrentCallSite(CI->getZExtValue()); 5019 return nullptr; 5020 } 5021 case Intrinsic::eh_sjlj_functioncontext: { 5022 // Get and store the index of the function context. 5023 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 5024 AllocaInst *FnCtx = 5025 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5026 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5027 MFI->setFunctionContextIndex(FI); 5028 return nullptr; 5029 } 5030 case Intrinsic::eh_sjlj_setjmp: { 5031 SDValue Ops[2]; 5032 Ops[0] = getRoot(); 5033 Ops[1] = getValue(I.getArgOperand(0)); 5034 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5035 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5036 setValue(&I, Op.getValue(0)); 5037 DAG.setRoot(Op.getValue(1)); 5038 return nullptr; 5039 } 5040 case Intrinsic::eh_sjlj_longjmp: { 5041 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5042 getRoot(), getValue(I.getArgOperand(0)))); 5043 return nullptr; 5044 } 5045 5046 case Intrinsic::masked_load: 5047 visitMaskedLoad(I); 5048 return nullptr; 5049 case Intrinsic::masked_store: 5050 visitMaskedStore(I); 5051 return nullptr; 5052 case Intrinsic::x86_mmx_pslli_w: 5053 case Intrinsic::x86_mmx_pslli_d: 5054 case Intrinsic::x86_mmx_pslli_q: 5055 case Intrinsic::x86_mmx_psrli_w: 5056 case Intrinsic::x86_mmx_psrli_d: 5057 case Intrinsic::x86_mmx_psrli_q: 5058 case Intrinsic::x86_mmx_psrai_w: 5059 case Intrinsic::x86_mmx_psrai_d: { 5060 SDValue ShAmt = getValue(I.getArgOperand(1)); 5061 if (isa<ConstantSDNode>(ShAmt)) { 5062 visitTargetIntrinsic(I, Intrinsic); 5063 return nullptr; 5064 } 5065 unsigned NewIntrinsic = 0; 5066 EVT ShAmtVT = MVT::v2i32; 5067 switch (Intrinsic) { 5068 case Intrinsic::x86_mmx_pslli_w: 5069 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5070 break; 5071 case Intrinsic::x86_mmx_pslli_d: 5072 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5073 break; 5074 case Intrinsic::x86_mmx_pslli_q: 5075 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5076 break; 5077 case Intrinsic::x86_mmx_psrli_w: 5078 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5079 break; 5080 case Intrinsic::x86_mmx_psrli_d: 5081 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5082 break; 5083 case Intrinsic::x86_mmx_psrli_q: 5084 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5085 break; 5086 case Intrinsic::x86_mmx_psrai_w: 5087 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5088 break; 5089 case Intrinsic::x86_mmx_psrai_d: 5090 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5091 break; 5092 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5093 } 5094 5095 // The vector shift intrinsics with scalars uses 32b shift amounts but 5096 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5097 // to be zero. 5098 // We must do this early because v2i32 is not a legal type. 5099 SDValue ShOps[2]; 5100 ShOps[0] = ShAmt; 5101 ShOps[1] = DAG.getConstant(0, MVT::i32); 5102 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5103 EVT DestVT = TLI.getValueType(I.getType()); 5104 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5105 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5106 DAG.getConstant(NewIntrinsic, MVT::i32), 5107 getValue(I.getArgOperand(0)), ShAmt); 5108 setValue(&I, Res); 5109 return nullptr; 5110 } 5111 case Intrinsic::x86_avx_vinsertf128_pd_256: 5112 case Intrinsic::x86_avx_vinsertf128_ps_256: 5113 case Intrinsic::x86_avx_vinsertf128_si_256: 5114 case Intrinsic::x86_avx2_vinserti128: { 5115 EVT DestVT = TLI.getValueType(I.getType()); 5116 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 5117 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5118 ElVT.getVectorNumElements(); 5119 Res = 5120 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5121 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 5122 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5123 setValue(&I, Res); 5124 return nullptr; 5125 } 5126 case Intrinsic::x86_avx_vextractf128_pd_256: 5127 case Intrinsic::x86_avx_vextractf128_ps_256: 5128 case Intrinsic::x86_avx_vextractf128_si_256: 5129 case Intrinsic::x86_avx2_vextracti128: { 5130 EVT DestVT = TLI.getValueType(I.getType()); 5131 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5132 DestVT.getVectorNumElements(); 5133 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5134 getValue(I.getArgOperand(0)), 5135 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5136 setValue(&I, Res); 5137 return nullptr; 5138 } 5139 case Intrinsic::convertff: 5140 case Intrinsic::convertfsi: 5141 case Intrinsic::convertfui: 5142 case Intrinsic::convertsif: 5143 case Intrinsic::convertuif: 5144 case Intrinsic::convertss: 5145 case Intrinsic::convertsu: 5146 case Intrinsic::convertus: 5147 case Intrinsic::convertuu: { 5148 ISD::CvtCode Code = ISD::CVT_INVALID; 5149 switch (Intrinsic) { 5150 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5151 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5152 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5153 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5154 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5155 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5156 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5157 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5158 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5159 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5160 } 5161 EVT DestVT = TLI.getValueType(I.getType()); 5162 const Value *Op1 = I.getArgOperand(0); 5163 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5164 DAG.getValueType(DestVT), 5165 DAG.getValueType(getValue(Op1).getValueType()), 5166 getValue(I.getArgOperand(1)), 5167 getValue(I.getArgOperand(2)), 5168 Code); 5169 setValue(&I, Res); 5170 return nullptr; 5171 } 5172 case Intrinsic::powi: 5173 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5174 getValue(I.getArgOperand(1)), DAG)); 5175 return nullptr; 5176 case Intrinsic::log: 5177 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5178 return nullptr; 5179 case Intrinsic::log2: 5180 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5181 return nullptr; 5182 case Intrinsic::log10: 5183 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5184 return nullptr; 5185 case Intrinsic::exp: 5186 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5187 return nullptr; 5188 case Intrinsic::exp2: 5189 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5190 return nullptr; 5191 case Intrinsic::pow: 5192 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5193 getValue(I.getArgOperand(1)), DAG, TLI)); 5194 return nullptr; 5195 case Intrinsic::sqrt: 5196 case Intrinsic::fabs: 5197 case Intrinsic::sin: 5198 case Intrinsic::cos: 5199 case Intrinsic::floor: 5200 case Intrinsic::ceil: 5201 case Intrinsic::trunc: 5202 case Intrinsic::rint: 5203 case Intrinsic::nearbyint: 5204 case Intrinsic::round: { 5205 unsigned Opcode; 5206 switch (Intrinsic) { 5207 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5208 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5209 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5210 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5211 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5212 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5213 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5214 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5215 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5216 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5217 case Intrinsic::round: Opcode = ISD::FROUND; break; 5218 } 5219 5220 setValue(&I, DAG.getNode(Opcode, sdl, 5221 getValue(I.getArgOperand(0)).getValueType(), 5222 getValue(I.getArgOperand(0)))); 5223 return nullptr; 5224 } 5225 case Intrinsic::minnum: 5226 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5227 getValue(I.getArgOperand(0)).getValueType(), 5228 getValue(I.getArgOperand(0)), 5229 getValue(I.getArgOperand(1)))); 5230 return nullptr; 5231 case Intrinsic::maxnum: 5232 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5233 getValue(I.getArgOperand(0)).getValueType(), 5234 getValue(I.getArgOperand(0)), 5235 getValue(I.getArgOperand(1)))); 5236 return nullptr; 5237 case Intrinsic::copysign: 5238 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5239 getValue(I.getArgOperand(0)).getValueType(), 5240 getValue(I.getArgOperand(0)), 5241 getValue(I.getArgOperand(1)))); 5242 return nullptr; 5243 case Intrinsic::fma: 5244 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5245 getValue(I.getArgOperand(0)).getValueType(), 5246 getValue(I.getArgOperand(0)), 5247 getValue(I.getArgOperand(1)), 5248 getValue(I.getArgOperand(2)))); 5249 return nullptr; 5250 case Intrinsic::fmuladd: { 5251 EVT VT = TLI.getValueType(I.getType()); 5252 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5253 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5254 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5255 getValue(I.getArgOperand(0)).getValueType(), 5256 getValue(I.getArgOperand(0)), 5257 getValue(I.getArgOperand(1)), 5258 getValue(I.getArgOperand(2)))); 5259 } else { 5260 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5261 getValue(I.getArgOperand(0)).getValueType(), 5262 getValue(I.getArgOperand(0)), 5263 getValue(I.getArgOperand(1))); 5264 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5265 getValue(I.getArgOperand(0)).getValueType(), 5266 Mul, 5267 getValue(I.getArgOperand(2))); 5268 setValue(&I, Add); 5269 } 5270 return nullptr; 5271 } 5272 case Intrinsic::convert_to_fp16: 5273 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5274 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5275 getValue(I.getArgOperand(0)), 5276 DAG.getTargetConstant(0, MVT::i32)))); 5277 return nullptr; 5278 case Intrinsic::convert_from_fp16: 5279 setValue(&I, 5280 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5281 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5282 getValue(I.getArgOperand(0))))); 5283 return nullptr; 5284 case Intrinsic::pcmarker: { 5285 SDValue Tmp = getValue(I.getArgOperand(0)); 5286 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5287 return nullptr; 5288 } 5289 case Intrinsic::readcyclecounter: { 5290 SDValue Op = getRoot(); 5291 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5292 DAG.getVTList(MVT::i64, MVT::Other), Op); 5293 setValue(&I, Res); 5294 DAG.setRoot(Res.getValue(1)); 5295 return nullptr; 5296 } 5297 case Intrinsic::bswap: 5298 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5299 getValue(I.getArgOperand(0)).getValueType(), 5300 getValue(I.getArgOperand(0)))); 5301 return nullptr; 5302 case Intrinsic::cttz: { 5303 SDValue Arg = getValue(I.getArgOperand(0)); 5304 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5305 EVT Ty = Arg.getValueType(); 5306 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5307 sdl, Ty, Arg)); 5308 return nullptr; 5309 } 5310 case Intrinsic::ctlz: { 5311 SDValue Arg = getValue(I.getArgOperand(0)); 5312 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5313 EVT Ty = Arg.getValueType(); 5314 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5315 sdl, Ty, Arg)); 5316 return nullptr; 5317 } 5318 case Intrinsic::ctpop: { 5319 SDValue Arg = getValue(I.getArgOperand(0)); 5320 EVT Ty = Arg.getValueType(); 5321 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5322 return nullptr; 5323 } 5324 case Intrinsic::stacksave: { 5325 SDValue Op = getRoot(); 5326 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5327 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5328 setValue(&I, Res); 5329 DAG.setRoot(Res.getValue(1)); 5330 return nullptr; 5331 } 5332 case Intrinsic::stackrestore: { 5333 Res = getValue(I.getArgOperand(0)); 5334 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5335 return nullptr; 5336 } 5337 case Intrinsic::stackprotector: { 5338 // Emit code into the DAG to store the stack guard onto the stack. 5339 MachineFunction &MF = DAG.getMachineFunction(); 5340 MachineFrameInfo *MFI = MF.getFrameInfo(); 5341 EVT PtrTy = TLI.getPointerTy(); 5342 SDValue Src, Chain = getRoot(); 5343 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5344 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5345 5346 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5347 // global variable __stack_chk_guard. 5348 if (!GV) 5349 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5350 if (BC->getOpcode() == Instruction::BitCast) 5351 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5352 5353 if (GV && TLI.useLoadStackGuardNode()) { 5354 // Emit a LOAD_STACK_GUARD node. 5355 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5356 sdl, PtrTy, Chain); 5357 MachinePointerInfo MPInfo(GV); 5358 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5359 unsigned Flags = MachineMemOperand::MOLoad | 5360 MachineMemOperand::MOInvariant; 5361 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5362 PtrTy.getSizeInBits() / 8, 5363 DAG.getEVTAlignment(PtrTy)); 5364 Node->setMemRefs(MemRefs, MemRefs + 1); 5365 5366 // Copy the guard value to a virtual register so that it can be 5367 // retrieved in the epilogue. 5368 Src = SDValue(Node, 0); 5369 const TargetRegisterClass *RC = 5370 TLI.getRegClassFor(Src.getSimpleValueType()); 5371 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5372 5373 SPDescriptor.setGuardReg(Reg); 5374 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5375 } else { 5376 Src = getValue(I.getArgOperand(0)); // The guard's value. 