xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision d024cef233a8f542d2fef4dfb82bd3a97a3a6b83)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/Analysis/DebugInfo.h"
46 #include "llvm/Target/TargetData.h"
47 #include "llvm/Target/TargetFrameLowering.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetIntrinsicInfo.h"
50 #include "llvm/Target/TargetLibraryInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87 
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91 
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103 
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107 
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113 
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121 
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123 
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133 
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136 
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138 
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145 
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176 
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179 
180   if (PartVT == ValueVT)
181     return Val;
182 
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195 
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getTargetConstant(1, TLI.getPointerTy()));
201 
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204 
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207 
208   llvm_unreachable("Unknown mismatch!");
209 }
210 
211 /// getCopyFromParts - Create a value that contains the specified legal parts
212 /// combined into the value they represent.  If the parts combine to a type
213 /// larger then ValueVT then AssertOp can be used to specify whether the extra
214 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
215 /// (ISD::AssertSext).
216 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
217                                       const SDValue *Parts, unsigned NumParts,
218                                       EVT PartVT, EVT ValueVT) {
219   assert(ValueVT.isVector() && "Not a vector value");
220   assert(NumParts > 0 && "No parts to assemble!");
221   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
222   SDValue Val = Parts[0];
223 
224   // Handle a multi-element vector.
225   if (NumParts > 1) {
226     EVT IntermediateVT, RegisterVT;
227     unsigned NumIntermediates;
228     unsigned NumRegs =
229     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
230                                NumIntermediates, RegisterVT);
231     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
232     NumParts = NumRegs; // Silence a compiler warning.
233     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
234     assert(RegisterVT == Parts[0].getValueType() &&
235            "Part type doesn't match part!");
236 
237     // Assemble the parts into intermediate operands.
238     SmallVector<SDValue, 8> Ops(NumIntermediates);
239     if (NumIntermediates == NumParts) {
240       // If the register was not expanded, truncate or copy the value,
241       // as appropriate.
242       for (unsigned i = 0; i != NumParts; ++i)
243         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
244                                   PartVT, IntermediateVT);
245     } else if (NumParts > 0) {
246       // If the intermediate type was expanded, build the intermediate
247       // operands from the parts.
248       assert(NumParts % NumIntermediates == 0 &&
249              "Must expand into a divisible number of parts!");
250       unsigned Factor = NumParts / NumIntermediates;
251       for (unsigned i = 0; i != NumIntermediates; ++i)
252         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
253                                   PartVT, IntermediateVT);
254     }
255 
256     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
257     // intermediate operands.
258     Val = DAG.getNode(IntermediateVT.isVector() ?
259                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
260                       ValueVT, &Ops[0], NumIntermediates);
261   }
262 
263   // There is now one part, held in Val.  Correct it to match ValueVT.
264   PartVT = Val.getValueType();
265 
266   if (PartVT == ValueVT)
267     return Val;
268 
269   if (PartVT.isVector()) {
270     // If the element type of the source/dest vectors are the same, but the
271     // parts vector has more elements than the value vector, then we have a
272     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
273     // elements we want.
274     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
275       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
276              "Cannot narrow, it would be a lossy transformation");
277       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
278                          DAG.getIntPtrConstant(0));
279     }
280 
281     // Vector/Vector bitcast.
282     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
283       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284 
285     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
286       "Cannot handle this kind of promotion");
287     // Promoted vector extract
288     bool Smaller = ValueVT.bitsLE(PartVT);
289     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
290                        DL, ValueVT, Val);
291 
292   }
293 
294   // Trivial bitcast if the types are the same size and the destination
295   // vector type is legal.
296   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
297       TLI.isTypeLegal(ValueVT))
298     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299 
300   // Handle cases such as i8 -> <1 x i1>
301   assert(ValueVT.getVectorNumElements() == 1 &&
302          "Only trivial scalar-to-vector conversions should get here!");
303 
304   if (ValueVT.getVectorNumElements() == 1 &&
305       ValueVT.getVectorElementType() != PartVT) {
306     bool Smaller = ValueVT.bitsLE(PartVT);
307     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
308                        DL, ValueVT.getScalarType(), Val);
309   }
310 
311   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
312 }
313 
314 
315 
316 
317 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
318                                  SDValue Val, SDValue *Parts, unsigned NumParts,
319                                  EVT PartVT);
320 
321 /// getCopyToParts - Create a series of nodes that contain the specified value
322 /// split into legal parts.  If the parts contain more bits than Val, then, for
323 /// integers, ExtendKind can be used to specify how to generate the extra bits.
