xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision d0e42037bf0ce110cc8c6e9b536687fa40e90b99)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        // Bitcast Val back the original type and extract the corresponding
440        // vector we want.
441        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443                                            ValueVT.getVectorElementType(), Elts);
444        Val = DAG.getBitcast(WiderVecType, Val);
445        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
446                           DAG.getVectorIdxConstant(0, DL));
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG,
614                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isFixedLengthVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   unsigned PartNumElts = PartVT.getVectorNumElements();
620   unsigned ValueNumElts = ValueVT.getVectorNumElements();
621   if (PartNumElts > ValueNumElts &&
622       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
623     EVT ElementVT = PartVT.getVectorElementType();
624     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
625     // undef elements.
626     SmallVector<SDValue, 16> Ops;
627     DAG.ExtractVectorElements(Val, Ops);
628     SDValue EltUndef = DAG.getUNDEF(ElementVT);
629     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
630       Ops.push_back(EltUndef);
631 
632     // FIXME: Use CONCAT for 2x -> 4x.
633     return DAG.getBuildVector(PartVT, DL, Ops);
634   }
635 
636   return SDValue();
637 }
638 
639 /// getCopyToPartsVector - Create a series of nodes that contain the specified
640 /// value split into legal parts.
641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
642                                  SDValue Val, SDValue *Parts, unsigned NumParts,
643                                  MVT PartVT, const Value *V,
644                                  Optional<CallingConv::ID> CallConv) {
645   EVT ValueVT = Val.getValueType();
646   assert(ValueVT.isVector() && "Not a vector");
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648   const bool IsABIRegCopy = CallConv.hasValue();
649 
650   if (NumParts == 1) {
651     EVT PartEVT = PartVT;
652     if (PartEVT == ValueVT) {
653       // Nothing to do.
654     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
655       // Bitconvert vector->vector case.
656       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
657     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
658       Val = Widened;
659     } else if (PartVT.isVector() &&
660                PartEVT.getVectorElementType().bitsGE(
661                    ValueVT.getVectorElementType()) &&
662                PartEVT.getVectorElementCount() ==
663                    ValueVT.getVectorElementCount()) {
664 
665       // Promoted vector extract
666       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667     } else {
668       if (ValueVT.getVectorElementCount().isScalar()) {
669         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
670                           DAG.getVectorIdxConstant(0, DL));
671       } else {
672         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
673         assert(PartVT.getFixedSizeInBits() > ValueSize &&
674                "lossy conversion of vector to scalar type");
675         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
676         Val = DAG.getBitcast(IntermediateType, Val);
677         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
678       }
679     }
680 
681     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
682     Parts[0] = Val;
683     return;
684   }
685 
686   // Handle a multi-element vector.
687   EVT IntermediateVT;
688   MVT RegisterVT;
689   unsigned NumIntermediates;
690   unsigned NumRegs;
691   if (IsABIRegCopy) {
692     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
693         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
694         NumIntermediates, RegisterVT);
695   } else {
696     NumRegs =
697         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
698                                    NumIntermediates, RegisterVT);
699   }
700 
701   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
702   NumParts = NumRegs; // Silence a compiler warning.
703   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
704 
705   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
706          "Mixing scalable and fixed vectors when copying in parts");
707 
708   Optional<ElementCount> DestEltCnt;
709 
710   if (IntermediateVT.isVector())
711     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
712   else
713     DestEltCnt = ElementCount::getFixed(NumIntermediates);
714 
715   EVT BuiltVectorTy = EVT::getVectorVT(
716       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
717   if (ValueVT != BuiltVectorTy) {
718     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
719       Val = Widened;
720 
721     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
722   }
723 
724   // Split the vector into intermediate operands.
725   SmallVector<SDValue, 8> Ops(NumIntermediates);
726   for (unsigned i = 0; i != NumIntermediates; ++i) {
727     if (IntermediateVT.isVector()) {
728       // This does something sensible for scalable vectors - see the
729       // definition of EXTRACT_SUBVECTOR for further details.
730       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
731       Ops[i] =
732           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
734     } else {
735       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736                            DAG.getVectorIdxConstant(i, DL));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!Register::isVirtualRegister(Regs[Part + i]) ||
826           !RegisterVT.isInteger())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getScalarSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     Register SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, unsigned>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     unsigned RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   PendingConstrainedFP.clear();
1014   PendingConstrainedFPStrict.clear();
1015   CurInst = nullptr;
1016   HasTailCall = false;
1017   SDNodeOrder = LowestSDNodeOrder;
1018   StatepointLowering.clear();
1019 }
1020 
1021 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1022   DanglingDebugInfoMap.clear();
1023 }
1024 
1025 // Update DAG root to include dependencies on Pending chains.
1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1027   SDValue Root = DAG.getRoot();
1028 
1029   if (Pending.empty())
1030     return Root;
1031 
1032   // Add current root to PendingChains, unless we already indirectly
1033   // depend on it.
1034   if (Root.getOpcode() != ISD::EntryToken) {
1035     unsigned i = 0, e = Pending.size();
1036     for (; i != e; ++i) {
1037       assert(Pending[i].getNode()->getNumOperands() > 1);
1038       if (Pending[i].getNode()->getOperand(0) == Root)
1039         break;  // Don't add the root if we already indirectly depend on it.
1040     }
1041 
1042     if (i == e)
1043       Pending.push_back(Root);
1044   }
1045 
1046   if (Pending.size() == 1)
1047     Root = Pending[0];
1048   else
1049     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1050 
1051   DAG.setRoot(Root);
1052   Pending.clear();
1053   return Root;
1054 }
1055 
1056 SDValue SelectionDAGBuilder::getMemoryRoot() {
1057   return updateRoot(PendingLoads);
1058 }
1059 
1060 SDValue SelectionDAGBuilder::getRoot() {
1061   // Chain up all pending constrained intrinsics together with all
1062   // pending loads, by simply appending them to PendingLoads and
1063   // then calling getMemoryRoot().
1064   PendingLoads.reserve(PendingLoads.size() +
1065                        PendingConstrainedFP.size() +
1066                        PendingConstrainedFPStrict.size());
1067   PendingLoads.append(PendingConstrainedFP.begin(),
1068                       PendingConstrainedFP.end());
1069   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1070                       PendingConstrainedFPStrict.end());
1071   PendingConstrainedFP.clear();
1072   PendingConstrainedFPStrict.clear();
1073   return getMemoryRoot();
1074 }
1075 
1076 SDValue SelectionDAGBuilder::getControlRoot() {
1077   // We need to emit pending fpexcept.strict constrained intrinsics,
1078   // so append them to the PendingExports list.
1079   PendingExports.append(PendingConstrainedFPStrict.begin(),
1080                         PendingConstrainedFPStrict.end());
1081   PendingConstrainedFPStrict.clear();
1082   return updateRoot(PendingExports);
1083 }
1084 
1085 void SelectionDAGBuilder::visit(const Instruction &I) {
1086   // Set up outgoing PHI node register values before emitting the terminator.
1087   if (I.isTerminator()) {
1088     HandlePHINodesInSuccessorBlocks(I.getParent());
1089   }
1090 
1091   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1092   if (!isa<DbgInfoIntrinsic>(I))
1093     ++SDNodeOrder;
1094 
1095   CurInst = &I;
1096 
1097   visit(I.getOpcode(), I);
1098 
1099   if (!I.isTerminator() && !HasTailCall &&
1100       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1101     CopyToExportRegsIfNeeded(&I);
1102 
1103   CurInst = nullptr;
1104 }
1105 
1106 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1107   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1108 }
1109 
1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1111   // Note: this doesn't use InstVisitor, because it has to work with
1112   // ConstantExpr's in addition to instructions.
1113   switch (Opcode) {
1114   default: llvm_unreachable("Unknown instruction type encountered!");
1115     // Build the switch statement using the Instruction.def file.
1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1117     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1118 #include "llvm/IR/Instruction.def"
1119   }
1120 }
1121 
1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1123                                                 const DIExpression *Expr) {
1124   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1125     const DbgValueInst *DI = DDI.getDI();
1126     DIVariable *DanglingVariable = DI->getVariable();
1127     DIExpression *DanglingExpr = DI->getExpression();
1128     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1129       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1130       return true;
1131     }
1132     return false;
1133   };
1134 
1135   for (auto &DDIMI : DanglingDebugInfoMap) {
1136     DanglingDebugInfoVector &DDIV = DDIMI.second;
1137 
1138     // If debug info is to be dropped, run it through final checks to see
1139     // whether it can be salvaged.
1140     for (auto &DDI : DDIV)
1141       if (isMatchingDbgValue(DDI))
1142         salvageUnresolvedDbgValue(DDI);
1143 
1144     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1145   }
1146 }
1147 
1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1149 // generate the debug data structures now that we've seen its definition.
1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1151                                                    SDValue Val) {
1152   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1153   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1154     return;
1155 
1156   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1157   for (auto &DDI : DDIV) {
1158     const DbgValueInst *DI = DDI.getDI();
1159     assert(DI && "Ill-formed DanglingDebugInfo");
1160     DebugLoc dl = DDI.getdl();
1161     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1162     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1163     DILocalVariable *Variable = DI->getVariable();
1164     DIExpression *Expr = DI->getExpression();
1165     assert(Variable->isValidLocationForIntrinsic(dl) &&
1166            "Expected inlined-at fields to agree");
1167     SDDbgValue *SDV;
1168     if (Val.getNode()) {
1169       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1170       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1171       // we couldn't resolve it directly when examining the DbgValue intrinsic
1172       // in the first place we should not be more successful here). Unless we
1173       // have some test case that prove this to be correct we should avoid
1174       // calling EmitFuncArgumentDbgValue here.
1175       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1176         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1177                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1178         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1179         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1180         // inserted after the definition of Val when emitting the instructions
1181         // after ISel. An alternative could be to teach
1182         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1183         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1184                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1185                    << ValSDNodeOrder << "\n");
1186         SDV = getDbgValue(Val, Variable, Expr, dl,
1187                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1188         DAG.AddDbgValue(SDV, Val.getNode(), false);
1189       } else
1190         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1191                           << "in EmitFuncArgumentDbgValue\n");
1192     } else {
1193       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1194       auto Undef =
1195           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1196       auto SDV =
1197           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1198       DAG.AddDbgValue(SDV, nullptr, false);
1199     }
1200   }
1201   DDIV.clear();
1202 }
1203 
1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1205   Value *V = DDI.getDI()->getValue();
1206   DILocalVariable *Var = DDI.getDI()->getVariable();
1207   DIExpression *Expr = DDI.getDI()->getExpression();
1208   DebugLoc DL = DDI.getdl();
1209   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1210   unsigned SDOrder = DDI.getSDNodeOrder();
1211 
1212   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1213   // that DW_OP_stack_value is desired.
1214   assert(isa<DbgValueInst>(DDI.getDI()));
1215   bool StackValue = true;
1216 
1217   // Can this Value can be encoded without any further work?
1218   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1219     return;
1220 
1221   // Attempt to salvage back through as many instructions as possible. Bail if
1222   // a non-instruction is seen, such as a constant expression or global
1223   // variable. FIXME: Further work could recover those too.
1224   while (isa<Instruction>(V)) {
1225     Instruction &VAsInst = *cast<Instruction>(V);
1226     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1227 
1228     // If we cannot salvage any further, and haven't yet found a suitable debug
1229     // expression, bail out.
1230     if (!NewExpr)
1231       break;
1232 
1233     // New value and expr now represent this debuginfo.
1234     V = VAsInst.getOperand(0);
1235     Expr = NewExpr;
1236 
1237     // Some kind of simplification occurred: check whether the operand of the
1238     // salvaged debug expression can be encoded in this DAG.
1239     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1240       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1241                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1242       return;
1243     }
1244   }
1245 
1246   // This was the final opportunity to salvage this debug information, and it
1247   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1248   // any earlier variable location.
1249   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1250   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1251   DAG.AddDbgValue(SDV, nullptr, false);
1252 
1253   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1254                     << "\n");
1255   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1256                     << "\n");
1257 }
1258 
1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1260                                            DIExpression *Expr, DebugLoc dl,
1261                                            DebugLoc InstDL, unsigned Order) {
1262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1263   SDDbgValue *SDV;
1264   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1265       isa<ConstantPointerNull>(V)) {
1266     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1267     DAG.AddDbgValue(SDV, nullptr, false);
1268     return true;
1269   }
1270 
1271   // If the Value is a frame index, we can create a FrameIndex debug value
1272   // without relying on the DAG at all.
1273   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1274     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1275     if (SI != FuncInfo.StaticAllocaMap.end()) {
1276       auto SDV =
1277           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1278                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1279       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1280       // is still available even if the SDNode gets optimized out.
1281       DAG.AddDbgValue(SDV, nullptr, false);
1282       return true;
1283     }
1284   }
1285 
1286   // Do not use getValue() in here; we don't want to generate code at
1287   // this point if it hasn't been done yet.
1288   SDValue N = NodeMap[V];
1289   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1290     N = UnusedArgNodeMap[V];
1291   if (N.getNode()) {
1292     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1293       return true;
1294     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1295     DAG.AddDbgValue(SDV, N.getNode(), false);
1296     return true;
1297   }
1298 
1299   // Special rules apply for the first dbg.values of parameter variables in a
1300   // function. Identify them by the fact they reference Argument Values, that
1301   // they're parameters, and they are parameters of the current function. We
1302   // need to let them dangle until they get an SDNode.
1303   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1304                        !InstDL.getInlinedAt();
1305   if (!IsParamOfFunc) {
1306     // The value is not used in this block yet (or it would have an SDNode).
1307     // We still want the value to appear for the user if possible -- if it has
1308     // an associated VReg, we can refer to that instead.
1309     auto VMI = FuncInfo.ValueMap.find(V);
1310     if (VMI != FuncInfo.ValueMap.end()) {
1311       unsigned Reg = VMI->second;
1312       // If this is a PHI node, it may be split up into several MI PHI nodes
1313       // (in FunctionLoweringInfo::set).
1314       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1315                        V->getType(), None);
1316       if (RFV.occupiesMultipleRegs()) {
1317         unsigned Offset = 0;
1318         unsigned BitsToDescribe = 0;
1319         if (auto VarSize = Var->getSizeInBits())
1320           BitsToDescribe = *VarSize;
1321         if (auto Fragment = Expr->getFragmentInfo())
1322           BitsToDescribe = Fragment->SizeInBits;
1323         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1324           unsigned RegisterSize = RegAndSize.second;
1325           // Bail out if all bits are described already.
1326           if (Offset >= BitsToDescribe)
1327             break;
1328           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1329               ? BitsToDescribe - Offset
1330               : RegisterSize;
1331           auto FragmentExpr = DIExpression::createFragmentExpression(
1332               Expr, Offset, FragmentSize);
1333           if (!FragmentExpr)
1334               continue;
1335           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1336                                     false, dl, SDNodeOrder);
1337           DAG.AddDbgValue(SDV, nullptr, false);
1338           Offset += RegisterSize;
1339         }
1340       } else {
1341         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1342         DAG.AddDbgValue(SDV, nullptr, false);
1343       }
1344       return true;
1345     }
1346   }
1347 
1348   return false;
1349 }
1350 
1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1352   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1353   for (auto &Pair : DanglingDebugInfoMap)
1354     for (auto &DDI : Pair.second)
1355       salvageUnresolvedDbgValue(DDI);
1356   clearDanglingDebugInfo();
1357 }
1358 
1359 /// getCopyFromRegs - If there was virtual register allocated for the value V
1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1361 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1362   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1363   SDValue Result;
1364 
1365   if (It != FuncInfo.ValueMap.end()) {
1366     Register InReg = It->second;
1367 
1368     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1369                      DAG.getDataLayout(), InReg, Ty,
1370                      None); // This is not an ABI copy.
1371     SDValue Chain = DAG.getEntryNode();
1372     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1373                                  V);
1374     resolveDanglingDebugInfo(V, Result);
1375   }
1376 
1377   return Result;
1378 }
1379 
1380 /// getValue - Return an SDValue for the given Value.
1381 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1382   // If we already have an SDValue for this value, use it. It's important
1383   // to do this first, so that we don't create a CopyFromReg if we already
1384   // have a regular SDValue.
1385   SDValue &N = NodeMap[V];
1386   if (N.getNode()) return N;
1387 
1388   // If there's a virtual register allocated and initialized for this
1389   // value, use it.
1390   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1391     return copyFromReg;
1392 
1393   // Otherwise create a new SDValue and remember it.
1394   SDValue Val = getValueImpl(V);
1395   NodeMap[V] = Val;
1396   resolveDanglingDebugInfo(V, Val);
1397   return Val;
1398 }
1399 
1400 /// getNonRegisterValue - Return an SDValue for the given Value, but
1401 /// don't look in FuncInfo.ValueMap for a virtual register.
1402 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1403   // If we already have an SDValue for this value, use it.
1404   SDValue &N = NodeMap[V];
1405   if (N.getNode()) {
1406     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1407       // Remove the debug location from the node as the node is about to be used
1408       // in a location which may differ from the original debug location.  This
1409       // is relevant to Constant and ConstantFP nodes because they can appear
1410       // as constant expressions inside PHI nodes.
1411       N->setDebugLoc(DebugLoc());
1412     }
1413     return N;
1414   }
1415 
1416   // Otherwise create a new SDValue and remember it.
1417   SDValue Val = getValueImpl(V);
1418   NodeMap[V] = Val;
1419   resolveDanglingDebugInfo(V, Val);
1420   return Val;
1421 }
1422 
1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1424 /// Create an SDValue for the given value.
1425 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1426   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1427 
1428   if (const Constant *C = dyn_cast<Constant>(V)) {
1429     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1430 
1431     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1432       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1433 
1434     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1435       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1436 
1437     if (isa<ConstantPointerNull>(C)) {
1438       unsigned AS = V->getType()->getPointerAddressSpace();
1439       return DAG.getConstant(0, getCurSDLoc(),
1440                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1441     }
1442 
1443     if (match(C, m_VScale(DAG.getDataLayout())))
1444       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1445 
1446     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1447       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1448 
1449     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1450       return DAG.getUNDEF(VT);
1451 
1452     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1453       visit(CE->getOpcode(), *CE);
1454       SDValue N1 = NodeMap[V];
1455       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1456       return N1;
1457     }
1458 
1459     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1460       SmallVector<SDValue, 4> Constants;
1461       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1462            OI != OE; ++OI) {
1463         SDNode *Val = getValue(*OI).getNode();
1464         // If the operand is an empty aggregate, there are no values.
1465         if (!Val) continue;
1466         // Add each leaf value from the operand to the Constants list
1467         // to form a flattened list of all the values.
1468         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1469           Constants.push_back(SDValue(Val, i));
1470       }
1471 
1472       return DAG.getMergeValues(Constants, getCurSDLoc());
1473     }
1474 
1475     if (const ConstantDataSequential *CDS =
1476           dyn_cast<ConstantDataSequential>(C)) {
1477       SmallVector<SDValue, 4> Ops;
1478       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1479         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1480         // Add each leaf value from the operand to the Constants list
1481         // to form a flattened list of all the values.
1482         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1483           Ops.push_back(SDValue(Val, i));
1484       }
1485 
1486       if (isa<ArrayType>(CDS->getType()))
1487         return DAG.getMergeValues(Ops, getCurSDLoc());
1488       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1489     }
1490 
1491     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1492       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1493              "Unknown struct or array constant!");
1494 
1495       SmallVector<EVT, 4> ValueVTs;
1496       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1497       unsigned NumElts = ValueVTs.size();
1498       if (NumElts == 0)
1499         return SDValue(); // empty struct
1500       SmallVector<SDValue, 4> Constants(NumElts);
1501       for (unsigned i = 0; i != NumElts; ++i) {
1502         EVT EltVT = ValueVTs[i];
1503         if (isa<UndefValue>(C))
1504           Constants[i] = DAG.getUNDEF(EltVT);
1505         else if (EltVT.isFloatingPoint())
1506           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1507         else
1508           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1509       }
1510 
1511       return DAG.getMergeValues(Constants, getCurSDLoc());
1512     }
1513 
1514     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1515       return DAG.getBlockAddress(BA, VT);
1516 
1517     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1518       return getValue(Equiv->getGlobalValue());
1519 
1520     VectorType *VecTy = cast<VectorType>(V->getType());
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1525       SmallVector<SDValue, 16> Ops;
1526       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1527       for (unsigned i = 0; i != NumElements; ++i)
1528         Ops.push_back(getValue(CV->getOperand(i)));
1529 
1530       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1531     } else if (isa<ConstantAggregateZero>(C)) {
1532       EVT EltVT =
1533           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1534 
1535       SDValue Op;
1536       if (EltVT.isFloatingPoint())
1537         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1538       else
1539         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1540 
1541       if (isa<ScalableVectorType>(VecTy))
1542         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1543       else {
1544         SmallVector<SDValue, 16> Ops;
1545         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1546         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1547       }
1548     }
1549     llvm_unreachable("Unknown vector constant");
1550   }
1551 
1552   // If this is a static alloca, generate it as the frameindex instead of
1553   // computation.
1554   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1555     DenseMap<const AllocaInst*, int>::iterator SI =
1556       FuncInfo.StaticAllocaMap.find(AI);
1557     if (SI != FuncInfo.StaticAllocaMap.end())
1558       return DAG.getFrameIndex(SI->second,
1559                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1560   }
1561 
1562   // If this is an instruction which fast-isel has deferred, select it now.
1563   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1564     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1565 
1566     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1567                      Inst->getType(), None);
1568     SDValue Chain = DAG.getEntryNode();
1569     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1570   }
1571 
1572   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1573     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1574   }
1575   llvm_unreachable("Can't get register for value!");
1576 }
1577 
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582   bool IsSEH = isAsynchronousEHPersonality(Pers);
1583   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1584   if (!IsSEH)
1585     CatchPadMBB->setIsEHScopeEntry();
1586   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1587   if (IsMSVCCXX || IsCoreCLR)
1588     CatchPadMBB->setIsEHFuncletEntry();
1589 }
1590 
1591 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1592   // Update machine-CFG edge.
1593   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1594   FuncInfo.MBB->addSuccessor(TargetMBB);
1595 
1596   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1597   bool IsSEH = isAsynchronousEHPersonality(Pers);
1598   if (IsSEH) {
1599     // If this is not a fall-through branch or optimizations are switched off,
1600     // emit the branch.
1601     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1602         TM.getOptLevel() == CodeGenOpt::None)
1603       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1604                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1605     return;
1606   }
1607 
1608   // Figure out the funclet membership for the catchret's successor.
1609   // This will be used by the FuncletLayout pass to determine how to order the
1610   // BB's.
1611   // A 'catchret' returns to the outer scope's color.
1612   Value *ParentPad = I.getCatchSwitchParentPad();
1613   const BasicBlock *SuccessorColor;
1614   if (isa<ConstantTokenNone>(ParentPad))
1615     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1616   else
1617     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1618   assert(SuccessorColor && "No parent funclet for catchret!");
1619   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1620   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1621 
1622   // Create the terminator node.
1623   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1624                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1625                             DAG.getBasicBlock(SuccessorColorMBB));
1626   DAG.setRoot(Ret);
1627 }
1628 
1629 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1630   // Don't emit any special code for the cleanuppad instruction. It just marks
1631   // the start of an EH scope/funclet.
1632   FuncInfo.MBB->setIsEHScopeEntry();
1633   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1634   if (Pers != EHPersonality::Wasm_CXX) {
1635     FuncInfo.MBB->setIsEHFuncletEntry();
1636     FuncInfo.MBB->setIsCleanupFuncletEntry();
1637   }
1638 }
1639 
1640 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1641 // the control flow always stops at the single catch pad, as it does for a
1642 // cleanup pad. In case the exception caught is not of the types the catch pad
1643 // catches, it will be rethrown by a rethrow.
1644 static void findWasmUnwindDestinations(
1645     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1646     BranchProbability Prob,
1647     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1648         &UnwindDests) {
1649   while (EHPadBB) {
1650     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1651     if (isa<CleanupPadInst>(Pad)) {
1652       // Stop on cleanup pads.
1653       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1654       UnwindDests.back().first->setIsEHScopeEntry();
1655       break;
1656     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1657       // Add the catchpad handlers to the possible destinations. We don't
1658       // continue to the unwind destination of the catchswitch for wasm.
1659       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1660         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1661         UnwindDests.back().first->setIsEHScopeEntry();
1662       }
1663       break;
1664     } else {
1665       continue;
1666     }
1667   }
1668 }
1669 
1670 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1671 /// many places it could ultimately go. In the IR, we have a single unwind
1672 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1673 /// This function skips over imaginary basic blocks that hold catchswitch
1674 /// instructions, and finds all the "real" machine
1675 /// basic block destinations. As those destinations may not be successors of
1676 /// EHPadBB, here we also calculate the edge probability to those destinations.
1677 /// The passed-in Prob is the edge probability to EHPadBB.
1678 static void findUnwindDestinations(
1679     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1680     BranchProbability Prob,
1681     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1682         &UnwindDests) {
1683   EHPersonality Personality =
1684     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1685   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1686   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1687   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1688   bool IsSEH = isAsynchronousEHPersonality(Personality);
1689 
1690   if (IsWasmCXX) {
1691     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1692     assert(UnwindDests.size() <= 1 &&
1693            "There should be at most one unwind destination for wasm");
1694     return;
1695   }
1696 
1697   while (EHPadBB) {
1698     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1699     BasicBlock *NewEHPadBB = nullptr;
1700     if (isa<LandingPadInst>(Pad)) {
1701       // Stop on landingpads. They are not funclets.
1702       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703       break;
1704     } else if (isa<CleanupPadInst>(Pad)) {
1705       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1706       // personalities.
1707       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708       UnwindDests.back().first->setIsEHScopeEntry();
1709       UnwindDests.back().first->setIsEHFuncletEntry();
1710       break;
1711     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1712       // Add the catchpad handlers to the possible destinations.
1713       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1714         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1715         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1716         if (IsMSVCCXX || IsCoreCLR)
1717           UnwindDests.back().first->setIsEHFuncletEntry();
1718         if (!IsSEH)
1719           UnwindDests.back().first->setIsEHScopeEntry();
1720       }
1721       NewEHPadBB = CatchSwitch->getUnwindDest();
1722     } else {
1723       continue;
1724     }
1725 
1726     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1727     if (BPI && NewEHPadBB)
1728       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1729     EHPadBB = NewEHPadBB;
1730   }
1731 }
1732 
1733 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1734   // Update successor info.
1735   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1736   auto UnwindDest = I.getUnwindDest();
1737   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1738   BranchProbability UnwindDestProb =
1739       (BPI && UnwindDest)
1740           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1741           : BranchProbability::getZero();
1742   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1743   for (auto &UnwindDest : UnwindDests) {
1744     UnwindDest.first->setIsEHPad();
1745     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1746   }
1747   FuncInfo.MBB->normalizeSuccProbs();
1748 
1749   // Create the terminator node.
1750   SDValue Ret =
1751       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1752   DAG.setRoot(Ret);
1753 }
1754 
1755 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1756   report_fatal_error("visitCatchSwitch not yet implemented!");
1757 }
1758 
1759 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1760   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1761   auto &DL = DAG.getDataLayout();
1762   SDValue Chain = getControlRoot();
1763   SmallVector<ISD::OutputArg, 8> Outs;
1764   SmallVector<SDValue, 8> OutVals;
1765 
1766   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1767   // lower
1768   //
1769   //   %val = call <ty> @llvm.experimental.deoptimize()
1770   //   ret <ty> %val
1771   //
1772   // differently.
1773   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1774     LowerDeoptimizingReturn();
1775     return;
1776   }
1777 
1778   if (!FuncInfo.CanLowerReturn) {
1779     unsigned DemoteReg = FuncInfo.DemoteRegister;
1780     const Function *F = I.getParent()->getParent();
1781 
1782     // Emit a store of the return value through the virtual register.
1783     // Leave Outs empty so that LowerReturn won't try to load return
1784     // registers the usual way.
1785     SmallVector<EVT, 1> PtrValueVTs;
1786     ComputeValueVTs(TLI, DL,
1787                     F->getReturnType()->getPointerTo(
1788                         DAG.getDataLayout().getAllocaAddrSpace()),
1789                     PtrValueVTs);
1790 
1791     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1792                                         DemoteReg, PtrValueVTs[0]);
1793     SDValue RetOp = getValue(I.getOperand(0));
1794 
1795     SmallVector<EVT, 4> ValueVTs, MemVTs;
1796     SmallVector<uint64_t, 4> Offsets;
1797     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1798                     &Offsets);
1799     unsigned NumValues = ValueVTs.size();
1800 
1801     SmallVector<SDValue, 4> Chains(NumValues);
1802     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1803     for (unsigned i = 0; i != NumValues; ++i) {
1804       // An aggregate return value cannot wrap around the address space, so
1805       // offsets to its parts don't wrap either.
1806       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1807                                            TypeSize::Fixed(Offsets[i]));
1808 
1809       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1810       if (MemVTs[i] != ValueVTs[i])
1811         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1812       Chains[i] = DAG.getStore(
1813           Chain, getCurSDLoc(), Val,
1814           // FIXME: better loc info would be nice.
1815           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1816           commonAlignment(BaseAlign, Offsets[i]));
1817     }
1818 
1819     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1820                         MVT::Other, Chains);
1821   } else if (I.getNumOperands() != 0) {
1822     SmallVector<EVT, 4> ValueVTs;
1823     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1824     unsigned NumValues = ValueVTs.size();
1825     if (NumValues) {
1826       SDValue RetOp = getValue(I.getOperand(0));
1827 
1828       const Function *F = I.getParent()->getParent();
1829 
1830       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1831           I.getOperand(0)->getType(), F->getCallingConv(),
1832           /*IsVarArg*/ false);
1833 
1834       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1835       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1836                                           Attribute::SExt))
1837         ExtendKind = ISD::SIGN_EXTEND;
1838       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1839                                                Attribute::ZExt))
1840         ExtendKind = ISD::ZERO_EXTEND;
1841 
1842       LLVMContext &Context = F->getContext();
1843       bool RetInReg = F->getAttributes().hasAttribute(
1844           AttributeList::ReturnIndex, Attribute::InReg);
1845 
1846       for (unsigned j = 0; j != NumValues; ++j) {
1847         EVT VT = ValueVTs[j];
1848 
1849         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1850           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1851 
1852         CallingConv::ID CC = F->getCallingConv();
1853 
1854         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1855         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1856         SmallVector<SDValue, 4> Parts(NumParts);
1857         getCopyToParts(DAG, getCurSDLoc(),
1858                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1859                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1860 
1861         // 'inreg' on function refers to return value
1862         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1863         if (RetInReg)
1864           Flags.setInReg();
1865 
1866         if (I.getOperand(0)->getType()->isPointerTy()) {
1867           Flags.setPointer();
1868           Flags.setPointerAddrSpace(
1869               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1870         }
1871 
1872         if (NeedsRegBlock) {
1873           Flags.setInConsecutiveRegs();
1874           if (j == NumValues - 1)
1875             Flags.setInConsecutiveRegsLast();
1876         }
1877 
1878         // Propagate extension type if any
1879         if (ExtendKind == ISD::SIGN_EXTEND)
1880           Flags.setSExt();
1881         else if (ExtendKind == ISD::ZERO_EXTEND)
1882           Flags.setZExt();
1883 
1884         for (unsigned i = 0; i < NumParts; ++i) {
1885           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1886                                         VT, /*isfixed=*/true, 0, 0));
1887           OutVals.push_back(Parts[i]);
1888         }
1889       }
1890     }
1891   }
1892 
1893   // Push in swifterror virtual register as the last element of Outs. This makes
1894   // sure swifterror virtual register will be returned in the swifterror
1895   // physical register.
1896   const Function *F = I.getParent()->getParent();
1897   if (TLI.supportSwiftError() &&
1898       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1899     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1900     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1901     Flags.setSwiftError();
1902     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1903                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1904                                   true /*isfixed*/, 1 /*origidx*/,
1905                                   0 /*partOffs*/));
1906     // Create SDNode for the swifterror virtual register.
1907     OutVals.push_back(
1908         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1909                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1910                         EVT(TLI.getPointerTy(DL))));
1911   }
1912 
1913   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1914   CallingConv::ID CallConv =
1915     DAG.getMachineFunction().getFunction().getCallingConv();
1916   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1917       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1918 
1919   // Verify that the target's LowerReturn behaved as expected.
1920   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1921          "LowerReturn didn't return a valid chain!");
1922 
1923   // Update the DAG with the new chain value resulting from return lowering.
1924   DAG.setRoot(Chain);
1925 }
1926 
1927 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1928 /// created for it, emit nodes to copy the value into the virtual
1929 /// registers.
1930 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1931   // Skip empty types
1932   if (V->getType()->isEmptyTy())
1933     return;
1934 
1935   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1936   if (VMI != FuncInfo.ValueMap.end()) {
1937     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1938     CopyValueToVirtualRegister(V, VMI->second);
1939   }
1940 }
1941 
1942 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1943 /// the current basic block, add it to ValueMap now so that we'll get a
1944 /// CopyTo/FromReg.
1945 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1946   // No need to export constants.
1947   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1948 
1949   // Already exported?
1950   if (FuncInfo.isExportedInst(V)) return;
1951 
1952   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1953   CopyValueToVirtualRegister(V, Reg);
1954 }
1955 
1956 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1957                                                      const BasicBlock *FromBB) {
1958   // The operands of the setcc have to be in this block.  We don't know
1959   // how to export them from some other block.
1960   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1961     // Can export from current BB.
1962     if (VI->getParent() == FromBB)
1963       return true;
1964 
1965     // Is already exported, noop.
1966     return FuncInfo.isExportedInst(V);
1967   }
1968 
1969   // If this is an argument, we can export it if the BB is the entry block or
1970   // if it is already exported.
1971   if (isa<Argument>(V)) {
1972     if (FromBB == &FromBB->getParent()->getEntryBlock())
1973       return true;
1974 
1975     // Otherwise, can only export this if it is already exported.
1976     return FuncInfo.isExportedInst(V);
1977   }
1978 
1979   // Otherwise, constants can always be exported.
1980   return true;
1981 }
1982 
1983 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1984 BranchProbability
1985 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1986                                         const MachineBasicBlock *Dst) const {
1987   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1988   const BasicBlock *SrcBB = Src->getBasicBlock();
1989   const BasicBlock *DstBB = Dst->getBasicBlock();
1990   if (!BPI) {
1991     // If BPI is not available, set the default probability as 1 / N, where N is
1992     // the number of successors.
1993     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1994     return BranchProbability(1, SuccSize);
1995   }
1996   return BPI->getEdgeProbability(SrcBB, DstBB);
1997 }
1998 
1999 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2000                                                MachineBasicBlock *Dst,
2001                                                BranchProbability Prob) {
2002   if (!FuncInfo.BPI)
2003     Src->addSuccessorWithoutProb(Dst);
2004   else {
2005     if (Prob.isUnknown())
2006       Prob = getEdgeProbability(Src, Dst);
2007     Src->addSuccessor(Dst, Prob);
2008   }
2009 }
2010 
2011 static bool InBlock(const Value *V, const BasicBlock *BB) {
2012   if (const Instruction *I = dyn_cast<Instruction>(V))
2013     return I->getParent() == BB;
2014   return true;
2015 }
2016 
2017 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2018 /// This function emits a branch and is used at the leaves of an OR or an
2019 /// AND operator tree.
2020 void
2021 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2022                                                   MachineBasicBlock *TBB,
2023                                                   MachineBasicBlock *FBB,
2024                                                   MachineBasicBlock *CurBB,
2025                                                   MachineBasicBlock *SwitchBB,
2026                                                   BranchProbability TProb,
2027                                                   BranchProbability FProb,
2028                                                   bool InvertCond) {
2029   const BasicBlock *BB = CurBB->getBasicBlock();
2030 
2031   // If the leaf of the tree is a comparison, merge the condition into
2032   // the caseblock.
2033   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2034     // The operands of the cmp have to be in this block.  We don't know
2035     // how to export them from some other block.  If this is the first block
2036     // of the sequence, no exporting is needed.
2037     if (CurBB == SwitchBB ||
2038         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2039          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2040       ISD::CondCode Condition;
2041       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2042         ICmpInst::Predicate Pred =
2043             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2044         Condition = getICmpCondCode(Pred);
2045       } else {
2046         const FCmpInst *FC = cast<FCmpInst>(Cond);
2047         FCmpInst::Predicate Pred =
2048             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2049         Condition = getFCmpCondCode(Pred);
2050         if (TM.Options.NoNaNsFPMath)
2051           Condition = getFCmpCodeWithoutNaN(Condition);
2052       }
2053 
2054       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2055                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2056       SL->SwitchCases.push_back(CB);
2057       return;
2058     }
2059   }
2060 
2061   // Create a CaseBlock record representing this branch.
2062   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2063   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2064                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2065   SL->SwitchCases.push_back(CB);
2066 }
2067 
2068 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2069                                                MachineBasicBlock *TBB,
2070                                                MachineBasicBlock *FBB,
2071                                                MachineBasicBlock *CurBB,
2072                                                MachineBasicBlock *SwitchBB,
2073                                                Instruction::BinaryOps Opc,
2074                                                BranchProbability TProb,
2075                                                BranchProbability FProb,
2076                                                bool InvertCond) {
2077   // Skip over not part of the tree and remember to invert op and operands at
2078   // next level.
2079   Value *NotCond;
2080   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2081       InBlock(NotCond, CurBB->getBasicBlock())) {
2082     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2083                          !InvertCond);
2084     return;
2085   }
2086 
2087   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2088   // Compute the effective opcode for Cond, taking into account whether it needs
2089   // to be inverted, e.g.
2090   //   and (not (or A, B)), C
2091   // gets lowered as
2092   //   and (and (not A, not B), C)
2093   unsigned BOpc = 0;
2094   if (BOp) {
2095     BOpc = BOp->getOpcode();
2096     if (InvertCond) {
2097       if (BOpc == Instruction::And)
2098         BOpc = Instruction::Or;
2099       else if (BOpc == Instruction::Or)
2100         BOpc = Instruction::And;
2101     }
2102   }
2103 
2104   // If this node is not part of the or/and tree, emit it as a branch.
2105   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2106       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2107       BOp->getParent() != CurBB->getBasicBlock() ||
2108       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2109       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2110     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2111                                  TProb, FProb, InvertCond);
2112     return;
2113   }
2114 
2115   //  Create TmpBB after CurBB.