5377 } 5378 5379 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5380 5381 int FI = FuncInfo.StaticAllocaMap[Slot]; 5382 MFI->setStackProtectorIndex(FI); 5383 5384 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5385 5386 // Store the stack protector onto the stack. 5387 Res = DAG.getStore(Chain, sdl, Src, FIN, 5388 MachinePointerInfo::getFixedStack(FI), 5389 true, false, 0); 5390 setValue(&I, Res); 5391 DAG.setRoot(Res); 5392 return nullptr; 5393 } 5394 case Intrinsic::objectsize: { 5395 // If we don't know by now, we're never going to know. 5396 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5397 5398 assert(CI && "Non-constant type in __builtin_object_size?"); 5399 5400 SDValue Arg = getValue(I.getCalledValue()); 5401 EVT Ty = Arg.getValueType(); 5402 5403 if (CI->isZero()) 5404 Res = DAG.getConstant(-1ULL, Ty); 5405 else 5406 Res = DAG.getConstant(0, Ty); 5407 5408 setValue(&I, Res); 5409 return nullptr; 5410 } 5411 case Intrinsic::annotation: 5412 case Intrinsic::ptr_annotation: 5413 // Drop the intrinsic, but forward the value 5414 setValue(&I, getValue(I.getOperand(0))); 5415 return nullptr; 5416 case Intrinsic::assume: 5417 case Intrinsic::var_annotation: 5418 // Discard annotate attributes and assumptions 5419 return nullptr; 5420 5421 case Intrinsic::init_trampoline: { 5422 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5423 5424 SDValue Ops[6]; 5425 Ops[0] = getRoot(); 5426 Ops[1] = getValue(I.getArgOperand(0)); 5427 Ops[2] = getValue(I.getArgOperand(1)); 5428 Ops[3] = getValue(I.getArgOperand(2)); 5429 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5430 Ops[5] = DAG.getSrcValue(F); 5431 5432 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5433 5434 DAG.setRoot(Res); 5435 return nullptr; 5436 } 5437 case Intrinsic::adjust_trampoline: { 5438 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5439 TLI.getPointerTy(), 5440 getValue(I.getArgOperand(0)))); 5441 return nullptr; 5442 } 5443 case Intrinsic::gcroot: 5444 if (GFI) { 5445 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5446 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5447 5448 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5449 GFI->addStackRoot(FI->getIndex(), TypeMap); 5450 } 5451 return nullptr; 5452 case Intrinsic::gcread: 5453 case Intrinsic::gcwrite: 5454 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5455 case Intrinsic::flt_rounds: 5456 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5457 return nullptr; 5458 5459 case Intrinsic::expect: { 5460 // Just replace __builtin_expect(exp, c) with EXP. 5461 setValue(&I, getValue(I.getArgOperand(0))); 5462 return nullptr; 5463 } 5464 5465 case Intrinsic::debugtrap: 5466 case Intrinsic::trap: { 5467 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5468 if (TrapFuncName.empty()) { 5469 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5470 ISD::TRAP : ISD::DEBUGTRAP; 5471 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5472 return nullptr; 5473 } 5474 TargetLowering::ArgListTy Args; 5475 5476 TargetLowering::CallLoweringInfo CLI(DAG); 5477 CLI.setDebugLoc(sdl).setChain(getRoot()) 5478 .setCallee(CallingConv::C, I.getType(), 5479 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5480 std::move(Args), 0); 5481 5482 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5483 DAG.setRoot(Result.second); 5484 return nullptr; 5485 } 5486 5487 case Intrinsic::uadd_with_overflow: 5488 case Intrinsic::sadd_with_overflow: 5489 case Intrinsic::usub_with_overflow: 5490 case Intrinsic::ssub_with_overflow: 5491 case Intrinsic::umul_with_overflow: 5492 case Intrinsic::smul_with_overflow: { 5493 ISD::NodeType Op; 5494 switch (Intrinsic) { 5495 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5496 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5497 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5498 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5499 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5500 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5501 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5502 } 5503 SDValue Op1 = getValue(I.getArgOperand(0)); 5504 SDValue Op2 = getValue(I.getArgOperand(1)); 5505 5506 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5507 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5508 return nullptr; 5509 } 5510 case Intrinsic::prefetch: { 5511 SDValue Ops[5]; 5512 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5513 Ops[0] = getRoot(); 5514 Ops[1] = getValue(I.getArgOperand(0)); 5515 Ops[2] = getValue(I.getArgOperand(1)); 5516 Ops[3] = getValue(I.getArgOperand(2)); 5517 Ops[4] = getValue(I.getArgOperand(3)); 5518 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5519 DAG.getVTList(MVT::Other), Ops, 5520 EVT::getIntegerVT(*Context, 8), 5521 MachinePointerInfo(I.getArgOperand(0)), 5522 0, /* align */ 5523 false, /* volatile */ 5524 rw==0, /* read */ 5525 rw==1)); /* write */ 5526 return nullptr; 5527 } 5528 case Intrinsic::lifetime_start: 5529 case Intrinsic::lifetime_end: { 5530 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5531 // Stack coloring is not enabled in O0, discard region information. 5532 if (TM.getOptLevel() == CodeGenOpt::None) 5533 return nullptr; 5534 5535 SmallVector<Value *, 4> Allocas; 5536 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5537 5538 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5539 E = Allocas.end(); Object != E; ++Object) { 5540 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5541 5542 // Could not find an Alloca. 5543 if (!LifetimeObject) 5544 continue; 5545 5546 // First check that the Alloca is static, otherwise it won't have a 5547 // valid frame index. 5548 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5549 if (SI == FuncInfo.StaticAllocaMap.end()) 5550 return nullptr; 5551 5552 int FI = SI->second; 5553 5554 SDValue Ops[2]; 5555 Ops[0] = getRoot(); 5556 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5557 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5558 5559 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5560 DAG.setRoot(Res); 5561 } 5562 return nullptr; 5563 } 5564 case Intrinsic::invariant_start: 5565 // Discard region information. 5566 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5567 return nullptr; 5568 case Intrinsic::invariant_end: 5569 // Discard region information. 5570 return nullptr; 5571 case Intrinsic::stackprotectorcheck: { 5572 // Do not actually emit anything for this basic block. Instead we initialize 5573 // the stack protector descriptor and export the guard variable so we can 5574 // access it in FinishBasicBlock. 5575 const BasicBlock *BB = I.getParent(); 5576 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5577 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5578 5579 // Flush our exports since we are going to process a terminator. 5580 (void)getControlRoot(); 5581 return nullptr; 5582 } 5583 case Intrinsic::clear_cache: 5584 return TLI.getClearCacheBuiltinName(); 5585 case Intrinsic::donothing: 5586 // ignore 5587 return nullptr; 5588 case Intrinsic::experimental_stackmap: { 5589 visitStackmap(I); 5590 return nullptr; 5591 } 5592 case Intrinsic::experimental_patchpoint_void: 5593 case Intrinsic::experimental_patchpoint_i64: { 5594 visitPatchpoint(&I); 5595 return nullptr; 5596 } 5597 case Intrinsic::experimental_gc_statepoint: { 5598 visitStatepoint(I); 5599 return nullptr; 5600 } 5601 case Intrinsic::experimental_gc_result_int: 5602 case Intrinsic::experimental_gc_result_float: 5603 case Intrinsic::experimental_gc_result_ptr: { 5604 visitGCResult(I); 5605 return nullptr; 5606 } 5607 case Intrinsic::experimental_gc_relocate: { 5608 visitGCRelocate(I); 5609 return nullptr; 5610 } 5611 case Intrinsic::instrprof_increment: 5612 llvm_unreachable("instrprof failed to lower an increment"); 5613 5614 case Intrinsic::frameallocate: { 5615 MachineFunction &MF = DAG.getMachineFunction(); 5616 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5617 5618 // Do the allocation and map it as a normal value. 5619 // FIXME: Maybe we should add this to the alloca map so that we don't have 5620 // to register allocate it? 5621 uint64_t Size = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 5622 int Alloc = MF.getFrameInfo()->CreateFrameAllocation(Size); 5623 MVT PtrVT = TLI.getPointerTy(0); 5624 SDValue FIVal = DAG.getFrameIndex(Alloc, PtrVT); 5625 setValue(&I, FIVal); 5626 5627 // Directly emit a FRAME_ALLOC machine instr. Label assignment emission is 5628 // the same on all targets. 5629 MCSymbol *FrameAllocSym = 5630 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName()); 5631 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5632 TII->get(TargetOpcode::FRAME_ALLOC)) 5633 .addSym(FrameAllocSym) 5634 .addFrameIndex(Alloc); 5635 5636 return nullptr; 5637 } 5638 5639 case Intrinsic::framerecover: { 5640 // i8* @llvm.framerecover(i8* %fn, i8* %fp) 5641 MachineFunction &MF = DAG.getMachineFunction(); 5642 MVT PtrVT = TLI.getPointerTy(0); 5643 5644 // Get the symbol that defines the frame offset. 5645 Function *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5646 MCSymbol *FrameAllocSym = 5647 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName()); 5648 5649 // Create a TargetExternalSymbol for the label to avoid any target lowering 5650 // that would make this PC relative. 5651 StringRef Name = FrameAllocSym->getName(); 5652 assert(Name.size() == strlen(Name.data()) && "not null terminated"); 5653 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 5654 SDValue OffsetVal = 5655 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5656 5657 // Add the offset to the FP. 5658 Value *FP = I.getArgOperand(1); 5659 SDValue FPVal = getValue(FP); 5660 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5661 setValue(&I, Add); 5662 5663 return nullptr; 5664 } 5665 } 5666 } 5667 5668 std::pair<SDValue, SDValue> 5669 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5670 MachineBasicBlock *LandingPad) { 5671 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5672 MCSymbol *BeginLabel = nullptr; 5673 5674 if (LandingPad) { 5675 // Insert a label before the invoke call to mark the try range. This can be 5676 // used to detect deletion of the invoke via the MachineModuleInfo. 5677 BeginLabel = MMI.getContext().CreateTempSymbol(); 5678 5679 // For SjLj, keep track of which landing pads go with which invokes 5680 // so as to maintain the ordering of pads in the LSDA. 5681 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5682 if (CallSiteIndex) { 5683 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5684 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5685 5686 // Now that the call site is handled, stop tracking it. 5687 MMI.setCurrentCallSite(0); 5688 } 5689 5690 // Both PendingLoads and PendingExports must be flushed here; 5691 // this call might not return. 5692 (void)getRoot(); 5693 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5694 5695 CLI.setChain(getRoot()); 5696 } 5697 5698 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5699 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5700 5701 assert((CLI.IsTailCall || Result.second.getNode()) && 5702 "Non-null chain expected with non-tail call!"); 5703 assert((Result.second.getNode() || !Result.first.getNode()) && 5704 "Null value expected with tail call!"); 5705 5706 if (!Result.second.getNode()) { 5707 // As a special case, a null chain means that a tail call has been emitted 5708 // and the DAG root is already updated. 5709 HasTailCall = true; 5710 5711 // Since there's no actual continuation from this block, nothing can be 5712 // relying on us setting vregs for them. 5713 PendingExports.clear(); 5714 } else { 5715 DAG.setRoot(Result.second); 5716 } 5717 5718 if (LandingPad) { 5719 // Insert a label at the end of the invoke call to mark the try range. This 5720 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5721 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5722 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5723 5724 // Inform MachineModuleInfo of range. 5725 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5726 } 5727 5728 return Result; 5729 } 5730 5731 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5732 bool isTailCall, 5733 MachineBasicBlock *LandingPad) { 5734 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5735 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5736 Type *RetTy = FTy->getReturnType(); 5737 5738 TargetLowering::ArgListTy Args; 5739 TargetLowering::ArgListEntry Entry; 5740 Args.reserve(CS.arg_size()); 5741 5742 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5743 i != e; ++i) { 5744 const Value *V = *i; 5745 5746 // Skip empty types 5747 if (V->getType()->isEmptyTy()) 5748 continue; 5749 5750 SDValue ArgNode = getValue(V); 5751 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5752 5753 // Skip the first return-type Attribute to get to params. 5754 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5755 Args.push_back(Entry); 5756 } 5757 5758 // Check if target-independent constraints permit a tail call here. 5759 // Target-dependent constraints are checked within TLI->LowerCallTo. 