324 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
325                            SDValue Val, SDValue *Parts, unsigned NumParts,
326                            EVT PartVT,
327                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
328   EVT ValueVT = Val.getValueType();
329 
330   // Handle the vector case separately.
331   if (ValueVT.isVector())
332     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   unsigned PartBits = PartVT.getSizeInBits();
336   unsigned OrigNumParts = NumParts;
337   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
338 
339   if (NumParts == 0)
340     return;
341 
342   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
343   if (PartVT == ValueVT) {
344     assert(NumParts == 1 && "No-op copy with multiple parts!");
345     Parts[0] = Val;
346     return;
347   }
348 
349   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
350     // If the parts cover more bits than the value has, promote the value.
351     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
352       assert(NumParts == 1 && "Do not know what to promote to!");
353       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
354     } else {
355       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
356              ValueVT.isInteger() &&
357              "Unknown mismatch!");
358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360       if (PartVT == MVT::x86mmx)
361         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
362     }
363   } else if (PartBits == ValueVT.getSizeInBits()) {
364     // Different types of the same size.
365     assert(NumParts == 1 && PartVT != ValueVT);
366     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
367   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
368     // If the parts cover less bits than value has, truncate the value.
369     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370            ValueVT.isInteger() &&
371            "Unknown mismatch!");
372     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
374     if (PartVT == MVT::x86mmx)
375       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376   }
377 
378   // The value may have changed - recompute ValueVT.
379   ValueVT = Val.getValueType();
380   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
381          "Failed to tile the value with PartVT!");
382 
383   if (NumParts == 1) {
384     assert(PartVT == ValueVT && "Type conversion failed!");
385     Parts[0] = Val;
386     return;
387   }
388 
389   // Expand the value into multiple parts.
390   if (NumParts & (NumParts - 1)) {
391     // The number of parts is not a power of 2.  Split off and copy the tail.
392     assert(PartVT.isInteger() && ValueVT.isInteger() &&
393            "Do not know what to expand to!");
394     unsigned RoundParts = 1 << Log2_32(NumParts);
395     unsigned RoundBits = RoundParts * PartBits;
396     unsigned OddParts = NumParts - RoundParts;
397     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
398                                  DAG.getIntPtrConstant(RoundBits));
399     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
400 
401     if (TLI.isBigEndian())
402       // The odd parts were reversed by getCopyToParts - unreverse them.
403       std::reverse(Parts + RoundParts, Parts + NumParts);
404 
405     NumParts = RoundParts;
406     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
407     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
408   }
409 
410   // The number of parts is a power of 2.  Repeatedly bisect the value using
411   // EXTRACT_ELEMENT.
412   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
413                          EVT::getIntegerVT(*DAG.getContext(),
414                                            ValueVT.getSizeInBits()),
415                          Val);
416 
417   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
418     for (unsigned i = 0; i < NumParts; i += StepSize) {
419       unsigned ThisBits = StepSize * PartBits / 2;
420       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
421       SDValue &Part0 = Parts[i];
422       SDValue &Part1 = Parts[i+StepSize/2];
423 
424       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
425                           ThisVT, Part0, DAG.getIntPtrConstant(1));
426       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
427                           ThisVT, Part0, DAG.getIntPtrConstant(0));
428 
429       if (ThisBits == PartBits && ThisVT != PartVT) {
430         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
431         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
432       }
433     }
434   }
435 
436   if (TLI.isBigEndian())
437     std::reverse(Parts, Parts + OrigNumParts);
438 }
439 
440 
441 /// getCopyToPartsVector - Create a series of nodes that contain the specified
442 /// value split into legal parts.
443 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
444                                  SDValue Val, SDValue *Parts, unsigned NumParts,
445                                  EVT PartVT) {
446   EVT ValueVT = Val.getValueType();
447   assert(ValueVT.isVector() && "Not a vector");
448   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
449 
450   if (NumParts == 1) {
451     if (PartVT == ValueVT) {
452       // Nothing to do.