2116   MachineFunction::iterator BBI(CurBB);
2117   MachineFunction &MF = DAG.getMachineFunction();
2118   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2119   CurBB->getParent()->insert(++BBI, TmpBB);
2120 
2121   if (Opc == Instruction::Or) {
2122     // Codegen X | Y as:
2123     // BB1:
2124     //   jmp_if_X TBB
2125     //   jmp TmpBB
2126     // TmpBB:
2127     //   jmp_if_Y TBB
2128     //   jmp FBB
2129     //
2130 
2131     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2132     // The requirement is that
2133     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2134     //     = TrueProb for original BB.
2135     // Assuming the original probabilities are A and B, one choice is to set
2136     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2137     // A/(1+B) and 2B/(1+B). This choice assumes that
2138     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2139     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2140     // TmpBB, but the math is more complicated.
2141 
2142     auto NewTrueProb = TProb / 2;
2143     auto NewFalseProb = TProb / 2 + FProb;
2144     // Emit the LHS condition.
2145     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2146                          NewTrueProb, NewFalseProb, InvertCond);
2147 
2148     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2149     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2150     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2151     // Emit the RHS condition into TmpBB.
2152     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2153                          Probs[0], Probs[1], InvertCond);
2154   } else {
2155     assert(Opc == Instruction::And && "Unknown merge op!");
2156     // Codegen X & Y as:
2157     // BB1:
2158     //   jmp_if_X TmpBB
2159     //   jmp FBB
2160     // TmpBB:
2161     //   jmp_if_Y TBB
2162     //   jmp FBB
2163     //
2164     //  This requires creation of TmpBB after CurBB.
2165 
2166     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2167     // The requirement is that
2168     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2169     //     = FalseProb for original BB.
2170     // Assuming the original probabilities are A and B, one choice is to set
2171     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2172     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2173     // TrueProb for BB1 * FalseProb for TmpBB.
2174 
2175     auto NewTrueProb = TProb + FProb / 2;
2176     auto NewFalseProb = FProb / 2;
2177     // Emit the LHS condition.
2178     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2179                          NewTrueProb, NewFalseProb, InvertCond);
2180 
2181     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2182     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2183     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2184     // Emit the RHS condition into TmpBB.
2185     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2186                          Probs[0], Probs[1], InvertCond);
2187   }
2188 }
2189 
2190 /// If the set of cases should be emitted as a series of branches, return true.
2191 /// If we should emit this as a bunch of and/or'd together conditions, return
2192 /// false.
2193 bool
2194 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2195   if (Cases.size() != 2) return true;
2196 
2197   // If this is two comparisons of the same values or'd or and'd together, they
2198   // will get folded into a single comparison, so don't emit two blocks.
2199   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2200        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2201       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2202        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2203     return false;
2204   }
2205 
2206   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2207   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2208   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2209       Cases[0].CC == Cases[1].CC &&
2210       isa<Constant>(Cases[0].CmpRHS) &&
2211       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2212     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2213       return false;
2214     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2215       return false;
2216   }
2217 
2218   return true;
2219 }
2220 
2221 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2222   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2223 
2224   // Update machine-CFG edges.
2225   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2226 
2227   if (I.isUnconditional()) {
2228     // Update machine-CFG edges.
2229     BrMBB->addSuccessor(Succ0MBB);
2230 
2231     // If this is not a fall-through branch or optimizations are switched off,
2232     // emit the branch.
2233     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2234       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2235                               MVT::Other, getControlRoot(),
2236                               DAG.getBasicBlock(Succ0MBB)));
2237 
2238     return;
2239   }
2240 
2241   // If this condition is one of the special cases we handle, do special stuff
2242   // now.
2243   const Value *CondVal = I.getCondition();
2244   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2245 
2246   // If this is a series of conditions that are or'd or and'd together, emit
2247   // this as a sequence of branches instead of setcc's with and/or operations.
2248   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2249   // unpredictable branches, and vector extracts because those jumps are likely
2250   // expensive for any target), this should improve performance.
2251   // For example, instead of something like:
2252   //     cmp A, B
2253   //     C = seteq
2254   //     cmp D, E
2255   //     F = setle
2256   //     or C, F
2257   //     jnz foo
2258   // Emit:
2259   //     cmp A, B
2260   //     je foo
2261   //     cmp D, E
2262   //     jle foo
2263   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2264     Instruction::BinaryOps Opcode = BOp->getOpcode();
2265     Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1);
2266     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2267         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2268         (Opcode == Instruction::And || Opcode == Instruction::Or) &&
2269         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2270           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2271       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2272                            Opcode,
2273                            getEdgeProbability(BrMBB, Succ0MBB),
2274                            getEdgeProbability(BrMBB, Succ1MBB),
2275                            /*InvertCond=*/false);
2276       // If the compares in later blocks need to use values not currently
2277       // exported from this block, export them now.  This block should always
2278       // be the first entry.
2279       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2280 
2281       // Allow some cases to be rejected.
2282       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2283         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2284           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2285           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2286         }
2287 
2288         // Emit the branch for this block.
2289         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2290         SL->SwitchCases.erase(SL->SwitchCases.begin());
2291         return;
2292       }
2293 
2294       // Okay, we decided not to do this, remove any inserted MBB's and clear
2295       // SwitchCases.
2296       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2297         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2298 
2299       SL->SwitchCases.clear();
2300     }
2301   }
2302 
2303   // Create a CaseBlock record representing this branch.
2304   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2305                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2306 
2307   // Use visitSwitchCase to actually insert the fast branch sequence for this
2308   // cond branch.
2309   visitSwitchCase(CB, BrMBB);
2310 }
2311 
2312 /// visitSwitchCase - Emits the necessary code to represent a single node in
2313 /// the binary search tree resulting from lowering a switch instruction.
2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2315                                           MachineBasicBlock *SwitchBB) {
2316   SDValue Cond;
2317   SDValue CondLHS = getValue(CB.CmpLHS);
2318   SDLoc dl = CB.DL;
2319 
2320   if (CB.CC == ISD::SETTRUE) {
2321     // Branch or fall through to TrueBB.
2322     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2323     SwitchBB->normalizeSuccProbs();
2324     if (CB.TrueBB != NextBlock(SwitchBB)) {
2325       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2326                               DAG.getBasicBlock(CB.TrueBB)));
2327     }
2328     return;
2329   }
2330 
2331   auto &TLI = DAG.getTargetLoweringInfo();
2332   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2333 
2334   // Build the setcc now.
2335   if (!CB.CmpMHS) {
2336     // Fold "(X == true)" to X and "(X == false)" to !X to
2337     // handle common cases produced by branch lowering.
2338     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2339         CB.CC == ISD::SETEQ)
2340       Cond = CondLHS;
2341     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2342              CB.CC == ISD::SETEQ) {
2343       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2344       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2345     } else {
2346       SDValue CondRHS = getValue(CB.CmpRHS);
2347 
2348       // If a pointer's DAG type is larger than its memory type then the DAG
2349       // values are zero-extended. This breaks signed comparisons so truncate
2350       // back to the underlying type before doing the compare.
2351       if (CondLHS.getValueType() != MemVT) {
2352         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2353         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2354       }
2355       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2356     }
2357   } else {
2358     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2359 
2360     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2361     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2362 
2363     SDValue CmpOp = getValue(CB.CmpMHS);
2364     EVT VT = CmpOp.getValueType();
2365 
2366     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2367       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2368                           ISD::SETLE);
2369     } else {
2370       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2371                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2372       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2373                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2374     }
2375   }
2376 
2377   // Update successor info
2378   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2379   // TrueBB and FalseBB are always different unless the incoming IR is
2380   // degenerate. This only happens when running llc on weird IR.
2381   if (CB.TrueBB != CB.FalseBB)
2382     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2383   SwitchBB->normalizeSuccProbs();
2384 
2385   // If the lhs block is the next block, invert the condition so that we can
2386   // fall through to the lhs instead of the rhs block.
2387   if (CB.TrueBB == NextBlock(SwitchBB)) {
2388     std::swap(CB.TrueBB, CB.FalseBB);
2389     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2390     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2391   }
2392 
2393   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2394                                MVT::Other, getControlRoot(), Cond,
2395                                DAG.getBasicBlock(CB.TrueBB));
2396 
2397   // Insert the false branch. Do this even if it's a fall through branch,
2398   // this makes it easier to do DAG optimizations which require inverting
2399   // the branch condition.
2400   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2401                        DAG.getBasicBlock(CB.FalseBB));
2402 
2403   DAG.setRoot(BrCond);
2404 }
2405 
2406 /// visitJumpTable - Emit JumpTable node in the current MBB
2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2408   // Emit the code for the jump table
2409   assert(JT.Reg != -1U && "Should lower JT Header first!");
2410   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2411   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2412                                      JT.Reg, PTy);
2413   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2414   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2415                                     MVT::Other, Index.getValue(1),
2416                                     Table, Index);
2417   DAG.setRoot(BrJumpTable);
2418 }
2419 
2420 /// visitJumpTableHeader - This function emits necessary code to produce index
2421 /// in the JumpTable from switch case.
2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2423                                                JumpTableHeader &JTH,
2424                                                MachineBasicBlock *SwitchBB) {
2425   SDLoc dl = getCurSDLoc();
2426 
2427   // Subtract the lowest switch case value from the value being switched on.
2428   SDValue SwitchOp = getValue(JTH.SValue);
2429   EVT VT = SwitchOp.getValueType();
2430   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2431                             DAG.getConstant(JTH.First, dl, VT));
2432 
2433   // The SDNode we just created, which holds the value being switched on minus
2434   // the smallest case value, needs to be copied to a virtual register so it
2435   // can be used as an index into the jump table in a subsequent basic block.
2436   // This value may be smaller or larger than the target's pointer type, and
2437   // therefore require extension or truncating.
2438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2439   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2440 
2441   unsigned JumpTableReg =
2442       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2443   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2444                                     JumpTableReg, SwitchOp);
2445   JT.Reg = JumpTableReg;
2446 
2447   if (!JTH.OmitRangeCheck) {
2448     // Emit the range check for the jump table, and branch to the default block
2449     // for the switch statement if the value being switched on exceeds the
2450     // largest case in the switch.
2451     SDValue CMP = DAG.getSetCC(
2452         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2453                                    Sub.getValueType()),
2454         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2455 
2456     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2457                                  MVT::Other, CopyTo, CMP,
2458                                  DAG.getBasicBlock(JT.Default));
2459 
2460     // Avoid emitting unnecessary branches to the next block.
2461     if (JT.MBB != NextBlock(SwitchBB))
2462       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2463                            DAG.getBasicBlock(JT.MBB));
2464 
2465     DAG.setRoot(BrCond);
2466   } else {
2467     // Avoid emitting unnecessary branches to the next block.
2468     if (JT.MBB != NextBlock(SwitchBB))
2469       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2470                               DAG.getBasicBlock(JT.MBB)));
2471     else
2472       DAG.setRoot(CopyTo);
2473   }
2474 }
2475 
2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2477 /// variable if there exists one.
2478 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2479                                  SDValue &Chain) {
2480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2481   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2482   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2483   MachineFunction &MF = DAG.getMachineFunction();
2484   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2485   MachineSDNode *Node =
2486       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2487   if (Global) {
2488     MachinePointerInfo MPInfo(Global);
2489     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2490                  MachineMemOperand::MODereferenceable;
2491     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2492         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2493     DAG.setNodeMemRefs(Node, {MemRef});
2494   }
2495   if (PtrTy != PtrMemTy)
2496     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2497   return SDValue(Node, 0);
2498 }
2499 
2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2501 /// tail spliced into a stack protector check success bb.
2502 ///
2503 /// For a high level explanation of how this fits into the stack protector
2504 /// generation see the comment on the declaration of class
2505 /// StackProtectorDescriptor.
2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2507                                                   MachineBasicBlock *ParentBB) {
2508 
2509   // First create the loads to the guard/stack slot for the comparison.
2510   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2511   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2512   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2513 
2514   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2515   int FI = MFI.getStackProtectorIndex();
2516 
2517   SDValue Guard;
2518   SDLoc dl = getCurSDLoc();
2519   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2520   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2521   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2522 
2523   // Generate code to load the content of the guard slot.
2524   SDValue GuardVal = DAG.getLoad(
2525       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2526       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2527       MachineMemOperand::MOVolatile);
2528 
2529   if (TLI.useStackGuardXorFP())
2530     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2531 
2532   // Retrieve guard check function, nullptr if instrumentation is inlined.
2533   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2534     // The target provides a guard check function to validate the guard value.
2535     // Generate a call to that function with the content of the guard slot as
2536     // argument.
2537     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2538     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2539 
2540     TargetLowering::ArgListTy Args;
2541     TargetLowering::ArgListEntry Entry;
2542     Entry.Node = GuardVal;
2543     Entry.Ty = FnTy->getParamType(0);
2544     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2545       Entry.IsInReg = true;
2546     Args.push_back(Entry);
2547 
2548     TargetLowering::CallLoweringInfo CLI(DAG);
2549     CLI.setDebugLoc(getCurSDLoc())
2550         .setChain(DAG.getEntryNode())
2551         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2552                    getValue(GuardCheckFn), std::move(Args));
2553 
2554     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2555     DAG.setRoot(Result.second);
2556     return;
2557   }
2558 
2559   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2560   // Otherwise, emit a volatile load to retrieve the stack guard value.
2561   SDValue Chain = DAG.getEntryNode();
2562   if (TLI.useLoadStackGuardNode()) {
2563     Guard = getLoadStackGuard(DAG, dl, Chain);
2564   } else {
2565     const Value *IRGuard = TLI.getSDagStackGuard(M);
2566     SDValue GuardPtr = getValue(IRGuard);
2567 
2568     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2569                         MachinePointerInfo(IRGuard, 0), Align,
2570                         MachineMemOperand::MOVolatile);
2571   }
2572 
2573   // Perform the comparison via a getsetcc.
2574   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2575                                                         *DAG.getContext(),
2576                                                         Guard.getValueType()),
2577                              Guard, GuardVal, ISD::SETNE);
2578 
2579   // If the guard/stackslot do not equal, branch to failure MBB.
2580   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2581                                MVT::Other, GuardVal.getOperand(0),
2582                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2583   // Otherwise branch to success MBB.
2584   SDValue Br = DAG.getNode(ISD::BR, dl,
2585                            MVT::Other, BrCond,
2586                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2587 
2588   DAG.setRoot(Br);
2589 }
2590 
2591 /// Codegen the failure basic block for a stack protector check.
2592 ///
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2595 ///
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2599 void
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602   TargetLowering::MakeLibCallOptions CallOptions;
2603   CallOptions.setDiscardResult(true);
2604   SDValue Chain =
2605       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2606                       None, CallOptions, getCurSDLoc()).second;
2607   // On PS4, the "return address" must still be within the calling function,
2608   // even if it's at the very end, so emit an explicit TRAP here.
2609   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610   if (TM.getTargetTriple().isPS4CPU())
2611     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2612   // WebAssembly needs an unreachable instruction after a non-returning call,
2613   // because the function return type can be different from __stack_chk_fail's
2614   // return type (void).
2615   if (TM.getTargetTriple().isWasm())
2616     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2617 
2618   DAG.setRoot(Chain);
2619 }
2620 
2621 /// visitBitTestHeader - This function emits necessary code to produce value
2622 /// suitable for "bit tests"
2623 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2624                                              MachineBasicBlock *SwitchBB) {
2625   SDLoc dl = getCurSDLoc();
2626 
2627   // Subtract the minimum value.
2628   SDValue SwitchOp = getValue(B.SValue);
2629   EVT VT = SwitchOp.getValueType();
2630   SDValue RangeSub =
2631       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2632 
2633   // Determine the type of the test operands.
2634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2635   bool UsePtrType = false;
2636   if (!TLI.isTypeLegal(VT)) {
2637     UsePtrType = true;
2638   } else {
2639     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2640       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2641         // Switch table case range are encoded into series of masks.
2642         // Just use pointer type, it's guaranteed to fit.
2643         UsePtrType = true;
2644         break;
2645       }
2646   }
2647   SDValue Sub = RangeSub;
2648   if (UsePtrType) {
2649     VT = TLI.getPointerTy(DAG.getDataLayout());
2650     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2651   }
2652 
2653   B.RegVT = VT.getSimpleVT();
2654   B.Reg = FuncInfo.CreateReg(B.RegVT);
2655   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2656 
2657   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2658 
2659   if (!B.OmitRangeCheck)
2660     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2661   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2662   SwitchBB->normalizeSuccProbs();
2663 
2664   SDValue Root = CopyTo;
2665   if (!B.OmitRangeCheck) {
2666     // Conditional branch to the default block.
2667     SDValue RangeCmp = DAG.getSetCC(dl,
2668         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2669                                RangeSub.getValueType()),
2670         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2671         ISD::SETUGT);
2672 
2673     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2674                        DAG.getBasicBlock(B.Default));
2675   }
2676 
2677   // Avoid emitting unnecessary branches to the next block.
2678   if (MBB != NextBlock(SwitchBB))
2679     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2680 
2681   DAG.setRoot(Root);
2682 }
2683 
2684 /// visitBitTestCase - this function produces one "bit test"
2685 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2686                                            MachineBasicBlock* NextMBB,
2687                                            BranchProbability BranchProbToNext,
2688                                            unsigned Reg,
2689                                            BitTestCase &B,
2690                                            MachineBasicBlock *SwitchBB) {
2691   SDLoc dl = getCurSDLoc();
2692   MVT VT = BB.RegVT;
2693   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2694   SDValue Cmp;
2695   unsigned PopCount = countPopulation(B.Mask);
2696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2697   if (PopCount == 1) {
2698     // Testing for a single bit; just compare the shift count with what it
2699     // would need to be to shift a 1 bit in that position.
2700     Cmp = DAG.getSetCC(
2701         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2702         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2703         ISD::SETEQ);
2704   } else if (PopCount == BB.Range) {
2705     // There is only one zero bit in the range, test for it directly.
2706     Cmp = DAG.getSetCC(
2707         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2708         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2709         ISD::SETNE);
2710   } else {
2711     // Make desired shift
2712     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2713                                     DAG.getConstant(1, dl, VT), ShiftOp);
2714 
2715     // Emit bit tests and jumps
2716     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2717                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2718     Cmp = DAG.getSetCC(
2719         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2720         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2721   }
2722 
2723   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2724   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2725   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2726   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2727   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2728   // one as they are relative probabilities (and thus work more like weights),
2729   // and hence we need to normalize them to let the sum of them become one.
2730   SwitchBB->normalizeSuccProbs();
2731 
2732   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2733                               MVT::Other, getControlRoot(),
2734                               Cmp, DAG.getBasicBlock(B.TargetBB));
2735 
2736   // Avoid emitting unnecessary branches to the next block.
2737   if (NextMBB != NextBlock(SwitchBB))
2738     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2739                         DAG.getBasicBlock(NextMBB));
2740 
2741   DAG.setRoot(BrAnd);
2742 }
2743 
2744 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2745   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2746 
2747   // Retrieve successors. Look through artificial IR level blocks like
2748   // catchswitch for successors.
2749   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2750   const BasicBlock *EHPadBB = I.getSuccessor(1);
2751 
2752   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2753   // have to do anything here to lower funclet bundles.
2754   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2755                                         LLVMContext::OB_gc_transition,
2756                                         LLVMContext::OB_gc_live,
2757                                         LLVMContext::OB_funclet,
2758                                         LLVMContext::OB_cfguardtarget}) &&
2759          "Cannot lower invokes with arbitrary operand bundles yet!");
2760 
2761   const Value *Callee(I.getCalledOperand());
2762   const Function *Fn = dyn_cast<Function>(Callee);
2763   if (isa<InlineAsm>(Callee))
2764     visitInlineAsm(I);
2765   else if (Fn && Fn->isIntrinsic()) {
2766     switch (Fn->getIntrinsicID()) {
2767     default:
2768       llvm_unreachable("Cannot invoke this intrinsic");
2769     case Intrinsic::donothing:
2770       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2771       break;
2772     case Intrinsic::experimental_patchpoint_void:
2773     case Intrinsic::experimental_patchpoint_i64:
2774       visitPatchpoint(I, EHPadBB);
2775       break;
2776     case Intrinsic::experimental_gc_statepoint:
2777       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2778       break;
2779     case Intrinsic::wasm_rethrow_in_catch: {
2780       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2781       // special because it can be invoked, so we manually lower it to a DAG
2782       // node here.
2783       SmallVector<SDValue, 8> Ops;
2784       Ops.push_back(getRoot()); // inchain
2785       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2786       Ops.push_back(
2787           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2788                                 TLI.getPointerTy(DAG.getDataLayout())));
2789       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2790       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2791       break;
2792     }
2793     }
2794   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2795     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2796     // Eventually we will support lowering the @llvm.experimental.deoptimize
2797     // intrinsic, and right now there are no plans to support other intrinsics
2798     // with deopt state.
2799     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2800   } else {
2801     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2802   }
2803 
2804   // If the value of the invoke is used outside of its defining block, make it
2805   // available as a virtual register.
2806   // We already took care of the exported value for the statepoint instruction
2807   // during call to the LowerStatepoint.
2808   if (!isa<GCStatepointInst>(I)) {
2809     CopyToExportRegsIfNeeded(&I);
2810   }
2811 
2812   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2813   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2814   BranchProbability EHPadBBProb =
2815       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2816           : BranchProbability::getZero();
2817   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2818 
2819   // Update successor info.
2820   addSuccessorWithProb(InvokeMBB, Return);
2821   for (auto &UnwindDest : UnwindDests) {
2822     UnwindDest.first->setIsEHPad();
2823     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2824   }
2825   InvokeMBB->normalizeSuccProbs();
2826 
2827   // Drop into normal successor.
2828   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2829                           DAG.getBasicBlock(Return)));
2830 }
2831 
2832 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2833   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2834 
2835   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2836   // have to do anything here to lower funclet bundles.
2837   assert(!I.hasOperandBundlesOtherThan(
2838              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2839          "Cannot lower callbrs with arbitrary operand bundles yet!");
2840 
2841   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2842   visitInlineAsm(I);
2843   CopyToExportRegsIfNeeded(&I);
2844 
2845   // Retrieve successors.
2846   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2847 
2848   // Update successor info.
2849   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2850   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2851     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2852     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2853     Target->setIsInlineAsmBrIndirectTarget();
2854   }
2855   CallBrMBB->normalizeSuccProbs();
2856 
2857   // Drop into default successor.
2858   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2859                           MVT::Other, getControlRoot(),
2860                           DAG.getBasicBlock(Return)));
2861 }
2862 
2863 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2864   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2865 }
2866 
2867 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2868   assert(FuncInfo.MBB->isEHPad() &&
2869          "Call to landingpad not in landing pad!");
2870 
2871   // If there aren't registers to copy the values into (e.g., during SjLj
2872   // exceptions), then don't bother to create these DAG nodes.
2873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2874   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2875   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2876       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2877     return;
2878 
2879   // If landingpad's return type is token type, we don't create DAG nodes
2880   // for its exception pointer and selector value. The extraction of exception
2881   // pointer or selector value from token type landingpads is not currently
2882   // supported.
2883   if (LP.getType()->isTokenTy())
2884     return;
2885 
2886   SmallVector<EVT, 2> ValueVTs;
2887   SDLoc dl = getCurSDLoc();
2888   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2889   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2890 
2891   // Get the two live-in registers as SDValues. The physregs have already been
2892   // copied into virtual registers.
2893   SDValue Ops[2];
2894   if (FuncInfo.ExceptionPointerVirtReg) {
2895     Ops[0] = DAG.getZExtOrTrunc(
2896         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2897                            FuncInfo.ExceptionPointerVirtReg,
2898                            TLI.getPointerTy(DAG.getDataLayout())),
2899         dl, ValueVTs[0]);
2900   } else {
2901     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2902   }
2903   Ops[1] = DAG.getZExtOrTrunc(
2904       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2905                          FuncInfo.ExceptionSelectorVirtReg,
2906                          TLI.getPointerTy(DAG.getDataLayout())),
2907       dl, ValueVTs[1]);
2908 
2909   // Merge into one.
2910   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2911                             DAG.getVTList(ValueVTs), Ops);
2912   setValue(&LP, Res);
2913 }
2914 
2915 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2916                                            MachineBasicBlock *Last) {
2917   // Update JTCases.
2918   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2919     if (SL->JTCases[i].first.HeaderBB == First)
2920       SL->JTCases[i].first.HeaderBB = Last;
2921 
2922   // Update BitTestCases.
2923   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2924     if (SL->BitTestCases[i].Parent == First)
2925       SL->BitTestCases[i].Parent = Last;
2926 }
2927 
2928 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2929   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2930 
2931   // Update machine-CFG edges with unique successors.
2932   SmallSet<BasicBlock*, 32> Done;
2933   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2934     BasicBlock *BB = I.getSuccessor(i);
2935     bool Inserted = Done.insert(BB).second;
2936     if (!Inserted)
2937         continue;
2938 
2939     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2940     addSuccessorWithProb(IndirectBrMBB, Succ);
2941   }
2942   IndirectBrMBB->normalizeSuccProbs();
2943 
2944   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2945                           MVT::Other, getControlRoot(),
2946                           getValue(I.getAddress())));
2947 }
2948 
2949 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2950   if (!DAG.getTarget().Options.TrapUnreachable)
2951     return;
2952 
2953   // We may be able to ignore unreachable behind a noreturn call.
2954   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2955     const BasicBlock &BB = *I.getParent();
2956     if (&I != &BB.front()) {
2957       BasicBlock::const_iterator PredI =
2958         std::prev(BasicBlock::const_iterator(&I));
2959       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2960         if (Call->doesNotReturn())
2961           return;
2962       }
2963     }
2964   }
2965 
2966   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2967 }
2968 
2969 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2970   SDNodeFlags Flags;
2971 
2972   SDValue Op = getValue(I.getOperand(0));
2973   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2974                                     Op, Flags);
2975   setValue(&I, UnNodeValue);
2976 }
2977 
2978 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2979   SDNodeFlags Flags;
2980   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2981     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2982     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2983   }
2984   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
2985     Flags.setExact(ExactOp->isExact());
2986   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
2987     Flags.copyFMF(*FPOp);
2988 
2989   SDValue Op1 = getValue(I.getOperand(0));
2990   SDValue Op2 = getValue(I.getOperand(1));
2991   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2992                                      Op1, Op2, Flags);
2993   setValue(&I, BinNodeValue);
2994 }
2995 
2996 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2997   SDValue Op1 = getValue(I.getOperand(0));
2998   SDValue Op2 = getValue(I.getOperand(1));
2999 
3000   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3001       Op1.getValueType(), DAG.getDataLayout());
3002 
3003   // Coerce the shift amount to the right type if we can.
3004   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3005     unsigned ShiftSize = ShiftTy.getSizeInBits();
3006     unsigned Op2Size = Op2.getValueSizeInBits();
3007     SDLoc DL = getCurSDLoc();
3008 
3009     // If the operand is smaller than the shift count type, promote it.
3010     if (ShiftSize > Op2Size)
3011       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3012 
3013     // If the operand is larger than the shift count type but the shift
3014     // count type has enough bits to represent any shift value, truncate
3015     // it now. This is a common case and it exposes the truncate to
3016     // optimization early.
3017     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3018       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3019     // Otherwise we'll need to temporarily settle for some other convenient
3020     // type.  Type legalization will make adjustments once the shiftee is split.
3021     else
3022       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3023   }
3024 
3025   bool nuw = false;
3026   bool nsw = false;
3027   bool exact = false;
3028 
3029   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3030 
3031     if (const OverflowingBinaryOperator *OFBinOp =
3032             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3033       nuw = OFBinOp->hasNoUnsignedWrap();
3034       nsw = OFBinOp->hasNoSignedWrap();
3035     }
3036     if (const PossiblyExactOperator *ExactOp =
3037             dyn_cast<const PossiblyExactOperator>(&I))
3038       exact = ExactOp->isExact();
3039   }
3040   SDNodeFlags Flags;
3041   Flags.setExact(exact);
3042   Flags.setNoSignedWrap(nsw);
3043   Flags.setNoUnsignedWrap(nuw);
3044   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3045                             Flags);
3046   setValue(&I, Res);
3047 }
3048 
3049 void SelectionDAGBuilder::visitSDiv(const User &I) {
3050   SDValue Op1 = getValue(I.getOperand(0));
3051   SDValue Op2 = getValue(I.getOperand(1));
3052 
3053   SDNodeFlags Flags;
3054   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3055                  cast<PossiblyExactOperator>(&I)->isExact());
3056   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3057                            Op2, Flags));
3058 }
3059 
3060 void SelectionDAGBuilder::visitICmp(const User &I) {
3061   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3062   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3063     predicate = IC->getPredicate();
3064   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3065     predicate = ICmpInst::Predicate(IC->getPredicate());
3066   SDValue Op1 = getValue(I.getOperand(0));
3067   SDValue Op2 = getValue(I.getOperand(1));
3068   ISD::CondCode Opcode = getICmpCondCode(predicate);
3069 
3070   auto &TLI = DAG.getTargetLoweringInfo();
3071   EVT MemVT =
3072       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3073 
3074   // If a pointer's DAG type is larger than its memory type then the DAG values
3075   // are zero-extended. This breaks signed comparisons so truncate back to the
3076   // underlying type before doing the compare.
3077   if (Op1.getValueType() != MemVT) {
3078     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3079     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3080   }
3081 
3082   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3083                                                         I.getType());
3084   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3085 }
3086 
3087 void SelectionDAGBuilder::visitFCmp(const User &I) {
3088   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3089   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3090     predicate = FC->getPredicate();
3091   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3092     predicate = FCmpInst::Predicate(FC->getPredicate());
3093   SDValue Op1 = getValue(I.getOperand(0));
3094   SDValue Op2 = getValue(I.getOperand(1));
3095 
3096   ISD::CondCode Condition = getFCmpCondCode(predicate);
3097   auto *FPMO = cast<FPMathOperator>(&I);
3098   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3099     Condition = getFCmpCodeWithoutNaN(Condition);
3100 
3101   SDNodeFlags Flags;
3102   Flags.copyFMF(*FPMO);
3103   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3104 
3105   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3106                                                         I.getType());
3107   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3108 }
3109 
3110 // Check if the condition of the select has one use or two users that are both
3111 // selects with the same condition.
3112 static bool hasOnlySelectUsers(const Value *Cond) {
3113   return llvm::all_of(Cond->users(), [](const Value *V) {
3114     return isa<SelectInst>(V);
3115   });
3116 }
3117 
3118 void SelectionDAGBuilder::visitSelect(const User &I) {
3119   SmallVector<EVT, 4> ValueVTs;
3120   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3121                   ValueVTs);
3122   unsigned NumValues = ValueVTs.size();
3123   if (NumValues == 0) return;
3124 
3125   SmallVector<SDValue, 4> Values(NumValues);
3126   SDValue Cond     = getValue(I.getOperand(0));
3127   SDValue LHSVal   = getValue(I.getOperand(1));
3128   SDValue RHSVal   = getValue(I.getOperand(2));
3129   SmallVector<SDValue, 1> BaseOps(1, Cond);
3130   ISD::NodeType OpCode =
3131       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3132 
3133   bool IsUnaryAbs = false;
3134 
3135   SDNodeFlags Flags;
3136   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3137     Flags.copyFMF(*FPOp);
3138 
3139   // Min/max matching is only viable if all output VTs are the same.
3140   if (is_splat(ValueVTs)) {
3141     EVT VT = ValueVTs[0];
3142     LLVMContext &Ctx = *DAG.getContext();
3143     auto &TLI = DAG.getTargetLoweringInfo();
3144 
3145     // We care about the legality of the operation after it has been type
3146     // legalized.
3147     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3148       VT = TLI.getTypeToTransformTo(Ctx, VT);
3149 
3150     // If the vselect is legal, assume we want to leave this as a vector setcc +
3151     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3152     // min/max is legal on the scalar type.
3153     bool UseScalarMinMax = VT.isVector() &&
3154       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3155 
3156     Value *LHS, *RHS;
3157     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3158     ISD::NodeType Opc = ISD::DELETED_NODE;
3159     switch (SPR.Flavor) {
3160     case SPF_UMAX:    Opc = ISD::UMAX; break;
3161     case SPF_UMIN:    Opc = ISD::UMIN; break;
3162     case SPF_SMAX:    Opc = ISD::SMAX; break;
3163     case SPF_SMIN:    Opc = ISD::SMIN; break;
3164     case SPF_FMINNUM:
3165       switch (SPR.NaNBehavior) {
3166       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3167       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3168       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3169       case SPNB_RETURNS_ANY: {
3170         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3171           Opc = ISD::FMINNUM;
3172         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3173           Opc = ISD::FMINIMUM;
3174         else if (UseScalarMinMax)
3175           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3176             ISD::FMINNUM : ISD::FMINIMUM;
3177         break;
3178       }
3179       }
3180       break;
3181     case SPF_FMAXNUM:
3182       switch (SPR.NaNBehavior) {
3183       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3184       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3185       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3186       case SPNB_RETURNS_ANY:
3187 
3188         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3189           Opc = ISD::FMAXNUM;
3190         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3191           Opc = ISD::FMAXIMUM;
3192         else if (UseScalarMinMax)
3193           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3194             ISD::FMAXNUM : ISD::FMAXIMUM;
3195         break;
3196       }
3197       break;
3198     case SPF_ABS:
3199       IsUnaryAbs = true;
3200       Opc = ISD::ABS;
3201       break;
3202     case SPF_NABS:
3203       // TODO: we need to produce sub(0, abs(X)).
3204     default: break;
3205     }
3206 
3207     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3208         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3209          (UseScalarMinMax &&
3210           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3211         // If the underlying comparison instruction is used by any other
3212         // instruction, the consumed instructions won't be destroyed, so it is
3213         // not profitable to convert to a min/max.
3214         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3215       OpCode = Opc;
3216       LHSVal = getValue(LHS);
3217       RHSVal = getValue(RHS);
3218       BaseOps.clear();
3219     }
3220 
3221     if (IsUnaryAbs) {
3222       OpCode = Opc;
3223       LHSVal = getValue(LHS);
3224       BaseOps.clear();
3225     }
3226   }
3227 
3228   if (IsUnaryAbs) {
3229     for (unsigned i = 0; i != NumValues; ++i) {
3230       Values[i] =
3231           DAG.getNode(OpCode, getCurSDLoc(),
3232                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3233                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3234     }
3235   } else {
3236     for (unsigned i = 0; i != NumValues; ++i) {
3237       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3238       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3239       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3240       Values[i] = DAG.getNode(
3241           OpCode, getCurSDLoc(),
3242           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3243     }
3244   }
3245 
3246   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3247                            DAG.getVTList(ValueVTs), Values));
3248 }
3249 
3250 void SelectionDAGBuilder::visitTrunc(const User &I) {
3251   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3252   SDValue N = getValue(I.getOperand(0));
3253   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3254                                                         I.getType());
3255   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3256 }
3257 
3258 void SelectionDAGBuilder::visitZExt(const User &I) {
3259   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3260   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3261   SDValue N = getValue(I.getOperand(0));
3262   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3263                                                         I.getType());
3264   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3265 }
3266 
3267 void SelectionDAGBuilder::visitSExt(const User &I) {
3268   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3269   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3270   SDValue N = getValue(I.getOperand(0));
3271   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3272                                                         I.getType());
3273   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3274 }
3275 
3276 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3277   // FPTrunc is never a no-op cast, no need to check
3278   SDValue N = getValue(I.getOperand(0));
3279   SDLoc dl = getCurSDLoc();
3280   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3281   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3282   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3283                            DAG.getTargetConstant(
3284                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3285 }
3286 
3287 void SelectionDAGBuilder::visitFPExt(const User &I) {
3288   // FPExt is never a no-op cast, no need to check
3289   SDValue N = getValue(I.getOperand(0));
3290   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3291                                                         I.getType());
3292   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3293 }
3294 
3295 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3296   // FPToUI is never a no-op cast, no need to check
3297   SDValue N = getValue(I.getOperand(0));
3298   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3299                                                         I.getType());
3300   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3301 }
3302 
3303 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3304   // FPToSI is never a no-op cast, no need to check
3305   SDValue N = getValue(I.getOperand(0));
3306   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3307                                                         I.getType());
3308   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3309 }
3310 
3311 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3312   // UIToFP is never a no-op cast, no need to check
3313   SDValue N = getValue(I.getOperand(0));
3314   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3315                                                         I.getType());
3316   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3317 }
3318 
3319 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3320   // SIToFP is never a no-op cast, no need to check
3321   SDValue N = getValue(I.getOperand(0));
3322   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3323                                                         I.getType());
3324   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3325 }
3326 
3327 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3328   // What to do depends on the size of the integer and the size of the pointer.
3329   // We can either truncate, zero extend, or no-op, accordingly.
3330   SDValue N = getValue(I.getOperand(0));
3331   auto &TLI = DAG.getTargetLoweringInfo();
3332   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3333                                                         I.getType());
3334   EVT PtrMemVT =
3335       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3336   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3337   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3338   setValue(&I, N);
3339 }
3340 
3341 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3342   // What to do depends on the size of the integer and the size of the pointer.
3343   // We can either truncate, zero extend, or no-op, accordingly.
3344   SDValue N = getValue(I.getOperand(0));
3345   auto &TLI = DAG.getTargetLoweringInfo();
3346   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3347   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3348   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3349   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3350   setValue(&I, N);
3351 }
3352 
3353 void SelectionDAGBuilder::visitBitCast(const User &I) {
3354   SDValue N = getValue(I.getOperand(0));
3355   SDLoc dl = getCurSDLoc();
3356   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3357                                                         I.getType());
3358 
3359   // BitCast assures us that source and destination are the same size so this is
3360   // either a BITCAST or a no-op.
3361   if (DestVT != N.getValueType())
3362     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3363                              DestVT, N)); // convert types.
3364   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3365   // might fold any kind of constant expression to an integer constant and that
3366   // is not what we are looking for. Only recognize a bitcast of a genuine
3367   // constant integer as an opaque constant.
3368   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3369     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3370                                  /*isOpaque*/true));
3371   else
3372     setValue(&I, N);            // noop cast.
3373 }
3374 
3375 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3376   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3377   const Value *SV = I.getOperand(0);
3378   SDValue N = getValue(SV);
3379   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3380 
3381   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3382   unsigned DestAS = I.getType()->getPointerAddressSpace();
3383 
3384   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3385     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3386 
3387   setValue(&I, N);
3388 }
3389 
3390 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3391   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3392   SDValue InVec = getValue(I.getOperand(0));
3393   SDValue InVal = getValue(I.getOperand(1));
3394   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3395                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3396   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3397                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3398                            InVec, InVal, InIdx));
3399 }
3400 
3401 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3402   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3403   SDValue InVec = getValue(I.getOperand(0));
3404   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3405                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3406   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3407                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3408                            InVec, InIdx));
3409 }
3410 
3411 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3412   SDValue Src1 = getValue(I.getOperand(0));
3413   SDValue Src2 = getValue(I.getOperand(1));
3414   ArrayRef<int> Mask;
3415   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3416     Mask = SVI->getShuffleMask();
3417   else
3418     Mask = cast<ConstantExpr>(I).getShuffleMask();
3419   SDLoc DL = getCurSDLoc();
3420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3422   EVT SrcVT = Src1.getValueType();
3423 
3424   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3425       VT.isScalableVector()) {
3426     // Canonical splat form of first element of first input vector.