5760 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5761 isTailCall = false; 5762 5763 TargetLowering::CallLoweringInfo CLI(DAG); 5764 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5765 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5766 .setTailCall(isTailCall); 5767 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5768 5769 if (Result.first.getNode()) 5770 setValue(CS.getInstruction(), Result.first); 5771 } 5772 5773 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5774 /// value is equal or not-equal to zero. 5775 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5776 for (const User *U : V->users()) { 5777 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5778 if (IC->isEquality()) 5779 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5780 if (C->isNullValue()) 5781 continue; 5782 // Unknown instruction. 5783 return false; 5784 } 5785 return true; 5786 } 5787 5788 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5789 Type *LoadTy, 5790 SelectionDAGBuilder &Builder) { 5791 5792 // Check to see if this load can be trivially constant folded, e.g. if the 5793 // input is from a string literal. 5794 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5795 // Cast pointer to the type we really want to load. 5796 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5797 PointerType::getUnqual(LoadTy)); 5798 5799 if (const Constant *LoadCst = 5800 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5801 Builder.DL)) 5802 return Builder.getValue(LoadCst); 5803 } 5804 5805 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5806 // still constant memory, the input chain can be the entry node. 5807 SDValue Root; 5808 bool ConstantMemory = false; 5809 5810 // Do not serialize (non-volatile) loads of constant memory with anything. 5811 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5812 Root = Builder.DAG.getEntryNode(); 5813 ConstantMemory = true; 5814 } else { 5815 // Do not serialize non-volatile loads against each other. 5816 Root = Builder.DAG.getRoot(); 5817 } 5818 5819 SDValue Ptr = Builder.getValue(PtrVal); 5820 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5821 Ptr, MachinePointerInfo(PtrVal), 5822 false /*volatile*/, 5823 false /*nontemporal*/, 5824 false /*isinvariant*/, 1 /* align=1 */); 5825 5826 if (!ConstantMemory) 5827 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5828 return LoadVal; 5829 } 5830 5831 /// processIntegerCallValue - Record the value for an instruction that 5832 /// produces an integer result, converting the type where necessary. 5833 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5834 SDValue Value, 5835 bool IsSigned) { 5836 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5837 if (IsSigned) 5838 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5839 else 5840 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5841 setValue(&I, Value); 5842 } 5843 5844 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5845 /// If so, return true and lower it, otherwise return false and it will be 5846 /// lowered like a normal call. 5847 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5848 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5849 if (I.getNumArgOperands() != 3) 5850 return false; 5851 5852 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5853 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5854 !I.getArgOperand(2)->getType()->isIntegerTy() || 5855 !I.getType()->isIntegerTy()) 5856 return false; 5857 5858 const Value *Size = I.getArgOperand(2); 5859 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5860 if (CSize && CSize->getZExtValue() == 0) { 5861 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5862 setValue(&I, DAG.getConstant(0, CallVT)); 5863 return true; 5864 } 5865 5866 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5867 std::pair<SDValue, SDValue> Res = 5868 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5869 getValue(LHS), getValue(RHS), getValue(Size), 5870 MachinePointerInfo(LHS), 5871 MachinePointerInfo(RHS)); 5872 if (Res.first.getNode()) { 5873 processIntegerCallValue(I, Res.first, true); 5874 PendingLoads.push_back(Res.second); 5875 return true; 5876 } 5877 5878 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5879 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5880 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5881 bool ActuallyDoIt = true; 5882 MVT LoadVT; 5883 Type *LoadTy; 5884 switch (CSize->getZExtValue()) { 5885 default: 5886 LoadVT = MVT::Other; 5887 LoadTy = nullptr; 5888 ActuallyDoIt = false; 5889 break; 5890 case 2: 5891 LoadVT = MVT::i16; 5892 LoadTy = Type::getInt16Ty(CSize->getContext()); 5893 break; 5894 case 4: 5895 LoadVT = MVT::i32; 5896 LoadTy = Type::getInt32Ty(CSize->getContext()); 5897 break; 5898 case 8: 5899 LoadVT = MVT::i64; 5900 LoadTy = Type::getInt64Ty(CSize->getContext()); 5901 break; 5902 /* 5903 case 16: 5904 LoadVT = MVT::v4i32; 5905 LoadTy = Type::getInt32Ty(CSize->getContext()); 5906 LoadTy = VectorType::get(LoadTy, 4); 5907 break; 5908 */ 5909 } 5910 5911 // This turns into unaligned loads. We only do this if the target natively 5912 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5913 // we'll only produce a small number of byte loads. 5914 5915 // Require that we can find a legal MVT, and only do this if the target 5916 // supports unaligned loads of that type. Expanding into byte loads would 5917 // bloat the code. 5918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5919 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5920 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5921 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5922 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5923 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5924 // TODO: Check alignment of src and dest ptrs. 5925 if (!TLI.isTypeLegal(LoadVT) || 5926 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5927 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5928 ActuallyDoIt = false; 5929 } 5930 5931 if (ActuallyDoIt) { 5932 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5933 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5934 5935 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5936 ISD::SETNE); 5937 processIntegerCallValue(I, Res, false); 5938 return true; 5939 } 5940 } 5941 5942 5943 return false; 5944 } 5945 5946 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5947 /// form. If so, return true and lower it, otherwise return false and it 5948 /// will be lowered like a normal call. 5949 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5950 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5951 if (I.getNumArgOperands() != 3) 5952 return false; 5953 5954 const Value *Src = I.getArgOperand(0); 5955 const Value *Char = I.getArgOperand(1); 5956 const Value *Length = I.getArgOperand(2); 5957 if (!Src->getType()->isPointerTy() || 5958 !Char->getType()->isIntegerTy() || 5959 !Length->getType()->isIntegerTy() || 5960 !I.getType()->isPointerTy()) 5961 return false; 5962 5963 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5964 std::pair<SDValue, SDValue> Res = 5965 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5966 getValue(Src), getValue(Char), getValue(Length), 5967 MachinePointerInfo(Src)); 5968 if (Res.first.getNode()) { 5969 setValue(&I, Res.first); 5970 PendingLoads.push_back(Res.second); 5971 return true; 5972 } 5973 5974 return false; 5975 } 5976 5977 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5978 /// optimized form. If so, return true and lower it, otherwise return false 5979 /// and it will be lowered like a normal call. 5980 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5981 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5982 if (I.getNumArgOperands() != 2) 5983 return false; 5984 5985 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5986 if (!Arg0->getType()->isPointerTy() || 5987 !Arg1->getType()->isPointerTy() || 5988 !I.getType()->isPointerTy()) 5989 return false; 5990 5991 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5992 std::pair<SDValue, SDValue> Res = 5993 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5994 getValue(Arg0), getValue(Arg1), 5995 MachinePointerInfo(Arg0), 5996 MachinePointerInfo(Arg1), isStpcpy); 5997 if (Res.first.getNode()) { 5998 setValue(&I, Res.first); 5999 DAG.setRoot(Res.second); 6000 return true; 6001 } 6002 6003 return false; 6004 } 6005 6006 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6007 /// If so, return true and lower it, otherwise return false and it will be 6008 /// lowered like a normal call. 6009 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6010 // Verify that the prototype makes sense. int strcmp(void*,void*) 6011 if (I.getNumArgOperands() != 2) 6012 return false; 6013 6014 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6015 if (!Arg0->getType()->isPointerTy() || 6016 !Arg1->getType()->isPointerTy() || 6017 !I.getType()->isIntegerTy()) 6018 return false; 6019 6020 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6021 std::pair<SDValue, SDValue> Res = 6022 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6023 getValue(Arg0), getValue(Arg1), 6024 MachinePointerInfo(Arg0), 6025 MachinePointerInfo(Arg1)); 6026 if (Res.first.getNode()) { 6027 processIntegerCallValue(I, Res.first, true); 6028 PendingLoads.push_back(Res.second); 6029 return true; 6030 } 6031 6032 return false; 6033 } 6034 6035 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6036 /// form. If so, return true and lower it, otherwise return false and it 6037 /// will be lowered like a normal call. 6038 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6039 // Verify that the prototype makes sense. size_t strlen(char *) 6040 if (I.getNumArgOperands() != 1) 6041 return false; 6042 6043 const Value *Arg0 = I.getArgOperand(0); 6044 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6045 return false; 6046 6047 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6048 std::pair<SDValue, SDValue> Res = 6049 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6050 getValue(Arg0), MachinePointerInfo(Arg0)); 6051 if (Res.first.getNode()) { 6052 processIntegerCallValue(I, Res.first, false); 6053 PendingLoads.push_back(Res.second); 6054 return true; 6055 } 6056 6057 return false; 6058 } 6059 6060 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6061 /// form. If so, return true and lower it, otherwise return false and it 6062 /// will be lowered like a normal call. 6063 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6064 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6065 if (I.getNumArgOperands() != 2) 6066 return false; 6067 6068 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6069 if (!Arg0->getType()->isPointerTy() || 6070 !Arg1->getType()->isIntegerTy() || 6071 !I.getType()->isIntegerTy()) 6072 return false; 6073 6074 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6075 std::pair<SDValue, SDValue> Res = 6076 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6077 getValue(Arg0), getValue(Arg1), 6078 MachinePointerInfo(Arg0)); 6079 if (Res.first.getNode()) { 6080 processIntegerCallValue(I, Res.first, false); 6081 PendingLoads.push_back(Res.second); 6082 return true; 6083 } 6084 6085 return false; 6086 } 6087 6088 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6089 /// operation (as expected), translate it to an SDNode with the specified opcode 6090 /// and return true. 6091 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6092 unsigned Opcode) { 6093 // Sanity check that it really is a unary floating-point call. 6094 if (I.getNumArgOperands() != 1 || 6095 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6096 I.getType() != I.getArgOperand(0)->getType() || 6097 !I.onlyReadsMemory()) 6098 return false; 6099 6100 SDValue Tmp = getValue(I.getArgOperand(0)); 6101 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6102 return true; 6103 } 6104 6105 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6106 /// operation (as expected), translate it to an SDNode with the specified opcode 6107 /// and return true. 6108 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6109 unsigned Opcode) { 6110 // Sanity check that it really is a binary floating-point call. 6111 if (I.getNumArgOperands() != 2 || 6112 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6113 I.getType() != I.getArgOperand(0)->getType() || 6114 I.getType() != I.getArgOperand(1)->getType() || 6115 !I.onlyReadsMemory()) 6116 return false; 6117 6118 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6119 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6120 EVT VT = Tmp0.getValueType(); 6121 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6122 return true; 6123 } 6124 6125 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6126 // Handle inline assembly differently. 