1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode( 442 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 443 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 444 } 445 446 // Vector/Vector bitcast. 447 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 448 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 449 450 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 451 "Cannot handle this kind of promotion"); 452 // Promoted vector extract 453 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 454 455 } 456 457 // Trivial bitcast if the types are the same size and the destination 458 // vector type is legal. 459 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 460 TLI.isTypeLegal(ValueVT)) 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 463 if (ValueVT.getVectorNumElements() != 1) { 464 // Certain ABIs require that vectors are passed as integers. For vectors 465 // are the same size, this is an obvious bitcast. 466 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 467 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 468 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 469 // Bitcast Val back the original type and extract the corresponding 470 // vector we want. 471 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 472 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 473 ValueVT.getVectorElementType(), Elts); 474 Val = DAG.getBitcast(WiderVecType, Val); 475 return DAG.getNode( 476 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 488 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 Optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 503 SDValue *Parts, unsigned NumParts, MVT PartVT, 504 const Value *V, 505 Optional<CallingConv::ID> CallConv = None, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 EVT ValueVT = Val.getValueType(); 508 509 // Handle the vector case separately. 510 if (ValueVT.isVector()) 511 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 512 CallConv); 513 514 unsigned PartBits = PartVT.getSizeInBits(); 515 unsigned OrigNumParts = NumParts; 516 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 517 "Copying to an illegal type!"); 518 519 if (NumParts == 0) 520 return; 521 522 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 523 EVT PartEVT = PartVT; 524 if (PartEVT == ValueVT) { 525 assert(NumParts == 1 && "No-op copy with multiple parts!"); 526 Parts[0] = Val; 527 return; 528 } 529 530 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 531 // If the parts cover more bits than the value has, promote the value. 532 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 533 assert(NumParts == 1 && "Do not know what to promote to!"); 534 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 535 } else { 536 if (ValueVT.isFloatingPoint()) { 537 // FP values need to be bitcast, then extended if they are being put 538 // into a larger container. 539 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 540 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 541 } 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 } else if (PartBits == ValueVT.getSizeInBits()) { 551 // Different types of the same size. 552 assert(NumParts == 1 && PartEVT != ValueVT); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 555 // If the parts cover less bits than value has, truncate the value. 556 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 557 ValueVT.isInteger() && 558 "Unknown mismatch!"); 559 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 560 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 561 if (PartVT == MVT::x86mmx) 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } 564 565 // The value may have changed - recompute ValueVT. 566 ValueVT = Val.getValueType(); 567 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 568 "Failed to tile the value with PartVT!"); 569 570 if (NumParts == 1) { 571 if (PartEVT != ValueVT) { 572 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 573 "scalar-to-vector conversion failed"); 574 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 575 } 576 577 Parts[0] = Val; 578 return; 579 } 580 581 // Expand the value into multiple parts. 582 if (NumParts & (NumParts - 1)) { 583 // The number of parts is not a power of 2. Split off and copy the tail. 584 assert(PartVT.isInteger() && ValueVT.isInteger() && 585 "Do not know what to expand to!"); 586 unsigned RoundParts = 1 << Log2_32(NumParts); 587 unsigned RoundBits = RoundParts * PartBits; 588 unsigned OddParts = NumParts - RoundParts; 589 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 590 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 591 592 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 593 CallConv); 594 595 if (DAG.getDataLayout().isBigEndian()) 596 // The odd parts were reversed by getCopyToParts - unreverse them. 597 std::reverse(Parts + RoundParts, Parts + NumParts); 598 599 NumParts = RoundParts; 600 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 601 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 602 } 603 604 // The number of parts is a power of 2. Repeatedly bisect the value using 605 // EXTRACT_ELEMENT. 606 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 607 EVT::getIntegerVT(*DAG.getContext(), 608 ValueVT.getSizeInBits()), 609 Val); 610 611 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 612 for (unsigned i = 0; i < NumParts; i += StepSize) { 613 unsigned ThisBits = StepSize * PartBits / 2; 614 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 615 SDValue &Part0 = Parts[i]; 616 SDValue &Part1 = Parts[i+StepSize/2]; 617 618 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 619 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 620 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 621 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 622 623 if (ThisBits == PartBits && ThisVT != PartVT) { 624 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 625 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 626 } 627 } 628 } 629 630 if (DAG.getDataLayout().isBigEndian()) 631 std::reverse(Parts, Parts + OrigNumParts); 632 } 633 634 static SDValue widenVectorToPartType(SelectionDAG &DAG, 635 SDValue Val, const SDLoc &DL, EVT PartVT) { 636 if (!PartVT.isVector()) 637 return SDValue(); 638 639 EVT ValueVT = Val.getValueType(); 640 unsigned PartNumElts = PartVT.getVectorNumElements(); 641 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 642 if (PartNumElts > ValueNumElts && 643 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 644 EVT ElementVT = PartVT.getVectorElementType(); 645 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 646 // undef elements. 647 SmallVector<SDValue, 16> Ops; 648 DAG.ExtractVectorElements(Val, Ops); 649 SDValue EltUndef = DAG.getUNDEF(ElementVT); 650 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 651 Ops.push_back(EltUndef); 652 653 // FIXME: Use CONCAT for 2x -> 4x. 654 return DAG.getBuildVector(PartVT, DL, Ops); 655 } 656 657 return SDValue(); 658 } 659 660 /// getCopyToPartsVector - Create a series of nodes that contain the specified 661 /// value split into legal parts. 662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 663 SDValue Val, SDValue *Parts, unsigned NumParts, 664 MVT PartVT, const Value *V, 665 Optional<CallingConv::ID> CallConv) { 666 EVT ValueVT = Val.getValueType(); 667 assert(ValueVT.isVector() && "Not a vector"); 668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 669 const bool IsABIRegCopy = CallConv.hasValue(); 670 671 if (NumParts == 1) { 672 EVT PartEVT = PartVT; 673 if (PartEVT == ValueVT) { 674 // Nothing to do. 675 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 676 // Bitconvert vector->vector case. 677 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 678 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 679 Val = Widened; 680 } else if (PartVT.isVector() && 681 PartEVT.getVectorElementType().bitsGE( 682 ValueVT.getVectorElementType()) && 683 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 684 685 // Promoted vector extract 686 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorNumElements() == 1) { 689 Val = DAG.getNode( 690 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 691 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 692 } else { 693 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = 696 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 697 Val = DAG.getBitcast(IntermediateType, Val); 698 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 699 } 700 } 701 702 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 703 Parts[0] = Val; 704 return; 705 } 706 707 // Handle a multi-element vector. 708 EVT IntermediateVT; 709 MVT RegisterVT; 710 unsigned NumIntermediates; 711 unsigned NumRegs; 712 if (IsABIRegCopy) { 713 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 714 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } else { 717 NumRegs = 718 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } 721 722 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 723 NumParts = NumRegs; // Silence a compiler warning. 724 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 725 726 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 727 IntermediateVT.getVectorNumElements() : 1; 728 729 // Convert the vector to the appropriate type if necessary. 730 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 731 732 EVT BuiltVectorTy = EVT::getVectorVT( 733 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 734 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 735 if (ValueVT != BuiltVectorTy) { 736 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 737 Val = Widened; 738 739 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 740 } 741 742 // Split the vector into intermediate operands. 743 SmallVector<SDValue, 8> Ops(NumIntermediates); 744 for (unsigned i = 0; i != NumIntermediates; ++i) { 745 if (IntermediateVT.isVector()) { 746 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 747 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 748 } else { 749 Ops[i] = DAG.getNode( 750 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 751 DAG.getConstant(i, DL, IdxVT)); 752 } 753 } 754 755 // Split the intermediate operands into legal parts. 756 if (NumParts == NumIntermediates) { 757 // If the register was not expanded, promote or copy the value, 758 // as appropriate. 759 for (unsigned i = 0; i != NumParts; ++i) 760 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 761 } else if (NumParts > 0) { 762 // If the intermediate type was expanded, split each the value into 763 // legal parts. 764 assert(NumIntermediates != 0 && "division by zero"); 765 assert(NumParts % NumIntermediates == 0 && 766 "Must expand into a divisible number of parts!"); 767 unsigned Factor = NumParts / NumIntermediates; 768 for (unsigned i = 0; i != NumIntermediates; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 770 CallConv); 771 } 772 } 773 774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 775 EVT valuevt, Optional<CallingConv::ID> CC) 776 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 777 RegCount(1, regs.size()), CallConv(CC) {} 778 779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 780 const DataLayout &DL, unsigned Reg, Type *Ty, 781 Optional<CallingConv::ID> CC) { 782 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 783 784 CallConv = CC; 785 786 for (EVT ValueVT : ValueVTs) { 787 unsigned NumRegs = 788 isABIMangled() 789 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getNumRegisters(Context, ValueVT); 791 MVT RegisterVT = 792 isABIMangled() 793 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getRegisterType(Context, ValueVT); 795 for (unsigned i = 0; i != NumRegs; ++i) 796 Regs.push_back(Reg + i); 797 RegVTs.push_back(RegisterVT); 798 RegCount.push_back(NumRegs); 799 Reg += NumRegs; 800 } 801 } 802 803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 804 FunctionLoweringInfo &FuncInfo, 805 const SDLoc &dl, SDValue &Chain, 806 SDValue *Flag, const Value *V) const { 807 // A Value with type {} or [0 x %t] needs no registers. 808 if (ValueVTs.empty()) 809 return SDValue(); 810 811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 812 813 // Assemble the legal parts into the final values. 814 SmallVector<SDValue, 4> Values(ValueVTs.size()); 815 SmallVector<SDValue, 8> Parts; 816 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 // Copy the legal parts from the registers. 818 EVT ValueVT = ValueVTs[Value]; 819 unsigned NumRegs = RegCount[Value]; 820 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 821 *DAG.getContext(), 822 CallConv.getValue(), RegVTs[Value]) 823 : RegVTs[Value]; 824 825 Parts.resize(NumRegs); 826 for (unsigned i = 0; i != NumRegs; ++i) { 827 SDValue P; 828 if (!Flag) { 829 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 830 } else { 831 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 832 *Flag = P.getValue(2); 833 } 834 835 Chain = P.getValue(1); 836 Parts[i] = P; 837 838 // If the source register was virtual and if we know something about it, 839 // add an assert node. 840 if (!Register::isVirtualRegister(Regs[Part + i]) || 841 !RegisterVT.isInteger()) 842 continue; 843 844 const FunctionLoweringInfo::LiveOutInfo *LOI = 845 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 846 if (!LOI) 847 continue; 848 849 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 850 unsigned NumSignBits = LOI->NumSignBits; 851 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 852 853 if (NumZeroBits == RegSize) { 854 // The current value is a zero. 855 // Explicitly express that as it would be easier for 856 // optimizations to kick in. 857 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 858 continue; 859 } 860 861 // FIXME: We capture more information than the dag can represent. For 862 // now, just use the tightest assertzext/assertsext possible. 863 bool isSExt; 864 EVT FromVT(MVT::Other); 865 if (NumZeroBits) { 866 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 867 isSExt = false; 868 } else if (NumSignBits > 1) { 869 FromVT = 870 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 871 isSExt = true; 872 } else { 873 continue; 874 } 875 // Add an assertion node. 876 assert(FromVT != MVT::Other); 877 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 878 RegisterVT, P, DAG.getValueType(FromVT)); 879 } 880 881 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 882 RegisterVT, ValueVT, V, CallConv); 883 Part += NumRegs; 884 Parts.clear(); 885 } 886 887 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 888 } 889 890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 891 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 892 const Value *V, 893 ISD::NodeType PreferredExtendType) const { 894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 895 ISD::NodeType ExtendKind = PreferredExtendType; 896 897 // Get the list of the values's legal parts. 898 unsigned NumRegs = Regs.size(); 899 SmallVector<SDValue, 8> Parts(NumRegs); 900 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 901 unsigned NumParts = RegCount[Value]; 902 903 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 904 *DAG.getContext(), 905 CallConv.getValue(), RegVTs[Value]) 906 : RegVTs[Value]; 907 908 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 909 ExtendKind = ISD::ZERO_EXTEND; 910 911 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 912 NumParts, RegisterVT, V, CallConv, ExtendKind); 913 Part += NumParts; 914 } 915 916 // Copy the parts into the registers. 917 SmallVector<SDValue, 8> Chains(NumRegs); 918 for (unsigned i = 0; i != NumRegs; ++i) { 919 SDValue Part; 920 if (!Flag) { 921 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 922 } else { 923 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 924 *Flag = Part.getValue(1); 925 } 926 927 Chains[i] = Part.getValue(0); 928 } 929 930 if (NumRegs == 1 || Flag) 931 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 932 // flagged to it. That is the CopyToReg nodes and the user are considered 933 // a single scheduling unit. If we create a TokenFactor and return it as 934 // chain, then the TokenFactor is both a predecessor (operand) of the 935 // user as well as a successor (the TF operands are flagged to the user). 936 // c1, f1 = CopyToReg 937 // c2, f2 = CopyToReg 938 // c3 = TokenFactor c1, c2 939 // ... 940 // = op c3, ..., f2 941 Chain = Chains[NumRegs-1]; 942 else 943 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 944 } 945 946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 947 unsigned MatchingIdx, const SDLoc &dl, 948 SelectionDAG &DAG, 949 std::vector<SDValue> &Ops) const { 950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 951 952 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 953 if (HasMatching) 954 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 955 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 956 // Put the register class of the virtual registers in the flag word. That 957 // way, later passes can recompute register class constraints for inline 958 // assembly as well as normal instructions. 959 // Don't do this for tied operands that can use the regclass information 960 // from the def. 961 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 962 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 963 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 964 } 965 966 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 967 Ops.push_back(Res); 968 969 if (Code == InlineAsm::Kind_Clobber) { 970 // Clobbers should always have a 1:1 mapping with registers, and may 971 // reference registers that have illegal (e.g. vector) types. Hence, we 972 // shouldn't try to apply any sort of splitting logic to them. 973 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 974 "No 1:1 mapping from clobbers to regs?"); 975 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 976 (void)SP; 977 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 978 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 979 assert( 980 (Regs[I] != SP || 981 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 982 "If we clobbered the stack pointer, MFI should know about it."); 983 } 984 return; 985 } 986 987 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 988 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 989 MVT RegisterVT = RegVTs[Value]; 990 for (unsigned i = 0; i != NumRegs; ++i) { 991 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 992 unsigned TheReg = Regs[Reg++]; 993 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 994 } 995 } 996 } 997 998 SmallVector<std::pair<unsigned, unsigned>, 4> 999 RegsForValue::getRegsAndSizes() const { 1000 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1001 unsigned I = 0; 1002 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1003 unsigned RegCount = std::get<0>(CountAndVT); 1004 MVT RegisterVT = std::get<1>(CountAndVT); 1005 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1006 for (unsigned E = I + RegCount; I != E; ++I) 1007 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1008 } 1009 return OutVec; 1010 } 1011 1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1013 const TargetLibraryInfo *li) { 1014 AA = aa; 1015 GFI = gfi; 1016 LibInfo = li; 1017 DL = &DAG.getDataLayout(); 1018 Context = DAG.getContext(); 1019 LPadToCallSiteMap.clear(); 1020 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1021 } 1022 1023 void SelectionDAGBuilder::clear() { 1024 NodeMap.clear(); 1025 UnusedArgNodeMap.clear(); 1026 PendingLoads.clear(); 1027 PendingExports.clear(); 1028 PendingConstrainedFP.clear(); 1029 PendingConstrainedFPStrict.clear(); 1030 CurInst = nullptr; 1031 HasTailCall = false; 1032 SDNodeOrder = LowestSDNodeOrder; 1033 StatepointLowering.clear(); 1034 } 1035 1036 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1037 DanglingDebugInfoMap.clear(); 1038 } 1039 1040 // Update DAG root to include dependencies on Pending chains. 1041 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1042 SDValue Root = DAG.getRoot(); 1043 1044 if (Pending.empty()) 1045 return Root; 1046 1047 // Add current root to PendingChains, unless we already indirectly 1048 // depend on it. 1049 if (Root.getOpcode() != ISD::EntryToken) { 1050 unsigned i = 0, e = Pending.size(); 1051 for (; i != e; ++i) { 1052 assert(Pending[i].getNode()->getNumOperands() > 1); 1053 if (Pending[i].getNode()->getOperand(0) == Root) 1054 break; // Don't add the root if we already indirectly depend on it. 1055 } 1056 1057 if (i == e) 1058 Pending.push_back(Root); 1059 } 1060 1061 if (Pending.size() == 1) 1062 Root = Pending[0]; 1063 else 1064 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1065 1066 DAG.setRoot(Root); 1067 Pending.clear(); 1068 return Root; 1069 } 1070 1071 SDValue SelectionDAGBuilder::getMemoryRoot() { 1072 return updateRoot(PendingLoads); 1073 } 1074 1075 SDValue SelectionDAGBuilder::getRoot() { 1076 // Chain up all pending constrained intrinsics together with all 1077 // pending loads, by simply appending them to PendingLoads and 1078 // then calling getMemoryRoot(). 1079 PendingLoads.reserve(PendingLoads.size() + 1080 PendingConstrainedFP.size() + 1081 PendingConstrainedFPStrict.size()); 1082 PendingLoads.append(PendingConstrainedFP.begin(), 1083 PendingConstrainedFP.end()); 1084 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1085 PendingConstrainedFPStrict.end()); 1086 PendingConstrainedFP.clear(); 1087 PendingConstrainedFPStrict.clear(); 1088 return getMemoryRoot(); 1089 } 1090 1091 SDValue SelectionDAGBuilder::getControlRoot() { 1092 // We need to emit pending fpexcept.strict constrained intrinsics, 1093 // so append them to the PendingExports list. 1094 PendingExports.append(PendingConstrainedFPStrict.begin(), 1095 PendingConstrainedFPStrict.end()); 1096 PendingConstrainedFPStrict.clear(); 1097 return updateRoot(PendingExports); 1098 } 1099 1100 void SelectionDAGBuilder::visit(const Instruction &I) { 1101 // Set up outgoing PHI node register values before emitting the terminator. 1102 if (I.isTerminator()) { 1103 HandlePHINodesInSuccessorBlocks(I.getParent()); 1104 } 1105 1106 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1107 if (!isa<DbgInfoIntrinsic>(I)) 1108 ++SDNodeOrder; 1109 1110 CurInst = &I; 1111 1112 visit(I.getOpcode(), I); 1113 1114 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1115 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1116 // maps to this instruction. 1117 // TODO: We could handle all flags (nsw, etc) here. 1118 // TODO: If an IR instruction maps to >1 node, only the final node will have 1119 // flags set. 1120 if (SDNode *Node = getNodeForIRValue(&I)) { 1121 SDNodeFlags IncomingFlags; 1122 IncomingFlags.copyFMF(*FPMO); 1123 if (!Node->getFlags().isDefined()) 1124 Node->setFlags(IncomingFlags); 1125 else 1126 Node->intersectFlagsWith(IncomingFlags); 1127 } 1128 } 1129 // Constrained FP intrinsics with fpexcept.ignore should also get 1130 // the NoFPExcept flag. 1131 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I)) 1132 if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore) 1133 if (SDNode *Node = getNodeForIRValue(&I)) { 1134 SDNodeFlags Flags = Node->getFlags(); 1135 Flags.setNoFPExcept(true); 1136 Node->setFlags(Flags); 1137 } 1138 1139 if (!I.isTerminator() && !HasTailCall && 1140 !isStatepoint(&I)) // statepoints handle their exports internally 1141 CopyToExportRegsIfNeeded(&I); 1142 1143 CurInst = nullptr; 1144 } 1145 1146 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1147 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1148 } 1149 1150 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1151 // Note: this doesn't use InstVisitor, because it has to work with 1152 // ConstantExpr's in addition to instructions. 1153 switch (Opcode) { 1154 default: llvm_unreachable("Unknown instruction type encountered!"); 1155 // Build the switch statement using the Instruction.def file. 1156 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1157 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1158 #include "llvm/IR/Instruction.def" 1159 } 1160 } 1161 1162 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1163 const DIExpression *Expr) { 1164 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1165 const DbgValueInst *DI = DDI.getDI(); 1166 DIVariable *DanglingVariable = DI->getVariable(); 1167 DIExpression *DanglingExpr = DI->getExpression(); 1168 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1169 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1170 return true; 1171 } 1172 return false; 1173 }; 1174 1175 for (auto &DDIMI : DanglingDebugInfoMap) { 1176 DanglingDebugInfoVector &DDIV = DDIMI.second; 1177 1178 // If debug info is to be dropped, run it through final checks to see 1179 // whether it can be salvaged. 1180 for (auto &DDI : DDIV) 1181 if (isMatchingDbgValue(DDI)) 1182 salvageUnresolvedDbgValue(DDI); 1183 1184 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1185 } 1186 } 1187 1188 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1189 // generate the debug data structures now that we've seen its definition. 1190 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1191 SDValue Val) { 1192 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1193 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1194 return; 1195 1196 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1197 for (auto &DDI : DDIV) { 1198 const DbgValueInst *DI = DDI.getDI(); 1199 assert(DI && "Ill-formed DanglingDebugInfo"); 1200 DebugLoc dl = DDI.getdl(); 1201 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1202 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1203 DILocalVariable *Variable = DI->getVariable(); 1204 DIExpression *Expr = DI->getExpression(); 1205 assert(Variable->isValidLocationForIntrinsic(dl) && 1206 "Expected inlined-at fields to agree"); 1207 SDDbgValue *SDV; 1208 if (Val.getNode()) { 1209 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1210 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1211 // we couldn't resolve it directly when examining the DbgValue intrinsic 1212 // in the first place we should not be more successful here). Unless we 1213 // have some test case that prove this to be correct we should avoid 1214 // calling EmitFuncArgumentDbgValue here. 1215 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1216 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1217 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1218 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1219 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1220 // inserted after the definition of Val when emitting the instructions 1221 // after ISel. An alternative could be to teach 1222 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1223 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1224 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1225 << ValSDNodeOrder << "\n"); 1226 SDV = getDbgValue(Val, Variable, Expr, dl, 1227 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1228 DAG.AddDbgValue(SDV, Val.getNode(), false); 1229 } else 1230 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1231 << "in EmitFuncArgumentDbgValue\n"); 1232 } else { 1233 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1234 auto Undef = 1235 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1236 auto SDV = 1237 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1238 DAG.AddDbgValue(SDV, nullptr, false); 1239 } 1240 } 1241 DDIV.clear(); 1242 } 1243 1244 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1245 Value *V = DDI.getDI()->getValue(); 1246 DILocalVariable *Var = DDI.getDI()->getVariable(); 1247 DIExpression *Expr = DDI.getDI()->getExpression(); 1248 DebugLoc DL = DDI.getdl(); 1249 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1250 unsigned SDOrder = DDI.getSDNodeOrder(); 1251 1252 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1253 // that DW_OP_stack_value is desired. 1254 assert(isa<DbgValueInst>(DDI.getDI())); 1255 bool StackValue = true; 1256 1257 // Can this Value can be encoded without any further work? 1258 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1259 return; 1260 1261 // Attempt to salvage back through as many instructions as possible. Bail if 1262 // a non-instruction is seen, such as a constant expression or global 1263 // variable. FIXME: Further work could recover those too. 1264 while (isa<Instruction>(V)) { 1265 Instruction &VAsInst = *cast<Instruction>(V); 1266 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1267 1268 // If we cannot salvage any further, and haven't yet found a suitable debug 1269 // expression, bail out. 1270 if (!NewExpr) 1271 break; 1272 1273 // New value and expr now represent this debuginfo. 1274 V = VAsInst.getOperand(0); 1275 Expr = NewExpr; 1276 1277 // Some kind of simplification occurred: check whether the operand of the 1278 // salvaged debug expression can be encoded in this DAG. 1279 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1280 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1281 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1282 return; 1283 } 1284 } 1285 1286 // This was the final opportunity to salvage this debug information, and it 1287 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1288 // any earlier variable location. 1289 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1290 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1291 DAG.AddDbgValue(SDV, nullptr, false); 1292 1293 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1294 << "\n"); 1295 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1296 << "\n"); 1297 } 1298 1299 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1300 DIExpression *Expr, DebugLoc dl, 1301 DebugLoc InstDL, unsigned Order) { 1302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1303 SDDbgValue *SDV; 1304 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1305 isa<ConstantPointerNull>(V)) { 1306 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1307 DAG.AddDbgValue(SDV, nullptr, false); 1308 return true; 1309 } 1310 1311 // If the Value is a frame index, we can create a FrameIndex debug value 1312 // without relying on the DAG at all. 1313 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1314 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1315 if (SI != FuncInfo.StaticAllocaMap.end()) { 1316 auto SDV = 1317 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1318 /*IsIndirect*/ false, dl, SDNodeOrder); 1319 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1320 // is still available even if the SDNode gets optimized out. 1321 DAG.AddDbgValue(SDV, nullptr, false); 1322 return true; 1323 } 1324 } 1325 1326 // Do not use getValue() in here; we don't want to generate code at 1327 // this point if it hasn't been done yet. 1328 SDValue N = NodeMap[V]; 1329 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1330 N = UnusedArgNodeMap[V]; 1331 if (N.getNode()) { 1332 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1333 return true; 1334 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1335 DAG.AddDbgValue(SDV, N.getNode(), false); 1336 return true; 1337 } 1338 1339 // Special rules apply for the first dbg.values of parameter variables in a 1340 // function. Identify them by the fact they reference Argument Values, that 1341 // they're parameters, and they are parameters of the current function. We 1342 // need to let them dangle until they get an SDNode. 1343 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1344 !InstDL.getInlinedAt(); 1345 if (!IsParamOfFunc) { 1346 // The value is not used in this block yet (or it would have an SDNode). 1347 // We still want the value to appear for the user if possible -- if it has 1348 // an associated VReg, we can refer to that instead. 1349 auto VMI = FuncInfo.ValueMap.find(V); 1350 if (VMI != FuncInfo.ValueMap.end()) { 1351 unsigned Reg = VMI->second; 1352 // If this is a PHI node, it may be split up into several MI PHI nodes 1353 // (in FunctionLoweringInfo::set). 1354 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1355 V->getType(), None); 1356 if (RFV.occupiesMultipleRegs()) { 1357 unsigned Offset = 0; 1358 unsigned BitsToDescribe = 0; 1359 if (auto VarSize = Var->getSizeInBits()) 1360 BitsToDescribe = *VarSize; 1361 if (auto Fragment = Expr->getFragmentInfo()) 1362 BitsToDescribe = Fragment->SizeInBits; 1363 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1364 unsigned RegisterSize = RegAndSize.second; 1365 // Bail out if all bits are described already. 1366 if (Offset >= BitsToDescribe) 1367 break; 1368 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1369 ? BitsToDescribe - Offset 1370 : RegisterSize; 1371 auto FragmentExpr = DIExpression::createFragmentExpression( 1372 Expr, Offset, FragmentSize); 1373 if (!FragmentExpr) 1374 continue; 1375 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1376 false, dl, SDNodeOrder); 1377 DAG.AddDbgValue(SDV, nullptr, false); 1378 Offset += RegisterSize; 1379 } 1380 } else { 1381 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1382 DAG.AddDbgValue(SDV, nullptr, false); 1383 } 1384 return true; 1385 } 1386 } 1387 1388 return false; 1389 } 1390 1391 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1392 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1393 for (auto &Pair : DanglingDebugInfoMap) 1394 for (auto &DDI : Pair.second) 1395 salvageUnresolvedDbgValue(DDI); 1396 clearDanglingDebugInfo(); 1397 } 1398 1399 /// getCopyFromRegs - If there was virtual register allocated for the value V 1400 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1401 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1402 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1403 SDValue Result; 1404 1405 if (It != FuncInfo.ValueMap.end()) { 1406 unsigned InReg = It->second; 1407 1408 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1409 DAG.getDataLayout(), InReg, Ty, 1410 None); // This is not an ABI copy. 1411 SDValue Chain = DAG.getEntryNode(); 1412 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1413 V); 1414 resolveDanglingDebugInfo(V, Result); 1415 } 1416 1417 return Result; 1418 } 1419 1420 /// getValue - Return an SDValue for the given Value. 1421 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1422 // If we already have an SDValue for this value, use it. It's important 1423 // to do this first, so that we don't create a CopyFromReg if we already 1424 // have a regular SDValue. 1425 SDValue &N = NodeMap[V]; 1426 if (N.getNode()) return N; 1427 1428 // If there's a virtual register allocated and initialized for this 1429 // value, use it. 1430 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1431 return copyFromReg; 1432 1433 // Otherwise create a new SDValue and remember it. 1434 SDValue Val = getValueImpl(V); 1435 NodeMap[V] = Val; 1436 resolveDanglingDebugInfo(V, Val); 1437 return Val; 1438 } 1439 1440 // Return true if SDValue exists for the given Value 1441 bool SelectionDAGBuilder::findValue(const Value *V) const { 1442 return (NodeMap.find(V) != NodeMap.end()) || 1443 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1444 } 1445 1446 /// getNonRegisterValue - Return an SDValue for the given Value, but 1447 /// don't look in FuncInfo.ValueMap for a virtual register. 1448 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1449 // If we already have an SDValue for this value, use it. 1450 SDValue &N = NodeMap[V]; 1451 if (N.getNode()) { 1452 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1453 // Remove the debug location from the node as the node is about to be used 1454 // in a location which may differ from the original debug location. This 1455 // is relevant to Constant and ConstantFP nodes because they can appear 1456 // as constant expressions inside PHI nodes. 1457 N->setDebugLoc(DebugLoc()); 1458 } 1459 return N; 1460 } 1461 1462 // Otherwise create a new SDValue and remember it. 1463 SDValue Val = getValueImpl(V); 1464 NodeMap[V] = Val; 1465 resolveDanglingDebugInfo(V, Val); 1466 return Val; 1467 } 1468 1469 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1470 /// Create an SDValue for the given value. 1471 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1473 1474 if (const Constant *C = dyn_cast<Constant>(V)) { 1475 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1476 1477 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1478 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1479 1480 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1481 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1482 1483 if (isa<ConstantPointerNull>(C)) { 1484 unsigned AS = V->getType()->getPointerAddressSpace(); 1485 return DAG.getConstant(0, getCurSDLoc(), 1486 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1487 } 1488 1489 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1490 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1491 1492 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1493 return DAG.getUNDEF(VT); 1494 1495 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1496 visit(CE->getOpcode(), *CE); 1497 SDValue N1 = NodeMap[V]; 1498 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1499 return N1; 1500 } 1501 1502 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1503 SmallVector<SDValue, 4> Constants; 1504 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1505 OI != OE; ++OI) { 1506 SDNode *Val = getValue(*OI).getNode(); 1507 // If the operand is an empty aggregate, there are no values. 1508 if (!Val) continue; 1509 // Add each leaf value from the operand to the Constants list 1510 // to form a flattened list of all the values. 1511 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1512 Constants.push_back(SDValue(Val, i)); 1513 } 1514 1515 return DAG.getMergeValues(Constants, getCurSDLoc()); 1516 } 1517 1518 if (const ConstantDataSequential *CDS = 1519 dyn_cast<ConstantDataSequential>(C)) { 1520 SmallVector<SDValue, 4> Ops; 1521 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1522 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1523 // Add each leaf value from the operand to the Constants list 1524 // to form a flattened list of all the values. 1525 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1526 Ops.push_back(SDValue(Val, i)); 1527 } 1528 1529 if (isa<ArrayType>(CDS->getType())) 1530 return DAG.getMergeValues(Ops, getCurSDLoc()); 1531 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1532 } 1533 1534 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1535 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1536 "Unknown struct or array constant!"); 1537 1538 SmallVector<EVT, 4> ValueVTs; 1539 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1540 unsigned NumElts = ValueVTs.size(); 1541 if (NumElts == 0) 1542 return SDValue(); // empty struct 1543 SmallVector<SDValue, 4> Constants(NumElts); 1544 for (unsigned i = 0; i != NumElts; ++i) { 1545 EVT EltVT = ValueVTs[i]; 1546 if (isa<UndefValue>(C)) 1547 Constants[i] = DAG.getUNDEF(EltVT); 1548 else if (EltVT.isFloatingPoint()) 1549 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1550 else 1551 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1552 } 1553 1554 return DAG.getMergeValues(Constants, getCurSDLoc()); 1555 } 1556 1557 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1558 return DAG.getBlockAddress(BA, VT); 1559 1560 VectorType *VecTy = cast<VectorType>(V->getType()); 1561 unsigned NumElements = VecTy->getNumElements(); 1562 1563 // Now that we know the number and type of the elements, get that number of 1564 // elements into the Ops array based on what kind of constant it is. 1565 SmallVector<SDValue, 16> Ops; 1566 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1567 for (unsigned i = 0; i != NumElements; ++i) 1568 Ops.push_back(getValue(CV->getOperand(i))); 1569 } else { 1570 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1571 EVT EltVT = 1572 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1573 1574 SDValue Op; 1575 if (EltVT.isFloatingPoint()) 1576 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1577 else 1578 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1579 Ops.assign(NumElements, Op); 1580 } 1581 1582 // Create a BUILD_VECTOR node. 1583 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1584 } 1585 1586 // If this is a static alloca, generate it as the frameindex instead of 1587 // computation. 1588 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1589 DenseMap<const AllocaInst*, int>::iterator SI = 1590 FuncInfo.StaticAllocaMap.find(AI); 1591 if (SI != FuncInfo.StaticAllocaMap.end()) 1592 return DAG.getFrameIndex(SI->second, 1593 TLI.getFrameIndexTy(DAG.getDataLayout())); 1594 } 1595 1596 // If this is an instruction which fast-isel has deferred, select it now. 1597 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1598 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1599 1600 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1601 Inst->getType(), getABIRegCopyCC(V)); 1602 SDValue Chain = DAG.getEntryNode(); 1603 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1604 } 1605 1606 llvm_unreachable("Can't get register for value!"); 1607 } 1608 1609 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1610 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1611 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1612 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1613 bool IsSEH = isAsynchronousEHPersonality(Pers); 1614 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1615 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1616 if (!IsSEH) 1617 CatchPadMBB->setIsEHScopeEntry(); 1618 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1619 if (IsMSVCCXX || IsCoreCLR) 1620 CatchPadMBB->setIsEHFuncletEntry(); 1621 // Wasm does not need catchpads anymore 1622 if (!IsWasmCXX) 1623 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1624 getControlRoot())); 1625 } 1626 1627 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1628 // Update machine-CFG edge. 1629 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1630 FuncInfo.MBB->addSuccessor(TargetMBB); 1631 1632 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1633 bool IsSEH = isAsynchronousEHPersonality(Pers); 1634 if (IsSEH) { 1635 // If this is not a fall-through branch or optimizations are switched off, 1636 // emit the branch. 1637 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1638 TM.getOptLevel() == CodeGenOpt::None) 1639 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1640 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1641 return; 1642 } 1643 1644 // Figure out the funclet membership for the catchret's successor. 1645 // This will be used by the FuncletLayout pass to determine how to order the 1646 // BB's. 1647 // A 'catchret' returns to the outer scope's color. 1648 Value *ParentPad = I.getCatchSwitchParentPad(); 1649 const BasicBlock *SuccessorColor; 1650 if (isa<ConstantTokenNone>(ParentPad)) 1651 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1652 else 1653 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1654 assert(SuccessorColor && "No parent funclet for catchret!"); 1655 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1656 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1657 1658 // Create the terminator node. 1659 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1660 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1661 DAG.getBasicBlock(SuccessorColorMBB)); 1662 DAG.setRoot(Ret); 1663 } 1664 1665 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1666 // Don't emit any special code for the cleanuppad instruction. It just marks 1667 // the start of an EH scope/funclet. 1668 FuncInfo.MBB->setIsEHScopeEntry(); 1669 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1670 if (Pers != EHPersonality::Wasm_CXX) { 1671 FuncInfo.MBB->setIsEHFuncletEntry(); 1672 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1673 } 1674 } 1675 1676 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1677 // the control flow always stops at the single catch pad, as it does for a 1678 // cleanup pad. In case the exception caught is not of the types the catch pad 1679 // catches, it will be rethrown by a rethrow. 1680 static void findWasmUnwindDestinations( 1681 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1682 BranchProbability Prob, 1683 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1684 &UnwindDests) { 1685 while (EHPadBB) { 1686 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1687 if (isa<CleanupPadInst>(Pad)) { 1688 // Stop on cleanup pads. 1689 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1690 UnwindDests.back().first->setIsEHScopeEntry(); 1691 break; 1692 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1693 // Add the catchpad handlers to the possible destinations. We don't 1694 // continue to the unwind destination of the catchswitch for wasm. 1695 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1696 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1697 UnwindDests.back().first->setIsEHScopeEntry(); 1698 } 1699 break; 1700 } else { 1701 continue; 1702 } 1703 } 1704 } 1705 1706 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1707 /// many places it could ultimately go. In the IR, we have a single unwind 1708 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1709 /// This function skips over imaginary basic blocks that hold catchswitch 1710 /// instructions, and finds all the "real" machine 1711 /// basic block destinations. As those destinations may not be successors of 1712 /// EHPadBB, here we also calculate the edge probability to those destinations. 1713 /// The passed-in Prob is the edge probability to EHPadBB. 1714 static void findUnwindDestinations( 1715 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1716 BranchProbability Prob, 1717 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1718 &UnwindDests) { 1719 EHPersonality Personality = 1720 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1721 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1722 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1723 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1724 bool IsSEH = isAsynchronousEHPersonality(Personality); 1725 1726 if (IsWasmCXX) { 1727 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1728 assert(UnwindDests.size() <= 1 && 1729 "There should be at most one unwind destination for wasm"); 1730 return; 1731 } 1732 1733 while (EHPadBB) { 1734 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1735 BasicBlock *NewEHPadBB = nullptr; 1736 if (isa<LandingPadInst>(Pad)) { 1737 // Stop on landingpads. They are not funclets. 1738 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1739 break; 1740 } else if (isa<CleanupPadInst>(Pad)) { 1741 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1742 // personalities. 1743 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1744 UnwindDests.back().first->setIsEHScopeEntry(); 1745 UnwindDests.back().first->setIsEHFuncletEntry(); 1746 break; 1747 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1748 // Add the catchpad handlers to the possible destinations. 