453     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
454       // Bitconvert vector->vector case.
455       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
456     } else if (PartVT.isVector() &&
457                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
458                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
459       EVT ElementVT = PartVT.getVectorElementType();
460       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
461       // undef elements.
462       SmallVector<SDValue, 16> Ops;
463       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
464         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
465                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
466 
467       for (unsigned i = ValueVT.getVectorNumElements(),
468            e = PartVT.getVectorNumElements(); i != e; ++i)
469         Ops.push_back(DAG.getUNDEF(ElementVT));
470 
471       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
472 
473       // FIXME: Use CONCAT for 2x -> 4x.
474 
475       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
476       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
477     } else if (PartVT.isVector() &&
478                PartVT.getVectorElementType().bitsGE(
479                  ValueVT.getVectorElementType()) &&
480                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
481 
482       // Promoted vector extract
483       bool Smaller = PartVT.bitsLE(ValueVT);
484       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
485                         DL, PartVT, Val);
486     } else{
487       // Vector -> scalar conversion.
488       assert(ValueVT.getVectorNumElements() == 1 &&
489              "Only trivial vector-to-scalar conversions should get here!");
490       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
491                         PartVT, Val, DAG.getIntPtrConstant(0));
492 
493       bool Smaller = ValueVT.bitsLE(PartVT);
494       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
495                          DL, PartVT, Val);
496     }
497 
498     Parts[0] = Val;
499     return;
500   }
501 
502   // Handle a multi-element vector.
503   EVT IntermediateVT, RegisterVT;
504   unsigned NumIntermediates;
505   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
506                                                 IntermediateVT,
507                                                 NumIntermediates, RegisterVT);
508   unsigned NumElements = ValueVT.getVectorNumElements();
509 
510   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
511   NumParts = NumRegs; // Silence a compiler warning.
512   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
513 
514   // Split the vector into intermediate operands.
515   SmallVector<SDValue, 8> Ops(NumIntermediates);
516   for (unsigned i = 0; i != NumIntermediates; ++i) {
517     if (IntermediateVT.isVector())
518       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
519                            IntermediateVT, Val,
520                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
521     else
522       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
523                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
524   }
525 
526   // Split the intermediate operands into legal parts.
527   if (NumParts == NumIntermediates) {
528     // If the register was not expanded, promote or copy the value,
529     // as appropriate.
530     for (unsigned i = 0; i != NumParts; ++i)
531       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
532   } else if (NumParts > 0) {
533     // If the intermediate type was expanded, split each the value into
534     // legal parts.
535     assert(NumParts % NumIntermediates == 0 &&
536            "Must expand into a divisible number of parts!");
537     unsigned Factor = NumParts / NumIntermediates;
538     for (unsigned i = 0; i != NumIntermediates; ++i)
539       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
540   }
541 }
542 
543 
544 
545 
546 namespace {
547   /// RegsForValue - This struct represents the registers (physical or virtual)
548   /// that a particular set of values is assigned, and the type information
549   /// about the value. The most common situation is to represent one value at a
550   /// time, but struct or array values are handled element-wise as multiple
551   /// values.  The splitting of aggregates is performed recursively, so that we
552   /// never have aggregate-typed registers. The values at this point do not
553   /// necessarily have legal types, so each value may require one or more
554   /// registers of some legal type.
555   ///
556   struct RegsForValue {
557     /// ValueVTs - The value types of the values, which may not be legal, and
558     /// may need be promoted or synthesized from one or more registers.
559     ///
560     SmallVector<EVT, 4> ValueVTs;
561 
562     /// RegVTs - The value types of the registers. This is the same size as
563     /// ValueVTs and it records, for each value, what the type of the assigned
564     /// register or registers are. (Individual values are never synthesized
565     /// from more than one type of register.)
566     ///
567     /// With virtual registers, the contents of RegVTs is redundant with TLI's
568     /// getRegisterType member function, however when with physical registers
569     /// it is necessary to have a separate record of the types.
570     ///
571     SmallVector<EVT, 4> RegVTs;
572 
573     /// Regs - This list holds the registers assigned to the values.