6127 if (isa<InlineAsm>(I.getCalledValue())) { 6128 visitInlineAsm(&I); 6129 return; 6130 } 6131 6132 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6133 ComputeUsesVAFloatArgument(I, &MMI); 6134 6135 const char *RenameFn = nullptr; 6136 if (Function *F = I.getCalledFunction()) { 6137 if (F->isDeclaration()) { 6138 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6139 if (unsigned IID = II->getIntrinsicID(F)) { 6140 RenameFn = visitIntrinsicCall(I, IID); 6141 if (!RenameFn) 6142 return; 6143 } 6144 } 6145 if (unsigned IID = F->getIntrinsicID()) { 6146 RenameFn = visitIntrinsicCall(I, IID); 6147 if (!RenameFn) 6148 return; 6149 } 6150 } 6151 6152 // Check for well-known libc/libm calls. If the function is internal, it 6153 // can't be a library call. 6154 LibFunc::Func Func; 6155 if (!F->hasLocalLinkage() && F->hasName() && 6156 LibInfo->getLibFunc(F->getName(), Func) && 6157 LibInfo->hasOptimizedCodeGen(Func)) { 6158 switch (Func) { 6159 default: break; 6160 case LibFunc::copysign: 6161 case LibFunc::copysignf: 6162 case LibFunc::copysignl: 6163 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6164 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6165 I.getType() == I.getArgOperand(0)->getType() && 6166 I.getType() == I.getArgOperand(1)->getType() && 6167 I.onlyReadsMemory()) { 6168 SDValue LHS = getValue(I.getArgOperand(0)); 6169 SDValue RHS = getValue(I.getArgOperand(1)); 6170 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6171 LHS.getValueType(), LHS, RHS)); 6172 return; 6173 } 6174 break; 6175 case LibFunc::fabs: 6176 case LibFunc::fabsf: 6177 case LibFunc::fabsl: 6178 if (visitUnaryFloatCall(I, ISD::FABS)) 6179 return; 6180 break; 6181 case LibFunc::fmin: 6182 case LibFunc::fminf: 6183 case LibFunc::fminl: 6184 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6185 return; 6186 break; 6187 case LibFunc::fmax: 6188 case LibFunc::fmaxf: 6189 case LibFunc::fmaxl: 6190 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6191 return; 6192 break; 6193 case LibFunc::sin: 6194 case LibFunc::sinf: 6195 case LibFunc::sinl: 6196 if (visitUnaryFloatCall(I, ISD::FSIN)) 6197 return; 6198 break; 6199 case LibFunc::cos: 6200 case LibFunc::cosf: 6201 case LibFunc::cosl: 6202 if (visitUnaryFloatCall(I, ISD::FCOS)) 6203 return; 6204 break; 6205 case LibFunc::sqrt: 6206 case LibFunc::sqrtf: 6207 case LibFunc::sqrtl: 6208 case LibFunc::sqrt_finite: 6209 case LibFunc::sqrtf_finite: 6210 case LibFunc::sqrtl_finite: 6211 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6212 return; 6213 break; 6214 case LibFunc::floor: 6215 case LibFunc::floorf: 6216 case LibFunc::floorl: 6217 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6218 return; 6219 break; 6220 case LibFunc::nearbyint: 6221 case LibFunc::nearbyintf: 6222 case LibFunc::nearbyintl: 6223 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6224 return; 6225 break; 6226 case LibFunc::ceil: 6227 case LibFunc::ceilf: 6228 case LibFunc::ceill: 6229 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6230 return; 6231 break; 6232 case LibFunc::rint: 6233 case LibFunc::rintf: 6234 case LibFunc::rintl: 6235 if (visitUnaryFloatCall(I, ISD::FRINT)) 6236 return; 6237 break; 6238 case LibFunc::round: 6239 case LibFunc::roundf: 6240 case LibFunc::roundl: 6241 if (visitUnaryFloatCall(I, ISD::FROUND)) 6242 return; 6243 break; 6244 case LibFunc::trunc: 6245 case LibFunc::truncf: 6246 case LibFunc::truncl: 6247 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6248 return; 6249 break; 6250 case LibFunc::log2: 6251 case LibFunc::log2f: 6252 case LibFunc::log2l: 6253 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6254 return; 6255 break; 6256 case LibFunc::exp2: 6257 case LibFunc::exp2f: 6258 case LibFunc::exp2l: 6259 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6260 return; 6261 break; 6262 case LibFunc::memcmp: 6263 if (visitMemCmpCall(I)) 6264 return; 6265 break; 6266 case LibFunc::memchr: 6267 if (visitMemChrCall(I)) 6268 return; 6269 break; 6270 case LibFunc::strcpy: 6271 if (visitStrCpyCall(I, false)) 6272 return; 6273 break; 6274 case LibFunc::stpcpy: 6275 if (visitStrCpyCall(I, true)) 6276 return; 6277 break; 6278 case LibFunc::strcmp: 6279 if (visitStrCmpCall(I)) 6280 return; 6281 break; 6282 case LibFunc::strlen: 6283 if (visitStrLenCall(I)) 6284 return; 6285 break; 6286 case LibFunc::strnlen: 6287 if (visitStrNLenCall(I)) 6288 return; 6289 break; 6290 } 6291 } 6292 } 6293 6294 SDValue Callee; 6295 if (!RenameFn) 6296 Callee = getValue(I.getCalledValue()); 6297 else 6298 Callee = DAG.getExternalSymbol(RenameFn, 6299 DAG.getTargetLoweringInfo().getPointerTy()); 6300 6301 // Check if we can potentially perform a tail call. More detailed checking is 6302 // be done within LowerCallTo, after more information about the call is known. 6303 LowerCallTo(&I, Callee, I.isTailCall()); 6304 } 6305 6306 namespace { 6307 6308 /// AsmOperandInfo - This contains information for each constraint that we are 6309 /// lowering. 6310 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6311 public: 6312 /// CallOperand - If this is the result output operand or a clobber 6313 /// this is null, otherwise it is the incoming operand to the CallInst. 6314 /// This gets modified as the asm is processed. 6315 SDValue CallOperand; 6316 6317 /// AssignedRegs - If this is a register or register class operand, this 6318 /// contains the set of register corresponding to the operand. 6319 RegsForValue AssignedRegs; 6320 6321 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6322 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6323 } 6324 6325 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6326 /// corresponds to. If there is no Value* for this operand, it returns 6327 /// MVT::Other. 6328 EVT getCallOperandValEVT(LLVMContext &Context, 6329 const TargetLowering &TLI, 6330 const DataLayout *DL) const { 6331 if (!CallOperandVal) return MVT::Other; 6332 6333 if (isa<BasicBlock>(CallOperandVal)) 6334 return TLI.getPointerTy(); 6335 6336 llvm::Type *OpTy = CallOperandVal->getType(); 6337 6338 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6339 // If this is an indirect operand, the operand is a pointer to the 6340 // accessed type. 6341 if (isIndirect) { 6342 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6343 if (!PtrTy) 6344 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6345 OpTy = PtrTy->getElementType(); 6346 } 6347 6348 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6349 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6350 if (STy->getNumElements() == 1) 6351 OpTy = STy->getElementType(0); 6352 6353 // If OpTy is not a single value, it may be a struct/union that we 6354 // can tile with integers. 6355 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6356 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6357 switch (BitSize) { 6358 default: break; 6359 case 1: 6360 case 8: 6361 case 16: 6362 case 32: 6363 case 64: 6364 case 128: 6365 OpTy = IntegerType::get(Context, BitSize); 6366 break; 6367 } 6368 } 6369 6370 return TLI.getValueType(OpTy, true); 6371 } 6372 }; 6373 6374 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6375 6376 } // end anonymous namespace 6377 6378 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6379 /// specified operand. We prefer to assign virtual registers, to allow the 6380 /// register allocator to handle the assignment process. However, if the asm 6381 /// uses features that we can't model on machineinstrs, we have SDISel do the 6382 /// allocation. This produces generally horrible, but correct, code. 6383 /// 6384 /// OpInfo describes the operand. 6385 /// 6386 static void GetRegistersForValue(SelectionDAG &DAG, 6387 const TargetLowering &TLI, 6388 SDLoc DL, 6389 SDISelAsmOperandInfo &OpInfo) { 6390 LLVMContext &Context = *DAG.getContext(); 6391 6392 MachineFunction &MF = DAG.getMachineFunction(); 6393 SmallVector<unsigned, 4> Regs; 6394 6395 // If this is a constraint for a single physreg, or a constraint for a 6396 // register class, find it. 6397 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6398 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6399 OpInfo.ConstraintVT); 6400 6401 unsigned NumRegs = 1; 6402 if (OpInfo.ConstraintVT != MVT::Other) { 6403 // If this is a FP input in an integer register (or visa versa) insert a bit 6404 // cast of the input value. More generally, handle any case where the input 6405 // value disagrees with the register class we plan to stick this in. 6406 if (OpInfo.Type == InlineAsm::isInput && 6407 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6408 // Try to convert to the first EVT that the reg class contains. If the 6409 // types are identical size, use a bitcast to convert (e.g. two differing 6410 // vector types). 6411 MVT RegVT = *PhysReg.second->vt_begin(); 6412 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6413 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6414 RegVT, OpInfo.CallOperand); 6415 OpInfo.ConstraintVT = RegVT; 6416 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6417 // If the input is a FP value and we want it in FP registers, do a 6418 // bitcast to the corresponding integer type. This turns an f64 value 6419 // into i64, which can be passed with two i32 values on a 32-bit 6420 // machine. 6421 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6422 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6423 RegVT, OpInfo.CallOperand); 6424 OpInfo.ConstraintVT = RegVT; 6425 } 6426 } 6427 6428 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6429 } 6430 6431 MVT RegVT; 6432 EVT ValueVT = OpInfo.ConstraintVT; 6433 6434 // If this is a constraint for a specific physical register, like {r17}, 6435 // assign it now. 6436 if (unsigned AssignedReg = PhysReg.first) { 6437 const TargetRegisterClass *RC = PhysReg.second; 6438 if (OpInfo.ConstraintVT == MVT::Other) 6439 ValueVT = *RC->vt_begin(); 6440 6441 // Get the actual register value type. This is important, because the user 6442 // may have asked for (e.g.) the AX register in i32 type. We need to 6443 // remember that AX is actually i16 to get the right extension. 6444 RegVT = *RC->vt_begin(); 6445 6446 // This is a explicit reference to a physical register. 6447 Regs.push_back(AssignedReg); 6448 6449 // If this is an expanded reference, add the rest of the regs to Regs. 6450 if (NumRegs != 1) { 6451 TargetRegisterClass::iterator I = RC->begin(); 6452 for (; *I != AssignedReg; ++I) 6453 assert(I != RC->end() && "Didn't find reg!"); 6454 6455 // Already added the first reg. 6456 --NumRegs; ++I; 6457 for (; NumRegs; --NumRegs, ++I) { 6458 assert(I != RC->end() && "Ran out of registers to allocate!"); 6459 Regs.push_back(*I); 6460 } 6461 } 6462 6463 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6464 return; 6465 } 6466 6467 // Otherwise, if this was a reference to an LLVM register class, create vregs 6468 // for this reference. 6469 if (const TargetRegisterClass *RC = PhysReg.second) { 6470 RegVT = *RC->vt_begin(); 6471 if (OpInfo.ConstraintVT == MVT::Other) 6472 ValueVT = RegVT; 6473 6474 // Create the appropriate number of virtual registers. 6475 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6476 for (; NumRegs; --NumRegs) 6477 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6478 6479 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6480 return; 6481 } 6482 6483 // Otherwise, we couldn't allocate enough registers for this. 6484 } 6485 6486 /// visitInlineAsm - Handle a call to an InlineAsm object. 6487 /// 6488 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6489 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6490 6491 /// ConstraintOperands - Information about all of the constraints. 6492 SDISelAsmOperandInfoVector ConstraintOperands; 6493 6494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6495 TargetLowering::AsmOperandInfoVector 6496 TargetConstraints = TLI.ParseConstraints(CS); 6497 6498 bool hasMemory = false; 6499 6500 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6501 unsigned ResNo = 0; // ResNo - The result number of the next output. 6502 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6503 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6504 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6505 6506 MVT OpVT = MVT::Other; 6507 6508 // Compute the value type for each operand. 6509 switch (OpInfo.Type) { 6510 case InlineAsm::isOutput: 6511 // Indirect outputs just consume an argument. 6512 if (OpInfo.isIndirect) { 6513 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6514 break; 6515 } 6516 6517 // The return value of the call is this value. As such, there is no 6518 // corresponding argument. 6519 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6520 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6521 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6522 } else { 6523 assert(ResNo == 0 && "Asm only has one result!"); 6524 OpVT = TLI.getSimpleValueType(CS.getType()); 6525 } 6526 ++ResNo; 6527 break; 6528 case InlineAsm::isInput: 6529 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6530 break; 6531 case InlineAsm::isClobber: 6532 // Nothing to do. 6533 break; 6534 } 6535 6536 // If this is an input or an indirect output, process the call argument. 6537 // BasicBlocks are labels, currently appearing only in asm's. 6538 if (OpInfo.CallOperandVal) { 6539 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6540 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6541 } else { 6542 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6543 } 6544 6545 OpVT = 6546 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6547 } 6548 6549 OpInfo.ConstraintVT = OpVT; 6550 6551 // Indirect operand accesses access memory. 6552 if (OpInfo.isIndirect) 6553 hasMemory = true; 6554 else { 6555 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6556 TargetLowering::ConstraintType 6557 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6558 if (CType == TargetLowering::C_Memory) { 6559 hasMemory = true; 6560 break; 6561 } 6562 } 6563 } 6564 } 6565 6566 SDValue Chain, Flag; 6567 6568 // We won't need to flush pending loads if this asm doesn't touch 6569 // memory and is nonvolatile. 6570 if (hasMemory || IA->hasSideEffects()) 6571 Chain = getRoot(); 6572 else 6573 Chain = DAG.getRoot(); 6574 6575 // Second pass over the constraints: compute which constraint option to use 6576 // and assign registers to constraints that want a specific physreg. 