1749 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1750 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1751 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1752 if (IsMSVCCXX || IsCoreCLR) 1753 UnwindDests.back().first->setIsEHFuncletEntry(); 1754 if (!IsSEH) 1755 UnwindDests.back().first->setIsEHScopeEntry(); 1756 } 1757 NewEHPadBB = CatchSwitch->getUnwindDest(); 1758 } else { 1759 continue; 1760 } 1761 1762 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1763 if (BPI && NewEHPadBB) 1764 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1765 EHPadBB = NewEHPadBB; 1766 } 1767 } 1768 1769 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1770 // Update successor info. 1771 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1772 auto UnwindDest = I.getUnwindDest(); 1773 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1774 BranchProbability UnwindDestProb = 1775 (BPI && UnwindDest) 1776 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1777 : BranchProbability::getZero(); 1778 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1779 for (auto &UnwindDest : UnwindDests) { 1780 UnwindDest.first->setIsEHPad(); 1781 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1782 } 1783 FuncInfo.MBB->normalizeSuccProbs(); 1784 1785 // Create the terminator node. 1786 SDValue Ret = 1787 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1788 DAG.setRoot(Ret); 1789 } 1790 1791 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1792 report_fatal_error("visitCatchSwitch not yet implemented!"); 1793 } 1794 1795 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1797 auto &DL = DAG.getDataLayout(); 1798 SDValue Chain = getControlRoot(); 1799 SmallVector<ISD::OutputArg, 8> Outs; 1800 SmallVector<SDValue, 8> OutVals; 1801 1802 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1803 // lower 1804 // 1805 // %val = call <ty> @llvm.experimental.deoptimize() 1806 // ret <ty> %val 1807 // 1808 // differently. 1809 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1810 LowerDeoptimizingReturn(); 1811 return; 1812 } 1813 1814 if (!FuncInfo.CanLowerReturn) { 1815 unsigned DemoteReg = FuncInfo.DemoteRegister; 1816 const Function *F = I.getParent()->getParent(); 1817 1818 // Emit a store of the return value through the virtual register. 1819 // Leave Outs empty so that LowerReturn won't try to load return 1820 // registers the usual way. 1821 SmallVector<EVT, 1> PtrValueVTs; 1822 ComputeValueVTs(TLI, DL, 1823 F->getReturnType()->getPointerTo( 1824 DAG.getDataLayout().getAllocaAddrSpace()), 1825 PtrValueVTs); 1826 1827 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1828 DemoteReg, PtrValueVTs[0]); 1829 SDValue RetOp = getValue(I.getOperand(0)); 1830 1831 SmallVector<EVT, 4> ValueVTs, MemVTs; 1832 SmallVector<uint64_t, 4> Offsets; 1833 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1834 &Offsets); 1835 unsigned NumValues = ValueVTs.size(); 1836 1837 SmallVector<SDValue, 4> Chains(NumValues); 1838 for (unsigned i = 0; i != NumValues; ++i) { 1839 // An aggregate return value cannot wrap around the address space, so 1840 // offsets to its parts don't wrap either. 1841 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1842 1843 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1844 if (MemVTs[i] != ValueVTs[i]) 1845 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1846 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1847 // FIXME: better loc info would be nice. 1848 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1849 } 1850 1851 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1852 MVT::Other, Chains); 1853 } else if (I.getNumOperands() != 0) { 1854 SmallVector<EVT, 4> ValueVTs; 1855 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1856 unsigned NumValues = ValueVTs.size(); 1857 if (NumValues) { 1858 SDValue RetOp = getValue(I.getOperand(0)); 1859 1860 const Function *F = I.getParent()->getParent(); 1861 1862 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1863 I.getOperand(0)->getType(), F->getCallingConv(), 1864 /*IsVarArg*/ false); 1865 1866 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1867 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1868 Attribute::SExt)) 1869 ExtendKind = ISD::SIGN_EXTEND; 1870 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1871 Attribute::ZExt)) 1872 ExtendKind = ISD::ZERO_EXTEND; 1873 1874 LLVMContext &Context = F->getContext(); 1875 bool RetInReg = F->getAttributes().hasAttribute( 1876 AttributeList::ReturnIndex, Attribute::InReg); 1877 1878 for (unsigned j = 0; j != NumValues; ++j) { 1879 EVT VT = ValueVTs[j]; 1880 1881 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1882 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1883 1884 CallingConv::ID CC = F->getCallingConv(); 1885 1886 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1887 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1888 SmallVector<SDValue, 4> Parts(NumParts); 1889 getCopyToParts(DAG, getCurSDLoc(), 1890 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1891 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1892 1893 // 'inreg' on function refers to return value 1894 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1895 if (RetInReg) 1896 Flags.setInReg(); 1897 1898 if (I.getOperand(0)->getType()->isPointerTy()) { 1899 Flags.setPointer(); 1900 Flags.setPointerAddrSpace( 1901 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1902 } 1903 1904 if (NeedsRegBlock) { 1905 Flags.setInConsecutiveRegs(); 1906 if (j == NumValues - 1) 1907 Flags.setInConsecutiveRegsLast(); 1908 } 1909 1910 // Propagate extension type if any 1911 if (ExtendKind == ISD::SIGN_EXTEND) 1912 Flags.setSExt(); 1913 else if (ExtendKind == ISD::ZERO_EXTEND) 1914 Flags.setZExt(); 1915 1916 for (unsigned i = 0; i < NumParts; ++i) { 1917 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1918 VT, /*isfixed=*/true, 0, 0)); 1919 OutVals.push_back(Parts[i]); 1920 } 1921 } 1922 } 1923 } 1924 1925 // Push in swifterror virtual register as the last element of Outs. This makes 1926 // sure swifterror virtual register will be returned in the swifterror 1927 // physical register. 1928 const Function *F = I.getParent()->getParent(); 1929 if (TLI.supportSwiftError() && 1930 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1931 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1932 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1933 Flags.setSwiftError(); 1934 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1935 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1936 true /*isfixed*/, 1 /*origidx*/, 1937 0 /*partOffs*/)); 1938 // Create SDNode for the swifterror virtual register. 1939 OutVals.push_back( 1940 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1941 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1942 EVT(TLI.getPointerTy(DL)))); 1943 } 1944 1945 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1946 CallingConv::ID CallConv = 1947 DAG.getMachineFunction().getFunction().getCallingConv(); 1948 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1949 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1950 1951 // Verify that the target's LowerReturn behaved as expected. 1952 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1953 "LowerReturn didn't return a valid chain!"); 1954 1955 // Update the DAG with the new chain value resulting from return lowering. 1956 DAG.setRoot(Chain); 1957 } 1958 1959 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1960 /// created for it, emit nodes to copy the value into the virtual 1961 /// registers. 1962 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1963 // Skip empty types 1964 if (V->getType()->isEmptyTy()) 1965 return; 1966 1967 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1968 if (VMI != FuncInfo.ValueMap.end()) { 1969 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1970 CopyValueToVirtualRegister(V, VMI->second); 1971 } 1972 } 1973 1974 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1975 /// the current basic block, add it to ValueMap now so that we'll get a 1976 /// CopyTo/FromReg. 1977 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1978 // No need to export constants. 1979 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1980 1981 // Already exported? 1982 if (FuncInfo.isExportedInst(V)) return; 1983 1984 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1985 CopyValueToVirtualRegister(V, Reg); 1986 } 1987 1988 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1989 const BasicBlock *FromBB) { 1990 // The operands of the setcc have to be in this block. We don't know 1991 // how to export them from some other block. 1992 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1993 // Can export from current BB. 1994 if (VI->getParent() == FromBB) 1995 return true; 1996 1997 // Is already exported, noop. 1998 return FuncInfo.isExportedInst(V); 1999 } 2000 2001 // If this is an argument, we can export it if the BB is the entry block or 2002 // if it is already exported. 2003 if (isa<Argument>(V)) { 2004 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2005 return true; 2006 2007 // Otherwise, can only export this if it is already exported. 2008 return FuncInfo.isExportedInst(V); 2009 } 2010 2011 // Otherwise, constants can always be exported. 2012 return true; 2013 } 2014 2015 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2016 BranchProbability 2017 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2018 const MachineBasicBlock *Dst) const { 2019 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2020 const BasicBlock *SrcBB = Src->getBasicBlock(); 2021 const BasicBlock *DstBB = Dst->getBasicBlock(); 2022 if (!BPI) { 2023 // If BPI is not available, set the default probability as 1 / N, where N is 2024 // the number of successors. 2025 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2026 return BranchProbability(1, SuccSize); 2027 } 2028 return BPI->getEdgeProbability(SrcBB, DstBB); 2029 } 2030 2031 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2032 MachineBasicBlock *Dst, 2033 BranchProbability Prob) { 2034 if (!FuncInfo.BPI) 2035 Src->addSuccessorWithoutProb(Dst); 2036 else { 2037 if (Prob.isUnknown()) 2038 Prob = getEdgeProbability(Src, Dst); 2039 Src->addSuccessor(Dst, Prob); 2040 } 2041 } 2042 2043 static bool InBlock(const Value *V, const BasicBlock *BB) { 2044 if (const Instruction *I = dyn_cast<Instruction>(V)) 2045 return I->getParent() == BB; 2046 return true; 2047 } 2048 2049 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2050 /// This function emits a branch and is used at the leaves of an OR or an 2051 /// AND operator tree. 2052 void 2053 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2054 MachineBasicBlock *TBB, 2055 MachineBasicBlock *FBB, 2056 MachineBasicBlock *CurBB, 2057 MachineBasicBlock *SwitchBB, 2058 BranchProbability TProb, 2059 BranchProbability FProb, 2060 bool InvertCond) { 2061 const BasicBlock *BB = CurBB->getBasicBlock(); 2062 2063 // If the leaf of the tree is a comparison, merge the condition into 2064 // the caseblock. 2065 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2066 // The operands of the cmp have to be in this block. We don't know 2067 // how to export them from some other block. If this is the first block 2068 // of the sequence, no exporting is needed. 2069 if (CurBB == SwitchBB || 2070 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2071 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2072 ISD::CondCode Condition; 2073 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2074 ICmpInst::Predicate Pred = 2075 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2076 Condition = getICmpCondCode(Pred); 2077 } else { 2078 const FCmpInst *FC = cast<FCmpInst>(Cond); 2079 FCmpInst::Predicate Pred = 2080 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2081 Condition = getFCmpCondCode(Pred); 2082 if (TM.Options.NoNaNsFPMath) 2083 Condition = getFCmpCodeWithoutNaN(Condition); 2084 } 2085 2086 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2087 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2088 SL->SwitchCases.push_back(CB); 2089 return; 2090 } 2091 } 2092 2093 // Create a CaseBlock record representing this branch. 2094 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2095 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2096 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2097 SL->SwitchCases.push_back(CB); 2098 } 2099 2100 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2101 MachineBasicBlock *TBB, 2102 MachineBasicBlock *FBB, 2103 MachineBasicBlock *CurBB, 2104 MachineBasicBlock *SwitchBB, 2105 Instruction::BinaryOps Opc, 2106 BranchProbability TProb, 2107 BranchProbability FProb, 2108 bool InvertCond) { 2109 // Skip over not part of the tree and remember to invert op and operands at 2110 // next level. 2111 Value *NotCond; 2112 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2113 InBlock(NotCond, CurBB->getBasicBlock())) { 2114 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2115 !InvertCond); 2116 return; 2117 } 2118 2119 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2120 // Compute the effective opcode for Cond, taking into account whether it needs 2121 // to be inverted, e.g. 2122 // and (not (or A, B)), C 2123 // gets lowered as 2124 // and (and (not A, not B), C) 2125 unsigned BOpc = 0; 2126 if (BOp) { 2127 BOpc = BOp->getOpcode(); 2128 if (InvertCond) { 2129 if (BOpc == Instruction::And) 2130 BOpc = Instruction::Or; 2131 else if (BOpc == Instruction::Or) 2132 BOpc = Instruction::And; 2133 } 2134 } 2135 2136 // If this node is not part of the or/and tree, emit it as a branch. 2137 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2138 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2139 BOp->getParent() != CurBB->getBasicBlock() || 2140 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2141 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2142 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2143 TProb, FProb, InvertCond); 2144 return; 2145 } 2146 2147 // Create TmpBB after CurBB. 2148 MachineFunction::iterator BBI(CurBB); 2149 MachineFunction &MF = DAG.getMachineFunction(); 2150 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2151 CurBB->getParent()->insert(++BBI, TmpBB); 2152 2153 if (Opc == Instruction::Or) { 2154 // Codegen X | Y as: 2155 // BB1: 2156 // jmp_if_X TBB 2157 // jmp TmpBB 2158 // TmpBB: 2159 // jmp_if_Y TBB 2160 // jmp FBB 2161 // 2162 2163 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2164 // The requirement is that 2165 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2166 // = TrueProb for original BB. 2167 // Assuming the original probabilities are A and B, one choice is to set 2168 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2169 // A/(1+B) and 2B/(1+B). This choice assumes that 2170 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2171 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2172 // TmpBB, but the math is more complicated. 2173 2174 auto NewTrueProb = TProb / 2; 2175 auto NewFalseProb = TProb / 2 + FProb; 2176 // Emit the LHS condition. 2177 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2178 NewTrueProb, NewFalseProb, InvertCond); 2179 2180 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2181 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2182 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2183 // Emit the RHS condition into TmpBB. 2184 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2185 Probs[0], Probs[1], InvertCond); 2186 } else { 2187 assert(Opc == Instruction::And && "Unknown merge op!"); 2188 // Codegen X & Y as: 2189 // BB1: 2190 // jmp_if_X TmpBB 2191 // jmp FBB 2192 // TmpBB: 2193 // jmp_if_Y TBB 2194 // jmp FBB 2195 // 2196 // This requires creation of TmpBB after CurBB. 2197 2198 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2199 // The requirement is that 2200 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2201 // = FalseProb for original BB. 2202 // Assuming the original probabilities are A and B, one choice is to set 2203 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2204 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2205 // TrueProb for BB1 * FalseProb for TmpBB. 2206 2207 auto NewTrueProb = TProb + FProb / 2; 2208 auto NewFalseProb = FProb / 2; 2209 // Emit the LHS condition. 2210 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2211 NewTrueProb, NewFalseProb, InvertCond); 2212 2213 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2214 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2215 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2216 // Emit the RHS condition into TmpBB. 2217 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2218 Probs[0], Probs[1], InvertCond); 2219 } 2220 } 2221 2222 /// If the set of cases should be emitted as a series of branches, return true. 2223 /// If we should emit this as a bunch of and/or'd together conditions, return 2224 /// false. 2225 bool 2226 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2227 if (Cases.size() != 2) return true; 2228 2229 // If this is two comparisons of the same values or'd or and'd together, they 2230 // will get folded into a single comparison, so don't emit two blocks. 2231 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2232 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2233 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2234 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2235 return false; 2236 } 2237 2238 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2239 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2240 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2241 Cases[0].CC == Cases[1].CC && 2242 isa<Constant>(Cases[0].CmpRHS) && 2243 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2244 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2245 return false; 2246 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2247 return false; 2248 } 2249 2250 return true; 2251 } 2252 2253 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2254 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2255 2256 // Update machine-CFG edges. 2257 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2258 2259 if (I.isUnconditional()) { 2260 // Update machine-CFG edges. 2261 BrMBB->addSuccessor(Succ0MBB); 2262 2263 // If this is not a fall-through branch or optimizations are switched off, 2264 // emit the branch. 2265 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2266 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2267 MVT::Other, getControlRoot(), 2268 DAG.getBasicBlock(Succ0MBB))); 2269 2270 return; 2271 } 2272 2273 // If this condition is one of the special cases we handle, do special stuff 2274 // now. 2275 const Value *CondVal = I.getCondition(); 2276 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2277 2278 // If this is a series of conditions that are or'd or and'd together, emit 2279 // this as a sequence of branches instead of setcc's with and/or operations. 2280 // As long as jumps are not expensive, this should improve performance. 2281 // For example, instead of something like: 2282 // cmp A, B 2283 // C = seteq 2284 // cmp D, E 2285 // F = setle 2286 // or C, F 2287 // jnz foo 2288 // Emit: 2289 // cmp A, B 2290 // je foo 2291 // cmp D, E 2292 // jle foo 2293 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2294 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2295 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2296 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2297 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2298 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2299 Opcode, 2300 getEdgeProbability(BrMBB, Succ0MBB), 2301 getEdgeProbability(BrMBB, Succ1MBB), 2302 /*InvertCond=*/false); 2303 // If the compares in later blocks need to use values not currently 2304 // exported from this block, export them now. This block should always 2305 // be the first entry. 2306 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2307 2308 // Allow some cases to be rejected. 2309 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2310 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2311 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2312 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2313 } 2314 2315 // Emit the branch for this block. 2316 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2317 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2318 return; 2319 } 2320 2321 // Okay, we decided not to do this, remove any inserted MBB's and clear 2322 // SwitchCases. 2323 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2324 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2325 2326 SL->SwitchCases.clear(); 2327 } 2328 } 2329 2330 // Create a CaseBlock record representing this branch. 2331 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2332 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2333 2334 // Use visitSwitchCase to actually insert the fast branch sequence for this 2335 // cond branch. 2336 visitSwitchCase(CB, BrMBB); 2337 } 2338 2339 /// visitSwitchCase - Emits the necessary code to represent a single node in 2340 /// the binary search tree resulting from lowering a switch instruction. 2341 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2342 MachineBasicBlock *SwitchBB) { 2343 SDValue Cond; 2344 SDValue CondLHS = getValue(CB.CmpLHS); 2345 SDLoc dl = CB.DL; 2346 2347 if (CB.CC == ISD::SETTRUE) { 2348 // Branch or fall through to TrueBB. 2349 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2350 SwitchBB->normalizeSuccProbs(); 2351 if (CB.TrueBB != NextBlock(SwitchBB)) { 2352 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2353 DAG.getBasicBlock(CB.TrueBB))); 2354 } 2355 return; 2356 } 2357 2358 auto &TLI = DAG.getTargetLoweringInfo(); 2359 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2360 2361 // Build the setcc now. 2362 if (!CB.CmpMHS) { 2363 // Fold "(X == true)" to X and "(X == false)" to !X to 2364 // handle common cases produced by branch lowering. 2365 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2366 CB.CC == ISD::SETEQ) 2367 Cond = CondLHS; 2368 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2369 CB.CC == ISD::SETEQ) { 2370 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2371 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2372 } else { 2373 SDValue CondRHS = getValue(CB.CmpRHS); 2374 2375 // If a pointer's DAG type is larger than its memory type then the DAG 2376 // values are zero-extended. This breaks signed comparisons so truncate 2377 // back to the underlying type before doing the compare. 2378 if (CondLHS.getValueType() != MemVT) { 2379 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2380 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2381 } 2382 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2383 } 2384 } else { 2385 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2386 2387 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2388 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2389 2390 SDValue CmpOp = getValue(CB.CmpMHS); 2391 EVT VT = CmpOp.getValueType(); 2392 2393 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2394 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2395 ISD::SETLE); 2396 } else { 2397 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2398 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2399 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2400 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2401 } 2402 } 2403 2404 // Update successor info 2405 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2406 // TrueBB and FalseBB are always different unless the incoming IR is 2407 // degenerate. This only happens when running llc on weird IR. 2408 if (CB.TrueBB != CB.FalseBB) 2409 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2410 SwitchBB->normalizeSuccProbs(); 2411 2412 // If the lhs block is the next block, invert the condition so that we can 2413 // fall through to the lhs instead of the rhs block. 2414 if (CB.TrueBB == NextBlock(SwitchBB)) { 2415 std::swap(CB.TrueBB, CB.FalseBB); 2416 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2417 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2418 } 2419 2420 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2421 MVT::Other, getControlRoot(), Cond, 2422 DAG.getBasicBlock(CB.TrueBB)); 2423 2424 // Insert the false branch. Do this even if it's a fall through branch, 2425 // this makes it easier to do DAG optimizations which require inverting 2426 // the branch condition. 2427 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2428 DAG.getBasicBlock(CB.FalseBB)); 2429 2430 DAG.setRoot(BrCond); 2431 } 2432 2433 /// visitJumpTable - Emit JumpTable node in the current MBB 2434 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2435 // Emit the code for the jump table 2436 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2437 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2438 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2439 JT.Reg, PTy); 2440 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2441 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2442 MVT::Other, Index.getValue(1), 2443 Table, Index); 2444 DAG.setRoot(BrJumpTable); 2445 } 2446 2447 /// visitJumpTableHeader - This function emits necessary code to produce index 2448 /// in the JumpTable from switch case. 2449 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2450 JumpTableHeader &JTH, 2451 MachineBasicBlock *SwitchBB) { 2452 SDLoc dl = getCurSDLoc(); 2453 2454 // Subtract the lowest switch case value from the value being switched on. 2455 SDValue SwitchOp = getValue(JTH.SValue); 2456 EVT VT = SwitchOp.getValueType(); 2457 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2458 DAG.getConstant(JTH.First, dl, VT)); 2459 2460 // The SDNode we just created, which holds the value being switched on minus 2461 // the smallest case value, needs to be copied to a virtual register so it 2462 // can be used as an index into the jump table in a subsequent basic block. 2463 // This value may be smaller or larger than the target's pointer type, and 2464 // therefore require extension or truncating. 2465 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2466 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2467 2468 unsigned JumpTableReg = 2469 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2470 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2471 JumpTableReg, SwitchOp); 2472 JT.Reg = JumpTableReg; 2473 2474 if (!JTH.OmitRangeCheck) { 2475 // Emit the range check for the jump table, and branch to the default block 2476 // for the switch statement if the value being switched on exceeds the 2477 // largest case in the switch. 2478 SDValue CMP = DAG.getSetCC( 2479 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2480 Sub.getValueType()), 2481 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2482 2483 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2484 MVT::Other, CopyTo, CMP, 2485 DAG.getBasicBlock(JT.Default)); 2486 2487 // Avoid emitting unnecessary branches to the next block. 2488 if (JT.MBB != NextBlock(SwitchBB)) 2489 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2490 DAG.getBasicBlock(JT.MBB)); 2491 2492 DAG.setRoot(BrCond); 2493 } else { 2494 // Avoid emitting unnecessary branches to the next block. 2495 if (JT.MBB != NextBlock(SwitchBB)) 2496 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2497 DAG.getBasicBlock(JT.MBB))); 2498 else 2499 DAG.setRoot(CopyTo); 2500 } 2501 } 2502 2503 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2504 /// variable if there exists one. 2505 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2506 SDValue &Chain) { 2507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2508 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2509 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2510 MachineFunction &MF = DAG.getMachineFunction(); 2511 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2512 MachineSDNode *Node = 2513 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2514 if (Global) { 2515 MachinePointerInfo MPInfo(Global); 2516 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2517 MachineMemOperand::MODereferenceable; 2518 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2519 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2520 DAG.setNodeMemRefs(Node, {MemRef}); 2521 } 2522 if (PtrTy != PtrMemTy) 2523 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2524 return SDValue(Node, 0); 2525 } 2526 2527 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2528 /// tail spliced into a stack protector check success bb. 2529 /// 2530 /// For a high level explanation of how this fits into the stack protector 2531 /// generation see the comment on the declaration of class 2532 /// StackProtectorDescriptor. 2533 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2534 MachineBasicBlock *ParentBB) { 2535 2536 // First create the loads to the guard/stack slot for the comparison. 2537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2538 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2539 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2540 2541 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2542 int FI = MFI.getStackProtectorIndex(); 2543 2544 SDValue Guard; 2545 SDLoc dl = getCurSDLoc(); 2546 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2547 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2548 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2549 2550 // Generate code to load the content of the guard slot. 2551 SDValue GuardVal = DAG.getLoad( 2552 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2553 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2554 MachineMemOperand::MOVolatile); 2555 2556 if (TLI.useStackGuardXorFP()) 2557 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2558 2559 // Retrieve guard check function, nullptr if instrumentation is inlined. 2560 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2561 // The target provides a guard check function to validate the guard value. 2562 // Generate a call to that function with the content of the guard slot as 2563 // argument. 2564 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2565 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2566 2567 TargetLowering::ArgListTy Args; 2568 TargetLowering::ArgListEntry Entry; 2569 Entry.Node = GuardVal; 2570 Entry.Ty = FnTy->getParamType(0); 2571 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2572 Entry.IsInReg = true; 2573 Args.push_back(Entry); 2574 2575 TargetLowering::CallLoweringInfo CLI(DAG); 2576 CLI.setDebugLoc(getCurSDLoc()) 2577 .setChain(DAG.getEntryNode()) 2578 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2579 getValue(GuardCheckFn), std::move(Args)); 2580 2581 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2582 DAG.setRoot(Result.second); 2583 return; 2584 } 2585 2586 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2587 // Otherwise, emit a volatile load to retrieve the stack guard value. 2588 SDValue Chain = DAG.getEntryNode(); 2589 if (TLI.useLoadStackGuardNode()) { 2590 Guard = getLoadStackGuard(DAG, dl, Chain); 2591 } else { 2592 const Value *IRGuard = TLI.getSDagStackGuard(M); 2593 SDValue GuardPtr = getValue(IRGuard); 2594 2595 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2596 MachinePointerInfo(IRGuard, 0), Align, 2597 MachineMemOperand::MOVolatile); 2598 } 2599 2600 // Perform the comparison via a subtract/getsetcc. 2601 EVT VT = Guard.getValueType(); 2602 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2603 2604 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2605 *DAG.getContext(), 2606 Sub.getValueType()), 2607 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2608 2609 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2610 // branch to failure MBB. 2611 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2612 MVT::Other, GuardVal.getOperand(0), 2613 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2614 // Otherwise branch to success MBB. 2615 SDValue Br = DAG.getNode(ISD::BR, dl, 2616 MVT::Other, BrCond, 2617 DAG.getBasicBlock(SPD.getSuccessMBB())); 2618 2619 DAG.setRoot(Br); 2620 } 2621 2622 /// Codegen the failure basic block for a stack protector check. 2623 /// 2624 /// A failure stack protector machine basic block consists simply of a call to 2625 /// __stack_chk_fail(). 2626 /// 2627 /// For a high level explanation of how this fits into the stack protector 2628 /// generation see the comment on the declaration of class 2629 /// StackProtectorDescriptor. 2630 void 2631 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2633 TargetLowering::MakeLibCallOptions CallOptions; 2634 CallOptions.setDiscardResult(true); 2635 SDValue Chain = 2636 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2637 None, CallOptions, getCurSDLoc()).second; 2638 // On PS4, the "return address" must still be within the calling function, 2639 // even if it's at the very end, so emit an explicit TRAP here. 2640 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2641 if (TM.getTargetTriple().isPS4CPU()) 2642 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2643 2644 DAG.setRoot(Chain); 2645 } 2646 2647 /// visitBitTestHeader - This function emits necessary code to produce value 2648 /// suitable for "bit tests" 2649 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2650 MachineBasicBlock *SwitchBB) { 2651 SDLoc dl = getCurSDLoc(); 2652 2653 // Subtract the minimum value. 2654 SDValue SwitchOp = getValue(B.SValue); 2655 EVT VT = SwitchOp.getValueType(); 2656 SDValue RangeSub = 2657 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2658 2659 // Determine the type of the test operands. 2660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2661 bool UsePtrType = false; 2662 if (!TLI.isTypeLegal(VT)) { 2663 UsePtrType = true; 2664 } else { 2665 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2666 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2667 // Switch table case range are encoded into series of masks. 2668 // Just use pointer type, it's guaranteed to fit. 2669 UsePtrType = true; 2670 break; 2671 } 2672 } 2673 SDValue Sub = RangeSub; 2674 if (UsePtrType) { 2675 VT = TLI.getPointerTy(DAG.getDataLayout()); 2676 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2677 } 2678 2679 B.RegVT = VT.getSimpleVT(); 2680 B.Reg = FuncInfo.CreateReg(B.RegVT); 2681 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2682 2683 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2684 2685 if (!B.OmitRangeCheck) 2686 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2687 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2688 SwitchBB->normalizeSuccProbs(); 2689 2690 SDValue Root = CopyTo; 2691 if (!B.OmitRangeCheck) { 2692 // Conditional branch to the default block. 2693 SDValue RangeCmp = DAG.getSetCC(dl, 2694 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2695 RangeSub.getValueType()), 2696 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2697 ISD::SETUGT); 2698 2699 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2700 DAG.getBasicBlock(B.Default)); 2701 } 2702 2703 // Avoid emitting unnecessary branches to the next block. 2704 if (MBB != NextBlock(SwitchBB)) 2705 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2706 2707 DAG.setRoot(Root); 2708 } 2709 2710 /// visitBitTestCase - this function produces one "bit test" 2711 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2712 MachineBasicBlock* NextMBB, 2713 BranchProbability BranchProbToNext, 2714 unsigned Reg, 2715 BitTestCase &B, 2716 MachineBasicBlock *SwitchBB) { 2717 SDLoc dl = getCurSDLoc(); 2718 MVT VT = BB.RegVT; 2719 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2720 SDValue Cmp; 2721 unsigned PopCount = countPopulation(B.Mask); 2722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2723 if (PopCount == 1) { 2724 // Testing for a single bit; just compare the shift count with what it 2725 // would need to be to shift a 1 bit in that position. 2726 Cmp = DAG.getSetCC( 2727 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2728 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2729 ISD::SETEQ); 2730 } else if (PopCount == BB.Range) { 2731 // There is only one zero bit in the range, test for it directly. 2732 Cmp = DAG.getSetCC( 2733 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2734 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2735 ISD::SETNE); 2736 } else { 2737 // Make desired shift 2738 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2739 DAG.getConstant(1, dl, VT), ShiftOp); 2740 2741 // Emit bit tests and jumps 2742 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2743 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2744 Cmp = DAG.getSetCC( 2745 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2746 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2747 } 2748 2749 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2750 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2751 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2752 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2753 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2754 // one as they are relative probabilities (and thus work more like weights), 2755 // and hence we need to normalize them to let the sum of them become one. 2756 SwitchBB->normalizeSuccProbs(); 2757 2758 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2759 MVT::Other, getControlRoot(), 2760 Cmp, DAG.getBasicBlock(B.TargetBB)); 2761 2762 // Avoid emitting unnecessary branches to the next block. 2763 if (NextMBB != NextBlock(SwitchBB)) 2764 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2765 DAG.getBasicBlock(NextMBB)); 2766 2767 DAG.setRoot(BrAnd); 2768 } 2769 2770 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2771 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2772 2773 // Retrieve successors. Look through artificial IR level blocks like 2774 // catchswitch for successors. 2775 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2776 const BasicBlock *EHPadBB = I.getSuccessor(1); 2777 2778 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2779 // have to do anything here to lower funclet bundles. 2780 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2781 LLVMContext::OB_funclet, 2782 LLVMContext::OB_cfguardtarget}) && 2783 "Cannot lower invokes with arbitrary operand bundles yet!"); 2784 2785 const Value *Callee(I.getCalledValue()); 2786 const Function *Fn = dyn_cast<Function>(Callee); 2787 if (isa<InlineAsm>(Callee)) 2788 visitInlineAsm(&I); 2789 else if (Fn && Fn->isIntrinsic()) { 2790 switch (Fn->getIntrinsicID()) { 2791 default: 2792 llvm_unreachable("Cannot invoke this intrinsic"); 2793 case Intrinsic::donothing: 2794 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2795 break; 2796 case Intrinsic::experimental_patchpoint_void: 2797 case Intrinsic::experimental_patchpoint_i64: 2798 visitPatchpoint(&I, EHPadBB); 2799 break; 2800 case Intrinsic::experimental_gc_statepoint: 2801 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2802 break; 2803 case Intrinsic::wasm_rethrow_in_catch: { 2804 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2805 // special because it can be invoked, so we manually lower it to a DAG 2806 // node here. 2807 SmallVector<SDValue, 8> Ops; 2808 Ops.push_back(getRoot()); // inchain 2809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2810 Ops.push_back( 2811 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2812 TLI.getPointerTy(DAG.getDataLayout()))); 2813 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2814 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2815 break; 2816 } 2817 } 2818 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2819 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2820 // Eventually we will support lowering the @llvm.experimental.deoptimize 2821 // intrinsic, and right now there are no plans to support other intrinsics 2822 // with deopt state. 2823 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2824 } else { 2825 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2826 } 2827 2828 // If the value of the invoke is used outside of its defining block, make it 2829 // available as a virtual register. 2830 // We already took care of the exported value for the statepoint instruction 2831 // during call to the LowerStatepoint. 2832 if (!isStatepoint(I)) { 2833 CopyToExportRegsIfNeeded(&I); 2834 } 2835 2836 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2837 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2838 BranchProbability EHPadBBProb = 2839 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2840 : BranchProbability::getZero(); 2841 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2842 2843 // Update successor info. 2844 addSuccessorWithProb(InvokeMBB, Return); 2845 for (auto &UnwindDest : UnwindDests) { 2846 UnwindDest.first->setIsEHPad(); 2847 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2848 } 2849 InvokeMBB->normalizeSuccProbs(); 2850 2851 // Drop into normal successor. 2852 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2853 DAG.getBasicBlock(Return))); 2854 } 2855 2856 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2857 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2858 2859 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2860 // have to do anything here to lower funclet bundles. 2861 assert(!I.hasOperandBundlesOtherThan( 2862 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2863 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2864 2865 assert(isa<InlineAsm>(I.getCalledValue()) && 2866 "Only know how to handle inlineasm callbr"); 2867 visitInlineAsm(&I); 2868 2869 // Retrieve successors. 2870 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2871 2872 // Update successor info. 2873 addSuccessorWithProb(CallBrMBB, Return); 2874 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2875 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2876 addSuccessorWithProb(CallBrMBB, Target); 2877 } 2878 CallBrMBB->normalizeSuccProbs(); 2879 2880 // Drop into default successor. 2881 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2882 MVT::Other, getControlRoot(), 2883 DAG.getBasicBlock(Return))); 2884 } 2885 2886 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2887 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2888 } 2889 2890 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2891 assert(FuncInfo.MBB->isEHPad() && 2892 "Call to landingpad not in landing pad!"); 2893 2894 // If there aren't registers to copy the values into (e.g., during SjLj 2895 // exceptions), then don't bother to create these DAG nodes. 2896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2897 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2898 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2899 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2900 return; 2901 2902 // If landingpad's return type is token type, we don't create DAG nodes 2903 // for its exception pointer and selector value. The extraction of exception 2904 // pointer or selector value from token type landingpads is not currently 2905 // supported. 2906 if (LP.getType()->isTokenTy()) 2907 return; 2908 2909 SmallVector<EVT, 2> ValueVTs; 2910 SDLoc dl = getCurSDLoc(); 2911 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2912 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2913 2914 // Get the two live-in registers as SDValues. The physregs have already been 2915 // copied into virtual registers. 2916 SDValue Ops[2]; 2917 if (FuncInfo.ExceptionPointerVirtReg) { 2918 Ops[0] = DAG.getZExtOrTrunc( 2919 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2920 FuncInfo.ExceptionPointerVirtReg, 2921 TLI.getPointerTy(DAG.getDataLayout())), 2922 dl, ValueVTs[0]); 2923 } else { 2924 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2925 } 2926 Ops[1] = DAG.getZExtOrTrunc( 2927 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2928 FuncInfo.ExceptionSelectorVirtReg, 2929 TLI.getPointerTy(DAG.getDataLayout())), 2930 dl, ValueVTs[1]); 2931 2932 // Merge into one. 2933 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2934 DAG.getVTList(ValueVTs), Ops); 2935 setValue(&LP, Res); 2936 } 2937 2938 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2939 MachineBasicBlock *Last) { 2940 // Update JTCases. 2941 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2942 if (SL->JTCases[i].first.HeaderBB == First) 2943 SL->JTCases[i].first.HeaderBB = Last; 2944 2945 // Update BitTestCases. 2946 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2947 if (SL->BitTestCases[i].Parent == First) 2948 SL->BitTestCases[i].Parent = Last; 2949 } 2950 2951 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2952 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2953 2954 // Update machine-CFG edges with unique successors. 2955 SmallSet<BasicBlock*, 32> Done; 2956 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2957 BasicBlock *BB = I.getSuccessor(i); 2958 bool Inserted = Done.insert(BB).second; 2959 if (!Inserted) 2960 continue; 2961 2962 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2963 addSuccessorWithProb(IndirectBrMBB, Succ); 2964 } 2965 IndirectBrMBB->normalizeSuccProbs(); 2966 2967 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2968 MVT::Other, getControlRoot(), 2969 getValue(I.getAddress()))); 2970 } 2971 2972 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2973 if (!DAG.getTarget().Options.TrapUnreachable) 2974 return; 2975 2976 // We may be able to ignore unreachable behind a noreturn call. 2977 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2978 const BasicBlock &BB = *I.getParent(); 2979 if (&I != &BB.front()) { 2980 BasicBlock::const_iterator PredI = 2981 std::prev(BasicBlock::const_iterator(&I)); 2982 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2983 if (Call->doesNotReturn()) 2984 return; 2985 } 2986 } 2987 } 2988 2989 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2990 } 2991 2992 void SelectionDAGBuilder::visitFSub(const User &I) { 2993 // -0.0 - X --> fneg 2994 Type *Ty = I.getType(); 2995 if (isa<Constant>(I.getOperand(0)) && 2996 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2997 SDValue Op2 = getValue(I.getOperand(1)); 2998 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2999 Op2.getValueType(), Op2)); 3000 return; 3001 } 3002 3003 visitBinary(I, ISD::FSUB); 3004 } 3005 3006 /// Checks if the given instruction performs a vector reduction, in which case 3007 /// we have the freedom to alter the elements in the result as long as the 3008 /// reduction of them stays unchanged. 