574     /// Each legal or promoted value requires one register, and each
575     /// expanded value requires multiple registers.
576     ///
577     SmallVector<unsigned, 4> Regs;
578 
579     RegsForValue() {}
580 
581     RegsForValue(const SmallVector<unsigned, 4> &regs,
582                  EVT regvt, EVT valuevt)
583       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
584 
585     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
586                  unsigned Reg, Type *Ty) {
587       ComputeValueVTs(tli, Ty, ValueVTs);
588 
589       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
590         EVT ValueVT = ValueVTs[Value];
591         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
592         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
593         for (unsigned i = 0; i != NumRegs; ++i)
594           Regs.push_back(Reg + i);
595         RegVTs.push_back(RegisterVT);
596         Reg += NumRegs;
597       }
598     }
599 
600     /// areValueTypesLegal - Return true if types of all the values are legal.
601     bool areValueTypesLegal(const TargetLowering &TLI) {
602       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
603         EVT RegisterVT = RegVTs[Value];
604         if (!TLI.isTypeLegal(RegisterVT))
605           return false;
606       }
607       return true;
608     }
609 
610     /// append - Add the specified values to this one.
611     void append(const RegsForValue &RHS) {
612       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
613       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
614       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
615     }
616 
617     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
618     /// this value and returns the result as a ValueVTs value.  This uses
619     /// Chain/Flag as the input and updates them for the output Chain/Flag.
620     /// If the Flag pointer is NULL, no flag is used.
621     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
622                             DebugLoc dl,
623                             SDValue &Chain, SDValue *Flag) const;
624 
625     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
626     /// specified value into the registers specified by this object.  This uses
627     /// Chain/Flag as the input and updates them for the output Chain/Flag.
628     /// If the Flag pointer is NULL, no flag is used.
629     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
630                        SDValue &Chain, SDValue *Flag) const;
631 
632     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
633     /// operand list.  This adds the code marker, matching input operand index
634     /// (if applicable), and includes the number of values added into it.
635     void AddInlineAsmOperands(unsigned Kind,
636                               bool HasMatching, unsigned MatchingIdx,
637                               SelectionDAG &DAG,
638                               std::vector<SDValue> &Ops) const;
639   };
640 }
641 
642 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643 /// this value and returns the result as a ValueVT value.  This uses
644 /// Chain/Flag as the input and updates them for the output Chain/Flag.
645 /// If the Flag pointer is NULL, no flag is used.
646 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
647                                       FunctionLoweringInfo &FuncInfo,
648                                       DebugLoc dl,
649                                       SDValue &Chain, SDValue *Flag) const {
650   // A Value with type {} or [0 x %t] needs no registers.
651   if (ValueVTs.empty())
652     return SDValue();
653 
654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655 
656   // Assemble the legal parts into the final values.
657   SmallVector<SDValue, 4> Values(ValueVTs.size());
658   SmallVector<SDValue, 8> Parts;
659   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
660     // Copy the legal parts from the registers.
661     EVT ValueVT = ValueVTs[Value];
662     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
663     EVT RegisterVT = RegVTs[Value];
664 
665     Parts.resize(NumRegs);
666     for (unsigned i = 0; i != NumRegs; ++i) {
667       SDValue P;
668       if (Flag == 0) {
669         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
670       } else {
671         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
672         *Flag = P.getValue(2);
673       }
674 
675       Chain = P.getValue(1);
676       Parts[i] = P;
677 
678       // If the source register was virtual and if we know something about it,
679       // add an assert node.
680       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
681           !RegisterVT.isInteger() || RegisterVT.isVector())
682         continue;
683 
684       const FunctionLoweringInfo::LiveOutInfo *LOI =
685         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
686       if (!LOI)
687         continue;
688 
689       unsigned RegSize = RegisterVT.getSizeInBits();
690       unsigned NumSignBits = LOI->NumSignBits;
691       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
692 
693       // FIXME: We capture more information than the dag can represent.  For
694       // now, just use the tightest assertzext/assertsext possible.