3427     SDValue FirstElt =
3428         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3429                     DAG.getVectorIdxConstant(0, DL));
3430     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3431     return;
3432   }
3433 
3434   // For now, we only handle splats for scalable vectors.
3435   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3436   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3437   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3438 
3439   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3440   unsigned MaskNumElts = Mask.size();
3441 
3442   if (SrcNumElts == MaskNumElts) {
3443     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3444     return;
3445   }
3446 
3447   // Normalize the shuffle vector since mask and vector length don't match.
3448   if (SrcNumElts < MaskNumElts) {
3449     // Mask is longer than the source vectors. We can use concatenate vector to
3450     // make the mask and vectors lengths match.
3451 
3452     if (MaskNumElts % SrcNumElts == 0) {
3453       // Mask length is a multiple of the source vector length.
3454       // Check if the shuffle is some kind of concatenation of the input
3455       // vectors.
3456       unsigned NumConcat = MaskNumElts / SrcNumElts;
3457       bool IsConcat = true;
3458       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3459       for (unsigned i = 0; i != MaskNumElts; ++i) {
3460         int Idx = Mask[i];
3461         if (Idx < 0)
3462           continue;
3463         // Ensure the indices in each SrcVT sized piece are sequential and that
3464         // the same source is used for the whole piece.
3465         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3466             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3467              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3468           IsConcat = false;
3469           break;
3470         }
3471         // Remember which source this index came from.
3472         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3473       }
3474 
3475       // The shuffle is concatenating multiple vectors together. Just emit
3476       // a CONCAT_VECTORS operation.
3477       if (IsConcat) {
3478         SmallVector<SDValue, 8> ConcatOps;
3479         for (auto Src : ConcatSrcs) {
3480           if (Src < 0)
3481             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3482           else if (Src == 0)
3483             ConcatOps.push_back(Src1);
3484           else
3485             ConcatOps.push_back(Src2);
3486         }
3487         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3488         return;
3489       }
3490     }
3491 
3492     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3493     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3494     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3495                                     PaddedMaskNumElts);
3496 
3497     // Pad both vectors with undefs to make them the same length as the mask.
3498     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3499 
3500     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3501     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3502     MOps1[0] = Src1;
3503     MOps2[0] = Src2;
3504 
3505     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3506     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3507 
3508     // Readjust mask for new input vector length.
3509     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3510     for (unsigned i = 0; i != MaskNumElts; ++i) {
3511       int Idx = Mask[i];
3512       if (Idx >= (int)SrcNumElts)
3513         Idx -= SrcNumElts - PaddedMaskNumElts;
3514       MappedOps[i] = Idx;
3515     }
3516 
3517     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3518 
3519     // If the concatenated vector was padded, extract a subvector with the
3520     // correct number of elements.
3521     if (MaskNumElts != PaddedMaskNumElts)
3522       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3523                            DAG.getVectorIdxConstant(0, DL));
3524 
3525     setValue(&I, Result);
3526     return;
3527   }
3528 
3529   if (SrcNumElts > MaskNumElts) {
3530     // Analyze the access pattern of the vector to see if we can extract
3531     // two subvectors and do the shuffle.
3532     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3533     bool CanExtract = true;
3534     for (int Idx : Mask) {
3535       unsigned Input = 0;
3536       if (Idx < 0)
3537         continue;
3538 
3539       if (Idx >= (int)SrcNumElts) {
3540         Input = 1;
3541         Idx -= SrcNumElts;
3542       }
3543 
3544       // If all the indices come from the same MaskNumElts sized portion of
3545       // the sources we can use extract. Also make sure the extract wouldn't
3546       // extract past the end of the source.
3547       int NewStartIdx = alignDown(Idx, MaskNumElts);
3548       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3549           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3550         CanExtract = false;
3551       // Make sure we always update StartIdx as we use it to track if all
3552       // elements are undef.
3553       StartIdx[Input] = NewStartIdx;
3554     }
3555 
3556     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3557       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3558       return;
3559     }
3560     if (CanExtract) {
3561       // Extract appropriate subvector and generate a vector shuffle
3562       for (unsigned Input = 0; Input < 2; ++Input) {
3563         SDValue &Src = Input == 0 ? Src1 : Src2;
3564         if (StartIdx[Input] < 0)
3565           Src = DAG.getUNDEF(VT);
3566         else {
3567           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3568                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3569         }
3570       }
3571 
3572       // Calculate new mask.
3573       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3574       for (int &Idx : MappedOps) {
3575         if (Idx >= (int)SrcNumElts)
3576           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3577         else if (Idx >= 0)
3578           Idx -= StartIdx[0];
3579       }
3580 
3581       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3582       return;
3583     }
3584   }
3585 
3586   // We can't use either concat vectors or extract subvectors so fall back to
3587   // replacing the shuffle with extract and build vector.
3588   // to insert and build vector.
3589   EVT EltVT = VT.getVectorElementType();
3590   SmallVector<SDValue,8> Ops;
3591   for (int Idx : Mask) {
3592     SDValue Res;
3593 
3594     if (Idx < 0) {
3595       Res = DAG.getUNDEF(EltVT);
3596     } else {
3597       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3598       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3599 
3600       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3601                         DAG.getVectorIdxConstant(Idx, DL));
3602     }
3603 
3604     Ops.push_back(Res);
3605   }
3606 
3607   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3608 }
3609 
3610 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3611   ArrayRef<unsigned> Indices;
3612   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3613     Indices = IV->getIndices();
3614   else
3615     Indices = cast<ConstantExpr>(&I)->getIndices();
3616 
3617   const Value *Op0 = I.getOperand(0);
3618   const Value *Op1 = I.getOperand(1);
3619   Type *AggTy = I.getType();
3620   Type *ValTy = Op1->getType();
3621   bool IntoUndef = isa<UndefValue>(Op0);
3622   bool FromUndef = isa<UndefValue>(Op1);
3623 
3624   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3625 
3626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3627   SmallVector<EVT, 4> AggValueVTs;
3628   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3629   SmallVector<EVT, 4> ValValueVTs;
3630   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3631 
3632   unsigned NumAggValues = AggValueVTs.size();
3633   unsigned NumValValues = ValValueVTs.size();
3634   SmallVector<SDValue, 4> Values(NumAggValues);
3635 
3636   // Ignore an insertvalue that produces an empty object
3637   if (!NumAggValues) {
3638     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3639     return;
3640   }
3641 
3642   SDValue Agg = getValue(Op0);
3643   unsigned i = 0;
3644   // Copy the beginning value(s) from the original aggregate.
3645   for (; i != LinearIndex; ++i)
3646     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3647                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3648   // Copy values from the inserted value(s).
3649   if (NumValValues) {
3650     SDValue Val = getValue(Op1);
3651     for (; i != LinearIndex + NumValValues; ++i)
3652       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3653                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3654   }
3655   // Copy remaining value(s) from the original aggregate.
3656   for (; i != NumAggValues; ++i)
3657     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3658                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3659 
3660   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3661                            DAG.getVTList(AggValueVTs), Values));
3662 }
3663 
3664 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3665   ArrayRef<unsigned> Indices;
3666   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3667     Indices = EV->getIndices();
3668   else
3669     Indices = cast<ConstantExpr>(&I)->getIndices();
3670 
3671   const Value *Op0 = I.getOperand(0);
3672   Type *AggTy = Op0->getType();
3673   Type *ValTy = I.getType();
3674   bool OutOfUndef = isa<UndefValue>(Op0);
3675 
3676   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3677 
3678   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3679   SmallVector<EVT, 4> ValValueVTs;
3680   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3681 
3682   unsigned NumValValues = ValValueVTs.size();
3683 
3684   // Ignore a extractvalue that produces an empty object
3685   if (!NumValValues) {
3686     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3687     return;
3688   }
3689 
3690   SmallVector<SDValue, 4> Values(NumValValues);
3691 
3692   SDValue Agg = getValue(Op0);
3693   // Copy out the selected value(s).
3694   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3695     Values[i - LinearIndex] =
3696       OutOfUndef ?
3697         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3698         SDValue(Agg.getNode(), Agg.getResNo() + i);
3699 
3700   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3701                            DAG.getVTList(ValValueVTs), Values));
3702 }
3703 
3704 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3705   Value *Op0 = I.getOperand(0);
3706   // Note that the pointer operand may be a vector of pointers. Take the scalar
3707   // element which holds a pointer.
3708   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3709   SDValue N = getValue(Op0);
3710   SDLoc dl = getCurSDLoc();
3711   auto &TLI = DAG.getTargetLoweringInfo();
3712 
3713   // Normalize Vector GEP - all scalar operands should be converted to the
3714   // splat vector.
3715   bool IsVectorGEP = I.getType()->isVectorTy();
3716   ElementCount VectorElementCount =
3717       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3718                   : ElementCount::getFixed(0);
3719 
3720   if (IsVectorGEP && !N.getValueType().isVector()) {
3721     LLVMContext &Context = *DAG.getContext();
3722     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3723     if (VectorElementCount.isScalable())
3724       N = DAG.getSplatVector(VT, dl, N);
3725     else
3726       N = DAG.getSplatBuildVector(VT, dl, N);
3727   }
3728 
3729   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3730        GTI != E; ++GTI) {
3731     const Value *Idx = GTI.getOperand();
3732     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3733       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3734       if (Field) {
3735         // N = N + Offset
3736         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3737 
3738         // In an inbounds GEP with an offset that is nonnegative even when
3739         // interpreted as signed, assume there is no unsigned overflow.
3740         SDNodeFlags Flags;
3741         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3742           Flags.setNoUnsignedWrap(true);
3743 
3744         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3745                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3746       }
3747     } else {
3748       // IdxSize is the width of the arithmetic according to IR semantics.
3749       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3750       // (and fix up the result later).
3751       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3752       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3753       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3754       // We intentionally mask away the high bits here; ElementSize may not
3755       // fit in IdxTy.
3756       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3757       bool ElementScalable = ElementSize.isScalable();
3758 
3759       // If this is a scalar constant or a splat vector of constants,
3760       // handle it quickly.
3761       const auto *C = dyn_cast<Constant>(Idx);
3762       if (C && isa<VectorType>(C->getType()))
3763         C = C->getSplatValue();
3764 
3765       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3766       if (CI && CI->isZero())
3767         continue;
3768       if (CI && !ElementScalable) {
3769         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3770         LLVMContext &Context = *DAG.getContext();
3771         SDValue OffsVal;
3772         if (IsVectorGEP)
3773           OffsVal = DAG.getConstant(
3774               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3775         else
3776           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3777 
3778         // In an inbounds GEP with an offset that is nonnegative even when
3779         // interpreted as signed, assume there is no unsigned overflow.
3780         SDNodeFlags Flags;
3781         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3782           Flags.setNoUnsignedWrap(true);
3783 
3784         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3785 
3786         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3787         continue;
3788       }
3789 
3790       // N = N + Idx * ElementMul;
3791       SDValue IdxN = getValue(Idx);
3792 
3793       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3794         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3795                                   VectorElementCount);
3796         if (VectorElementCount.isScalable())
3797           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3798         else
3799           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3800       }
3801 
3802       // If the index is smaller or larger than intptr_t, truncate or extend
3803       // it.
3804       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3805 
3806       if (ElementScalable) {
3807         EVT VScaleTy = N.getValueType().getScalarType();
3808         SDValue VScale = DAG.getNode(
3809             ISD::VSCALE, dl, VScaleTy,
3810             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3811         if (IsVectorGEP)
3812           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3813         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3814       } else {
3815         // If this is a multiply by a power of two, turn it into a shl
3816         // immediately.  This is a very common case.
3817         if (ElementMul != 1) {
3818           if (ElementMul.isPowerOf2()) {
3819             unsigned Amt = ElementMul.logBase2();
3820             IdxN = DAG.getNode(ISD::SHL, dl,
3821                                N.getValueType(), IdxN,
3822                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3823           } else {
3824             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3825                                             IdxN.getValueType());
3826             IdxN = DAG.getNode(ISD::MUL, dl,
3827                                N.getValueType(), IdxN, Scale);
3828           }
3829         }
3830       }
3831 
3832       N = DAG.getNode(ISD::ADD, dl,
3833                       N.getValueType(), N, IdxN);
3834     }
3835   }
3836 
3837   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3838   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3839   if (IsVectorGEP) {
3840     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3841     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3842   }
3843 
3844   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3845     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3846 
3847   setValue(&I, N);
3848 }
3849 
3850 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3851   // If this is a fixed sized alloca in the entry block of the function,
3852   // allocate it statically on the stack.
3853   if (FuncInfo.StaticAllocaMap.count(&I))
3854     return;   // getValue will auto-populate this.
3855 
3856   SDLoc dl = getCurSDLoc();
3857   Type *Ty = I.getAllocatedType();
3858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3859   auto &DL = DAG.getDataLayout();
3860   uint64_t TySize = DL.getTypeAllocSize(Ty);
3861   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3862 
3863   SDValue AllocSize = getValue(I.getArraySize());
3864 
3865   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3866   if (AllocSize.getValueType() != IntPtr)
3867     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3868 
3869   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3870                           AllocSize,
3871                           DAG.getConstant(TySize, dl, IntPtr));
3872 
3873   // Handle alignment.  If the requested alignment is less than or equal to
3874   // the stack alignment, ignore it.  If the size is greater than or equal to
3875   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3876   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3877   if (*Alignment <= StackAlign)
3878     Alignment = None;
3879 
3880   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3881   // Round the size of the allocation up to the stack alignment size
3882   // by add SA-1 to the size. This doesn't overflow because we're computing
3883   // an address inside an alloca.
3884   SDNodeFlags Flags;
3885   Flags.setNoUnsignedWrap(true);
3886   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3887                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3888 
3889   // Mask out the low bits for alignment purposes.
3890   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3891                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3892 
3893   SDValue Ops[] = {
3894       getRoot(), AllocSize,
3895       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3896   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3897   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3898   setValue(&I, DSA);
3899   DAG.setRoot(DSA.getValue(1));
3900 
3901   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3902 }
3903 
3904 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3905   if (I.isAtomic())
3906     return visitAtomicLoad(I);
3907 
3908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3909   const Value *SV = I.getOperand(0);
3910   if (TLI.supportSwiftError()) {
3911     // Swifterror values can come from either a function parameter with
3912     // swifterror attribute or an alloca with swifterror attribute.
3913     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3914       if (Arg->hasSwiftErrorAttr())
3915         return visitLoadFromSwiftError(I);
3916     }
3917 
3918     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3919       if (Alloca->isSwiftError())
3920         return visitLoadFromSwiftError(I);
3921     }
3922   }
3923 
3924   SDValue Ptr = getValue(SV);
3925 
3926   Type *Ty = I.getType();
3927   Align Alignment = I.getAlign();
3928 
3929   AAMDNodes AAInfo;
3930   I.getAAMetadata(AAInfo);
3931   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3932 
3933   SmallVector<EVT, 4> ValueVTs, MemVTs;
3934   SmallVector<uint64_t, 4> Offsets;
3935   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3936   unsigned NumValues = ValueVTs.size();
3937   if (NumValues == 0)
3938     return;
3939 
3940   bool isVolatile = I.isVolatile();
3941 
3942   SDValue Root;
3943   bool ConstantMemory = false;
3944   if (isVolatile)
3945     // Serialize volatile loads with other side effects.
3946     Root = getRoot();
3947   else if (NumValues > MaxParallelChains)
3948     Root = getMemoryRoot();
3949   else if (AA &&
3950            AA->pointsToConstantMemory(MemoryLocation(
3951                SV,
3952                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3953                AAInfo))) {
3954     // Do not serialize (non-volatile) loads of constant memory with anything.
3955     Root = DAG.getEntryNode();
3956     ConstantMemory = true;
3957   } else {
3958     // Do not serialize non-volatile loads against each other.
3959     Root = DAG.getRoot();
3960   }
3961 
3962   SDLoc dl = getCurSDLoc();
3963 
3964   if (isVolatile)
3965     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3966 
3967   // An aggregate load cannot wrap around the address space, so offsets to its
3968   // parts don't wrap either.
3969   SDNodeFlags Flags;
3970   Flags.setNoUnsignedWrap(true);
3971 
3972   SmallVector<SDValue, 4> Values(NumValues);
3973   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3974   EVT PtrVT = Ptr.getValueType();
3975 
3976   MachineMemOperand::Flags MMOFlags
3977     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
3978 
3979   unsigned ChainI = 0;
3980   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3981     // Serializing loads here may result in excessive register pressure, and
3982     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3983     // could recover a bit by hoisting nodes upward in the chain by recognizing
3984     // they are side-effect free or do not alias. The optimizer should really
3985     // avoid this case by converting large object/array copies to llvm.memcpy
3986     // (MaxParallelChains should always remain as failsafe).
3987     if (ChainI == MaxParallelChains) {
3988       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3989       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3990                                   makeArrayRef(Chains.data(), ChainI));
3991       Root = Chain;
3992       ChainI = 0;
3993     }
3994     SDValue A = DAG.getNode(ISD::ADD, dl,
3995                             PtrVT, Ptr,
3996                             DAG.getConstant(Offsets[i], dl, PtrVT),
3997                             Flags);
3998 
3999     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4000                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4001                             MMOFlags, AAInfo, Ranges);
4002     Chains[ChainI] = L.getValue(1);
4003 
4004     if (MemVTs[i] != ValueVTs[i])
4005       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4006 
4007     Values[i] = L;
4008   }
4009 
4010   if (!ConstantMemory) {
4011     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4012                                 makeArrayRef(Chains.data(), ChainI));
4013     if (isVolatile)
4014       DAG.setRoot(Chain);
4015     else
4016       PendingLoads.push_back(Chain);
4017   }
4018 
4019   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4020                            DAG.getVTList(ValueVTs), Values));
4021 }
4022 
4023 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4024   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4025          "call visitStoreToSwiftError when backend supports swifterror");
4026 
4027   SmallVector<EVT, 4> ValueVTs;
4028   SmallVector<uint64_t, 4> Offsets;
4029   const Value *SrcV = I.getOperand(0);
4030   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4031                   SrcV->getType(), ValueVTs, &Offsets);
4032   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4033          "expect a single EVT for swifterror");
4034 
4035   SDValue Src = getValue(SrcV);
4036   // Create a virtual register, then update the virtual register.
4037   Register VReg =
4038       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4039   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4040   // Chain can be getRoot or getControlRoot.
4041   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4042                                       SDValue(Src.getNode(), Src.getResNo()));
4043   DAG.setRoot(CopyNode);
4044 }
4045 
4046 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4047   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4048          "call visitLoadFromSwiftError when backend supports swifterror");
4049 
4050   assert(!I.isVolatile() &&
4051          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4052          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4053          "Support volatile, non temporal, invariant for load_from_swift_error");
4054 
4055   const Value *SV = I.getOperand(0);
4056   Type *Ty = I.getType();
4057   AAMDNodes AAInfo;
4058   I.getAAMetadata(AAInfo);
4059   assert(
4060       (!AA ||
4061        !AA->pointsToConstantMemory(MemoryLocation(
4062            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4063            AAInfo))) &&
4064       "load_from_swift_error should not be constant memory");
4065 
4066   SmallVector<EVT, 4> ValueVTs;
4067   SmallVector<uint64_t, 4> Offsets;
4068   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4069                   ValueVTs, &Offsets);
4070   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4071          "expect a single EVT for swifterror");
4072 
4073   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4074   SDValue L = DAG.getCopyFromReg(
4075       getRoot(), getCurSDLoc(),
4076       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4077 
4078   setValue(&I, L);
4079 }
4080 
4081 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4082   if (I.isAtomic())
4083     return visitAtomicStore(I);
4084 
4085   const Value *SrcV = I.getOperand(0);
4086   const Value *PtrV = I.getOperand(1);
4087 
4088   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4089   if (TLI.supportSwiftError()) {
4090     // Swifterror values can come from either a function parameter with
4091     // swifterror attribute or an alloca with swifterror attribute.
4092     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4093       if (Arg->hasSwiftErrorAttr())
4094         return visitStoreToSwiftError(I);
4095     }
4096 
4097     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4098       if (Alloca->isSwiftError())
4099         return visitStoreToSwiftError(I);
4100     }
4101   }
4102 
4103   SmallVector<EVT, 4> ValueVTs, MemVTs;
4104   SmallVector<uint64_t, 4> Offsets;
4105   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4106                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4107   unsigned NumValues = ValueVTs.size();
4108   if (NumValues == 0)
4109     return;
4110 
4111   // Get the lowered operands. Note that we do this after
4112   // checking if NumResults is zero, because with zero results
4113   // the operands won't have values in the map.
4114   SDValue Src = getValue(SrcV);
4115   SDValue Ptr = getValue(PtrV);
4116 
4117   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4118   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4119   SDLoc dl = getCurSDLoc();
4120   Align Alignment = I.getAlign();
4121   AAMDNodes AAInfo;
4122   I.getAAMetadata(AAInfo);
4123 
4124   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4125 
4126   // An aggregate load cannot wrap around the address space, so offsets to its
4127   // parts don't wrap either.
4128   SDNodeFlags Flags;
4129   Flags.setNoUnsignedWrap(true);
4130 
4131   unsigned ChainI = 0;
4132   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4133     // See visitLoad comments.
4134     if (ChainI == MaxParallelChains) {
4135       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4136                                   makeArrayRef(Chains.data(), ChainI));
4137       Root = Chain;
4138       ChainI = 0;
4139     }
4140     SDValue Add =
4141         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4142     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4143     if (MemVTs[i] != ValueVTs[i])
4144       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4145     SDValue St =
4146         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4147                      Alignment, MMOFlags, AAInfo);
4148     Chains[ChainI] = St;
4149   }
4150 
4151   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4152                                   makeArrayRef(Chains.data(), ChainI));
4153   DAG.setRoot(StoreNode);
4154 }
4155 
4156 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4157                                            bool IsCompressing) {
4158   SDLoc sdl = getCurSDLoc();
4159 
4160   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4161                                MaybeAlign &Alignment) {
4162     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4163     Src0 = I.getArgOperand(0);
4164     Ptr = I.getArgOperand(1);
4165     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4166     Mask = I.getArgOperand(3);
4167   };
4168   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4169                                     MaybeAlign &Alignment) {
4170     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4171     Src0 = I.getArgOperand(0);
4172     Ptr = I.getArgOperand(1);
4173     Mask = I.getArgOperand(2);
4174     Alignment = None;
4175   };
4176 
4177   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4178   MaybeAlign Alignment;
4179   if (IsCompressing)
4180     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4181   else
4182     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4183 
4184   SDValue Ptr = getValue(PtrOperand);
4185   SDValue Src0 = getValue(Src0Operand);
4186   SDValue Mask = getValue(MaskOperand);
4187   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4188 
4189   EVT VT = Src0.getValueType();
4190   if (!Alignment)
4191     Alignment = DAG.getEVTAlign(VT);
4192 
4193   AAMDNodes AAInfo;
4194   I.getAAMetadata(AAInfo);
4195 
4196   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4197       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4198       // TODO: Make MachineMemOperands aware of scalable
4199       // vectors.
4200       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4201   SDValue StoreNode =
4202       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4203                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4204   DAG.setRoot(StoreNode);
4205   setValue(&I, StoreNode);
4206 }
4207 
4208 // Get a uniform base for the Gather/Scatter intrinsic.
4209 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4210 // We try to represent it as a base pointer + vector of indices.
4211 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4212 // The first operand of the GEP may be a single pointer or a vector of pointers
4213 // Example:
4214 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4215 //  or
4216 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4217 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4218 //
4219 // When the first GEP operand is a single pointer - it is the uniform base we
4220 // are looking for. If first operand of the GEP is a splat vector - we
4221 // extract the splat value and use it as a uniform base.
4222 // In all other cases the function returns 'false'.
4223 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4224                            ISD::MemIndexType &IndexType, SDValue &Scale,
4225                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4226   SelectionDAG& DAG = SDB->DAG;
4227   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4228   const DataLayout &DL = DAG.getDataLayout();
4229 
4230   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4231 
4232   // Handle splat constant pointer.
4233   if (auto *C = dyn_cast<Constant>(Ptr)) {
4234     C = C->getSplatValue();
4235     if (!C)
4236       return false;
4237 
4238     Base = SDB->getValue(C);
4239 
4240     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4241     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4242     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4243     IndexType = ISD::SIGNED_SCALED;
4244     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4245     return true;
4246   }
4247 
4248   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4249   if (!GEP || GEP->getParent() != CurBB)
4250     return false;
4251 
4252   if (GEP->getNumOperands() != 2)
4253     return false;
4254 
4255   const Value *BasePtr = GEP->getPointerOperand();
4256   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4257 
4258   // Make sure the base is scalar and the index is a vector.
4259   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4260     return false;
4261 
4262   Base = SDB->getValue(BasePtr);
4263   Index = SDB->getValue(IndexVal);
4264   IndexType = ISD::SIGNED_SCALED;
4265   Scale = DAG.getTargetConstant(
4266               DL.getTypeAllocSize(GEP->getResultElementType()),
4267               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4268   return true;
4269 }
4270 
4271 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4272   SDLoc sdl = getCurSDLoc();
4273 
4274   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4275   const Value *Ptr = I.getArgOperand(1);
4276   SDValue Src0 = getValue(I.getArgOperand(0));
4277   SDValue Mask = getValue(I.getArgOperand(3));
4278   EVT VT = Src0.getValueType();
4279   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4280                         ->getMaybeAlignValue()
4281                         .getValueOr(DAG.getEVTAlign(VT));
4282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4283 
4284   AAMDNodes AAInfo;
4285   I.getAAMetadata(AAInfo);
4286 
4287   SDValue Base;
4288   SDValue Index;
4289   ISD::MemIndexType IndexType;
4290   SDValue Scale;
4291   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4292                                     I.getParent());
4293 
4294   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4295   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4296       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4297       // TODO: Make MachineMemOperands aware of scalable
4298       // vectors.
4299       MemoryLocation::UnknownSize, Alignment, AAInfo);
4300   if (!UniformBase) {
4301     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4302     Index = getValue(Ptr);
4303     IndexType = ISD::SIGNED_UNSCALED;
4304     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4305   }
4306   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4307   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4308                                          Ops, MMO, IndexType, false);
4309   DAG.setRoot(Scatter);
4310   setValue(&I, Scatter);
4311 }
4312 
4313 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4314   SDLoc sdl = getCurSDLoc();
4315 
4316   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4317                               MaybeAlign &Alignment) {
4318     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4319     Ptr = I.getArgOperand(0);
4320     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4321     Mask = I.getArgOperand(2);
4322     Src0 = I.getArgOperand(3);
4323   };
4324   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4325                                  MaybeAlign &Alignment) {
4326     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4327     Ptr = I.getArgOperand(0);
4328     Alignment = None;
4329     Mask = I.getArgOperand(1);
4330     Src0 = I.getArgOperand(2);
4331   };
4332 
4333   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4334   MaybeAlign Alignment;
4335   if (IsExpanding)
4336     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4337   else
4338     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4339 
4340   SDValue Ptr = getValue(PtrOperand);
4341   SDValue Src0 = getValue(Src0Operand);
4342   SDValue Mask = getValue(MaskOperand);
4343   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4344 
4345   EVT VT = Src0.getValueType();
4346   if (!Alignment)
4347     Alignment = DAG.getEVTAlign(VT);
4348 
4349   AAMDNodes AAInfo;
4350   I.getAAMetadata(AAInfo);
4351   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4352 
4353   // Do not serialize masked loads of constant memory with anything.
4354   MemoryLocation ML;
4355   if (VT.isScalableVector())
4356     ML = MemoryLocation(PtrOperand, LocationSize::unknown());
4357   else
4358     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4359                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4360                            AAInfo);
4361   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4362 
4363   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4364 
4365   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4366       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4367       // TODO: Make MachineMemOperands aware of scalable
4368       // vectors.
4369       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4370 
4371   SDValue Load =
4372       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4373                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4374   if (AddToChain)
4375     PendingLoads.push_back(Load.getValue(1));
4376   setValue(&I, Load);
4377 }
4378 
4379 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4380   SDLoc sdl = getCurSDLoc();
4381 
4382   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4383   const Value *Ptr = I.getArgOperand(0);
4384   SDValue Src0 = getValue(I.getArgOperand(3));
4385   SDValue Mask = getValue(I.getArgOperand(2));
4386 
4387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4388   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4389   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4390                         ->getMaybeAlignValue()
4391                         .getValueOr(DAG.getEVTAlign(VT));
4392 
4393   AAMDNodes AAInfo;
4394   I.getAAMetadata(AAInfo);
4395   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4396 
4397   SDValue Root = DAG.getRoot();
4398   SDValue Base;
4399   SDValue Index;
4400   ISD::MemIndexType IndexType;
4401   SDValue Scale;
4402   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4403                                     I.getParent());
4404   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4405   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4406       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4407       // TODO: Make MachineMemOperands aware of scalable
4408       // vectors.
4409       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4410 
4411   if (!UniformBase) {
4412     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4413     Index = getValue(Ptr);
4414     IndexType = ISD::SIGNED_SCALED;
4415     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4416   }
4417   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4418   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4419                                        Ops, MMO, IndexType);
4420 
4421   PendingLoads.push_back(Gather.getValue(1));
4422   setValue(&I, Gather);
4423 }
4424 
4425 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4426   SDLoc dl = getCurSDLoc();
4427   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4428   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4429   SyncScope::ID SSID = I.getSyncScopeID();
4430 
4431   SDValue InChain = getRoot();
4432 
4433   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4434   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4435 
4436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4437   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4438 
4439   MachineFunction &MF = DAG.getMachineFunction();
4440   MachineMemOperand *MMO = MF.getMachineMemOperand(
4441       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4442       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4443       FailureOrdering);
4444 
4445   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4446                                    dl, MemVT, VTs, InChain,
4447                                    getValue(I.getPointerOperand()),
4448                                    getValue(I.getCompareOperand()),
4449                                    getValue(I.getNewValOperand()), MMO);
4450 
4451   SDValue OutChain = L.getValue(2);
4452 
4453   setValue(&I, L);
4454   DAG.setRoot(OutChain);
4455 }
4456 
4457 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4458   SDLoc dl = getCurSDLoc();
4459   ISD::NodeType NT;
4460   switch (I.getOperation()) {
4461   default: llvm_unreachable("Unknown atomicrmw operation");
4462   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4463   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4464   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4465   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4466   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4467   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4468   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4469   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4470   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4471   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4472   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4473   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4474   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4475   }
4476   AtomicOrdering Ordering = I.getOrdering();
4477   SyncScope::ID SSID = I.getSyncScopeID();
4478 
4479   SDValue InChain = getRoot();
4480 
4481   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4483   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4484 
4485   MachineFunction &MF = DAG.getMachineFunction();
4486   MachineMemOperand *MMO = MF.getMachineMemOperand(
4487       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4488       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4489 
4490   SDValue L =
4491     DAG.getAtomic(NT, dl, MemVT, InChain,
4492                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4493                   MMO);
4494 
4495   SDValue OutChain = L.getValue(1);
4496 
4497   setValue(&I, L);
4498   DAG.setRoot(OutChain);
4499 }
4500 
4501 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4502   SDLoc dl = getCurSDLoc();
4503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4504   SDValue Ops[3];
4505   Ops[0] = getRoot();
4506   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4507                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4508   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4509                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4510   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4511 }
4512 
4513 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4514   SDLoc dl = getCurSDLoc();
4515   AtomicOrdering Order = I.getOrdering();
4516   SyncScope::ID SSID = I.getSyncScopeID();
4517 
4518   SDValue InChain = getRoot();
4519 
4520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4521   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4522   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4523 
4524   if (!TLI.supportsUnalignedAtomics() &&
4525       I.getAlignment() < MemVT.getSizeInBits() / 8)
4526     report_fatal_error("Cannot generate unaligned atomic load");
4527 
4528   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4529 
4530   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4531       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4532       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4533 
4534   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4535 
4536   SDValue Ptr = getValue(I.getPointerOperand());
4537 
4538   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4539     // TODO: Once this is better exercised by tests, it should be merged with
4540     // the normal path for loads to prevent future divergence.
4541     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4542     if (MemVT != VT)
4543       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4544 
4545     setValue(&I, L);
4546     SDValue OutChain = L.getValue(1);
4547     if (!I.isUnordered())
4548       DAG.setRoot(OutChain);
4549     else
4550       PendingLoads.push_back(OutChain);
4551     return;
4552   }
4553 
4554   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4555                             Ptr, MMO);
4556 
4557   SDValue OutChain = L.getValue(1);
4558   if (MemVT != VT)
4559     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4560 
4561   setValue(&I, L);
4562   DAG.setRoot(OutChain);
4563 }
4564 
4565 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4566   SDLoc dl = getCurSDLoc();
4567 
4568   AtomicOrdering Ordering = I.getOrdering();
4569   SyncScope::ID SSID = I.getSyncScopeID();
4570 
4571   SDValue InChain = getRoot();
4572 
4573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4574   EVT MemVT =
4575       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4576 
4577   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4578     report_fatal_error("Cannot generate unaligned atomic store");
4579 
4580   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4581 
4582   MachineFunction &MF = DAG.getMachineFunction();
4583   MachineMemOperand *MMO = MF.getMachineMemOperand(
4584       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4585       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4586 
4587   SDValue Val = getValue(I.getValueOperand());
4588   if (Val.getValueType() != MemVT)
4589     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4590   SDValue Ptr = getValue(I.getPointerOperand());
4591 
4592   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4593     // TODO: Once this is better exercised by tests, it should be merged with
4594     // the normal path for stores to prevent future divergence.
4595     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4596     DAG.setRoot(S);
4597     return;
4598   }
4599   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4600                                    Ptr, Val, MMO);
4601 
4602 
4603   DAG.setRoot(OutChain);
4604 }
4605 
4606 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4607 /// node.
4608 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4609                                                unsigned Intrinsic) {
4610   // Ignore the callsite's attributes. A specific call site may be marked with
4611   // readnone, but the lowering code will expect the chain based on the
4612   // definition.
4613   const Function *F = I.getCalledFunction();
4614   bool HasChain = !F->doesNotAccessMemory();
4615   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4616 
4617   // Build the operand list.
4618   SmallVector<SDValue, 8> Ops;
4619   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4620     if (OnlyLoad) {
4621       // We don't need to serialize loads against other loads.
4622       Ops.push_back(DAG.getRoot());
4623     } else {
4624       Ops.push_back(getRoot());
4625     }
4626   }
4627 
4628   // Info is set by getTgtMemInstrinsic
4629   TargetLowering::IntrinsicInfo Info;
4630   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4631   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4632                                                DAG.getMachineFunction(),
4633                                                Intrinsic);
4634 
4635   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4636   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4637       Info.opc == ISD::INTRINSIC_W_CHAIN)
4638     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4639                                         TLI.getPointerTy(DAG.getDataLayout())));
4640 
4641   // Add all operands of the call to the operand list.
4642   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4643     const Value *Arg = I.getArgOperand(i);
4644     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4645       Ops.push_back(getValue(Arg));
4646       continue;
4647     }
4648 
4649     // Use TargetConstant instead of a regular constant for immarg.
4650     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4651     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4652       assert(CI->getBitWidth() <= 64 &&
4653              "large intrinsic immediates not handled");
4654       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4655     } else {
4656       Ops.push_back(
4657           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4658     }
4659   }
4660 
4661   SmallVector<EVT, 4> ValueVTs;
4662   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4663 
4664   if (HasChain)
4665     ValueVTs.push_back(MVT::Other);
4666 
4667   SDVTList VTs = DAG.getVTList(ValueVTs);
4668 
4669   // Create the node.
4670   SDValue Result;
4671   if (IsTgtIntrinsic) {
4672     // This is target intrinsic that touches memory
4673     AAMDNodes AAInfo;
4674     I.getAAMetadata(AAInfo);
4675     Result =
4676         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4677                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4678                                 Info.align, Info.flags, Info.size, AAInfo);
4679   } else if (!HasChain) {
4680     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4681   } else if (!I.getType()->isVoidTy()) {
4682     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4683   } else {
4684     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4685   }
4686 
4687   if (HasChain) {
4688     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4689     if (OnlyLoad)
4690       PendingLoads.push_back(Chain);
4691     else
4692       DAG.setRoot(Chain);
4693   }
4694 
4695   if (!I.getType()->isVoidTy()) {
4696     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4697       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4698       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4699     } else
4700       Result = lowerRangeToAssertZExt(DAG, I, Result);
4701 
4702     MaybeAlign Alignment = I.getRetAlign();
4703     if (!Alignment)
4704       Alignment = F->getAttributes().getRetAlignment();
4705     // Insert `assertalign` node if there's an alignment.
4706     if (InsertAssertAlign && Alignment) {
4707       Result =
4708           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4709     }
4710 
4711     setValue(&I, Result);
4712   }
4713 }
4714 
4715 /// GetSignificand - Get the significand and build it into a floating-point
4716 /// number with exponent of 1:
4717 ///
4718 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4719 ///
4720 /// where Op is the hexadecimal representation of floating point value.
4721 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4722   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4723                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4724   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4725                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4726   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4727 }
4728 
4729 /// GetExponent - Get the exponent:
4730 ///
4731 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4732 ///
4733 /// where Op is the hexadecimal representation of floating point value.
4734 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4735                            const TargetLowering &TLI, const SDLoc &dl) {
4736   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4737                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4738   SDValue t1 = DAG.getNode(
4739       ISD::SRL, dl, MVT::i32, t0,
4740       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4741   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4742                            DAG.getConstant(127, dl, MVT::i32));
4743   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4744 }
4745 
4746 /// getF32Constant - Get 32-bit floating point constant.
4747 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4748                               const SDLoc &dl) {
4749   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4750                            MVT::f32);
4751 }
4752 
4753 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4754                                        SelectionDAG &DAG) {
4755   // TODO: What fast-math-flags should be set on the floating-point nodes?