3009 static bool isVectorReductionOp(const User *I) { 3010 const Instruction *Inst = dyn_cast<Instruction>(I); 3011 if (!Inst || !Inst->getType()->isVectorTy()) 3012 return false; 3013 3014 auto OpCode = Inst->getOpcode(); 3015 switch (OpCode) { 3016 case Instruction::Add: 3017 case Instruction::Mul: 3018 case Instruction::And: 3019 case Instruction::Or: 3020 case Instruction::Xor: 3021 break; 3022 case Instruction::FAdd: 3023 case Instruction::FMul: 3024 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3025 if (FPOp->getFastMathFlags().isFast()) 3026 break; 3027 LLVM_FALLTHROUGH; 3028 default: 3029 return false; 3030 } 3031 3032 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3033 // Ensure the reduction size is a power of 2. 3034 if (!isPowerOf2_32(ElemNum)) 3035 return false; 3036 3037 unsigned ElemNumToReduce = ElemNum; 3038 3039 // Do DFS search on the def-use chain from the given instruction. We only 3040 // allow four kinds of operations during the search until we reach the 3041 // instruction that extracts the first element from the vector: 3042 // 3043 // 1. The reduction operation of the same opcode as the given instruction. 3044 // 3045 // 2. PHI node. 3046 // 3047 // 3. ShuffleVector instruction together with a reduction operation that 3048 // does a partial reduction. 3049 // 3050 // 4. ExtractElement that extracts the first element from the vector, and we 3051 // stop searching the def-use chain here. 3052 // 3053 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3054 // from 1-3 to the stack to continue the DFS. The given instruction is not 3055 // a reduction operation if we meet any other instructions other than those 3056 // listed above. 3057 3058 SmallVector<const User *, 16> UsersToVisit{Inst}; 3059 SmallPtrSet<const User *, 16> Visited; 3060 bool ReduxExtracted = false; 3061 3062 while (!UsersToVisit.empty()) { 3063 auto User = UsersToVisit.back(); 3064 UsersToVisit.pop_back(); 3065 if (!Visited.insert(User).second) 3066 continue; 3067 3068 for (const auto *U : User->users()) { 3069 auto Inst = dyn_cast<Instruction>(U); 3070 if (!Inst) 3071 return false; 3072 3073 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3074 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3075 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3076 return false; 3077 UsersToVisit.push_back(U); 3078 } else if (const ShuffleVectorInst *ShufInst = 3079 dyn_cast<ShuffleVectorInst>(U)) { 3080 // Detect the following pattern: A ShuffleVector instruction together 3081 // with a reduction that do partial reduction on the first and second 3082 // ElemNumToReduce / 2 elements, and store the result in 3083 // ElemNumToReduce / 2 elements in another vector. 3084 3085 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3086 if (ResultElements < ElemNum) 3087 return false; 3088 3089 if (ElemNumToReduce == 1) 3090 return false; 3091 if (!isa<UndefValue>(U->getOperand(1))) 3092 return false; 3093 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3094 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3095 return false; 3096 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3097 if (ShufInst->getMaskValue(i) != -1) 3098 return false; 3099 3100 // There is only one user of this ShuffleVector instruction, which 3101 // must be a reduction operation. 3102 if (!U->hasOneUse()) 3103 return false; 3104 3105 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3106 if (!U2 || U2->getOpcode() != OpCode) 3107 return false; 3108 3109 // Check operands of the reduction operation. 3110 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3111 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3112 UsersToVisit.push_back(U2); 3113 ElemNumToReduce /= 2; 3114 } else 3115 return false; 3116 } else if (isa<ExtractElementInst>(U)) { 3117 // At this moment we should have reduced all elements in the vector. 3118 if (ElemNumToReduce != 1) 3119 return false; 3120 3121 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3122 if (!Val || !Val->isZero()) 3123 return false; 3124 3125 ReduxExtracted = true; 3126 } else 3127 return false; 3128 } 3129 } 3130 return ReduxExtracted; 3131 } 3132 3133 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3134 SDNodeFlags Flags; 3135 3136 SDValue Op = getValue(I.getOperand(0)); 3137 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3138 Op, Flags); 3139 setValue(&I, UnNodeValue); 3140 } 3141 3142 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3143 SDNodeFlags Flags; 3144 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3145 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3146 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3147 } 3148 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3149 Flags.setExact(ExactOp->isExact()); 3150 } 3151 if (isVectorReductionOp(&I)) { 3152 Flags.setVectorReduction(true); 3153 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3154 3155 // If no flags are set we will propagate the incoming flags, if any flags 3156 // are set, we will intersect them with the incoming flag and so we need to 3157 // copy the FMF flags here. 3158 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { 3159 Flags.copyFMF(*FPOp); 3160 } 3161 } 3162 3163 SDValue Op1 = getValue(I.getOperand(0)); 3164 SDValue Op2 = getValue(I.getOperand(1)); 3165 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3166 Op1, Op2, Flags); 3167 setValue(&I, BinNodeValue); 3168 } 3169 3170 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3171 SDValue Op1 = getValue(I.getOperand(0)); 3172 SDValue Op2 = getValue(I.getOperand(1)); 3173 3174 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3175 Op1.getValueType(), DAG.getDataLayout()); 3176 3177 // Coerce the shift amount to the right type if we can. 3178 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3179 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3180 unsigned Op2Size = Op2.getValueSizeInBits(); 3181 SDLoc DL = getCurSDLoc(); 3182 3183 // If the operand is smaller than the shift count type, promote it. 3184 if (ShiftSize > Op2Size) 3185 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3186 3187 // If the operand is larger than the shift count type but the shift 3188 // count type has enough bits to represent any shift value, truncate 3189 // it now. This is a common case and it exposes the truncate to 3190 // optimization early. 3191 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3192 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3193 // Otherwise we'll need to temporarily settle for some other convenient 3194 // type. Type legalization will make adjustments once the shiftee is split. 3195 else 3196 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3197 } 3198 3199 bool nuw = false; 3200 bool nsw = false; 3201 bool exact = false; 3202 3203 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3204 3205 if (const OverflowingBinaryOperator *OFBinOp = 3206 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3207 nuw = OFBinOp->hasNoUnsignedWrap(); 3208 nsw = OFBinOp->hasNoSignedWrap(); 3209 } 3210 if (const PossiblyExactOperator *ExactOp = 3211 dyn_cast<const PossiblyExactOperator>(&I)) 3212 exact = ExactOp->isExact(); 3213 } 3214 SDNodeFlags Flags; 3215 Flags.setExact(exact); 3216 Flags.setNoSignedWrap(nsw); 3217 Flags.setNoUnsignedWrap(nuw); 3218 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3219 Flags); 3220 setValue(&I, Res); 3221 } 3222 3223 void SelectionDAGBuilder::visitSDiv(const User &I) { 3224 SDValue Op1 = getValue(I.getOperand(0)); 3225 SDValue Op2 = getValue(I.getOperand(1)); 3226 3227 SDNodeFlags Flags; 3228 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3229 cast<PossiblyExactOperator>(&I)->isExact()); 3230 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3231 Op2, Flags)); 3232 } 3233 3234 void SelectionDAGBuilder::visitICmp(const User &I) { 3235 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3236 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3237 predicate = IC->getPredicate(); 3238 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3239 predicate = ICmpInst::Predicate(IC->getPredicate()); 3240 SDValue Op1 = getValue(I.getOperand(0)); 3241 SDValue Op2 = getValue(I.getOperand(1)); 3242 ISD::CondCode Opcode = getICmpCondCode(predicate); 3243 3244 auto &TLI = DAG.getTargetLoweringInfo(); 3245 EVT MemVT = 3246 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3247 3248 // If a pointer's DAG type is larger than its memory type then the DAG values 3249 // are zero-extended. This breaks signed comparisons so truncate back to the 3250 // underlying type before doing the compare. 3251 if (Op1.getValueType() != MemVT) { 3252 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3253 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3254 } 3255 3256 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3257 I.getType()); 3258 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3259 } 3260 3261 void SelectionDAGBuilder::visitFCmp(const User &I) { 3262 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3263 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3264 predicate = FC->getPredicate(); 3265 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3266 predicate = FCmpInst::Predicate(FC->getPredicate()); 3267 SDValue Op1 = getValue(I.getOperand(0)); 3268 SDValue Op2 = getValue(I.getOperand(1)); 3269 3270 ISD::CondCode Condition = getFCmpCondCode(predicate); 3271 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3272 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3273 Condition = getFCmpCodeWithoutNaN(Condition); 3274 3275 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3276 I.getType()); 3277 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3278 } 3279 3280 // Check if the condition of the select has one use or two users that are both 3281 // selects with the same condition. 3282 static bool hasOnlySelectUsers(const Value *Cond) { 3283 return llvm::all_of(Cond->users(), [](const Value *V) { 3284 return isa<SelectInst>(V); 3285 }); 3286 } 3287 3288 void SelectionDAGBuilder::visitSelect(const User &I) { 3289 SmallVector<EVT, 4> ValueVTs; 3290 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3291 ValueVTs); 3292 unsigned NumValues = ValueVTs.size(); 3293 if (NumValues == 0) return; 3294 3295 SmallVector<SDValue, 4> Values(NumValues); 3296 SDValue Cond = getValue(I.getOperand(0)); 3297 SDValue LHSVal = getValue(I.getOperand(1)); 3298 SDValue RHSVal = getValue(I.getOperand(2)); 3299 auto BaseOps = {Cond}; 3300 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3301 ISD::VSELECT : ISD::SELECT; 3302 3303 bool IsUnaryAbs = false; 3304 3305 // Min/max matching is only viable if all output VTs are the same. 3306 if (is_splat(ValueVTs)) { 3307 EVT VT = ValueVTs[0]; 3308 LLVMContext &Ctx = *DAG.getContext(); 3309 auto &TLI = DAG.getTargetLoweringInfo(); 3310 3311 // We care about the legality of the operation after it has been type 3312 // legalized. 3313 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3314 VT = TLI.getTypeToTransformTo(Ctx, VT); 3315 3316 // If the vselect is legal, assume we want to leave this as a vector setcc + 3317 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3318 // min/max is legal on the scalar type. 3319 bool UseScalarMinMax = VT.isVector() && 3320 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3321 3322 Value *LHS, *RHS; 3323 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3324 ISD::NodeType Opc = ISD::DELETED_NODE; 3325 switch (SPR.Flavor) { 3326 case SPF_UMAX: Opc = ISD::UMAX; break; 3327 case SPF_UMIN: Opc = ISD::UMIN; break; 3328 case SPF_SMAX: Opc = ISD::SMAX; break; 3329 case SPF_SMIN: Opc = ISD::SMIN; break; 3330 case SPF_FMINNUM: 3331 switch (SPR.NaNBehavior) { 3332 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3333 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3334 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3335 case SPNB_RETURNS_ANY: { 3336 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3337 Opc = ISD::FMINNUM; 3338 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3339 Opc = ISD::FMINIMUM; 3340 else if (UseScalarMinMax) 3341 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3342 ISD::FMINNUM : ISD::FMINIMUM; 3343 break; 3344 } 3345 } 3346 break; 3347 case SPF_FMAXNUM: 3348 switch (SPR.NaNBehavior) { 3349 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3350 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3351 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3352 case SPNB_RETURNS_ANY: 3353 3354 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3355 Opc = ISD::FMAXNUM; 3356 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3357 Opc = ISD::FMAXIMUM; 3358 else if (UseScalarMinMax) 3359 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3360 ISD::FMAXNUM : ISD::FMAXIMUM; 3361 break; 3362 } 3363 break; 3364 case SPF_ABS: 3365 IsUnaryAbs = true; 3366 Opc = ISD::ABS; 3367 break; 3368 case SPF_NABS: 3369 // TODO: we need to produce sub(0, abs(X)). 3370 default: break; 3371 } 3372 3373 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3374 (TLI.isOperationLegalOrCustom(Opc, VT) || 3375 (UseScalarMinMax && 3376 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3377 // If the underlying comparison instruction is used by any other 3378 // instruction, the consumed instructions won't be destroyed, so it is 3379 // not profitable to convert to a min/max. 3380 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3381 OpCode = Opc; 3382 LHSVal = getValue(LHS); 3383 RHSVal = getValue(RHS); 3384 BaseOps = {}; 3385 } 3386 3387 if (IsUnaryAbs) { 3388 OpCode = Opc; 3389 LHSVal = getValue(LHS); 3390 BaseOps = {}; 3391 } 3392 } 3393 3394 if (IsUnaryAbs) { 3395 for (unsigned i = 0; i != NumValues; ++i) { 3396 Values[i] = 3397 DAG.getNode(OpCode, getCurSDLoc(), 3398 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3399 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3400 } 3401 } else { 3402 for (unsigned i = 0; i != NumValues; ++i) { 3403 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3404 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3405 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3406 Values[i] = DAG.getNode( 3407 OpCode, getCurSDLoc(), 3408 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3409 } 3410 } 3411 3412 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3413 DAG.getVTList(ValueVTs), Values)); 3414 } 3415 3416 void SelectionDAGBuilder::visitTrunc(const User &I) { 3417 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3418 SDValue N = getValue(I.getOperand(0)); 3419 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3420 I.getType()); 3421 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3422 } 3423 3424 void SelectionDAGBuilder::visitZExt(const User &I) { 3425 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3426 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3427 SDValue N = getValue(I.getOperand(0)); 3428 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3429 I.getType()); 3430 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3431 } 3432 3433 void SelectionDAGBuilder::visitSExt(const User &I) { 3434 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3435 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3436 SDValue N = getValue(I.getOperand(0)); 3437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3438 I.getType()); 3439 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3440 } 3441 3442 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3443 // FPTrunc is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 SDLoc dl = getCurSDLoc(); 3446 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3447 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3448 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3449 DAG.getTargetConstant( 3450 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3451 } 3452 3453 void SelectionDAGBuilder::visitFPExt(const User &I) { 3454 // FPExt is never a no-op cast, no need to check 3455 SDValue N = getValue(I.getOperand(0)); 3456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3457 I.getType()); 3458 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3459 } 3460 3461 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3462 // FPToUI is never a no-op cast, no need to check 3463 SDValue N = getValue(I.getOperand(0)); 3464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3465 I.getType()); 3466 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3467 } 3468 3469 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3470 // FPToSI is never a no-op cast, no need to check 3471 SDValue N = getValue(I.getOperand(0)); 3472 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3473 I.getType()); 3474 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3475 } 3476 3477 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3478 // UIToFP is never a no-op cast, no need to check 3479 SDValue N = getValue(I.getOperand(0)); 3480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3481 I.getType()); 3482 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3483 } 3484 3485 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3486 // SIToFP is never a no-op cast, no need to check 3487 SDValue N = getValue(I.getOperand(0)); 3488 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3489 I.getType()); 3490 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3491 } 3492 3493 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3494 // What to do depends on the size of the integer and the size of the pointer. 3495 // We can either truncate, zero extend, or no-op, accordingly. 3496 SDValue N = getValue(I.getOperand(0)); 3497 auto &TLI = DAG.getTargetLoweringInfo(); 3498 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3499 I.getType()); 3500 EVT PtrMemVT = 3501 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3502 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3503 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3504 setValue(&I, N); 3505 } 3506 3507 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3508 // What to do depends on the size of the integer and the size of the pointer. 3509 // We can either truncate, zero extend, or no-op, accordingly. 3510 SDValue N = getValue(I.getOperand(0)); 3511 auto &TLI = DAG.getTargetLoweringInfo(); 3512 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3513 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3514 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3515 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3516 setValue(&I, N); 3517 } 3518 3519 void SelectionDAGBuilder::visitBitCast(const User &I) { 3520 SDValue N = getValue(I.getOperand(0)); 3521 SDLoc dl = getCurSDLoc(); 3522 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3523 I.getType()); 3524 3525 // BitCast assures us that source and destination are the same size so this is 3526 // either a BITCAST or a no-op. 3527 if (DestVT != N.getValueType()) 3528 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3529 DestVT, N)); // convert types. 3530 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3531 // might fold any kind of constant expression to an integer constant and that 3532 // is not what we are looking for. Only recognize a bitcast of a genuine 3533 // constant integer as an opaque constant. 3534 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3535 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3536 /*isOpaque*/true)); 3537 else 3538 setValue(&I, N); // noop cast. 3539 } 3540 3541 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3542 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3543 const Value *SV = I.getOperand(0); 3544 SDValue N = getValue(SV); 3545 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3546 3547 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3548 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3549 3550 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3551 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3552 3553 setValue(&I, N); 3554 } 3555 3556 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3558 SDValue InVec = getValue(I.getOperand(0)); 3559 SDValue InVal = getValue(I.getOperand(1)); 3560 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3561 TLI.getVectorIdxTy(DAG.getDataLayout())); 3562 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3563 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3564 InVec, InVal, InIdx)); 3565 } 3566 3567 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3569 SDValue InVec = getValue(I.getOperand(0)); 3570 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3571 TLI.getVectorIdxTy(DAG.getDataLayout())); 3572 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3573 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3574 InVec, InIdx)); 3575 } 3576 3577 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3578 SDValue Src1 = getValue(I.getOperand(0)); 3579 SDValue Src2 = getValue(I.getOperand(1)); 3580 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3581 SDLoc DL = getCurSDLoc(); 3582 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3583 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3584 EVT SrcVT = Src1.getValueType(); 3585 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3586 3587 if (MaskV->isNullValue() && VT.isScalableVector()) { 3588 // Canonical splat form of first element of first input vector. 3589 SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3590 SrcVT.getScalarType(), Src1, 3591 DAG.getConstant(0, DL, 3592 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3593 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3594 return; 3595 } 3596 3597 // For now, we only handle splats for scalable vectors. 3598 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3599 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3600 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3601 3602 SmallVector<int, 8> Mask; 3603 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3604 unsigned MaskNumElts = Mask.size(); 3605 3606 if (SrcNumElts == MaskNumElts) { 3607 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3608 return; 3609 } 3610 3611 // Normalize the shuffle vector since mask and vector length don't match. 3612 if (SrcNumElts < MaskNumElts) { 3613 // Mask is longer than the source vectors. We can use concatenate vector to 3614 // make the mask and vectors lengths match. 3615 3616 if (MaskNumElts % SrcNumElts == 0) { 3617 // Mask length is a multiple of the source vector length. 3618 // Check if the shuffle is some kind of concatenation of the input 3619 // vectors. 3620 unsigned NumConcat = MaskNumElts / SrcNumElts; 3621 bool IsConcat = true; 3622 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3623 for (unsigned i = 0; i != MaskNumElts; ++i) { 3624 int Idx = Mask[i]; 3625 if (Idx < 0) 3626 continue; 3627 // Ensure the indices in each SrcVT sized piece are sequential and that 3628 // the same source is used for the whole piece. 3629 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3630 (ConcatSrcs[i / SrcNumElts] >= 0 && 3631 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3632 IsConcat = false; 3633 break; 3634 } 3635 // Remember which source this index came from. 3636 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3637 } 3638 3639 // The shuffle is concatenating multiple vectors together. Just emit 3640 // a CONCAT_VECTORS operation. 3641 if (IsConcat) { 3642 SmallVector<SDValue, 8> ConcatOps; 3643 for (auto Src : ConcatSrcs) { 3644 if (Src < 0) 3645 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3646 else if (Src == 0) 3647 ConcatOps.push_back(Src1); 3648 else 3649 ConcatOps.push_back(Src2); 3650 } 3651 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3652 return; 3653 } 3654 } 3655 3656 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3657 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3658 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3659 PaddedMaskNumElts); 3660 3661 // Pad both vectors with undefs to make them the same length as the mask. 3662 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3663 3664 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3665 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3666 MOps1[0] = Src1; 3667 MOps2[0] = Src2; 3668 3669 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3670 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3671 3672 // Readjust mask for new input vector length. 3673 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3674 for (unsigned i = 0; i != MaskNumElts; ++i) { 3675 int Idx = Mask[i]; 3676 if (Idx >= (int)SrcNumElts) 3677 Idx -= SrcNumElts - PaddedMaskNumElts; 3678 MappedOps[i] = Idx; 3679 } 3680 3681 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3682 3683 // If the concatenated vector was padded, extract a subvector with the 3684 // correct number of elements. 3685 if (MaskNumElts != PaddedMaskNumElts) 3686 Result = DAG.getNode( 3687 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3688 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3689 3690 setValue(&I, Result); 3691 return; 3692 } 3693 3694 if (SrcNumElts > MaskNumElts) { 3695 // Analyze the access pattern of the vector to see if we can extract 3696 // two subvectors and do the shuffle. 3697 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3698 bool CanExtract = true; 3699 for (int Idx : Mask) { 3700 unsigned Input = 0; 3701 if (Idx < 0) 3702 continue; 3703 3704 if (Idx >= (int)SrcNumElts) { 3705 Input = 1; 3706 Idx -= SrcNumElts; 3707 } 3708 3709 // If all the indices come from the same MaskNumElts sized portion of 3710 // the sources we can use extract. Also make sure the extract wouldn't 3711 // extract past the end of the source. 3712 int NewStartIdx = alignDown(Idx, MaskNumElts); 3713 if (NewStartIdx + MaskNumElts > SrcNumElts || 3714 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3715 CanExtract = false; 3716 // Make sure we always update StartIdx as we use it to track if all 3717 // elements are undef. 3718 StartIdx[Input] = NewStartIdx; 3719 } 3720 3721 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3722 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3723 return; 3724 } 3725 if (CanExtract) { 3726 // Extract appropriate subvector and generate a vector shuffle 3727 for (unsigned Input = 0; Input < 2; ++Input) { 3728 SDValue &Src = Input == 0 ? Src1 : Src2; 3729 if (StartIdx[Input] < 0) 3730 Src = DAG.getUNDEF(VT); 3731 else { 3732 Src = DAG.getNode( 3733 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3734 DAG.getConstant(StartIdx[Input], DL, 3735 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3736 } 3737 } 3738 3739 // Calculate new mask. 3740 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3741 for (int &Idx : MappedOps) { 3742 if (Idx >= (int)SrcNumElts) 3743 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3744 else if (Idx >= 0) 3745 Idx -= StartIdx[0]; 3746 } 3747 3748 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3749 return; 3750 } 3751 } 3752 3753 // We can't use either concat vectors or extract subvectors so fall back to 3754 // replacing the shuffle with extract and build vector. 3755 // to insert and build vector. 3756 EVT EltVT = VT.getVectorElementType(); 3757 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3758 SmallVector<SDValue,8> Ops; 3759 for (int Idx : Mask) { 3760 SDValue Res; 3761 3762 if (Idx < 0) { 3763 Res = DAG.getUNDEF(EltVT); 3764 } else { 3765 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3766 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3767 3768 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3769 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3770 } 3771 3772 Ops.push_back(Res); 3773 } 3774 3775 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3776 } 3777 3778 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3779 ArrayRef<unsigned> Indices; 3780 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3781 Indices = IV->getIndices(); 3782 else 3783 Indices = cast<ConstantExpr>(&I)->getIndices(); 3784 3785 const Value *Op0 = I.getOperand(0); 3786 const Value *Op1 = I.getOperand(1); 3787 Type *AggTy = I.getType(); 3788 Type *ValTy = Op1->getType(); 3789 bool IntoUndef = isa<UndefValue>(Op0); 3790 bool FromUndef = isa<UndefValue>(Op1); 3791 3792 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3793 3794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3795 SmallVector<EVT, 4> AggValueVTs; 3796 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3797 SmallVector<EVT, 4> ValValueVTs; 3798 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3799 3800 unsigned NumAggValues = AggValueVTs.size(); 3801 unsigned NumValValues = ValValueVTs.size(); 3802 SmallVector<SDValue, 4> Values(NumAggValues); 3803 3804 // Ignore an insertvalue that produces an empty object 3805 if (!NumAggValues) { 3806 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3807 return; 3808 } 3809 3810 SDValue Agg = getValue(Op0); 3811 unsigned i = 0; 3812 // Copy the beginning value(s) from the original aggregate. 3813 for (; i != LinearIndex; ++i) 3814 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3815 SDValue(Agg.getNode(), Agg.getResNo() + i); 3816 // Copy values from the inserted value(s). 3817 if (NumValValues) { 3818 SDValue Val = getValue(Op1); 3819 for (; i != LinearIndex + NumValValues; ++i) 3820 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3821 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3822 } 3823 // Copy remaining value(s) from the original aggregate. 3824 for (; i != NumAggValues; ++i) 3825 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3826 SDValue(Agg.getNode(), Agg.getResNo() + i); 3827 3828 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3829 DAG.getVTList(AggValueVTs), Values)); 3830 } 3831 3832 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3833 ArrayRef<unsigned> Indices; 3834 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3835 Indices = EV->getIndices(); 3836 else 3837 Indices = cast<ConstantExpr>(&I)->getIndices(); 3838 3839 const Value *Op0 = I.getOperand(0); 3840 Type *AggTy = Op0->getType(); 3841 Type *ValTy = I.getType(); 3842 bool OutOfUndef = isa<UndefValue>(Op0); 3843 3844 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3845 3846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3847 SmallVector<EVT, 4> ValValueVTs; 3848 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3849 3850 unsigned NumValValues = ValValueVTs.size(); 3851 3852 // Ignore a extractvalue that produces an empty object 3853 if (!NumValValues) { 3854 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3855 return; 3856 } 3857 3858 SmallVector<SDValue, 4> Values(NumValValues); 3859 3860 SDValue Agg = getValue(Op0); 3861 // Copy out the selected value(s). 3862 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3863 Values[i - LinearIndex] = 3864 OutOfUndef ? 3865 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3866 SDValue(Agg.getNode(), Agg.getResNo() + i); 3867 3868 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3869 DAG.getVTList(ValValueVTs), Values)); 3870 } 3871 3872 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3873 Value *Op0 = I.getOperand(0); 3874 // Note that the pointer operand may be a vector of pointers. Take the scalar 3875 // element which holds a pointer. 3876 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3877 SDValue N = getValue(Op0); 3878 SDLoc dl = getCurSDLoc(); 3879 auto &TLI = DAG.getTargetLoweringInfo(); 3880 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3881 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3882 3883 // Normalize Vector GEP - all scalar operands should be converted to the 3884 // splat vector. 3885 unsigned VectorWidth = I.getType()->isVectorTy() ? 3886 I.getType()->getVectorNumElements() : 0; 3887 3888 if (VectorWidth && !N.getValueType().isVector()) { 3889 LLVMContext &Context = *DAG.getContext(); 3890 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3891 N = DAG.getSplatBuildVector(VT, dl, N); 3892 } 3893 3894 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3895 GTI != E; ++GTI) { 3896 const Value *Idx = GTI.getOperand(); 3897 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3898 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3899 if (Field) { 3900 // N = N + Offset 3901 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3902 3903 // In an inbounds GEP with an offset that is nonnegative even when 3904 // interpreted as signed, assume there is no unsigned overflow. 3905 SDNodeFlags Flags; 3906 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3907 Flags.setNoUnsignedWrap(true); 3908 3909 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3910 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3911 } 3912 } else { 3913 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3914 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3915 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3916 3917 // If this is a scalar constant or a splat vector of constants, 3918 // handle it quickly. 3919 const auto *C = dyn_cast<Constant>(Idx); 3920 if (C && isa<VectorType>(C->getType())) 3921 C = C->getSplatValue(); 3922 3923 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3924 if (CI->isZero()) 3925 continue; 3926 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3927 LLVMContext &Context = *DAG.getContext(); 3928 SDValue OffsVal = VectorWidth ? 3929 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3930 DAG.getConstant(Offs, dl, IdxTy); 3931 3932 // In an inbounds GEP with an offset that is nonnegative even when 3933 // interpreted as signed, assume there is no unsigned overflow. 3934 SDNodeFlags Flags; 3935 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3936 Flags.setNoUnsignedWrap(true); 3937 3938 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3939 3940 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3941 continue; 3942 } 3943 3944 // N = N + Idx * ElementSize; 3945 SDValue IdxN = getValue(Idx); 3946 3947 if (!IdxN.getValueType().isVector() && VectorWidth) { 3948 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3949 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3950 } 3951 3952 // If the index is smaller or larger than intptr_t, truncate or extend 3953 // it. 3954 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3955 3956 // If this is a multiply by a power of two, turn it into a shl 3957 // immediately. This is a very common case. 3958 if (ElementSize != 1) { 3959 if (ElementSize.isPowerOf2()) { 3960 unsigned Amt = ElementSize.logBase2(); 3961 IdxN = DAG.getNode(ISD::SHL, dl, 3962 N.getValueType(), IdxN, 3963 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3964 } else { 3965 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3966 IdxN.getValueType()); 3967 IdxN = DAG.getNode(ISD::MUL, dl, 3968 N.getValueType(), IdxN, Scale); 3969 } 3970 } 3971 3972 N = DAG.getNode(ISD::ADD, dl, 3973 N.getValueType(), N, IdxN); 3974 } 3975 } 3976 3977 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3978 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3979 3980 setValue(&I, N); 3981 } 3982 3983 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3984 // If this is a fixed sized alloca in the entry block of the function, 3985 // allocate it statically on the stack. 3986 if (FuncInfo.StaticAllocaMap.count(&I)) 3987 return; // getValue will auto-populate this. 3988 3989 SDLoc dl = getCurSDLoc(); 3990 Type *Ty = I.getAllocatedType(); 3991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3992 auto &DL = DAG.getDataLayout(); 3993 uint64_t TySize = DL.getTypeAllocSize(Ty); 3994 unsigned Align = 3995 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3996 3997 SDValue AllocSize = getValue(I.getArraySize()); 3998 3999 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4000 if (AllocSize.getValueType() != IntPtr) 4001 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4002 4003 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4004 AllocSize, 4005 DAG.getConstant(TySize, dl, IntPtr)); 4006 4007 // Handle alignment. If the requested alignment is less than or equal to 4008 // the stack alignment, ignore it. If the size is greater than or equal to 4009 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4010 unsigned StackAlign = 4011 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 4012 if (Align <= StackAlign) 4013 Align = 0; 4014 4015 // Round the size of the allocation up to the stack alignment size 4016 // by add SA-1 to the size. This doesn't overflow because we're computing 4017 // an address inside an alloca. 4018 SDNodeFlags Flags; 4019 Flags.setNoUnsignedWrap(true); 4020 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4021 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 4022 4023 // Mask out the low bits for alignment purposes. 4024 AllocSize = 4025 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4026 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4027 4028 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4029 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4030 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4031 setValue(&I, DSA); 4032 DAG.setRoot(DSA.getValue(1)); 4033 4034 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4035 } 4036 4037 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4038 if (I.isAtomic()) 4039 return visitAtomicLoad(I); 4040 4041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4042 const Value *SV = I.getOperand(0); 4043 if (TLI.supportSwiftError()) { 4044 // Swifterror values can come from either a function parameter with 4045 // swifterror attribute or an alloca with swifterror attribute. 4046 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4047 if (Arg->hasSwiftErrorAttr()) 4048 return visitLoadFromSwiftError(I); 4049 } 4050 4051 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4052 if (Alloca->isSwiftError()) 4053 return visitLoadFromSwiftError(I); 4054 } 4055 } 4056 4057 SDValue Ptr = getValue(SV); 4058 4059 Type *Ty = I.getType(); 4060 unsigned Alignment = I.getAlignment(); 4061 4062 AAMDNodes AAInfo; 4063 I.getAAMetadata(AAInfo); 4064 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4065 4066 SmallVector<EVT, 4> ValueVTs, MemVTs; 4067 SmallVector<uint64_t, 4> Offsets; 4068 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4069 unsigned NumValues = ValueVTs.size(); 4070 if (NumValues == 0) 4071 return; 4072 4073 bool isVolatile = I.isVolatile(); 4074 4075 SDValue Root; 4076 bool ConstantMemory = false; 4077 if (isVolatile) 4078 // Serialize volatile loads with other side effects. 4079 Root = getRoot(); 4080 else if (NumValues > MaxParallelChains) 4081 Root = getMemoryRoot(); 4082 else if (AA && 4083 AA->pointsToConstantMemory(MemoryLocation( 4084 SV, 4085 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4086 AAInfo))) { 4087 // Do not serialize (non-volatile) loads of constant memory with anything. 4088 Root = DAG.getEntryNode(); 4089 ConstantMemory = true; 4090 } else { 4091 // Do not serialize non-volatile loads against each other. 4092 Root = DAG.getRoot(); 4093 } 4094 4095 SDLoc dl = getCurSDLoc(); 4096 4097 if (isVolatile) 4098 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4099 4100 // An aggregate load cannot wrap around the address space, so offsets to its 4101 // parts don't wrap either. 4102 SDNodeFlags Flags; 4103 Flags.setNoUnsignedWrap(true); 4104 4105 SmallVector<SDValue, 4> Values(NumValues); 4106 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4107 EVT PtrVT = Ptr.getValueType(); 4108 4109 MachineMemOperand::Flags MMOFlags 4110 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4111 4112 unsigned ChainI = 0; 4113 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4114 // Serializing loads here may result in excessive register pressure, and 4115 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4116 // could recover a bit by hoisting nodes upward in the chain by recognizing 4117 // they are side-effect free or do not alias. The optimizer should really 4118 // avoid this case by converting large object/array copies to llvm.memcpy 4119 // (MaxParallelChains should always remain as failsafe). 4120 if (ChainI == MaxParallelChains) { 4121 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4122 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4123 makeArrayRef(Chains.data(), ChainI)); 4124 Root = Chain; 4125 ChainI = 0; 4126 } 4127 SDValue A = DAG.getNode(ISD::ADD, dl, 4128 PtrVT, Ptr, 4129 DAG.getConstant(Offsets[i], dl, PtrVT), 4130 Flags); 4131 4132 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4133 MachinePointerInfo(SV, Offsets[i]), Alignment, 4134 MMOFlags, AAInfo, Ranges); 4135 Chains[ChainI] = L.getValue(1); 4136 4137 if (MemVTs[i] != ValueVTs[i]) 4138 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4139 4140 Values[i] = L; 4141 } 4142 4143 if (!ConstantMemory) { 4144 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4145 makeArrayRef(Chains.data(), ChainI)); 4146 if (isVolatile) 4147 DAG.setRoot(Chain); 4148 else 4149 PendingLoads.push_back(Chain); 4150 } 4151 4152 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4153 DAG.getVTList(ValueVTs), Values)); 4154 } 4155 4156 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4157 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4158 "call visitStoreToSwiftError when backend supports swifterror"); 4159 4160 SmallVector<EVT, 4> ValueVTs; 4161 SmallVector<uint64_t, 4> Offsets; 4162 const Value *SrcV = I.getOperand(0); 4163 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4164 SrcV->getType(), ValueVTs, &Offsets); 4165 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4166 "expect a single EVT for swifterror"); 4167 4168 SDValue Src = getValue(SrcV); 4169 // Create a virtual register, then update the virtual register. 4170 Register VReg = 4171 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4172 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4173 // Chain can be getRoot or getControlRoot. 4174 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4175 SDValue(Src.getNode(), Src.getResNo())); 4176 DAG.setRoot(CopyNode); 4177 } 4178 4179 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4180 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4181 "call visitLoadFromSwiftError when backend supports swifterror"); 4182 4183 assert(!I.isVolatile() && 4184 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4185 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4186 "Support volatile, non temporal, invariant for load_from_swift_error"); 4187 4188 const Value *SV = I.getOperand(0); 4189 Type *Ty = I.getType(); 4190 AAMDNodes AAInfo; 4191 I.getAAMetadata(AAInfo); 4192 assert( 4193 (!AA || 4194 !AA->pointsToConstantMemory(MemoryLocation( 4195 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4196 AAInfo))) && 4197 "load_from_swift_error should not be constant memory"); 4198 4199 SmallVector<EVT, 4> ValueVTs; 4200 SmallVector<uint64_t, 4> Offsets; 4201 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4202 ValueVTs, &Offsets); 4203 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4204 "expect a single EVT for swifterror"); 4205 4206 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4207 SDValue L = DAG.getCopyFromReg( 4208 getRoot(), getCurSDLoc(), 4209 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4210 4211 setValue(&I, L); 4212 } 4213 4214 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4215 if (I.isAtomic()) 4216 return visitAtomicStore(I); 4217 4218 const Value *SrcV = I.getOperand(0); 4219 const Value *PtrV = I.getOperand(1); 4220 4221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4222 if (TLI.supportSwiftError()) { 4223 // Swifterror values can come from either a function parameter with 4224 // swifterror attribute or an alloca with swifterror attribute. 4225 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4226 if (Arg->hasSwiftErrorAttr()) 4227 return visitStoreToSwiftError(I); 4228 } 4229 4230 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4231 if (Alloca->isSwiftError()) 4232 return visitStoreToSwiftError(I); 4233 } 4234 } 4235 4236 SmallVector<EVT, 4> ValueVTs, MemVTs; 4237 SmallVector<uint64_t, 4> Offsets; 4238 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4239 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4240 unsigned NumValues = ValueVTs.size(); 4241 if (NumValues == 0) 4242 return; 4243 4244 // Get the lowered operands. Note that we do this after 4245 // checking if NumResults is zero, because with zero results 4246 // the operands won't have values in the map. 4247 SDValue Src = getValue(SrcV); 4248 SDValue Ptr = getValue(PtrV); 4249 4250 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4251 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4252 SDLoc dl = getCurSDLoc(); 4253 unsigned Alignment = I.getAlignment(); 4254 AAMDNodes AAInfo; 4255 I.getAAMetadata(AAInfo); 4256 4257 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4258 4259 // An aggregate load cannot wrap around the address space, so offsets to its 4260 // parts don't wrap either. 4261 SDNodeFlags Flags; 4262 Flags.setNoUnsignedWrap(true); 4263 4264 unsigned ChainI = 0; 4265 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4266 // See visitLoad comments. 4267 if (ChainI == MaxParallelChains) { 4268 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4269 makeArrayRef(Chains.data(), ChainI)); 4270 Root = Chain; 4271 ChainI = 0; 4272 } 4273 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4274 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4275 if (MemVTs[i] != ValueVTs[i]) 4276 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4277 SDValue St = 4278 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4279 Alignment, MMOFlags, AAInfo); 4280 Chains[ChainI] = St; 4281 } 4282 4283 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4284 makeArrayRef(Chains.data(), ChainI)); 4285 DAG.setRoot(StoreNode); 4286 } 4287 4288 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4289 bool IsCompressing) { 4290 SDLoc sdl = getCurSDLoc(); 4291 4292 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4293 unsigned& Alignment) { 4294 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4295 Src0 = I.getArgOperand(0); 4296 Ptr = I.getArgOperand(1); 4297 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4298 Mask = I.getArgOperand(3); 4299 }; 4300 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4301 unsigned& Alignment) { 4302 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4303 Src0 = I.getArgOperand(0); 4304 Ptr = I.getArgOperand(1); 4305 Mask = I.getArgOperand(2); 4306 Alignment = 0; 4307 }; 4308 4309 Value *PtrOperand, *MaskOperand, *Src0Operand; 4310 unsigned Alignment; 4311 if (IsCompressing) 4312 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4313 else 4314 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4315 4316 SDValue Ptr = getValue(PtrOperand); 4317 SDValue Src0 = getValue(Src0Operand); 4318 SDValue Mask = getValue(MaskOperand); 4319 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4320 4321 EVT VT = Src0.getValueType(); 4322 if (!Alignment) 4323 Alignment = DAG.getEVTAlignment(VT); 4324 4325 AAMDNodes AAInfo; 4326 I.getAAMetadata(AAInfo); 4327 4328 MachineMemOperand *MMO = 4329 DAG.getMachineFunction(). 4330 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4331 MachineMemOperand::MOStore, 4332 // TODO: Make MachineMemOperands aware of scalable 4333 // vectors. 