6577 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6578 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6579 6580 // If this is an output operand with a matching input operand, look up the 6581 // matching input. If their types mismatch, e.g. one is an integer, the 6582 // other is floating point, or their sizes are different, flag it as an 6583 // error. 6584 if (OpInfo.hasMatchingInput()) { 6585 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6586 6587 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6588 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6589 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6590 OpInfo.ConstraintVT); 6591 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6592 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6593 Input.ConstraintVT); 6594 if ((OpInfo.ConstraintVT.isInteger() != 6595 Input.ConstraintVT.isInteger()) || 6596 (MatchRC.second != InputRC.second)) { 6597 report_fatal_error("Unsupported asm: input constraint" 6598 " with a matching output constraint of" 6599 " incompatible type!"); 6600 } 6601 Input.ConstraintVT = OpInfo.ConstraintVT; 6602 } 6603 } 6604 6605 // Compute the constraint code and ConstraintType to use. 6606 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6607 6608 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6609 OpInfo.Type == InlineAsm::isClobber) 6610 continue; 6611 6612 // If this is a memory input, and if the operand is not indirect, do what we 6613 // need to to provide an address for the memory input. 6614 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6615 !OpInfo.isIndirect) { 6616 assert((OpInfo.isMultipleAlternative || 6617 (OpInfo.Type == InlineAsm::isInput)) && 6618 "Can only indirectify direct input operands!"); 6619 6620 // Memory operands really want the address of the value. If we don't have 6621 // an indirect input, put it in the constpool if we can, otherwise spill 6622 // it to a stack slot. 6623 // TODO: This isn't quite right. We need to handle these according to 6624 // the addressing mode that the constraint wants. Also, this may take 6625 // an additional register for the computation and we don't want that 6626 // either. 6627 6628 // If the operand is a float, integer, or vector constant, spill to a 6629 // constant pool entry to get its address. 6630 const Value *OpVal = OpInfo.CallOperandVal; 6631 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6632 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6633 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6634 TLI.getPointerTy()); 6635 } else { 6636 // Otherwise, create a stack slot and emit a store to it before the 6637 // asm. 6638 Type *Ty = OpVal->getType(); 6639 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6640 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6641 MachineFunction &MF = DAG.getMachineFunction(); 6642 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6643 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6644 Chain = DAG.getStore(Chain, getCurSDLoc(), 6645 OpInfo.CallOperand, StackSlot, 6646 MachinePointerInfo::getFixedStack(SSFI), 6647 false, false, 0); 6648 OpInfo.CallOperand = StackSlot; 6649 } 6650 6651 // There is no longer a Value* corresponding to this operand. 6652 OpInfo.CallOperandVal = nullptr; 6653 6654 // It is now an indirect operand. 6655 OpInfo.isIndirect = true; 6656 } 6657 6658 // If this constraint is for a specific register, allocate it before 6659 // anything else. 6660 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6661 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6662 } 6663 6664 // Second pass - Loop over all of the operands, assigning virtual or physregs 6665 // to register class operands. 6666 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6667 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6668 6669 // C_Register operands have already been allocated, Other/Memory don't need 6670 // to be. 6671 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6672 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6673 } 6674 6675 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6676 std::vector<SDValue> AsmNodeOperands; 6677 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6678 AsmNodeOperands.push_back( 6679 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6680 TLI.getPointerTy())); 6681 6682 // If we have a !srcloc metadata node associated with it, we want to attach 6683 // this to the ultimately generated inline asm machineinstr. To do this, we 6684 // pass in the third operand as this (potentially null) inline asm MDNode. 6685 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6686 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6687 6688 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6689 // bits as operand 3. 6690 unsigned ExtraInfo = 0; 6691 if (IA->hasSideEffects()) 6692 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6693 if (IA->isAlignStack()) 6694 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6695 // Set the asm dialect. 6696 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6697 6698 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6699 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6700 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6701 6702 // Compute the constraint code and ConstraintType to use. 6703 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6704 6705 // Ideally, we would only check against memory constraints. However, the 6706 // meaning of an other constraint can be target-specific and we can't easily 6707 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6708 // for other constriants as well. 6709 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6710 OpInfo.ConstraintType == TargetLowering::C_Other) { 6711 if (OpInfo.Type == InlineAsm::isInput) 6712 ExtraInfo |= InlineAsm::Extra_MayLoad; 6713 else if (OpInfo.Type == InlineAsm::isOutput) 6714 ExtraInfo |= InlineAsm::Extra_MayStore; 6715 else if (OpInfo.Type == InlineAsm::isClobber) 6716 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6717 } 6718 } 6719 6720 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6721 TLI.getPointerTy())); 6722 6723 // Loop over all of the inputs, copying the operand values into the 6724 // appropriate registers and processing the output regs. 6725 RegsForValue RetValRegs; 6726 6727 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6728 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6729 6730 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6731 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6732 6733 switch (OpInfo.Type) { 6734 case InlineAsm::isOutput: { 6735 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6736 OpInfo.ConstraintType != TargetLowering::C_Register) { 6737 // Memory output, or 'other' output (e.g. 'X' constraint). 6738 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6739 6740 // Add information to the INLINEASM node to know about this output. 6741 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6742 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6743 TLI.getPointerTy())); 6744 AsmNodeOperands.push_back(OpInfo.CallOperand); 6745 break; 6746 } 6747 6748 // Otherwise, this is a register or register class output. 6749 6750 // Copy the output from the appropriate register. Find a register that 6751 // we can use. 6752 if (OpInfo.AssignedRegs.Regs.empty()) { 6753 LLVMContext &Ctx = *DAG.getContext(); 6754 Ctx.emitError(CS.getInstruction(), 6755 "couldn't allocate output register for constraint '" + 6756 Twine(OpInfo.ConstraintCode) + "'"); 6757 return; 6758 } 6759 6760 // If this is an indirect operand, store through the pointer after the 6761 // asm. 6762 if (OpInfo.isIndirect) { 6763 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6764 OpInfo.CallOperandVal)); 6765 } else { 6766 // This is the result value of the call. 6767 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6768 // Concatenate this output onto the outputs list. 6769 RetValRegs.append(OpInfo.AssignedRegs); 6770 } 6771 6772 // Add information to the INLINEASM node to know that this register is 6773 // set. 6774 OpInfo.AssignedRegs 6775 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6776 ? InlineAsm::Kind_RegDefEarlyClobber 6777 : InlineAsm::Kind_RegDef, 6778 false, 0, DAG, AsmNodeOperands); 6779 break; 6780 } 6781 case InlineAsm::isInput: { 6782 SDValue InOperandVal = OpInfo.CallOperand; 6783 6784 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6785 // If this is required to match an output register we have already set, 6786 // just use its register. 6787 unsigned OperandNo = OpInfo.getMatchedOperand(); 6788 6789 // Scan until we find the definition we already emitted of this operand. 6790 // When we find it, create a RegsForValue operand. 6791 unsigned CurOp = InlineAsm::Op_FirstOperand; 6792 for (; OperandNo; --OperandNo) { 6793 // Advance to the next operand. 6794 unsigned OpFlag = 6795 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6796 assert((InlineAsm::isRegDefKind(OpFlag) || 6797 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6798 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6799 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6800 } 6801 6802 unsigned OpFlag = 6803 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6804 if (InlineAsm::isRegDefKind(OpFlag) || 6805 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6806 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6807 if (OpInfo.isIndirect) { 6808 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6809 LLVMContext &Ctx = *DAG.getContext(); 6810 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6811 " don't know how to handle tied " 6812 "indirect register inputs"); 6813 return; 6814 } 6815 6816 RegsForValue MatchedRegs; 6817 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6818 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6819 MatchedRegs.RegVTs.push_back(RegVT); 6820 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6821 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6822 i != e; ++i) { 6823 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6824 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6825 else { 6826 LLVMContext &Ctx = *DAG.getContext(); 6827 Ctx.emitError(CS.getInstruction(), 6828 "inline asm error: This value" 6829 " type register class is not natively supported!"); 6830 return; 6831 } 6832 } 6833 // Use the produced MatchedRegs object to 6834 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6835 Chain, &Flag, CS.getInstruction()); 6836 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6837 true, OpInfo.getMatchedOperand(), 6838 DAG, AsmNodeOperands); 6839 break; 6840 } 6841 6842 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6843 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6844 "Unexpected number of operands"); 6845 // Add information to the INLINEASM node to know about this input. 6846 // See InlineAsm.h isUseOperandTiedToDef. 6847 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6848 OpInfo.getMatchedOperand()); 6849 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6850 TLI.getPointerTy())); 6851 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6852 break; 6853 } 6854 6855 // Treat indirect 'X' constraint as memory. 6856 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6857 OpInfo.isIndirect) 6858 OpInfo.ConstraintType = TargetLowering::C_Memory; 6859 6860 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6861 std::vector<SDValue> Ops; 6862 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6863 Ops, DAG); 6864 if (Ops.empty()) { 6865 LLVMContext &Ctx = *DAG.getContext(); 6866 Ctx.emitError(CS.getInstruction(), 6867 "invalid operand for inline asm constraint '" + 6868 Twine(OpInfo.ConstraintCode) + "'"); 6869 return; 6870 } 6871 6872 // Add information to the INLINEASM node to know about this input. 6873 unsigned ResOpType = 6874 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6875 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6876 TLI.getPointerTy())); 6877 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6878 break; 6879 } 6880 6881 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6882 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6883 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6884 "Memory operands expect pointer values"); 6885 6886 // Add information to the INLINEASM node to know about this input. 6887 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6888 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6889 TLI.getPointerTy())); 6890 AsmNodeOperands.push_back(InOperandVal); 6891 break; 6892 } 6893 6894 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6895 OpInfo.ConstraintType == TargetLowering::C_Register) && 6896 "Unknown constraint type!"); 6897 6898 // TODO: Support this. 6899 if (OpInfo.isIndirect) { 6900 LLVMContext &Ctx = *DAG.getContext(); 6901 Ctx.emitError(CS.getInstruction(), 6902 "Don't know how to handle indirect register inputs yet " 6903 "for constraint '" + 6904 Twine(OpInfo.ConstraintCode) + "'"); 6905 return; 6906 } 6907 6908 // Copy the input into the appropriate registers. 6909 if (OpInfo.AssignedRegs.Regs.empty()) { 6910 LLVMContext &Ctx = *DAG.getContext(); 6911 Ctx.emitError(CS.getInstruction(), 6912 "couldn't allocate input reg for constraint '" + 6913 Twine(OpInfo.ConstraintCode) + "'"); 6914 return; 6915 } 6916 6917 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6918 Chain, &Flag, CS.getInstruction()); 6919 6920 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6921 DAG, AsmNodeOperands); 6922 break; 6923 } 6924 case InlineAsm::isClobber: { 6925 // Add the clobbered value to the operand list, so that the register 6926 // allocator is aware that the physreg got clobbered. 