4756 
4757   //   IntegerPartOfX = ((int32_t)(t0);
4758   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4759 
4760   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4761   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4762   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4763 
4764   //   IntegerPartOfX <<= 23;
4765   IntegerPartOfX = DAG.getNode(
4766       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4767       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4768                                   DAG.getDataLayout())));
4769 
4770   SDValue TwoToFractionalPartOfX;
4771   if (LimitFloatPrecision <= 6) {
4772     // For floating-point precision of 6:
4773     //
4774     //   TwoToFractionalPartOfX =
4775     //     0.997535578f +
4776     //       (0.735607626f + 0.252464424f * x) * x;
4777     //
4778     // error 0.0144103317, which is 6 bits
4779     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4780                              getF32Constant(DAG, 0x3e814304, dl));
4781     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4782                              getF32Constant(DAG, 0x3f3c50c8, dl));
4783     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4784     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4785                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4786   } else if (LimitFloatPrecision <= 12) {
4787     // For floating-point precision of 12:
4788     //
4789     //   TwoToFractionalPartOfX =
4790     //     0.999892986f +
4791     //       (0.696457318f +
4792     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4793     //
4794     // error 0.000107046256, which is 13 to 14 bits
4795     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4796                              getF32Constant(DAG, 0x3da235e3, dl));
4797     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4798                              getF32Constant(DAG, 0x3e65b8f3, dl));
4799     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4800     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4801                              getF32Constant(DAG, 0x3f324b07, dl));
4802     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4803     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4804                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4805   } else { // LimitFloatPrecision <= 18
4806     // For floating-point precision of 18:
4807     //
4808     //   TwoToFractionalPartOfX =
4809     //     0.999999982f +
4810     //       (0.693148872f +
4811     //         (0.240227044f +
4812     //           (0.554906021e-1f +
4813     //             (0.961591928e-2f +
4814     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4815     // error 2.47208000*10^(-7), which is better than 18 bits
4816     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4817                              getF32Constant(DAG, 0x3924b03e, dl));
4818     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4819                              getF32Constant(DAG, 0x3ab24b87, dl));
4820     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4821     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4822                              getF32Constant(DAG, 0x3c1d8c17, dl));
4823     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4824     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4825                              getF32Constant(DAG, 0x3d634a1d, dl));
4826     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4827     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4828                              getF32Constant(DAG, 0x3e75fe14, dl));
4829     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4830     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4831                               getF32Constant(DAG, 0x3f317234, dl));
4832     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4833     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4834                                          getF32Constant(DAG, 0x3f800000, dl));
4835   }
4836 
4837   // Add the exponent into the result in integer domain.
4838   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4839   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4840                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4841 }
4842 
4843 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4844 /// limited-precision mode.
4845 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4846                          const TargetLowering &TLI, SDNodeFlags Flags) {
4847   if (Op.getValueType() == MVT::f32 &&
4848       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4849 
4850     // Put the exponent in the right bit position for later addition to the
4851     // final result:
4852     //
4853     // t0 = Op * log2(e)
4854 
4855     // TODO: What fast-math-flags should be set here?
4856     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4857                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4858     return getLimitedPrecisionExp2(t0, dl, DAG);
4859   }
4860 
4861   // No special expansion.
4862   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4863 }
4864 
4865 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4866 /// limited-precision mode.
4867 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4868                          const TargetLowering &TLI, SDNodeFlags Flags) {
4869   // TODO: What fast-math-flags should be set on the floating-point nodes?
4870 
4871   if (Op.getValueType() == MVT::f32 &&
4872       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4873     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4874 
4875     // Scale the exponent by log(2).
4876     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4877     SDValue LogOfExponent =
4878         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4879                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4880 
4881     // Get the significand and build it into a floating-point number with
4882     // exponent of 1.
4883     SDValue X = GetSignificand(DAG, Op1, dl);
4884 
4885     SDValue LogOfMantissa;
4886     if (LimitFloatPrecision <= 6) {
4887       // For floating-point precision of 6:
4888       //
4889       //   LogofMantissa =
4890       //     -1.1609546f +
4891       //       (1.4034025f - 0.23903021f * x) * x;
4892       //
4893       // error 0.0034276066, which is better than 8 bits
4894       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4895                                getF32Constant(DAG, 0xbe74c456, dl));
4896       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4897                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4898       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4899       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4900                                   getF32Constant(DAG, 0x3f949a29, dl));
4901     } else if (LimitFloatPrecision <= 12) {
4902       // For floating-point precision of 12:
4903       //
4904       //   LogOfMantissa =
4905       //     -1.7417939f +
4906       //       (2.8212026f +
4907       //         (-1.4699568f +
4908       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4909       //
4910       // error 0.000061011436, which is 14 bits
4911       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4912                                getF32Constant(DAG, 0xbd67b6d6, dl));
4913       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4914                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4915       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4916       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4917                                getF32Constant(DAG, 0x3fbc278b, dl));
4918       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4919       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4920                                getF32Constant(DAG, 0x40348e95, dl));
4921       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4922       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4923                                   getF32Constant(DAG, 0x3fdef31a, dl));
4924     } else { // LimitFloatPrecision <= 18
4925       // For floating-point precision of 18:
4926       //
4927       //   LogOfMantissa =
4928       //     -2.1072184f +
4929       //       (4.2372794f +
4930       //         (-3.7029485f +
4931       //           (2.2781945f +
4932       //             (-0.87823314f +
4933       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4934       //
4935       // error 0.0000023660568, which is better than 18 bits
4936       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4937                                getF32Constant(DAG, 0xbc91e5ac, dl));
4938       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4939                                getF32Constant(DAG, 0x3e4350aa, dl));
4940       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4941       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4942                                getF32Constant(DAG, 0x3f60d3e3, dl));
4943       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4944       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4945                                getF32Constant(DAG, 0x4011cdf0, dl));
4946       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4947       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4948                                getF32Constant(DAG, 0x406cfd1c, dl));
4949       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4950       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4951                                getF32Constant(DAG, 0x408797cb, dl));
4952       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4953       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4954                                   getF32Constant(DAG, 0x4006dcab, dl));
4955     }
4956 
4957     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4958   }
4959 
4960   // No special expansion.
4961   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
4962 }
4963 
4964 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4965 /// limited-precision mode.
4966 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4967                           const TargetLowering &TLI, SDNodeFlags Flags) {
4968   // TODO: What fast-math-flags should be set on the floating-point nodes?
4969 
4970   if (Op.getValueType() == MVT::f32 &&
4971       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4972     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4973 
4974     // Get the exponent.
4975     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4976 
4977     // Get the significand and build it into a floating-point number with
4978     // exponent of 1.
4979     SDValue X = GetSignificand(DAG, Op1, dl);
4980 
4981     // Different possible minimax approximations of significand in
4982     // floating-point for various degrees of accuracy over [1,2].
4983     SDValue Log2ofMantissa;
4984     if (LimitFloatPrecision <= 6) {
4985       // For floating-point precision of 6:
4986       //
4987       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4988       //
4989       // error 0.0049451742, which is more than 7 bits
4990       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4991                                getF32Constant(DAG, 0xbeb08fe0, dl));
4992       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4993                                getF32Constant(DAG, 0x40019463, dl));
4994       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4995       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4996                                    getF32Constant(DAG, 0x3fd6633d, dl));
4997     } else if (LimitFloatPrecision <= 12) {
4998       // For floating-point precision of 12:
4999       //
5000       //   Log2ofMantissa =
5001       //     -2.51285454f +
5002       //       (4.07009056f +
5003       //         (-2.12067489f +
5004       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5005       //
5006       // error 0.0000876136000, which is better than 13 bits
5007       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5008                                getF32Constant(DAG, 0xbda7262e, dl));
5009       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5010                                getF32Constant(DAG, 0x3f25280b, dl));
5011       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5012       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5013                                getF32Constant(DAG, 0x4007b923, dl));
5014       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5015       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5016                                getF32Constant(DAG, 0x40823e2f, dl));
5017       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5018       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5019                                    getF32Constant(DAG, 0x4020d29c, dl));
5020     } else { // LimitFloatPrecision <= 18
5021       // For floating-point precision of 18:
5022       //
5023       //   Log2ofMantissa =
5024       //     -3.0400495f +
5025       //       (6.1129976f +
5026       //         (-5.3420409f +
5027       //           (3.2865683f +
5028       //             (-1.2669343f +
5029       //               (0.27515199f -
5030       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5031       //
5032       // error 0.0000018516, which is better than 18 bits
5033       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5034                                getF32Constant(DAG, 0xbcd2769e, dl));
5035       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5036                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5037       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5038       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5039                                getF32Constant(DAG, 0x3fa22ae7, dl));
5040       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5041       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5042                                getF32Constant(DAG, 0x40525723, dl));
5043       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5044       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5045                                getF32Constant(DAG, 0x40aaf200, dl));
5046       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5047       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5048                                getF32Constant(DAG, 0x40c39dad, dl));
5049       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5050       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5051                                    getF32Constant(DAG, 0x4042902c, dl));
5052     }
5053 
5054     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5055   }
5056 
5057   // No special expansion.
5058   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5059 }
5060 
5061 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5062 /// limited-precision mode.
5063 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5064                            const TargetLowering &TLI, SDNodeFlags Flags) {
5065   // TODO: What fast-math-flags should be set on the floating-point nodes?
5066 
5067   if (Op.getValueType() == MVT::f32 &&
5068       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5069     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5070 
5071     // Scale the exponent by log10(2) [0.30102999f].
5072     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5073     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5074                                         getF32Constant(DAG, 0x3e9a209a, dl));
5075 
5076     // Get the significand and build it into a floating-point number with
5077     // exponent of 1.
5078     SDValue X = GetSignificand(DAG, Op1, dl);
5079 
5080     SDValue Log10ofMantissa;
5081     if (LimitFloatPrecision <= 6) {
5082       // For floating-point precision of 6:
5083       //
5084       //   Log10ofMantissa =
5085       //     -0.50419619f +
5086       //       (0.60948995f - 0.10380950f * x) * x;
5087       //
5088       // error 0.0014886165, which is 6 bits
5089       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5090                                getF32Constant(DAG, 0xbdd49a13, dl));
5091       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5092                                getF32Constant(DAG, 0x3f1c0789, dl));
5093       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5094       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5095                                     getF32Constant(DAG, 0x3f011300, dl));
5096     } else if (LimitFloatPrecision <= 12) {
5097       // For floating-point precision of 12:
5098       //
5099       //   Log10ofMantissa =
5100       //     -0.64831180f +
5101       //       (0.91751397f +
5102       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5103       //
5104       // error 0.00019228036, which is better than 12 bits
5105       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5106                                getF32Constant(DAG, 0x3d431f31, dl));
5107       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5108                                getF32Constant(DAG, 0x3ea21fb2, dl));
5109       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5110       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5111                                getF32Constant(DAG, 0x3f6ae232, dl));
5112       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5113       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5114                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5115     } else { // LimitFloatPrecision <= 18
5116       // For floating-point precision of 18:
5117       //
5118       //   Log10ofMantissa =
5119       //     -0.84299375f +
5120       //       (1.5327582f +
5121       //         (-1.0688956f +
5122       //           (0.49102474f +
5123       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5124       //
5125       // error 0.0000037995730, which is better than 18 bits
5126       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5127                                getF32Constant(DAG, 0x3c5d51ce, dl));
5128       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5129                                getF32Constant(DAG, 0x3e00685a, dl));
5130       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5131       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5132                                getF32Constant(DAG, 0x3efb6798, dl));
5133       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5134       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5135                                getF32Constant(DAG, 0x3f88d192, dl));
5136       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5137       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5138                                getF32Constant(DAG, 0x3fc4316c, dl));
5139       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5140       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5141                                     getF32Constant(DAG, 0x3f57ce70, dl));
5142     }
5143 
5144     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5145   }
5146 
5147   // No special expansion.
5148   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5149 }
5150 
5151 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5152 /// limited-precision mode.
5153 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5154                           const TargetLowering &TLI, SDNodeFlags Flags) {
5155   if (Op.getValueType() == MVT::f32 &&
5156       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5157     return getLimitedPrecisionExp2(Op, dl, DAG);
5158 
5159   // No special expansion.
5160   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5161 }
5162 
5163 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5164 /// limited-precision mode with x == 10.0f.
5165 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5166                          SelectionDAG &DAG, const TargetLowering &TLI,
5167                          SDNodeFlags Flags) {
5168   bool IsExp10 = false;
5169   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5170       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5171     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5172       APFloat Ten(10.0f);
5173       IsExp10 = LHSC->isExactlyValue(Ten);
5174     }
5175   }
5176 
5177   // TODO: What fast-math-flags should be set on the FMUL node?
5178   if (IsExp10) {
5179     // Put the exponent in the right bit position for later addition to the
5180     // final result:
5181     //
5182     //   #define LOG2OF10 3.3219281f
5183     //   t0 = Op * LOG2OF10;
5184     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5185                              getF32Constant(DAG, 0x40549a78, dl));
5186     return getLimitedPrecisionExp2(t0, dl, DAG);
5187   }
5188 
5189   // No special expansion.
5190   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5191 }
5192 
5193 /// ExpandPowI - Expand a llvm.powi intrinsic.
5194 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5195                           SelectionDAG &DAG) {
5196   // If RHS is a constant, we can expand this out to a multiplication tree,
5197   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5198   // optimizing for size, we only want to do this if the expansion would produce
5199   // a small number of multiplies, otherwise we do the full expansion.
5200   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5201     // Get the exponent as a positive value.
5202     unsigned Val = RHSC->getSExtValue();
5203     if ((int)Val < 0) Val = -Val;
5204 
5205     // powi(x, 0) -> 1.0
5206     if (Val == 0)
5207       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5208 
5209     bool OptForSize = DAG.shouldOptForSize();
5210     if (!OptForSize ||
5211         // If optimizing for size, don't insert too many multiplies.
5212         // This inserts up to 5 multiplies.
5213         countPopulation(Val) + Log2_32(Val) < 7) {
5214       // We use the simple binary decomposition method to generate the multiply
5215       // sequence.  There are more optimal ways to do this (for example,
5216       // powi(x,15) generates one more multiply than it should), but this has
5217       // the benefit of being both really simple and much better than a libcall.
5218       SDValue Res;  // Logically starts equal to 1.0
5219       SDValue CurSquare = LHS;
5220       // TODO: Intrinsics should have fast-math-flags that propagate to these
5221       // nodes.
5222       while (Val) {
5223         if (Val & 1) {
5224           if (Res.getNode())
5225             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5226           else
5227             Res = CurSquare;  // 1.0*CurSquare.
5228         }
5229 
5230         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5231                                 CurSquare, CurSquare);
5232         Val >>= 1;
5233       }
5234 
5235       // If the original was negative, invert the result, producing 1/(x*x*x).
5236       if (RHSC->getSExtValue() < 0)
5237         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5238                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5239       return Res;
5240     }
5241   }
5242 
5243   // Otherwise, expand to a libcall.
5244   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5245 }
5246 
5247 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5248                             SDValue LHS, SDValue RHS, SDValue Scale,
5249                             SelectionDAG &DAG, const TargetLowering &TLI) {
5250   EVT VT = LHS.getValueType();
5251   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5252   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5253   LLVMContext &Ctx = *DAG.getContext();
5254 
5255   // If the type is legal but the operation isn't, this node might survive all
5256   // the way to operation legalization. If we end up there and we do not have
5257   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5258   // node.
5259 
5260   // Coax the legalizer into expanding the node during type legalization instead
5261   // by bumping the size by one bit. This will force it to Promote, enabling the
5262   // early expansion and avoiding the need to expand later.
5263 
5264   // We don't have to do this if Scale is 0; that can always be expanded, unless
5265   // it's a saturating signed operation. Those can experience true integer
5266   // division overflow, a case which we must avoid.
5267 
5268   // FIXME: We wouldn't have to do this (or any of the early
5269   // expansion/promotion) if it was possible to expand a libcall of an
5270   // illegal type during operation legalization. But it's not, so things
5271   // get a bit hacky.
5272   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5273   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5274       (TLI.isTypeLegal(VT) ||
5275        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5276     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5277         Opcode, VT, ScaleInt);
5278     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5279       EVT PromVT;
5280       if (VT.isScalarInteger())
5281         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5282       else if (VT.isVector()) {
5283         PromVT = VT.getVectorElementType();
5284         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5285         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5286       } else
5287         llvm_unreachable("Wrong VT for DIVFIX?");
5288       if (Signed) {
5289         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5290         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5291       } else {
5292         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5293         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5294       }
5295       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5296       // For saturating operations, we need to shift up the LHS to get the
5297       // proper saturation width, and then shift down again afterwards.
5298       if (Saturating)
5299         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5300                           DAG.getConstant(1, DL, ShiftTy));
5301       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5302       if (Saturating)
5303         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5304                           DAG.getConstant(1, DL, ShiftTy));
5305       return DAG.getZExtOrTrunc(Res, DL, VT);
5306     }
5307   }
5308 
5309   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5310 }
5311 
5312 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5313 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5314 static void
5315 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5316                      const SDValue &N) {
5317   switch (N.getOpcode()) {
5318   case ISD::CopyFromReg: {
5319     SDValue Op = N.getOperand(1);
5320     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5321                       Op.getValueType().getSizeInBits());
5322     return;
5323   }
5324   case ISD::BITCAST:
5325   case ISD::AssertZext:
5326   case ISD::AssertSext:
5327   case ISD::TRUNCATE:
5328     getUnderlyingArgRegs(Regs, N.getOperand(0));
5329     return;
5330   case ISD::BUILD_PAIR:
5331   case ISD::BUILD_VECTOR:
5332   case ISD::CONCAT_VECTORS:
5333     for (SDValue Op : N->op_values())
5334       getUnderlyingArgRegs(Regs, Op);
5335     return;
5336   default:
5337     return;
5338   }
5339 }
5340 
5341 /// If the DbgValueInst is a dbg_value of a function argument, create the
5342 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5343 /// instruction selection, they will be inserted to the entry BB.
5344 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5345     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5346     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5347   const Argument *Arg = dyn_cast<Argument>(V);
5348   if (!Arg)
5349     return false;
5350 
5351   if (!IsDbgDeclare) {
5352     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5353     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5354     // the entry block.
5355     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5356     if (!IsInEntryBlock)
5357       return false;
5358 
5359     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5360     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5361     // variable that also is a param.
5362     //
5363     // Although, if we are at the top of the entry block already, we can still
5364     // emit using ArgDbgValue. This might catch some situations when the
5365     // dbg.value refers to an argument that isn't used in the entry block, so
5366     // any CopyToReg node would be optimized out and the only way to express
5367     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5368     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5369     // we should only emit as ArgDbgValue if the Variable is an argument to the
5370     // current function, and the dbg.value intrinsic is found in the entry
5371     // block.
5372     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5373         !DL->getInlinedAt();
5374     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5375     if (!IsInPrologue && !VariableIsFunctionInputArg)
5376       return false;
5377 
5378     // Here we assume that a function argument on IR level only can be used to
5379     // describe one input parameter on source level. If we for example have
5380     // source code like this
5381     //
5382     //    struct A { long x, y; };
5383     //    void foo(struct A a, long b) {
5384     //      ...
5385     //      b = a.x;
5386     //      ...
5387     //    }
5388     //
5389     // and IR like this
5390     //
5391     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5392     //  entry:
5393     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5394     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5395     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5396     //    ...
5397     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5398     //    ...
5399     //
5400     // then the last dbg.value is describing a parameter "b" using a value that
5401     // is an argument. But since we already has used %a1 to describe a parameter
5402     // we should not handle that last dbg.value here (that would result in an
5403     // incorrect hoisting of the DBG_VALUE to the function entry).
5404     // Notice that we allow one dbg.value per IR level argument, to accommodate
5405     // for the situation with fragments above.
5406     if (VariableIsFunctionInputArg) {
5407       unsigned ArgNo = Arg->getArgNo();
5408       if (ArgNo >= FuncInfo.DescribedArgs.size())
5409         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5410       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5411         return false;
5412       FuncInfo.DescribedArgs.set(ArgNo);
5413     }
5414   }
5415 
5416   MachineFunction &MF = DAG.getMachineFunction();
5417   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5418 
5419   bool IsIndirect = false;
5420   Optional<MachineOperand> Op;
5421   // Some arguments' frame index is recorded during argument lowering.
5422   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5423   if (FI != std::numeric_limits<int>::max())
5424     Op = MachineOperand::CreateFI(FI);
5425 
5426   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5427   if (!Op && N.getNode()) {
5428     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5429     Register Reg;
5430     if (ArgRegsAndSizes.size() == 1)
5431       Reg = ArgRegsAndSizes.front().first;
5432 
5433     if (Reg && Reg.isVirtual()) {
5434       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5435       Register PR = RegInfo.getLiveInPhysReg(Reg);
5436       if (PR)
5437         Reg = PR;
5438     }
5439     if (Reg) {
5440       Op = MachineOperand::CreateReg(Reg, false);
5441       IsIndirect = IsDbgDeclare;
5442     }
5443   }
5444 
5445   if (!Op && N.getNode()) {
5446     // Check if frame index is available.
5447     SDValue LCandidate = peekThroughBitcasts(N);
5448     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5449       if (FrameIndexSDNode *FINode =
5450           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5451         Op = MachineOperand::CreateFI(FINode->getIndex());
5452   }
5453 
5454   if (!Op) {
5455     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5456     auto splitMultiRegDbgValue
5457       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5458       unsigned Offset = 0;
5459       for (auto RegAndSize : SplitRegs) {
5460         // If the expression is already a fragment, the current register
5461         // offset+size might extend beyond the fragment. In this case, only
5462         // the register bits that are inside the fragment are relevant.
5463         int RegFragmentSizeInBits = RegAndSize.second;
5464         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5465           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5466           // The register is entirely outside the expression fragment,
5467           // so is irrelevant for debug info.
5468           if (Offset >= ExprFragmentSizeInBits)
5469             break;
5470           // The register is partially outside the expression fragment, only
5471           // the low bits within the fragment are relevant for debug info.
5472           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5473             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5474           }
5475         }
5476 
5477         auto FragmentExpr = DIExpression::createFragmentExpression(
5478             Expr, Offset, RegFragmentSizeInBits);
5479         Offset += RegAndSize.second;
5480         // If a valid fragment expression cannot be created, the variable's
5481         // correct value cannot be determined and so it is set as Undef.
5482         if (!FragmentExpr) {
5483           SDDbgValue *SDV = DAG.getConstantDbgValue(
5484               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5485           DAG.AddDbgValue(SDV, nullptr, false);
5486           continue;
5487         }
5488         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5489         FuncInfo.ArgDbgValues.push_back(
5490           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5491                   RegAndSize.first, Variable, *FragmentExpr));
5492       }
5493     };
5494 
5495     // Check if ValueMap has reg number.
5496     DenseMap<const Value *, Register>::const_iterator
5497       VMI = FuncInfo.ValueMap.find(V);
5498     if (VMI != FuncInfo.ValueMap.end()) {
5499       const auto &TLI = DAG.getTargetLoweringInfo();
5500       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5501                        V->getType(), None);
5502       if (RFV.occupiesMultipleRegs()) {
5503         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5504         return true;
5505       }
5506 
5507       Op = MachineOperand::CreateReg(VMI->second, false);
5508       IsIndirect = IsDbgDeclare;
5509     } else if (ArgRegsAndSizes.size() > 1) {
5510       // This was split due to the calling convention, and no virtual register
5511       // mapping exists for the value.
5512       splitMultiRegDbgValue(ArgRegsAndSizes);
5513       return true;
5514     }
5515   }
5516 
5517   if (!Op)
5518     return false;
5519 
5520   assert(Variable->isValidLocationForIntrinsic(DL) &&
5521          "Expected inlined-at fields to agree");
5522   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5523   FuncInfo.ArgDbgValues.push_back(
5524       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5525               *Op, Variable, Expr));
5526 
5527   return true;
5528 }
5529 
5530 /// Return the appropriate SDDbgValue based on N.
5531 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5532                                              DILocalVariable *Variable,
5533                                              DIExpression *Expr,
5534                                              const DebugLoc &dl,
5535                                              unsigned DbgSDNodeOrder) {
5536   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5537     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5538     // stack slot locations.
5539     //
5540     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5541     // debug values here after optimization:
5542     //
5543     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5544     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5545     //
5546     // Both describe the direct values of their associated variables.
5547     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5548                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5549   }
5550   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5551                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5552 }
5553 
5554 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5555   switch (Intrinsic) {
5556   case Intrinsic::smul_fix:
5557     return ISD::SMULFIX;
5558   case Intrinsic::umul_fix:
5559     return ISD::UMULFIX;
5560   case Intrinsic::smul_fix_sat:
5561     return ISD::SMULFIXSAT;
5562   case Intrinsic::umul_fix_sat:
5563     return ISD::UMULFIXSAT;
5564   case Intrinsic::sdiv_fix:
5565     return ISD::SDIVFIX;
5566   case Intrinsic::udiv_fix:
5567     return ISD::UDIVFIX;
5568   case Intrinsic::sdiv_fix_sat:
5569     return ISD::SDIVFIXSAT;
5570   case Intrinsic::udiv_fix_sat:
5571     return ISD::UDIVFIXSAT;
5572   default:
5573     llvm_unreachable("Unhandled fixed point intrinsic");
5574   }
5575 }
5576 
5577 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5578                                            const char *FunctionName) {
5579   assert(FunctionName && "FunctionName must not be nullptr");
5580   SDValue Callee = DAG.getExternalSymbol(
5581       FunctionName,
5582       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5583   LowerCallTo(I, Callee, I.isTailCall());
5584 }
5585 
5586 /// Given a @llvm.call.preallocated.setup, return the corresponding
5587 /// preallocated call.
5588 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5589   assert(cast<CallBase>(PreallocatedSetup)
5590                  ->getCalledFunction()
5591                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5592          "expected call_preallocated_setup Value");
5593   for (auto *U : PreallocatedSetup->users()) {
5594     auto *UseCall = cast<CallBase>(U);
5595     const Function *Fn = UseCall->getCalledFunction();
5596     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5597       return UseCall;
5598     }
5599   }
5600   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5601 }
5602 
5603 /// Lower the call to the specified intrinsic function.
5604 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5605                                              unsigned Intrinsic) {
5606   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5607   SDLoc sdl = getCurSDLoc();
5608   DebugLoc dl = getCurDebugLoc();
5609   SDValue Res;
5610 
5611   SDNodeFlags Flags;
5612   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5613     Flags.copyFMF(*FPOp);
5614 
5615   switch (Intrinsic) {
5616   default:
5617     // By default, turn this into a target intrinsic node.
5618     visitTargetIntrinsic(I, Intrinsic);
5619     return;
5620   case Intrinsic::vscale: {
5621     match(&I, m_VScale(DAG.getDataLayout()));
5622     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5623     setValue(&I,
5624              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5625     return;
5626   }
5627   case Intrinsic::vastart:  visitVAStart(I); return;
5628   case Intrinsic::vaend:    visitVAEnd(I); return;
5629   case Intrinsic::vacopy:   visitVACopy(I); return;
5630   case Intrinsic::returnaddress:
5631     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5632                              TLI.getPointerTy(DAG.getDataLayout()),
5633                              getValue(I.getArgOperand(0))));
5634     return;
5635   case Intrinsic::addressofreturnaddress:
5636     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5637                              TLI.getPointerTy(DAG.getDataLayout())));
5638     return;
5639   case Intrinsic::sponentry:
5640     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5641                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5642     return;
5643   case Intrinsic::frameaddress:
5644     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5645                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5646                              getValue(I.getArgOperand(0))));
5647     return;
5648   case Intrinsic::read_volatile_register:
5649   case Intrinsic::read_register: {
5650     Value *Reg = I.getArgOperand(0);
5651     SDValue Chain = getRoot();
5652     SDValue RegName =
5653         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5654     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5655     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5656       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5657     setValue(&I, Res);
5658     DAG.setRoot(Res.getValue(1));
5659     return;
5660   }
5661   case Intrinsic::write_register: {
5662     Value *Reg = I.getArgOperand(0);
5663     Value *RegValue = I.getArgOperand(1);
5664     SDValue Chain = getRoot();
5665     SDValue RegName =
5666         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5667     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5668                             RegName, getValue(RegValue)));
5669     return;
5670   }
5671   case Intrinsic::memcpy: {
5672     const auto &MCI = cast<MemCpyInst>(I);
5673     SDValue Op1 = getValue(I.getArgOperand(0));
5674     SDValue Op2 = getValue(I.getArgOperand(1));
5675     SDValue Op3 = getValue(I.getArgOperand(2));
5676     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5677     Align DstAlign = MCI.getDestAlign().valueOrOne();
5678     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5679     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5680     bool isVol = MCI.isVolatile();
5681     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5682     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5683     // node.
5684     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5685     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5686                                /* AlwaysInline */ false, isTC,
5687                                MachinePointerInfo(I.getArgOperand(0)),
5688                                MachinePointerInfo(I.getArgOperand(1)));
5689     updateDAGForMaybeTailCall(MC);
5690     return;
5691   }
5692   case Intrinsic::memcpy_inline: {
5693     const auto &MCI = cast<MemCpyInlineInst>(I);
5694     SDValue Dst = getValue(I.getArgOperand(0));
5695     SDValue Src = getValue(I.getArgOperand(1));
5696     SDValue Size = getValue(I.getArgOperand(2));
5697     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5698     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5699     Align DstAlign = MCI.getDestAlign().valueOrOne();
5700     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5701     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5702     bool isVol = MCI.isVolatile();
5703     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5704     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5705     // node.
5706     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5707                                /* AlwaysInline */ true, isTC,
5708                                MachinePointerInfo(I.getArgOperand(0)),
5709                                MachinePointerInfo(I.getArgOperand(1)));
5710     updateDAGForMaybeTailCall(MC);
5711     return;
5712   }
5713   case Intrinsic::memset: {
5714     const auto &MSI = cast<MemSetInst>(I);
5715     SDValue Op1 = getValue(I.getArgOperand(0));
5716     SDValue Op2 = getValue(I.getArgOperand(1));
5717     SDValue Op3 = getValue(I.getArgOperand(2));
5718     // @llvm.memset defines 0 and 1 to both mean no alignment.
5719     Align Alignment = MSI.getDestAlign().valueOrOne();
5720     bool isVol = MSI.isVolatile();
5721     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5722     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5723     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5724                                MachinePointerInfo(I.getArgOperand(0)));
5725     updateDAGForMaybeTailCall(MS);
5726     return;
5727   }
5728   case Intrinsic::memmove: {
5729     const auto &MMI = cast<MemMoveInst>(I);
5730     SDValue Op1 = getValue(I.getArgOperand(0));
5731     SDValue Op2 = getValue(I.getArgOperand(1));
5732     SDValue Op3 = getValue(I.getArgOperand(2));
5733     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5734     Align DstAlign = MMI.getDestAlign().valueOrOne();
5735     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5736     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5737     bool isVol = MMI.isVolatile();
5738     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5739     // FIXME: Support passing different dest/src alignments to the memmove DAG
5740     // node.
5741     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5742     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5743                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5744                                 MachinePointerInfo(I.getArgOperand(1)));
5745     updateDAGForMaybeTailCall(MM);
5746     return;
5747   }
5748   case Intrinsic::memcpy_element_unordered_atomic: {
5749     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5750     SDValue Dst = getValue(MI.getRawDest());
5751     SDValue Src = getValue(MI.getRawSource());
5752     SDValue Length = getValue(MI.getLength());
5753 
5754     unsigned DstAlign = MI.getDestAlignment();
5755     unsigned SrcAlign = MI.getSourceAlignment();
5756     Type *LengthTy = MI.getLength()->getType();
5757     unsigned ElemSz = MI.getElementSizeInBytes();
5758     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5759     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5760                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5761                                      MachinePointerInfo(MI.getRawDest()),
5762                                      MachinePointerInfo(MI.getRawSource()));
5763     updateDAGForMaybeTailCall(MC);
5764     return;
5765   }
5766   case Intrinsic::memmove_element_unordered_atomic: {
5767     auto &MI = cast<AtomicMemMoveInst>(I);
5768     SDValue Dst = getValue(MI.getRawDest());
5769     SDValue Src = getValue(MI.getRawSource());
5770     SDValue Length = getValue(MI.getLength());
5771 
5772     unsigned DstAlign = MI.getDestAlignment();
5773     unsigned SrcAlign = MI.getSourceAlignment();
5774     Type *LengthTy = MI.getLength()->getType();
5775     unsigned ElemSz = MI.getElementSizeInBytes();
5776     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5777     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5778                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5779                                       MachinePointerInfo(MI.getRawDest()),
5780                                       MachinePointerInfo(MI.getRawSource()));
5781     updateDAGForMaybeTailCall(MC);
5782     return;
5783   }
5784   case Intrinsic::memset_element_unordered_atomic: {
5785     auto &MI = cast<AtomicMemSetInst>(I);
5786     SDValue Dst = getValue(MI.getRawDest());
5787     SDValue Val = getValue(MI.getValue());
5788     SDValue Length = getValue(MI.getLength());
5789 
5790     unsigned DstAlign = MI.getDestAlignment();
5791     Type *LengthTy = MI.getLength()->getType();
5792     unsigned ElemSz = MI.getElementSizeInBytes();
5793     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5794     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5795                                      LengthTy, ElemSz, isTC,
5796                                      MachinePointerInfo(MI.getRawDest()));
5797     updateDAGForMaybeTailCall(MC);
5798     return;
5799   }
5800   case Intrinsic::call_preallocated_setup: {
5801     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5802     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5803     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5804                               getRoot(), SrcValue);
5805     setValue(&I, Res);
5806     DAG.setRoot(Res);
5807     return;
5808   }
5809   case Intrinsic::call_preallocated_arg: {
5810     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5811     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5812     SDValue Ops[3];
5813     Ops[0] = getRoot();
5814     Ops[1] = SrcValue;
5815     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5816                                    MVT::i32); // arg index
5817     SDValue Res = DAG.getNode(
5818         ISD::PREALLOCATED_ARG, sdl,
5819         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5820     setValue(&I, Res);
5821     DAG.setRoot(Res.getValue(1));
5822     return;
5823   }
5824   case Intrinsic::dbg_addr:
5825   case Intrinsic::dbg_declare: {
5826     const auto &DI = cast<DbgVariableIntrinsic>(I);
5827     DILocalVariable *Variable = DI.getVariable();
5828     DIExpression *Expression = DI.getExpression();
5829     dropDanglingDebugInfo(Variable, Expression);
5830     assert(Variable && "Missing variable");
5831     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5832                       << "\n");
5833     // Check if address has undef value.
5834     const Value *Address = DI.getVariableLocation();
5835     if (!Address || isa<UndefValue>(Address) ||
5836         (Address->use_empty() && !isa<Argument>(Address))) {
5837       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5838                         << " (bad/undef/unused-arg address)\n");
5839       return;
5840     }
5841 
5842     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5843 
5844     // Check if this variable can be described by a frame index, typically
5845     // either as a static alloca or a byval parameter.
5846     int FI = std::numeric_limits<int>::max();
5847     if (const auto *AI =
5848             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5849       if (AI->isStaticAlloca()) {
5850         auto I = FuncInfo.StaticAllocaMap.find(AI);
5851         if (I != FuncInfo.StaticAllocaMap.end())
5852           FI = I->second;
5853       }
5854     } else if (const auto *Arg = dyn_cast<Argument>(
5855                    Address->stripInBoundsConstantOffsets())) {
5856       FI = FuncInfo.getArgumentFrameIndex(Arg);
5857     }
5858 
5859     // llvm.dbg.addr is control dependent and always generates indirect
5860     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5861     // the MachineFunction variable table.
5862     if (FI != std::numeric_limits<int>::max()) {
5863       if (Intrinsic == Intrinsic::dbg_addr) {
5864         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5865             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5866         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5867       } else {
5868         LLVM_DEBUG(dbgs() << "Skipping " << DI
5869                           << " (variable info stashed in MF side table)\n");
5870       }
5871       return;
5872     }
5873 
5874     SDValue &N = NodeMap[Address];
5875     if (!N.getNode() && isa<Argument>(Address))
5876       // Check unused arguments map.
5877       N = UnusedArgNodeMap[Address];
5878     SDDbgValue *SDV;
5879     if (N.getNode()) {
5880       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5881         Address = BCI->getOperand(0);
5882       // Parameters are handled specially.
5883       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5884       if (isParameter && FINode) {
5885         // Byval parameter. We have a frame index at this point.
5886         SDV =
5887             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5888                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5889       } else if (isa<Argument>(Address)) {
5890         // Address is an argument, so try to emit its dbg value using
5891         // virtual register info from the FuncInfo.ValueMap.
5892         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5893         return;
5894       } else {
5895         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5896                               true, dl, SDNodeOrder);
5897       }
5898       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5899     } else {
5900       // If Address is an argument then try to emit its dbg value using
5901       // virtual register info from the FuncInfo.ValueMap.
5902       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5903                                     N)) {
5904         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5905                           << " (could not emit func-arg dbg_value)\n");
5906       }
5907     }
5908     return;
5909   }
5910   case Intrinsic::dbg_label: {
5911     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5912     DILabel *Label = DI.getLabel();
5913     assert(Label && "Missing label");
5914 
5915     SDDbgLabel *SDV;
5916     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5917     DAG.AddDbgLabel(SDV);
5918     return;
5919   }
5920   case Intrinsic::dbg_value: {
5921     const DbgValueInst &DI = cast<DbgValueInst>(I);
5922     assert(DI.getVariable() && "Missing variable");
5923 
5924     DILocalVariable *Variable = DI.getVariable();
5925     DIExpression *Expression = DI.getExpression();
5926     dropDanglingDebugInfo(Variable, Expression);
5927     const Value *V = DI.getValue();
5928     if (!V)
5929       return;
5930 
5931     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5932         SDNodeOrder))
5933       return;
5934 
5935     // TODO: Dangling debug info will eventually either be resolved or produce
5936     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5937     // between the original dbg.value location and its resolved DBG_VALUE, which
5938     // we should ideally fill with an extra Undef DBG_VALUE.
5939 
5940     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5941     return;
5942   }
5943 
5944   case Intrinsic::eh_typeid_for: {
5945     // Find the type id for the given typeinfo.
5946     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5947     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5948     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5949     setValue(&I, Res);
5950     return;
5951   }
5952 
5953   case Intrinsic::eh_return_i32:
5954   case Intrinsic::eh_return_i64:
5955     DAG.getMachineFunction().setCallsEHReturn(true);
5956     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5957                             MVT::Other,
5958                             getControlRoot(),
5959                             getValue(I.getArgOperand(0)),
5960                             getValue(I.getArgOperand(1))));
5961     return;
5962   case Intrinsic::eh_unwind_init:
5963     DAG.getMachineFunction().setCallsUnwindInit(true);
5964     return;
5965   case Intrinsic::eh_dwarf_cfa:
5966     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5967                              TLI.getPointerTy(DAG.getDataLayout()),
5968                              getValue(I.getArgOperand(0))));
5969     return;
5970   case Intrinsic::eh_sjlj_callsite: {
5971     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5972     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5973     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5974     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5975 
5976     MMI.setCurrentCallSite(CI->getZExtValue());
5977     return;
5978   }
5979   case Intrinsic::eh_sjlj_functioncontext: {
5980     // Get and store the index of the function context.