4334 VT.getStoreSize().getKnownMinSize(), 4335 Alignment, AAInfo); 4336 SDValue StoreNode = 4337 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4338 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4339 DAG.setRoot(StoreNode); 4340 setValue(&I, StoreNode); 4341 } 4342 4343 // Get a uniform base for the Gather/Scatter intrinsic. 4344 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4345 // We try to represent it as a base pointer + vector of indices. 4346 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4347 // The first operand of the GEP may be a single pointer or a vector of pointers 4348 // Example: 4349 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4350 // or 4351 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4352 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4353 // 4354 // When the first GEP operand is a single pointer - it is the uniform base we 4355 // are looking for. If first operand of the GEP is a splat vector - we 4356 // extract the splat value and use it as a uniform base. 4357 // In all other cases the function returns 'false'. 4358 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4359 ISD::MemIndexType &IndexType, SDValue &Scale, 4360 SelectionDAGBuilder *SDB) { 4361 SelectionDAG& DAG = SDB->DAG; 4362 LLVMContext &Context = *DAG.getContext(); 4363 4364 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4365 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4366 if (!GEP) 4367 return false; 4368 4369 const Value *GEPPtr = GEP->getPointerOperand(); 4370 if (!GEPPtr->getType()->isVectorTy()) 4371 Ptr = GEPPtr; 4372 else if (!(Ptr = getSplatValue(GEPPtr))) 4373 return false; 4374 4375 unsigned FinalIndex = GEP->getNumOperands() - 1; 4376 Value *IndexVal = GEP->getOperand(FinalIndex); 4377 gep_type_iterator GTI = gep_type_begin(*GEP); 4378 4379 // Ensure all the other indices are 0. 4380 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4381 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4382 if (!C) 4383 return false; 4384 if (isa<VectorType>(C->getType())) 4385 C = C->getSplatValue(); 4386 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4387 if (!CI || !CI->isZero()) 4388 return false; 4389 } 4390 4391 // The operands of the GEP may be defined in another basic block. 4392 // In this case we'll not find nodes for the operands. 4393 if (!SDB->findValue(Ptr)) 4394 return false; 4395 Constant *C = dyn_cast<Constant>(IndexVal); 4396 if (!C && !SDB->findValue(IndexVal)) 4397 return false; 4398 4399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4400 const DataLayout &DL = DAG.getDataLayout(); 4401 StructType *STy = GTI.getStructTypeOrNull(); 4402 4403 if (STy) { 4404 const StructLayout *SL = DL.getStructLayout(STy); 4405 if (isa<VectorType>(C->getType())) { 4406 C = C->getSplatValue(); 4407 // FIXME: If getSplatValue may return nullptr for a structure? 4408 // If not, the following check can be removed. 4409 if (!C) 4410 return false; 4411 } 4412 auto *CI = cast<ConstantInt>(C); 4413 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4414 Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), 4415 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4416 } else { 4417 Scale = DAG.getTargetConstant( 4418 DL.getTypeAllocSize(GEP->getResultElementType()), 4419 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4420 Index = SDB->getValue(IndexVal); 4421 } 4422 Base = SDB->getValue(Ptr); 4423 IndexType = ISD::SIGNED_SCALED; 4424 4425 if (STy || !Index.getValueType().isVector()) { 4426 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4427 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4428 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4429 } 4430 return true; 4431 } 4432 4433 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4434 SDLoc sdl = getCurSDLoc(); 4435 4436 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4437 const Value *Ptr = I.getArgOperand(1); 4438 SDValue Src0 = getValue(I.getArgOperand(0)); 4439 SDValue Mask = getValue(I.getArgOperand(3)); 4440 EVT VT = Src0.getValueType(); 4441 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4442 if (!Alignment) 4443 Alignment = DAG.getEVTAlignment(VT); 4444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4445 4446 AAMDNodes AAInfo; 4447 I.getAAMetadata(AAInfo); 4448 4449 SDValue Base; 4450 SDValue Index; 4451 ISD::MemIndexType IndexType; 4452 SDValue Scale; 4453 const Value *BasePtr = Ptr; 4454 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4455 this); 4456 4457 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4458 MachineMemOperand *MMO = DAG.getMachineFunction(). 4459 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4460 MachineMemOperand::MOStore, 4461 // TODO: Make MachineMemOperands aware of scalable 4462 // vectors. 4463 VT.getStoreSize().getKnownMinSize(), 4464 Alignment, AAInfo); 4465 if (!UniformBase) { 4466 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4467 Index = getValue(Ptr); 4468 IndexType = ISD::SIGNED_SCALED; 4469 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4470 } 4471 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4472 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4473 Ops, MMO, IndexType); 4474 DAG.setRoot(Scatter); 4475 setValue(&I, Scatter); 4476 } 4477 4478 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4479 SDLoc sdl = getCurSDLoc(); 4480 4481 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4482 unsigned& Alignment) { 4483 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4484 Ptr = I.getArgOperand(0); 4485 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4486 Mask = I.getArgOperand(2); 4487 Src0 = I.getArgOperand(3); 4488 }; 4489 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4490 unsigned& Alignment) { 4491 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4492 Ptr = I.getArgOperand(0); 4493 Alignment = 0; 4494 Mask = I.getArgOperand(1); 4495 Src0 = I.getArgOperand(2); 4496 }; 4497 4498 Value *PtrOperand, *MaskOperand, *Src0Operand; 4499 unsigned Alignment; 4500 if (IsExpanding) 4501 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4502 else 4503 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4504 4505 SDValue Ptr = getValue(PtrOperand); 4506 SDValue Src0 = getValue(Src0Operand); 4507 SDValue Mask = getValue(MaskOperand); 4508 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4509 4510 EVT VT = Src0.getValueType(); 4511 if (!Alignment) 4512 Alignment = DAG.getEVTAlignment(VT); 4513 4514 AAMDNodes AAInfo; 4515 I.getAAMetadata(AAInfo); 4516 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4517 4518 // Do not serialize masked loads of constant memory with anything. 4519 MemoryLocation ML; 4520 if (VT.isScalableVector()) 4521 ML = MemoryLocation(PtrOperand); 4522 else 4523 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4524 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4525 AAInfo); 4526 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4527 4528 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4529 4530 MachineMemOperand *MMO = 4531 DAG.getMachineFunction(). 4532 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4533 MachineMemOperand::MOLoad, 4534 // TODO: Make MachineMemOperands aware of scalable 4535 // vectors. 4536 VT.getStoreSize().getKnownMinSize(), 4537 Alignment, AAInfo, Ranges); 4538 4539 SDValue Load = 4540 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4541 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4542 if (AddToChain) 4543 PendingLoads.push_back(Load.getValue(1)); 4544 setValue(&I, Load); 4545 } 4546 4547 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4548 SDLoc sdl = getCurSDLoc(); 4549 4550 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4551 const Value *Ptr = I.getArgOperand(0); 4552 SDValue Src0 = getValue(I.getArgOperand(3)); 4553 SDValue Mask = getValue(I.getArgOperand(2)); 4554 4555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4556 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4557 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4558 if (!Alignment) 4559 Alignment = DAG.getEVTAlignment(VT); 4560 4561 AAMDNodes AAInfo; 4562 I.getAAMetadata(AAInfo); 4563 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4564 4565 SDValue Root = DAG.getRoot(); 4566 SDValue Base; 4567 SDValue Index; 4568 ISD::MemIndexType IndexType; 4569 SDValue Scale; 4570 const Value *BasePtr = Ptr; 4571 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4572 this); 4573 bool ConstantMemory = false; 4574 if (UniformBase && AA && 4575 AA->pointsToConstantMemory( 4576 MemoryLocation(BasePtr, 4577 LocationSize::precise( 4578 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4579 AAInfo))) { 4580 // Do not serialize (non-volatile) loads of constant memory with anything. 4581 Root = DAG.getEntryNode(); 4582 ConstantMemory = true; 4583 } 4584 4585 MachineMemOperand *MMO = 4586 DAG.getMachineFunction(). 4587 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4588 MachineMemOperand::MOLoad, 4589 // TODO: Make MachineMemOperands aware of scalable 4590 // vectors. 4591 VT.getStoreSize().getKnownMinSize(), 4592 Alignment, AAInfo, Ranges); 4593 4594 if (!UniformBase) { 4595 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4596 Index = getValue(Ptr); 4597 IndexType = ISD::SIGNED_SCALED; 4598 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4599 } 4600 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4601 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4602 Ops, MMO, IndexType); 4603 4604 SDValue OutChain = Gather.getValue(1); 4605 if (!ConstantMemory) 4606 PendingLoads.push_back(OutChain); 4607 setValue(&I, Gather); 4608 } 4609 4610 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4611 SDLoc dl = getCurSDLoc(); 4612 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4613 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4614 SyncScope::ID SSID = I.getSyncScopeID(); 4615 4616 SDValue InChain = getRoot(); 4617 4618 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4619 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4620 4621 auto Alignment = DAG.getEVTAlignment(MemVT); 4622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4623 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4624 4625 MachineFunction &MF = DAG.getMachineFunction(); 4626 MachineMemOperand *MMO = 4627 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4628 Flags, MemVT.getStoreSize(), Alignment, 4629 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4630 FailureOrdering); 4631 4632 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4633 dl, MemVT, VTs, InChain, 4634 getValue(I.getPointerOperand()), 4635 getValue(I.getCompareOperand()), 4636 getValue(I.getNewValOperand()), MMO); 4637 4638 SDValue OutChain = L.getValue(2); 4639 4640 setValue(&I, L); 4641 DAG.setRoot(OutChain); 4642 } 4643 4644 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4645 SDLoc dl = getCurSDLoc(); 4646 ISD::NodeType NT; 4647 switch (I.getOperation()) { 4648 default: llvm_unreachable("Unknown atomicrmw operation"); 4649 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4650 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4651 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4652 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4653 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4654 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4655 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4656 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4657 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4658 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4659 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4660 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4661 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4662 } 4663 AtomicOrdering Ordering = I.getOrdering(); 4664 SyncScope::ID SSID = I.getSyncScopeID(); 4665 4666 SDValue InChain = getRoot(); 4667 4668 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4669 auto Alignment = DAG.getEVTAlignment(MemVT); 4670 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4671 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4672 4673 MachineFunction &MF = DAG.getMachineFunction(); 4674 MachineMemOperand *MMO = 4675 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4676 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4677 nullptr, SSID, Ordering); 4678 4679 SDValue L = 4680 DAG.getAtomic(NT, dl, MemVT, InChain, 4681 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4682 MMO); 4683 4684 SDValue OutChain = L.getValue(1); 4685 4686 setValue(&I, L); 4687 DAG.setRoot(OutChain); 4688 } 4689 4690 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4691 SDLoc dl = getCurSDLoc(); 4692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4693 SDValue Ops[3]; 4694 Ops[0] = getRoot(); 4695 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4696 TLI.getFenceOperandTy(DAG.getDataLayout())); 4697 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4698 TLI.getFenceOperandTy(DAG.getDataLayout())); 4699 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4700 } 4701 4702 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4703 SDLoc dl = getCurSDLoc(); 4704 AtomicOrdering Order = I.getOrdering(); 4705 SyncScope::ID SSID = I.getSyncScopeID(); 4706 4707 SDValue InChain = getRoot(); 4708 4709 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4710 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4711 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4712 4713 if (!TLI.supportsUnalignedAtomics() && 4714 I.getAlignment() < MemVT.getSizeInBits() / 8) 4715 report_fatal_error("Cannot generate unaligned atomic load"); 4716 4717 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4718 4719 MachineMemOperand *MMO = 4720 DAG.getMachineFunction(). 4721 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4722 Flags, MemVT.getStoreSize(), 4723 I.getAlignment() ? I.getAlignment() : 4724 DAG.getEVTAlignment(MemVT), 4725 AAMDNodes(), nullptr, SSID, Order); 4726 4727 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4728 4729 SDValue Ptr = getValue(I.getPointerOperand()); 4730 4731 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4732 // TODO: Once this is better exercised by tests, it should be merged with 4733 // the normal path for loads to prevent future divergence. 4734 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4735 if (MemVT != VT) 4736 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4737 4738 setValue(&I, L); 4739 SDValue OutChain = L.getValue(1); 4740 if (!I.isUnordered()) 4741 DAG.setRoot(OutChain); 4742 else 4743 PendingLoads.push_back(OutChain); 4744 return; 4745 } 4746 4747 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4748 Ptr, MMO); 4749 4750 SDValue OutChain = L.getValue(1); 4751 if (MemVT != VT) 4752 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4753 4754 setValue(&I, L); 4755 DAG.setRoot(OutChain); 4756 } 4757 4758 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4759 SDLoc dl = getCurSDLoc(); 4760 4761 AtomicOrdering Ordering = I.getOrdering(); 4762 SyncScope::ID SSID = I.getSyncScopeID(); 4763 4764 SDValue InChain = getRoot(); 4765 4766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4767 EVT MemVT = 4768 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4769 4770 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4771 report_fatal_error("Cannot generate unaligned atomic store"); 4772 4773 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4774 4775 MachineFunction &MF = DAG.getMachineFunction(); 4776 MachineMemOperand *MMO = 4777 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4778 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4779 nullptr, SSID, Ordering); 4780 4781 SDValue Val = getValue(I.getValueOperand()); 4782 if (Val.getValueType() != MemVT) 4783 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4784 SDValue Ptr = getValue(I.getPointerOperand()); 4785 4786 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4787 // TODO: Once this is better exercised by tests, it should be merged with 4788 // the normal path for stores to prevent future divergence. 4789 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4790 DAG.setRoot(S); 4791 return; 4792 } 4793 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4794 Ptr, Val, MMO); 4795 4796 4797 DAG.setRoot(OutChain); 4798 } 4799 4800 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4801 /// node. 4802 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4803 unsigned Intrinsic) { 4804 // Ignore the callsite's attributes. A specific call site may be marked with 4805 // readnone, but the lowering code will expect the chain based on the 4806 // definition. 4807 const Function *F = I.getCalledFunction(); 4808 bool HasChain = !F->doesNotAccessMemory(); 4809 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4810 4811 // Build the operand list. 4812 SmallVector<SDValue, 8> Ops; 4813 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4814 if (OnlyLoad) { 4815 // We don't need to serialize loads against other loads. 4816 Ops.push_back(DAG.getRoot()); 4817 } else { 4818 Ops.push_back(getRoot()); 4819 } 4820 } 4821 4822 // Info is set by getTgtMemInstrinsic 4823 TargetLowering::IntrinsicInfo Info; 4824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4825 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4826 DAG.getMachineFunction(), 4827 Intrinsic); 4828 4829 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4830 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4831 Info.opc == ISD::INTRINSIC_W_CHAIN) 4832 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4833 TLI.getPointerTy(DAG.getDataLayout()))); 4834 4835 // Add all operands of the call to the operand list. 4836 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4837 const Value *Arg = I.getArgOperand(i); 4838 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4839 Ops.push_back(getValue(Arg)); 4840 continue; 4841 } 4842 4843 // Use TargetConstant instead of a regular constant for immarg. 4844 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4845 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4846 assert(CI->getBitWidth() <= 64 && 4847 "large intrinsic immediates not handled"); 4848 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4849 } else { 4850 Ops.push_back( 4851 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4852 } 4853 } 4854 4855 SmallVector<EVT, 4> ValueVTs; 4856 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4857 4858 if (HasChain) 4859 ValueVTs.push_back(MVT::Other); 4860 4861 SDVTList VTs = DAG.getVTList(ValueVTs); 4862 4863 // Create the node. 4864 SDValue Result; 4865 if (IsTgtIntrinsic) { 4866 // This is target intrinsic that touches memory 4867 AAMDNodes AAInfo; 4868 I.getAAMetadata(AAInfo); 4869 Result = DAG.getMemIntrinsicNode( 4870 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4871 MachinePointerInfo(Info.ptrVal, Info.offset), 4872 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4873 } else if (!HasChain) { 4874 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4875 } else if (!I.getType()->isVoidTy()) { 4876 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4877 } else { 4878 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4879 } 4880 4881 if (HasChain) { 4882 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4883 if (OnlyLoad) 4884 PendingLoads.push_back(Chain); 4885 else 4886 DAG.setRoot(Chain); 4887 } 4888 4889 if (!I.getType()->isVoidTy()) { 4890 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4891 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4892 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4893 } else 4894 Result = lowerRangeToAssertZExt(DAG, I, Result); 4895 4896 setValue(&I, Result); 4897 } 4898 } 4899 4900 /// GetSignificand - Get the significand and build it into a floating-point 4901 /// number with exponent of 1: 4902 /// 4903 /// Op = (Op & 0x007fffff) | 0x3f800000; 4904 /// 4905 /// where Op is the hexadecimal representation of floating point value. 4906 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4907 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4908 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4909 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4910 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4911 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4912 } 4913 4914 /// GetExponent - Get the exponent: 4915 /// 4916 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4917 /// 4918 /// where Op is the hexadecimal representation of floating point value. 4919 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4920 const TargetLowering &TLI, const SDLoc &dl) { 4921 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4922 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4923 SDValue t1 = DAG.getNode( 4924 ISD::SRL, dl, MVT::i32, t0, 4925 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4926 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4927 DAG.getConstant(127, dl, MVT::i32)); 4928 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4929 } 4930 4931 /// getF32Constant - Get 32-bit floating point constant. 4932 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4933 const SDLoc &dl) { 4934 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4935 MVT::f32); 4936 } 4937 4938 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4939 SelectionDAG &DAG) { 4940 // TODO: What fast-math-flags should be set on the floating-point nodes? 4941 4942 // IntegerPartOfX = ((int32_t)(t0); 4943 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4944 4945 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4946 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4947 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4948 4949 // IntegerPartOfX <<= 23; 4950 IntegerPartOfX = DAG.getNode( 4951 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4952 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4953 DAG.getDataLayout()))); 4954 4955 SDValue TwoToFractionalPartOfX; 4956 if (LimitFloatPrecision <= 6) { 4957 // For floating-point precision of 6: 4958 // 4959 // TwoToFractionalPartOfX = 4960 // 0.997535578f + 4961 // (0.735607626f + 0.252464424f * x) * x; 4962 // 4963 // error 0.0144103317, which is 6 bits 4964 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4965 getF32Constant(DAG, 0x3e814304, dl)); 4966 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4967 getF32Constant(DAG, 0x3f3c50c8, dl)); 4968 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4969 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4970 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4971 } else if (LimitFloatPrecision <= 12) { 4972 // For floating-point precision of 12: 4973 // 4974 // TwoToFractionalPartOfX = 4975 // 0.999892986f + 4976 // (0.696457318f + 4977 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4978 // 4979 // error 0.000107046256, which is 13 to 14 bits 4980 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4981 getF32Constant(DAG, 0x3da235e3, dl)); 4982 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4983 getF32Constant(DAG, 0x3e65b8f3, dl)); 4984 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4985 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4986 getF32Constant(DAG, 0x3f324b07, dl)); 4987 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4988 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4989 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4990 } else { // LimitFloatPrecision <= 18 4991 // For floating-point precision of 18: 4992 // 4993 // TwoToFractionalPartOfX = 4994 // 0.999999982f + 4995 // (0.693148872f + 4996 // (0.240227044f + 4997 // (0.554906021e-1f + 4998 // (0.961591928e-2f + 4999 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5000 // error 2.47208000*10^(-7), which is better than 18 bits 5001 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5002 getF32Constant(DAG, 0x3924b03e, dl)); 5003 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5004 getF32Constant(DAG, 0x3ab24b87, dl)); 5005 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5006 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5007 getF32Constant(DAG, 0x3c1d8c17, dl)); 5008 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5009 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5010 getF32Constant(DAG, 0x3d634a1d, dl)); 5011 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5012 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5013 getF32Constant(DAG, 0x3e75fe14, dl)); 5014 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5015 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5016 getF32Constant(DAG, 0x3f317234, dl)); 5017 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5018 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5019 getF32Constant(DAG, 0x3f800000, dl)); 5020 } 5021 5022 // Add the exponent into the result in integer domain. 5023 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5024 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5025 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5026 } 5027 5028 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5029 /// limited-precision mode. 5030 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5031 const TargetLowering &TLI) { 5032 if (Op.getValueType() == MVT::f32 && 5033 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5034 5035 // Put the exponent in the right bit position for later addition to the 5036 // final result: 5037 // 5038 // t0 = Op * log2(e) 5039 5040 // TODO: What fast-math-flags should be set here? 5041 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5042 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5043 return getLimitedPrecisionExp2(t0, dl, DAG); 5044 } 5045 5046 // No special expansion. 5047 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5048 } 5049 5050 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5051 /// limited-precision mode. 5052 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5053 const TargetLowering &TLI) { 5054 // TODO: What fast-math-flags should be set on the floating-point nodes? 5055 5056 if (Op.getValueType() == MVT::f32 && 5057 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5058 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5059 5060 // Scale the exponent by log(2). 5061 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5062 SDValue LogOfExponent = 5063 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5064 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5065 5066 // Get the significand and build it into a floating-point number with 5067 // exponent of 1. 5068 SDValue X = GetSignificand(DAG, Op1, dl); 5069 5070 SDValue LogOfMantissa; 5071 if (LimitFloatPrecision <= 6) { 5072 // For floating-point precision of 6: 5073 // 5074 // LogofMantissa = 5075 // -1.1609546f + 5076 // (1.4034025f - 0.23903021f * x) * x; 5077 // 5078 // error 0.0034276066, which is better than 8 bits 5079 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5080 getF32Constant(DAG, 0xbe74c456, dl)); 5081 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5082 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5083 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5084 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5085 getF32Constant(DAG, 0x3f949a29, dl)); 5086 } else if (LimitFloatPrecision <= 12) { 5087 // For floating-point precision of 12: 5088 // 5089 // LogOfMantissa = 5090 // -1.7417939f + 5091 // (2.8212026f + 5092 // (-1.4699568f + 5093 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5094 // 5095 // error 0.000061011436, which is 14 bits 5096 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5097 getF32Constant(DAG, 0xbd67b6d6, dl)); 5098 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5099 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5100 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5101 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5102 getF32Constant(DAG, 0x3fbc278b, dl)); 5103 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5104 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5105 getF32Constant(DAG, 0x40348e95, dl)); 5106 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5107 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5108 getF32Constant(DAG, 0x3fdef31a, dl)); 5109 } else { // LimitFloatPrecision <= 18 5110 // For floating-point precision of 18: 5111 // 5112 // LogOfMantissa = 5113 // -2.1072184f + 5114 // (4.2372794f + 5115 // (-3.7029485f + 5116 // (2.2781945f + 5117 // (-0.87823314f + 5118 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5119 // 5120 // error 0.0000023660568, which is better than 18 bits 5121 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5122 getF32Constant(DAG, 0xbc91e5ac, dl)); 5123 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5124 getF32Constant(DAG, 0x3e4350aa, dl)); 5125 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5126 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5127 getF32Constant(DAG, 0x3f60d3e3, dl)); 5128 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5129 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5130 getF32Constant(DAG, 0x4011cdf0, dl)); 5131 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5132 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5133 getF32Constant(DAG, 0x406cfd1c, dl)); 5134 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5135 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5136 getF32Constant(DAG, 0x408797cb, dl)); 5137 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5138 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5139 getF32Constant(DAG, 0x4006dcab, dl)); 5140 } 5141 5142 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5143 } 5144 5145 // No special expansion. 5146 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5147 } 5148 5149 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5150 /// limited-precision mode. 5151 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5152 const TargetLowering &TLI) { 5153 // TODO: What fast-math-flags should be set on the floating-point nodes? 5154 5155 if (Op.getValueType() == MVT::f32 && 5156 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5157 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5158 5159 // Get the exponent. 5160 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5161 5162 // Get the significand and build it into a floating-point number with 5163 // exponent of 1. 5164 SDValue X = GetSignificand(DAG, Op1, dl); 5165 5166 // Different possible minimax approximations of significand in 5167 // floating-point for various degrees of accuracy over [1,2]. 5168 SDValue Log2ofMantissa; 5169 if (LimitFloatPrecision <= 6) { 5170 // For floating-point precision of 6: 5171 // 5172 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5173 // 5174 // error 0.0049451742, which is more than 7 bits 5175 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5176 getF32Constant(DAG, 0xbeb08fe0, dl)); 5177 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5178 getF32Constant(DAG, 0x40019463, dl)); 5179 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5180 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5181 getF32Constant(DAG, 0x3fd6633d, dl)); 5182 } else if (LimitFloatPrecision <= 12) { 5183 // For floating-point precision of 12: 5184 // 5185 // Log2ofMantissa = 5186 // -2.51285454f + 5187 // (4.07009056f + 5188 // (-2.12067489f + 5189 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5190 // 5191 // error 0.0000876136000, which is better than 13 bits 5192 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5193 getF32Constant(DAG, 0xbda7262e, dl)); 5194 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5195 getF32Constant(DAG, 0x3f25280b, dl)); 5196 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5197 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5198 getF32Constant(DAG, 0x4007b923, dl)); 5199 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5200 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5201 getF32Constant(DAG, 0x40823e2f, dl)); 5202 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5203 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5204 getF32Constant(DAG, 0x4020d29c, dl)); 5205 } else { // LimitFloatPrecision <= 18 5206 // For floating-point precision of 18: 5207 // 5208 // Log2ofMantissa = 5209 // -3.0400495f + 5210 // (6.1129976f + 5211 // (-5.3420409f + 5212 // (3.2865683f + 5213 // (-1.2669343f + 5214 // (0.27515199f - 5215 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5216 // 5217 // error 0.0000018516, which is better than 18 bits 5218 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5219 getF32Constant(DAG, 0xbcd2769e, dl)); 5220 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5221 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5222 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5223 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5224 getF32Constant(DAG, 0x3fa22ae7, dl)); 5225 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5226 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5227 getF32Constant(DAG, 0x40525723, dl)); 5228 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5229 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5230 getF32Constant(DAG, 0x40aaf200, dl)); 5231 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5232 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5233 getF32Constant(DAG, 0x40c39dad, dl)); 5234 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5235 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5236 getF32Constant(DAG, 0x4042902c, dl)); 5237 } 5238 5239 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5240 } 5241 5242 // No special expansion. 5243 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5244 } 5245 5246 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5247 /// limited-precision mode. 5248 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5249 const TargetLowering &TLI) { 5250 // TODO: What fast-math-flags should be set on the floating-point nodes? 5251 5252 if (Op.getValueType() == MVT::f32 && 5253 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5254 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5255 5256 // Scale the exponent by log10(2) [0.30102999f]. 5257 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5258 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5259 getF32Constant(DAG, 0x3e9a209a, dl)); 5260 5261 // Get the significand and build it into a floating-point number with 5262 // exponent of 1. 5263 SDValue X = GetSignificand(DAG, Op1, dl); 5264 5265 SDValue Log10ofMantissa; 5266 if (LimitFloatPrecision <= 6) { 5267 // For floating-point precision of 6: 5268 // 5269 // Log10ofMantissa = 5270 // -0.50419619f + 5271 // (0.60948995f - 0.10380950f * x) * x; 5272 // 5273 // error 0.0014886165, which is 6 bits 5274 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5275 getF32Constant(DAG, 0xbdd49a13, dl)); 5276 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5277 getF32Constant(DAG, 0x3f1c0789, dl)); 5278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5279 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5280 getF32Constant(DAG, 0x3f011300, dl)); 5281 } else if (LimitFloatPrecision <= 12) { 5282 // For floating-point precision of 12: 5283 // 5284 // Log10ofMantissa = 5285 // -0.64831180f + 5286 // (0.91751397f + 5287 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5288 // 5289 // error 0.00019228036, which is better than 12 bits 5290 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5291 getF32Constant(DAG, 0x3d431f31, dl)); 5292 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5293 getF32Constant(DAG, 0x3ea21fb2, dl)); 5294 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5295 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5296 getF32Constant(DAG, 0x3f6ae232, dl)); 5297 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5298 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5299 getF32Constant(DAG, 0x3f25f7c3, dl)); 5300 } else { // LimitFloatPrecision <= 18 5301 // For floating-point precision of 18: 5302 // 5303 // Log10ofMantissa = 5304 // -0.84299375f + 5305 // (1.5327582f + 5306 // (-1.0688956f + 5307 // (0.49102474f + 5308 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5309 // 5310 // error 0.0000037995730, which is better than 18 bits 5311 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5312 getF32Constant(DAG, 0x3c5d51ce, dl)); 5313 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5314 getF32Constant(DAG, 0x3e00685a, dl)); 5315 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5316 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5317 getF32Constant(DAG, 0x3efb6798, dl)); 5318 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5319 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5320 getF32Constant(DAG, 0x3f88d192, dl)); 5321 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5322 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5323 getF32Constant(DAG, 0x3fc4316c, dl)); 5324 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5325 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5326 getF32Constant(DAG, 0x3f57ce70, dl)); 5327 } 5328 5329 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5330 } 5331 5332 // No special expansion. 5333 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5334 } 5335 5336 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5337 /// limited-precision mode. 5338 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5339 const TargetLowering &TLI) { 5340 if (Op.getValueType() == MVT::f32 && 5341 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5342 return getLimitedPrecisionExp2(Op, dl, DAG); 5343 5344 // No special expansion. 5345 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5346 } 5347 5348 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5349 /// limited-precision mode with x == 10.0f. 5350 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5351 SelectionDAG &DAG, const TargetLowering &TLI) { 5352 bool IsExp10 = false; 5353 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5354 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5355 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5356 APFloat Ten(10.0f); 5357 IsExp10 = LHSC->isExactlyValue(Ten); 5358 } 5359 } 5360 5361 // TODO: What fast-math-flags should be set on the FMUL node? 5362 if (IsExp10) { 5363 // Put the exponent in the right bit position for later addition to the 5364 // final result: 5365 // 5366 // #define LOG2OF10 3.3219281f 5367 // t0 = Op * LOG2OF10; 5368 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5369 getF32Constant(DAG, 0x40549a78, dl)); 5370 return getLimitedPrecisionExp2(t0, dl, DAG); 5371 } 5372 5373 // No special expansion. 5374 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5375 } 5376 5377 /// ExpandPowI - Expand a llvm.powi intrinsic. 5378 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5379 SelectionDAG &DAG) { 5380 // If RHS is a constant, we can expand this out to a multiplication tree, 5381 // otherwise we end up lowering to a call to __powidf2 (for example). When 5382 // optimizing for size, we only want to do this if the expansion would produce 5383 // a small number of multiplies, otherwise we do the full expansion. 5384 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5385 // Get the exponent as a positive value. 5386 unsigned Val = RHSC->getSExtValue(); 5387 if ((int)Val < 0) Val = -Val; 5388 5389 // powi(x, 0) -> 1.0 5390 if (Val == 0) 5391 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5392 5393 bool OptForSize = DAG.shouldOptForSize(); 5394 if (!OptForSize || 5395 // If optimizing for size, don't insert too many multiplies. 5396 // This inserts up to 5 multiplies. 5397 countPopulation(Val) + Log2_32(Val) < 7) { 5398 // We use the simple binary decomposition method to generate the multiply 5399 // sequence. There are more optimal ways to do this (for example, 5400 // powi(x,15) generates one more multiply than it should), but this has 5401 // the benefit of being both really simple and much better than a libcall. 5402 SDValue Res; // Logically starts equal to 1.0 5403 SDValue CurSquare = LHS; 5404 // TODO: Intrinsics should have fast-math-flags that propagate to these 5405 // nodes. 5406 while (Val) { 5407 if (Val & 1) { 5408 if (Res.getNode()) 5409 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5410 else 5411 Res = CurSquare; // 1.0*CurSquare. 5412 } 5413 5414 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5415 CurSquare, CurSquare); 5416 Val >>= 1; 5417 } 5418 5419 // If the original was negative, invert the result, producing 1/(x*x*x). 5420 if (RHSC->getSExtValue() < 0) 5421 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5422 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5423 return Res; 5424 } 5425 } 5426 5427 // Otherwise, expand to a libcall. 5428 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5429 } 5430 5431 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5432 SDValue LHS, SDValue RHS, SDValue Scale, 5433 SelectionDAG &DAG, const TargetLowering &TLI) { 5434 EVT VT = LHS.getValueType(); 5435 bool Signed = Opcode == ISD::SDIVFIX; 5436 LLVMContext &Ctx = *DAG.getContext(); 5437 5438 // If the type is legal but the operation isn't, this node might survive all 5439 // the way to operation legalization. If we end up there and we do not have 5440 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5441 // node. 5442 5443 // Coax the legalizer into expanding the node during type legalization instead 5444 // by bumping the size by one bit. This will force it to Promote, enabling the 5445 // early expansion and avoiding the need to expand later. 5446 5447 // We don't have to do this if Scale is 0; that can always be expanded. 5448 5449 // FIXME: We wouldn't have to do this (or any of the early 5450 // expansion/promotion) if it was possible to expand a libcall of an 5451 // illegal type during operation legalization. But it's not, so things 5452 // get a bit hacky. 5453 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5454 if (ScaleInt > 0 && 5455 (TLI.isTypeLegal(VT) || 5456 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5457 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5458 Opcode, VT, ScaleInt); 5459 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5460 EVT PromVT; 5461 if (VT.isScalarInteger()) 5462 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5463 else if (VT.isVector()) { 5464 PromVT = VT.getVectorElementType(); 5465 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5466 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5467 } else 5468 llvm_unreachable("Wrong VT for DIVFIX?"); 5469 if (Signed) { 5470 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5471 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5472 } else { 5473 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5474 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5475 } 5476 // TODO: Saturation. 5477 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5478 return DAG.getZExtOrTrunc(Res, DL, VT); 5479 } 5480 } 5481 5482 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5483 } 5484 5485 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5486 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5487 static void 5488 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5489 const SDValue &N) { 5490 switch (N.getOpcode()) { 5491 case ISD::CopyFromReg: { 5492 SDValue Op = N.getOperand(1); 5493 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5494 Op.getValueType().getSizeInBits()); 5495 return; 5496 } 5497 case ISD::BITCAST: 5498 case ISD::AssertZext: 5499 case ISD::AssertSext: 5500 case ISD::TRUNCATE: 5501 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5502 return; 5503 case ISD::BUILD_PAIR: 5504 case ISD::BUILD_VECTOR: 5505 case ISD::CONCAT_VECTORS: 5506 for (SDValue Op : N->op_values()) 5507 getUnderlyingArgRegs(Regs, Op); 5508 return; 5509 default: 5510 return; 5511 } 5512 } 5513 5514 /// If the DbgValueInst is a dbg_value of a function argument, create the 5515 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5516 /// instruction selection, they will be inserted to the entry BB. 5517 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5518 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5519 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5520 const Argument *Arg = dyn_cast<Argument>(V); 5521 if (!Arg) 5522 return false; 5523 5524 if (!IsDbgDeclare) { 5525 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5526 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5527 // the entry block. 5528 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5529 if (!IsInEntryBlock) 5530 return false; 5531 5532 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5533 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5534 // variable that also is a param. 5535 // 5536 // Although, if we are at the top of the entry block already, we can still 5537 // emit using ArgDbgValue. This might catch some situations when the 5538 // dbg.value refers to an argument that isn't used in the entry block, so 5539 // any CopyToReg node would be optimized out and the only way to express 5540 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5541 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5542 // we should only emit as ArgDbgValue if the Variable is an argument to the 5543 // current function, and the dbg.value intrinsic is found in the entry 5544 // block. 5545 bool VariableIsFunctionInputArg = Variable->isParameter() && 5546 !DL->getInlinedAt(); 5547 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5548 if (!IsInPrologue && !VariableIsFunctionInputArg) 5549 return false; 5550 5551 // Here we assume that a function argument on IR level only can be used to 5552 // describe one input parameter on source level. If we for example have 5553 // source code like this 5554 // 5555 // struct A { long x, y; }; 5556 // void foo(struct A a, long b) { 5557 // ... 5558 // b = a.x; 5559 // ... 5560 // } 5561 // 5562 // and IR like this 5563 // 5564 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5565 // entry: 5566 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5567 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5568 // call void @llvm.dbg.value(metadata i32 %b, "b", 5569 // ... 5570 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5571 // ... 5572 // 5573 // then the last dbg.value is describing a parameter "b" using a value that 5574 // is an argument. But since we already has used %a1 to describe a parameter 5575 // we should not handle that last dbg.value here (that would result in an 5576 // incorrect hoisting of the DBG_VALUE to the function entry). 5577 // Notice that we allow one dbg.value per IR level argument, to accommodate 5578 // for the situation with fragments above. 