695       bool isSExt = true;
696       EVT FromVT(MVT::Other);
697       if (NumSignBits == RegSize)
698         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
699       else if (NumZeroBits >= RegSize-1)
700         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
701       else if (NumSignBits > RegSize-8)
702         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
703       else if (NumZeroBits >= RegSize-8)
704         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
705       else if (NumSignBits > RegSize-16)
706         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
707       else if (NumZeroBits >= RegSize-16)
708         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
709       else if (NumSignBits > RegSize-32)
710         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
711       else if (NumZeroBits >= RegSize-32)
712         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
713       else
714         continue;
715 
716       // Add an assertion node.
717       assert(FromVT != MVT::Other);
718       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
719                              RegisterVT, P, DAG.getValueType(FromVT));
720     }
721 
722     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
723                                      NumRegs, RegisterVT, ValueVT);
724     Part += NumRegs;
725     Parts.clear();
726   }
727 
728   return DAG.getNode(ISD::MERGE_VALUES, dl,
729                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
730                      &Values[0], ValueVTs.size());
731 }
732 
733 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
734 /// specified value into the registers specified by this object.  This uses
735 /// Chain/Flag as the input and updates them for the output Chain/Flag.
736 /// If the Flag pointer is NULL, no flag is used.
737 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
738                                  SDValue &Chain, SDValue *Flag) const {
739   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
740 
741   // Get the list of the values's legal parts.
742   unsigned NumRegs = Regs.size();
743   SmallVector<SDValue, 8> Parts(NumRegs);
744   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
745     EVT ValueVT = ValueVTs[Value];
746     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
747     EVT RegisterVT = RegVTs[Value];
748 
749     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
750                    &Parts[Part], NumParts, RegisterVT);
751     Part += NumParts;
752   }
753 
754   // Copy the parts into the registers.
755   SmallVector<SDValue, 8> Chains(NumRegs);
756   for (unsigned i = 0; i != NumRegs; ++i) {
757     SDValue Part;
758     if (Flag == 0) {
759       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
760     } else {
761       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
762       *Flag = Part.getValue(1);
763     }
764 
765     Chains[i] = Part.getValue(0);
766   }
767 
768   if (NumRegs == 1 || Flag)
769     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
770     // flagged to it. That is the CopyToReg nodes and the user are considered
771     // a single scheduling unit. If we create a TokenFactor and return it as
772     // chain, then the TokenFactor is both a predecessor (operand) of the
773     // user as well as a successor (the TF operands are flagged to the user).
774     // c1, f1 = CopyToReg
775     // c2, f2 = CopyToReg
776     // c3     = TokenFactor c1, c2
777     // ...
778     //        = op c3, ..., f2
779     Chain = Chains[NumRegs-1];
780   else
781     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
782 }
783 
784 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
785 /// operand list.  This adds the code marker and includes the number of
786 /// values added into it.
787 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
788                                         unsigned MatchingIdx,
789                                         SelectionDAG &DAG,
790                                         std::vector<SDValue> &Ops) const {
791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
792 
793   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
794   if (HasMatching)
795     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
796   else if (!Regs.empty() &&
797            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
798     // Put the register class of the virtual registers in the flag word.  That
799     // way, later passes can recompute register class constraints for inline
800     // assembly as well as normal instructions.
801     // Don't do this for tied operands that can use the regclass information
802     // from the def.
803     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
804     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
805     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
806   }
807 
808   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
809   Ops.push_back(Res);
810 
811   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
812     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
813     EVT RegisterVT = RegVTs[Value];
814     for (unsigned i = 0; i != NumRegs; ++i) {
815       assert(Reg < Regs.size() && "Mismatch in # registers expected");
816       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
817     }
818   }
819 }
820 
821 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
822                                const TargetLibraryInfo *li) {
823   AA = &aa;
824   GFI = gfi;
825   LibInfo = li;
826   TD = DAG.getTarget().getTargetData();
827   LPadToCallSiteMap.clear();
828 }
829 
830 /// clear - Clear out the current SelectionDAG and the associated
831 /// state and prepare this SelectionDAGBuilder object to be used
832 /// for a new block. This doesn't clear out information about
833 /// additional blocks that are needed to complete switch lowering
834 /// or PHI node updating; that information is cleared out as it is
835 /// consumed.