5981     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5982     AllocaInst *FnCtx =
5983       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5984     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5985     MFI.setFunctionContextIndex(FI);
5986     return;
5987   }
5988   case Intrinsic::eh_sjlj_setjmp: {
5989     SDValue Ops[2];
5990     Ops[0] = getRoot();
5991     Ops[1] = getValue(I.getArgOperand(0));
5992     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5993                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5994     setValue(&I, Op.getValue(0));
5995     DAG.setRoot(Op.getValue(1));
5996     return;
5997   }
5998   case Intrinsic::eh_sjlj_longjmp:
5999     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6000                             getRoot(), getValue(I.getArgOperand(0))));
6001     return;
6002   case Intrinsic::eh_sjlj_setup_dispatch:
6003     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6004                             getRoot()));
6005     return;
6006   case Intrinsic::masked_gather:
6007     visitMaskedGather(I);
6008     return;
6009   case Intrinsic::masked_load:
6010     visitMaskedLoad(I);
6011     return;
6012   case Intrinsic::masked_scatter:
6013     visitMaskedScatter(I);
6014     return;
6015   case Intrinsic::masked_store:
6016     visitMaskedStore(I);
6017     return;
6018   case Intrinsic::masked_expandload:
6019     visitMaskedLoad(I, true /* IsExpanding */);
6020     return;
6021   case Intrinsic::masked_compressstore:
6022     visitMaskedStore(I, true /* IsCompressing */);
6023     return;
6024   case Intrinsic::powi:
6025     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6026                             getValue(I.getArgOperand(1)), DAG));
6027     return;
6028   case Intrinsic::log:
6029     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6030     return;
6031   case Intrinsic::log2:
6032     setValue(&I,
6033              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6034     return;
6035   case Intrinsic::log10:
6036     setValue(&I,
6037              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6038     return;
6039   case Intrinsic::exp:
6040     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6041     return;
6042   case Intrinsic::exp2:
6043     setValue(&I,
6044              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6045     return;
6046   case Intrinsic::pow:
6047     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6048                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6049     return;
6050   case Intrinsic::sqrt:
6051   case Intrinsic::fabs:
6052   case Intrinsic::sin:
6053   case Intrinsic::cos:
6054   case Intrinsic::floor:
6055   case Intrinsic::ceil:
6056   case Intrinsic::trunc:
6057   case Intrinsic::rint:
6058   case Intrinsic::nearbyint:
6059   case Intrinsic::round:
6060   case Intrinsic::roundeven:
6061   case Intrinsic::canonicalize: {
6062     unsigned Opcode;
6063     switch (Intrinsic) {
6064     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6065     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6066     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6067     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6068     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6069     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6070     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6071     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6072     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6073     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6074     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6075     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6076     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6077     }
6078 
6079     setValue(&I, DAG.getNode(Opcode, sdl,
6080                              getValue(I.getArgOperand(0)).getValueType(),
6081                              getValue(I.getArgOperand(0)), Flags));
6082     return;
6083   }
6084   case Intrinsic::lround:
6085   case Intrinsic::llround:
6086   case Intrinsic::lrint:
6087   case Intrinsic::llrint: {
6088     unsigned Opcode;
6089     switch (Intrinsic) {
6090     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6091     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6092     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6093     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6094     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6095     }
6096 
6097     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6098     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6099                              getValue(I.getArgOperand(0))));
6100     return;
6101   }
6102   case Intrinsic::minnum:
6103     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6104                              getValue(I.getArgOperand(0)).getValueType(),
6105                              getValue(I.getArgOperand(0)),
6106                              getValue(I.getArgOperand(1)), Flags));
6107     return;
6108   case Intrinsic::maxnum:
6109     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6110                              getValue(I.getArgOperand(0)).getValueType(),
6111                              getValue(I.getArgOperand(0)),
6112                              getValue(I.getArgOperand(1)), Flags));
6113     return;
6114   case Intrinsic::minimum:
6115     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6116                              getValue(I.getArgOperand(0)).getValueType(),
6117                              getValue(I.getArgOperand(0)),
6118                              getValue(I.getArgOperand(1)), Flags));
6119     return;
6120   case Intrinsic::maximum:
6121     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6122                              getValue(I.getArgOperand(0)).getValueType(),
6123                              getValue(I.getArgOperand(0)),
6124                              getValue(I.getArgOperand(1)), Flags));
6125     return;
6126   case Intrinsic::copysign:
6127     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6128                              getValue(I.getArgOperand(0)).getValueType(),
6129                              getValue(I.getArgOperand(0)),
6130                              getValue(I.getArgOperand(1)), Flags));
6131     return;
6132   case Intrinsic::fma:
6133     setValue(&I, DAG.getNode(
6134                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6135                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6136                      getValue(I.getArgOperand(2)), Flags));
6137     return;
6138 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6139   case Intrinsic::INTRINSIC:
6140 #include "llvm/IR/ConstrainedOps.def"
6141     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6142     return;
6143   case Intrinsic::fmuladd: {
6144     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6145     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6146         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6147       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6148                                getValue(I.getArgOperand(0)).getValueType(),
6149                                getValue(I.getArgOperand(0)),
6150                                getValue(I.getArgOperand(1)),
6151                                getValue(I.getArgOperand(2)), Flags));
6152     } else {
6153       // TODO: Intrinsic calls should have fast-math-flags.
6154       SDValue Mul = DAG.getNode(
6155           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6156           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6157       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6158                                 getValue(I.getArgOperand(0)).getValueType(),
6159                                 Mul, getValue(I.getArgOperand(2)), Flags);
6160       setValue(&I, Add);
6161     }
6162     return;
6163   }
6164   case Intrinsic::convert_to_fp16:
6165     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6166                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6167                                          getValue(I.getArgOperand(0)),
6168                                          DAG.getTargetConstant(0, sdl,
6169                                                                MVT::i32))));
6170     return;
6171   case Intrinsic::convert_from_fp16:
6172     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6173                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6174                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6175                                          getValue(I.getArgOperand(0)))));
6176     return;
6177   case Intrinsic::pcmarker: {
6178     SDValue Tmp = getValue(I.getArgOperand(0));
6179     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6180     return;
6181   }
6182   case Intrinsic::readcyclecounter: {
6183     SDValue Op = getRoot();
6184     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6185                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6186     setValue(&I, Res);
6187     DAG.setRoot(Res.getValue(1));
6188     return;
6189   }
6190   case Intrinsic::bitreverse:
6191     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6192                              getValue(I.getArgOperand(0)).getValueType(),
6193                              getValue(I.getArgOperand(0))));
6194     return;
6195   case Intrinsic::bswap:
6196     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6197                              getValue(I.getArgOperand(0)).getValueType(),
6198                              getValue(I.getArgOperand(0))));
6199     return;
6200   case Intrinsic::cttz: {
6201     SDValue Arg = getValue(I.getArgOperand(0));
6202     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6203     EVT Ty = Arg.getValueType();
6204     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6205                              sdl, Ty, Arg));
6206     return;
6207   }
6208   case Intrinsic::ctlz: {
6209     SDValue Arg = getValue(I.getArgOperand(0));
6210     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6211     EVT Ty = Arg.getValueType();
6212     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6213                              sdl, Ty, Arg));
6214     return;
6215   }
6216   case Intrinsic::ctpop: {
6217     SDValue Arg = getValue(I.getArgOperand(0));
6218     EVT Ty = Arg.getValueType();
6219     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6220     return;
6221   }
6222   case Intrinsic::fshl:
6223   case Intrinsic::fshr: {
6224     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6225     SDValue X = getValue(I.getArgOperand(0));
6226     SDValue Y = getValue(I.getArgOperand(1));
6227     SDValue Z = getValue(I.getArgOperand(2));
6228     EVT VT = X.getValueType();
6229 
6230     if (X == Y) {
6231       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6232       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6233     } else {
6234       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6235       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6236     }
6237     return;
6238   }
6239   case Intrinsic::sadd_sat: {
6240     SDValue Op1 = getValue(I.getArgOperand(0));
6241     SDValue Op2 = getValue(I.getArgOperand(1));
6242     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6243     return;
6244   }
6245   case Intrinsic::uadd_sat: {
6246     SDValue Op1 = getValue(I.getArgOperand(0));
6247     SDValue Op2 = getValue(I.getArgOperand(1));
6248     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6249     return;
6250   }
6251   case Intrinsic::ssub_sat: {
6252     SDValue Op1 = getValue(I.getArgOperand(0));
6253     SDValue Op2 = getValue(I.getArgOperand(1));
6254     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6255     return;
6256   }
6257   case Intrinsic::usub_sat: {
6258     SDValue Op1 = getValue(I.getArgOperand(0));
6259     SDValue Op2 = getValue(I.getArgOperand(1));
6260     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6261     return;
6262   }
6263   case Intrinsic::sshl_sat: {
6264     SDValue Op1 = getValue(I.getArgOperand(0));
6265     SDValue Op2 = getValue(I.getArgOperand(1));
6266     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6267     return;
6268   }
6269   case Intrinsic::ushl_sat: {
6270     SDValue Op1 = getValue(I.getArgOperand(0));
6271     SDValue Op2 = getValue(I.getArgOperand(1));
6272     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6273     return;
6274   }
6275   case Intrinsic::smul_fix:
6276   case Intrinsic::umul_fix:
6277   case Intrinsic::smul_fix_sat:
6278   case Intrinsic::umul_fix_sat: {
6279     SDValue Op1 = getValue(I.getArgOperand(0));
6280     SDValue Op2 = getValue(I.getArgOperand(1));
6281     SDValue Op3 = getValue(I.getArgOperand(2));
6282     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6283                              Op1.getValueType(), Op1, Op2, Op3));
6284     return;
6285   }
6286   case Intrinsic::sdiv_fix:
6287   case Intrinsic::udiv_fix:
6288   case Intrinsic::sdiv_fix_sat:
6289   case Intrinsic::udiv_fix_sat: {
6290     SDValue Op1 = getValue(I.getArgOperand(0));
6291     SDValue Op2 = getValue(I.getArgOperand(1));
6292     SDValue Op3 = getValue(I.getArgOperand(2));
6293     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6294                               Op1, Op2, Op3, DAG, TLI));
6295     return;
6296   }
6297   case Intrinsic::smax: {
6298     SDValue Op1 = getValue(I.getArgOperand(0));
6299     SDValue Op2 = getValue(I.getArgOperand(1));
6300     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6301     return;
6302   }
6303   case Intrinsic::smin: {
6304     SDValue Op1 = getValue(I.getArgOperand(0));
6305     SDValue Op2 = getValue(I.getArgOperand(1));
6306     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6307     return;
6308   }
6309   case Intrinsic::umax: {
6310     SDValue Op1 = getValue(I.getArgOperand(0));
6311     SDValue Op2 = getValue(I.getArgOperand(1));
6312     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6313     return;
6314   }
6315   case Intrinsic::umin: {
6316     SDValue Op1 = getValue(I.getArgOperand(0));
6317     SDValue Op2 = getValue(I.getArgOperand(1));
6318     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6319     return;
6320   }
6321   case Intrinsic::abs: {
6322     // TODO: Preserve "int min is poison" arg in SDAG?
6323     SDValue Op1 = getValue(I.getArgOperand(0));
6324     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6325     return;
6326   }
6327   case Intrinsic::stacksave: {
6328     SDValue Op = getRoot();
6329     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6330     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6331     setValue(&I, Res);
6332     DAG.setRoot(Res.getValue(1));
6333     return;
6334   }
6335   case Intrinsic::stackrestore:
6336     Res = getValue(I.getArgOperand(0));
6337     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6338     return;
6339   case Intrinsic::get_dynamic_area_offset: {
6340     SDValue Op = getRoot();
6341     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6342     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6343     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6344     // target.
6345     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6346       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6347                          " intrinsic!");
6348     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6349                       Op);
6350     DAG.setRoot(Op);
6351     setValue(&I, Res);
6352     return;
6353   }
6354   case Intrinsic::stackguard: {
6355     MachineFunction &MF = DAG.getMachineFunction();
6356     const Module &M = *MF.getFunction().getParent();
6357     SDValue Chain = getRoot();
6358     if (TLI.useLoadStackGuardNode()) {
6359       Res = getLoadStackGuard(DAG, sdl, Chain);
6360     } else {
6361       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6362       const Value *Global = TLI.getSDagStackGuard(M);
6363       Align Align = DL->getPrefTypeAlign(Global->getType());
6364       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6365                         MachinePointerInfo(Global, 0), Align,
6366                         MachineMemOperand::MOVolatile);
6367     }
6368     if (TLI.useStackGuardXorFP())
6369       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6370     DAG.setRoot(Chain);
6371     setValue(&I, Res);
6372     return;
6373   }
6374   case Intrinsic::stackprotector: {
6375     // Emit code into the DAG to store the stack guard onto the stack.
6376     MachineFunction &MF = DAG.getMachineFunction();
6377     MachineFrameInfo &MFI = MF.getFrameInfo();
6378     SDValue Src, Chain = getRoot();
6379 
6380     if (TLI.useLoadStackGuardNode())
6381       Src = getLoadStackGuard(DAG, sdl, Chain);
6382     else
6383       Src = getValue(I.getArgOperand(0));   // The guard's value.
6384 
6385     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6386 
6387     int FI = FuncInfo.StaticAllocaMap[Slot];
6388     MFI.setStackProtectorIndex(FI);
6389     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6390 
6391     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6392 
6393     // Store the stack protector onto the stack.
6394     Res = DAG.getStore(
6395         Chain, sdl, Src, FIN,
6396         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6397         MaybeAlign(), MachineMemOperand::MOVolatile);
6398     setValue(&I, Res);
6399     DAG.setRoot(Res);
6400     return;
6401   }
6402   case Intrinsic::objectsize:
6403     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6404 
6405   case Intrinsic::is_constant:
6406     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6407 
6408   case Intrinsic::annotation:
6409   case Intrinsic::ptr_annotation:
6410   case Intrinsic::launder_invariant_group:
6411   case Intrinsic::strip_invariant_group:
6412     // Drop the intrinsic, but forward the value
6413     setValue(&I, getValue(I.getOperand(0)));
6414     return;
6415   case Intrinsic::assume:
6416   case Intrinsic::var_annotation:
6417   case Intrinsic::sideeffect:
6418     // Discard annotate attributes, assumptions, and artificial side-effects.
6419     return;
6420 
6421   case Intrinsic::codeview_annotation: {
6422     // Emit a label associated with this metadata.
6423     MachineFunction &MF = DAG.getMachineFunction();
6424     MCSymbol *Label =
6425         MF.getMMI().getContext().createTempSymbol("annotation", true);
6426     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6427     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6428     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6429     DAG.setRoot(Res);
6430     return;
6431   }
6432 
6433   case Intrinsic::init_trampoline: {
6434     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6435 
6436     SDValue Ops[6];
6437     Ops[0] = getRoot();
6438     Ops[1] = getValue(I.getArgOperand(0));
6439     Ops[2] = getValue(I.getArgOperand(1));
6440     Ops[3] = getValue(I.getArgOperand(2));
6441     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6442     Ops[5] = DAG.getSrcValue(F);
6443 
6444     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6445 
6446     DAG.setRoot(Res);
6447     return;
6448   }
6449   case Intrinsic::adjust_trampoline:
6450     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6451                              TLI.getPointerTy(DAG.getDataLayout()),
6452                              getValue(I.getArgOperand(0))));
6453     return;
6454   case Intrinsic::gcroot: {
6455     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6456            "only valid in functions with gc specified, enforced by Verifier");
6457     assert(GFI && "implied by previous");
6458     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6459     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6460 
6461     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6462     GFI->addStackRoot(FI->getIndex(), TypeMap);
6463     return;
6464   }
6465   case Intrinsic::gcread:
6466   case Intrinsic::gcwrite:
6467     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6468   case Intrinsic::flt_rounds:
6469     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6470     setValue(&I, Res);
6471     DAG.setRoot(Res.getValue(1));
6472     return;
6473 
6474   case Intrinsic::expect:
6475     // Just replace __builtin_expect(exp, c) with EXP.
6476     setValue(&I, getValue(I.getArgOperand(0)));
6477     return;
6478 
6479   case Intrinsic::debugtrap:
6480   case Intrinsic::trap: {
6481     StringRef TrapFuncName =
6482         I.getAttributes()
6483             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6484             .getValueAsString();
6485     if (TrapFuncName.empty()) {
6486       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6487         ISD::TRAP : ISD::DEBUGTRAP;
6488       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6489       return;
6490     }
6491     TargetLowering::ArgListTy Args;
6492 
6493     TargetLowering::CallLoweringInfo CLI(DAG);
6494     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6495         CallingConv::C, I.getType(),
6496         DAG.getExternalSymbol(TrapFuncName.data(),
6497                               TLI.getPointerTy(DAG.getDataLayout())),
6498         std::move(Args));
6499 
6500     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6501     DAG.setRoot(Result.second);
6502     return;
6503   }
6504 
6505   case Intrinsic::uadd_with_overflow:
6506   case Intrinsic::sadd_with_overflow:
6507   case Intrinsic::usub_with_overflow:
6508   case Intrinsic::ssub_with_overflow:
6509   case Intrinsic::umul_with_overflow:
6510   case Intrinsic::smul_with_overflow: {
6511     ISD::NodeType Op;
6512     switch (Intrinsic) {
6513     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6514     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6515     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6516     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6517     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6518     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6519     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6520     }
6521     SDValue Op1 = getValue(I.getArgOperand(0));
6522     SDValue Op2 = getValue(I.getArgOperand(1));
6523 
6524     EVT ResultVT = Op1.getValueType();
6525     EVT OverflowVT = MVT::i1;
6526     if (ResultVT.isVector())
6527       OverflowVT = EVT::getVectorVT(
6528           *Context, OverflowVT, ResultVT.getVectorNumElements());
6529 
6530     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6531     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6532     return;
6533   }
6534   case Intrinsic::prefetch: {
6535     SDValue Ops[5];
6536     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6537     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6538     Ops[0] = DAG.getRoot();
6539     Ops[1] = getValue(I.getArgOperand(0));
6540     Ops[2] = getValue(I.getArgOperand(1));
6541     Ops[3] = getValue(I.getArgOperand(2));
6542     Ops[4] = getValue(I.getArgOperand(3));
6543     SDValue Result = DAG.getMemIntrinsicNode(
6544         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6545         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6546         /* align */ None, Flags);
6547 
6548     // Chain the prefetch in parallell with any pending loads, to stay out of
6549     // the way of later optimizations.
6550     PendingLoads.push_back(Result);
6551     Result = getRoot();
6552     DAG.setRoot(Result);
6553     return;
6554   }
6555   case Intrinsic::lifetime_start:
6556   case Intrinsic::lifetime_end: {
6557     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6558     // Stack coloring is not enabled in O0, discard region information.
6559     if (TM.getOptLevel() == CodeGenOpt::None)
6560       return;
6561 
6562     const int64_t ObjectSize =
6563         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6564     Value *const ObjectPtr = I.getArgOperand(1);
6565     SmallVector<const Value *, 4> Allocas;
6566     getUnderlyingObjects(ObjectPtr, Allocas);
6567 
6568     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6569            E = Allocas.end(); Object != E; ++Object) {
6570       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6571 
6572       // Could not find an Alloca.
6573       if (!LifetimeObject)
6574         continue;
6575 
6576       // First check that the Alloca is static, otherwise it won't have a
6577       // valid frame index.
6578       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6579       if (SI == FuncInfo.StaticAllocaMap.end())
6580         return;
6581 
6582       const int FrameIndex = SI->second;
6583       int64_t Offset;
6584       if (GetPointerBaseWithConstantOffset(
6585               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6586         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6587       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6588                                 Offset);
6589       DAG.setRoot(Res);
6590     }
6591     return;
6592   }
6593   case Intrinsic::pseudoprobe: {
6594     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6595     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6596     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6597     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6598     DAG.setRoot(Res);
6599     return;
6600   }
6601   case Intrinsic::invariant_start:
6602     // Discard region information.
6603     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6604     return;
6605   case Intrinsic::invariant_end:
6606     // Discard region information.
6607     return;
6608   case Intrinsic::clear_cache:
6609     /// FunctionName may be null.
6610     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6611       lowerCallToExternalSymbol(I, FunctionName);
6612     return;
6613   case Intrinsic::donothing:
6614     // ignore
6615     return;
6616   case Intrinsic::experimental_stackmap:
6617     visitStackmap(I);
6618     return;
6619   case Intrinsic::experimental_patchpoint_void:
6620   case Intrinsic::experimental_patchpoint_i64:
6621     visitPatchpoint(I);
6622     return;
6623   case Intrinsic::experimental_gc_statepoint:
6624     LowerStatepoint(cast<GCStatepointInst>(I));
6625     return;
6626   case Intrinsic::experimental_gc_result:
6627     visitGCResult(cast<GCResultInst>(I));
6628     return;
6629   case Intrinsic::experimental_gc_relocate:
6630     visitGCRelocate(cast<GCRelocateInst>(I));
6631     return;
6632   case Intrinsic::instrprof_increment:
6633     llvm_unreachable("instrprof failed to lower an increment");
6634   case Intrinsic::instrprof_value_profile:
6635     llvm_unreachable("instrprof failed to lower a value profiling call");
6636   case Intrinsic::localescape: {
6637     MachineFunction &MF = DAG.getMachineFunction();
6638     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6639 
6640     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6641     // is the same on all targets.
6642     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6643       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6644       if (isa<ConstantPointerNull>(Arg))
6645         continue; // Skip null pointers. They represent a hole in index space.
6646       AllocaInst *Slot = cast<AllocaInst>(Arg);
6647       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6648              "can only escape static allocas");
6649       int FI = FuncInfo.StaticAllocaMap[Slot];
6650       MCSymbol *FrameAllocSym =
6651           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6652               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6653       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6654               TII->get(TargetOpcode::LOCAL_ESCAPE))
6655           .addSym(FrameAllocSym)
6656           .addFrameIndex(FI);
6657     }
6658 
6659     return;
6660   }
6661 
6662   case Intrinsic::localrecover: {
6663     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6664     MachineFunction &MF = DAG.getMachineFunction();
6665 
6666     // Get the symbol that defines the frame offset.
6667     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6668     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6669     unsigned IdxVal =
6670         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6671     MCSymbol *FrameAllocSym =
6672         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6673             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6674 
6675     Value *FP = I.getArgOperand(1);
6676     SDValue FPVal = getValue(FP);
6677     EVT PtrVT = FPVal.getValueType();
6678 
6679     // Create a MCSymbol for the label to avoid any target lowering
6680     // that would make this PC relative.
6681     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6682     SDValue OffsetVal =
6683         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6684 
6685     // Add the offset to the FP.
6686     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6687     setValue(&I, Add);
6688 
6689     return;
6690   }
6691 
6692   case Intrinsic::eh_exceptionpointer:
6693   case Intrinsic::eh_exceptioncode: {
6694     // Get the exception pointer vreg, copy from it, and resize it to fit.
6695     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6696     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6697     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6698     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6699     SDValue N =
6700         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6701     if (Intrinsic == Intrinsic::eh_exceptioncode)
6702       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6703     setValue(&I, N);
6704     return;
6705   }
6706   case Intrinsic::xray_customevent: {
6707     // Here we want to make sure that the intrinsic behaves as if it has a
6708     // specific calling convention, and only for x86_64.
6709     // FIXME: Support other platforms later.
6710     const auto &Triple = DAG.getTarget().getTargetTriple();
6711     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6712       return;
6713 
6714     SDLoc DL = getCurSDLoc();
6715     SmallVector<SDValue, 8> Ops;
6716 
6717     // We want to say that we always want the arguments in registers.
6718     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6719     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6720     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6721     SDValue Chain = getRoot();
6722     Ops.push_back(LogEntryVal);
6723     Ops.push_back(StrSizeVal);
6724     Ops.push_back(Chain);
6725 
6726     // We need to enforce the calling convention for the callsite, so that
6727     // argument ordering is enforced correctly, and that register allocation can
6728     // see that some registers may be assumed clobbered and have to preserve
6729     // them across calls to the intrinsic.
6730     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6731                                            DL, NodeTys, Ops);
6732     SDValue patchableNode = SDValue(MN, 0);
6733     DAG.setRoot(patchableNode);
6734     setValue(&I, patchableNode);
6735     return;
6736   }
6737   case Intrinsic::xray_typedevent: {
6738     // Here we want to make sure that the intrinsic behaves as if it has a
6739     // specific calling convention, and only for x86_64.
6740     // FIXME: Support other platforms later.
6741     const auto &Triple = DAG.getTarget().getTargetTriple();
6742     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6743       return;
6744 
6745     SDLoc DL = getCurSDLoc();
6746     SmallVector<SDValue, 8> Ops;
6747 
6748     // We want to say that we always want the arguments in registers.
6749     // It's unclear to me how manipulating the selection DAG here forces callers
6750     // to provide arguments in registers instead of on the stack.
6751     SDValue LogTypeId = getValue(I.getArgOperand(0));
6752     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6753     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6754     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6755     SDValue Chain = getRoot();
6756     Ops.push_back(LogTypeId);
6757     Ops.push_back(LogEntryVal);
6758     Ops.push_back(StrSizeVal);
6759     Ops.push_back(Chain);
6760 
6761     // We need to enforce the calling convention for the callsite, so that
6762     // argument ordering is enforced correctly, and that register allocation can
6763     // see that some registers may be assumed clobbered and have to preserve
6764     // them across calls to the intrinsic.
6765     MachineSDNode *MN = DAG.getMachineNode(
6766         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6767     SDValue patchableNode = SDValue(MN, 0);
6768     DAG.setRoot(patchableNode);
6769     setValue(&I, patchableNode);
6770     return;
6771   }
6772   case Intrinsic::experimental_deoptimize:
6773     LowerDeoptimizeCall(&I);
6774     return;
6775 
6776   case Intrinsic::vector_reduce_fadd:
6777   case Intrinsic::vector_reduce_fmul:
6778   case Intrinsic::vector_reduce_add:
6779   case Intrinsic::vector_reduce_mul:
6780   case Intrinsic::vector_reduce_and:
6781   case Intrinsic::vector_reduce_or:
6782   case Intrinsic::vector_reduce_xor:
6783   case Intrinsic::vector_reduce_smax:
6784   case Intrinsic::vector_reduce_smin:
6785   case Intrinsic::vector_reduce_umax:
6786   case Intrinsic::vector_reduce_umin:
6787   case Intrinsic::vector_reduce_fmax:
6788   case Intrinsic::vector_reduce_fmin:
6789     visitVectorReduce(I, Intrinsic);
6790     return;
6791 
6792   case Intrinsic::icall_branch_funnel: {
6793     SmallVector<SDValue, 16> Ops;
6794     Ops.push_back(getValue(I.getArgOperand(0)));
6795 
6796     int64_t Offset;
6797     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6798         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6799     if (!Base)
6800       report_fatal_error(
6801           "llvm.icall.branch.funnel operand must be a GlobalValue");
6802     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6803 
6804     struct BranchFunnelTarget {
6805       int64_t Offset;
6806       SDValue Target;
6807     };
6808     SmallVector<BranchFunnelTarget, 8> Targets;
6809 
6810     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6811       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6812           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6813       if (ElemBase != Base)
6814         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6815                            "to the same GlobalValue");
6816 
6817       SDValue Val = getValue(I.getArgOperand(Op + 1));
6818       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6819       if (!GA)
6820         report_fatal_error(
6821             "llvm.icall.branch.funnel operand must be a GlobalValue");
6822       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6823                                      GA->getGlobal(), getCurSDLoc(),
6824                                      Val.getValueType(), GA->getOffset())});
6825     }
6826     llvm::sort(Targets,
6827                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6828                  return T1.Offset < T2.Offset;
6829                });
6830 
6831     for (auto &T : Targets) {
6832       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6833       Ops.push_back(T.Target);
6834     }
6835 
6836     Ops.push_back(DAG.getRoot()); // Chain
6837     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6838                                  getCurSDLoc(), MVT::Other, Ops),
6839               0);
6840     DAG.setRoot(N);
6841     setValue(&I, N);
6842     HasTailCall = true;
6843     return;
6844   }
6845 
6846   case Intrinsic::wasm_landingpad_index:
6847     // Information this intrinsic contained has been transferred to
6848     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6849     // delete it now.
6850     return;
6851 
6852   case Intrinsic::aarch64_settag:
6853   case Intrinsic::aarch64_settag_zero: {
6854     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6855     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6856     SDValue Val = TSI.EmitTargetCodeForSetTag(
6857         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6858         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6859         ZeroMemory);
6860     DAG.setRoot(Val);
6861     setValue(&I, Val);
6862     return;
6863   }
6864   case Intrinsic::ptrmask: {
6865     SDValue Ptr = getValue(I.getOperand(0));
6866     SDValue Const = getValue(I.getOperand(1));
6867 
6868     EVT PtrVT = Ptr.getValueType();
6869     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6870                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6871     return;
6872   }
6873   case Intrinsic::get_active_lane_mask: {
6874     auto DL = getCurSDLoc();
6875     SDValue Index = getValue(I.getOperand(0));
6876     SDValue TripCount = getValue(I.getOperand(1));
6877     Type *ElementTy = I.getOperand(0)->getType();
6878     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6879     unsigned VecWidth = VT.getVectorNumElements();
6880 
6881     SmallVector<SDValue, 16> OpsTripCount;
6882     SmallVector<SDValue, 16> OpsIndex;
6883     SmallVector<SDValue, 16> OpsStepConstants;
6884     for (unsigned i = 0; i < VecWidth; i++) {
6885       OpsTripCount.push_back(TripCount);
6886       OpsIndex.push_back(Index);
6887       OpsStepConstants.push_back(
6888           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
6889     }
6890 
6891     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
6892 
6893     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
6894     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6895     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6896     SDValue VectorInduction = DAG.getNode(
6897        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6898     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
6899     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6900                                  VectorTripCount, ISD::CondCode::SETULT);
6901     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6902                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6903                              SetCC));
6904     return;
6905   }
6906   }
6907 }
6908 
6909 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6910     const ConstrainedFPIntrinsic &FPI) {
6911   SDLoc sdl = getCurSDLoc();
6912 
6913   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6914   SmallVector<EVT, 4> ValueVTs;
6915   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6916   ValueVTs.push_back(MVT::Other); // Out chain
6917 
6918   // We do not need to serialize constrained FP intrinsics against
6919   // each other or against (nonvolatile) loads, so they can be
6920   // chained like loads.
6921   SDValue Chain = DAG.getRoot();
6922   SmallVector<SDValue, 4> Opers;
6923   Opers.push_back(Chain);
6924   if (FPI.isUnaryOp()) {
6925     Opers.push_back(getValue(FPI.getArgOperand(0)));
6926   } else if (FPI.isTernaryOp()) {
6927     Opers.push_back(getValue(FPI.getArgOperand(0)));
6928     Opers.push_back(getValue(FPI.getArgOperand(1)));
6929     Opers.push_back(getValue(FPI.getArgOperand(2)));
6930   } else {
6931     Opers.push_back(getValue(FPI.getArgOperand(0)));
6932     Opers.push_back(getValue(FPI.getArgOperand(1)));
6933   }
6934 
6935   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6936     assert(Result.getNode()->getNumValues() == 2);
6937 
6938     // Push node to the appropriate list so that future instructions can be
6939     // chained up correctly.
6940     SDValue OutChain = Result.getValue(1);
6941     switch (EB) {
6942     case fp::ExceptionBehavior::ebIgnore:
6943       // The only reason why ebIgnore nodes still need to be chained is that
6944       // they might depend on the current rounding mode, and therefore must
6945       // not be moved across instruction that may change that mode.
6946       LLVM_FALLTHROUGH;
6947     case fp::ExceptionBehavior::ebMayTrap:
6948       // These must not be moved across calls or instructions that may change
6949       // floating-point exception masks.
6950       PendingConstrainedFP.push_back(OutChain);
6951       break;
6952     case fp::ExceptionBehavior::ebStrict:
6953       // These must not be moved across calls or instructions that may change
6954       // floating-point exception masks or read floating-point exception flags.
6955       // In addition, they cannot be optimized out even if unused.
6956       PendingConstrainedFPStrict.push_back(OutChain);
6957       break;
6958     }
6959   };
6960 
6961   SDVTList VTs = DAG.getVTList(ValueVTs);
6962   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6963 
6964   SDNodeFlags Flags;
6965   if (EB == fp::ExceptionBehavior::ebIgnore)
6966     Flags.setNoFPExcept(true);
6967 
6968   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6969     Flags.copyFMF(*FPOp);
6970 
6971   unsigned Opcode;
6972   switch (FPI.getIntrinsicID()) {
6973   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6974 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
6975   case Intrinsic::INTRINSIC:                                                   \
6976     Opcode = ISD::STRICT_##DAGN;                                               \
6977     break;
6978 #include "llvm/IR/ConstrainedOps.def"
6979   case Intrinsic::experimental_constrained_fmuladd: {
6980     Opcode = ISD::STRICT_FMA;
6981     // Break fmuladd into fmul and fadd.
6982     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
6983         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
6984                                         ValueVTs[0])) {
6985       Opers.pop_back();
6986       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
6987       pushOutChain(Mul, EB);
6988       Opcode = ISD::STRICT_FADD;
6989       Opers.clear();
6990       Opers.push_back(Mul.getValue(1));
6991       Opers.push_back(Mul.getValue(0));
6992       Opers.push_back(getValue(FPI.getArgOperand(2)));
6993     }
6994     break;
6995   }
6996   }
6997 
6998   // A few strict DAG nodes carry additional operands that are not
6999   // set up by the default code above.
7000   switch (Opcode) {
7001   default: break;
7002   case ISD::STRICT_FP_ROUND:
7003     Opers.push_back(
7004         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7005     break;
7006   case ISD::STRICT_FSETCC:
7007   case ISD::STRICT_FSETCCS: {
7008     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7009     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7010     break;
7011   }
7012   }
7013 
7014   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7015   pushOutChain(Result, EB);
7016 
7017   SDValue FPResult = Result.getValue(0);
7018   setValue(&FPI, FPResult);
7019 }
7020 
7021 std::pair<SDValue, SDValue>
7022 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7023                                     const BasicBlock *EHPadBB) {
7024   MachineFunction &MF = DAG.getMachineFunction();
7025   MachineModuleInfo &MMI = MF.getMMI();
7026   MCSymbol *BeginLabel = nullptr;
7027 
7028   if (EHPadBB) {
7029     // Insert a label before the invoke call to mark the try range.  This can be
7030     // used to detect deletion of the invoke via the MachineModuleInfo.
7031     BeginLabel = MMI.getContext().createTempSymbol();
7032 
7033     // For SjLj, keep track of which landing pads go with which invokes
7034     // so as to maintain the ordering of pads in the LSDA.
7035     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7036     if (CallSiteIndex) {
7037       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7038       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7039 
7040       // Now that the call site is handled, stop tracking it.
7041       MMI.setCurrentCallSite(0);
7042     }
7043 
7044     // Both PendingLoads and PendingExports must be flushed here;
7045     // this call might not return.
7046     (void)getRoot();
7047     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7048 
7049     CLI.setChain(getRoot());
7050   }
7051   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7052   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7053 
7054   assert((CLI.IsTailCall || Result.second.getNode()) &&
7055          "Non-null chain expected with non-tail call!");
7056   assert((Result.second.getNode() || !Result.first.getNode()) &&
7057          "Null value expected with tail call!");
7058 
7059   if (!Result.second.getNode()) {
7060     // As a special case, a null chain means that a tail call has been emitted
7061     // and the DAG root is already updated.
7062     HasTailCall = true;
7063 
7064     // Since there's no actual continuation from this block, nothing can be
7065     // relying on us setting vregs for them.
7066     PendingExports.clear();
7067   } else {
7068     DAG.setRoot(Result.second);
7069   }
7070 
7071   if (EHPadBB) {
7072     // Insert a label at the end of the invoke call to mark the try range.  This
7073     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7074     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7075     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7076 
7077     // Inform MachineModuleInfo of range.
7078     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7079     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7080     // actually use outlined funclets and their LSDA info style.
7081     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7082       assert(CLI.CB);
7083       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7084       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7085     } else if (!isScopedEHPersonality(Pers)) {
7086       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7087     }
7088   }
7089 
7090   return Result;
7091 }
7092 
7093 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7094                                       bool isTailCall,
7095                                       const BasicBlock *EHPadBB) {
7096   auto &DL = DAG.getDataLayout();
7097   FunctionType *FTy = CB.getFunctionType();
7098   Type *RetTy = CB.getType();
7099 
7100   TargetLowering::ArgListTy Args;
7101   Args.reserve(CB.arg_size());
7102 
7103   const Value *SwiftErrorVal = nullptr;
7104   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7105 
7106   if (isTailCall) {
7107     // Avoid emitting tail calls in functions with the disable-tail-calls
7108     // attribute.
7109     auto *Caller = CB.getParent()->getParent();
7110     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7111         "true")
7112       isTailCall = false;
7113 
7114     // We can't tail call inside a function with a swifterror argument. Lowering
7115     // does not support this yet. It would have to move into the swifterror
7116     // register before the call.
7117     if (TLI.supportSwiftError() &&
7118         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7119       isTailCall = false;
7120   }
7121 
7122   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7123     TargetLowering::ArgListEntry Entry;
7124     const Value *V = *I;
7125 
7126     // Skip empty types
7127     if (V->getType()->isEmptyTy())
7128       continue;
7129 
7130     SDValue ArgNode = getValue(V);
7131     Entry.Node = ArgNode; Entry.Ty = V->getType();
7132 
7133     Entry.setAttributes(&CB, I - CB.arg_begin());
7134 
7135     // Use swifterror virtual register as input to the call.
7136     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7137       SwiftErrorVal = V;
7138       // We find the virtual register for the actual swifterror argument.
7139       // Instead of using the Value, we use the virtual register instead.
7140       Entry.Node =
7141           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7142                           EVT(TLI.getPointerTy(DL)));
7143     }
7144 
7145     Args.push_back(Entry);
7146 
7147     // If we have an explicit sret argument that is an Instruction, (i.e., it
7148     // might point to function-local memory), we can't meaningfully tail-call.
7149     if (Entry.IsSRet && isa<Instruction>(V))
7150       isTailCall = false;
7151   }
7152 
7153   // If call site has a cfguardtarget operand bundle, create and add an
7154   // additional ArgListEntry.