5579 if (VariableIsFunctionInputArg) { 5580 unsigned ArgNo = Arg->getArgNo(); 5581 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5582 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5583 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5584 return false; 5585 FuncInfo.DescribedArgs.set(ArgNo); 5586 } 5587 } 5588 5589 MachineFunction &MF = DAG.getMachineFunction(); 5590 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5591 5592 Optional<MachineOperand> Op; 5593 // Some arguments' frame index is recorded during argument lowering. 5594 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5595 if (FI != std::numeric_limits<int>::max()) 5596 Op = MachineOperand::CreateFI(FI); 5597 5598 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5599 if (!Op && N.getNode()) { 5600 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5601 Register Reg; 5602 if (ArgRegsAndSizes.size() == 1) 5603 Reg = ArgRegsAndSizes.front().first; 5604 5605 if (Reg && Reg.isVirtual()) { 5606 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5607 Register PR = RegInfo.getLiveInPhysReg(Reg); 5608 if (PR) 5609 Reg = PR; 5610 } 5611 if (Reg) { 5612 Op = MachineOperand::CreateReg(Reg, false); 5613 } 5614 } 5615 5616 if (!Op && N.getNode()) { 5617 // Check if frame index is available. 5618 SDValue LCandidate = peekThroughBitcasts(N); 5619 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5620 if (FrameIndexSDNode *FINode = 5621 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5622 Op = MachineOperand::CreateFI(FINode->getIndex()); 5623 } 5624 5625 if (!Op) { 5626 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5627 auto splitMultiRegDbgValue 5628 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5629 unsigned Offset = 0; 5630 for (auto RegAndSize : SplitRegs) { 5631 // If the expression is already a fragment, the current register 5632 // offset+size might extend beyond the fragment. In this case, only 5633 // the register bits that are inside the fragment are relevant. 5634 int RegFragmentSizeInBits = RegAndSize.second; 5635 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5636 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5637 // The register is entirely outside the expression fragment, 5638 // so is irrelevant for debug info. 5639 if (Offset >= ExprFragmentSizeInBits) 5640 break; 5641 // The register is partially outside the expression fragment, only 5642 // the low bits within the fragment are relevant for debug info. 5643 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5644 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5645 } 5646 } 5647 5648 auto FragmentExpr = DIExpression::createFragmentExpression( 5649 Expr, Offset, RegFragmentSizeInBits); 5650 Offset += RegAndSize.second; 5651 // If a valid fragment expression cannot be created, the variable's 5652 // correct value cannot be determined and so it is set as Undef. 5653 if (!FragmentExpr) { 5654 SDDbgValue *SDV = DAG.getConstantDbgValue( 5655 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5656 DAG.AddDbgValue(SDV, nullptr, false); 5657 continue; 5658 } 5659 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5660 FuncInfo.ArgDbgValues.push_back( 5661 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5662 RegAndSize.first, Variable, *FragmentExpr)); 5663 } 5664 }; 5665 5666 // Check if ValueMap has reg number. 5667 DenseMap<const Value *, unsigned>::const_iterator 5668 VMI = FuncInfo.ValueMap.find(V); 5669 if (VMI != FuncInfo.ValueMap.end()) { 5670 const auto &TLI = DAG.getTargetLoweringInfo(); 5671 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5672 V->getType(), getABIRegCopyCC(V)); 5673 if (RFV.occupiesMultipleRegs()) { 5674 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5675 return true; 5676 } 5677 5678 Op = MachineOperand::CreateReg(VMI->second, false); 5679 } else if (ArgRegsAndSizes.size() > 1) { 5680 // This was split due to the calling convention, and no virtual register 5681 // mapping exists for the value. 5682 splitMultiRegDbgValue(ArgRegsAndSizes); 5683 return true; 5684 } 5685 } 5686 5687 if (!Op) 5688 return false; 5689 5690 assert(Variable->isValidLocationForIntrinsic(DL) && 5691 "Expected inlined-at fields to agree"); 5692 5693 // If the argument arrives in a stack slot, then what the IR thought was a 5694 // normal Value is actually in memory, and we must add a deref to load it. 5695 if (Op->isFI()) { 5696 int FI = Op->getIndex(); 5697 unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI); 5698 if (Expr->isImplicit()) { 5699 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size}; 5700 Expr = DIExpression::prependOpcodes(Expr, Ops); 5701 } else { 5702 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 5703 } 5704 } 5705 5706 // If this location was specified with a dbg.declare, then it and its 5707 // expression calculate the address of the variable. Append a deref to 5708 // force it to be a memory location. 5709 if (IsDbgDeclare) 5710 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5711 5712 FuncInfo.ArgDbgValues.push_back( 5713 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5714 *Op, Variable, Expr)); 5715 5716 return true; 5717 } 5718 5719 /// Return the appropriate SDDbgValue based on N. 5720 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5721 DILocalVariable *Variable, 5722 DIExpression *Expr, 5723 const DebugLoc &dl, 5724 unsigned DbgSDNodeOrder) { 5725 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5726 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5727 // stack slot locations. 5728 // 5729 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5730 // debug values here after optimization: 5731 // 5732 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5733 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5734 // 5735 // Both describe the direct values of their associated variables. 5736 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5737 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5738 } 5739 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5740 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5741 } 5742 5743 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5744 switch (Intrinsic) { 5745 case Intrinsic::smul_fix: 5746 return ISD::SMULFIX; 5747 case Intrinsic::umul_fix: 5748 return ISD::UMULFIX; 5749 case Intrinsic::smul_fix_sat: 5750 return ISD::SMULFIXSAT; 5751 case Intrinsic::umul_fix_sat: 5752 return ISD::UMULFIXSAT; 5753 case Intrinsic::sdiv_fix: 5754 return ISD::SDIVFIX; 5755 case Intrinsic::udiv_fix: 5756 return ISD::UDIVFIX; 5757 default: 5758 llvm_unreachable("Unhandled fixed point intrinsic"); 5759 } 5760 } 5761 5762 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5763 const char *FunctionName) { 5764 assert(FunctionName && "FunctionName must not be nullptr"); 5765 SDValue Callee = DAG.getExternalSymbol( 5766 FunctionName, 5767 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5768 LowerCallTo(&I, Callee, I.isTailCall()); 5769 } 5770 5771 /// Lower the call to the specified intrinsic function. 5772 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5773 unsigned Intrinsic) { 5774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5775 SDLoc sdl = getCurSDLoc(); 5776 DebugLoc dl = getCurDebugLoc(); 5777 SDValue Res; 5778 5779 switch (Intrinsic) { 5780 default: 5781 // By default, turn this into a target intrinsic node. 5782 visitTargetIntrinsic(I, Intrinsic); 5783 return; 5784 case Intrinsic::vastart: visitVAStart(I); return; 5785 case Intrinsic::vaend: visitVAEnd(I); return; 5786 case Intrinsic::vacopy: visitVACopy(I); return; 5787 case Intrinsic::returnaddress: 5788 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5789 TLI.getPointerTy(DAG.getDataLayout()), 5790 getValue(I.getArgOperand(0)))); 5791 return; 5792 case Intrinsic::addressofreturnaddress: 5793 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5794 TLI.getPointerTy(DAG.getDataLayout()))); 5795 return; 5796 case Intrinsic::sponentry: 5797 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5798 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5799 return; 5800 case Intrinsic::frameaddress: 5801 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5802 TLI.getFrameIndexTy(DAG.getDataLayout()), 5803 getValue(I.getArgOperand(0)))); 5804 return; 5805 case Intrinsic::read_register: { 5806 Value *Reg = I.getArgOperand(0); 5807 SDValue Chain = getRoot(); 5808 SDValue RegName = 5809 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5810 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5811 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5812 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5813 setValue(&I, Res); 5814 DAG.setRoot(Res.getValue(1)); 5815 return; 5816 } 5817 case Intrinsic::write_register: { 5818 Value *Reg = I.getArgOperand(0); 5819 Value *RegValue = I.getArgOperand(1); 5820 SDValue Chain = getRoot(); 5821 SDValue RegName = 5822 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5823 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5824 RegName, getValue(RegValue))); 5825 return; 5826 } 5827 case Intrinsic::memcpy: { 5828 const auto &MCI = cast<MemCpyInst>(I); 5829 SDValue Op1 = getValue(I.getArgOperand(0)); 5830 SDValue Op2 = getValue(I.getArgOperand(1)); 5831 SDValue Op3 = getValue(I.getArgOperand(2)); 5832 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5833 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5834 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5835 unsigned Align = MinAlign(DstAlign, SrcAlign); 5836 bool isVol = MCI.isVolatile(); 5837 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5838 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5839 // node. 5840 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5841 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Align, isVol, 5842 false, isTC, 5843 MachinePointerInfo(I.getArgOperand(0)), 5844 MachinePointerInfo(I.getArgOperand(1))); 5845 updateDAGForMaybeTailCall(MC); 5846 return; 5847 } 5848 case Intrinsic::memset: { 5849 const auto &MSI = cast<MemSetInst>(I); 5850 SDValue Op1 = getValue(I.getArgOperand(0)); 5851 SDValue Op2 = getValue(I.getArgOperand(1)); 5852 SDValue Op3 = getValue(I.getArgOperand(2)); 5853 // @llvm.memset defines 0 and 1 to both mean no alignment. 5854 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5855 bool isVol = MSI.isVolatile(); 5856 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5857 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5858 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Align, isVol, 5859 isTC, MachinePointerInfo(I.getArgOperand(0))); 5860 updateDAGForMaybeTailCall(MS); 5861 return; 5862 } 5863 case Intrinsic::memmove: { 5864 const auto &MMI = cast<MemMoveInst>(I); 5865 SDValue Op1 = getValue(I.getArgOperand(0)); 5866 SDValue Op2 = getValue(I.getArgOperand(1)); 5867 SDValue Op3 = getValue(I.getArgOperand(2)); 5868 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5869 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5870 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5871 unsigned Align = MinAlign(DstAlign, SrcAlign); 5872 bool isVol = MMI.isVolatile(); 5873 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5874 // FIXME: Support passing different dest/src alignments to the memmove DAG 5875 // node. 5876 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5877 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Align, isVol, 5878 isTC, MachinePointerInfo(I.getArgOperand(0)), 5879 MachinePointerInfo(I.getArgOperand(1))); 5880 updateDAGForMaybeTailCall(MM); 5881 return; 5882 } 5883 case Intrinsic::memcpy_element_unordered_atomic: { 5884 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5885 SDValue Dst = getValue(MI.getRawDest()); 5886 SDValue Src = getValue(MI.getRawSource()); 5887 SDValue Length = getValue(MI.getLength()); 5888 5889 unsigned DstAlign = MI.getDestAlignment(); 5890 unsigned SrcAlign = MI.getSourceAlignment(); 5891 Type *LengthTy = MI.getLength()->getType(); 5892 unsigned ElemSz = MI.getElementSizeInBytes(); 5893 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5894 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5895 SrcAlign, Length, LengthTy, ElemSz, isTC, 5896 MachinePointerInfo(MI.getRawDest()), 5897 MachinePointerInfo(MI.getRawSource())); 5898 updateDAGForMaybeTailCall(MC); 5899 return; 5900 } 5901 case Intrinsic::memmove_element_unordered_atomic: { 5902 auto &MI = cast<AtomicMemMoveInst>(I); 5903 SDValue Dst = getValue(MI.getRawDest()); 5904 SDValue Src = getValue(MI.getRawSource()); 5905 SDValue Length = getValue(MI.getLength()); 5906 5907 unsigned DstAlign = MI.getDestAlignment(); 5908 unsigned SrcAlign = MI.getSourceAlignment(); 5909 Type *LengthTy = MI.getLength()->getType(); 5910 unsigned ElemSz = MI.getElementSizeInBytes(); 5911 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5912 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5913 SrcAlign, Length, LengthTy, ElemSz, isTC, 5914 MachinePointerInfo(MI.getRawDest()), 5915 MachinePointerInfo(MI.getRawSource())); 5916 updateDAGForMaybeTailCall(MC); 5917 return; 5918 } 5919 case Intrinsic::memset_element_unordered_atomic: { 5920 auto &MI = cast<AtomicMemSetInst>(I); 5921 SDValue Dst = getValue(MI.getRawDest()); 5922 SDValue Val = getValue(MI.getValue()); 5923 SDValue Length = getValue(MI.getLength()); 5924 5925 unsigned DstAlign = MI.getDestAlignment(); 5926 Type *LengthTy = MI.getLength()->getType(); 5927 unsigned ElemSz = MI.getElementSizeInBytes(); 5928 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5929 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5930 LengthTy, ElemSz, isTC, 5931 MachinePointerInfo(MI.getRawDest())); 5932 updateDAGForMaybeTailCall(MC); 5933 return; 5934 } 5935 case Intrinsic::dbg_addr: 5936 case Intrinsic::dbg_declare: { 5937 const auto &DI = cast<DbgVariableIntrinsic>(I); 5938 DILocalVariable *Variable = DI.getVariable(); 5939 DIExpression *Expression = DI.getExpression(); 5940 dropDanglingDebugInfo(Variable, Expression); 5941 assert(Variable && "Missing variable"); 5942 5943 // Check if address has undef value. 5944 const Value *Address = DI.getVariableLocation(); 5945 if (!Address || isa<UndefValue>(Address) || 5946 (Address->use_empty() && !isa<Argument>(Address))) { 5947 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5948 return; 5949 } 5950 5951 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5952 5953 // Check if this variable can be described by a frame index, typically 5954 // either as a static alloca or a byval parameter. 5955 int FI = std::numeric_limits<int>::max(); 5956 if (const auto *AI = 5957 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5958 if (AI->isStaticAlloca()) { 5959 auto I = FuncInfo.StaticAllocaMap.find(AI); 5960 if (I != FuncInfo.StaticAllocaMap.end()) 5961 FI = I->second; 5962 } 5963 } else if (const auto *Arg = dyn_cast<Argument>( 5964 Address->stripInBoundsConstantOffsets())) { 5965 FI = FuncInfo.getArgumentFrameIndex(Arg); 5966 } 5967 5968 // llvm.dbg.addr is control dependent and always generates indirect 5969 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5970 // the MachineFunction variable table. 5971 if (FI != std::numeric_limits<int>::max()) { 5972 if (Intrinsic == Intrinsic::dbg_addr) { 5973 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5974 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5975 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5976 } 5977 return; 5978 } 5979 5980 SDValue &N = NodeMap[Address]; 5981 if (!N.getNode() && isa<Argument>(Address)) 5982 // Check unused arguments map. 5983 N = UnusedArgNodeMap[Address]; 5984 SDDbgValue *SDV; 5985 if (N.getNode()) { 5986 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5987 Address = BCI->getOperand(0); 5988 // Parameters are handled specially. 5989 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5990 if (isParameter && FINode) { 5991 // Byval parameter. We have a frame index at this point. 5992 SDV = 5993 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5994 /*IsIndirect*/ true, dl, SDNodeOrder); 5995 } else if (isa<Argument>(Address)) { 5996 // Address is an argument, so try to emit its dbg value using 5997 // virtual register info from the FuncInfo.ValueMap. 5998 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5999 return; 6000 } else { 6001 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6002 true, dl, SDNodeOrder); 6003 } 6004 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 6005 } else { 6006 // If Address is an argument then try to emit its dbg value using 6007 // virtual register info from the FuncInfo.ValueMap. 6008 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6009 N)) { 6010 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 6011 } 6012 } 6013 return; 6014 } 6015 case Intrinsic::dbg_label: { 6016 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6017 DILabel *Label = DI.getLabel(); 6018 assert(Label && "Missing label"); 6019 6020 SDDbgLabel *SDV; 6021 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6022 DAG.AddDbgLabel(SDV); 6023 return; 6024 } 6025 case Intrinsic::dbg_value: { 6026 const DbgValueInst &DI = cast<DbgValueInst>(I); 6027 assert(DI.getVariable() && "Missing variable"); 6028 6029 DILocalVariable *Variable = DI.getVariable(); 6030 DIExpression *Expression = DI.getExpression(); 6031 dropDanglingDebugInfo(Variable, Expression); 6032 const Value *V = DI.getValue(); 6033 if (!V) 6034 return; 6035 6036 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 6037 SDNodeOrder)) 6038 return; 6039 6040 // TODO: Dangling debug info will eventually either be resolved or produce 6041 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 6042 // between the original dbg.value location and its resolved DBG_VALUE, which 6043 // we should ideally fill with an extra Undef DBG_VALUE. 6044 6045 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 6046 return; 6047 } 6048 6049 case Intrinsic::eh_typeid_for: { 6050 // Find the type id for the given typeinfo. 6051 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6052 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6053 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6054 setValue(&I, Res); 6055 return; 6056 } 6057 6058 case Intrinsic::eh_return_i32: 6059 case Intrinsic::eh_return_i64: 6060 DAG.getMachineFunction().setCallsEHReturn(true); 6061 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6062 MVT::Other, 6063 getControlRoot(), 6064 getValue(I.getArgOperand(0)), 6065 getValue(I.getArgOperand(1)))); 6066 return; 6067 case Intrinsic::eh_unwind_init: 6068 DAG.getMachineFunction().setCallsUnwindInit(true); 6069 return; 6070 case Intrinsic::eh_dwarf_cfa: 6071 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6072 TLI.getPointerTy(DAG.getDataLayout()), 6073 getValue(I.getArgOperand(0)))); 6074 return; 6075 case Intrinsic::eh_sjlj_callsite: { 6076 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6077 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6078 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6079 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6080 6081 MMI.setCurrentCallSite(CI->getZExtValue()); 6082 return; 6083 } 6084 case Intrinsic::eh_sjlj_functioncontext: { 6085 // Get and store the index of the function context. 6086 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6087 AllocaInst *FnCtx = 6088 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6089 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6090 MFI.setFunctionContextIndex(FI); 6091 return; 6092 } 6093 case Intrinsic::eh_sjlj_setjmp: { 6094 SDValue Ops[2]; 6095 Ops[0] = getRoot(); 6096 Ops[1] = getValue(I.getArgOperand(0)); 6097 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6098 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6099 setValue(&I, Op.getValue(0)); 6100 DAG.setRoot(Op.getValue(1)); 6101 return; 6102 } 6103 case Intrinsic::eh_sjlj_longjmp: 6104 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6105 getRoot(), getValue(I.getArgOperand(0)))); 6106 return; 6107 case Intrinsic::eh_sjlj_setup_dispatch: 6108 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6109 getRoot())); 6110 return; 6111 case Intrinsic::masked_gather: 6112 visitMaskedGather(I); 6113 return; 6114 case Intrinsic::masked_load: 6115 visitMaskedLoad(I); 6116 return; 6117 case Intrinsic::masked_scatter: 6118 visitMaskedScatter(I); 6119 return; 6120 case Intrinsic::masked_store: 6121 visitMaskedStore(I); 6122 return; 6123 case Intrinsic::masked_expandload: 6124 visitMaskedLoad(I, true /* IsExpanding */); 6125 return; 6126 case Intrinsic::masked_compressstore: 6127 visitMaskedStore(I, true /* IsCompressing */); 6128 return; 6129 case Intrinsic::powi: 6130 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6131 getValue(I.getArgOperand(1)), DAG)); 6132 return; 6133 case Intrinsic::log: 6134 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6135 return; 6136 case Intrinsic::log2: 6137 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6138 return; 6139 case Intrinsic::log10: 6140 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6141 return; 6142 case Intrinsic::exp: 6143 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6144 return; 6145 case Intrinsic::exp2: 6146 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6147 return; 6148 case Intrinsic::pow: 6149 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6150 getValue(I.getArgOperand(1)), DAG, TLI)); 6151 return; 6152 case Intrinsic::sqrt: 6153 case Intrinsic::fabs: 6154 case Intrinsic::sin: 6155 case Intrinsic::cos: 6156 case Intrinsic::floor: 6157 case Intrinsic::ceil: 6158 case Intrinsic::trunc: 6159 case Intrinsic::rint: 6160 case Intrinsic::nearbyint: 6161 case Intrinsic::round: 6162 case Intrinsic::canonicalize: { 6163 unsigned Opcode; 6164 switch (Intrinsic) { 6165 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6166 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6167 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6168 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6169 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6170 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6171 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6172 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6173 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6174 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6175 case Intrinsic::round: Opcode = ISD::FROUND; break; 6176 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6177 } 6178 6179 setValue(&I, DAG.getNode(Opcode, sdl, 6180 getValue(I.getArgOperand(0)).getValueType(), 6181 getValue(I.getArgOperand(0)))); 6182 return; 6183 } 6184 case Intrinsic::lround: 6185 case Intrinsic::llround: 6186 case Intrinsic::lrint: 6187 case Intrinsic::llrint: { 6188 unsigned Opcode; 6189 switch (Intrinsic) { 6190 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6191 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6192 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6193 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6194 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6195 } 6196 6197 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6198 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6199 getValue(I.getArgOperand(0)))); 6200 return; 6201 } 6202 case Intrinsic::minnum: 6203 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6204 getValue(I.getArgOperand(0)).getValueType(), 6205 getValue(I.getArgOperand(0)), 6206 getValue(I.getArgOperand(1)))); 6207 return; 6208 case Intrinsic::maxnum: 6209 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6210 getValue(I.getArgOperand(0)).getValueType(), 6211 getValue(I.getArgOperand(0)), 6212 getValue(I.getArgOperand(1)))); 6213 return; 6214 case Intrinsic::minimum: 6215 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6216 getValue(I.getArgOperand(0)).getValueType(), 6217 getValue(I.getArgOperand(0)), 6218 getValue(I.getArgOperand(1)))); 6219 return; 6220 case Intrinsic::maximum: 6221 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6222 getValue(I.getArgOperand(0)).getValueType(), 6223 getValue(I.getArgOperand(0)), 6224 getValue(I.getArgOperand(1)))); 6225 return; 6226 case Intrinsic::copysign: 6227 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6228 getValue(I.getArgOperand(0)).getValueType(), 6229 getValue(I.getArgOperand(0)), 6230 getValue(I.getArgOperand(1)))); 6231 return; 6232 case Intrinsic::fma: 6233 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6234 getValue(I.getArgOperand(0)).getValueType(), 6235 getValue(I.getArgOperand(0)), 6236 getValue(I.getArgOperand(1)), 6237 getValue(I.getArgOperand(2)))); 6238 return; 6239 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6240 case Intrinsic::INTRINSIC: 6241 #include "llvm/IR/ConstrainedOps.def" 6242 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6243 return; 6244 case Intrinsic::fmuladd: { 6245 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6246 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6247 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6248 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6249 getValue(I.getArgOperand(0)).getValueType(), 6250 getValue(I.getArgOperand(0)), 6251 getValue(I.getArgOperand(1)), 6252 getValue(I.getArgOperand(2)))); 6253 } else { 6254 // TODO: Intrinsic calls should have fast-math-flags. 6255 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6256 getValue(I.getArgOperand(0)).getValueType(), 6257 getValue(I.getArgOperand(0)), 6258 getValue(I.getArgOperand(1))); 6259 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6260 getValue(I.getArgOperand(0)).getValueType(), 6261 Mul, 6262 getValue(I.getArgOperand(2))); 6263 setValue(&I, Add); 6264 } 6265 return; 6266 } 6267 case Intrinsic::convert_to_fp16: 6268 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6269 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6270 getValue(I.getArgOperand(0)), 6271 DAG.getTargetConstant(0, sdl, 6272 MVT::i32)))); 6273 return; 6274 case Intrinsic::convert_from_fp16: 6275 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6276 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6277 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6278 getValue(I.getArgOperand(0))))); 6279 return; 6280 case Intrinsic::pcmarker: { 6281 SDValue Tmp = getValue(I.getArgOperand(0)); 6282 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6283 return; 6284 } 6285 case Intrinsic::readcyclecounter: { 6286 SDValue Op = getRoot(); 6287 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6288 DAG.getVTList(MVT::i64, MVT::Other), Op); 6289 setValue(&I, Res); 6290 DAG.setRoot(Res.getValue(1)); 6291 return; 6292 } 6293 case Intrinsic::bitreverse: 6294 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6295 getValue(I.getArgOperand(0)).getValueType(), 6296 getValue(I.getArgOperand(0)))); 6297 return; 6298 case Intrinsic::bswap: 6299 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6300 getValue(I.getArgOperand(0)).getValueType(), 6301 getValue(I.getArgOperand(0)))); 6302 return; 6303 case Intrinsic::cttz: { 6304 SDValue Arg = getValue(I.getArgOperand(0)); 6305 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6306 EVT Ty = Arg.getValueType(); 6307 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6308 sdl, Ty, Arg)); 6309 return; 6310 } 6311 case Intrinsic::ctlz: { 6312 SDValue Arg = getValue(I.getArgOperand(0)); 6313 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6314 EVT Ty = Arg.getValueType(); 6315 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6316 sdl, Ty, Arg)); 6317 return; 6318 } 6319 case Intrinsic::ctpop: { 6320 SDValue Arg = getValue(I.getArgOperand(0)); 6321 EVT Ty = Arg.getValueType(); 6322 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6323 return; 6324 } 6325 case Intrinsic::fshl: 6326 case Intrinsic::fshr: { 6327 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6328 SDValue X = getValue(I.getArgOperand(0)); 6329 SDValue Y = getValue(I.getArgOperand(1)); 6330 SDValue Z = getValue(I.getArgOperand(2)); 6331 EVT VT = X.getValueType(); 6332 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6333 SDValue Zero = DAG.getConstant(0, sdl, VT); 6334 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6335 6336 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6337 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6338 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6339 return; 6340 } 6341 6342 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6343 // avoid the select that is necessary in the general case to filter out 6344 // the 0-shift possibility that leads to UB. 6345 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6346 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6347 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6348 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6349 return; 6350 } 6351 6352 // Some targets only rotate one way. Try the opposite direction. 6353 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6354 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6355 // Negate the shift amount because it is safe to ignore the high bits. 6356 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6357 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6358 return; 6359 } 6360 6361 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6362 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6363 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6364 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6365 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6366 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6367 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6368 return; 6369 } 6370 6371 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6372 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6373 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6374 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6375 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6376 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6377 6378 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6379 // and that is undefined. We must compare and select to avoid UB. 6380 EVT CCVT = MVT::i1; 6381 if (VT.isVector()) 6382 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6383 6384 // For fshl, 0-shift returns the 1st arg (X). 6385 // For fshr, 0-shift returns the 2nd arg (Y). 6386 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6387 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6388 return; 6389 } 6390 case Intrinsic::sadd_sat: { 6391 SDValue Op1 = getValue(I.getArgOperand(0)); 6392 SDValue Op2 = getValue(I.getArgOperand(1)); 6393 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6394 return; 6395 } 6396 case Intrinsic::uadd_sat: { 6397 SDValue Op1 = getValue(I.getArgOperand(0)); 6398 SDValue Op2 = getValue(I.getArgOperand(1)); 6399 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6400 return; 6401 } 6402 case Intrinsic::ssub_sat: { 6403 SDValue Op1 = getValue(I.getArgOperand(0)); 6404 SDValue Op2 = getValue(I.getArgOperand(1)); 6405 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6406 return; 6407 } 6408 case Intrinsic::usub_sat: { 6409 SDValue Op1 = getValue(I.getArgOperand(0)); 6410 SDValue Op2 = getValue(I.getArgOperand(1)); 6411 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6412 return; 6413 } 6414 case Intrinsic::smul_fix: 6415 case Intrinsic::umul_fix: 6416 case Intrinsic::smul_fix_sat: 6417 case Intrinsic::umul_fix_sat: { 6418 SDValue Op1 = getValue(I.getArgOperand(0)); 6419 SDValue Op2 = getValue(I.getArgOperand(1)); 6420 SDValue Op3 = getValue(I.getArgOperand(2)); 6421 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6422 Op1.getValueType(), Op1, Op2, Op3)); 6423 return; 6424 } 6425 case Intrinsic::sdiv_fix: 6426 case Intrinsic::udiv_fix: { 6427 SDValue Op1 = getValue(I.getArgOperand(0)); 6428 SDValue Op2 = getValue(I.getArgOperand(1)); 6429 SDValue Op3 = getValue(I.getArgOperand(2)); 6430 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6431 Op1, Op2, Op3, DAG, TLI)); 6432 return; 6433 } 6434 case Intrinsic::stacksave: { 6435 SDValue Op = getRoot(); 6436 Res = DAG.getNode( 6437 ISD::STACKSAVE, sdl, 6438 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6439 setValue(&I, Res); 6440 DAG.setRoot(Res.getValue(1)); 6441 return; 6442 } 6443 case Intrinsic::stackrestore: 6444 Res = getValue(I.getArgOperand(0)); 6445 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6446 return; 6447 case Intrinsic::get_dynamic_area_offset: { 6448 SDValue Op = getRoot(); 6449 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6450 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6451 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6452 // target. 6453 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6454 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6455 " intrinsic!"); 6456 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6457 Op); 6458 DAG.setRoot(Op); 6459 setValue(&I, Res); 6460 return; 6461 } 6462 case Intrinsic::stackguard: { 6463 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6464 MachineFunction &MF = DAG.getMachineFunction(); 6465 const Module &M = *MF.getFunction().getParent(); 6466 SDValue Chain = getRoot(); 6467 if (TLI.useLoadStackGuardNode()) { 6468 Res = getLoadStackGuard(DAG, sdl, Chain); 6469 } else { 6470 const Value *Global = TLI.getSDagStackGuard(M); 6471 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6472 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6473 MachinePointerInfo(Global, 0), Align, 6474 MachineMemOperand::MOVolatile); 6475 } 6476 if (TLI.useStackGuardXorFP()) 6477 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6478 DAG.setRoot(Chain); 6479 setValue(&I, Res); 6480 return; 6481 } 6482 case Intrinsic::stackprotector: { 6483 // Emit code into the DAG to store the stack guard onto the stack. 6484 MachineFunction &MF = DAG.getMachineFunction(); 6485 MachineFrameInfo &MFI = MF.getFrameInfo(); 6486 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6487 SDValue Src, Chain = getRoot(); 6488 6489 if (TLI.useLoadStackGuardNode()) 6490 Src = getLoadStackGuard(DAG, sdl, Chain); 6491 else 6492 Src = getValue(I.getArgOperand(0)); // The guard's value. 6493 6494 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6495 6496 int FI = FuncInfo.StaticAllocaMap[Slot]; 6497 MFI.setStackProtectorIndex(FI); 6498 6499 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6500 6501 // Store the stack protector onto the stack. 6502 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6503 DAG.getMachineFunction(), FI), 6504 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6505 setValue(&I, Res); 6506 DAG.setRoot(Res); 6507 return; 6508 } 6509 case Intrinsic::objectsize: 6510 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6511 6512 case Intrinsic::is_constant: 6513 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6514 6515 case Intrinsic::annotation: 6516 case Intrinsic::ptr_annotation: 6517 case Intrinsic::launder_invariant_group: 6518 case Intrinsic::strip_invariant_group: 6519 // Drop the intrinsic, but forward the value 6520 setValue(&I, getValue(I.getOperand(0))); 6521 return; 6522 case Intrinsic::assume: 6523 case Intrinsic::var_annotation: 6524 case Intrinsic::sideeffect: 6525 // Discard annotate attributes, assumptions, and artificial side-effects. 6526 return; 6527 6528 case Intrinsic::codeview_annotation: { 6529 // Emit a label associated with this metadata. 6530 MachineFunction &MF = DAG.getMachineFunction(); 6531 MCSymbol *Label = 6532 MF.getMMI().getContext().createTempSymbol("annotation", true); 6533 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6534 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6535 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6536 DAG.setRoot(Res); 6537 return; 6538 } 6539 6540 case Intrinsic::init_trampoline: { 6541 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6542 6543 SDValue Ops[6]; 6544 Ops[0] = getRoot(); 6545 Ops[1] = getValue(I.getArgOperand(0)); 6546 Ops[2] = getValue(I.getArgOperand(1)); 6547 Ops[3] = getValue(I.getArgOperand(2)); 6548 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6549 Ops[5] = DAG.getSrcValue(F); 6550 6551 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6552 6553 DAG.setRoot(Res); 6554 return; 6555 } 6556 case Intrinsic::adjust_trampoline: 6557 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6558 TLI.getPointerTy(DAG.getDataLayout()), 6559 getValue(I.getArgOperand(0)))); 6560 return; 6561 case Intrinsic::gcroot: { 6562 assert(DAG.getMachineFunction().getFunction().hasGC() && 6563 "only valid in functions with gc specified, enforced by Verifier"); 6564 assert(GFI && "implied by previous"); 6565 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6566 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6567 6568 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6569 GFI->addStackRoot(FI->getIndex(), TypeMap); 6570 return; 6571 } 6572 case Intrinsic::gcread: 6573 case Intrinsic::gcwrite: 6574 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6575 case Intrinsic::flt_rounds: 6576 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6577 return; 6578 6579 case Intrinsic::expect: 6580 // Just replace __builtin_expect(exp, c) with EXP. 6581 setValue(&I, getValue(I.getArgOperand(0))); 6582 return; 6583 6584 case Intrinsic::debugtrap: 6585 case Intrinsic::trap: { 6586 StringRef TrapFuncName = 6587 I.getAttributes() 6588 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6589 .getValueAsString(); 6590 if (TrapFuncName.empty()) { 6591 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6592 ISD::TRAP : ISD::DEBUGTRAP; 6593 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6594 return; 6595 } 6596 TargetLowering::ArgListTy Args; 6597 6598 TargetLowering::CallLoweringInfo CLI(DAG); 6599 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6600 CallingConv::C, I.getType(), 6601 DAG.getExternalSymbol(TrapFuncName.data(), 6602 TLI.getPointerTy(DAG.getDataLayout())), 6603 std::move(Args)); 6604 6605 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6606 DAG.setRoot(Result.second); 6607 return; 6608 } 6609 6610 case Intrinsic::uadd_with_overflow: 6611 case Intrinsic::sadd_with_overflow: 6612 case Intrinsic::usub_with_overflow: 6613 case Intrinsic::ssub_with_overflow: 6614 case Intrinsic::umul_with_overflow: 6615 case Intrinsic::smul_with_overflow: { 6616 ISD::NodeType Op; 6617 switch (Intrinsic) { 6618 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6619 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6620 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6621 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6622 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6623 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6624 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6625 } 6626 SDValue Op1 = getValue(I.getArgOperand(0)); 6627 SDValue Op2 = getValue(I.getArgOperand(1)); 6628 6629 EVT ResultVT = Op1.getValueType(); 6630 EVT OverflowVT = MVT::i1; 6631 if (ResultVT.isVector()) 6632 OverflowVT = EVT::getVectorVT( 6633 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6634 6635 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6636 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6637 return; 6638 } 6639 case Intrinsic::prefetch: { 6640 SDValue Ops[5]; 6641 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6642 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6643 Ops[0] = DAG.getRoot(); 6644 Ops[1] = getValue(I.getArgOperand(0)); 6645 Ops[2] = getValue(I.getArgOperand(1)); 6646 Ops[3] = getValue(I.getArgOperand(2)); 6647 Ops[4] = getValue(I.getArgOperand(3)); 6648 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6649 DAG.getVTList(MVT::Other), Ops, 6650 EVT::getIntegerVT(*Context, 8), 6651 MachinePointerInfo(I.getArgOperand(0)), 6652 0, /* align */ 6653 Flags); 6654 6655 // Chain the prefetch in parallell with any pending loads, to stay out of 6656 // the way of later optimizations. 6657 PendingLoads.push_back(Result); 6658 Result = getRoot(); 6659 DAG.setRoot(Result); 6660 return; 6661 } 6662 case Intrinsic::lifetime_start: 6663 case Intrinsic::lifetime_end: { 6664 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6665 // Stack coloring is not enabled in O0, discard region information. 6666 if (TM.getOptLevel() == CodeGenOpt::None) 6667 return; 6668 6669 const int64_t ObjectSize = 6670 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6671 Value *const ObjectPtr = I.getArgOperand(1); 6672 SmallVector<const Value *, 4> Allocas; 6673 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6674 6675 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6676 E = Allocas.end(); Object != E; ++Object) { 6677 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6678 6679 // Could not find an Alloca. 6680 if (!LifetimeObject) 6681 continue; 6682 6683 // First check that the Alloca is static, otherwise it won't have a 6684 // valid frame index. 6685 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6686 if (SI == FuncInfo.StaticAllocaMap.end()) 6687 return; 6688 6689 const int FrameIndex = SI->second; 6690 int64_t Offset; 6691 if (GetPointerBaseWithConstantOffset( 6692 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6693 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6694 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6695 Offset); 6696 DAG.setRoot(Res); 6697 } 6698 return; 6699 } 6700 case Intrinsic::invariant_start: 6701 // Discard region information. 6702 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6703 return; 6704 case Intrinsic::invariant_end: 6705 // Discard region information. 6706 return; 6707 case Intrinsic::clear_cache: 6708 /// FunctionName may be null. 6709 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6710 lowerCallToExternalSymbol(I, FunctionName); 6711 return; 6712 case Intrinsic::donothing: 6713 // ignore 6714 return; 6715 case Intrinsic::experimental_stackmap: 6716 visitStackmap(I); 6717 return; 6718 case Intrinsic::experimental_patchpoint_void: 6719 case Intrinsic::experimental_patchpoint_i64: 6720 visitPatchpoint(&I); 6721 return; 6722 case Intrinsic::experimental_gc_statepoint: 6723 LowerStatepoint(ImmutableStatepoint(&I)); 6724 return; 6725 case Intrinsic::experimental_gc_result: 6726 visitGCResult(cast<GCResultInst>(I)); 6727 return; 6728 case Intrinsic::experimental_gc_relocate: 6729 visitGCRelocate(cast<GCRelocateInst>(I)); 6730 return; 6731 case Intrinsic::instrprof_increment: 6732 llvm_unreachable("instrprof failed to lower an increment"); 6733 case Intrinsic::instrprof_value_profile: 6734 llvm_unreachable("instrprof failed to lower a value profiling call"); 6735 case Intrinsic::localescape: { 6736 MachineFunction &MF = DAG.getMachineFunction(); 6737 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6738 6739 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6740 // is the same on all targets. 6741 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6742 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6743 if (isa<ConstantPointerNull>(Arg)) 6744 continue; // Skip null pointers. They represent a hole in index space. 6745 AllocaInst *Slot = cast<AllocaInst>(Arg); 6746 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6747 "can only escape static allocas"); 6748 int FI = FuncInfo.StaticAllocaMap[Slot]; 6749 MCSymbol *FrameAllocSym = 6750 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6751 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6752 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6753 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6754 .addSym(FrameAllocSym) 6755 .addFrameIndex(FI); 6756 } 6757 6758 return; 6759 } 6760 6761 case Intrinsic::localrecover: { 6762 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6763 MachineFunction &MF = DAG.getMachineFunction(); 6764 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6765 6766 // Get the symbol that defines the frame offset. 6767 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6768 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6769 unsigned IdxVal = 6770 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6771 MCSymbol *FrameAllocSym = 6772 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6773 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6774 6775 // Create a MCSymbol for the label to avoid any target lowering 6776 // that would make this PC relative. 6777 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6778 SDValue OffsetVal = 6779 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6780 6781 // Add the offset to the FP. 6782 Value *FP = I.getArgOperand(1); 6783 SDValue FPVal = getValue(FP); 6784 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6785 setValue(&I, Add); 6786 6787 return; 6788 } 6789 6790 case Intrinsic::eh_exceptionpointer: 6791 case Intrinsic::eh_exceptioncode: { 6792 // Get the exception pointer vreg, copy from it, and resize it to fit. 6793 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6794 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6795 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6796 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6797 SDValue N = 6798 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6799 if (Intrinsic == Intrinsic::eh_exceptioncode) 6800 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6801 setValue(&I, N); 6802 return; 6803 } 6804 case Intrinsic::xray_customevent: { 6805 // Here we want to make sure that the intrinsic behaves as if it has a 6806 // specific calling convention, and only for x86_64. 6807 // FIXME: Support other platforms later. 6808 const auto &Triple = DAG.getTarget().getTargetTriple(); 6809 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6810 return; 6811 6812 SDLoc DL = getCurSDLoc(); 6813 SmallVector<SDValue, 8> Ops; 6814 6815 // We want to say that we always want the arguments in registers. 6816 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6817 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6818 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6819 SDValue Chain = getRoot(); 6820 Ops.push_back(LogEntryVal); 6821 Ops.push_back(StrSizeVal); 6822 Ops.push_back(Chain); 6823 6824 // We need to enforce the calling convention for the callsite, so that 6825 // argument ordering is enforced correctly, and that register allocation can 6826 // see that some registers may be assumed clobbered and have to preserve 6827 // them across calls to the intrinsic. 6828 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6829 DL, NodeTys, Ops); 6830 SDValue patchableNode = SDValue(MN, 0); 6831 DAG.setRoot(patchableNode); 6832 setValue(&I, patchableNode); 6833 return; 6834 } 6835 case Intrinsic::xray_typedevent: { 6836 // Here we want to make sure that the intrinsic behaves as if it has a 6837 // specific calling convention, and only for x86_64. 6838 // FIXME: Support other platforms later. 6839 const auto &Triple = DAG.getTarget().getTargetTriple(); 6840 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6841 return; 6842 6843 SDLoc DL = getCurSDLoc(); 6844 SmallVector<SDValue, 8> Ops; 6845 6846 // We want to say that we always want the arguments in registers. 6847 // It's unclear to me how manipulating the selection DAG here forces callers 6848 // to provide arguments in registers instead of on the stack. 