6927 if (!OpInfo.AssignedRegs.Regs.empty()) 6928 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6929 false, 0, DAG, 6930 AsmNodeOperands); 6931 break; 6932 } 6933 } 6934 } 6935 6936 // Finish up input operands. Set the input chain and add the flag last. 6937 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6938 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6939 6940 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6941 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6942 Flag = Chain.getValue(1); 6943 6944 // If this asm returns a register value, copy the result from that register 6945 // and set it as the value of the call. 6946 if (!RetValRegs.Regs.empty()) { 6947 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6948 Chain, &Flag, CS.getInstruction()); 6949 6950 // FIXME: Why don't we do this for inline asms with MRVs? 6951 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6952 EVT ResultType = TLI.getValueType(CS.getType()); 6953 6954 // If any of the results of the inline asm is a vector, it may have the 6955 // wrong width/num elts. This can happen for register classes that can 6956 // contain multiple different value types. The preg or vreg allocated may 6957 // not have the same VT as was expected. Convert it to the right type 6958 // with bit_convert. 6959 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6960 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6961 ResultType, Val); 6962 6963 } else if (ResultType != Val.getValueType() && 6964 ResultType.isInteger() && Val.getValueType().isInteger()) { 6965 // If a result value was tied to an input value, the computed result may 6966 // have a wider width than the expected result. Extract the relevant 6967 // portion. 6968 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6969 } 6970 6971 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6972 } 6973 6974 setValue(CS.getInstruction(), Val); 6975 // Don't need to use this as a chain in this case. 6976 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6977 return; 6978 } 6979 6980 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6981 6982 // Process indirect outputs, first output all of the flagged copies out of 6983 // physregs. 6984 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6985 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6986 const Value *Ptr = IndirectStoresToEmit[i].second; 6987 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6988 Chain, &Flag, IA); 6989 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6990 } 6991 6992 // Emit the non-flagged stores from the physregs. 6993 SmallVector<SDValue, 8> OutChains; 6994 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6995 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6996 StoresToEmit[i].first, 6997 getValue(StoresToEmit[i].second), 6998 MachinePointerInfo(StoresToEmit[i].second), 6999 false, false, 0); 7000 OutChains.push_back(Val); 7001 } 7002 7003 if (!OutChains.empty()) 7004 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7005 7006 DAG.setRoot(Chain); 7007 } 7008 7009 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7010 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7011 MVT::Other, getRoot(), 7012 getValue(I.getArgOperand(0)), 7013 DAG.getSrcValue(I.getArgOperand(0)))); 7014 } 7015 7016 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7018 const DataLayout &DL = *TLI.getDataLayout(); 7019 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 7020 getRoot(), getValue(I.getOperand(0)), 7021 DAG.getSrcValue(I.getOperand(0)), 7022 DL.getABITypeAlignment(I.getType())); 7023 setValue(&I, V); 7024 DAG.setRoot(V.getValue(1)); 7025 } 7026 7027 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7028 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7029 MVT::Other, getRoot(), 7030 getValue(I.getArgOperand(0)), 7031 DAG.getSrcValue(I.getArgOperand(0)))); 7032 } 7033 7034 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7035 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7036 MVT::Other, getRoot(), 7037 getValue(I.getArgOperand(0)), 7038 getValue(I.getArgOperand(1)), 7039 DAG.getSrcValue(I.getArgOperand(0)), 7040 DAG.getSrcValue(I.getArgOperand(1)))); 7041 } 7042 7043 /// \brief Lower an argument list according to the target calling convention. 7044 /// 7045 /// \return A tuple of <return-value, token-chain> 7046 /// 7047 /// This is a helper for lowering intrinsics that follow a target calling 7048 /// convention or require stack pointer adjustment. Only a subset of the 7049 /// intrinsic's operands need to participate in the calling convention. 7050 std::pair<SDValue, SDValue> 7051 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 7052 unsigned NumArgs, SDValue Callee, 7053 bool UseVoidTy, 7054 MachineBasicBlock *LandingPad, 7055 bool IsPatchPoint) { 7056 TargetLowering::ArgListTy Args; 7057 Args.reserve(NumArgs); 7058 7059 // Populate the argument list. 7060 // Attributes for args start at offset 1, after the return attribute. 7061 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7062 ArgI != ArgE; ++ArgI) { 7063 const Value *V = CS->getOperand(ArgI); 7064 7065 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7066 7067 TargetLowering::ArgListEntry Entry; 7068 Entry.Node = getValue(V); 7069 Entry.Ty = V->getType(); 7070 Entry.setAttributes(&CS, AttrI); 7071 Args.push_back(Entry); 7072 } 7073 7074 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7075 TargetLowering::CallLoweringInfo CLI(DAG); 7076 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 7077 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 7078 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 7079 7080 return lowerInvokable(CLI, LandingPad); 7081 } 7082 7083 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7084 /// or patchpoint target node's operand list. 7085 /// 7086 /// Constants are converted to TargetConstants purely as an optimization to 7087 /// avoid constant materialization and register allocation. 7088 /// 7089 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7090 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7091 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7092 /// address materialization and register allocation, but may also be required 7093 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7094 /// alloca in the entry block, then the runtime may assume that the alloca's 7095 /// StackMap location can be read immediately after compilation and that the 7096 /// location is valid at any point during execution (this is similar to the 7097 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7098 /// only available in a register, then the runtime would need to trap when 7099 /// execution reaches the StackMap in order to read the alloca's location. 7100 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7101 SmallVectorImpl<SDValue> &Ops, 7102 SelectionDAGBuilder &Builder) { 7103 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7104 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7105 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7106 Ops.push_back( 7107 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 7108 Ops.push_back( 7109 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 7110 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7111 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7112 Ops.push_back( 7113 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 7114 } else 7115 Ops.push_back(OpVal); 7116 } 7117 } 7118 7119 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7120 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7121 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7122 // [live variables...]) 7123 7124 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7125 7126 SDValue Chain, InFlag, Callee, NullPtr; 7127 SmallVector<SDValue, 32> Ops; 7128 7129 SDLoc DL = getCurSDLoc(); 7130 Callee = getValue(CI.getCalledValue()); 7131 NullPtr = DAG.getIntPtrConstant(0, true); 7132 7133 // The stackmap intrinsic only records the live variables (the arguemnts 7134 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7135 // intrinsic, this won't be lowered to a function call. This means we don't 7136 // have to worry about calling conventions and target specific lowering code. 7137 // Instead we perform the call lowering right here. 7138 // 7139 // chain, flag = CALLSEQ_START(chain, 0) 7140 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7141 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7142 // 7143 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7144 InFlag = Chain.getValue(1); 7145 7146 // Add the <id> and <numBytes> constants. 7147 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7148 Ops.push_back(DAG.getTargetConstant( 7149 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7150 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7151 Ops.push_back(DAG.getTargetConstant( 7152 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7153 7154 // Push live variables for the stack map. 7155 addStackMapLiveVars(&CI, 2, Ops, *this); 7156 7157 // We are not pushing any register mask info here on the operands list, 7158 // because the stackmap doesn't clobber anything. 7159 7160 // Push the chain and the glue flag. 7161 Ops.push_back(Chain); 7162 Ops.push_back(InFlag); 7163 7164 // Create the STACKMAP node. 7165 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7166 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7167 Chain = SDValue(SM, 0); 7168 InFlag = Chain.getValue(1); 7169 7170 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7171 7172 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7173 7174 // Set the root to the target-lowered call chain. 7175 DAG.setRoot(Chain); 7176 7177 // Inform the Frame Information that we have a stackmap in this function. 7178 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7179 } 7180 7181 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7182 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7183 MachineBasicBlock *LandingPad) { 7184 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7185 // i32 <numBytes>, 7186 // i8* <target>, 7187 // i32 <numArgs>, 7188 // [Args...], 7189 // [live variables...]) 7190 7191 CallingConv::ID CC = CS.getCallingConv(); 7192 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7193 bool HasDef = !CS->getType()->isVoidTy(); 7194 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7195 7196 // Get the real number of arguments participating in the call <numArgs> 7197 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7198 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7199 7200 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7201 // Intrinsics include all meta-operands up to but not including CC. 7202 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7203 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7204 "Not enough arguments provided to the patchpoint intrinsic"); 7205 7206 // For AnyRegCC the arguments are lowered later on manually. 7207 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7208 std::pair<SDValue, SDValue> Result = 7209 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7210 LandingPad, true); 7211 7212 SDNode *CallEnd = Result.second.getNode(); 7213 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7214 CallEnd = CallEnd->getOperand(0).getNode(); 7215 7216 /// Get a call instruction from the call sequence chain. 7217 /// Tail calls are not allowed. 7218 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7219 "Expected a callseq node."); 7220 SDNode *Call = CallEnd->getOperand(0).getNode(); 7221 bool HasGlue = Call->getGluedNode(); 7222 7223 // Replace the target specific call node with the patchable intrinsic. 7224 SmallVector<SDValue, 8> Ops; 7225 7226 // Add the <id> and <numBytes> constants. 7227 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7228 Ops.push_back(DAG.getTargetConstant( 7229 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7230 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7231 Ops.push_back(DAG.getTargetConstant( 7232 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7233 7234 // Assume that the Callee is a constant address. 7235 // FIXME: handle function symbols in the future. 7236 Ops.push_back( 7237 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7238 /*isTarget=*/true)); 7239 7240 // Adjust <numArgs> to account for any arguments that have been passed on the 7241 // stack instead. 7242 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7243 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7244 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7245 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7246 7247 // Add the calling convention 7248 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7249 7250 // Add the arguments we omitted previously. The register allocator should 7251 // place these in any free register. 7252 if (IsAnyRegCC) 7253 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7254 Ops.push_back(getValue(CS.getArgument(i))); 7255 7256 // Push the arguments from the call instruction up to the register mask. 7257 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7258 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7259 Ops.push_back(*i); 7260 7261 // Push live variables for the stack map. 7262 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7263 7264 // Push the register mask info. 7265 if (HasGlue) 7266 Ops.push_back(*(Call->op_end()-2)); 7267 else 7268 Ops.push_back(*(Call->op_end()-1)); 7269 7270 // Push the chain (this is originally the first operand of the call, but 7271 // becomes now the last or second to last operand). 