7155   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7156     TargetLowering::ArgListEntry Entry;
7157     Value *V = Bundle->Inputs[0];
7158     SDValue ArgNode = getValue(V);
7159     Entry.Node = ArgNode;
7160     Entry.Ty = V->getType();
7161     Entry.IsCFGuardTarget = true;
7162     Args.push_back(Entry);
7163   }
7164 
7165   // Check if target-independent constraints permit a tail call here.
7166   // Target-dependent constraints are checked within TLI->LowerCallTo.
7167   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7168     isTailCall = false;
7169 
7170   // Disable tail calls if there is an swifterror argument. Targets have not
7171   // been updated to support tail calls.
7172   if (TLI.supportSwiftError() && SwiftErrorVal)
7173     isTailCall = false;
7174 
7175   TargetLowering::CallLoweringInfo CLI(DAG);
7176   CLI.setDebugLoc(getCurSDLoc())
7177       .setChain(getRoot())
7178       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7179       .setTailCall(isTailCall)
7180       .setConvergent(CB.isConvergent())
7181       .setIsPreallocated(
7182           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7183   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7184 
7185   if (Result.first.getNode()) {
7186     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7187     setValue(&CB, Result.first);
7188   }
7189 
7190   // The last element of CLI.InVals has the SDValue for swifterror return.
7191   // Here we copy it to a virtual register and update SwiftErrorMap for
7192   // book-keeping.
7193   if (SwiftErrorVal && TLI.supportSwiftError()) {
7194     // Get the last element of InVals.
7195     SDValue Src = CLI.InVals.back();
7196     Register VReg =
7197         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7198     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7199     DAG.setRoot(CopyNode);
7200   }
7201 }
7202 
7203 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7204                              SelectionDAGBuilder &Builder) {
7205   // Check to see if this load can be trivially constant folded, e.g. if the
7206   // input is from a string literal.
7207   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7208     // Cast pointer to the type we really want to load.
7209     Type *LoadTy =
7210         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7211     if (LoadVT.isVector())
7212       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7213 
7214     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7215                                          PointerType::getUnqual(LoadTy));
7216 
7217     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7218             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7219       return Builder.getValue(LoadCst);
7220   }
7221 
7222   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7223   // still constant memory, the input chain can be the entry node.
7224   SDValue Root;
7225   bool ConstantMemory = false;
7226 
7227   // Do not serialize (non-volatile) loads of constant memory with anything.
7228   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7229     Root = Builder.DAG.getEntryNode();
7230     ConstantMemory = true;
7231   } else {
7232     // Do not serialize non-volatile loads against each other.
7233     Root = Builder.DAG.getRoot();
7234   }
7235 
7236   SDValue Ptr = Builder.getValue(PtrVal);
7237   SDValue LoadVal =
7238       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7239                           MachinePointerInfo(PtrVal), Align(1));
7240 
7241   if (!ConstantMemory)
7242     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7243   return LoadVal;
7244 }
7245 
7246 /// Record the value for an instruction that produces an integer result,
7247 /// converting the type where necessary.
7248 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7249                                                   SDValue Value,
7250                                                   bool IsSigned) {
7251   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7252                                                     I.getType(), true);
7253   if (IsSigned)
7254     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7255   else
7256     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7257   setValue(&I, Value);
7258 }
7259 
7260 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7261 /// true and lower it. Otherwise return false, and it will be lowered like a
7262 /// normal call.
7263 /// The caller already checked that \p I calls the appropriate LibFunc with a
7264 /// correct prototype.
7265 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7266   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7267   const Value *Size = I.getArgOperand(2);
7268   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7269   if (CSize && CSize->getZExtValue() == 0) {
7270     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7271                                                           I.getType(), true);
7272     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7273     return true;
7274   }
7275 
7276   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7277   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7278       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7279       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7280   if (Res.first.getNode()) {
7281     processIntegerCallValue(I, Res.first, true);
7282     PendingLoads.push_back(Res.second);
7283     return true;
7284   }
7285 
7286   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7287   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7288   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7289     return false;
7290 
7291   // If the target has a fast compare for the given size, it will return a
7292   // preferred load type for that size. Require that the load VT is legal and
7293   // that the target supports unaligned loads of that type. Otherwise, return
7294   // INVALID.
7295   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7296     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7297     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7298     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7299       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7300       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7301       // TODO: Check alignment of src and dest ptrs.
7302       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7303       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7304       if (!TLI.isTypeLegal(LVT) ||
7305           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7306           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7307         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7308     }
7309 
7310     return LVT;
7311   };
7312 
7313   // This turns into unaligned loads. We only do this if the target natively
7314   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7315   // we'll only produce a small number of byte loads.
7316   MVT LoadVT;
7317   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7318   switch (NumBitsToCompare) {
7319   default:
7320     return false;
7321   case 16:
7322     LoadVT = MVT::i16;
7323     break;
7324   case 32:
7325     LoadVT = MVT::i32;
7326     break;
7327   case 64:
7328   case 128:
7329   case 256:
7330     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7331     break;
7332   }
7333 
7334   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7335     return false;
7336 
7337   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7338   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7339 
7340   // Bitcast to a wide integer type if the loads are vectors.
7341   if (LoadVT.isVector()) {
7342     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7343     LoadL = DAG.getBitcast(CmpVT, LoadL);
7344     LoadR = DAG.getBitcast(CmpVT, LoadR);
7345   }
7346 
7347   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7348   processIntegerCallValue(I, Cmp, false);
7349   return true;
7350 }
7351 
7352 /// See if we can lower a memchr call into an optimized form. If so, return
7353 /// true and lower it. Otherwise return false, and it will be lowered like a
7354 /// normal call.
7355 /// The caller already checked that \p I calls the appropriate LibFunc with a
7356 /// correct prototype.
7357 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7358   const Value *Src = I.getArgOperand(0);
7359   const Value *Char = I.getArgOperand(1);
7360   const Value *Length = I.getArgOperand(2);
7361 
7362   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7363   std::pair<SDValue, SDValue> Res =
7364     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7365                                 getValue(Src), getValue(Char), getValue(Length),
7366                                 MachinePointerInfo(Src));
7367   if (Res.first.getNode()) {
7368     setValue(&I, Res.first);
7369     PendingLoads.push_back(Res.second);
7370     return true;
7371   }
7372 
7373   return false;
7374 }
7375 
7376 /// See if we can lower a mempcpy call into an optimized form. If so, return
7377 /// true and lower it. Otherwise return false, and it will be lowered like a
7378 /// normal call.
7379 /// The caller already checked that \p I calls the appropriate LibFunc with a
7380 /// correct prototype.
7381 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7382   SDValue Dst = getValue(I.getArgOperand(0));
7383   SDValue Src = getValue(I.getArgOperand(1));
7384   SDValue Size = getValue(I.getArgOperand(2));
7385 
7386   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7387   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7388   // DAG::getMemcpy needs Alignment to be defined.
7389   Align Alignment = std::min(DstAlign, SrcAlign);
7390 
7391   bool isVol = false;
7392   SDLoc sdl = getCurSDLoc();
7393 
7394   // In the mempcpy context we need to pass in a false value for isTailCall
7395   // because the return pointer needs to be adjusted by the size of
7396   // the copied memory.
7397   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7398   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7399                              /*isTailCall=*/false,
7400                              MachinePointerInfo(I.getArgOperand(0)),
7401                              MachinePointerInfo(I.getArgOperand(1)));
7402   assert(MC.getNode() != nullptr &&
7403          "** memcpy should not be lowered as TailCall in mempcpy context **");
7404   DAG.setRoot(MC);
7405 
7406   // Check if Size needs to be truncated or extended.
7407   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7408 
7409   // Adjust return pointer to point just past the last dst byte.
7410   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7411                                     Dst, Size);
7412   setValue(&I, DstPlusSize);
7413   return true;
7414 }
7415 
7416 /// See if we can lower a strcpy call into an optimized form.  If so, return
7417 /// true and lower it, otherwise return false and it will be lowered like a
7418 /// normal call.
7419 /// The caller already checked that \p I calls the appropriate LibFunc with a
7420 /// correct prototype.
7421 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7422   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7423 
7424   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7425   std::pair<SDValue, SDValue> Res =
7426     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7427                                 getValue(Arg0), getValue(Arg1),
7428                                 MachinePointerInfo(Arg0),
7429                                 MachinePointerInfo(Arg1), isStpcpy);
7430   if (Res.first.getNode()) {
7431     setValue(&I, Res.first);
7432     DAG.setRoot(Res.second);
7433     return true;
7434   }
7435 
7436   return false;
7437 }
7438 
7439 /// See if we can lower a strcmp call into an optimized form.  If so, return
7440 /// true and lower it, otherwise return false and it will be lowered like a
7441 /// normal call.
7442 /// The caller already checked that \p I calls the appropriate LibFunc with a
7443 /// correct prototype.
7444 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7445   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7446 
7447   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7448   std::pair<SDValue, SDValue> Res =
7449     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7450                                 getValue(Arg0), getValue(Arg1),
7451                                 MachinePointerInfo(Arg0),
7452                                 MachinePointerInfo(Arg1));
7453   if (Res.first.getNode()) {
7454     processIntegerCallValue(I, Res.first, true);
7455     PendingLoads.push_back(Res.second);
7456     return true;
7457   }
7458 
7459   return false;
7460 }
7461 
7462 /// See if we can lower a strlen call into an optimized form.  If so, return
7463 /// true and lower it, otherwise return false and it will be lowered like a
7464 /// normal call.
7465 /// The caller already checked that \p I calls the appropriate LibFunc with a
7466 /// correct prototype.
7467 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7468   const Value *Arg0 = I.getArgOperand(0);
7469 
7470   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7471   std::pair<SDValue, SDValue> Res =
7472     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7473                                 getValue(Arg0), MachinePointerInfo(Arg0));
7474   if (Res.first.getNode()) {
7475     processIntegerCallValue(I, Res.first, false);
7476     PendingLoads.push_back(Res.second);
7477     return true;
7478   }
7479 
7480   return false;
7481 }
7482 
7483 /// See if we can lower a strnlen call into an optimized form.  If so, return
7484 /// true and lower it, otherwise return false and it will be lowered like a
7485 /// normal call.
7486 /// The caller already checked that \p I calls the appropriate LibFunc with a
7487 /// correct prototype.
7488 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7489   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7490 
7491   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7492   std::pair<SDValue, SDValue> Res =
7493     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7494                                  getValue(Arg0), getValue(Arg1),
7495                                  MachinePointerInfo(Arg0));
7496   if (Res.first.getNode()) {
7497     processIntegerCallValue(I, Res.first, false);
7498     PendingLoads.push_back(Res.second);
7499     return true;
7500   }
7501 
7502   return false;
7503 }
7504 
7505 /// See if we can lower a unary floating-point operation into an SDNode with
7506 /// the specified Opcode.  If so, return true and lower it, otherwise return
7507 /// false and it will be lowered like a normal call.
7508 /// The caller already checked that \p I calls the appropriate LibFunc with a
7509 /// correct prototype.
7510 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7511                                               unsigned Opcode) {
7512   // We already checked this call's prototype; verify it doesn't modify errno.
7513   if (!I.onlyReadsMemory())
7514     return false;
7515 
7516   SDNodeFlags Flags;
7517   Flags.copyFMF(cast<FPMathOperator>(I));
7518 
7519   SDValue Tmp = getValue(I.getArgOperand(0));
7520   setValue(&I,
7521            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7522   return true;
7523 }
7524 
7525 /// See if we can lower a binary floating-point operation into an SDNode with
7526 /// the specified Opcode. If so, return true and lower it. Otherwise return
7527 /// false, and it will be lowered like a normal call.
7528 /// The caller already checked that \p I calls the appropriate LibFunc with a
7529 /// correct prototype.
7530 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7531                                                unsigned Opcode) {
7532   // We already checked this call's prototype; verify it doesn't modify errno.
7533   if (!I.onlyReadsMemory())
7534     return false;
7535 
7536   SDNodeFlags Flags;
7537   Flags.copyFMF(cast<FPMathOperator>(I));
7538 
7539   SDValue Tmp0 = getValue(I.getArgOperand(0));
7540   SDValue Tmp1 = getValue(I.getArgOperand(1));
7541   EVT VT = Tmp0.getValueType();
7542   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7543   return true;
7544 }
7545 
7546 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7547   // Handle inline assembly differently.
7548   if (I.isInlineAsm()) {
7549     visitInlineAsm(I);
7550     return;
7551   }
7552 
7553   if (Function *F = I.getCalledFunction()) {
7554     if (F->isDeclaration()) {
7555       // Is this an LLVM intrinsic or a target-specific intrinsic?
7556       unsigned IID = F->getIntrinsicID();
7557       if (!IID)
7558         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7559           IID = II->getIntrinsicID(F);
7560 
7561       if (IID) {
7562         visitIntrinsicCall(I, IID);
7563         return;
7564       }
7565     }
7566 
7567     // Check for well-known libc/libm calls.  If the function is internal, it
7568     // can't be a library call.  Don't do the check if marked as nobuiltin for
7569     // some reason or the call site requires strict floating point semantics.
7570     LibFunc Func;
7571     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7572         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7573         LibInfo->hasOptimizedCodeGen(Func)) {
7574       switch (Func) {
7575       default: break;
7576       case LibFunc_bcmp:
7577         if (visitMemCmpBCmpCall(I))
7578           return;
7579         break;
7580       case LibFunc_copysign:
7581       case LibFunc_copysignf:
7582       case LibFunc_copysignl:
7583         // We already checked this call's prototype; verify it doesn't modify
7584         // errno.
7585         if (I.onlyReadsMemory()) {
7586           SDValue LHS = getValue(I.getArgOperand(0));
7587           SDValue RHS = getValue(I.getArgOperand(1));
7588           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7589                                    LHS.getValueType(), LHS, RHS));
7590           return;
7591         }
7592         break;
7593       case LibFunc_fabs:
7594       case LibFunc_fabsf:
7595       case LibFunc_fabsl:
7596         if (visitUnaryFloatCall(I, ISD::FABS))
7597           return;
7598         break;
7599       case LibFunc_fmin:
7600       case LibFunc_fminf:
7601       case LibFunc_fminl:
7602         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7603           return;
7604         break;
7605       case LibFunc_fmax:
7606       case LibFunc_fmaxf:
7607       case LibFunc_fmaxl:
7608         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7609           return;
7610         break;
7611       case LibFunc_sin:
7612       case LibFunc_sinf:
7613       case LibFunc_sinl:
7614         if (visitUnaryFloatCall(I, ISD::FSIN))
7615           return;
7616         break;
7617       case LibFunc_cos:
7618       case LibFunc_cosf:
7619       case LibFunc_cosl:
7620         if (visitUnaryFloatCall(I, ISD::FCOS))
7621           return;
7622         break;
7623       case LibFunc_sqrt:
7624       case LibFunc_sqrtf:
7625       case LibFunc_sqrtl:
7626       case LibFunc_sqrt_finite:
7627       case LibFunc_sqrtf_finite:
7628       case LibFunc_sqrtl_finite:
7629         if (visitUnaryFloatCall(I, ISD::FSQRT))
7630           return;
7631         break;
7632       case LibFunc_floor:
7633       case LibFunc_floorf:
7634       case LibFunc_floorl:
7635         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7636           return;
7637         break;
7638       case LibFunc_nearbyint:
7639       case LibFunc_nearbyintf:
7640       case LibFunc_nearbyintl:
7641         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7642           return;
7643         break;
7644       case LibFunc_ceil:
7645       case LibFunc_ceilf:
7646       case LibFunc_ceill:
7647         if (visitUnaryFloatCall(I, ISD::FCEIL))
7648           return;
7649         break;
7650       case LibFunc_rint:
7651       case LibFunc_rintf:
7652       case LibFunc_rintl:
7653         if (visitUnaryFloatCall(I, ISD::FRINT))
7654           return;
7655         break;
7656       case LibFunc_round:
7657       case LibFunc_roundf:
7658       case LibFunc_roundl:
7659         if (visitUnaryFloatCall(I, ISD::FROUND))
7660           return;
7661         break;
7662       case LibFunc_trunc:
7663       case LibFunc_truncf:
7664       case LibFunc_truncl:
7665         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7666           return;
7667         break;
7668       case LibFunc_log2:
7669       case LibFunc_log2f:
7670       case LibFunc_log2l:
7671         if (visitUnaryFloatCall(I, ISD::FLOG2))
7672           return;
7673         break;
7674       case LibFunc_exp2:
7675       case LibFunc_exp2f:
7676       case LibFunc_exp2l:
7677         if (visitUnaryFloatCall(I, ISD::FEXP2))
7678           return;
7679         break;
7680       case LibFunc_memcmp:
7681         if (visitMemCmpBCmpCall(I))
7682           return;
7683         break;
7684       case LibFunc_mempcpy:
7685         if (visitMemPCpyCall(I))
7686           return;
7687         break;
7688       case LibFunc_memchr:
7689         if (visitMemChrCall(I))
7690           return;
7691         break;
7692       case LibFunc_strcpy:
7693         if (visitStrCpyCall(I, false))
7694           return;
7695         break;
7696       case LibFunc_stpcpy:
7697         if (visitStrCpyCall(I, true))
7698           return;
7699         break;
7700       case LibFunc_strcmp:
7701         if (visitStrCmpCall(I))
7702           return;
7703         break;
7704       case LibFunc_strlen:
7705         if (visitStrLenCall(I))
7706           return;
7707         break;
7708       case LibFunc_strnlen:
7709         if (visitStrNLenCall(I))
7710           return;
7711         break;
7712       }
7713     }
7714   }
7715 
7716   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7717   // have to do anything here to lower funclet bundles.
7718   // CFGuardTarget bundles are lowered in LowerCallTo.
7719   assert(!I.hasOperandBundlesOtherThan(
7720              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7721               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7722          "Cannot lower calls with arbitrary operand bundles!");
7723 
7724   SDValue Callee = getValue(I.getCalledOperand());
7725 
7726   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7727     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7728   else
7729     // Check if we can potentially perform a tail call. More detailed checking
7730     // is be done within LowerCallTo, after more information about the call is
7731     // known.
7732     LowerCallTo(I, Callee, I.isTailCall());
7733 }
7734 
7735 namespace {
7736 
7737 /// AsmOperandInfo - This contains information for each constraint that we are
7738 /// lowering.
7739 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7740 public:
7741   /// CallOperand - If this is the result output operand or a clobber
7742   /// this is null, otherwise it is the incoming operand to the CallInst.
7743   /// This gets modified as the asm is processed.
7744   SDValue CallOperand;
7745 
7746   /// AssignedRegs - If this is a register or register class operand, this
7747   /// contains the set of register corresponding to the operand.
7748   RegsForValue AssignedRegs;
7749 
7750   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7751     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7752   }
7753 
7754   /// Whether or not this operand accesses memory
7755   bool hasMemory(const TargetLowering &TLI) const {
7756     // Indirect operand accesses access memory.
7757     if (isIndirect)
7758       return true;
7759 
7760     for (const auto &Code : Codes)
7761       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7762         return true;
7763 
7764     return false;
7765   }
7766 
7767   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7768   /// corresponds to.  If there is no Value* for this operand, it returns
7769   /// MVT::Other.
7770   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7771                            const DataLayout &DL) const {
7772     if (!CallOperandVal) return MVT::Other;
7773 
7774     if (isa<BasicBlock>(CallOperandVal))
7775       return TLI.getProgramPointerTy(DL);
7776 
7777     llvm::Type *OpTy = CallOperandVal->getType();
7778 
7779     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7780     // If this is an indirect operand, the operand is a pointer to the
7781     // accessed type.
7782     if (isIndirect) {
7783       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7784       if (!PtrTy)
7785         report_fatal_error("Indirect operand for inline asm not a pointer!");
7786       OpTy = PtrTy->getElementType();
7787     }
7788 
7789     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7790     if (StructType *STy = dyn_cast<StructType>(OpTy))
7791       if (STy->getNumElements() == 1)
7792         OpTy = STy->getElementType(0);
7793 
7794     // If OpTy is not a single value, it may be a struct/union that we
7795     // can tile with integers.
7796     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7797       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7798       switch (BitSize) {
7799       default: break;
7800       case 1:
7801       case 8:
7802       case 16:
7803       case 32:
7804       case 64:
7805       case 128:
7806         OpTy = IntegerType::get(Context, BitSize);
7807         break;
7808       }
7809     }
7810 
7811     return TLI.getValueType(DL, OpTy, true);
7812   }
7813 };
7814 
7815 
7816 } // end anonymous namespace
7817 
7818 /// Make sure that the output operand \p OpInfo and its corresponding input
7819 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7820 /// out).
7821 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7822                                SDISelAsmOperandInfo &MatchingOpInfo,
7823                                SelectionDAG &DAG) {
7824   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7825     return;
7826 
7827   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7828   const auto &TLI = DAG.getTargetLoweringInfo();
7829 
7830   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7831       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7832                                        OpInfo.ConstraintVT);
7833   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7834       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7835                                        MatchingOpInfo.ConstraintVT);
7836   if ((OpInfo.ConstraintVT.isInteger() !=
7837        MatchingOpInfo.ConstraintVT.isInteger()) ||
7838       (MatchRC.second != InputRC.second)) {
7839     // FIXME: error out in a more elegant fashion
7840     report_fatal_error("Unsupported asm: input constraint"
7841                        " with a matching output constraint of"
7842                        " incompatible type!");
7843   }
7844   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7845 }
7846 
7847 /// Get a direct memory input to behave well as an indirect operand.
7848 /// This may introduce stores, hence the need for a \p Chain.
7849 /// \return The (possibly updated) chain.
7850 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7851                                         SDISelAsmOperandInfo &OpInfo,
7852                                         SelectionDAG &DAG) {
7853   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7854 
7855   // If we don't have an indirect input, put it in the constpool if we can,
7856   // otherwise spill it to a stack slot.
7857   // TODO: This isn't quite right. We need to handle these according to
7858   // the addressing mode that the constraint wants. Also, this may take
7859   // an additional register for the computation and we don't want that
7860   // either.
7861 
7862   // If the operand is a float, integer, or vector constant, spill to a
7863   // constant pool entry to get its address.
7864   const Value *OpVal = OpInfo.CallOperandVal;
7865   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7866       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7867     OpInfo.CallOperand = DAG.getConstantPool(
7868         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7869     return Chain;
7870   }
7871 
7872   // Otherwise, create a stack slot and emit a store to it before the asm.
7873   Type *Ty = OpVal->getType();
7874   auto &DL = DAG.getDataLayout();
7875   uint64_t TySize = DL.getTypeAllocSize(Ty);
7876   MachineFunction &MF = DAG.getMachineFunction();
7877   int SSFI = MF.getFrameInfo().CreateStackObject(
7878       TySize, DL.getPrefTypeAlign(Ty), false);
7879   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7880   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7881                             MachinePointerInfo::getFixedStack(MF, SSFI),
7882                             TLI.getMemValueType(DL, Ty));
7883   OpInfo.CallOperand = StackSlot;
7884 
7885   return Chain;
7886 }
7887 
7888 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7889 /// specified operand.  We prefer to assign virtual registers, to allow the
7890 /// register allocator to handle the assignment process.  However, if the asm
7891 /// uses features that we can't model on machineinstrs, we have SDISel do the
7892 /// allocation.  This produces generally horrible, but correct, code.
7893 ///
7894 ///   OpInfo describes the operand
7895 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7896 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7897                                  SDISelAsmOperandInfo &OpInfo,
7898                                  SDISelAsmOperandInfo &RefOpInfo) {
7899   LLVMContext &Context = *DAG.getContext();
7900   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7901 
7902   MachineFunction &MF = DAG.getMachineFunction();
7903   SmallVector<unsigned, 4> Regs;
7904   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7905 
7906   // No work to do for memory operations.
7907   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7908     return;
7909 
7910   // If this is a constraint for a single physreg, or a constraint for a
7911   // register class, find it.
7912   unsigned AssignedReg;
7913   const TargetRegisterClass *RC;
7914   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7915       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7916   // RC is unset only on failure. Return immediately.
7917   if (!RC)
7918     return;
7919 
7920   // Get the actual register value type.  This is important, because the user
7921   // may have asked for (e.g.) the AX register in i32 type.  We need to
7922   // remember that AX is actually i16 to get the right extension.
7923   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7924 
7925   if (OpInfo.ConstraintVT != MVT::Other) {
7926     // If this is an FP operand in an integer register (or visa versa), or more
7927     // generally if the operand value disagrees with the register class we plan
7928     // to stick it in, fix the operand type.
7929     //
7930     // If this is an input value, the bitcast to the new type is done now.
7931     // Bitcast for output value is done at the end of visitInlineAsm().
7932     if ((OpInfo.Type == InlineAsm::isOutput ||
7933          OpInfo.Type == InlineAsm::isInput) &&
7934         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7935       // Try to convert to the first EVT that the reg class contains.  If the
7936       // types are identical size, use a bitcast to convert (e.g. two differing
7937       // vector types).  Note: output bitcast is done at the end of
7938       // visitInlineAsm().
7939       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7940         // Exclude indirect inputs while they are unsupported because the code
7941         // to perform the load is missing and thus OpInfo.CallOperand still
7942         // refers to the input address rather than the pointed-to value.
7943         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7944           OpInfo.CallOperand =
7945               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7946         OpInfo.ConstraintVT = RegVT;
7947         // If the operand is an FP value and we want it in integer registers,
7948         // use the corresponding integer type. This turns an f64 value into
7949         // i64, which can be passed with two i32 values on a 32-bit machine.
7950       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7951         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7952         if (OpInfo.Type == InlineAsm::isInput)
7953           OpInfo.CallOperand =
7954               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7955         OpInfo.ConstraintVT = VT;
7956       }
7957     }
7958   }
7959 
7960   // No need to allocate a matching input constraint since the constraint it's
7961   // matching to has already been allocated.
7962   if (OpInfo.isMatchingInputConstraint())
7963     return;
7964 
7965   EVT ValueVT = OpInfo.ConstraintVT;
7966   if (OpInfo.ConstraintVT == MVT::Other)
7967     ValueVT = RegVT;
7968 
7969   // Initialize NumRegs.
7970   unsigned NumRegs = 1;
7971   if (OpInfo.ConstraintVT != MVT::Other)
7972     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7973 
7974   // If this is a constraint for a specific physical register, like {r17},
7975   // assign it now.
7976 
7977   // If this associated to a specific register, initialize iterator to correct
7978   // place. If virtual, make sure we have enough registers
7979 
7980   // Initialize iterator if necessary
7981   TargetRegisterClass::iterator I = RC->begin();
7982   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7983 
7984   // Do not check for single registers.
7985   if (AssignedReg) {
7986       for (; *I != AssignedReg; ++I)
7987         assert(I != RC->end() && "AssignedReg should be member of RC");
7988   }
7989 
7990   for (; NumRegs; --NumRegs, ++I) {
7991     assert(I != RC->end() && "Ran out of registers to allocate!");
7992     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7993     Regs.push_back(R);
7994   }
7995 
7996   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7997 }
7998 
7999 static unsigned
8000 findMatchingInlineAsmOperand(unsigned OperandNo,
8001                              const std::vector<SDValue> &AsmNodeOperands) {
8002   // Scan until we find the definition we already emitted of this operand.
8003   unsigned CurOp = InlineAsm::Op_FirstOperand;
8004   for (; OperandNo; --OperandNo) {
8005     // Advance to the next operand.
8006     unsigned OpFlag =
8007         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8008     assert((InlineAsm::isRegDefKind(OpFlag) ||
8009             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8010             InlineAsm::isMemKind(OpFlag)) &&
8011            "Skipped past definitions?");
8012     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8013   }
8014   return CurOp;
8015 }
8016 
8017 namespace {
8018 
8019 class ExtraFlags {
8020   unsigned Flags = 0;
8021 
8022 public:
8023   explicit ExtraFlags(const CallBase &Call) {
8024     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8025     if (IA->hasSideEffects())
8026       Flags |= InlineAsm::Extra_HasSideEffects;
8027     if (IA->isAlignStack())
8028       Flags |= InlineAsm::Extra_IsAlignStack;
8029     if (Call.isConvergent())
8030       Flags |= InlineAsm::Extra_IsConvergent;
8031     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8032   }
8033 
8034   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8035     // Ideally, we would only check against memory constraints.  However, the
8036     // meaning of an Other constraint can be target-specific and we can't easily
8037     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8038     // for Other constraints as well.
8039     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8040         OpInfo.ConstraintType == TargetLowering::C_Other) {
8041       if (OpInfo.Type == InlineAsm::isInput)
8042         Flags |= InlineAsm::Extra_MayLoad;
8043       else if (OpInfo.Type == InlineAsm::isOutput)
8044         Flags |= InlineAsm::Extra_MayStore;
8045       else if (OpInfo.Type == InlineAsm::isClobber)
8046         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8047     }
8048   }
8049 
8050   unsigned get() const { return Flags; }
8051 };
8052 
8053 } // end anonymous namespace
8054 
8055 /// visitInlineAsm - Handle a call to an InlineAsm object.
8056 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8057   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8058 
8059   /// ConstraintOperands - Information about all of the constraints.
8060   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8061 
8062   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8063   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8064       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8065 
8066   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8067   // AsmDialect, MayLoad, MayStore).
8068   bool HasSideEffect = IA->hasSideEffects();
8069   ExtraFlags ExtraInfo(Call);
8070 
8071   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8072   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8073   unsigned NumMatchingOps = 0;
8074   for (auto &T : TargetConstraints) {
8075     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8076     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8077 
8078     // Compute the value type for each operand.
8079     if (OpInfo.Type == InlineAsm::isInput ||
8080         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8081       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8082 
8083       // Process the call argument. BasicBlocks are labels, currently appearing
8084       // only in asm's.
8085       if (isa<CallBrInst>(Call) &&
8086           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8087                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8088                         NumMatchingOps) &&
8089           (NumMatchingOps == 0 ||
8090            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8091                         NumMatchingOps))) {
8092         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8093         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8094         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8095       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8096         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8097       } else {
8098         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8099       }
8100 
8101       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8102                                            DAG.getDataLayout());
8103       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8104     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8105       // The return value of the call is this value.  As such, there is no
8106       // corresponding argument.
8107       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8108       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8109         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8110             DAG.getDataLayout(), STy->getElementType(ResNo));
8111       } else {
8112         assert(ResNo == 0 && "Asm only has one result!");
8113         OpInfo.ConstraintVT =
8114             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8115       }
8116       ++ResNo;
8117     } else {
8118       OpInfo.ConstraintVT = MVT::Other;
8119     }
8120 
8121     if (OpInfo.hasMatchingInput())
8122       ++NumMatchingOps;
8123 
8124     if (!HasSideEffect)
8125       HasSideEffect = OpInfo.hasMemory(TLI);
8126 
8127     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8128     // FIXME: Could we compute this on OpInfo rather than T?
8129 
8130     // Compute the constraint code and ConstraintType to use.
8131     TLI.ComputeConstraintToUse(T, SDValue());
8132 
8133     if (T.ConstraintType == TargetLowering::C_Immediate &&
8134         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8135       // We've delayed emitting a diagnostic like the "n" constraint because
8136       // inlining could cause an integer showing up.
8137       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8138                                           "' expects an integer constant "
8139                                           "expression");
8140 
8141     ExtraInfo.update(T);
8142   }
8143 
8144 
8145   // We won't need to flush pending loads if this asm doesn't touch
8146   // memory and is nonvolatile.
8147   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8148 
8149   bool IsCallBr = isa<CallBrInst>(Call);
8150   if (IsCallBr) {
8151     // If this is a callbr we need to flush pending exports since inlineasm_br
8152     // is a terminator. We need to do this before nodes are glued to
8153     // the inlineasm_br node.
8154     Chain = getControlRoot();
8155   }
8156 
8157   // Second pass over the constraints: compute which constraint option to use.
8158   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8159     // If this is an output operand with a matching input operand, look up the
8160     // matching input. If their types mismatch, e.g. one is an integer, the
8161     // other is floating point, or their sizes are different, flag it as an
8162     // error.
8163     if (OpInfo.hasMatchingInput()) {
8164       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8165       patchMatchingInput(OpInfo, Input, DAG);
8166     }
8167 
8168     // Compute the constraint code and ConstraintType to use.
8169     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8170 
8171     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8172         OpInfo.Type == InlineAsm::isClobber)
8173       continue;
8174 
8175     // If this is a memory input, and if the operand is not indirect, do what we
8176     // need to provide an address for the memory input.
8177     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8178         !OpInfo.isIndirect) {
8179       assert((OpInfo.isMultipleAlternative ||
8180               (OpInfo.Type == InlineAsm::isInput)) &&
8181              "Can only indirectify direct input operands!");
8182 
8183       // Memory operands really want the address of the value.
8184       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8185 
8186       // There is no longer a Value* corresponding to this operand.
8187       OpInfo.CallOperandVal = nullptr;
8188 
8189       // It is now an indirect operand.
8190       OpInfo.isIndirect = true;
8191     }
8192 
8193   }
8194 
8195   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8196   std::vector<SDValue> AsmNodeOperands;
8197   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8198   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8199       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8200 
8201   // If we have a !srcloc metadata node associated with it, we want to attach
8202   // this to the ultimately generated inline asm machineinstr.  To do this, we
8203   // pass in the third operand as this (potentially null) inline asm MDNode.
8204   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8205   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8206 
8207   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8208   // bits as operand 3.
8209   AsmNodeOperands.push_back(DAG.getTargetConstant(
8210       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8211 
8212   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8213   // this, assign virtual and physical registers for inputs and otput.
8214   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8215     // Assign Registers.
8216     SDISelAsmOperandInfo &RefOpInfo =
8217         OpInfo.isMatchingInputConstraint()
8218             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8219             : OpInfo;
8220     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8221 
8222     auto DetectWriteToReservedRegister = [&]() {
8223       const MachineFunction &MF = DAG.getMachineFunction();
8224       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8225       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8226         if (Register::isPhysicalRegister(Reg) &&
8227             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8228           const char *RegName = TRI.getName(Reg);
8229           emitInlineAsmError(Call, "write to reserved register '" +
8230                                        Twine(RegName) + "'");
8231           return true;
8232         }
8233       }
8234       return false;
8235     };
8236 
8237     switch (OpInfo.Type) {
8238     case InlineAsm::isOutput:
8239       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8240         unsigned ConstraintID =
8241             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8242         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8243                "Failed to convert memory constraint code to constraint id.");
8244 
8245         // Add information to the INLINEASM node to know about this output.
8246         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8247         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8248         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8249                                                         MVT::i32));
8250         AsmNodeOperands.push_back(OpInfo.CallOperand);
8251       } else {
8252         // Otherwise, this outputs to a register (directly for C_Register /
8253         // C_RegisterClass, and a target-defined fashion for
8254         // C_Immediate/C_Other). Find a register that we can use.
8255         if (OpInfo.AssignedRegs.Regs.empty()) {
8256           emitInlineAsmError(
8257               Call, "couldn't allocate output register for constraint '" +
8258                         Twine(OpInfo.ConstraintCode) + "'");
8259           return;
8260         }
8261 
8262         if (DetectWriteToReservedRegister())
8263           return;
8264 
8265         // Add information to the INLINEASM node to know that this register is
8266         // set.
8267         OpInfo.AssignedRegs.AddInlineAsmOperands(
8268             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8269                                   : InlineAsm::Kind_RegDef,
8270             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8271       }
8272       break;
8273 
8274     case InlineAsm::isInput: {
8275       SDValue InOperandVal = OpInfo.CallOperand;
8276 
8277       if (OpInfo.isMatchingInputConstraint()) {
8278         // If this is required to match an output register we have already set,
8279         // just use its register.
8280         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8281                                                   AsmNodeOperands);
8282         unsigned OpFlag =
8283           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8284         if (InlineAsm::isRegDefKind(OpFlag) ||
8285             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8286           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8287           if (OpInfo.isIndirect) {
8288             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8289             emitInlineAsmError(Call, "inline asm not supported yet: "
8290                                      "don't know how to handle tied "
8291                                      "indirect register inputs");
8292             return;
8293           }
8294 
8295           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8296           SmallVector<unsigned, 4> Regs;
8297 
8298           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8299             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8300             MachineRegisterInfo &RegInfo =
8301                 DAG.getMachineFunction().getRegInfo();
8302             for (unsigned i = 0; i != NumRegs; ++i)
8303               Regs.push_back(RegInfo.createVirtualRegister(RC));
8304           } else {
8305             emitInlineAsmError(Call,
8306                                "inline asm error: This value type register "
8307                                "class is not natively supported!");
8308             return;
8309           }
8310 
8311           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8312 
8313           SDLoc dl = getCurSDLoc();
8314           // Use the produced MatchedRegs object to
8315           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8316           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8317                                            true, OpInfo.getMatchedOperand(), dl,
8318                                            DAG, AsmNodeOperands);
8319           break;
8320         }
8321 
8322         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8323         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8324                "Unexpected number of operands");
8325         // Add information to the INLINEASM node to know about this input.
8326         // See InlineAsm.h isUseOperandTiedToDef.
8327         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8328         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8329                                                     OpInfo.getMatchedOperand());
8330         AsmNodeOperands.push_back(DAG.getTargetConstant(
8331             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8332         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8333         break;
8334       }
8335 
8336       // Treat indirect 'X' constraint as memory.
8337       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8338           OpInfo.isIndirect)
8339         OpInfo.ConstraintType = TargetLowering::C_Memory;
8340 
8341       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8342           OpInfo.ConstraintType == TargetLowering::C_Other) {
8343         std::vector<SDValue> Ops;
8344         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8345                                           Ops, DAG);
8346         if (Ops.empty()) {
8347           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8348             if (isa<ConstantSDNode>(InOperandVal)) {
8349               emitInlineAsmError(Call, "value out of range for constraint '" +
8350                                            Twine(OpInfo.ConstraintCode) + "'");
8351               return;
8352             }
8353 
8354           emitInlineAsmError(Call,
8355                              "invalid operand for inline asm constraint '" +
8356                                  Twine(OpInfo.ConstraintCode) + "'");
8357           return;
8358         }
8359 
8360         // Add information to the INLINEASM node to know about this input.
8361         unsigned ResOpType =
8362           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8363         AsmNodeOperands.push_back(DAG.getTargetConstant(
8364             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8365         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8366         break;
8367       }
8368 
8369       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8370         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8371         assert(InOperandVal.getValueType() ==
8372                    TLI.getPointerTy(DAG.getDataLayout()) &&
8373                "Memory operands expect pointer values");
8374 
8375         unsigned ConstraintID =
8376             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8377         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8378                "Failed to convert memory constraint code to constraint id.");
8379 
8380         // Add information to the INLINEASM node to know about this input.