6849 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6850 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6851 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6852 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6853 SDValue Chain = getRoot(); 6854 Ops.push_back(LogTypeId); 6855 Ops.push_back(LogEntryVal); 6856 Ops.push_back(StrSizeVal); 6857 Ops.push_back(Chain); 6858 6859 // We need to enforce the calling convention for the callsite, so that 6860 // argument ordering is enforced correctly, and that register allocation can 6861 // see that some registers may be assumed clobbered and have to preserve 6862 // them across calls to the intrinsic. 6863 MachineSDNode *MN = DAG.getMachineNode( 6864 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6865 SDValue patchableNode = SDValue(MN, 0); 6866 DAG.setRoot(patchableNode); 6867 setValue(&I, patchableNode); 6868 return; 6869 } 6870 case Intrinsic::experimental_deoptimize: 6871 LowerDeoptimizeCall(&I); 6872 return; 6873 6874 case Intrinsic::experimental_vector_reduce_v2_fadd: 6875 case Intrinsic::experimental_vector_reduce_v2_fmul: 6876 case Intrinsic::experimental_vector_reduce_add: 6877 case Intrinsic::experimental_vector_reduce_mul: 6878 case Intrinsic::experimental_vector_reduce_and: 6879 case Intrinsic::experimental_vector_reduce_or: 6880 case Intrinsic::experimental_vector_reduce_xor: 6881 case Intrinsic::experimental_vector_reduce_smax: 6882 case Intrinsic::experimental_vector_reduce_smin: 6883 case Intrinsic::experimental_vector_reduce_umax: 6884 case Intrinsic::experimental_vector_reduce_umin: 6885 case Intrinsic::experimental_vector_reduce_fmax: 6886 case Intrinsic::experimental_vector_reduce_fmin: 6887 visitVectorReduce(I, Intrinsic); 6888 return; 6889 6890 case Intrinsic::icall_branch_funnel: { 6891 SmallVector<SDValue, 16> Ops; 6892 Ops.push_back(getValue(I.getArgOperand(0))); 6893 6894 int64_t Offset; 6895 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6896 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6897 if (!Base) 6898 report_fatal_error( 6899 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6900 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6901 6902 struct BranchFunnelTarget { 6903 int64_t Offset; 6904 SDValue Target; 6905 }; 6906 SmallVector<BranchFunnelTarget, 8> Targets; 6907 6908 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6909 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6910 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6911 if (ElemBase != Base) 6912 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6913 "to the same GlobalValue"); 6914 6915 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6916 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6917 if (!GA) 6918 report_fatal_error( 6919 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6920 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6921 GA->getGlobal(), getCurSDLoc(), 6922 Val.getValueType(), GA->getOffset())}); 6923 } 6924 llvm::sort(Targets, 6925 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6926 return T1.Offset < T2.Offset; 6927 }); 6928 6929 for (auto &T : Targets) { 6930 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6931 Ops.push_back(T.Target); 6932 } 6933 6934 Ops.push_back(DAG.getRoot()); // Chain 6935 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6936 getCurSDLoc(), MVT::Other, Ops), 6937 0); 6938 DAG.setRoot(N); 6939 setValue(&I, N); 6940 HasTailCall = true; 6941 return; 6942 } 6943 6944 case Intrinsic::wasm_landingpad_index: 6945 // Information this intrinsic contained has been transferred to 6946 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6947 // delete it now. 6948 return; 6949 6950 case Intrinsic::aarch64_settag: 6951 case Intrinsic::aarch64_settag_zero: { 6952 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6953 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6954 SDValue Val = TSI.EmitTargetCodeForSetTag( 6955 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6956 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6957 ZeroMemory); 6958 DAG.setRoot(Val); 6959 setValue(&I, Val); 6960 return; 6961 } 6962 case Intrinsic::ptrmask: { 6963 SDValue Ptr = getValue(I.getOperand(0)); 6964 SDValue Const = getValue(I.getOperand(1)); 6965 6966 EVT DestVT = 6967 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6968 6969 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6970 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6971 return; 6972 } 6973 } 6974 } 6975 6976 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6977 const ConstrainedFPIntrinsic &FPI) { 6978 SDLoc sdl = getCurSDLoc(); 6979 6980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6981 SmallVector<EVT, 4> ValueVTs; 6982 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6983 ValueVTs.push_back(MVT::Other); // Out chain 6984 6985 // We do not need to serialize constrained FP intrinsics against 6986 // each other or against (nonvolatile) loads, so they can be 6987 // chained like loads. 6988 SDValue Chain = DAG.getRoot(); 6989 SmallVector<SDValue, 4> Opers; 6990 Opers.push_back(Chain); 6991 if (FPI.isUnaryOp()) { 6992 Opers.push_back(getValue(FPI.getArgOperand(0))); 6993 } else if (FPI.isTernaryOp()) { 6994 Opers.push_back(getValue(FPI.getArgOperand(0))); 6995 Opers.push_back(getValue(FPI.getArgOperand(1))); 6996 Opers.push_back(getValue(FPI.getArgOperand(2))); 6997 } else { 6998 Opers.push_back(getValue(FPI.getArgOperand(0))); 6999 Opers.push_back(getValue(FPI.getArgOperand(1))); 7000 } 7001 7002 unsigned Opcode; 7003 switch (FPI.getIntrinsicID()) { 7004 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7005 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7006 case Intrinsic::INTRINSIC: \ 7007 Opcode = ISD::STRICT_##DAGN; \ 7008 break; 7009 #include "llvm/IR/ConstrainedOps.def" 7010 } 7011 7012 // A few strict DAG nodes carry additional operands that are not 7013 // set up by the default code above. 7014 switch (Opcode) { 7015 default: break; 7016 case ISD::STRICT_FP_ROUND: 7017 Opers.push_back( 7018 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7019 break; 7020 case ISD::STRICT_FSETCC: 7021 case ISD::STRICT_FSETCCS: { 7022 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7023 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7024 break; 7025 } 7026 } 7027 7028 SDVTList VTs = DAG.getVTList(ValueVTs); 7029 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 7030 7031 assert(Result.getNode()->getNumValues() == 2); 7032 7033 // Push node to the appropriate list so that future instructions can be 7034 // chained up correctly. 7035 SDValue OutChain = Result.getValue(1); 7036 switch (FPI.getExceptionBehavior().getValue()) { 7037 case fp::ExceptionBehavior::ebIgnore: 7038 // The only reason why ebIgnore nodes still need to be chained is that 7039 // they might depend on the current rounding mode, and therefore must 7040 // not be moved across instruction that may change that mode. 7041 LLVM_FALLTHROUGH; 7042 case fp::ExceptionBehavior::ebMayTrap: 7043 // These must not be moved across calls or instructions that may change 7044 // floating-point exception masks. 7045 PendingConstrainedFP.push_back(OutChain); 7046 break; 7047 case fp::ExceptionBehavior::ebStrict: 7048 // These must not be moved across calls or instructions that may change 7049 // floating-point exception masks or read floating-point exception flags. 7050 // In addition, they cannot be optimized out even if unused. 7051 PendingConstrainedFPStrict.push_back(OutChain); 7052 break; 7053 } 7054 7055 SDValue FPResult = Result.getValue(0); 7056 setValue(&FPI, FPResult); 7057 } 7058 7059 std::pair<SDValue, SDValue> 7060 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7061 const BasicBlock *EHPadBB) { 7062 MachineFunction &MF = DAG.getMachineFunction(); 7063 MachineModuleInfo &MMI = MF.getMMI(); 7064 MCSymbol *BeginLabel = nullptr; 7065 7066 if (EHPadBB) { 7067 // Insert a label before the invoke call to mark the try range. This can be 7068 // used to detect deletion of the invoke via the MachineModuleInfo. 7069 BeginLabel = MMI.getContext().createTempSymbol(); 7070 7071 // For SjLj, keep track of which landing pads go with which invokes 7072 // so as to maintain the ordering of pads in the LSDA. 7073 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7074 if (CallSiteIndex) { 7075 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7076 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7077 7078 // Now that the call site is handled, stop tracking it. 7079 MMI.setCurrentCallSite(0); 7080 } 7081 7082 // Both PendingLoads and PendingExports must be flushed here; 7083 // this call might not return. 7084 (void)getRoot(); 7085 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7086 7087 CLI.setChain(getRoot()); 7088 } 7089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7090 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7091 7092 assert((CLI.IsTailCall || Result.second.getNode()) && 7093 "Non-null chain expected with non-tail call!"); 7094 assert((Result.second.getNode() || !Result.first.getNode()) && 7095 "Null value expected with tail call!"); 7096 7097 if (!Result.second.getNode()) { 7098 // As a special case, a null chain means that a tail call has been emitted 7099 // and the DAG root is already updated. 7100 HasTailCall = true; 7101 7102 // Since there's no actual continuation from this block, nothing can be 7103 // relying on us setting vregs for them. 7104 PendingExports.clear(); 7105 } else { 7106 DAG.setRoot(Result.second); 7107 } 7108 7109 if (EHPadBB) { 7110 // Insert a label at the end of the invoke call to mark the try range. This 7111 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7112 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7113 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7114 7115 // Inform MachineModuleInfo of range. 7116 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7117 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7118 // actually use outlined funclets and their LSDA info style. 7119 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7120 assert(CLI.CS); 7121 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7122 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7123 BeginLabel, EndLabel); 7124 } else if (!isScopedEHPersonality(Pers)) { 7125 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7126 } 7127 } 7128 7129 return Result; 7130 } 7131 7132 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7133 bool isTailCall, 7134 const BasicBlock *EHPadBB) { 7135 auto &DL = DAG.getDataLayout(); 7136 FunctionType *FTy = CS.getFunctionType(); 7137 Type *RetTy = CS.getType(); 7138 7139 TargetLowering::ArgListTy Args; 7140 Args.reserve(CS.arg_size()); 7141 7142 const Value *SwiftErrorVal = nullptr; 7143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7144 7145 if (isTailCall) { 7146 // Avoid emitting tail calls in functions with the disable-tail-calls 7147 // attribute. 7148 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7149 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7150 "true") 7151 isTailCall = false; 7152 7153 // We can't tail call inside a function with a swifterror argument. Lowering 7154 // does not support this yet. It would have to move into the swifterror 7155 // register before the call. 7156 if (TLI.supportSwiftError() && 7157 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7158 isTailCall = false; 7159 } 7160 7161 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7162 i != e; ++i) { 7163 TargetLowering::ArgListEntry Entry; 7164 const Value *V = *i; 7165 7166 // Skip empty types 7167 if (V->getType()->isEmptyTy()) 7168 continue; 7169 7170 SDValue ArgNode = getValue(V); 7171 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7172 7173 Entry.setAttributes(&CS, i - CS.arg_begin()); 7174 7175 // Use swifterror virtual register as input to the call. 7176 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7177 SwiftErrorVal = V; 7178 // We find the virtual register for the actual swifterror argument. 7179 // Instead of using the Value, we use the virtual register instead. 7180 Entry.Node = DAG.getRegister( 7181 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7182 EVT(TLI.getPointerTy(DL))); 7183 } 7184 7185 Args.push_back(Entry); 7186 7187 // If we have an explicit sret argument that is an Instruction, (i.e., it 7188 // might point to function-local memory), we can't meaningfully tail-call. 7189 if (Entry.IsSRet && isa<Instruction>(V)) 7190 isTailCall = false; 7191 } 7192 7193 // If call site has a cfguardtarget operand bundle, create and add an 7194 // additional ArgListEntry. 7195 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7196 TargetLowering::ArgListEntry Entry; 7197 Value *V = Bundle->Inputs[0]; 7198 SDValue ArgNode = getValue(V); 7199 Entry.Node = ArgNode; 7200 Entry.Ty = V->getType(); 7201 Entry.IsCFGuardTarget = true; 7202 Args.push_back(Entry); 7203 } 7204 7205 // Check if target-independent constraints permit a tail call here. 7206 // Target-dependent constraints are checked within TLI->LowerCallTo. 7207 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7208 isTailCall = false; 7209 7210 // Disable tail calls if there is an swifterror argument. Targets have not 7211 // been updated to support tail calls. 7212 if (TLI.supportSwiftError() && SwiftErrorVal) 7213 isTailCall = false; 7214 7215 TargetLowering::CallLoweringInfo CLI(DAG); 7216 CLI.setDebugLoc(getCurSDLoc()) 7217 .setChain(getRoot()) 7218 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7219 .setTailCall(isTailCall) 7220 .setConvergent(CS.isConvergent()); 7221 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7222 7223 if (Result.first.getNode()) { 7224 const Instruction *Inst = CS.getInstruction(); 7225 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7226 setValue(Inst, Result.first); 7227 } 7228 7229 // The last element of CLI.InVals has the SDValue for swifterror return. 7230 // Here we copy it to a virtual register and update SwiftErrorMap for 7231 // book-keeping. 7232 if (SwiftErrorVal && TLI.supportSwiftError()) { 7233 // Get the last element of InVals. 7234 SDValue Src = CLI.InVals.back(); 7235 Register VReg = SwiftError.getOrCreateVRegDefAt( 7236 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7237 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7238 DAG.setRoot(CopyNode); 7239 } 7240 } 7241 7242 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7243 SelectionDAGBuilder &Builder) { 7244 // Check to see if this load can be trivially constant folded, e.g. if the 7245 // input is from a string literal. 7246 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7247 // Cast pointer to the type we really want to load. 7248 Type *LoadTy = 7249 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7250 if (LoadVT.isVector()) 7251 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7252 7253 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7254 PointerType::getUnqual(LoadTy)); 7255 7256 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7257 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7258 return Builder.getValue(LoadCst); 7259 } 7260 7261 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7262 // still constant memory, the input chain can be the entry node. 7263 SDValue Root; 7264 bool ConstantMemory = false; 7265 7266 // Do not serialize (non-volatile) loads of constant memory with anything. 7267 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7268 Root = Builder.DAG.getEntryNode(); 7269 ConstantMemory = true; 7270 } else { 7271 // Do not serialize non-volatile loads against each other. 7272 Root = Builder.DAG.getRoot(); 7273 } 7274 7275 SDValue Ptr = Builder.getValue(PtrVal); 7276 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7277 Ptr, MachinePointerInfo(PtrVal), 7278 /* Alignment = */ 1); 7279 7280 if (!ConstantMemory) 7281 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7282 return LoadVal; 7283 } 7284 7285 /// Record the value for an instruction that produces an integer result, 7286 /// converting the type where necessary. 7287 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7288 SDValue Value, 7289 bool IsSigned) { 7290 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7291 I.getType(), true); 7292 if (IsSigned) 7293 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7294 else 7295 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7296 setValue(&I, Value); 7297 } 7298 7299 /// See if we can lower a memcmp call into an optimized form. If so, return 7300 /// true and lower it. Otherwise return false, and it will be lowered like a 7301 /// normal call. 7302 /// The caller already checked that \p I calls the appropriate LibFunc with a 7303 /// correct prototype. 7304 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7305 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7306 const Value *Size = I.getArgOperand(2); 7307 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7308 if (CSize && CSize->getZExtValue() == 0) { 7309 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7310 I.getType(), true); 7311 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7312 return true; 7313 } 7314 7315 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7316 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7317 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7318 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7319 if (Res.first.getNode()) { 7320 processIntegerCallValue(I, Res.first, true); 7321 PendingLoads.push_back(Res.second); 7322 return true; 7323 } 7324 7325 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7326 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7327 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7328 return false; 7329 7330 // If the target has a fast compare for the given size, it will return a 7331 // preferred load type for that size. Require that the load VT is legal and 7332 // that the target supports unaligned loads of that type. Otherwise, return 7333 // INVALID. 7334 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7336 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7337 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7338 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7339 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7340 // TODO: Check alignment of src and dest ptrs. 7341 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7342 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7343 if (!TLI.isTypeLegal(LVT) || 7344 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7345 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7346 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7347 } 7348 7349 return LVT; 7350 }; 7351 7352 // This turns into unaligned loads. We only do this if the target natively 7353 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7354 // we'll only produce a small number of byte loads. 7355 MVT LoadVT; 7356 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7357 switch (NumBitsToCompare) { 7358 default: 7359 return false; 7360 case 16: 7361 LoadVT = MVT::i16; 7362 break; 7363 case 32: 7364 LoadVT = MVT::i32; 7365 break; 7366 case 64: 7367 case 128: 7368 case 256: 7369 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7370 break; 7371 } 7372 7373 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7374 return false; 7375 7376 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7377 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7378 7379 // Bitcast to a wide integer type if the loads are vectors. 7380 if (LoadVT.isVector()) { 7381 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7382 LoadL = DAG.getBitcast(CmpVT, LoadL); 7383 LoadR = DAG.getBitcast(CmpVT, LoadR); 7384 } 7385 7386 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7387 processIntegerCallValue(I, Cmp, false); 7388 return true; 7389 } 7390 7391 /// See if we can lower a memchr call into an optimized form. If so, return 7392 /// true and lower it. Otherwise return false, and it will be lowered like a 7393 /// normal call. 7394 /// The caller already checked that \p I calls the appropriate LibFunc with a 7395 /// correct prototype. 7396 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7397 const Value *Src = I.getArgOperand(0); 7398 const Value *Char = I.getArgOperand(1); 7399 const Value *Length = I.getArgOperand(2); 7400 7401 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7402 std::pair<SDValue, SDValue> Res = 7403 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7404 getValue(Src), getValue(Char), getValue(Length), 7405 MachinePointerInfo(Src)); 7406 if (Res.first.getNode()) { 7407 setValue(&I, Res.first); 7408 PendingLoads.push_back(Res.second); 7409 return true; 7410 } 7411 7412 return false; 7413 } 7414 7415 /// See if we can lower a mempcpy call into an optimized form. If so, return 7416 /// true and lower it. Otherwise return false, and it will be lowered like a 7417 /// normal call. 7418 /// The caller already checked that \p I calls the appropriate LibFunc with a 7419 /// correct prototype. 7420 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7421 SDValue Dst = getValue(I.getArgOperand(0)); 7422 SDValue Src = getValue(I.getArgOperand(1)); 7423 SDValue Size = getValue(I.getArgOperand(2)); 7424 7425 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7426 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7427 unsigned Align = std::min(DstAlign, SrcAlign); 7428 if (Align == 0) // Alignment of one or both could not be inferred. 7429 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7430 7431 bool isVol = false; 7432 SDLoc sdl = getCurSDLoc(); 7433 7434 // In the mempcpy context we need to pass in a false value for isTailCall 7435 // because the return pointer needs to be adjusted by the size of 7436 // the copied memory. 7437 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7438 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Align, isVol, 7439 false, /*isTailCall=*/false, 7440 MachinePointerInfo(I.getArgOperand(0)), 7441 MachinePointerInfo(I.getArgOperand(1))); 7442 assert(MC.getNode() != nullptr && 7443 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7444 DAG.setRoot(MC); 7445 7446 // Check if Size needs to be truncated or extended. 7447 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7448 7449 // Adjust return pointer to point just past the last dst byte. 7450 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7451 Dst, Size); 7452 setValue(&I, DstPlusSize); 7453 return true; 7454 } 7455 7456 /// See if we can lower a strcpy call into an optimized form. If so, return 7457 /// true and lower it, otherwise return false and it will be lowered like a 7458 /// normal call. 7459 /// The caller already checked that \p I calls the appropriate LibFunc with a 7460 /// correct prototype. 7461 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7462 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7463 7464 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7465 std::pair<SDValue, SDValue> Res = 7466 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7467 getValue(Arg0), getValue(Arg1), 7468 MachinePointerInfo(Arg0), 7469 MachinePointerInfo(Arg1), isStpcpy); 7470 if (Res.first.getNode()) { 7471 setValue(&I, Res.first); 7472 DAG.setRoot(Res.second); 7473 return true; 7474 } 7475 7476 return false; 7477 } 7478 7479 /// See if we can lower a strcmp call into an optimized form. If so, return 7480 /// true and lower it, otherwise return false and it will be lowered like a 7481 /// normal call. 7482 /// The caller already checked that \p I calls the appropriate LibFunc with a 7483 /// correct prototype. 7484 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7485 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7486 7487 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7488 std::pair<SDValue, SDValue> Res = 7489 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7490 getValue(Arg0), getValue(Arg1), 7491 MachinePointerInfo(Arg0), 7492 MachinePointerInfo(Arg1)); 7493 if (Res.first.getNode()) { 7494 processIntegerCallValue(I, Res.first, true); 7495 PendingLoads.push_back(Res.second); 7496 return true; 7497 } 7498 7499 return false; 7500 } 7501 7502 /// See if we can lower a strlen call into an optimized form. If so, return 7503 /// true and lower it, otherwise return false and it will be lowered like a 7504 /// normal call. 7505 /// The caller already checked that \p I calls the appropriate LibFunc with a 7506 /// correct prototype. 7507 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7508 const Value *Arg0 = I.getArgOperand(0); 7509 7510 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7511 std::pair<SDValue, SDValue> Res = 7512 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7513 getValue(Arg0), MachinePointerInfo(Arg0)); 7514 if (Res.first.getNode()) { 7515 processIntegerCallValue(I, Res.first, false); 7516 PendingLoads.push_back(Res.second); 7517 return true; 7518 } 7519 7520 return false; 7521 } 7522 7523 /// See if we can lower a strnlen call into an optimized form. If so, return 7524 /// true and lower it, otherwise return false and it will be lowered like a 7525 /// normal call. 7526 /// The caller already checked that \p I calls the appropriate LibFunc with a 7527 /// correct prototype. 7528 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7529 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7530 7531 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7532 std::pair<SDValue, SDValue> Res = 7533 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7534 getValue(Arg0), getValue(Arg1), 7535 MachinePointerInfo(Arg0)); 7536 if (Res.first.getNode()) { 7537 processIntegerCallValue(I, Res.first, false); 7538 PendingLoads.push_back(Res.second); 7539 return true; 7540 } 7541 7542 return false; 7543 } 7544 7545 /// See if we can lower a unary floating-point operation into an SDNode with 7546 /// the specified Opcode. If so, return true and lower it, otherwise return 7547 /// false and it will be lowered like a normal call. 7548 /// The caller already checked that \p I calls the appropriate LibFunc with a 7549 /// correct prototype. 7550 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7551 unsigned Opcode) { 7552 // We already checked this call's prototype; verify it doesn't modify errno. 7553 if (!I.onlyReadsMemory()) 7554 return false; 7555 7556 SDValue Tmp = getValue(I.getArgOperand(0)); 7557 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7558 return true; 7559 } 7560 7561 /// See if we can lower a binary floating-point operation into an SDNode with 7562 /// the specified Opcode. If so, return true and lower it. Otherwise return 7563 /// false, and it will be lowered like a normal call. 7564 /// The caller already checked that \p I calls the appropriate LibFunc with a 7565 /// correct prototype. 7566 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7567 unsigned Opcode) { 7568 // We already checked this call's prototype; verify it doesn't modify errno. 7569 if (!I.onlyReadsMemory()) 7570 return false; 7571 7572 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7573 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7574 EVT VT = Tmp0.getValueType(); 7575 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7576 return true; 7577 } 7578 7579 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7580 // Handle inline assembly differently. 7581 if (isa<InlineAsm>(I.getCalledValue())) { 7582 visitInlineAsm(&I); 7583 return; 7584 } 7585 7586 if (Function *F = I.getCalledFunction()) { 7587 if (F->isDeclaration()) { 7588 // Is this an LLVM intrinsic or a target-specific intrinsic? 7589 unsigned IID = F->getIntrinsicID(); 7590 if (!IID) 7591 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7592 IID = II->getIntrinsicID(F); 7593 7594 if (IID) { 7595 visitIntrinsicCall(I, IID); 7596 return; 7597 } 7598 } 7599 7600 // Check for well-known libc/libm calls. If the function is internal, it 7601 // can't be a library call. Don't do the check if marked as nobuiltin for 7602 // some reason or the call site requires strict floating point semantics. 7603 LibFunc Func; 7604 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7605 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7606 LibInfo->hasOptimizedCodeGen(Func)) { 7607 switch (Func) { 7608 default: break; 7609 case LibFunc_copysign: 7610 case LibFunc_copysignf: 7611 case LibFunc_copysignl: 7612 // We already checked this call's prototype; verify it doesn't modify 7613 // errno. 7614 if (I.onlyReadsMemory()) { 7615 SDValue LHS = getValue(I.getArgOperand(0)); 7616 SDValue RHS = getValue(I.getArgOperand(1)); 7617 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7618 LHS.getValueType(), LHS, RHS)); 7619 return; 7620 } 7621 break; 7622 case LibFunc_fabs: 7623 case LibFunc_fabsf: 7624 case LibFunc_fabsl: 7625 if (visitUnaryFloatCall(I, ISD::FABS)) 7626 return; 7627 break; 7628 case LibFunc_fmin: 7629 case LibFunc_fminf: 7630 case LibFunc_fminl: 7631 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7632 return; 7633 break; 7634 case LibFunc_fmax: 7635 case LibFunc_fmaxf: 7636 case LibFunc_fmaxl: 7637 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7638 return; 7639 break; 7640 case LibFunc_sin: 7641 case LibFunc_sinf: 7642 case LibFunc_sinl: 7643 if (visitUnaryFloatCall(I, ISD::FSIN)) 7644 return; 7645 break; 7646 case LibFunc_cos: 7647 case LibFunc_cosf: 7648 case LibFunc_cosl: 7649 if (visitUnaryFloatCall(I, ISD::FCOS)) 7650 return; 7651 break; 7652 case LibFunc_sqrt: 7653 case LibFunc_sqrtf: 7654 case LibFunc_sqrtl: 7655 case LibFunc_sqrt_finite: 7656 case LibFunc_sqrtf_finite: 7657 case LibFunc_sqrtl_finite: 7658 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7659 return; 7660 break; 7661 case LibFunc_floor: 7662 case LibFunc_floorf: 7663 case LibFunc_floorl: 7664 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7665 return; 7666 break; 7667 case LibFunc_nearbyint: 7668 case LibFunc_nearbyintf: 7669 case LibFunc_nearbyintl: 7670 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7671 return; 7672 break; 7673 case LibFunc_ceil: 7674 case LibFunc_ceilf: 7675 case LibFunc_ceill: 7676 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7677 return; 7678 break; 7679 case LibFunc_rint: 7680 case LibFunc_rintf: 7681 case LibFunc_rintl: 7682 if (visitUnaryFloatCall(I, ISD::FRINT)) 7683 return; 7684 break; 7685 case LibFunc_round: 7686 case LibFunc_roundf: 7687 case LibFunc_roundl: 7688 if (visitUnaryFloatCall(I, ISD::FROUND)) 7689 return; 7690 break; 7691 case LibFunc_trunc: 7692 case LibFunc_truncf: 7693 case LibFunc_truncl: 7694 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7695 return; 7696 break; 7697 case LibFunc_log2: 7698 case LibFunc_log2f: 7699 case LibFunc_log2l: 7700 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7701 return; 7702 break; 7703 case LibFunc_exp2: 7704 case LibFunc_exp2f: 7705 case LibFunc_exp2l: 7706 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7707 return; 7708 break; 7709 case LibFunc_memcmp: 7710 if (visitMemCmpCall(I)) 7711 return; 7712 break; 7713 case LibFunc_mempcpy: 7714 if (visitMemPCpyCall(I)) 7715 return; 7716 break; 7717 case LibFunc_memchr: 7718 if (visitMemChrCall(I)) 7719 return; 7720 break; 7721 case LibFunc_strcpy: 7722 if (visitStrCpyCall(I, false)) 7723 return; 7724 break; 7725 case LibFunc_stpcpy: 7726 if (visitStrCpyCall(I, true)) 7727 return; 7728 break; 7729 case LibFunc_strcmp: 7730 if (visitStrCmpCall(I)) 7731 return; 7732 break; 7733 case LibFunc_strlen: 7734 if (visitStrLenCall(I)) 7735 return; 7736 break; 7737 case LibFunc_strnlen: 7738 if (visitStrNLenCall(I)) 7739 return; 7740 break; 7741 } 7742 } 7743 } 7744 7745 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7746 // have to do anything here to lower funclet bundles. 7747 // CFGuardTarget bundles are lowered in LowerCallTo. 7748 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7749 LLVMContext::OB_funclet, 7750 LLVMContext::OB_cfguardtarget}) && 7751 "Cannot lower calls with arbitrary operand bundles!"); 7752 7753 SDValue Callee = getValue(I.getCalledValue()); 7754 7755 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7756 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7757 else 7758 // Check if we can potentially perform a tail call. More detailed checking 7759 // is be done within LowerCallTo, after more information about the call is 7760 // known. 7761 LowerCallTo(&I, Callee, I.isTailCall()); 7762 } 7763 7764 namespace { 7765 7766 /// AsmOperandInfo - This contains information for each constraint that we are 7767 /// lowering. 7768 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7769 public: 7770 /// CallOperand - If this is the result output operand or a clobber 7771 /// this is null, otherwise it is the incoming operand to the CallInst. 7772 /// This gets modified as the asm is processed. 7773 SDValue CallOperand; 7774 7775 /// AssignedRegs - If this is a register or register class operand, this 7776 /// contains the set of register corresponding to the operand. 7777 RegsForValue AssignedRegs; 7778 7779 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7780 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7781 } 7782 7783 /// Whether or not this operand accesses memory 7784 bool hasMemory(const TargetLowering &TLI) const { 7785 // Indirect operand accesses access memory. 7786 if (isIndirect) 7787 return true; 7788 7789 for (const auto &Code : Codes) 7790 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7791 return true; 7792 7793 return false; 7794 } 7795 7796 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7797 /// corresponds to. If there is no Value* for this operand, it returns 7798 /// MVT::Other. 7799 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7800 const DataLayout &DL) const { 7801 if (!CallOperandVal) return MVT::Other; 7802 7803 if (isa<BasicBlock>(CallOperandVal)) 7804 return TLI.getPointerTy(DL); 7805 7806 llvm::Type *OpTy = CallOperandVal->getType(); 7807 7808 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7809 // If this is an indirect operand, the operand is a pointer to the 7810 // accessed type. 7811 if (isIndirect) { 7812 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7813 if (!PtrTy) 7814 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7815 OpTy = PtrTy->getElementType(); 7816 } 7817 7818 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7819 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7820 if (STy->getNumElements() == 1) 7821 OpTy = STy->getElementType(0); 7822 7823 // If OpTy is not a single value, it may be a struct/union that we 7824 // can tile with integers. 7825 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7826 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7827 switch (BitSize) { 7828 default: break; 7829 case 1: 7830 case 8: 7831 case 16: 7832 case 32: 7833 case 64: 7834 case 128: 7835 OpTy = IntegerType::get(Context, BitSize); 7836 break; 7837 } 7838 } 7839 7840 return TLI.getValueType(DL, OpTy, true); 7841 } 7842 }; 7843 7844 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7845 7846 } // end anonymous namespace 7847 7848 /// Make sure that the output operand \p OpInfo and its corresponding input 7849 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7850 /// out). 7851 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7852 SDISelAsmOperandInfo &MatchingOpInfo, 7853 SelectionDAG &DAG) { 7854 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7855 return; 7856 7857 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7858 const auto &TLI = DAG.getTargetLoweringInfo(); 7859 7860 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7861 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7862 OpInfo.ConstraintVT); 7863 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7864 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7865 MatchingOpInfo.ConstraintVT); 7866 if ((OpInfo.ConstraintVT.isInteger() != 7867 MatchingOpInfo.ConstraintVT.isInteger()) || 7868 (MatchRC.second != InputRC.second)) { 7869 // FIXME: error out in a more elegant fashion 7870 report_fatal_error("Unsupported asm: input constraint" 7871 " with a matching output constraint of" 7872 " incompatible type!"); 7873 } 7874 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7875 } 7876 7877 /// Get a direct memory input to behave well as an indirect operand. 7878 /// This may introduce stores, hence the need for a \p Chain. 7879 /// \return The (possibly updated) chain. 7880 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7881 SDISelAsmOperandInfo &OpInfo, 7882 SelectionDAG &DAG) { 7883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7884 7885 // If we don't have an indirect input, put it in the constpool if we can, 7886 // otherwise spill it to a stack slot. 7887 // TODO: This isn't quite right. We need to handle these according to 7888 // the addressing mode that the constraint wants. Also, this may take 7889 // an additional register for the computation and we don't want that 7890 // either. 7891 7892 // If the operand is a float, integer, or vector constant, spill to a 7893 // constant pool entry to get its address. 7894 const Value *OpVal = OpInfo.CallOperandVal; 7895 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7896 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7897 OpInfo.CallOperand = DAG.getConstantPool( 7898 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7899 return Chain; 7900 } 7901 7902 // Otherwise, create a stack slot and emit a store to it before the asm. 7903 Type *Ty = OpVal->getType(); 7904 auto &DL = DAG.getDataLayout(); 7905 uint64_t TySize = DL.getTypeAllocSize(Ty); 7906 unsigned Align = DL.getPrefTypeAlignment(Ty); 7907 MachineFunction &MF = DAG.getMachineFunction(); 7908 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7909 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7910 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7911 MachinePointerInfo::getFixedStack(MF, SSFI), 7912 TLI.getMemValueType(DL, Ty)); 7913 OpInfo.CallOperand = StackSlot; 7914 7915 return Chain; 7916 } 7917 7918 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7919 /// specified operand. We prefer to assign virtual registers, to allow the 7920 /// register allocator to handle the assignment process. However, if the asm 7921 /// uses features that we can't model on machineinstrs, we have SDISel do the 7922 /// allocation. This produces generally horrible, but correct, code. 7923 /// 7924 /// OpInfo describes the operand 7925 /// RefOpInfo describes the matching operand if any, the operand otherwise 7926 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7927 SDISelAsmOperandInfo &OpInfo, 7928 SDISelAsmOperandInfo &RefOpInfo) { 7929 LLVMContext &Context = *DAG.getContext(); 7930 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7931 7932 MachineFunction &MF = DAG.getMachineFunction(); 7933 SmallVector<unsigned, 4> Regs; 7934 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7935 7936 // No work to do for memory operations. 7937 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7938 return; 7939 7940 // If this is a constraint for a single physreg, or a constraint for a 7941 // register class, find it. 7942 unsigned AssignedReg; 7943 const TargetRegisterClass *RC; 7944 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7945 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7946 // RC is unset only on failure. Return immediately. 7947 if (!RC) 7948 return; 7949 7950 // Get the actual register value type. This is important, because the user 7951 // may have asked for (e.g.) the AX register in i32 type. We need to 7952 // remember that AX is actually i16 to get the right extension. 7953 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7954 7955 if (OpInfo.ConstraintVT != MVT::Other) { 7956 // If this is an FP operand in an integer register (or visa versa), or more 7957 // generally if the operand value disagrees with the register class we plan 7958 // to stick it in, fix the operand type. 7959 // 7960 // If this is an input value, the bitcast to the new type is done now. 7961 // Bitcast for output value is done at the end of visitInlineAsm(). 7962 if ((OpInfo.Type == InlineAsm::isOutput || 7963 OpInfo.Type == InlineAsm::isInput) && 7964 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7965 // Try to convert to the first EVT that the reg class contains. If the 7966 // types are identical size, use a bitcast to convert (e.g. two differing 7967 // vector types). Note: output bitcast is done at the end of 7968 // visitInlineAsm(). 7969 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7970 // Exclude indirect inputs while they are unsupported because the code 7971 // to perform the load is missing and thus OpInfo.CallOperand still 7972 // refers to the input address rather than the pointed-to value. 7973 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7974 OpInfo.CallOperand = 7975 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7976 OpInfo.ConstraintVT = RegVT; 7977 // If the operand is an FP value and we want it in integer registers, 7978 // use the corresponding integer type. This turns an f64 value into 7979 // i64, which can be passed with two i32 values on a 32-bit machine. 7980 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7981 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7982 if (OpInfo.Type == InlineAsm::isInput) 7983 OpInfo.CallOperand = 7984 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7985 OpInfo.ConstraintVT = VT; 7986 } 7987 } 7988 } 7989 7990 // No need to allocate a matching input constraint since the constraint it's 7991 // matching to has already been allocated. 7992 if (OpInfo.isMatchingInputConstraint()) 7993 return; 7994 7995 EVT ValueVT = OpInfo.ConstraintVT; 7996 if (OpInfo.ConstraintVT == MVT::Other) 7997 ValueVT = RegVT; 7998 7999 // Initialize NumRegs. 8000 unsigned NumRegs = 1; 8001 if (OpInfo.ConstraintVT != MVT::Other) 8002 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8003 8004 // If this is a constraint for a specific physical register, like {r17}, 8005 // assign it now. 8006 8007 // If this associated to a specific register, initialize iterator to correct 8008 // place. If virtual, make sure we have enough registers 8009 8010 // Initialize iterator if necessary 8011 TargetRegisterClass::iterator I = RC->begin(); 8012 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8013 8014 // Do not check for single registers. 8015 if (AssignedReg) { 8016 for (; *I != AssignedReg; ++I) 8017 assert(I != RC->end() && "AssignedReg should be member of RC"); 8018 } 8019 8020 for (; NumRegs; --NumRegs, ++I) { 8021 assert(I != RC->end() && "Ran out of registers to allocate!"); 8022 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8023 Regs.push_back(R); 8024 } 8025 8026 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8027 } 8028 8029 static unsigned 8030 findMatchingInlineAsmOperand(unsigned OperandNo, 8031 const std::vector<SDValue> &AsmNodeOperands) { 8032 // Scan until we find the definition we already emitted of this operand. 8033 unsigned CurOp = InlineAsm::Op_FirstOperand; 8034 for (; OperandNo; --OperandNo) { 8035 // Advance to the next operand. 8036 unsigned OpFlag = 8037 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8038 assert((InlineAsm::isRegDefKind(OpFlag) || 8039 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8040 InlineAsm::isMemKind(OpFlag)) && 8041 "Skipped past definitions?"); 8042 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8043 } 8044 return CurOp; 8045 } 8046 8047 namespace { 8048 8049 class ExtraFlags { 8050 unsigned Flags = 0; 8051 8052 public: 8053 explicit ExtraFlags(ImmutableCallSite CS) { 8054 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8055 if (IA->hasSideEffects()) 8056 Flags |= InlineAsm::Extra_HasSideEffects; 8057 if (IA->isAlignStack()) 8058 Flags |= InlineAsm::Extra_IsAlignStack; 8059 if (CS.isConvergent()) 8060 Flags |= InlineAsm::Extra_IsConvergent; 8061 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8062 } 8063 8064 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8065 // Ideally, we would only check against memory constraints. However, the 8066 // meaning of an Other constraint can be target-specific and we can't easily 8067 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8068 // for Other constraints as well. 8069 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8070 OpInfo.ConstraintType == TargetLowering::C_Other) { 8071 if (OpInfo.Type == InlineAsm::isInput) 8072 Flags |= InlineAsm::Extra_MayLoad; 8073 else if (OpInfo.Type == InlineAsm::isOutput) 8074 Flags |= InlineAsm::Extra_MayStore; 8075 else if (OpInfo.Type == InlineAsm::isClobber) 8076 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8077 } 8078 } 8079 8080 unsigned get() const { return Flags; } 8081 }; 8082 8083 } // end anonymous namespace 8084 8085 /// visitInlineAsm - Handle a call to an InlineAsm object. 8086 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8087 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8088 8089 /// ConstraintOperands - Information about all of the constraints. 8090 SDISelAsmOperandInfoVector ConstraintOperands; 8091 8092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8093 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8094 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8095 8096 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8097 // AsmDialect, MayLoad, MayStore). 8098 bool HasSideEffect = IA->hasSideEffects(); 8099 ExtraFlags ExtraInfo(CS); 8100 8101 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8102 unsigned ResNo = 0; // ResNo - The result number of the next output. 8103 for (auto &T : TargetConstraints) { 8104 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8105 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8106 8107 // Compute the value type for each operand. 8108 if (OpInfo.Type == InlineAsm::isInput || 8109 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8110 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8111 8112 // Process the call argument. BasicBlocks are labels, currently appearing 8113 // only in asm's. 8114 const Instruction *I = CS.getInstruction(); 8115 if (isa<CallBrInst>(I) && 8116 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8117 cast<CallBrInst>(I)->getNumIndirectDests())) { 8118 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8119 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8120 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8121 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8122 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8123 } else { 8124 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8125 } 8126 8127 OpInfo.ConstraintVT = 8128 OpInfo 8129 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8130 .getSimpleVT(); 8131 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8132 // The return value of the call is this value. As such, there is no 8133 // corresponding argument. 