836 void SelectionDAGBuilder::clear() {
837   NodeMap.clear();
838   UnusedArgNodeMap.clear();
839   PendingLoads.clear();
840   PendingExports.clear();
841   CurDebugLoc = DebugLoc();
842   HasTailCall = false;
843 }
844 
845 /// clearDanglingDebugInfo - Clear the dangling debug information
846 /// map. This function is seperated from the clear so that debug
847 /// information that is dangling in a basic block can be properly
848 /// resolved in a different basic block. This allows the
849 /// SelectionDAG to resolve dangling debug information attached
850 /// to PHI nodes.
851 void SelectionDAGBuilder::clearDanglingDebugInfo() {
852   DanglingDebugInfoMap.clear();
853 }
854 
855 /// getRoot - Return the current virtual root of the Selection DAG,
856 /// flushing any PendingLoad items. This must be done before emitting
857 /// a store or any other node that may need to be ordered after any
858 /// prior load instructions.
859 ///
860 SDValue SelectionDAGBuilder::getRoot() {
861   if (PendingLoads.empty())
862     return DAG.getRoot();
863 
864   if (PendingLoads.size() == 1) {
865     SDValue Root = PendingLoads[0];
866     DAG.setRoot(Root);
867     PendingLoads.clear();
868     return Root;
869   }
870 
871   // Otherwise, we have to make a token factor node.
872   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
873                                &PendingLoads[0], PendingLoads.size());
874   PendingLoads.clear();
875   DAG.setRoot(Root);
876   return Root;
877 }
878 
879 /// getControlRoot - Similar to getRoot, but instead of flushing all the
880 /// PendingLoad items, flush all the PendingExports items. It is necessary
881 /// to do this before emitting a terminator instruction.
882 ///
883 SDValue SelectionDAGBuilder::getControlRoot() {
884   SDValue Root = DAG.getRoot();
885 
886   if (PendingExports.empty())
887     return Root;
888 
889   // Turn all of the CopyToReg chains into one factored node.
890   if (Root.getOpcode() != ISD::EntryToken) {
891     unsigned i = 0, e = PendingExports.size();
892     for (; i != e; ++i) {
893       assert(PendingExports[i].getNode()->getNumOperands() > 1);
894       if (PendingExports[i].getNode()->getOperand(0) == Root)
895         break;  // Don't add the root if we already indirectly depend on it.
896     }
897 
898     if (i == e)
899       PendingExports.push_back(Root);
900   }
901 
902   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
903                      &PendingExports[0],
904                      PendingExports.size());
905   PendingExports.clear();
906   DAG.setRoot(Root);
907   return Root;
908 }
909 
910 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
911   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
912   DAG.AssignOrdering(Node, SDNodeOrder);
913 
914   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
915     AssignOrderingToNode(Node->getOperand(I).getNode());
916 }
917 
918 void SelectionDAGBuilder::visit(const Instruction &I) {
919   // Set up outgoing PHI node register values before emitting the terminator.
920   if (isa<TerminatorInst>(&I))
921     HandlePHINodesInSuccessorBlocks(I.getParent());
922 
923   CurDebugLoc = I.getDebugLoc();
924 
925   visit(I.getOpcode(), I);
926 
927   if (!isa<TerminatorInst>(&I) && !HasTailCall)
928     CopyToExportRegsIfNeeded(&I);
929 
930   CurDebugLoc = DebugLoc();
931 }
932 
933 void SelectionDAGBuilder::visitPHI(const PHINode &) {
934   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
935 }
936 
937 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
938   // Note: this doesn't use InstVisitor, because it has to work with
939   // ConstantExpr's in addition to instructions.
940   switch (Opcode) {
941   default: llvm_unreachable("Unknown instruction type encountered!");
942     // Build the switch statement using the Instruction.def file.
943 #define HANDLE_INST(NUM, OPCODE, CLASS) \
944     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
945 #include "llvm/Instruction.def"
946   }
947 
948   // Assign the ordering to the freshly created DAG nodes.
949   if (NodeMap.count(&I)) {
950     ++SDNodeOrder;
951     AssignOrderingToNode(getValue(&I).getNode());
952   }
953 }
954 
955 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
956 // generate the debug data structures now that we've seen its definition.