8381         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8382         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8383         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8384                                                         getCurSDLoc(),
8385                                                         MVT::i32));
8386         AsmNodeOperands.push_back(InOperandVal);
8387         break;
8388       }
8389 
8390       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8391               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8392              "Unknown constraint type!");
8393 
8394       // TODO: Support this.
8395       if (OpInfo.isIndirect) {
8396         emitInlineAsmError(
8397             Call, "Don't know how to handle indirect register inputs yet "
8398                   "for constraint '" +
8399                       Twine(OpInfo.ConstraintCode) + "'");
8400         return;
8401       }
8402 
8403       // Copy the input into the appropriate registers.
8404       if (OpInfo.AssignedRegs.Regs.empty()) {
8405         emitInlineAsmError(Call,
8406                            "couldn't allocate input reg for constraint '" +
8407                                Twine(OpInfo.ConstraintCode) + "'");
8408         return;
8409       }
8410 
8411       if (DetectWriteToReservedRegister())
8412         return;
8413 
8414       SDLoc dl = getCurSDLoc();
8415 
8416       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8417                                         &Call);
8418 
8419       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8420                                                dl, DAG, AsmNodeOperands);
8421       break;
8422     }
8423     case InlineAsm::isClobber:
8424       // Add the clobbered value to the operand list, so that the register
8425       // allocator is aware that the physreg got clobbered.
8426       if (!OpInfo.AssignedRegs.Regs.empty())
8427         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8428                                                  false, 0, getCurSDLoc(), DAG,
8429                                                  AsmNodeOperands);
8430       break;
8431     }
8432   }
8433 
8434   // Finish up input operands.  Set the input chain and add the flag last.
8435   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8436   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8437 
8438   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8439   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8440                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8441   Flag = Chain.getValue(1);
8442 
8443   // Do additional work to generate outputs.
8444 
8445   SmallVector<EVT, 1> ResultVTs;
8446   SmallVector<SDValue, 1> ResultValues;
8447   SmallVector<SDValue, 8> OutChains;
8448 
8449   llvm::Type *CallResultType = Call.getType();
8450   ArrayRef<Type *> ResultTypes;
8451   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8452     ResultTypes = StructResult->elements();
8453   else if (!CallResultType->isVoidTy())
8454     ResultTypes = makeArrayRef(CallResultType);
8455 
8456   auto CurResultType = ResultTypes.begin();
8457   auto handleRegAssign = [&](SDValue V) {
8458     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8459     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8460     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8461     ++CurResultType;
8462     // If the type of the inline asm call site return value is different but has
8463     // same size as the type of the asm output bitcast it.  One example of this
8464     // is for vectors with different width / number of elements.  This can
8465     // happen for register classes that can contain multiple different value
8466     // types.  The preg or vreg allocated may not have the same VT as was
8467     // expected.
8468     //
8469     // This can also happen for a return value that disagrees with the register
8470     // class it is put in, eg. a double in a general-purpose register on a
8471     // 32-bit machine.
8472     if (ResultVT != V.getValueType() &&
8473         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8474       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8475     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8476              V.getValueType().isInteger()) {
8477       // If a result value was tied to an input value, the computed result
8478       // may have a wider width than the expected result.  Extract the
8479       // relevant portion.
8480       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8481     }
8482     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8483     ResultVTs.push_back(ResultVT);
8484     ResultValues.push_back(V);
8485   };
8486 
8487   // Deal with output operands.
8488   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8489     if (OpInfo.Type == InlineAsm::isOutput) {
8490       SDValue Val;
8491       // Skip trivial output operands.
8492       if (OpInfo.AssignedRegs.Regs.empty())
8493         continue;
8494 
8495       switch (OpInfo.ConstraintType) {
8496       case TargetLowering::C_Register:
8497       case TargetLowering::C_RegisterClass:
8498         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8499                                                   Chain, &Flag, &Call);
8500         break;
8501       case TargetLowering::C_Immediate:
8502       case TargetLowering::C_Other:
8503         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8504                                               OpInfo, DAG);
8505         break;
8506       case TargetLowering::C_Memory:
8507         break; // Already handled.
8508       case TargetLowering::C_Unknown:
8509         assert(false && "Unexpected unknown constraint");
8510       }
8511 
8512       // Indirect output manifest as stores. Record output chains.
8513       if (OpInfo.isIndirect) {
8514         const Value *Ptr = OpInfo.CallOperandVal;
8515         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8516         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8517                                      MachinePointerInfo(Ptr));
8518         OutChains.push_back(Store);
8519       } else {
8520         // generate CopyFromRegs to associated registers.
8521         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8522         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8523           for (const SDValue &V : Val->op_values())
8524             handleRegAssign(V);
8525         } else
8526           handleRegAssign(Val);
8527       }
8528     }
8529   }
8530 
8531   // Set results.
8532   if (!ResultValues.empty()) {
8533     assert(CurResultType == ResultTypes.end() &&
8534            "Mismatch in number of ResultTypes");
8535     assert(ResultValues.size() == ResultTypes.size() &&
8536            "Mismatch in number of output operands in asm result");
8537 
8538     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8539                             DAG.getVTList(ResultVTs), ResultValues);
8540     setValue(&Call, V);
8541   }
8542 
8543   // Collect store chains.
8544   if (!OutChains.empty())
8545     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8546 
8547   // Only Update Root if inline assembly has a memory effect.
8548   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8549     DAG.setRoot(Chain);
8550 }
8551 
8552 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8553                                              const Twine &Message) {
8554   LLVMContext &Ctx = *DAG.getContext();
8555   Ctx.emitError(&Call, Message);
8556 
8557   // Make sure we leave the DAG in a valid state
8558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8559   SmallVector<EVT, 1> ValueVTs;
8560   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8561 
8562   if (ValueVTs.empty())
8563     return;
8564 
8565   SmallVector<SDValue, 1> Ops;
8566   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8567     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8568 
8569   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8570 }
8571 
8572 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8573   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8574                           MVT::Other, getRoot(),
8575                           getValue(I.getArgOperand(0)),
8576                           DAG.getSrcValue(I.getArgOperand(0))));
8577 }
8578 
8579 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8581   const DataLayout &DL = DAG.getDataLayout();
8582   SDValue V = DAG.getVAArg(
8583       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8584       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8585       DL.getABITypeAlign(I.getType()).value());
8586   DAG.setRoot(V.getValue(1));
8587 
8588   if (I.getType()->isPointerTy())
8589     V = DAG.getPtrExtOrTrunc(
8590         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8591   setValue(&I, V);
8592 }
8593 
8594 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8595   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8596                           MVT::Other, getRoot(),
8597                           getValue(I.getArgOperand(0)),
8598                           DAG.getSrcValue(I.getArgOperand(0))));
8599 }
8600 
8601 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8602   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8603                           MVT::Other, getRoot(),
8604                           getValue(I.getArgOperand(0)),
8605                           getValue(I.getArgOperand(1)),
8606                           DAG.getSrcValue(I.getArgOperand(0)),
8607                           DAG.getSrcValue(I.getArgOperand(1))));
8608 }
8609 
8610 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8611                                                     const Instruction &I,
8612                                                     SDValue Op) {
8613   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8614   if (!Range)
8615     return Op;
8616 
8617   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8618   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8619     return Op;
8620 
8621   APInt Lo = CR.getUnsignedMin();
8622   if (!Lo.isMinValue())
8623     return Op;
8624 
8625   APInt Hi = CR.getUnsignedMax();
8626   unsigned Bits = std::max(Hi.getActiveBits(),
8627                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8628 
8629   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8630 
8631   SDLoc SL = getCurSDLoc();
8632 
8633   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8634                              DAG.getValueType(SmallVT));
8635   unsigned NumVals = Op.getNode()->getNumValues();
8636   if (NumVals == 1)
8637     return ZExt;
8638 
8639   SmallVector<SDValue, 4> Ops;
8640 
8641   Ops.push_back(ZExt);
8642   for (unsigned I = 1; I != NumVals; ++I)
8643     Ops.push_back(Op.getValue(I));
8644 
8645   return DAG.getMergeValues(Ops, SL);
8646 }
8647 
8648 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8649 /// the call being lowered.
8650 ///
8651 /// This is a helper for lowering intrinsics that follow a target calling
8652 /// convention or require stack pointer adjustment. Only a subset of the
8653 /// intrinsic's operands need to participate in the calling convention.
8654 void SelectionDAGBuilder::populateCallLoweringInfo(
8655     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8656     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8657     bool IsPatchPoint) {
8658   TargetLowering::ArgListTy Args;
8659   Args.reserve(NumArgs);
8660 
8661   // Populate the argument list.
8662   // Attributes for args start at offset 1, after the return attribute.
8663   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8664        ArgI != ArgE; ++ArgI) {
8665     const Value *V = Call->getOperand(ArgI);
8666 
8667     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8668 
8669     TargetLowering::ArgListEntry Entry;
8670     Entry.Node = getValue(V);
8671     Entry.Ty = V->getType();
8672     Entry.setAttributes(Call, ArgI);
8673     Args.push_back(Entry);
8674   }
8675 
8676   CLI.setDebugLoc(getCurSDLoc())
8677       .setChain(getRoot())
8678       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8679       .setDiscardResult(Call->use_empty())
8680       .setIsPatchPoint(IsPatchPoint)
8681       .setIsPreallocated(
8682           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8683 }
8684 
8685 /// Add a stack map intrinsic call's live variable operands to a stackmap
8686 /// or patchpoint target node's operand list.
8687 ///
8688 /// Constants are converted to TargetConstants purely as an optimization to
8689 /// avoid constant materialization and register allocation.
8690 ///
8691 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8692 /// generate addess computation nodes, and so FinalizeISel can convert the
8693 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8694 /// address materialization and register allocation, but may also be required
8695 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8696 /// alloca in the entry block, then the runtime may assume that the alloca's
8697 /// StackMap location can be read immediately after compilation and that the
8698 /// location is valid at any point during execution (this is similar to the
8699 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8700 /// only available in a register, then the runtime would need to trap when
8701 /// execution reaches the StackMap in order to read the alloca's location.
8702 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8703                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8704                                 SelectionDAGBuilder &Builder) {
8705   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8706     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8707     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8708       Ops.push_back(
8709         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8710       Ops.push_back(
8711         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8712     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8713       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8714       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8715           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8716     } else
8717       Ops.push_back(OpVal);
8718   }
8719 }
8720 
8721 /// Lower llvm.experimental.stackmap directly to its target opcode.
8722 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8723   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8724   //                                  [live variables...])
8725 
8726   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8727 
8728   SDValue Chain, InFlag, Callee, NullPtr;
8729   SmallVector<SDValue, 32> Ops;
8730 
8731   SDLoc DL = getCurSDLoc();
8732   Callee = getValue(CI.getCalledOperand());
8733   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8734 
8735   // The stackmap intrinsic only records the live variables (the arguments
8736   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8737   // intrinsic, this won't be lowered to a function call. This means we don't
8738   // have to worry about calling conventions and target specific lowering code.
8739   // Instead we perform the call lowering right here.
8740   //
8741   // chain, flag = CALLSEQ_START(chain, 0, 0)
8742   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8743   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8744   //
8745   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8746   InFlag = Chain.getValue(1);
8747 
8748   // Add the <id> and <numBytes> constants.
8749   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8750   Ops.push_back(DAG.getTargetConstant(
8751                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8752   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8753   Ops.push_back(DAG.getTargetConstant(
8754                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8755                   MVT::i32));
8756 
8757   // Push live variables for the stack map.
8758   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8759 
8760   // We are not pushing any register mask info here on the operands list,
8761   // because the stackmap doesn't clobber anything.
8762 
8763   // Push the chain and the glue flag.
8764   Ops.push_back(Chain);
8765   Ops.push_back(InFlag);
8766 
8767   // Create the STACKMAP node.
8768   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8769   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8770   Chain = SDValue(SM, 0);
8771   InFlag = Chain.getValue(1);
8772 
8773   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8774 
8775   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8776 
8777   // Set the root to the target-lowered call chain.
8778   DAG.setRoot(Chain);
8779 
8780   // Inform the Frame Information that we have a stackmap in this function.
8781   FuncInfo.MF->getFrameInfo().setHasStackMap();
8782 }
8783 
8784 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8785 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8786                                           const BasicBlock *EHPadBB) {
8787   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8788   //                                                 i32 <numBytes>,
8789   //                                                 i8* <target>,
8790   //                                                 i32 <numArgs>,
8791   //                                                 [Args...],
8792   //                                                 [live variables...])
8793 
8794   CallingConv::ID CC = CB.getCallingConv();
8795   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8796   bool HasDef = !CB.getType()->isVoidTy();
8797   SDLoc dl = getCurSDLoc();
8798   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8799 
8800   // Handle immediate and symbolic callees.
8801   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8802     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8803                                    /*isTarget=*/true);
8804   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8805     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8806                                          SDLoc(SymbolicCallee),
8807                                          SymbolicCallee->getValueType(0));
8808 
8809   // Get the real number of arguments participating in the call <numArgs>
8810   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8811   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8812 
8813   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8814   // Intrinsics include all meta-operands up to but not including CC.
8815   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8816   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8817          "Not enough arguments provided to the patchpoint intrinsic");
8818 
8819   // For AnyRegCC the arguments are lowered later on manually.
8820   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8821   Type *ReturnTy =
8822       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8823 
8824   TargetLowering::CallLoweringInfo CLI(DAG);
8825   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8826                            ReturnTy, true);
8827   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8828 
8829   SDNode *CallEnd = Result.second.getNode();
8830   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8831     CallEnd = CallEnd->getOperand(0).getNode();
8832 
8833   /// Get a call instruction from the call sequence chain.
8834   /// Tail calls are not allowed.
8835   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8836          "Expected a callseq node.");
8837   SDNode *Call = CallEnd->getOperand(0).getNode();
8838   bool HasGlue = Call->getGluedNode();
8839 
8840   // Replace the target specific call node with the patchable intrinsic.
8841   SmallVector<SDValue, 8> Ops;
8842 
8843   // Add the <id> and <numBytes> constants.
8844   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8845   Ops.push_back(DAG.getTargetConstant(
8846                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8847   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8848   Ops.push_back(DAG.getTargetConstant(
8849                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8850                   MVT::i32));
8851 
8852   // Add the callee.
8853   Ops.push_back(Callee);
8854 
8855   // Adjust <numArgs> to account for any arguments that have been passed on the
8856   // stack instead.
8857   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8858   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8859   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8860   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8861 
8862   // Add the calling convention
8863   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8864 
8865   // Add the arguments we omitted previously. The register allocator should
8866   // place these in any free register.
8867   if (IsAnyRegCC)
8868     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8869       Ops.push_back(getValue(CB.getArgOperand(i)));
8870 
8871   // Push the arguments from the call instruction up to the register mask.
8872   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8873   Ops.append(Call->op_begin() + 2, e);
8874 
8875   // Push live variables for the stack map.
8876   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8877 
8878   // Push the register mask info.
8879   if (HasGlue)
8880     Ops.push_back(*(Call->op_end()-2));
8881   else
8882     Ops.push_back(*(Call->op_end()-1));
8883 
8884   // Push the chain (this is originally the first operand of the call, but
8885   // becomes now the last or second to last operand).
8886   Ops.push_back(*(Call->op_begin()));
8887 
8888   // Push the glue flag (last operand).
8889   if (HasGlue)
8890     Ops.push_back(*(Call->op_end()-1));
8891 
8892   SDVTList NodeTys;
8893   if (IsAnyRegCC && HasDef) {
8894     // Create the return types based on the intrinsic definition
8895     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8896     SmallVector<EVT, 3> ValueVTs;
8897     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8898     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8899 
8900     // There is always a chain and a glue type at the end
8901     ValueVTs.push_back(MVT::Other);
8902     ValueVTs.push_back(MVT::Glue);
8903     NodeTys = DAG.getVTList(ValueVTs);
8904   } else
8905     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8906 
8907   // Replace the target specific call node with a PATCHPOINT node.
8908   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8909                                          dl, NodeTys, Ops);
8910 
8911   // Update the NodeMap.
8912   if (HasDef) {
8913     if (IsAnyRegCC)
8914       setValue(&CB, SDValue(MN, 0));
8915     else
8916       setValue(&CB, Result.first);
8917   }
8918 
8919   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8920   // call sequence. Furthermore the location of the chain and glue can change
8921   // when the AnyReg calling convention is used and the intrinsic returns a
8922   // value.
8923   if (IsAnyRegCC && HasDef) {
8924     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8925     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8926     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8927   } else
8928     DAG.ReplaceAllUsesWith(Call, MN);
8929   DAG.DeleteNode(Call);
8930 
8931   // Inform the Frame Information that we have a patchpoint in this function.
8932   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8933 }
8934 
8935 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8936                                             unsigned Intrinsic) {
8937   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8938   SDValue Op1 = getValue(I.getArgOperand(0));
8939   SDValue Op2;
8940   if (I.getNumArgOperands() > 1)
8941     Op2 = getValue(I.getArgOperand(1));
8942   SDLoc dl = getCurSDLoc();
8943   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8944   SDValue Res;
8945   SDNodeFlags SDFlags;
8946   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
8947     SDFlags.copyFMF(*FPMO);
8948 
8949   switch (Intrinsic) {
8950   case Intrinsic::vector_reduce_fadd:
8951     if (SDFlags.hasAllowReassociation())
8952       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8953                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
8954                         SDFlags);
8955     else
8956       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
8957     break;
8958   case Intrinsic::vector_reduce_fmul:
8959     if (SDFlags.hasAllowReassociation())
8960       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8961                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
8962                         SDFlags);
8963     else
8964       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
8965     break;
8966   case Intrinsic::vector_reduce_add:
8967     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8968     break;
8969   case Intrinsic::vector_reduce_mul:
8970     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8971     break;
8972   case Intrinsic::vector_reduce_and:
8973     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8974     break;
8975   case Intrinsic::vector_reduce_or:
8976     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8977     break;
8978   case Intrinsic::vector_reduce_xor:
8979     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8980     break;
8981   case Intrinsic::vector_reduce_smax:
8982     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8983     break;
8984   case Intrinsic::vector_reduce_smin:
8985     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8986     break;
8987   case Intrinsic::vector_reduce_umax:
8988     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8989     break;
8990   case Intrinsic::vector_reduce_umin:
8991     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8992     break;
8993   case Intrinsic::vector_reduce_fmax:
8994     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
8995     break;
8996   case Intrinsic::vector_reduce_fmin:
8997     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
8998     break;
8999   default:
9000     llvm_unreachable("Unhandled vector reduce intrinsic");
9001   }
9002   setValue(&I, Res);
9003 }
9004 
9005 /// Returns an AttributeList representing the attributes applied to the return
9006 /// value of the given call.
9007 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9008   SmallVector<Attribute::AttrKind, 2> Attrs;
9009   if (CLI.RetSExt)
9010     Attrs.push_back(Attribute::SExt);
9011   if (CLI.RetZExt)
9012     Attrs.push_back(Attribute::ZExt);
9013   if (CLI.IsInReg)
9014     Attrs.push_back(Attribute::InReg);
9015 
9016   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9017                             Attrs);
9018 }
9019 
9020 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9021 /// implementation, which just calls LowerCall.
9022 /// FIXME: When all targets are
9023 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9024 std::pair<SDValue, SDValue>
9025 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9026   // Handle the incoming return values from the call.
9027   CLI.Ins.clear();
9028   Type *OrigRetTy = CLI.RetTy;
9029   SmallVector<EVT, 4> RetTys;
9030   SmallVector<uint64_t, 4> Offsets;
9031   auto &DL = CLI.DAG.getDataLayout();
9032   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9033 
9034   if (CLI.IsPostTypeLegalization) {
9035     // If we are lowering a libcall after legalization, split the return type.
9036     SmallVector<EVT, 4> OldRetTys;
9037     SmallVector<uint64_t, 4> OldOffsets;
9038     RetTys.swap(OldRetTys);
9039     Offsets.swap(OldOffsets);
9040 
9041     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9042       EVT RetVT = OldRetTys[i];
9043       uint64_t Offset = OldOffsets[i];
9044       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9045       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9046       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9047       RetTys.append(NumRegs, RegisterVT);
9048       for (unsigned j = 0; j != NumRegs; ++j)
9049         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9050     }
9051   }
9052 
9053   SmallVector<ISD::OutputArg, 4> Outs;
9054   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9055 
9056   bool CanLowerReturn =
9057       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9058                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9059 
9060   SDValue DemoteStackSlot;
9061   int DemoteStackIdx = -100;
9062   if (!CanLowerReturn) {
9063     // FIXME: equivalent assert?
9064     // assert(!CS.hasInAllocaArgument() &&
9065     //        "sret demotion is incompatible with inalloca");
9066     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9067     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9068     MachineFunction &MF = CLI.DAG.getMachineFunction();
9069     DemoteStackIdx =
9070         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9071     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9072                                               DL.getAllocaAddrSpace());
9073 
9074     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9075     ArgListEntry Entry;
9076     Entry.Node = DemoteStackSlot;
9077     Entry.Ty = StackSlotPtrType;
9078     Entry.IsSExt = false;
9079     Entry.IsZExt = false;
9080     Entry.IsInReg = false;
9081     Entry.IsSRet = true;
9082     Entry.IsNest = false;
9083     Entry.IsByVal = false;
9084     Entry.IsByRef = false;
9085     Entry.IsReturned = false;
9086     Entry.IsSwiftSelf = false;
9087     Entry.IsSwiftError = false;
9088     Entry.IsCFGuardTarget = false;
9089     Entry.Alignment = Alignment;
9090     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9091     CLI.NumFixedArgs += 1;
9092     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9093 
9094     // sret demotion isn't compatible with tail-calls, since the sret argument
9095     // points into the callers stack frame.
9096     CLI.IsTailCall = false;
9097   } else {
9098     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9099         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9100     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9101       ISD::ArgFlagsTy Flags;
9102       if (NeedsRegBlock) {
9103         Flags.setInConsecutiveRegs();
9104         if (I == RetTys.size() - 1)
9105           Flags.setInConsecutiveRegsLast();
9106       }
9107       EVT VT = RetTys[I];
9108       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9109                                                      CLI.CallConv, VT);
9110       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9111                                                        CLI.CallConv, VT);
9112       for (unsigned i = 0; i != NumRegs; ++i) {
9113         ISD::InputArg MyFlags;
9114         MyFlags.Flags = Flags;
9115         MyFlags.VT = RegisterVT;
9116         MyFlags.ArgVT = VT;
9117         MyFlags.Used = CLI.IsReturnValueUsed;
9118         if (CLI.RetTy->isPointerTy()) {
9119           MyFlags.Flags.setPointer();
9120           MyFlags.Flags.setPointerAddrSpace(
9121               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9122         }
9123         if (CLI.RetSExt)
9124           MyFlags.Flags.setSExt();
9125         if (CLI.RetZExt)
9126           MyFlags.Flags.setZExt();
9127         if (CLI.IsInReg)
9128           MyFlags.Flags.setInReg();
9129         CLI.Ins.push_back(MyFlags);
9130       }
9131     }
9132   }
9133 
9134   // We push in swifterror return as the last element of CLI.Ins.
9135   ArgListTy &Args = CLI.getArgs();
9136   if (supportSwiftError()) {
9137     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9138       if (Args[i].IsSwiftError) {
9139         ISD::InputArg MyFlags;
9140         MyFlags.VT = getPointerTy(DL);
9141         MyFlags.ArgVT = EVT(getPointerTy(DL));
9142         MyFlags.Flags.setSwiftError();
9143         CLI.Ins.push_back(MyFlags);
9144       }
9145     }
9146   }
9147 
9148   // Handle all of the outgoing arguments.
9149   CLI.Outs.clear();
9150   CLI.OutVals.clear();
9151   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9152     SmallVector<EVT, 4> ValueVTs;
9153     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9154     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9155     Type *FinalType = Args[i].Ty;
9156     if (Args[i].IsByVal)
9157       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9158     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9159         FinalType, CLI.CallConv, CLI.IsVarArg);
9160     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9161          ++Value) {
9162       EVT VT = ValueVTs[Value];
9163       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9164       SDValue Op = SDValue(Args[i].Node.getNode(),
9165                            Args[i].Node.getResNo() + Value);
9166       ISD::ArgFlagsTy Flags;
9167 
9168       // Certain targets (such as MIPS), may have a different ABI alignment
9169       // for a type depending on the context. Give the target a chance to
9170       // specify the alignment it wants.
9171       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9172 
9173       if (Args[i].Ty->isPointerTy()) {
9174         Flags.setPointer();
9175         Flags.setPointerAddrSpace(
9176             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9177       }
9178       if (Args[i].IsZExt)
9179         Flags.setZExt();
9180       if (Args[i].IsSExt)
9181         Flags.setSExt();
9182       if (Args[i].IsInReg) {
9183         // If we are using vectorcall calling convention, a structure that is
9184         // passed InReg - is surely an HVA
9185         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9186             isa<StructType>(FinalType)) {
9187           // The first value of a structure is marked
9188           if (0 == Value)
9189             Flags.setHvaStart();
9190           Flags.setHva();
9191         }
9192         // Set InReg Flag
9193         Flags.setInReg();
9194       }
9195       if (Args[i].IsSRet)
9196         Flags.setSRet();
9197       if (Args[i].IsSwiftSelf)
9198         Flags.setSwiftSelf();
9199       if (Args[i].IsSwiftError)
9200         Flags.setSwiftError();
9201       if (Args[i].IsCFGuardTarget)
9202         Flags.setCFGuardTarget();
9203       if (Args[i].IsByVal)
9204         Flags.setByVal();
9205       if (Args[i].IsByRef)
9206         Flags.setByRef();
9207       if (Args[i].IsPreallocated) {
9208         Flags.setPreallocated();
9209         // Set the byval flag for CCAssignFn callbacks that don't know about
9210         // preallocated.  This way we can know how many bytes we should've
9211         // allocated and how many bytes a callee cleanup function will pop.  If
9212         // we port preallocated to more targets, we'll have to add custom
9213         // preallocated handling in the various CC lowering callbacks.
9214         Flags.setByVal();
9215       }
9216       if (Args[i].IsInAlloca) {
9217         Flags.setInAlloca();
9218         // Set the byval flag for CCAssignFn callbacks that don't know about
9219         // inalloca.  This way we can know how many bytes we should've allocated
9220         // and how many bytes a callee cleanup function will pop.  If we port
9221         // inalloca to more targets, we'll have to add custom inalloca handling
9222         // in the various CC lowering callbacks.
9223         Flags.setByVal();
9224       }
9225       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9226         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9227         Type *ElementTy = Ty->getElementType();
9228 
9229         unsigned FrameSize = DL.getTypeAllocSize(
9230             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9231         Flags.setByValSize(FrameSize);
9232 
9233         // info is not there but there are cases it cannot get right.
9234         Align FrameAlign;
9235         if (auto MA = Args[i].Alignment)
9236           FrameAlign = *MA;
9237         else
9238           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9239         Flags.setByValAlign(FrameAlign);
9240       }
9241       if (Args[i].IsNest)
9242         Flags.setNest();
9243       if (NeedsRegBlock)
9244         Flags.setInConsecutiveRegs();
9245       Flags.setOrigAlign(OriginalAlignment);
9246 
9247       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9248                                                  CLI.CallConv, VT);
9249       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9250                                                         CLI.CallConv, VT);
9251       SmallVector<SDValue, 4> Parts(NumParts);
9252       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9253 
9254       if (Args[i].IsSExt)
9255         ExtendKind = ISD::SIGN_EXTEND;
9256       else if (Args[i].IsZExt)
9257         ExtendKind = ISD::ZERO_EXTEND;
9258 
9259       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9260       // for now.
9261       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9262           CanLowerReturn) {
9263         assert((CLI.RetTy == Args[i].Ty ||
9264                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9265                  CLI.RetTy->getPointerAddressSpace() ==
9266                      Args[i].Ty->getPointerAddressSpace())) &&
9267                RetTys.size() == NumValues && "unexpected use of 'returned'");
9268         // Before passing 'returned' to the target lowering code, ensure that
9269         // either the register MVT and the actual EVT are the same size or that
9270         // the return value and argument are extended in the same way; in these
9271         // cases it's safe to pass the argument register value unchanged as the
9272         // return register value (although it's at the target's option whether
9273         // to do so)
9274         // TODO: allow code generation to take advantage of partially preserved
9275         // registers rather than clobbering the entire register when the
9276         // parameter extension method is not compatible with the return
9277         // extension method
9278         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9279             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9280              CLI.RetZExt == Args[i].IsZExt))
9281           Flags.setReturned();
9282       }
9283 
9284       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9285                      CLI.CallConv, ExtendKind);
9286 
9287       for (unsigned j = 0; j != NumParts; ++j) {
9288         // if it isn't first piece, alignment must be 1
9289         // For scalable vectors the scalable part is currently handled
9290         // by individual targets, so we just use the known minimum size here.
9291         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9292                     i < CLI.NumFixedArgs, i,
9293                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9294         if (NumParts > 1 && j == 0)
9295           MyFlags.Flags.setSplit();
9296         else if (j != 0) {
9297           MyFlags.Flags.setOrigAlign(Align(1));
9298           if (j == NumParts - 1)
9299             MyFlags.Flags.setSplitEnd();
9300         }
9301 
9302         CLI.Outs.push_back(MyFlags);
9303         CLI.OutVals.push_back(Parts[j]);
9304       }
9305 
9306       if (NeedsRegBlock && Value == NumValues - 1)
9307         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9308     }
9309   }
9310 
9311   SmallVector<SDValue, 4> InVals;
9312   CLI.Chain = LowerCall(CLI, InVals);
9313 
9314   // Update CLI.InVals to use outside of this function.
9315   CLI.InVals = InVals;
9316 
9317   // Verify that the target's LowerCall behaved as expected.
9318   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9319          "LowerCall didn't return a valid chain!");
9320   assert((!CLI.IsTailCall || InVals.empty()) &&
9321          "LowerCall emitted a return value for a tail call!");
9322   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9323          "LowerCall didn't emit the correct number of values!");
9324 
9325   // For a tail call, the return value is merely live-out and there aren't
9326   // any nodes in the DAG representing it. Return a special value to
9327   // indicate that a tail call has been emitted and no more Instructions
9328   // should be processed in the current block.
9329   if (CLI.IsTailCall) {
9330     CLI.DAG.setRoot(CLI.Chain);
9331     return std::make_pair(SDValue(), SDValue());
9332   }
9333 
9334 #ifndef NDEBUG
9335   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9336     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9337     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9338            "LowerCall emitted a value with the wrong type!");
9339   }
9340 #endif
9341 
9342   SmallVector<SDValue, 4> ReturnValues;
9343   if (!CanLowerReturn) {
9344     // The instruction result is the result of loading from the
9345     // hidden sret parameter.
9346     SmallVector<EVT, 1> PVTs;
9347     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9348 
9349     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9350     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9351     EVT PtrVT = PVTs[0];
9352 
9353     unsigned NumValues = RetTys.size();
9354     ReturnValues.resize(NumValues);
9355     SmallVector<SDValue, 4> Chains(NumValues);
9356 
9357     // An aggregate return value cannot wrap around the address space, so
9358     // offsets to its parts don't wrap either.
9359     SDNodeFlags Flags;
9360     Flags.setNoUnsignedWrap(true);
9361 
9362     MachineFunction &MF = CLI.DAG.getMachineFunction();
9363     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9364     for (unsigned i = 0; i < NumValues; ++i) {
9365       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9366                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9367                                                         PtrVT), Flags);
9368       SDValue L = CLI.DAG.getLoad(
9369           RetTys[i], CLI.DL, CLI.Chain, Add,
9370           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9371                                             DemoteStackIdx, Offsets[i]),
9372           HiddenSRetAlign);
9373       ReturnValues[i] = L;
9374       Chains[i] = L.getValue(1);
9375     }
9376 
9377     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9378   } else {
9379     // Collect the legal value parts into potentially illegal values
9380     // that correspond to the original function's return values.
9381     Optional<ISD::NodeType> AssertOp;
9382     if (CLI.RetSExt)
9383       AssertOp = ISD::AssertSext;
9384     else if (CLI.RetZExt)
9385       AssertOp = ISD::AssertZext;
9386     unsigned CurReg = 0;
9387     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9388       EVT VT = RetTys[I];
9389       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9390                                                      CLI.CallConv, VT);
9391       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9392                                                        CLI.CallConv, VT);
9393 
9394       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9395                                               NumRegs, RegisterVT, VT, nullptr,
9396                                               CLI.CallConv, AssertOp));
9397       CurReg += NumRegs;
9398     }
9399 
9400     // For a function returning void, there is no return value. We can't create
9401     // such a node, so we just return a null return value in that case. In
9402     // that case, nothing will actually look at the value.
9403     if (ReturnValues.empty())
9404       return std::make_pair(SDValue(), CLI.Chain);
9405   }
9406 
9407   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9408                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9409   return std::make_pair(Res, CLI.Chain);
9410 }
9411 
9412 /// Places new result values for the node in Results (their number
9413 /// and types must exactly match those of the original return values of
9414 /// the node), or leaves Results empty, which indicates that the node is not
9415 /// to be custom lowered after all.
9416 void TargetLowering::LowerOperationWrapper(SDNode *N,
9417                                            SmallVectorImpl<SDValue> &Results,
9418                                            SelectionDAG &DAG) const {
9419   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9420 
9421   if (!Res.getNode())
9422     return;
9423 
9424   // If the original node has one result, take the return value from
9425   // LowerOperation as is. It might not be result number 0.
9426   if (N->getNumValues() == 1) {
9427     Results.push_back(Res);
9428     return;
9429   }
9430 
9431   // If the original node has multiple results, then the return node should
9432   // have the same number of results.
9433   assert((N->getNumValues() == Res->getNumValues()) &&
9434       "Lowering returned the wrong number of results!");
9435 
9436   // Places new result values base on N result number.
9437   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9438     Results.push_back(Res.getValue(I));
9439 }
9440 
9441 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9442   llvm_unreachable("LowerOperation not implemented for this target!");
9443 }
9444 
9445 void
9446 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9447   SDValue Op = getNonRegisterValue(V);
9448   assert((Op.getOpcode() != ISD::CopyFromReg ||
9449           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9450          "Copy from a reg to the same reg!");
9451   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9452 
9453   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9454   // If this is an InlineAsm we have to match the registers required, not the
9455   // notional registers required by the type.
9456 
9457   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9458                    None); // This is not an ABI copy.
9459   SDValue Chain = DAG.getEntryNode();
9460 
9461   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9462                               FuncInfo.PreferredExtendType.end())
9463                                  ? ISD::ANY_EXTEND
9464                                  : FuncInfo.PreferredExtendType[V];
9465   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9466   PendingExports.push_back(Chain);
9467 }
9468 
9469 #include "llvm/CodeGen/SelectionDAGISel.h"
9470 
9471 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9472 /// entry block, return true.  This includes arguments used by switches, since
9473 /// the switch may expand into multiple basic blocks.
9474 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9475   // With FastISel active, we may be splitting blocks, so force creation
9476   // of virtual registers for all non-dead arguments.
9477   if (FastISel)
9478     return A->use_empty();
9479 
9480   const BasicBlock &Entry = A->getParent()->front();
9481   for (const User *U : A->users())
9482     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9483       return false;  // Use not in entry block.
9484 
9485   return true;
9486 }
9487 
9488 using ArgCopyElisionMapTy =
9489     DenseMap<const Argument *,
9490              std::pair<const AllocaInst *, const StoreInst *>>;
9491 
9492 /// Scan the entry block of the function in FuncInfo for arguments that look
9493 /// like copies into a local alloca. Record any copied arguments in
9494 /// ArgCopyElisionCandidates.
9495 static void
9496 findArgumentCopyElisionCandidates(const DataLayout &DL,
9497                                   FunctionLoweringInfo *FuncInfo,
9498                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9499   // Record the state of every static alloca used in the entry block. Argument
9500   // allocas are all used in the entry block, so we need approximately as many
9501   // entries as we have arguments.
9502   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9503   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9504   unsigned NumArgs = FuncInfo->Fn->arg_size();
9505   StaticAllocas.reserve(NumArgs * 2);
9506 
9507   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9508     if (!V)
9509       return nullptr;
9510     V = V->stripPointerCasts();
9511     const auto *AI = dyn_cast<AllocaInst>(V);
9512     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9513       return nullptr;
9514     auto Iter = StaticAllocas.insert({AI, Unknown});
9515     return &Iter.first->second;
9516   };
9517 
9518   // Look for stores of arguments to static allocas. Look through bitcasts and
9519   // GEPs to handle type coercions, as long as the alloca is fully initialized
9520   // by the store. Any non-store use of an alloca escapes it and any subsequent
9521   // unanalyzed store might write it.
9522   // FIXME: Handle structs initialized with multiple stores.
9523   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9524     // Look for stores, and handle non-store uses conservatively.
9525     const auto *SI = dyn_cast<StoreInst>(&I);
9526     if (!SI) {
9527       // We will look through cast uses, so ignore them completely.
9528       if (I.isCast())
9529         continue;
9530       // Ignore debug info intrinsics, they don't escape or store to allocas.
9531       if (isa<DbgInfoIntrinsic>(I))
9532         continue;
9533       // This is an unknown instruction. Assume it escapes or writes to all
9534       // static alloca operands.
9535       for (const Use &U : I.operands()) {
9536         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9537           *Info = StaticAllocaInfo::Clobbered;
9538       }
9539       continue;
9540     }
9541 
9542     // If the stored value is a static alloca, mark it as escaped.
9543     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9544       *Info = StaticAllocaInfo::Clobbered;
9545 
9546     // Check if the destination is a static alloca.
9547     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9548     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9549     if (!Info)
9550       continue;
9551     const AllocaInst *AI = cast<AllocaInst>(Dst);
9552 
9553     // Skip allocas that have been initialized or clobbered.
9554     if (*Info != StaticAllocaInfo::Unknown)
9555       continue;
9556 
9557     // Check if the stored value is an argument, and that this store fully
9558     // initializes the alloca. Don't elide copies from the same argument twice.
9559     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9560     const auto *Arg = dyn_cast<Argument>(Val);
9561     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9562         Arg->getType()->isEmptyTy() ||
9563         DL.getTypeStoreSize(Arg->getType()) !=
9564             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9565         ArgCopyElisionCandidates.count(Arg)) {
9566       *Info = StaticAllocaInfo::Clobbered;
9567       continue;
9568     }
9569 
9570     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9571                       << '\n');
9572 
9573     // Mark this alloca and store for argument copy elision.