8134 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8135 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8136 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8137 DAG.getDataLayout(), STy->getElementType(ResNo)); 8138 } else { 8139 assert(ResNo == 0 && "Asm only has one result!"); 8140 OpInfo.ConstraintVT = 8141 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8142 } 8143 ++ResNo; 8144 } else { 8145 OpInfo.ConstraintVT = MVT::Other; 8146 } 8147 8148 if (!HasSideEffect) 8149 HasSideEffect = OpInfo.hasMemory(TLI); 8150 8151 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8152 // FIXME: Could we compute this on OpInfo rather than T? 8153 8154 // Compute the constraint code and ConstraintType to use. 8155 TLI.ComputeConstraintToUse(T, SDValue()); 8156 8157 if (T.ConstraintType == TargetLowering::C_Immediate && 8158 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8159 // We've delayed emitting a diagnostic like the "n" constraint because 8160 // inlining could cause an integer showing up. 8161 return emitInlineAsmError( 8162 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8163 "integer constant expression"); 8164 8165 ExtraInfo.update(T); 8166 } 8167 8168 8169 // We won't need to flush pending loads if this asm doesn't touch 8170 // memory and is nonvolatile. 8171 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8172 8173 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8174 if (IsCallBr) { 8175 // If this is a callbr we need to flush pending exports since inlineasm_br 8176 // is a terminator. We need to do this before nodes are glued to 8177 // the inlineasm_br node. 8178 Chain = getControlRoot(); 8179 } 8180 8181 // Second pass over the constraints: compute which constraint option to use. 8182 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8183 // If this is an output operand with a matching input operand, look up the 8184 // matching input. If their types mismatch, e.g. one is an integer, the 8185 // other is floating point, or their sizes are different, flag it as an 8186 // error. 8187 if (OpInfo.hasMatchingInput()) { 8188 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8189 patchMatchingInput(OpInfo, Input, DAG); 8190 } 8191 8192 // Compute the constraint code and ConstraintType to use. 8193 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8194 8195 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8196 OpInfo.Type == InlineAsm::isClobber) 8197 continue; 8198 8199 // If this is a memory input, and if the operand is not indirect, do what we 8200 // need to provide an address for the memory input. 8201 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8202 !OpInfo.isIndirect) { 8203 assert((OpInfo.isMultipleAlternative || 8204 (OpInfo.Type == InlineAsm::isInput)) && 8205 "Can only indirectify direct input operands!"); 8206 8207 // Memory operands really want the address of the value. 8208 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8209 8210 // There is no longer a Value* corresponding to this operand. 8211 OpInfo.CallOperandVal = nullptr; 8212 8213 // It is now an indirect operand. 8214 OpInfo.isIndirect = true; 8215 } 8216 8217 } 8218 8219 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8220 std::vector<SDValue> AsmNodeOperands; 8221 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8222 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8223 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8224 8225 // If we have a !srcloc metadata node associated with it, we want to attach 8226 // this to the ultimately generated inline asm machineinstr. To do this, we 8227 // pass in the third operand as this (potentially null) inline asm MDNode. 8228 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8229 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8230 8231 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8232 // bits as operand 3. 8233 AsmNodeOperands.push_back(DAG.getTargetConstant( 8234 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8235 8236 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8237 // this, assign virtual and physical registers for inputs and otput. 8238 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8239 // Assign Registers. 8240 SDISelAsmOperandInfo &RefOpInfo = 8241 OpInfo.isMatchingInputConstraint() 8242 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8243 : OpInfo; 8244 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8245 8246 switch (OpInfo.Type) { 8247 case InlineAsm::isOutput: 8248 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8249 unsigned ConstraintID = 8250 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8251 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8252 "Failed to convert memory constraint code to constraint id."); 8253 8254 // Add information to the INLINEASM node to know about this output. 8255 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8256 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8257 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8258 MVT::i32)); 8259 AsmNodeOperands.push_back(OpInfo.CallOperand); 8260 } else { 8261 // Otherwise, this outputs to a register (directly for C_Register / 8262 // C_RegisterClass, and a target-defined fashion for 8263 // C_Immediate/C_Other). Find a register that we can use. 8264 if (OpInfo.AssignedRegs.Regs.empty()) { 8265 emitInlineAsmError( 8266 CS, "couldn't allocate output register for constraint '" + 8267 Twine(OpInfo.ConstraintCode) + "'"); 8268 return; 8269 } 8270 8271 // Add information to the INLINEASM node to know that this register is 8272 // set. 8273 OpInfo.AssignedRegs.AddInlineAsmOperands( 8274 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8275 : InlineAsm::Kind_RegDef, 8276 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8277 } 8278 break; 8279 8280 case InlineAsm::isInput: { 8281 SDValue InOperandVal = OpInfo.CallOperand; 8282 8283 if (OpInfo.isMatchingInputConstraint()) { 8284 // If this is required to match an output register we have already set, 8285 // just use its register. 8286 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8287 AsmNodeOperands); 8288 unsigned OpFlag = 8289 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8290 if (InlineAsm::isRegDefKind(OpFlag) || 8291 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8292 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8293 if (OpInfo.isIndirect) { 8294 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8295 emitInlineAsmError(CS, "inline asm not supported yet:" 8296 " don't know how to handle tied " 8297 "indirect register inputs"); 8298 return; 8299 } 8300 8301 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8302 SmallVector<unsigned, 4> Regs; 8303 8304 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8305 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8306 MachineRegisterInfo &RegInfo = 8307 DAG.getMachineFunction().getRegInfo(); 8308 for (unsigned i = 0; i != NumRegs; ++i) 8309 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8310 } else { 8311 emitInlineAsmError(CS, "inline asm error: This value type register " 8312 "class is not natively supported!"); 8313 return; 8314 } 8315 8316 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8317 8318 SDLoc dl = getCurSDLoc(); 8319 // Use the produced MatchedRegs object to 8320 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8321 CS.getInstruction()); 8322 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8323 true, OpInfo.getMatchedOperand(), dl, 8324 DAG, AsmNodeOperands); 8325 break; 8326 } 8327 8328 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8329 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8330 "Unexpected number of operands"); 8331 // Add information to the INLINEASM node to know about this input. 8332 // See InlineAsm.h isUseOperandTiedToDef. 8333 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8334 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8335 OpInfo.getMatchedOperand()); 8336 AsmNodeOperands.push_back(DAG.getTargetConstant( 8337 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8338 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8339 break; 8340 } 8341 8342 // Treat indirect 'X' constraint as memory. 8343 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8344 OpInfo.isIndirect) 8345 OpInfo.ConstraintType = TargetLowering::C_Memory; 8346 8347 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8348 OpInfo.ConstraintType == TargetLowering::C_Other) { 8349 std::vector<SDValue> Ops; 8350 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8351 Ops, DAG); 8352 if (Ops.empty()) { 8353 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8354 if (isa<ConstantSDNode>(InOperandVal)) { 8355 emitInlineAsmError(CS, "value out of range for constraint '" + 8356 Twine(OpInfo.ConstraintCode) + "'"); 8357 return; 8358 } 8359 8360 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8361 Twine(OpInfo.ConstraintCode) + "'"); 8362 return; 8363 } 8364 8365 // Add information to the INLINEASM node to know about this input. 8366 unsigned ResOpType = 8367 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8368 AsmNodeOperands.push_back(DAG.getTargetConstant( 8369 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8370 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8371 break; 8372 } 8373 8374 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8375 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8376 assert(InOperandVal.getValueType() == 8377 TLI.getPointerTy(DAG.getDataLayout()) && 8378 "Memory operands expect pointer values"); 8379 8380 unsigned ConstraintID = 8381 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8382 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8383 "Failed to convert memory constraint code to constraint id."); 8384 8385 // Add information to the INLINEASM node to know about this input. 8386 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8387 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8388 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8389 getCurSDLoc(), 8390 MVT::i32)); 8391 AsmNodeOperands.push_back(InOperandVal); 8392 break; 8393 } 8394 8395 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8396 OpInfo.ConstraintType == TargetLowering::C_Register) && 8397 "Unknown constraint type!"); 8398 8399 // TODO: Support this. 8400 if (OpInfo.isIndirect) { 8401 emitInlineAsmError( 8402 CS, "Don't know how to handle indirect register inputs yet " 8403 "for constraint '" + 8404 Twine(OpInfo.ConstraintCode) + "'"); 8405 return; 8406 } 8407 8408 // Copy the input into the appropriate registers. 8409 if (OpInfo.AssignedRegs.Regs.empty()) { 8410 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8411 Twine(OpInfo.ConstraintCode) + "'"); 8412 return; 8413 } 8414 8415 SDLoc dl = getCurSDLoc(); 8416 8417 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8418 Chain, &Flag, CS.getInstruction()); 8419 8420 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8421 dl, DAG, AsmNodeOperands); 8422 break; 8423 } 8424 case InlineAsm::isClobber: 8425 // Add the clobbered value to the operand list, so that the register 8426 // allocator is aware that the physreg got clobbered. 8427 if (!OpInfo.AssignedRegs.Regs.empty()) 8428 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8429 false, 0, getCurSDLoc(), DAG, 8430 AsmNodeOperands); 8431 break; 8432 } 8433 } 8434 8435 // Finish up input operands. Set the input chain and add the flag last. 8436 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8437 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8438 8439 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8440 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8441 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8442 Flag = Chain.getValue(1); 8443 8444 // Do additional work to generate outputs. 8445 8446 SmallVector<EVT, 1> ResultVTs; 8447 SmallVector<SDValue, 1> ResultValues; 8448 SmallVector<SDValue, 8> OutChains; 8449 8450 llvm::Type *CSResultType = CS.getType(); 8451 ArrayRef<Type *> ResultTypes; 8452 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8453 ResultTypes = StructResult->elements(); 8454 else if (!CSResultType->isVoidTy()) 8455 ResultTypes = makeArrayRef(CSResultType); 8456 8457 auto CurResultType = ResultTypes.begin(); 8458 auto handleRegAssign = [&](SDValue V) { 8459 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8460 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8461 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8462 ++CurResultType; 8463 // If the type of the inline asm call site return value is different but has 8464 // same size as the type of the asm output bitcast it. One example of this 8465 // is for vectors with different width / number of elements. This can 8466 // happen for register classes that can contain multiple different value 8467 // types. The preg or vreg allocated may not have the same VT as was 8468 // expected. 8469 // 8470 // This can also happen for a return value that disagrees with the register 8471 // class it is put in, eg. a double in a general-purpose register on a 8472 // 32-bit machine. 8473 if (ResultVT != V.getValueType() && 8474 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8475 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8476 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8477 V.getValueType().isInteger()) { 8478 // If a result value was tied to an input value, the computed result 8479 // may have a wider width than the expected result. Extract the 8480 // relevant portion. 8481 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8482 } 8483 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8484 ResultVTs.push_back(ResultVT); 8485 ResultValues.push_back(V); 8486 }; 8487 8488 // Deal with output operands. 8489 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8490 if (OpInfo.Type == InlineAsm::isOutput) { 8491 SDValue Val; 8492 // Skip trivial output operands. 8493 if (OpInfo.AssignedRegs.Regs.empty()) 8494 continue; 8495 8496 switch (OpInfo.ConstraintType) { 8497 case TargetLowering::C_Register: 8498 case TargetLowering::C_RegisterClass: 8499 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8500 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8501 break; 8502 case TargetLowering::C_Immediate: 8503 case TargetLowering::C_Other: 8504 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8505 OpInfo, DAG); 8506 break; 8507 case TargetLowering::C_Memory: 8508 break; // Already handled. 8509 case TargetLowering::C_Unknown: 8510 assert(false && "Unexpected unknown constraint"); 8511 } 8512 8513 // Indirect output manifest as stores. Record output chains. 8514 if (OpInfo.isIndirect) { 8515 const Value *Ptr = OpInfo.CallOperandVal; 8516 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8517 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8518 MachinePointerInfo(Ptr)); 8519 OutChains.push_back(Store); 8520 } else { 8521 // generate CopyFromRegs to associated registers. 8522 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8523 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8524 for (const SDValue &V : Val->op_values()) 8525 handleRegAssign(V); 8526 } else 8527 handleRegAssign(Val); 8528 } 8529 } 8530 } 8531 8532 // Set results. 8533 if (!ResultValues.empty()) { 8534 assert(CurResultType == ResultTypes.end() && 8535 "Mismatch in number of ResultTypes"); 8536 assert(ResultValues.size() == ResultTypes.size() && 8537 "Mismatch in number of output operands in asm result"); 8538 8539 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8540 DAG.getVTList(ResultVTs), ResultValues); 8541 setValue(CS.getInstruction(), V); 8542 } 8543 8544 // Collect store chains. 8545 if (!OutChains.empty()) 8546 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8547 8548 // Only Update Root if inline assembly has a memory effect. 8549 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8550 DAG.setRoot(Chain); 8551 } 8552 8553 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8554 const Twine &Message) { 8555 LLVMContext &Ctx = *DAG.getContext(); 8556 Ctx.emitError(CS.getInstruction(), Message); 8557 8558 // Make sure we leave the DAG in a valid state 8559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8560 SmallVector<EVT, 1> ValueVTs; 8561 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8562 8563 if (ValueVTs.empty()) 8564 return; 8565 8566 SmallVector<SDValue, 1> Ops; 8567 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8568 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8569 8570 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8571 } 8572 8573 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8574 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8575 MVT::Other, getRoot(), 8576 getValue(I.getArgOperand(0)), 8577 DAG.getSrcValue(I.getArgOperand(0)))); 8578 } 8579 8580 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8582 const DataLayout &DL = DAG.getDataLayout(); 8583 SDValue V = DAG.getVAArg( 8584 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8585 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8586 DL.getABITypeAlignment(I.getType())); 8587 DAG.setRoot(V.getValue(1)); 8588 8589 if (I.getType()->isPointerTy()) 8590 V = DAG.getPtrExtOrTrunc( 8591 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8592 setValue(&I, V); 8593 } 8594 8595 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8596 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8597 MVT::Other, getRoot(), 8598 getValue(I.getArgOperand(0)), 8599 DAG.getSrcValue(I.getArgOperand(0)))); 8600 } 8601 8602 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8603 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8604 MVT::Other, getRoot(), 8605 getValue(I.getArgOperand(0)), 8606 getValue(I.getArgOperand(1)), 8607 DAG.getSrcValue(I.getArgOperand(0)), 8608 DAG.getSrcValue(I.getArgOperand(1)))); 8609 } 8610 8611 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8612 const Instruction &I, 8613 SDValue Op) { 8614 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8615 if (!Range) 8616 return Op; 8617 8618 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8619 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8620 return Op; 8621 8622 APInt Lo = CR.getUnsignedMin(); 8623 if (!Lo.isMinValue()) 8624 return Op; 8625 8626 APInt Hi = CR.getUnsignedMax(); 8627 unsigned Bits = std::max(Hi.getActiveBits(), 8628 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8629 8630 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8631 8632 SDLoc SL = getCurSDLoc(); 8633 8634 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8635 DAG.getValueType(SmallVT)); 8636 unsigned NumVals = Op.getNode()->getNumValues(); 8637 if (NumVals == 1) 8638 return ZExt; 8639 8640 SmallVector<SDValue, 4> Ops; 8641 8642 Ops.push_back(ZExt); 8643 for (unsigned I = 1; I != NumVals; ++I) 8644 Ops.push_back(Op.getValue(I)); 8645 8646 return DAG.getMergeValues(Ops, SL); 8647 } 8648 8649 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8650 /// the call being lowered. 8651 /// 8652 /// This is a helper for lowering intrinsics that follow a target calling 8653 /// convention or require stack pointer adjustment. Only a subset of the 8654 /// intrinsic's operands need to participate in the calling convention. 8655 void SelectionDAGBuilder::populateCallLoweringInfo( 8656 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8657 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8658 bool IsPatchPoint) { 8659 TargetLowering::ArgListTy Args; 8660 Args.reserve(NumArgs); 8661 8662 // Populate the argument list. 8663 // Attributes for args start at offset 1, after the return attribute. 8664 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8665 ArgI != ArgE; ++ArgI) { 8666 const Value *V = Call->getOperand(ArgI); 8667 8668 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8669 8670 TargetLowering::ArgListEntry Entry; 8671 Entry.Node = getValue(V); 8672 Entry.Ty = V->getType(); 8673 Entry.setAttributes(Call, ArgI); 8674 Args.push_back(Entry); 8675 } 8676 8677 CLI.setDebugLoc(getCurSDLoc()) 8678 .setChain(getRoot()) 8679 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8680 .setDiscardResult(Call->use_empty()) 8681 .setIsPatchPoint(IsPatchPoint); 8682 } 8683 8684 /// Add a stack map intrinsic call's live variable operands to a stackmap 8685 /// or patchpoint target node's operand list. 8686 /// 8687 /// Constants are converted to TargetConstants purely as an optimization to 8688 /// avoid constant materialization and register allocation. 8689 /// 8690 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8691 /// generate addess computation nodes, and so FinalizeISel can convert the 8692 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8693 /// address materialization and register allocation, but may also be required 8694 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8695 /// alloca in the entry block, then the runtime may assume that the alloca's 8696 /// StackMap location can be read immediately after compilation and that the 8697 /// location is valid at any point during execution (this is similar to the 8698 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8699 /// only available in a register, then the runtime would need to trap when 8700 /// execution reaches the StackMap in order to read the alloca's location. 8701 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8702 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8703 SelectionDAGBuilder &Builder) { 8704 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8705 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8706 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8707 Ops.push_back( 8708 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8709 Ops.push_back( 8710 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8711 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8712 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8713 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8714 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8715 } else 8716 Ops.push_back(OpVal); 8717 } 8718 } 8719 8720 /// Lower llvm.experimental.stackmap directly to its target opcode. 8721 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8722 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8723 // [live variables...]) 8724 8725 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8726 8727 SDValue Chain, InFlag, Callee, NullPtr; 8728 SmallVector<SDValue, 32> Ops; 8729 8730 SDLoc DL = getCurSDLoc(); 8731 Callee = getValue(CI.getCalledValue()); 8732 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8733 8734 // The stackmap intrinsic only records the live variables (the arguments 8735 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8736 // intrinsic, this won't be lowered to a function call. This means we don't 8737 // have to worry about calling conventions and target specific lowering code. 8738 // Instead we perform the call lowering right here. 8739 // 8740 // chain, flag = CALLSEQ_START(chain, 0, 0) 8741 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8742 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8743 // 8744 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8745 InFlag = Chain.getValue(1); 8746 8747 // Add the <id> and <numBytes> constants. 8748 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8749 Ops.push_back(DAG.getTargetConstant( 8750 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8751 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8752 Ops.push_back(DAG.getTargetConstant( 8753 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8754 MVT::i32)); 8755 8756 // Push live variables for the stack map. 8757 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8758 8759 // We are not pushing any register mask info here on the operands list, 8760 // because the stackmap doesn't clobber anything. 8761 8762 // Push the chain and the glue flag. 8763 Ops.push_back(Chain); 8764 Ops.push_back(InFlag); 8765 8766 // Create the STACKMAP node. 8767 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8768 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8769 Chain = SDValue(SM, 0); 8770 InFlag = Chain.getValue(1); 8771 8772 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8773 8774 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8775 8776 // Set the root to the target-lowered call chain. 8777 DAG.setRoot(Chain); 8778 8779 // Inform the Frame Information that we have a stackmap in this function. 8780 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8781 } 8782 8783 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8784 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8785 const BasicBlock *EHPadBB) { 8786 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8787 // i32 <numBytes>, 8788 // i8* <target>, 8789 // i32 <numArgs>, 8790 // [Args...], 8791 // [live variables...]) 8792 8793 CallingConv::ID CC = CS.getCallingConv(); 8794 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8795 bool HasDef = !CS->getType()->isVoidTy(); 8796 SDLoc dl = getCurSDLoc(); 8797 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8798 8799 // Handle immediate and symbolic callees. 8800 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8801 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8802 /*isTarget=*/true); 8803 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8804 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8805 SDLoc(SymbolicCallee), 8806 SymbolicCallee->getValueType(0)); 8807 8808 // Get the real number of arguments participating in the call <numArgs> 8809 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8810 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8811 8812 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8813 // Intrinsics include all meta-operands up to but not including CC. 8814 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8815 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8816 "Not enough arguments provided to the patchpoint intrinsic"); 8817 8818 // For AnyRegCC the arguments are lowered later on manually. 8819 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8820 Type *ReturnTy = 8821 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8822 8823 TargetLowering::CallLoweringInfo CLI(DAG); 8824 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8825 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8826 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8827 8828 SDNode *CallEnd = Result.second.getNode(); 8829 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8830 CallEnd = CallEnd->getOperand(0).getNode(); 8831 8832 /// Get a call instruction from the call sequence chain. 8833 /// Tail calls are not allowed. 8834 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8835 "Expected a callseq node."); 8836 SDNode *Call = CallEnd->getOperand(0).getNode(); 8837 bool HasGlue = Call->getGluedNode(); 8838 8839 // Replace the target specific call node with the patchable intrinsic. 8840 SmallVector<SDValue, 8> Ops; 8841 8842 // Add the <id> and <numBytes> constants. 8843 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8844 Ops.push_back(DAG.getTargetConstant( 8845 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8846 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8847 Ops.push_back(DAG.getTargetConstant( 8848 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8849 MVT::i32)); 8850 8851 // Add the callee. 8852 Ops.push_back(Callee); 8853 8854 // Adjust <numArgs> to account for any arguments that have been passed on the 8855 // stack instead. 8856 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8857 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8858 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8859 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8860 8861 // Add the calling convention 8862 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8863 8864 // Add the arguments we omitted previously. The register allocator should 8865 // place these in any free register. 8866 if (IsAnyRegCC) 8867 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8868 Ops.push_back(getValue(CS.getArgument(i))); 8869 8870 // Push the arguments from the call instruction up to the register mask. 8871 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8872 Ops.append(Call->op_begin() + 2, e); 8873 8874 // Push live variables for the stack map. 8875 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8876 8877 // Push the register mask info. 8878 if (HasGlue) 8879 Ops.push_back(*(Call->op_end()-2)); 8880 else 8881 Ops.push_back(*(Call->op_end()-1)); 8882 8883 // Push the chain (this is originally the first operand of the call, but 8884 // becomes now the last or second to last operand). 8885 Ops.push_back(*(Call->op_begin())); 8886 8887 // Push the glue flag (last operand). 8888 if (HasGlue) 8889 Ops.push_back(*(Call->op_end()-1)); 8890 8891 SDVTList NodeTys; 8892 if (IsAnyRegCC && HasDef) { 8893 // Create the return types based on the intrinsic definition 8894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8895 SmallVector<EVT, 3> ValueVTs; 8896 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8897 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8898 8899 // There is always a chain and a glue type at the end 8900 ValueVTs.push_back(MVT::Other); 8901 ValueVTs.push_back(MVT::Glue); 8902 NodeTys = DAG.getVTList(ValueVTs); 8903 } else 8904 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8905 8906 // Replace the target specific call node with a PATCHPOINT node. 8907 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8908 dl, NodeTys, Ops); 8909 8910 // Update the NodeMap. 8911 if (HasDef) { 8912 if (IsAnyRegCC) 8913 setValue(CS.getInstruction(), SDValue(MN, 0)); 8914 else 8915 setValue(CS.getInstruction(), Result.first); 8916 } 8917 8918 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8919 // call sequence. Furthermore the location of the chain and glue can change 8920 // when the AnyReg calling convention is used and the intrinsic returns a 8921 // value. 8922 if (IsAnyRegCC && HasDef) { 8923 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8924 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8925 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8926 } else 8927 DAG.ReplaceAllUsesWith(Call, MN); 8928 DAG.DeleteNode(Call); 8929 8930 // Inform the Frame Information that we have a patchpoint in this function. 8931 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8932 } 8933 8934 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8935 unsigned Intrinsic) { 8936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8937 SDValue Op1 = getValue(I.getArgOperand(0)); 8938 SDValue Op2; 8939 if (I.getNumArgOperands() > 1) 8940 Op2 = getValue(I.getArgOperand(1)); 8941 SDLoc dl = getCurSDLoc(); 8942 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8943 SDValue Res; 8944 FastMathFlags FMF; 8945 if (isa<FPMathOperator>(I)) 8946 FMF = I.getFastMathFlags(); 8947 8948 switch (Intrinsic) { 8949 case Intrinsic::experimental_vector_reduce_v2_fadd: 8950 if (FMF.allowReassoc()) 8951 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8952 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8953 else 8954 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8955 break; 8956 case Intrinsic::experimental_vector_reduce_v2_fmul: 8957 if (FMF.allowReassoc()) 8958 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8959 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8960 else 8961 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8962 break; 8963 case Intrinsic::experimental_vector_reduce_add: 8964 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8965 break; 8966 case Intrinsic::experimental_vector_reduce_mul: 8967 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8968 break; 8969 case Intrinsic::experimental_vector_reduce_and: 8970 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8971 break; 8972 case Intrinsic::experimental_vector_reduce_or: 8973 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8974 break; 8975 case Intrinsic::experimental_vector_reduce_xor: 8976 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8977 break; 8978 case Intrinsic::experimental_vector_reduce_smax: 8979 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8980 break; 8981 case Intrinsic::experimental_vector_reduce_smin: 8982 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8983 break; 8984 case Intrinsic::experimental_vector_reduce_umax: 8985 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8986 break; 8987 case Intrinsic::experimental_vector_reduce_umin: 8988 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8989 break; 8990 case Intrinsic::experimental_vector_reduce_fmax: 8991 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8992 break; 8993 case Intrinsic::experimental_vector_reduce_fmin: 8994 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8995 break; 8996 default: 8997 llvm_unreachable("Unhandled vector reduce intrinsic"); 8998 } 8999 setValue(&I, Res); 9000 } 9001 9002 /// Returns an AttributeList representing the attributes applied to the return 9003 /// value of the given call. 9004 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9005 SmallVector<Attribute::AttrKind, 2> Attrs; 9006 if (CLI.RetSExt) 9007 Attrs.push_back(Attribute::SExt); 9008 if (CLI.RetZExt) 9009 Attrs.push_back(Attribute::ZExt); 9010 if (CLI.IsInReg) 9011 Attrs.push_back(Attribute::InReg); 9012 9013 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9014 Attrs); 9015 } 9016 9017 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9018 /// implementation, which just calls LowerCall. 9019 /// FIXME: When all targets are 9020 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9021 std::pair<SDValue, SDValue> 9022 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9023 // Handle the incoming return values from the call. 9024 CLI.Ins.clear(); 9025 Type *OrigRetTy = CLI.RetTy; 9026 SmallVector<EVT, 4> RetTys; 9027 SmallVector<uint64_t, 4> Offsets; 9028 auto &DL = CLI.DAG.getDataLayout(); 9029 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9030 9031 if (CLI.IsPostTypeLegalization) { 9032 // If we are lowering a libcall after legalization, split the return type. 9033 SmallVector<EVT, 4> OldRetTys; 9034 SmallVector<uint64_t, 4> OldOffsets; 9035 RetTys.swap(OldRetTys); 9036 Offsets.swap(OldOffsets); 9037 9038 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9039 EVT RetVT = OldRetTys[i]; 9040 uint64_t Offset = OldOffsets[i]; 9041 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9042 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9043 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9044 RetTys.append(NumRegs, RegisterVT); 9045 for (unsigned j = 0; j != NumRegs; ++j) 9046 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9047 } 9048 } 9049 9050 SmallVector<ISD::OutputArg, 4> Outs; 9051 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9052 9053 bool CanLowerReturn = 9054 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9055 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9056 9057 SDValue DemoteStackSlot; 9058 int DemoteStackIdx = -100; 9059 if (!CanLowerReturn) { 9060 // FIXME: equivalent assert? 9061 // assert(!CS.hasInAllocaArgument() && 9062 // "sret demotion is incompatible with inalloca"); 9063 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9064 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9065 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9066 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9067 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9068 DL.getAllocaAddrSpace()); 9069 9070 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9071 ArgListEntry Entry; 9072 Entry.Node = DemoteStackSlot; 9073 Entry.Ty = StackSlotPtrType; 9074 Entry.IsSExt = false; 9075 Entry.IsZExt = false; 9076 Entry.IsInReg = false; 9077 Entry.IsSRet = true; 9078 Entry.IsNest = false; 9079 Entry.IsByVal = false; 9080 Entry.IsReturned = false; 9081 Entry.IsSwiftSelf = false; 9082 Entry.IsSwiftError = false; 9083 Entry.IsCFGuardTarget = false; 9084 Entry.Alignment = Align; 9085 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9086 CLI.NumFixedArgs += 1; 9087 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9088 9089 // sret demotion isn't compatible with tail-calls, since the sret argument 9090 // points into the callers stack frame. 9091 CLI.IsTailCall = false; 9092 } else { 9093 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9094 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9095 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9096 ISD::ArgFlagsTy Flags; 9097 if (NeedsRegBlock) { 9098 Flags.setInConsecutiveRegs(); 9099 if (I == RetTys.size() - 1) 9100 Flags.setInConsecutiveRegsLast(); 9101 } 9102 EVT VT = RetTys[I]; 9103 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9104 CLI.CallConv, VT); 9105 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9106 CLI.CallConv, VT); 9107 for (unsigned i = 0; i != NumRegs; ++i) { 9108 ISD::InputArg MyFlags; 9109 MyFlags.Flags = Flags; 9110 MyFlags.VT = RegisterVT; 9111 MyFlags.ArgVT = VT; 9112 MyFlags.Used = CLI.IsReturnValueUsed; 9113 if (CLI.RetTy->isPointerTy()) { 9114 MyFlags.Flags.setPointer(); 9115 MyFlags.Flags.setPointerAddrSpace( 9116 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9117 } 9118 if (CLI.RetSExt) 9119 MyFlags.Flags.setSExt(); 9120 if (CLI.RetZExt) 9121 MyFlags.Flags.setZExt(); 9122 if (CLI.IsInReg) 9123 MyFlags.Flags.setInReg(); 9124 CLI.Ins.push_back(MyFlags); 9125 } 9126 } 9127 } 9128 9129 // We push in swifterror return as the last element of CLI.Ins. 9130 ArgListTy &Args = CLI.getArgs(); 9131 if (supportSwiftError()) { 9132 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9133 if (Args[i].IsSwiftError) { 9134 ISD::InputArg MyFlags; 9135 MyFlags.VT = getPointerTy(DL); 9136 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9137 MyFlags.Flags.setSwiftError(); 9138 CLI.Ins.push_back(MyFlags); 9139 } 9140 } 9141 } 9142 9143 // Handle all of the outgoing arguments. 9144 CLI.Outs.clear(); 9145 CLI.OutVals.clear(); 9146 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9147 SmallVector<EVT, 4> ValueVTs; 9148 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9149 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9150 Type *FinalType = Args[i].Ty; 9151 if (Args[i].IsByVal) 9152 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9153 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9154 FinalType, CLI.CallConv, CLI.IsVarArg); 9155 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9156 ++Value) { 9157 EVT VT = ValueVTs[Value]; 9158 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9159 SDValue Op = SDValue(Args[i].Node.getNode(), 9160 Args[i].Node.getResNo() + Value); 9161 ISD::ArgFlagsTy Flags; 9162 9163 // Certain targets (such as MIPS), may have a different ABI alignment 9164 // for a type depending on the context. Give the target a chance to 9165 // specify the alignment it wants. 9166 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9167 9168 if (Args[i].Ty->isPointerTy()) { 9169 Flags.setPointer(); 9170 Flags.setPointerAddrSpace( 9171 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9172 } 9173 if (Args[i].IsZExt) 9174 Flags.setZExt(); 9175 if (Args[i].IsSExt) 9176 Flags.setSExt(); 9177 if (Args[i].IsInReg) { 9178 // If we are using vectorcall calling convention, a structure that is 9179 // passed InReg - is surely an HVA 9180 if (CLI.CallConv == CallingConv::X86_VectorCall && 9181 isa<StructType>(FinalType)) { 9182 // The first value of a structure is marked 9183 if (0 == Value) 9184 Flags.setHvaStart(); 9185 Flags.setHva(); 9186 } 9187 // Set InReg Flag 9188 Flags.setInReg(); 9189 } 9190 if (Args[i].IsSRet) 9191 Flags.setSRet(); 9192 if (Args[i].IsSwiftSelf) 9193 Flags.setSwiftSelf(); 9194 if (Args[i].IsSwiftError) 9195 Flags.setSwiftError(); 9196 if (Args[i].IsCFGuardTarget) 9197 Flags.setCFGuardTarget(); 9198 if (Args[i].IsByVal) 9199 Flags.setByVal(); 9200 if (Args[i].IsInAlloca) { 9201 Flags.setInAlloca(); 9202 // Set the byval flag for CCAssignFn callbacks that don't know about 9203 // inalloca. This way we can know how many bytes we should've allocated 9204 // and how many bytes a callee cleanup function will pop. If we port 9205 // inalloca to more targets, we'll have to add custom inalloca handling 9206 // in the various CC lowering callbacks. 9207 Flags.setByVal(); 9208 } 9209 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9210 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9211 Type *ElementTy = Ty->getElementType(); 9212 9213 unsigned FrameSize = DL.getTypeAllocSize( 9214 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9215 Flags.setByValSize(FrameSize); 9216 9217 // info is not there but there are cases it cannot get right. 9218 unsigned FrameAlign; 9219 if (Args[i].Alignment) 9220 FrameAlign = Args[i].Alignment; 9221 else 9222 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9223 Flags.setByValAlign(Align(FrameAlign)); 9224 } 9225 if (Args[i].IsNest) 9226 Flags.setNest(); 9227 if (NeedsRegBlock) 9228 Flags.setInConsecutiveRegs(); 9229 Flags.setOrigAlign(OriginalAlignment); 9230 9231 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9232 CLI.CallConv, VT); 9233 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9234 CLI.CallConv, VT); 9235 SmallVector<SDValue, 4> Parts(NumParts); 9236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9237 9238 if (Args[i].IsSExt) 9239 ExtendKind = ISD::SIGN_EXTEND; 9240 else if (Args[i].IsZExt) 9241 ExtendKind = ISD::ZERO_EXTEND; 9242 9243 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9244 // for now. 9245 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9246 CanLowerReturn) { 9247 assert((CLI.RetTy == Args[i].Ty || 9248 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9249 CLI.RetTy->getPointerAddressSpace() == 9250 Args[i].Ty->getPointerAddressSpace())) && 9251 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9252 // Before passing 'returned' to the target lowering code, ensure that 9253 // either the register MVT and the actual EVT are the same size or that 9254 // the return value and argument are extended in the same way; in these 9255 // cases it's safe to pass the argument register value unchanged as the 9256 // return register value (although it's at the target's option whether 9257 // to do so) 9258 // TODO: allow code generation to take advantage of partially preserved 9259 // registers rather than clobbering the entire register when the 9260 // parameter extension method is not compatible with the return 9261 // extension method 9262 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9263 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9264 CLI.RetZExt == Args[i].IsZExt)) 9265 Flags.setReturned(); 9266 } 9267 9268 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9269 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9270 9271 for (unsigned j = 0; j != NumParts; ++j) { 9272 // if it isn't first piece, alignment must be 1 9273 // For scalable vectors the scalable part is currently handled 9274 // by individual targets, so we just use the known minimum size here. 9275 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9276 i < CLI.NumFixedArgs, i, 9277 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9278 if (NumParts > 1 && j == 0) 9279 MyFlags.Flags.setSplit(); 9280 else if (j != 0) { 9281 MyFlags.Flags.setOrigAlign(Align::None()); 9282 if (j == NumParts - 1) 9283 MyFlags.Flags.setSplitEnd(); 9284 } 9285 9286 CLI.Outs.push_back(MyFlags); 9287 CLI.OutVals.push_back(Parts[j]); 9288 } 9289 9290 if (NeedsRegBlock && Value == NumValues - 1) 9291 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9292 } 9293 } 9294 9295 SmallVector<SDValue, 4> InVals; 9296 CLI.Chain = LowerCall(CLI, InVals); 9297 9298 // Update CLI.InVals to use outside of this function. 9299 CLI.InVals = InVals; 9300 9301 // Verify that the target's LowerCall behaved as expected. 9302 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9303 "LowerCall didn't return a valid chain!"); 9304 assert((!CLI.IsTailCall || InVals.empty()) && 9305 "LowerCall emitted a return value for a tail call!"); 9306 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9307 "LowerCall didn't emit the correct number of values!"); 9308 9309 // For a tail call, the return value is merely live-out and there aren't 9310 // any nodes in the DAG representing it. Return a special value to 9311 // indicate that a tail call has been emitted and no more Instructions 9312 // should be processed in the current block. 9313 if (CLI.IsTailCall) { 9314 CLI.DAG.setRoot(CLI.Chain); 9315 return std::make_pair(SDValue(), SDValue()); 9316 } 9317 9318 #ifndef NDEBUG 9319 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9320 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9321 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9322 "LowerCall emitted a value with the wrong type!"); 9323 } 9324 #endif 9325 9326 SmallVector<SDValue, 4> ReturnValues; 9327 if (!CanLowerReturn) { 9328 // The instruction result is the result of loading from the 9329 // hidden sret parameter. 9330 SmallVector<EVT, 1> PVTs; 9331 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9332 9333 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9334 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9335 EVT PtrVT = PVTs[0]; 9336 9337 unsigned NumValues = RetTys.size(); 9338 ReturnValues.resize(NumValues); 9339 SmallVector<SDValue, 4> Chains(NumValues); 9340 9341 // An aggregate return value cannot wrap around the address space, so 9342 // offsets to its parts don't wrap either. 9343 SDNodeFlags Flags; 9344 Flags.setNoUnsignedWrap(true); 9345 9346 for (unsigned i = 0; i < NumValues; ++i) { 9347 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9348 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9349 PtrVT), Flags); 9350 SDValue L = CLI.DAG.getLoad( 9351 RetTys[i], CLI.DL, CLI.Chain, Add, 9352 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9353 DemoteStackIdx, Offsets[i]), 9354 /* Alignment = */ 1); 9355 ReturnValues[i] = L; 9356 Chains[i] = L.getValue(1); 9357 } 9358 9359 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9360 } else { 9361 // Collect the legal value parts into potentially illegal values 9362 // that correspond to the original function's return values. 9363 Optional<ISD::NodeType> AssertOp; 9364 if (CLI.RetSExt) 9365 AssertOp = ISD::AssertSext; 9366 else if (CLI.RetZExt) 9367 AssertOp = ISD::AssertZext; 9368 unsigned CurReg = 0; 9369 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9370 EVT VT = RetTys[I]; 9371 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9372 CLI.CallConv, VT); 9373 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9374 CLI.CallConv, VT); 9375 9376 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9377 NumRegs, RegisterVT, VT, nullptr, 9378 CLI.CallConv, AssertOp)); 9379 CurReg += NumRegs; 9380 } 9381 9382 // For a function returning void, there is no return value. We can't create 9383 // such a node, so we just return a null return value in that case. In 9384 // that case, nothing will actually look at the value. 