957 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
958                                                    SDValue Val) {
959   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
960   if (DDI.getDI()) {
961     const DbgValueInst *DI = DDI.getDI();
962     DebugLoc dl = DDI.getdl();
963     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
964     MDNode *Variable = DI->getVariable();
965     uint64_t Offset = DI->getOffset();
966     SDDbgValue *SDV;
967     if (Val.getNode()) {
968       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
969         SDV = DAG.getDbgValue(Variable, Val.getNode(),
970                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
971         DAG.AddDbgValue(SDV, Val.getNode(), false);
972       }
973     } else
974       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
975     DanglingDebugInfoMap[V] = DanglingDebugInfo();
976   }
977 }
978 
979 /// getValue - Return an SDValue for the given Value.
980 SDValue SelectionDAGBuilder::getValue(const Value *V) {
981   // If we already have an SDValue for this value, use it. It's important
982   // to do this first, so that we don't create a CopyFromReg if we already
983   // have a regular SDValue.
984   SDValue &N = NodeMap[V];
985   if (N.getNode()) return N;
986 
987   // If there's a virtual register allocated and initialized for this
988   // value, use it.
989   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
990   if (It != FuncInfo.ValueMap.end()) {
991     unsigned InReg = It->second;
992     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
993     SDValue Chain = DAG.getEntryNode();
994     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
995     resolveDanglingDebugInfo(V, N);
996     return N;
997   }
998 
999   // Otherwise create a new SDValue and remember it.
1000   SDValue Val = getValueImpl(V);
1001   NodeMap[V] = Val;
1002   resolveDanglingDebugInfo(V, Val);
1003   return Val;
1004 }
1005 
1006 /// getNonRegisterValue - Return an SDValue for the given Value, but
1007 /// don't look in FuncInfo.ValueMap for a virtual register.
1008 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1009   // If we already have an SDValue for this value, use it.
1010   SDValue &N = NodeMap[V];
1011   if (N.getNode()) return N;
1012 
1013   // Otherwise create a new SDValue and remember it.
1014   SDValue Val = getValueImpl(V);
1015   NodeMap[V] = Val;
1016   resolveDanglingDebugInfo(V, Val);
1017   return Val;
1018 }
1019 
1020 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1021 /// Create an SDValue for the given value.
1022 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1023   if (const Constant *C = dyn_cast<Constant>(V)) {
1024     EVT VT = TLI.getValueType(V->getType(), true);
1025 
1026     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1027       return DAG.getConstant(*CI, VT);
1028 
1029     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1030       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1031 
1032     if (isa<ConstantPointerNull>(C))
1033       return DAG.getConstant(0, TLI.getPointerTy());
1034 
1035     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1036       return DAG.getConstantFP(*CFP, VT);
1037 
1038     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1039       return DAG.getUNDEF(VT);
1040 
1041     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1042       visit(CE->getOpcode(), *CE);
1043       SDValue N1 = NodeMap[V];
1044       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1045       return N1;
1046     }
1047 
1048     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1049       SmallVector<SDValue, 4> Constants;
1050       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1051            OI != OE; ++OI) {
1052         SDNode *Val = getValue(*OI).getNode();
1053         // If the operand is an empty aggregate, there are no values.
1054         if (!Val) continue;
1055         // Add each leaf value from the operand to the Constants list
1056         // to form a flattened list of all the values.
1057         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1058           Constants.push_back(SDValue(Val, i));
1059       }
1060 
1061       return DAG.getMergeValues(&Constants[0], Constants.size(),
1062                                 getCurDebugLoc());
1063     }
1064 
1065     if (const ConstantDataSequential *CDS =
1066           dyn_cast<ConstantDataSequential>(C)) {
1067       SmallVector<SDValue, 4> Ops;
1068       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1069         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1070         // Add each leaf value from the operand to the Constants list
1071         // to form a flattened list of all the values.