9574     *Info = StaticAllocaInfo::Elidable;
9575     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9576 
9577     // Stop scanning if we've seen all arguments. This will happen early in -O0
9578     // builds, which is useful, because -O0 builds have large entry blocks and
9579     // many allocas.
9580     if (ArgCopyElisionCandidates.size() == NumArgs)
9581       break;
9582   }
9583 }
9584 
9585 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9586 /// ArgVal is a load from a suitable fixed stack object.
9587 static void tryToElideArgumentCopy(
9588     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9589     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9590     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9591     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9592     SDValue ArgVal, bool &ArgHasUses) {
9593   // Check if this is a load from a fixed stack object.
9594   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9595   if (!LNode)
9596     return;
9597   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9598   if (!FINode)
9599     return;
9600 
9601   // Check that the fixed stack object is the right size and alignment.
9602   // Look at the alignment that the user wrote on the alloca instead of looking
9603   // at the stack object.
9604   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9605   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9606   const AllocaInst *AI = ArgCopyIter->second.first;
9607   int FixedIndex = FINode->getIndex();
9608   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9609   int OldIndex = AllocaIndex;
9610   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9611   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9612     LLVM_DEBUG(
9613         dbgs() << "  argument copy elision failed due to bad fixed stack "
9614                   "object size\n");
9615     return;
9616   }
9617   Align RequiredAlignment = AI->getAlign();
9618   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9619     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9620                          "greater than stack argument alignment ("
9621                       << DebugStr(RequiredAlignment) << " vs "
9622                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9623     return;
9624   }
9625 
9626   // Perform the elision. Delete the old stack object and replace its only use
9627   // in the variable info map. Mark the stack object as mutable.
9628   LLVM_DEBUG({
9629     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9630            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9631            << '\n';
9632   });
9633   MFI.RemoveStackObject(OldIndex);
9634   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9635   AllocaIndex = FixedIndex;
9636   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9637   Chains.push_back(ArgVal.getValue(1));
9638 
9639   // Avoid emitting code for the store implementing the copy.
9640   const StoreInst *SI = ArgCopyIter->second.second;
9641   ElidedArgCopyInstrs.insert(SI);
9642 
9643   // Check for uses of the argument again so that we can avoid exporting ArgVal
9644   // if it is't used by anything other than the store.
9645   for (const Value *U : Arg.users()) {
9646     if (U != SI) {
9647       ArgHasUses = true;
9648       break;
9649     }
9650   }
9651 }
9652 
9653 void SelectionDAGISel::LowerArguments(const Function &F) {
9654   SelectionDAG &DAG = SDB->DAG;
9655   SDLoc dl = SDB->getCurSDLoc();
9656   const DataLayout &DL = DAG.getDataLayout();
9657   SmallVector<ISD::InputArg, 16> Ins;
9658 
9659   // In Naked functions we aren't going to save any registers.
9660   if (F.hasFnAttribute(Attribute::Naked))
9661     return;
9662 
9663   if (!FuncInfo->CanLowerReturn) {
9664     // Put in an sret pointer parameter before all the other parameters.
9665     SmallVector<EVT, 1> ValueVTs;
9666     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9667                     F.getReturnType()->getPointerTo(
9668                         DAG.getDataLayout().getAllocaAddrSpace()),
9669                     ValueVTs);
9670 
9671     // NOTE: Assuming that a pointer will never break down to more than one VT
9672     // or one register.
9673     ISD::ArgFlagsTy Flags;
9674     Flags.setSRet();
9675     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9676     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9677                          ISD::InputArg::NoArgIndex, 0);
9678     Ins.push_back(RetArg);
9679   }
9680 
9681   // Look for stores of arguments to static allocas. Mark such arguments with a
9682   // flag to ask the target to give us the memory location of that argument if
9683   // available.
9684   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9685   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9686                                     ArgCopyElisionCandidates);
9687 
9688   // Set up the incoming argument description vector.
9689   for (const Argument &Arg : F.args()) {
9690     unsigned ArgNo = Arg.getArgNo();
9691     SmallVector<EVT, 4> ValueVTs;
9692     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9693     bool isArgValueUsed = !Arg.use_empty();
9694     unsigned PartBase = 0;
9695     Type *FinalType = Arg.getType();
9696     if (Arg.hasAttribute(Attribute::ByVal))
9697       FinalType = Arg.getParamByValType();
9698     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9699         FinalType, F.getCallingConv(), F.isVarArg());
9700     for (unsigned Value = 0, NumValues = ValueVTs.size();
9701          Value != NumValues; ++Value) {
9702       EVT VT = ValueVTs[Value];
9703       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9704       ISD::ArgFlagsTy Flags;
9705 
9706       // Certain targets (such as MIPS), may have a different ABI alignment
9707       // for a type depending on the context. Give the target a chance to
9708       // specify the alignment it wants.
9709       const Align OriginalAlignment(
9710           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9711 
9712       if (Arg.getType()->isPointerTy()) {
9713         Flags.setPointer();
9714         Flags.setPointerAddrSpace(
9715             cast<PointerType>(Arg.getType())->getAddressSpace());
9716       }
9717       if (Arg.hasAttribute(Attribute::ZExt))
9718         Flags.setZExt();
9719       if (Arg.hasAttribute(Attribute::SExt))
9720         Flags.setSExt();
9721       if (Arg.hasAttribute(Attribute::InReg)) {
9722         // If we are using vectorcall calling convention, a structure that is
9723         // passed InReg - is surely an HVA
9724         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9725             isa<StructType>(Arg.getType())) {
9726           // The first value of a structure is marked
9727           if (0 == Value)
9728             Flags.setHvaStart();
9729           Flags.setHva();
9730         }
9731         // Set InReg Flag
9732         Flags.setInReg();
9733       }
9734       if (Arg.hasAttribute(Attribute::StructRet))
9735         Flags.setSRet();
9736       if (Arg.hasAttribute(Attribute::SwiftSelf))
9737         Flags.setSwiftSelf();
9738       if (Arg.hasAttribute(Attribute::SwiftError))
9739         Flags.setSwiftError();
9740       if (Arg.hasAttribute(Attribute::ByVal))
9741         Flags.setByVal();
9742       if (Arg.hasAttribute(Attribute::ByRef))
9743         Flags.setByRef();
9744       if (Arg.hasAttribute(Attribute::InAlloca)) {
9745         Flags.setInAlloca();
9746         // Set the byval flag for CCAssignFn callbacks that don't know about
9747         // inalloca.  This way we can know how many bytes we should've allocated
9748         // and how many bytes a callee cleanup function will pop.  If we port
9749         // inalloca to more targets, we'll have to add custom inalloca handling
9750         // in the various CC lowering callbacks.
9751         Flags.setByVal();
9752       }
9753       if (Arg.hasAttribute(Attribute::Preallocated)) {
9754         Flags.setPreallocated();
9755         // Set the byval flag for CCAssignFn callbacks that don't know about
9756         // preallocated.  This way we can know how many bytes we should've
9757         // allocated and how many bytes a callee cleanup function will pop.  If
9758         // we port preallocated to more targets, we'll have to add custom
9759         // preallocated handling in the various CC lowering callbacks.
9760         Flags.setByVal();
9761       }
9762 
9763       Type *ArgMemTy = nullptr;
9764       if (F.getCallingConv() == CallingConv::X86_INTR) {
9765         // IA Interrupt passes frame (1st parameter) by value in the stack.
9766         if (ArgNo == 0) {
9767           Flags.setByVal();
9768           // FIXME: Dependence on pointee element type. See bug 46672.
9769           ArgMemTy = Arg.getType()->getPointerElementType();
9770         }
9771       }
9772       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9773           Flags.isByRef()) {
9774         if (!ArgMemTy)
9775           ArgMemTy = Arg.getPointeeInMemoryValueType();
9776 
9777         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9778 
9779         // For in-memory arguments, size and alignment should be passed from FE.
9780         // BE will guess if this info is not there but there are cases it cannot
9781         // get right.
9782         MaybeAlign MemAlign = Arg.getParamAlign();
9783         if (!MemAlign)
9784           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9785 
9786         if (Flags.isByRef()) {
9787           Flags.setByRefSize(MemSize);
9788           Flags.setByRefAlign(*MemAlign);
9789         } else {
9790           Flags.setByValSize(MemSize);
9791           Flags.setByValAlign(*MemAlign);
9792         }
9793       }
9794 
9795       if (Arg.hasAttribute(Attribute::Nest))
9796         Flags.setNest();
9797       if (NeedsRegBlock)
9798         Flags.setInConsecutiveRegs();
9799       Flags.setOrigAlign(OriginalAlignment);
9800       if (ArgCopyElisionCandidates.count(&Arg))
9801         Flags.setCopyElisionCandidate();
9802       if (Arg.hasAttribute(Attribute::Returned))
9803         Flags.setReturned();
9804 
9805       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9806           *CurDAG->getContext(), F.getCallingConv(), VT);
9807       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9808           *CurDAG->getContext(), F.getCallingConv(), VT);
9809       for (unsigned i = 0; i != NumRegs; ++i) {
9810         // For scalable vectors, use the minimum size; individual targets
9811         // are responsible for handling scalable vector arguments and
9812         // return values.
9813         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9814                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9815         if (NumRegs > 1 && i == 0)
9816           MyFlags.Flags.setSplit();
9817         // if it isn't first piece, alignment must be 1
9818         else if (i > 0) {
9819           MyFlags.Flags.setOrigAlign(Align(1));
9820           if (i == NumRegs - 1)
9821             MyFlags.Flags.setSplitEnd();
9822         }
9823         Ins.push_back(MyFlags);
9824       }
9825       if (NeedsRegBlock && Value == NumValues - 1)
9826         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9827       PartBase += VT.getStoreSize().getKnownMinSize();
9828     }
9829   }
9830 
9831   // Call the target to set up the argument values.
9832   SmallVector<SDValue, 8> InVals;
9833   SDValue NewRoot = TLI->LowerFormalArguments(
9834       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9835 
9836   // Verify that the target's LowerFormalArguments behaved as expected.
9837   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9838          "LowerFormalArguments didn't return a valid chain!");
9839   assert(InVals.size() == Ins.size() &&
9840          "LowerFormalArguments didn't emit the correct number of values!");
9841   LLVM_DEBUG({
9842     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9843       assert(InVals[i].getNode() &&
9844              "LowerFormalArguments emitted a null value!");
9845       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9846              "LowerFormalArguments emitted a value with the wrong type!");
9847     }
9848   });
9849 
9850   // Update the DAG with the new chain value resulting from argument lowering.
9851   DAG.setRoot(NewRoot);
9852 
9853   // Set up the argument values.
9854   unsigned i = 0;
9855   if (!FuncInfo->CanLowerReturn) {
9856     // Create a virtual register for the sret pointer, and put in a copy
9857     // from the sret argument into it.
9858     SmallVector<EVT, 1> ValueVTs;
9859     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9860                     F.getReturnType()->getPointerTo(
9861                         DAG.getDataLayout().getAllocaAddrSpace()),
9862                     ValueVTs);
9863     MVT VT = ValueVTs[0].getSimpleVT();
9864     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9865     Optional<ISD::NodeType> AssertOp = None;
9866     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9867                                         nullptr, F.getCallingConv(), AssertOp);
9868 
9869     MachineFunction& MF = SDB->DAG.getMachineFunction();
9870     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9871     Register SRetReg =
9872         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9873     FuncInfo->DemoteRegister = SRetReg;
9874     NewRoot =
9875         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9876     DAG.setRoot(NewRoot);
9877 
9878     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9879     ++i;
9880   }
9881 
9882   SmallVector<SDValue, 4> Chains;
9883   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9884   for (const Argument &Arg : F.args()) {
9885     SmallVector<SDValue, 4> ArgValues;
9886     SmallVector<EVT, 4> ValueVTs;
9887     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9888     unsigned NumValues = ValueVTs.size();
9889     if (NumValues == 0)
9890       continue;
9891 
9892     bool ArgHasUses = !Arg.use_empty();
9893 
9894     // Elide the copying store if the target loaded this argument from a
9895     // suitable fixed stack object.
9896     if (Ins[i].Flags.isCopyElisionCandidate()) {
9897       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9898                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9899                              InVals[i], ArgHasUses);
9900     }
9901 
9902     // If this argument is unused then remember its value. It is used to generate
9903     // debugging information.
9904     bool isSwiftErrorArg =
9905         TLI->supportSwiftError() &&
9906         Arg.hasAttribute(Attribute::SwiftError);
9907     if (!ArgHasUses && !isSwiftErrorArg) {
9908       SDB->setUnusedArgValue(&Arg, InVals[i]);
9909 
9910       // Also remember any frame index for use in FastISel.
9911       if (FrameIndexSDNode *FI =
9912           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9913         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9914     }
9915 
9916     for (unsigned Val = 0; Val != NumValues; ++Val) {
9917       EVT VT = ValueVTs[Val];
9918       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9919                                                       F.getCallingConv(), VT);
9920       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9921           *CurDAG->getContext(), F.getCallingConv(), VT);
9922 
9923       // Even an apparent 'unused' swifterror argument needs to be returned. So
9924       // we do generate a copy for it that can be used on return from the
9925       // function.
9926       if (ArgHasUses || isSwiftErrorArg) {
9927         Optional<ISD::NodeType> AssertOp;
9928         if (Arg.hasAttribute(Attribute::SExt))
9929           AssertOp = ISD::AssertSext;
9930         else if (Arg.hasAttribute(Attribute::ZExt))
9931           AssertOp = ISD::AssertZext;
9932 
9933         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9934                                              PartVT, VT, nullptr,
9935                                              F.getCallingConv(), AssertOp));
9936       }
9937 
9938       i += NumParts;
9939     }
9940 
9941     // We don't need to do anything else for unused arguments.
9942     if (ArgValues.empty())
9943       continue;
9944 
9945     // Note down frame index.
9946     if (FrameIndexSDNode *FI =
9947         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9948       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9949 
9950     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9951                                      SDB->getCurSDLoc());
9952 
9953     SDB->setValue(&Arg, Res);
9954     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9955       // We want to associate the argument with the frame index, among
9956       // involved operands, that correspond to the lowest address. The
9957       // getCopyFromParts function, called earlier, is swapping the order of
9958       // the operands to BUILD_PAIR depending on endianness. The result of
9959       // that swapping is that the least significant bits of the argument will
9960       // be in the first operand of the BUILD_PAIR node, and the most
9961       // significant bits will be in the second operand.
9962       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9963       if (LoadSDNode *LNode =
9964           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9965         if (FrameIndexSDNode *FI =
9966             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9967           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9968     }
9969 
9970     // Analyses past this point are naive and don't expect an assertion.
9971     if (Res.getOpcode() == ISD::AssertZext)
9972       Res = Res.getOperand(0);
9973 
9974     // Update the SwiftErrorVRegDefMap.
9975     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9976       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9977       if (Register::isVirtualRegister(Reg))
9978         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9979                                    Reg);
9980     }
9981 
9982     // If this argument is live outside of the entry block, insert a copy from
9983     // wherever we got it to the vreg that other BB's will reference it as.
9984     if (Res.getOpcode() == ISD::CopyFromReg) {
9985       // If we can, though, try to skip creating an unnecessary vreg.
9986       // FIXME: This isn't very clean... it would be nice to make this more
9987       // general.
9988       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9989       if (Register::isVirtualRegister(Reg)) {
9990         FuncInfo->ValueMap[&Arg] = Reg;
9991         continue;
9992       }
9993     }
9994     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9995       FuncInfo->InitializeRegForValue(&Arg);
9996       SDB->CopyToExportRegsIfNeeded(&Arg);
9997     }
9998   }
9999 
10000   if (!Chains.empty()) {
10001     Chains.push_back(NewRoot);
10002     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10003   }
10004 
10005   DAG.setRoot(NewRoot);
10006 
10007   assert(i == InVals.size() && "Argument register count mismatch!");
10008 
10009   // If any argument copy elisions occurred and we have debug info, update the
10010   // stale frame indices used in the dbg.declare variable info table.
10011   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10012   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10013     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10014       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10015       if (I != ArgCopyElisionFrameIndexMap.end())
10016         VI.Slot = I->second;
10017     }
10018   }
10019 
10020   // Finally, if the target has anything special to do, allow it to do so.
10021   emitFunctionEntryCode();
10022 }
10023 
10024 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10025 /// ensure constants are generated when needed.  Remember the virtual registers
10026 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10027 /// directly add them, because expansion might result in multiple MBB's for one
10028 /// BB.  As such, the start of the BB might correspond to a different MBB than
10029 /// the end.
10030 void
10031 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10032   const Instruction *TI = LLVMBB->getTerminator();
10033 
10034   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10035 
10036   // Check PHI nodes in successors that expect a value to be available from this
10037   // block.
10038   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10039     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10040     if (!isa<PHINode>(SuccBB->begin())) continue;
10041     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10042 
10043     // If this terminator has multiple identical successors (common for
10044     // switches), only handle each succ once.
10045     if (!SuccsHandled.insert(SuccMBB).second)
10046       continue;
10047 
10048     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10049 
10050     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10051     // nodes and Machine PHI nodes, but the incoming operands have not been
10052     // emitted yet.
10053     for (const PHINode &PN : SuccBB->phis()) {
10054       // Ignore dead phi's.
10055       if (PN.use_empty())
10056         continue;
10057 
10058       // Skip empty types
10059       if (PN.getType()->isEmptyTy())
10060         continue;
10061 
10062       unsigned Reg;
10063       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10064 
10065       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10066         unsigned &RegOut = ConstantsOut[C];
10067         if (RegOut == 0) {
10068           RegOut = FuncInfo.CreateRegs(C);
10069           CopyValueToVirtualRegister(C, RegOut);
10070         }
10071         Reg = RegOut;
10072       } else {
10073         DenseMap<const Value *, Register>::iterator I =
10074           FuncInfo.ValueMap.find(PHIOp);
10075         if (I != FuncInfo.ValueMap.end())
10076           Reg = I->second;
10077         else {
10078           assert(isa<AllocaInst>(PHIOp) &&
10079                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10080                  "Didn't codegen value into a register!??");
10081           Reg = FuncInfo.CreateRegs(PHIOp);
10082           CopyValueToVirtualRegister(PHIOp, Reg);
10083         }
10084       }
10085 
10086       // Remember that this register needs to added to the machine PHI node as
10087       // the input for this MBB.
10088       SmallVector<EVT, 4> ValueVTs;
10089       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10090       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10091       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10092         EVT VT = ValueVTs[vti];
10093         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10094         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10095           FuncInfo.PHINodesToUpdate.push_back(
10096               std::make_pair(&*MBBI++, Reg + i));
10097         Reg += NumRegisters;
10098       }
10099     }
10100   }
10101 
10102   ConstantsOut.clear();
10103 }
10104 
10105 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10106 /// is 0.
10107 MachineBasicBlock *
10108 SelectionDAGBuilder::StackProtectorDescriptor::
10109 AddSuccessorMBB(const BasicBlock *BB,
10110                 MachineBasicBlock *ParentMBB,
10111                 bool IsLikely,
10112                 MachineBasicBlock *SuccMBB) {
10113   // If SuccBB has not been created yet, create it.
10114   if (!SuccMBB) {
10115     MachineFunction *MF = ParentMBB->getParent();
10116     MachineFunction::iterator BBI(ParentMBB);
10117     SuccMBB = MF->CreateMachineBasicBlock(BB);
10118     MF->insert(++BBI, SuccMBB);
10119   }
10120   // Add it as a successor of ParentMBB.
10121   ParentMBB->addSuccessor(
10122       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10123   return SuccMBB;
10124 }
10125 
10126 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10127   MachineFunction::iterator I(MBB);
10128   if (++I == FuncInfo.MF->end())
10129     return nullptr;
10130   return &*I;
10131 }
10132 
10133 /// During lowering new call nodes can be created (such as memset, etc.).
10134 /// Those will become new roots of the current DAG, but complications arise
10135 /// when they are tail calls. In such cases, the call lowering will update
10136 /// the root, but the builder still needs to know that a tail call has been
10137 /// lowered in order to avoid generating an additional return.
10138 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10139   // If the node is null, we do have a tail call.
10140   if (MaybeTC.getNode() != nullptr)
10141     DAG.setRoot(MaybeTC);
10142   else
10143     HasTailCall = true;
10144 }
10145 
10146 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10147                                         MachineBasicBlock *SwitchMBB,
10148                                         MachineBasicBlock *DefaultMBB) {
10149   MachineFunction *CurMF = FuncInfo.MF;
10150   MachineBasicBlock *NextMBB = nullptr;
10151   MachineFunction::iterator BBI(W.MBB);
10152   if (++BBI != FuncInfo.MF->end())
10153     NextMBB = &*BBI;
10154 
10155   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10156 
10157   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10158 
10159   if (Size == 2 && W.MBB == SwitchMBB) {
10160     // If any two of the cases has the same destination, and if one value
10161     // is the same as the other, but has one bit unset that the other has set,
10162     // use bit manipulation to do two compares at once.  For example:
10163     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10164     // TODO: This could be extended to merge any 2 cases in switches with 3
10165     // cases.
10166     // TODO: Handle cases where W.CaseBB != SwitchBB.
10167     CaseCluster &Small = *W.FirstCluster;
10168     CaseCluster &Big = *W.LastCluster;
10169 
10170     if (Small.Low == Small.High && Big.Low == Big.High &&
10171         Small.MBB == Big.MBB) {
10172       const APInt &SmallValue = Small.Low->getValue();
10173       const APInt &BigValue = Big.Low->getValue();
10174 
10175       // Check that there is only one bit different.
10176       APInt CommonBit = BigValue ^ SmallValue;
10177       if (CommonBit.isPowerOf2()) {
10178         SDValue CondLHS = getValue(Cond);
10179         EVT VT = CondLHS.getValueType();
10180         SDLoc DL = getCurSDLoc();
10181 
10182         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10183                                  DAG.getConstant(CommonBit, DL, VT));
10184         SDValue Cond = DAG.getSetCC(
10185             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10186             ISD::SETEQ);
10187 
10188         // Update successor info.
10189         // Both Small and Big will jump to Small.BB, so we sum up the
10190         // probabilities.
10191         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10192         if (BPI)
10193           addSuccessorWithProb(
10194               SwitchMBB, DefaultMBB,
10195               // The default destination is the first successor in IR.
10196               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10197         else
10198           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10199 
10200         // Insert the true branch.
10201         SDValue BrCond =
10202             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10203                         DAG.getBasicBlock(Small.MBB));
10204         // Insert the false branch.
10205         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10206                              DAG.getBasicBlock(DefaultMBB));
10207 
10208         DAG.setRoot(BrCond);
10209         return;
10210       }
10211     }
10212   }
10213 
10214   if (TM.getOptLevel() != CodeGenOpt::None) {
10215     // Here, we order cases by probability so the most likely case will be
10216     // checked first. However, two clusters can have the same probability in
10217     // which case their relative ordering is non-deterministic. So we use Low
10218     // as a tie-breaker as clusters are guaranteed to never overlap.
10219     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10220                [](const CaseCluster &a, const CaseCluster &b) {
10221       return a.Prob != b.Prob ?
10222              a.Prob > b.Prob :
10223              a.Low->getValue().slt(b.Low->getValue());
10224     });
10225 
10226     // Rearrange the case blocks so that the last one falls through if possible
10227     // without changing the order of probabilities.
10228     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10229       --I;
10230       if (I->Prob > W.LastCluster->Prob)
10231         break;
10232       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10233         std::swap(*I, *W.LastCluster);
10234         break;
10235       }
10236     }
10237   }
10238 
10239   // Compute total probability.
10240   BranchProbability DefaultProb = W.DefaultProb;
10241   BranchProbability UnhandledProbs = DefaultProb;
10242   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10243     UnhandledProbs += I->Prob;
10244 
10245   MachineBasicBlock *CurMBB = W.MBB;
10246   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10247     bool FallthroughUnreachable = false;
10248     MachineBasicBlock *Fallthrough;
10249     if (I == W.LastCluster) {
10250       // For the last cluster, fall through to the default destination.
10251       Fallthrough = DefaultMBB;
10252       FallthroughUnreachable = isa<UnreachableInst>(
10253           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10254     } else {
10255       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10256       CurMF->insert(BBI, Fallthrough);
10257       // Put Cond in a virtual register to make it available from the new blocks.
10258       ExportFromCurrentBlock(Cond);
10259     }
10260     UnhandledProbs -= I->Prob;
10261 
10262     switch (I->Kind) {
10263       case CC_JumpTable: {
10264         // FIXME: Optimize away range check based on pivot comparisons.
10265         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10266         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10267 
10268         // The jump block hasn't been inserted yet; insert it here.
10269         MachineBasicBlock *JumpMBB = JT->MBB;
10270         CurMF->insert(BBI, JumpMBB);
10271 
10272         auto JumpProb = I->Prob;
10273         auto FallthroughProb = UnhandledProbs;
10274 
10275         // If the default statement is a target of the jump table, we evenly
10276         // distribute the default probability to successors of CurMBB. Also
10277         // update the probability on the edge from JumpMBB to Fallthrough.
10278         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10279                                               SE = JumpMBB->succ_end();
10280              SI != SE; ++SI) {
10281           if (*SI == DefaultMBB) {
10282             JumpProb += DefaultProb / 2;
10283             FallthroughProb -= DefaultProb / 2;
10284             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10285             JumpMBB->normalizeSuccProbs();
10286             break;
10287           }
10288         }
10289 
10290         if (FallthroughUnreachable) {
10291           // Skip the range check if the fallthrough block is unreachable.
10292           JTH->OmitRangeCheck = true;
10293         }
10294 
10295         if (!JTH->OmitRangeCheck)
10296           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10297         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10298         CurMBB->normalizeSuccProbs();
10299 
10300         // The jump table header will be inserted in our current block, do the
10301         // range check, and fall through to our fallthrough block.
10302         JTH->HeaderBB = CurMBB;
10303         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10304 
10305         // If we're in the right place, emit the jump table header right now.
10306         if (CurMBB == SwitchMBB) {
10307           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10308           JTH->Emitted = true;
10309         }
10310         break;
10311       }
10312       case CC_BitTests: {
10313         // FIXME: Optimize away range check based on pivot comparisons.
10314         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10315 
10316         // The bit test blocks haven't been inserted yet; insert them here.
10317         for (BitTestCase &BTC : BTB->Cases)
10318           CurMF->insert(BBI, BTC.ThisBB);
10319 
10320         // Fill in fields of the BitTestBlock.
10321         BTB->Parent = CurMBB;
10322         BTB->Default = Fallthrough;
10323 
10324         BTB->DefaultProb = UnhandledProbs;
10325         // If the cases in bit test don't form a contiguous range, we evenly
10326         // distribute the probability on the edge to Fallthrough to two
10327         // successors of CurMBB.
10328         if (!BTB->ContiguousRange) {
10329           BTB->Prob += DefaultProb / 2;
10330           BTB->DefaultProb -= DefaultProb / 2;
10331         }
10332 
10333         if (FallthroughUnreachable) {
10334           // Skip the range check if the fallthrough block is unreachable.
10335           BTB->OmitRangeCheck = true;
10336         }
10337 
10338         // If we're in the right place, emit the bit test header right now.
10339         if (CurMBB == SwitchMBB) {
10340           visitBitTestHeader(*BTB, SwitchMBB);
10341           BTB->Emitted = true;
10342         }
10343         break;
10344       }
10345       case CC_Range: {
10346         const Value *RHS, *LHS, *MHS;
10347         ISD::CondCode CC;
10348         if (I->Low == I->High) {
10349           // Check Cond == I->Low.
10350           CC = ISD::SETEQ;
10351           LHS = Cond;
10352           RHS=I->Low;
10353           MHS = nullptr;
10354         } else {
10355           // Check I->Low <= Cond <= I->High.
10356           CC = ISD::SETLE;
10357           LHS = I->Low;
10358           MHS = Cond;
10359           RHS = I->High;
10360         }
10361 
10362         // If Fallthrough is unreachable, fold away the comparison.
10363         if (FallthroughUnreachable)
10364           CC = ISD::SETTRUE;
10365 
10366         // The false probability is the sum of all unhandled cases.
10367         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10368                      getCurSDLoc(), I->Prob, UnhandledProbs);
10369 
10370         if (CurMBB == SwitchMBB)
10371           visitSwitchCase(CB, SwitchMBB);
10372         else
10373           SL->SwitchCases.push_back(CB);
10374 
10375         break;
10376       }
10377     }
10378     CurMBB = Fallthrough;
10379   }
10380 }
10381 
10382 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10383                                               CaseClusterIt First,
10384                                               CaseClusterIt Last) {
10385   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10386     if (X.Prob != CC.Prob)
10387       return X.Prob > CC.Prob;
10388 
10389     // Ties are broken by comparing the case value.
10390     return X.Low->getValue().slt(CC.Low->getValue());
10391   });
10392 }
10393 
10394 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10395                                         const SwitchWorkListItem &W,
10396                                         Value *Cond,
10397                                         MachineBasicBlock *SwitchMBB) {
10398   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10399          "Clusters not sorted?");
10400 
10401   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10402 
10403   // Balance the tree based on branch probabilities to create a near-optimal (in
10404   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10405   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10406   CaseClusterIt LastLeft = W.FirstCluster;
10407   CaseClusterIt FirstRight = W.LastCluster;
10408   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10409   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10410 
10411   // Move LastLeft and FirstRight towards each other from opposite directions to
10412   // find a partitioning of the clusters which balances the probability on both
10413   // sides. If LeftProb and RightProb are equal, alternate which side is
10414   // taken to ensure 0-probability nodes are distributed evenly.
10415   unsigned I = 0;
10416   while (LastLeft + 1 < FirstRight) {
10417     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10418       LeftProb += (++LastLeft)->Prob;
10419     else
10420       RightProb += (--FirstRight)->Prob;
10421     I++;
10422   }
10423 
10424   while (true) {
10425     // Our binary search tree differs from a typical BST in that ours can have up
10426     // to three values in each leaf. The pivot selection above doesn't take that
10427     // into account, which means the tree might require more nodes and be less
10428     // efficient. We compensate for this here.
10429 
10430     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10431     unsigned NumRight = W.LastCluster - FirstRight + 1;
10432 
10433     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10434       // If one side has less than 3 clusters, and the other has more than 3,
10435       // consider taking a cluster from the other side.
10436 
10437       if (NumLeft < NumRight) {
10438         // Consider moving the first cluster on the right to the left side.
10439         CaseCluster &CC = *FirstRight;
10440         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10441         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10442         if (LeftSideRank <= RightSideRank) {
10443           // Moving the cluster to the left does not demote it.
10444           ++LastLeft;
10445           ++FirstRight;
10446           continue;
10447         }
10448       } else {
10449         assert(NumRight < NumLeft);
10450         // Consider moving the last element on the left to the right side.
10451         CaseCluster &CC = *LastLeft;
10452         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10453         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10454         if (RightSideRank <= LeftSideRank) {
10455           // Moving the cluster to the right does not demot it.
10456           --LastLeft;
10457           --FirstRight;
10458           continue;
10459         }
10460       }
10461     }
10462     break;
10463   }
10464 
10465   assert(LastLeft + 1 == FirstRight);
10466   assert(LastLeft >= W.FirstCluster);
10467   assert(FirstRight <= W.LastCluster);
10468 
10469   // Use the first element on the right as pivot since we will make less-than
10470   // comparisons against it.
10471   CaseClusterIt PivotCluster = FirstRight;
10472   assert(PivotCluster > W.FirstCluster);
10473   assert(PivotCluster <= W.LastCluster);
10474 
10475   CaseClusterIt FirstLeft = W.FirstCluster;
10476   CaseClusterIt LastRight = W.LastCluster;
10477 
10478   const ConstantInt *Pivot = PivotCluster->Low;
10479 
10480   // New blocks will be inserted immediately after the current one.
10481   MachineFunction::iterator BBI(W.MBB);
10482   ++BBI;
10483 
10484   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10485   // we can branch to its destination directly if it's squeezed exactly in
10486   // between the known lower bound and Pivot - 1.
10487   MachineBasicBlock *LeftMBB;
10488   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10489       FirstLeft->Low == W.GE &&
10490       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10491     LeftMBB = FirstLeft->MBB;
10492   } else {
10493     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10494     FuncInfo.MF->insert(BBI, LeftMBB);
10495     WorkList.push_back(
10496         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10497     // Put Cond in a virtual register to make it available from the new blocks.
10498     ExportFromCurrentBlock(Cond);
10499   }
10500 
10501   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10502   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10503   // directly if RHS.High equals the current upper bound.
10504   MachineBasicBlock *RightMBB;
10505   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10506       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10507     RightMBB = FirstRight->MBB;
10508   } else {
10509     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10510     FuncInfo.MF->insert(BBI, RightMBB);
10511     WorkList.push_back(
10512         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10513     // Put Cond in a virtual register to make it available from the new blocks.
10514     ExportFromCurrentBlock(Cond);
10515   }
10516 
10517   // Create the CaseBlock record that will be used to lower the branch.
10518   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10519                getCurSDLoc(), LeftProb, RightProb);
10520 
10521   if (W.MBB == SwitchMBB)
10522     visitSwitchCase(CB, SwitchMBB);
10523   else
10524     SL->SwitchCases.push_back(CB);
10525 }
10526 
10527 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10528 // from the swith statement.
10529 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10530                                             BranchProbability PeeledCaseProb) {
10531   if (PeeledCaseProb == BranchProbability::getOne())
10532     return BranchProbability::getZero();
10533   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10534 
10535   uint32_t Numerator = CaseProb.getNumerator();
10536   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10537   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10538 }
10539 
10540 // Try to peel the top probability case if it exceeds the threshold.
10541 // Return current MachineBasicBlock for the switch statement if the peeling
10542 // does not occur.
10543 // If the peeling is performed, return the newly created MachineBasicBlock
10544 // for the peeled switch statement. Also update Clusters to remove the peeled
10545 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10546 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10547     const SwitchInst &SI, CaseClusterVector &Clusters,
10548     BranchProbability &PeeledCaseProb) {
10549   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10550   // Don't perform if there is only one cluster or optimizing for size.
10551   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10552       TM.getOptLevel() == CodeGenOpt::None ||
10553       SwitchMBB->getParent()->getFunction().hasMinSize())
10554     return SwitchMBB;
10555 
10556   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10557   unsigned PeeledCaseIndex = 0;
10558   bool SwitchPeeled = false;
10559   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10560     CaseCluster &CC = Clusters[Index];
10561     if (CC.Prob < TopCaseProb)
10562       continue;
10563     TopCaseProb = CC.Prob;
10564     PeeledCaseIndex = Index;
10565     SwitchPeeled = true;
10566   }
10567   if (!SwitchPeeled)
10568     return SwitchMBB;
10569 
10570   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10571                     << TopCaseProb << "\n");
10572 
10573   // Record the MBB for the peeled switch statement.
10574   MachineFunction::iterator BBI(SwitchMBB);
10575   ++BBI;
10576   MachineBasicBlock *PeeledSwitchMBB =
10577       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10578   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10579 
10580   ExportFromCurrentBlock(SI.getCondition());
10581   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10582   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10583                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10584   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10585 
10586   Clusters.erase(PeeledCaseIt);
10587   for (CaseCluster &CC : Clusters) {
10588     LLVM_DEBUG(
10589         dbgs() << "Scale the probablity for one cluster, before scaling: "
10590                << CC.Prob << "\n");
10591     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10592     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10593   }
10594   PeeledCaseProb = TopCaseProb;
10595   return PeeledSwitchMBB;
10596 }
10597 
10598 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10599   // Extract cases from the switch.
10600   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10601   CaseClusterVector Clusters;
10602   Clusters.reserve(SI.getNumCases());
10603   for (auto I : SI.cases()) {
10604     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10605     const ConstantInt *CaseVal = I.getCaseValue();
10606     BranchProbability Prob =
10607         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10608             : BranchProbability(1, SI.getNumCases() + 1);
10609     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10610   }
10611 
10612   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10613 
10614   // Cluster adjacent cases with the same destination. We do this at all
10615   // optimization levels because it's cheap to do and will make codegen faster
10616   // if there are many clusters.
10617   sortAndRangeify(Clusters);
10618 
10619   // The branch probablity of the peeled case.
10620   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10621   MachineBasicBlock *PeeledSwitchMBB =
10622       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10623 
10624   // If there is only the default destination, jump there directly.
10625   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10626   if (Clusters.empty()) {
10627     assert(PeeledSwitchMBB == SwitchMBB);
10628     SwitchMBB->addSuccessor(DefaultMBB);
10629     if (DefaultMBB != NextBlock(SwitchMBB)) {
10630       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10631                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10632     }
10633     return;
10634   }
10635 
10636   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10637   SL->findBitTestClusters(Clusters, &SI);
10638 
10639   LLVM_DEBUG({
10640     dbgs() << "Case clusters: ";
10641     for (const CaseCluster &C : Clusters) {
10642       if (C.Kind == CC_JumpTable)
10643         dbgs() << "JT:";
10644       if (C.Kind == CC_BitTests)
10645         dbgs() << "BT:";
10646 
10647       C.Low->getValue().print(dbgs(), true);
10648       if (C.Low != C.High) {
10649         dbgs() << '-';
10650         C.High->getValue().print(dbgs(), true);
10651       }
10652       dbgs() << ' ';
10653     }
10654     dbgs() << '\n';
10655   });
10656 
10657   assert(!Clusters.empty());
10658   SwitchWorkList WorkList;
10659   CaseClusterIt First = Clusters.begin();
10660   CaseClusterIt Last = Clusters.end() - 1;
10661   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10662   // Scale the branchprobability for DefaultMBB if the peel occurs and
10663   // DefaultMBB is not replaced.
10664   if (PeeledCaseProb != BranchProbability::getZero() &&
10665       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10666     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10667   WorkList.push_back(
10668       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10669 
10670   while (!WorkList.empty()) {
10671     SwitchWorkListItem W = WorkList.back();
10672     WorkList.pop_back();
10673     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10674 
10675     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10676         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10677       // For optimized builds, lower large range as a balanced binary tree.
10678       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10679       continue;
10680     }
10681 
10682     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10683   }
10684 }
10685 
10686 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10687   SmallVector<EVT, 4> ValueVTs;
10688   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10689                   ValueVTs);
10690   unsigned NumValues = ValueVTs.size();
10691   if (NumValues == 0) return;
10692 
10693   SmallVector<SDValue, 4> Values(NumValues);
10694   SDValue Op = getValue(I.getOperand(0));
10695 
10696   for (unsigned i = 0; i != NumValues; ++i)
10697     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10698                             SDValue(Op.getNode(), Op.getResNo() + i));
10699 
10700   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10701                            DAG.getVTList(ValueVTs), Values));
10702 }
10703