9385 if (ReturnValues.empty()) 9386 return std::make_pair(SDValue(), CLI.Chain); 9387 } 9388 9389 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9390 CLI.DAG.getVTList(RetTys), ReturnValues); 9391 return std::make_pair(Res, CLI.Chain); 9392 } 9393 9394 void TargetLowering::LowerOperationWrapper(SDNode *N, 9395 SmallVectorImpl<SDValue> &Results, 9396 SelectionDAG &DAG) const { 9397 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9398 Results.push_back(Res); 9399 } 9400 9401 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9402 llvm_unreachable("LowerOperation not implemented for this target!"); 9403 } 9404 9405 void 9406 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9407 SDValue Op = getNonRegisterValue(V); 9408 assert((Op.getOpcode() != ISD::CopyFromReg || 9409 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9410 "Copy from a reg to the same reg!"); 9411 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9412 9413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9414 // If this is an InlineAsm we have to match the registers required, not the 9415 // notional registers required by the type. 9416 9417 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9418 None); // This is not an ABI copy. 9419 SDValue Chain = DAG.getEntryNode(); 9420 9421 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9422 FuncInfo.PreferredExtendType.end()) 9423 ? ISD::ANY_EXTEND 9424 : FuncInfo.PreferredExtendType[V]; 9425 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9426 PendingExports.push_back(Chain); 9427 } 9428 9429 #include "llvm/CodeGen/SelectionDAGISel.h" 9430 9431 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9432 /// entry block, return true. This includes arguments used by switches, since 9433 /// the switch may expand into multiple basic blocks. 9434 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9435 // With FastISel active, we may be splitting blocks, so force creation 9436 // of virtual registers for all non-dead arguments. 9437 if (FastISel) 9438 return A->use_empty(); 9439 9440 const BasicBlock &Entry = A->getParent()->front(); 9441 for (const User *U : A->users()) 9442 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9443 return false; // Use not in entry block. 9444 9445 return true; 9446 } 9447 9448 using ArgCopyElisionMapTy = 9449 DenseMap<const Argument *, 9450 std::pair<const AllocaInst *, const StoreInst *>>; 9451 9452 /// Scan the entry block of the function in FuncInfo for arguments that look 9453 /// like copies into a local alloca. Record any copied arguments in 9454 /// ArgCopyElisionCandidates. 9455 static void 9456 findArgumentCopyElisionCandidates(const DataLayout &DL, 9457 FunctionLoweringInfo *FuncInfo, 9458 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9459 // Record the state of every static alloca used in the entry block. Argument 9460 // allocas are all used in the entry block, so we need approximately as many 9461 // entries as we have arguments. 9462 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9463 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9464 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9465 StaticAllocas.reserve(NumArgs * 2); 9466 9467 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9468 if (!V) 9469 return nullptr; 9470 V = V->stripPointerCasts(); 9471 const auto *AI = dyn_cast<AllocaInst>(V); 9472 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9473 return nullptr; 9474 auto Iter = StaticAllocas.insert({AI, Unknown}); 9475 return &Iter.first->second; 9476 }; 9477 9478 // Look for stores of arguments to static allocas. Look through bitcasts and 9479 // GEPs to handle type coercions, as long as the alloca is fully initialized 9480 // by the store. Any non-store use of an alloca escapes it and any subsequent 9481 // unanalyzed store might write it. 9482 // FIXME: Handle structs initialized with multiple stores. 9483 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9484 // Look for stores, and handle non-store uses conservatively. 9485 const auto *SI = dyn_cast<StoreInst>(&I); 9486 if (!SI) { 9487 // We will look through cast uses, so ignore them completely. 9488 if (I.isCast()) 9489 continue; 9490 // Ignore debug info intrinsics, they don't escape or store to allocas. 9491 if (isa<DbgInfoIntrinsic>(I)) 9492 continue; 9493 // This is an unknown instruction. Assume it escapes or writes to all 9494 // static alloca operands. 9495 for (const Use &U : I.operands()) { 9496 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9497 *Info = StaticAllocaInfo::Clobbered; 9498 } 9499 continue; 9500 } 9501 9502 // If the stored value is a static alloca, mark it as escaped. 9503 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9504 *Info = StaticAllocaInfo::Clobbered; 9505 9506 // Check if the destination is a static alloca. 9507 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9508 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9509 if (!Info) 9510 continue; 9511 const AllocaInst *AI = cast<AllocaInst>(Dst); 9512 9513 // Skip allocas that have been initialized or clobbered. 9514 if (*Info != StaticAllocaInfo::Unknown) 9515 continue; 9516 9517 // Check if the stored value is an argument, and that this store fully 9518 // initializes the alloca. Don't elide copies from the same argument twice. 9519 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9520 const auto *Arg = dyn_cast<Argument>(Val); 9521 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9522 Arg->getType()->isEmptyTy() || 9523 DL.getTypeStoreSize(Arg->getType()) != 9524 DL.getTypeAllocSize(AI->getAllocatedType()) || 9525 ArgCopyElisionCandidates.count(Arg)) { 9526 *Info = StaticAllocaInfo::Clobbered; 9527 continue; 9528 } 9529 9530 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9531 << '\n'); 9532 9533 // Mark this alloca and store for argument copy elision. 9534 *Info = StaticAllocaInfo::Elidable; 9535 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9536 9537 // Stop scanning if we've seen all arguments. This will happen early in -O0 9538 // builds, which is useful, because -O0 builds have large entry blocks and 9539 // many allocas. 9540 if (ArgCopyElisionCandidates.size() == NumArgs) 9541 break; 9542 } 9543 } 9544 9545 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9546 /// ArgVal is a load from a suitable fixed stack object. 9547 static void tryToElideArgumentCopy( 9548 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9549 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9550 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9551 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9552 SDValue ArgVal, bool &ArgHasUses) { 9553 // Check if this is a load from a fixed stack object. 9554 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9555 if (!LNode) 9556 return; 9557 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9558 if (!FINode) 9559 return; 9560 9561 // Check that the fixed stack object is the right size and alignment. 9562 // Look at the alignment that the user wrote on the alloca instead of looking 9563 // at the stack object. 9564 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9565 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9566 const AllocaInst *AI = ArgCopyIter->second.first; 9567 int FixedIndex = FINode->getIndex(); 9568 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9569 int OldIndex = AllocaIndex; 9570 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9571 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9572 LLVM_DEBUG( 9573 dbgs() << " argument copy elision failed due to bad fixed stack " 9574 "object size\n"); 9575 return; 9576 } 9577 unsigned RequiredAlignment = AI->getAlignment(); 9578 if (!RequiredAlignment) { 9579 RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( 9580 AI->getAllocatedType()); 9581 } 9582 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9583 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9584 "greater than stack argument alignment (" 9585 << RequiredAlignment << " vs " 9586 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9587 return; 9588 } 9589 9590 // Perform the elision. Delete the old stack object and replace its only use 9591 // in the variable info map. Mark the stack object as mutable. 9592 LLVM_DEBUG({ 9593 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9594 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9595 << '\n'; 9596 }); 9597 MFI.RemoveStackObject(OldIndex); 9598 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9599 AllocaIndex = FixedIndex; 9600 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9601 Chains.push_back(ArgVal.getValue(1)); 9602 9603 // Avoid emitting code for the store implementing the copy. 9604 const StoreInst *SI = ArgCopyIter->second.second; 9605 ElidedArgCopyInstrs.insert(SI); 9606 9607 // Check for uses of the argument again so that we can avoid exporting ArgVal 9608 // if it is't used by anything other than the store. 9609 for (const Value *U : Arg.users()) { 9610 if (U != SI) { 9611 ArgHasUses = true; 9612 break; 9613 } 9614 } 9615 } 9616 9617 void SelectionDAGISel::LowerArguments(const Function &F) { 9618 SelectionDAG &DAG = SDB->DAG; 9619 SDLoc dl = SDB->getCurSDLoc(); 9620 const DataLayout &DL = DAG.getDataLayout(); 9621 SmallVector<ISD::InputArg, 16> Ins; 9622 9623 if (!FuncInfo->CanLowerReturn) { 9624 // Put in an sret pointer parameter before all the other parameters. 9625 SmallVector<EVT, 1> ValueVTs; 9626 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9627 F.getReturnType()->getPointerTo( 9628 DAG.getDataLayout().getAllocaAddrSpace()), 9629 ValueVTs); 9630 9631 // NOTE: Assuming that a pointer will never break down to more than one VT 9632 // or one register. 9633 ISD::ArgFlagsTy Flags; 9634 Flags.setSRet(); 9635 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9636 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9637 ISD::InputArg::NoArgIndex, 0); 9638 Ins.push_back(RetArg); 9639 } 9640 9641 // Look for stores of arguments to static allocas. Mark such arguments with a 9642 // flag to ask the target to give us the memory location of that argument if 9643 // available. 9644 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9645 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9646 ArgCopyElisionCandidates); 9647 9648 // Set up the incoming argument description vector. 9649 for (const Argument &Arg : F.args()) { 9650 unsigned ArgNo = Arg.getArgNo(); 9651 SmallVector<EVT, 4> ValueVTs; 9652 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9653 bool isArgValueUsed = !Arg.use_empty(); 9654 unsigned PartBase = 0; 9655 Type *FinalType = Arg.getType(); 9656 if (Arg.hasAttribute(Attribute::ByVal)) 9657 FinalType = Arg.getParamByValType(); 9658 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9659 FinalType, F.getCallingConv(), F.isVarArg()); 9660 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9661 Value != NumValues; ++Value) { 9662 EVT VT = ValueVTs[Value]; 9663 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9664 ISD::ArgFlagsTy Flags; 9665 9666 // Certain targets (such as MIPS), may have a different ABI alignment 9667 // for a type depending on the context. Give the target a chance to 9668 // specify the alignment it wants. 9669 const Align OriginalAlignment( 9670 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9671 9672 if (Arg.getType()->isPointerTy()) { 9673 Flags.setPointer(); 9674 Flags.setPointerAddrSpace( 9675 cast<PointerType>(Arg.getType())->getAddressSpace()); 9676 } 9677 if (Arg.hasAttribute(Attribute::ZExt)) 9678 Flags.setZExt(); 9679 if (Arg.hasAttribute(Attribute::SExt)) 9680 Flags.setSExt(); 9681 if (Arg.hasAttribute(Attribute::InReg)) { 9682 // If we are using vectorcall calling convention, a structure that is 9683 // passed InReg - is surely an HVA 9684 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9685 isa<StructType>(Arg.getType())) { 9686 // The first value of a structure is marked 9687 if (0 == Value) 9688 Flags.setHvaStart(); 9689 Flags.setHva(); 9690 } 9691 // Set InReg Flag 9692 Flags.setInReg(); 9693 } 9694 if (Arg.hasAttribute(Attribute::StructRet)) 9695 Flags.setSRet(); 9696 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9697 Flags.setSwiftSelf(); 9698 if (Arg.hasAttribute(Attribute::SwiftError)) 9699 Flags.setSwiftError(); 9700 if (Arg.hasAttribute(Attribute::ByVal)) 9701 Flags.setByVal(); 9702 if (Arg.hasAttribute(Attribute::InAlloca)) { 9703 Flags.setInAlloca(); 9704 // Set the byval flag for CCAssignFn callbacks that don't know about 9705 // inalloca. This way we can know how many bytes we should've allocated 9706 // and how many bytes a callee cleanup function will pop. If we port 9707 // inalloca to more targets, we'll have to add custom inalloca handling 9708 // in the various CC lowering callbacks. 9709 Flags.setByVal(); 9710 } 9711 if (F.getCallingConv() == CallingConv::X86_INTR) { 9712 // IA Interrupt passes frame (1st parameter) by value in the stack. 9713 if (ArgNo == 0) 9714 Flags.setByVal(); 9715 } 9716 if (Flags.isByVal() || Flags.isInAlloca()) { 9717 Type *ElementTy = Arg.getParamByValType(); 9718 9719 // For ByVal, size and alignment should be passed from FE. BE will 9720 // guess if this info is not there but there are cases it cannot get 9721 // right. 9722 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9723 Flags.setByValSize(FrameSize); 9724 9725 unsigned FrameAlign; 9726 if (Arg.getParamAlignment()) 9727 FrameAlign = Arg.getParamAlignment(); 9728 else 9729 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9730 Flags.setByValAlign(Align(FrameAlign)); 9731 } 9732 if (Arg.hasAttribute(Attribute::Nest)) 9733 Flags.setNest(); 9734 if (NeedsRegBlock) 9735 Flags.setInConsecutiveRegs(); 9736 Flags.setOrigAlign(OriginalAlignment); 9737 if (ArgCopyElisionCandidates.count(&Arg)) 9738 Flags.setCopyElisionCandidate(); 9739 if (Arg.hasAttribute(Attribute::Returned)) 9740 Flags.setReturned(); 9741 9742 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9743 *CurDAG->getContext(), F.getCallingConv(), VT); 9744 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9745 *CurDAG->getContext(), F.getCallingConv(), VT); 9746 for (unsigned i = 0; i != NumRegs; ++i) { 9747 // For scalable vectors, use the minimum size; individual targets 9748 // are responsible for handling scalable vector arguments and 9749 // return values. 9750 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9751 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9752 if (NumRegs > 1 && i == 0) 9753 MyFlags.Flags.setSplit(); 9754 // if it isn't first piece, alignment must be 1 9755 else if (i > 0) { 9756 MyFlags.Flags.setOrigAlign(Align::None()); 9757 if (i == NumRegs - 1) 9758 MyFlags.Flags.setSplitEnd(); 9759 } 9760 Ins.push_back(MyFlags); 9761 } 9762 if (NeedsRegBlock && Value == NumValues - 1) 9763 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9764 PartBase += VT.getStoreSize().getKnownMinSize(); 9765 } 9766 } 9767 9768 // Call the target to set up the argument values. 9769 SmallVector<SDValue, 8> InVals; 9770 SDValue NewRoot = TLI->LowerFormalArguments( 9771 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9772 9773 // Verify that the target's LowerFormalArguments behaved as expected. 9774 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9775 "LowerFormalArguments didn't return a valid chain!"); 9776 assert(InVals.size() == Ins.size() && 9777 "LowerFormalArguments didn't emit the correct number of values!"); 9778 LLVM_DEBUG({ 9779 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9780 assert(InVals[i].getNode() && 9781 "LowerFormalArguments emitted a null value!"); 9782 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9783 "LowerFormalArguments emitted a value with the wrong type!"); 9784 } 9785 }); 9786 9787 // Update the DAG with the new chain value resulting from argument lowering. 9788 DAG.setRoot(NewRoot); 9789 9790 // Set up the argument values. 9791 unsigned i = 0; 9792 if (!FuncInfo->CanLowerReturn) { 9793 // Create a virtual register for the sret pointer, and put in a copy 9794 // from the sret argument into it. 9795 SmallVector<EVT, 1> ValueVTs; 9796 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9797 F.getReturnType()->getPointerTo( 9798 DAG.getDataLayout().getAllocaAddrSpace()), 9799 ValueVTs); 9800 MVT VT = ValueVTs[0].getSimpleVT(); 9801 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9802 Optional<ISD::NodeType> AssertOp = None; 9803 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9804 nullptr, F.getCallingConv(), AssertOp); 9805 9806 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9807 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9808 Register SRetReg = 9809 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9810 FuncInfo->DemoteRegister = SRetReg; 9811 NewRoot = 9812 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9813 DAG.setRoot(NewRoot); 9814 9815 // i indexes lowered arguments. Bump it past the hidden sret argument. 9816 ++i; 9817 } 9818 9819 SmallVector<SDValue, 4> Chains; 9820 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9821 for (const Argument &Arg : F.args()) { 9822 SmallVector<SDValue, 4> ArgValues; 9823 SmallVector<EVT, 4> ValueVTs; 9824 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9825 unsigned NumValues = ValueVTs.size(); 9826 if (NumValues == 0) 9827 continue; 9828 9829 bool ArgHasUses = !Arg.use_empty(); 9830 9831 // Elide the copying store if the target loaded this argument from a 9832 // suitable fixed stack object. 9833 if (Ins[i].Flags.isCopyElisionCandidate()) { 9834 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9835 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9836 InVals[i], ArgHasUses); 9837 } 9838 9839 // If this argument is unused then remember its value. It is used to generate 9840 // debugging information. 9841 bool isSwiftErrorArg = 9842 TLI->supportSwiftError() && 9843 Arg.hasAttribute(Attribute::SwiftError); 9844 if (!ArgHasUses && !isSwiftErrorArg) { 9845 SDB->setUnusedArgValue(&Arg, InVals[i]); 9846 9847 // Also remember any frame index for use in FastISel. 9848 if (FrameIndexSDNode *FI = 9849 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9850 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9851 } 9852 9853 for (unsigned Val = 0; Val != NumValues; ++Val) { 9854 EVT VT = ValueVTs[Val]; 9855 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9856 F.getCallingConv(), VT); 9857 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9858 *CurDAG->getContext(), F.getCallingConv(), VT); 9859 9860 // Even an apparent 'unused' swifterror argument needs to be returned. So 9861 // we do generate a copy for it that can be used on return from the 9862 // function. 9863 if (ArgHasUses || isSwiftErrorArg) { 9864 Optional<ISD::NodeType> AssertOp; 9865 if (Arg.hasAttribute(Attribute::SExt)) 9866 AssertOp = ISD::AssertSext; 9867 else if (Arg.hasAttribute(Attribute::ZExt)) 9868 AssertOp = ISD::AssertZext; 9869 9870 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9871 PartVT, VT, nullptr, 9872 F.getCallingConv(), AssertOp)); 9873 } 9874 9875 i += NumParts; 9876 } 9877 9878 // We don't need to do anything else for unused arguments. 9879 if (ArgValues.empty()) 9880 continue; 9881 9882 // Note down frame index. 9883 if (FrameIndexSDNode *FI = 9884 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9885 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9886 9887 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9888 SDB->getCurSDLoc()); 9889 9890 SDB->setValue(&Arg, Res); 9891 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9892 // We want to associate the argument with the frame index, among 9893 // involved operands, that correspond to the lowest address. The 9894 // getCopyFromParts function, called earlier, is swapping the order of 9895 // the operands to BUILD_PAIR depending on endianness. The result of 9896 // that swapping is that the least significant bits of the argument will 9897 // be in the first operand of the BUILD_PAIR node, and the most 9898 // significant bits will be in the second operand. 9899 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9900 if (LoadSDNode *LNode = 9901 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9902 if (FrameIndexSDNode *FI = 9903 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9904 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9905 } 9906 9907 // Analyses past this point are naive and don't expect an assertion. 9908 if (Res.getOpcode() == ISD::AssertZext) 9909 Res = Res.getOperand(0); 9910 9911 // Update the SwiftErrorVRegDefMap. 9912 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9913 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9914 if (Register::isVirtualRegister(Reg)) 9915 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9916 Reg); 9917 } 9918 9919 // If this argument is live outside of the entry block, insert a copy from 9920 // wherever we got it to the vreg that other BB's will reference it as. 9921 if (Res.getOpcode() == ISD::CopyFromReg) { 9922 // If we can, though, try to skip creating an unnecessary vreg. 9923 // FIXME: This isn't very clean... it would be nice to make this more 9924 // general. 9925 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9926 if (Register::isVirtualRegister(Reg)) { 9927 FuncInfo->ValueMap[&Arg] = Reg; 9928 continue; 9929 } 9930 } 9931 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9932 FuncInfo->InitializeRegForValue(&Arg); 9933 SDB->CopyToExportRegsIfNeeded(&Arg); 9934 } 9935 } 9936 9937 if (!Chains.empty()) { 9938 Chains.push_back(NewRoot); 9939 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9940 } 9941 9942 DAG.setRoot(NewRoot); 9943 9944 assert(i == InVals.size() && "Argument register count mismatch!"); 9945 9946 // If any argument copy elisions occurred and we have debug info, update the 9947 // stale frame indices used in the dbg.declare variable info table. 9948 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9949 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9950 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9951 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9952 if (I != ArgCopyElisionFrameIndexMap.end()) 9953 VI.Slot = I->second; 9954 } 9955 } 9956 9957 // Finally, if the target has anything special to do, allow it to do so. 9958 EmitFunctionEntryCode(); 9959 } 9960 9961 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9962 /// ensure constants are generated when needed. Remember the virtual registers 9963 /// that need to be added to the Machine PHI nodes as input. We cannot just 9964 /// directly add them, because expansion might result in multiple MBB's for one 9965 /// BB. As such, the start of the BB might correspond to a different MBB than 9966 /// the end. 9967 void 9968 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9969 const Instruction *TI = LLVMBB->getTerminator(); 9970 9971 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9972 9973 // Check PHI nodes in successors that expect a value to be available from this 9974 // block. 9975 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9976 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9977 if (!isa<PHINode>(SuccBB->begin())) continue; 9978 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9979 9980 // If this terminator has multiple identical successors (common for 9981 // switches), only handle each succ once. 9982 if (!SuccsHandled.insert(SuccMBB).second) 9983 continue; 9984 9985 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9986 9987 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9988 // nodes and Machine PHI nodes, but the incoming operands have not been 9989 // emitted yet. 9990 for (const PHINode &PN : SuccBB->phis()) { 9991 // Ignore dead phi's. 9992 if (PN.use_empty()) 9993 continue; 9994 9995 // Skip empty types 9996 if (PN.getType()->isEmptyTy()) 9997 continue; 9998 9999 unsigned Reg; 10000 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10001 10002 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10003 unsigned &RegOut = ConstantsOut[C]; 10004 if (RegOut == 0) { 10005 RegOut = FuncInfo.CreateRegs(C); 10006 CopyValueToVirtualRegister(C, RegOut); 10007 } 10008 Reg = RegOut; 10009 } else { 10010 DenseMap<const Value *, unsigned>::iterator I = 10011 FuncInfo.ValueMap.find(PHIOp); 10012 if (I != FuncInfo.ValueMap.end()) 10013 Reg = I->second; 10014 else { 10015 assert(isa<AllocaInst>(PHIOp) && 10016 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10017 "Didn't codegen value into a register!??"); 10018 Reg = FuncInfo.CreateRegs(PHIOp); 10019 CopyValueToVirtualRegister(PHIOp, Reg); 10020 } 10021 } 10022 10023 // Remember that this register needs to added to the machine PHI node as 10024 // the input for this MBB. 10025 SmallVector<EVT, 4> ValueVTs; 10026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10027 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10028 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10029 EVT VT = ValueVTs[vti]; 10030 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10031 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10032 FuncInfo.PHINodesToUpdate.push_back( 10033 std::make_pair(&*MBBI++, Reg + i)); 10034 Reg += NumRegisters; 10035 } 10036 } 10037 } 10038 10039 ConstantsOut.clear(); 10040 } 10041 10042 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10043 /// is 0. 10044 MachineBasicBlock * 10045 SelectionDAGBuilder::StackProtectorDescriptor:: 10046 AddSuccessorMBB(const BasicBlock *BB, 10047 MachineBasicBlock *ParentMBB, 10048 bool IsLikely, 10049 MachineBasicBlock *SuccMBB) { 10050 // If SuccBB has not been created yet, create it. 10051 if (!SuccMBB) { 10052 MachineFunction *MF = ParentMBB->getParent(); 10053 MachineFunction::iterator BBI(ParentMBB); 10054 SuccMBB = MF->CreateMachineBasicBlock(BB); 10055 MF->insert(++BBI, SuccMBB); 10056 } 10057 // Add it as a successor of ParentMBB. 10058 ParentMBB->addSuccessor( 10059 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10060 return SuccMBB; 10061 } 10062 10063 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10064 MachineFunction::iterator I(MBB); 10065 if (++I == FuncInfo.MF->end()) 10066 return nullptr; 10067 return &*I; 10068 } 10069 10070 /// During lowering new call nodes can be created (such as memset, etc.). 10071 /// Those will become new roots of the current DAG, but complications arise 10072 /// when they are tail calls. In such cases, the call lowering will update 10073 /// the root, but the builder still needs to know that a tail call has been 10074 /// lowered in order to avoid generating an additional return. 10075 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10076 // If the node is null, we do have a tail call. 10077 if (MaybeTC.getNode() != nullptr) 10078 DAG.setRoot(MaybeTC); 10079 else 10080 HasTailCall = true; 10081 } 10082 10083 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10084 MachineBasicBlock *SwitchMBB, 10085 MachineBasicBlock *DefaultMBB) { 10086 MachineFunction *CurMF = FuncInfo.MF; 10087 MachineBasicBlock *NextMBB = nullptr; 10088 MachineFunction::iterator BBI(W.MBB); 10089 if (++BBI != FuncInfo.MF->end()) 10090 NextMBB = &*BBI; 10091 10092 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10093 10094 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10095 10096 if (Size == 2 && W.MBB == SwitchMBB) { 10097 // If any two of the cases has the same destination, and if one value 10098 // is the same as the other, but has one bit unset that the other has set, 10099 // use bit manipulation to do two compares at once. For example: 10100 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10101 // TODO: This could be extended to merge any 2 cases in switches with 3 10102 // cases. 10103 // TODO: Handle cases where W.CaseBB != SwitchBB. 10104 CaseCluster &Small = *W.FirstCluster; 10105 CaseCluster &Big = *W.LastCluster; 10106 10107 if (Small.Low == Small.High && Big.Low == Big.High && 10108 Small.MBB == Big.MBB) { 10109 const APInt &SmallValue = Small.Low->getValue(); 10110 const APInt &BigValue = Big.Low->getValue(); 10111 10112 // Check that there is only one bit different. 10113 APInt CommonBit = BigValue ^ SmallValue; 10114 if (CommonBit.isPowerOf2()) { 10115 SDValue CondLHS = getValue(Cond); 10116 EVT VT = CondLHS.getValueType(); 10117 SDLoc DL = getCurSDLoc(); 10118 10119 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10120 DAG.getConstant(CommonBit, DL, VT)); 10121 SDValue Cond = DAG.getSetCC( 10122 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10123 ISD::SETEQ); 10124 10125 // Update successor info. 10126 // Both Small and Big will jump to Small.BB, so we sum up the 10127 // probabilities. 10128 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10129 if (BPI) 10130 addSuccessorWithProb( 10131 SwitchMBB, DefaultMBB, 10132 // The default destination is the first successor in IR. 10133 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10134 else 10135 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10136 10137 // Insert the true branch. 10138 SDValue BrCond = 10139 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10140 DAG.getBasicBlock(Small.MBB)); 10141 // Insert the false branch. 10142 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10143 DAG.getBasicBlock(DefaultMBB)); 10144 10145 DAG.setRoot(BrCond); 10146 return; 10147 } 10148 } 10149 } 10150 10151 if (TM.getOptLevel() != CodeGenOpt::None) { 10152 // Here, we order cases by probability so the most likely case will be 10153 // checked first. However, two clusters can have the same probability in 10154 // which case their relative ordering is non-deterministic. So we use Low 10155 // as a tie-breaker as clusters are guaranteed to never overlap. 10156 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10157 [](const CaseCluster &a, const CaseCluster &b) { 10158 return a.Prob != b.Prob ? 10159 a.Prob > b.Prob : 10160 a.Low->getValue().slt(b.Low->getValue()); 10161 }); 10162 10163 // Rearrange the case blocks so that the last one falls through if possible 10164 // without changing the order of probabilities. 10165 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10166 --I; 10167 if (I->Prob > W.LastCluster->Prob) 10168 break; 10169 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10170 std::swap(*I, *W.LastCluster); 10171 break; 10172 } 10173 } 10174 } 10175 10176 // Compute total probability. 10177 BranchProbability DefaultProb = W.DefaultProb; 10178 BranchProbability UnhandledProbs = DefaultProb; 10179 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10180 UnhandledProbs += I->Prob; 10181 10182 MachineBasicBlock *CurMBB = W.MBB; 10183 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10184 bool FallthroughUnreachable = false; 10185 MachineBasicBlock *Fallthrough; 10186 if (I == W.LastCluster) { 10187 // For the last cluster, fall through to the default destination. 10188 Fallthrough = DefaultMBB; 10189 FallthroughUnreachable = isa<UnreachableInst>( 10190 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10191 } else { 10192 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10193 CurMF->insert(BBI, Fallthrough); 10194 // Put Cond in a virtual register to make it available from the new blocks. 10195 ExportFromCurrentBlock(Cond); 10196 } 10197 UnhandledProbs -= I->Prob; 10198 10199 switch (I->Kind) { 10200 case CC_JumpTable: { 10201 // FIXME: Optimize away range check based on pivot comparisons. 10202 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10203 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10204 10205 // The jump block hasn't been inserted yet; insert it here. 10206 MachineBasicBlock *JumpMBB = JT->MBB; 10207 CurMF->insert(BBI, JumpMBB); 10208 10209 auto JumpProb = I->Prob; 10210 auto FallthroughProb = UnhandledProbs; 10211 10212 // If the default statement is a target of the jump table, we evenly 10213 // distribute the default probability to successors of CurMBB. Also 10214 // update the probability on the edge from JumpMBB to Fallthrough. 10215 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10216 SE = JumpMBB->succ_end(); 10217 SI != SE; ++SI) { 10218 if (*SI == DefaultMBB) { 10219 JumpProb += DefaultProb / 2; 10220 FallthroughProb -= DefaultProb / 2; 10221 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10222 JumpMBB->normalizeSuccProbs(); 10223 break; 10224 } 10225 } 10226 10227 if (FallthroughUnreachable) { 10228 // Skip the range check if the fallthrough block is unreachable. 10229 JTH->OmitRangeCheck = true; 10230 } 10231 10232 if (!JTH->OmitRangeCheck) 10233 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10234 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10235 CurMBB->normalizeSuccProbs(); 10236 10237 // The jump table header will be inserted in our current block, do the 10238 // range check, and fall through to our fallthrough block. 10239 JTH->HeaderBB = CurMBB; 10240 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10241 10242 // If we're in the right place, emit the jump table header right now. 10243 if (CurMBB == SwitchMBB) { 10244 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10245 JTH->Emitted = true; 10246 } 10247 break; 10248 } 10249 case CC_BitTests: { 10250 // FIXME: Optimize away range check based on pivot comparisons. 10251 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10252 10253 // The bit test blocks haven't been inserted yet; insert them here. 10254 for (BitTestCase &BTC : BTB->Cases) 10255 CurMF->insert(BBI, BTC.ThisBB); 10256 10257 // Fill in fields of the BitTestBlock. 10258 BTB->Parent = CurMBB; 10259 BTB->Default = Fallthrough; 10260 10261 BTB->DefaultProb = UnhandledProbs; 10262 // If the cases in bit test don't form a contiguous range, we evenly 10263 // distribute the probability on the edge to Fallthrough to two 10264 // successors of CurMBB. 10265 if (!BTB->ContiguousRange) { 10266 BTB->Prob += DefaultProb / 2; 10267 BTB->DefaultProb -= DefaultProb / 2; 10268 } 10269 10270 if (FallthroughUnreachable) { 10271 // Skip the range check if the fallthrough block is unreachable. 10272 BTB->OmitRangeCheck = true; 10273 } 10274 10275 // If we're in the right place, emit the bit test header right now. 10276 if (CurMBB == SwitchMBB) { 10277 visitBitTestHeader(*BTB, SwitchMBB); 10278 BTB->Emitted = true; 10279 } 10280 break; 10281 } 10282 case CC_Range: { 10283 const Value *RHS, *LHS, *MHS; 10284 ISD::CondCode CC; 10285 if (I->Low == I->High) { 10286 // Check Cond == I->Low. 10287 CC = ISD::SETEQ; 10288 LHS = Cond; 10289 RHS=I->Low; 10290 MHS = nullptr; 10291 } else { 10292 // Check I->Low <= Cond <= I->High. 10293 CC = ISD::SETLE; 10294 LHS = I->Low; 10295 MHS = Cond; 10296 RHS = I->High; 10297 } 10298 10299 // If Fallthrough is unreachable, fold away the comparison. 10300 if (FallthroughUnreachable) 10301 CC = ISD::SETTRUE; 10302 10303 // The false probability is the sum of all unhandled cases. 10304 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10305 getCurSDLoc(), I->Prob, UnhandledProbs); 10306 10307 if (CurMBB == SwitchMBB) 10308 visitSwitchCase(CB, SwitchMBB); 10309 else 10310 SL->SwitchCases.push_back(CB); 10311 10312 break; 10313 } 10314 } 10315 CurMBB = Fallthrough; 10316 } 10317 } 10318 10319 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10320 CaseClusterIt First, 10321 CaseClusterIt Last) { 10322 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10323 if (X.Prob != CC.Prob) 10324 return X.Prob > CC.Prob; 10325 10326 // Ties are broken by comparing the case value. 10327 return X.Low->getValue().slt(CC.Low->getValue()); 10328 }); 10329 } 10330 10331 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10332 const SwitchWorkListItem &W, 10333 Value *Cond, 10334 MachineBasicBlock *SwitchMBB) { 10335 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10336 "Clusters not sorted?"); 10337 10338 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10339 10340 // Balance the tree based on branch probabilities to create a near-optimal (in 10341 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10342 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10343 CaseClusterIt LastLeft = W.FirstCluster; 10344 CaseClusterIt FirstRight = W.LastCluster; 10345 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10346 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10347 10348 // Move LastLeft and FirstRight towards each other from opposite directions to 10349 // find a partitioning of the clusters which balances the probability on both 10350 // sides. If LeftProb and RightProb are equal, alternate which side is 10351 // taken to ensure 0-probability nodes are distributed evenly. 10352 unsigned I = 0; 10353 while (LastLeft + 1 < FirstRight) { 10354 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10355 LeftProb += (++LastLeft)->Prob; 10356 else 10357 RightProb += (--FirstRight)->Prob; 10358 I++; 10359 } 10360 10361 while (true) { 10362 // Our binary search tree differs from a typical BST in that ours can have up 10363 // to three values in each leaf. The pivot selection above doesn't take that 10364 // into account, which means the tree might require more nodes and be less 10365 // efficient. We compensate for this here. 10366 10367 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10368 unsigned NumRight = W.LastCluster - FirstRight + 1; 10369 10370 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10371 // If one side has less than 3 clusters, and the other has more than 3, 10372 // consider taking a cluster from the other side. 10373 10374 if (NumLeft < NumRight) { 10375 // Consider moving the first cluster on the right to the left side. 10376 CaseCluster &CC = *FirstRight; 10377 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10378 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10379 if (LeftSideRank <= RightSideRank) { 10380 // Moving the cluster to the left does not demote it. 10381 ++LastLeft; 10382 ++FirstRight; 10383 continue; 10384 } 10385 } else { 10386 assert(NumRight < NumLeft); 10387 // Consider moving the last element on the left to the right side. 10388 CaseCluster &CC = *LastLeft; 10389 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10390 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10391 if (RightSideRank <= LeftSideRank) { 10392 // Moving the cluster to the right does not demot it. 10393 --LastLeft; 10394 --FirstRight; 10395 continue; 10396 } 10397 } 10398 } 10399 break; 10400 } 10401 10402 assert(LastLeft + 1 == FirstRight); 10403 assert(LastLeft >= W.FirstCluster); 10404 assert(FirstRight <= W.LastCluster); 10405 10406 // Use the first element on the right as pivot since we will make less-than 10407 // comparisons against it. 10408 CaseClusterIt PivotCluster = FirstRight; 10409 assert(PivotCluster > W.FirstCluster); 10410 assert(PivotCluster <= W.LastCluster); 10411 10412 CaseClusterIt FirstLeft = W.FirstCluster; 10413 CaseClusterIt LastRight = W.LastCluster; 10414 10415 const ConstantInt *Pivot = PivotCluster->Low; 10416 10417 // New blocks will be inserted immediately after the current one. 10418 MachineFunction::iterator BBI(W.MBB); 10419 ++BBI; 10420 10421 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10422 // we can branch to its destination directly if it's squeezed exactly in 10423 // between the known lower bound and Pivot - 1. 10424 MachineBasicBlock *LeftMBB; 10425 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10426 FirstLeft->Low == W.GE && 10427 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10428 LeftMBB = FirstLeft->MBB; 10429 } else { 10430 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10431 FuncInfo.MF->insert(BBI, LeftMBB); 10432 WorkList.push_back( 10433 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10434 // Put Cond in a virtual register to make it available from the new blocks. 10435 ExportFromCurrentBlock(Cond); 10436 } 10437 10438 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10439 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10440 // directly if RHS.High equals the current upper bound. 10441 MachineBasicBlock *RightMBB; 10442 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10443 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10444 RightMBB = FirstRight->MBB; 10445 } else { 10446 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10447 FuncInfo.MF->insert(BBI, RightMBB); 10448 WorkList.push_back( 10449 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10450 // Put Cond in a virtual register to make it available from the new blocks. 10451 ExportFromCurrentBlock(Cond); 10452 } 10453 10454 // Create the CaseBlock record that will be used to lower the branch. 10455 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10456 getCurSDLoc(), LeftProb, RightProb); 10457 10458 if (W.MBB == SwitchMBB) 10459 visitSwitchCase(CB, SwitchMBB); 10460 else 10461 SL->SwitchCases.push_back(CB); 10462 } 10463 10464 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10465 // from the swith statement. 10466 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10467 BranchProbability PeeledCaseProb) { 10468 if (PeeledCaseProb == BranchProbability::getOne()) 10469 return BranchProbability::getZero(); 10470 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10471 10472 uint32_t Numerator = CaseProb.getNumerator(); 10473 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10474 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10475 } 10476 10477 // Try to peel the top probability case if it exceeds the threshold. 10478 // Return current MachineBasicBlock for the switch statement if the peeling 10479 // does not occur. 10480 // If the peeling is performed, return the newly created MachineBasicBlock 10481 // for the peeled switch statement. Also update Clusters to remove the peeled 10482 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10483 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10484 const SwitchInst &SI, CaseClusterVector &Clusters, 10485 BranchProbability &PeeledCaseProb) { 10486 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10487 // Don't perform if there is only one cluster or optimizing for size. 10488 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10489 TM.getOptLevel() == CodeGenOpt::None || 10490 SwitchMBB->getParent()->getFunction().hasMinSize()) 10491 return SwitchMBB; 10492 10493 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10494 unsigned PeeledCaseIndex = 0; 10495 bool SwitchPeeled = false; 10496 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10497 CaseCluster &CC = Clusters[Index]; 10498 if (CC.Prob < TopCaseProb) 10499 continue; 10500 TopCaseProb = CC.Prob; 10501 PeeledCaseIndex = Index; 10502 SwitchPeeled = true; 10503 } 10504 if (!SwitchPeeled) 10505 return SwitchMBB; 10506 10507 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10508 << TopCaseProb << "\n"); 10509 10510 // Record the MBB for the peeled switch statement. 10511 MachineFunction::iterator BBI(SwitchMBB); 10512 ++BBI; 10513 MachineBasicBlock *PeeledSwitchMBB = 10514 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10515 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10516 10517 ExportFromCurrentBlock(SI.getCondition()); 10518 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10519 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10520 nullptr, nullptr, TopCaseProb.getCompl()}; 10521 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10522 10523 Clusters.erase(PeeledCaseIt); 10524 for (CaseCluster &CC : Clusters) { 10525 LLVM_DEBUG( 10526 dbgs() << "Scale the probablity for one cluster, before scaling: " 10527 << CC.Prob << "\n"); 10528 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10529 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10530 } 10531 PeeledCaseProb = TopCaseProb; 10532 return PeeledSwitchMBB; 10533 } 10534 10535 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10536 // Extract cases from the switch. 10537 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10538 CaseClusterVector Clusters; 10539 Clusters.reserve(SI.getNumCases()); 10540 for (auto I : SI.cases()) { 10541 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10542 const ConstantInt *CaseVal = I.getCaseValue(); 10543 BranchProbability Prob = 10544 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10545 : BranchProbability(1, SI.getNumCases() + 1); 10546 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10547 } 10548 10549 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10550 10551 // Cluster adjacent cases with the same destination. We do this at all 10552 // optimization levels because it's cheap to do and will make codegen faster 10553 // if there are many clusters. 10554 sortAndRangeify(Clusters); 10555 10556 // The branch probablity of the peeled case. 10557 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10558 MachineBasicBlock *PeeledSwitchMBB = 10559 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10560 10561 // If there is only the default destination, jump there directly. 10562 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10563 if (Clusters.empty()) { 10564 assert(PeeledSwitchMBB == SwitchMBB); 10565 SwitchMBB->addSuccessor(DefaultMBB); 10566 if (DefaultMBB != NextBlock(SwitchMBB)) { 10567 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10568 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10569 } 10570 return; 10571 } 10572 10573 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10574 SL->findBitTestClusters(Clusters, &SI); 10575 10576 LLVM_DEBUG({ 10577 dbgs() << "Case clusters: "; 10578 for (const CaseCluster &C : Clusters) { 10579 if (C.Kind == CC_JumpTable) 10580 dbgs() << "JT:"; 10581 if (C.Kind == CC_BitTests) 10582 dbgs() << "BT:"; 10583 10584 C.Low->getValue().print(dbgs(), true); 10585 if (C.Low != C.High) { 10586 dbgs() << '-'; 10587 C.High->getValue().print(dbgs(), true); 10588 } 10589 dbgs() << ' '; 10590 } 10591 dbgs() << '\n'; 10592 }); 10593 10594 assert(!Clusters.empty()); 10595 SwitchWorkList WorkList; 10596 CaseClusterIt First = Clusters.begin(); 10597 CaseClusterIt Last = Clusters.end() - 1; 10598 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10599 // Scale the branchprobability for DefaultMBB if the peel occurs and 10600 // DefaultMBB is not replaced. 10601 if (PeeledCaseProb != BranchProbability::getZero() && 10602 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10603 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10604 WorkList.push_back( 10605 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10606 10607 while (!WorkList.empty()) { 10608 SwitchWorkListItem W = WorkList.back(); 10609 WorkList.pop_back(); 10610 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10611 10612 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10613 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10614 // For optimized builds, lower large range as a balanced binary tree. 10615 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10616 continue; 10617 } 10618 10619 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10620 } 10621 } 10622 10623 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10624 SDValue N = getValue(I.getOperand(0)); 10625 setValue(&I, N); 10626 } 10627