7272 Ops.push_back(*(Call->op_begin())); 7273 7274 // Push the glue flag (last operand). 7275 if (HasGlue) 7276 Ops.push_back(*(Call->op_end()-1)); 7277 7278 SDVTList NodeTys; 7279 if (IsAnyRegCC && HasDef) { 7280 // Create the return types based on the intrinsic definition 7281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7282 SmallVector<EVT, 3> ValueVTs; 7283 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7284 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7285 7286 // There is always a chain and a glue type at the end 7287 ValueVTs.push_back(MVT::Other); 7288 ValueVTs.push_back(MVT::Glue); 7289 NodeTys = DAG.getVTList(ValueVTs); 7290 } else 7291 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7292 7293 // Replace the target specific call node with a PATCHPOINT node. 7294 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7295 getCurSDLoc(), NodeTys, Ops); 7296 7297 // Update the NodeMap. 7298 if (HasDef) { 7299 if (IsAnyRegCC) 7300 setValue(CS.getInstruction(), SDValue(MN, 0)); 7301 else 7302 setValue(CS.getInstruction(), Result.first); 7303 } 7304 7305 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7306 // call sequence. Furthermore the location of the chain and glue can change 7307 // when the AnyReg calling convention is used and the intrinsic returns a 7308 // value. 7309 if (IsAnyRegCC && HasDef) { 7310 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7311 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7312 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7313 } else 7314 DAG.ReplaceAllUsesWith(Call, MN); 7315 DAG.DeleteNode(Call); 7316 7317 // Inform the Frame Information that we have a patchpoint in this function. 7318 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7319 } 7320 7321 /// Returns an AttributeSet representing the attributes applied to the return 7322 /// value of the given call. 7323 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7324 SmallVector<Attribute::AttrKind, 2> Attrs; 7325 if (CLI.RetSExt) 7326 Attrs.push_back(Attribute::SExt); 7327 if (CLI.RetZExt) 7328 Attrs.push_back(Attribute::ZExt); 7329 if (CLI.IsInReg) 7330 Attrs.push_back(Attribute::InReg); 7331 7332 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7333 Attrs); 7334 } 7335 7336 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7337 /// implementation, which just calls LowerCall. 7338 /// FIXME: When all targets are 7339 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7340 std::pair<SDValue, SDValue> 7341 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7342 // Handle the incoming return values from the call. 7343 CLI.Ins.clear(); 7344 Type *OrigRetTy = CLI.RetTy; 7345 SmallVector<EVT, 4> RetTys; 7346 SmallVector<uint64_t, 4> Offsets; 7347 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7348 7349 SmallVector<ISD::OutputArg, 4> Outs; 7350 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7351 7352 bool CanLowerReturn = 7353 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7354 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7355 7356 SDValue DemoteStackSlot; 7357 int DemoteStackIdx = -100; 7358 if (!CanLowerReturn) { 7359 // FIXME: equivalent assert? 7360 // assert(!CS.hasInAllocaArgument() && 7361 // "sret demotion is incompatible with inalloca"); 7362 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7363 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7364 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7365 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7366 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7367 7368 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7369 ArgListEntry Entry; 7370 Entry.Node = DemoteStackSlot; 7371 Entry.Ty = StackSlotPtrType; 7372 Entry.isSExt = false; 7373 Entry.isZExt = false; 7374 Entry.isInReg = false; 7375 Entry.isSRet = true; 7376 Entry.isNest = false; 7377 Entry.isByVal = false; 7378 Entry.isReturned = false; 7379 Entry.Alignment = Align; 7380 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7381 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7382 } else { 7383 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7384 EVT VT = RetTys[I]; 7385 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7386 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7387 for (unsigned i = 0; i != NumRegs; ++i) { 7388 ISD::InputArg MyFlags; 7389 MyFlags.VT = RegisterVT; 7390 MyFlags.ArgVT = VT; 7391 MyFlags.Used = CLI.IsReturnValueUsed; 7392 if (CLI.RetSExt) 7393 MyFlags.Flags.setSExt(); 7394 if (CLI.RetZExt) 7395 MyFlags.Flags.setZExt(); 7396 if (CLI.IsInReg) 7397 MyFlags.Flags.setInReg(); 7398 CLI.Ins.push_back(MyFlags); 7399 } 7400 } 7401 } 7402 7403 // Handle all of the outgoing arguments. 7404 CLI.Outs.clear(); 7405 CLI.OutVals.clear(); 7406 ArgListTy &Args = CLI.getArgs(); 7407 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7408 SmallVector<EVT, 4> ValueVTs; 7409 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7410 Type *FinalType = Args[i].Ty; 7411 if (Args[i].isByVal) 7412 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7413 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7414 FinalType, CLI.CallConv, CLI.IsVarArg); 7415 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7416 ++Value) { 7417 EVT VT = ValueVTs[Value]; 7418 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7419 SDValue Op = SDValue(Args[i].Node.getNode(), 7420 Args[i].Node.getResNo() + Value); 7421 ISD::ArgFlagsTy Flags; 7422 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7423 7424 if (Args[i].isZExt) 7425 Flags.setZExt(); 7426 if (Args[i].isSExt) 7427 Flags.setSExt(); 7428 if (Args[i].isInReg) 7429 Flags.setInReg(); 7430 if (Args[i].isSRet) 7431 Flags.setSRet(); 7432 if (Args[i].isByVal) 7433 Flags.setByVal(); 7434 if (Args[i].isInAlloca) { 7435 Flags.setInAlloca(); 7436 // Set the byval flag for CCAssignFn callbacks that don't know about 7437 // inalloca. This way we can know how many bytes we should've allocated 7438 // and how many bytes a callee cleanup function will pop. If we port 7439 // inalloca to more targets, we'll have to add custom inalloca handling 7440 // in the various CC lowering callbacks. 7441 Flags.setByVal(); 7442 } 7443 if (Args[i].isByVal || Args[i].isInAlloca) { 7444 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7445 Type *ElementTy = Ty->getElementType(); 7446 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7447 // For ByVal, alignment should come from FE. BE will guess if this 7448 // info is not there but there are cases it cannot get right. 7449 unsigned FrameAlign; 7450 if (Args[i].Alignment) 7451 FrameAlign = Args[i].Alignment; 7452 else 7453 FrameAlign = getByValTypeAlignment(ElementTy); 7454 Flags.setByValAlign(FrameAlign); 7455 } 7456 if (Args[i].isNest) 7457 Flags.setNest(); 7458 if (NeedsRegBlock) { 7459 Flags.setInConsecutiveRegs(); 7460 if (Value == NumValues - 1) 7461 Flags.setInConsecutiveRegsLast(); 7462 } 7463 Flags.setOrigAlign(OriginalAlignment); 7464 7465 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7466 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7467 SmallVector<SDValue, 4> Parts(NumParts); 7468 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7469 7470 if (Args[i].isSExt) 7471 ExtendKind = ISD::SIGN_EXTEND; 7472 else if (Args[i].isZExt) 7473 ExtendKind = ISD::ZERO_EXTEND; 7474 7475 // Conservatively only handle 'returned' on non-vectors for now 7476 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7477 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7478 "unexpected use of 'returned'"); 7479 // Before passing 'returned' to the target lowering code, ensure that 7480 // either the register MVT and the actual EVT are the same size or that 7481 // the return value and argument are extended in the same way; in these 7482 // cases it's safe to pass the argument register value unchanged as the 7483 // return register value (although it's at the target's option whether 7484 // to do so) 7485 // TODO: allow code generation to take advantage of partially preserved 7486 // registers rather than clobbering the entire register when the 7487 // parameter extension method is not compatible with the return 7488 // extension method 7489 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7490 (ExtendKind != ISD::ANY_EXTEND && 7491 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7492 Flags.setReturned(); 7493 } 7494 7495 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7496 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7497 7498 for (unsigned j = 0; j != NumParts; ++j) { 7499 // if it isn't first piece, alignment must be 1 7500 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7501 i < CLI.NumFixedArgs, 7502 i, j*Parts[j].getValueType().getStoreSize()); 7503 if (NumParts > 1 && j == 0) 7504 MyFlags.Flags.setSplit(); 7505 else if (j != 0) 7506 MyFlags.Flags.setOrigAlign(1); 7507 7508 CLI.Outs.push_back(MyFlags); 7509 CLI.OutVals.push_back(Parts[j]); 7510 } 7511 } 7512 } 7513 7514 SmallVector<SDValue, 4> InVals; 7515 CLI.Chain = LowerCall(CLI, InVals); 7516 7517 // Verify that the target's LowerCall behaved as expected. 7518 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7519 "LowerCall didn't return a valid chain!"); 7520 assert((!CLI.IsTailCall || InVals.empty()) && 7521 "LowerCall emitted a return value for a tail call!"); 7522 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7523 "LowerCall didn't emit the correct number of values!"); 7524 7525 // For a tail call, the return value is merely live-out and there aren't 7526 // any nodes in the DAG representing it. Return a special value to 7527 // indicate that a tail call has been emitted and no more Instructions 7528 // should be processed in the current block. 7529 if (CLI.IsTailCall) { 7530 CLI.DAG.setRoot(CLI.Chain); 7531 return std::make_pair(SDValue(), SDValue()); 7532 } 7533 7534 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7535 assert(InVals[i].getNode() && 7536 "LowerCall emitted a null value!"); 7537 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7538 "LowerCall emitted a value with the wrong type!"); 7539 }); 7540 7541 SmallVector<SDValue, 4> ReturnValues; 7542 if (!CanLowerReturn) { 7543 // The instruction result is the result of loading from the 7544 // hidden sret parameter. 7545 SmallVector<EVT, 1> PVTs; 7546 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7547 7548 ComputeValueVTs(*this, PtrRetTy, PVTs); 7549 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7550 EVT PtrVT = PVTs[0]; 7551 7552 unsigned NumValues = RetTys.size(); 7553 ReturnValues.resize(NumValues); 7554 SmallVector<SDValue, 4> Chains(NumValues); 7555 7556 for (unsigned i = 0; i < NumValues; ++i) { 7557 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7558 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7559 SDValue L = CLI.DAG.getLoad( 7560 RetTys[i], CLI.DL, CLI.Chain, Add, 7561 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7562 false, false, 1); 7563 ReturnValues[i] = L; 7564 Chains[i] = L.getValue(1); 7565 } 7566 7567 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7568 } else { 7569 // Collect the legal value parts into potentially illegal values 7570 // that correspond to the original function's return values. 7571 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7572 if (CLI.RetSExt) 7573 AssertOp = ISD::AssertSext; 7574 else if (CLI.RetZExt) 7575 AssertOp = ISD::AssertZext; 7576 unsigned CurReg = 0; 7577 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7578 EVT VT = RetTys[I]; 7579 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7580 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7581 7582 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7583 NumRegs, RegisterVT, VT, nullptr, 7584 AssertOp)); 7585 CurReg += NumRegs; 7586 } 7587 7588 // For a function returning void, there is no return value. We can't create 7589 // such a node, so we just return a null return value in that case. In 7590 // that case, nothing will actually look at the value. 7591 if (ReturnValues.empty()) 7592 return std::make_pair(SDValue(), CLI.Chain); 7593 } 7594 7595 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7596 CLI.DAG.getVTList(RetTys), ReturnValues); 7597 return std::make_pair(Res, CLI.Chain); 7598 } 7599 7600 void TargetLowering::LowerOperationWrapper(SDNode *N, 7601 SmallVectorImpl<SDValue> &Results, 7602 SelectionDAG &DAG) const { 7603 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7604 if (Res.getNode()) 7605 Results.push_back(Res); 7606 } 7607 7608 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7609 llvm_unreachable("LowerOperation not implemented for this target!"); 7610 } 7611 7612 void 7613 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7614 SDValue Op = getNonRegisterValue(V); 7615 assert((Op.getOpcode() != ISD::CopyFromReg || 7616 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7617 "Copy from a reg to the same reg!"); 7618 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7619 7620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7621 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7622 SDValue Chain = DAG.getEntryNode(); 7623 7624 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7625 FuncInfo.PreferredExtendType.end()) 7626 ? ISD::ANY_EXTEND 7627 : FuncInfo.PreferredExtendType[V]; 7628 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7629 PendingExports.push_back(Chain); 7630 } 7631 7632 #include "llvm/CodeGen/SelectionDAGISel.h" 7633 7634 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7635 /// entry block, return true. This includes arguments used by switches, since 7636 /// the switch may expand into multiple basic blocks. 7637 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7638 // With FastISel active, we may be splitting blocks, so force creation 7639 // of virtual registers for all non-dead arguments. 7640 if (FastISel) 7641 return A->use_empty(); 7642 7643 const BasicBlock *Entry = A->getParent()->begin(); 7644 for (const User *U : A->users()) 7645 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7646 return false; // Use not in entry block. 7647 7648 return true; 7649 } 7650 7651 void SelectionDAGISel::LowerArguments(const Function &F) { 7652 SelectionDAG &DAG = SDB->DAG; 7653 SDLoc dl = SDB->getCurSDLoc(); 7654 const DataLayout *DL = TLI->getDataLayout(); 7655 SmallVector<ISD::InputArg, 16> Ins; 7656 7657 if (!FuncInfo->CanLowerReturn) { 7658 // Put in an sret pointer parameter before all the other parameters. 7659 SmallVector<EVT, 1> ValueVTs; 7660 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7661 7662 // NOTE: Assuming that a pointer will never break down to more than one VT 7663 // or one register. 7664 ISD::ArgFlagsTy Flags; 7665 Flags.setSRet(); 7666 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7667 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7668 Ins.push_back(RetArg); 7669 } 7670 7671 // Set up the incoming argument description vector. 7672 unsigned Idx = 1; 7673 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7674 I != E; ++I, ++Idx) { 7675 SmallVector<EVT, 4> ValueVTs; 7676 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7677 bool isArgValueUsed = !I->use_empty(); 7678 unsigned PartBase = 0; 7679 Type *FinalType = I->getType(); 7680 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7681 FinalType = cast<PointerType>(FinalType)->getElementType(); 7682 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7683 FinalType, F.getCallingConv(), F.isVarArg()); 7684 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7685 Value != NumValues; ++Value) { 7686 EVT VT = ValueVTs[Value]; 7687 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7688 ISD::ArgFlagsTy Flags; 7689 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7690 7691 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7692 Flags.setZExt(); 7693 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7694 Flags.setSExt(); 7695 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7696 Flags.setInReg(); 7697 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7698 Flags.setSRet(); 7699 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7700 Flags.setByVal(); 7701 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7702 Flags.setInAlloca(); 7703 // Set the byval flag for CCAssignFn callbacks that don't know about 7704 // inalloca. This way we can know how many bytes we should've allocated 7705 // and how many bytes a callee cleanup function will pop. If we port 7706 // inalloca to more targets, we'll have to add custom inalloca handling 7707 // in the various CC lowering callbacks. 7708 Flags.setByVal(); 7709 } 7710 if (Flags.isByVal() || Flags.isInAlloca()) { 7711 PointerType *Ty = cast<PointerType>(I->getType()); 7712 Type *ElementTy = Ty->getElementType(); 7713 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7714 // For ByVal, alignment should be passed from FE. BE will guess if 7715 // this info is not there but there are cases it cannot get right. 7716 unsigned FrameAlign; 7717 if (F.getParamAlignment(Idx)) 7718 FrameAlign = F.getParamAlignment(Idx); 7719 else 7720 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7721 Flags.setByValAlign(FrameAlign); 7722 } 7723 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7724 Flags.setNest(); 7725 if (NeedsRegBlock) { 7726 Flags.setInConsecutiveRegs(); 7727 if (Value == NumValues - 1) 7728 Flags.setInConsecutiveRegsLast(); 7729 } 7730 Flags.setOrigAlign(OriginalAlignment); 7731 7732 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7733 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7734 for (unsigned i = 0; i != NumRegs; ++i) { 7735 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7736 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7737 if (NumRegs > 1 && i == 0) 7738 MyFlags.Flags.setSplit(); 7739 // if it isn't first piece, alignment must be 1 7740 else if (i > 0) 7741 MyFlags.Flags.setOrigAlign(1); 7742 Ins.push_back(MyFlags); 7743 } 7744 PartBase += VT.getStoreSize(); 7745 } 7746 } 7747 7748 // Call the target to set up the argument values. 7749 SmallVector<SDValue, 8> InVals; 7750 SDValue NewRoot = TLI->LowerFormalArguments( 7751 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7752 7753 // Verify that the target's LowerFormalArguments behaved as expected. 7754 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7755 "LowerFormalArguments didn't return a valid chain!"); 7756 assert(InVals.size() == Ins.size() && 7757 "LowerFormalArguments didn't emit the correct number of values!"); 7758 DEBUG({ 7759 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7760 assert(InVals[i].getNode() && 7761 "LowerFormalArguments emitted a null value!"); 7762 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7763 "LowerFormalArguments emitted a value with the wrong type!"); 7764 } 7765 }); 7766 7767 // Update the DAG with the new chain value resulting from argument lowering. 7768 DAG.setRoot(NewRoot); 7769 7770 // Set up the argument values. 7771 unsigned i = 0; 7772 Idx = 1; 7773 if (!FuncInfo->CanLowerReturn) { 7774 // Create a virtual register for the sret pointer, and put in a copy 7775 // from the sret argument into it. 7776 SmallVector<EVT, 1> ValueVTs; 7777 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7778 MVT VT = ValueVTs[0].getSimpleVT(); 7779 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7780 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7781 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7782 RegVT, VT, nullptr, AssertOp); 7783 7784 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7785 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7786 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7787 FuncInfo->DemoteRegister = SRetReg; 7788 NewRoot = 7789 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7790 DAG.setRoot(NewRoot); 7791 7792 // i indexes lowered arguments. Bump it past the hidden sret argument. 7793 // Idx indexes LLVM arguments. Don't touch it. 7794 ++i; 7795 } 7796 7797 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7798 ++I, ++Idx) { 7799 SmallVector<SDValue, 4> ArgValues; 7800 SmallVector<EVT, 4> ValueVTs; 7801 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7802 unsigned NumValues = ValueVTs.size(); 7803 7804 // If this argument is unused then remember its value. It is used to generate 7805 // debugging information. 7806 if (I->use_empty() && NumValues) { 7807 SDB->setUnusedArgValue(I, InVals[i]); 7808 7809 // Also remember any frame index for use in FastISel. 7810 if (FrameIndexSDNode *FI = 7811 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7812 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7813 } 7814 7815 for (unsigned Val = 0; Val != NumValues; ++Val) { 7816 EVT VT = ValueVTs[Val]; 7817 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7818 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7819 7820 if (!I->use_empty()) { 7821 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7822 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7823 AssertOp = ISD::AssertSext; 7824 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7825 AssertOp = ISD::AssertZext; 7826 7827 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7828 NumParts, PartVT, VT, 7829 nullptr, AssertOp)); 7830 } 7831 7832 i += NumParts; 7833 } 7834 7835 // We don't need to do anything else for unused arguments. 7836 if (ArgValues.empty()) 7837 continue; 7838 7839 // Note down frame index. 7840 if (FrameIndexSDNode *FI = 7841 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7842 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7843 7844 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7845 SDB->getCurSDLoc()); 7846 7847 SDB->setValue(I, Res); 7848 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7849 if (LoadSDNode *LNode = 7850 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7851 if (FrameIndexSDNode *FI = 7852 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7853 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7854 } 7855 7856 // If this argument is live outside of the entry block, insert a copy from 7857 // wherever we got it to the vreg that other BB's will reference it as. 7858 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7859 // If we can, though, try to skip creating an unnecessary vreg. 7860 // FIXME: This isn't very clean... it would be nice to make this more 7861 // general. It's also subtly incompatible with the hacks FastISel 7862 // uses with vregs. 7863 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7864 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7865 FuncInfo->ValueMap[I] = Reg; 7866 continue; 7867 } 7868 } 7869 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7870 FuncInfo->InitializeRegForValue(I); 7871 SDB->CopyToExportRegsIfNeeded(I); 7872 } 7873 } 7874 7875 assert(i == InVals.size() && "Argument register count mismatch!"); 7876 7877 // Finally, if the target has anything special to do, allow it to do so. 7878 // FIXME: this should insert code into the DAG! 7879 EmitFunctionEntryCode(); 7880 } 7881 7882 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7883 /// ensure constants are generated when needed. Remember the virtual registers 7884 /// that need to be added to the Machine PHI nodes as input. We cannot just 7885 /// directly add them, because expansion might result in multiple MBB's for one 7886 /// BB. As such, the start of the BB might correspond to a different MBB than 7887 /// the end. 7888 /// 7889 void 7890 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7891 const TerminatorInst *TI = LLVMBB->getTerminator(); 7892 7893 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7894 7895 // Check successor nodes' PHI nodes that expect a constant to be available 7896 // from this block. 7897 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7898 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7899 if (!isa<PHINode>(SuccBB->begin())) continue; 7900 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7901 7902 // If this terminator has multiple identical successors (common for 7903 // switches), only handle each succ once. 7904 if (!SuccsHandled.insert(SuccMBB).second) 7905 continue; 7906 7907 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7908 7909 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7910 // nodes and Machine PHI nodes, but the incoming operands have not been 7911 // emitted yet. 7912 for (BasicBlock::const_iterator I = SuccBB->begin(); 7913 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7914 // Ignore dead phi's. 7915 if (PN->use_empty()) continue; 7916 7917 // Skip empty types 7918 if (PN->getType()->isEmptyTy()) 7919 continue; 7920 7921 unsigned Reg; 7922 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7923 7924 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7925 unsigned &RegOut = ConstantsOut[C]; 7926 if (RegOut == 0) { 7927 RegOut = FuncInfo.CreateRegs(C->getType()); 7928 CopyValueToVirtualRegister(C, RegOut); 7929 } 7930 Reg = RegOut; 7931 } else { 7932 DenseMap<const Value *, unsigned>::iterator I = 7933 FuncInfo.ValueMap.find(PHIOp); 7934 if (I != FuncInfo.ValueMap.end()) 7935 Reg = I->second; 7936 else { 7937 assert(isa<AllocaInst>(PHIOp) && 7938 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7939 "Didn't codegen value into a register!??"); 7940 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7941 CopyValueToVirtualRegister(PHIOp, Reg); 7942 } 7943 } 7944 7945 // Remember that this register needs to added to the machine PHI node as 7946 // the input for this MBB. 7947 SmallVector<EVT, 4> ValueVTs; 7948 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7949 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7950 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7951 EVT VT = ValueVTs[vti]; 7952 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7953 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7954 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7955 Reg += NumRegisters; 7956 } 7957 } 7958 } 7959 7960 ConstantsOut.clear(); 7961 } 7962 7963 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7964 /// is 0. 7965 MachineBasicBlock * 7966 SelectionDAGBuilder::StackProtectorDescriptor:: 7967 AddSuccessorMBB(const BasicBlock *BB, 7968 MachineBasicBlock *ParentMBB, 7969 bool IsLikely, 7970 MachineBasicBlock *SuccMBB) { 7971 // If SuccBB has not been created yet, create it. 7972 if (!SuccMBB) { 7973 MachineFunction *MF = ParentMBB->getParent(); 7974 MachineFunction::iterator BBI = ParentMBB; 7975 SuccMBB = MF->CreateMachineBasicBlock(BB); 7976 MF->insert(++BBI, SuccMBB); 7977 } 7978 // Add it as a successor of ParentMBB. 7979 ParentMBB->addSuccessor( 7980 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7981 return SuccMBB; 7982 } 7983