1072         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1073           Ops.push_back(SDValue(Val, i));
1074       }
1075 
1076       if (isa<ArrayType>(CDS->getType()))
1077         return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1078       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1079                                       VT, &Ops[0], Ops.size());
1080     }
1081 
1082     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1083       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1084              "Unknown struct or array constant!");
1085 
1086       SmallVector<EVT, 4> ValueVTs;
1087       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1088       unsigned NumElts = ValueVTs.size();
1089       if (NumElts == 0)
1090         return SDValue(); // empty struct
1091       SmallVector<SDValue, 4> Constants(NumElts);
1092       for (unsigned i = 0; i != NumElts; ++i) {
1093         EVT EltVT = ValueVTs[i];
1094         if (isa<UndefValue>(C))
1095           Constants[i] = DAG.getUNDEF(EltVT);
1096         else if (EltVT.isFloatingPoint())
1097           Constants[i] = DAG.getConstantFP(0, EltVT);
1098         else
1099           Constants[i] = DAG.getConstant(0, EltVT);
1100       }
1101 
1102       return DAG.getMergeValues(&Constants[0], NumElts,
1103                                 getCurDebugLoc());
1104     }
1105 
1106     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1107       return DAG.getBlockAddress(BA, VT);
1108 
1109     VectorType *VecTy = cast<VectorType>(V->getType());
1110     unsigned NumElements = VecTy->getNumElements();
1111 
1112     // Now that we know the number and type of the elements, get that number of
1113     // elements into the Ops array based on what kind of constant it is.
1114     SmallVector<SDValue, 16> Ops;
1115     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1116       for (unsigned i = 0; i != NumElements; ++i)
1117         Ops.push_back(getValue(CV->getOperand(i)));
1118     } else {
1119       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1120       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1121 
1122       SDValue Op;
1123       if (EltVT.isFloatingPoint())
1124         Op = DAG.getConstantFP(0, EltVT);
1125       else
1126         Op = DAG.getConstant(0, EltVT);
1127       Ops.assign(NumElements, Op);
1128     }
1129 
1130     // Create a BUILD_VECTOR node.
1131     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1132                                     VT, &Ops[0], Ops.size());
1133   }
1134 
1135   // If this is a static alloca, generate it as the frameindex instead of
1136   // computation.
1137   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1138     DenseMap<const AllocaInst*, int>::iterator SI =
1139       FuncInfo.StaticAllocaMap.find(AI);
1140     if (SI != FuncInfo.StaticAllocaMap.end())
1141       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1142   }
1143 
1144   // If this is an instruction which fast-isel has deferred, select it now.
1145   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1146     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1147     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1148     SDValue Chain = DAG.getEntryNode();
1149     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1150   }
1151 
1152   llvm_unreachable("Can't get register for value!");
1153 }
1154 
1155 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1156   SDValue Chain = getControlRoot();
1157   SmallVector<ISD::OutputArg, 8> Outs;
1158   SmallVector<SDValue, 8> OutVals;
1159 
1160   if (!FuncInfo.CanLowerReturn) {
1161     unsigned DemoteReg = FuncInfo.DemoteRegister;
1162     const Function *F = I.getParent()->getParent();
1163 
1164     // Emit a store of the return value through the virtual register.
1165     // Leave Outs empty so that LowerReturn won't try to load return
1166     // registers the usual way.
1167     SmallVector<EVT, 1> PtrValueVTs;
1168     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1169                     PtrValueVTs);
1170 
1171     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1172     SDValue RetOp = getValue(I.getOperand(0));
1173 
1174     SmallVector<EVT, 4> ValueVTs;
1175     SmallVector<uint64_t, 4> Offsets;
1176     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1177     unsigned NumValues = ValueVTs.size();
1178 
1179     SmallVector<SDValue, 4> Chains(NumValues);
1180     for (unsigned i = 0; i != NumValues; ++i) {
1181       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1182                                 RetPtr.getValueType(), RetPtr,
1183                                 DAG.getIntPtrConstant(Offsets[i]));
1184       Chains[i] =
1185         DAG.getStore(Chain, getCurDebugLoc(),
1186                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1187                      // FIXME: better loc info would be nice.
1188                      Add, MachinePointerInfo(), false, false, 0);
1189     }
1190 
1191     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1192                         MVT::Other, &Chains[0], NumValues);
1193   } else if (I.getNumOperands() != 0) {
1194     SmallVector<EVT, 4> ValueVTs;
1195     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1196     unsigned NumValues = ValueVTs.size();
1197     if (NumValues) {
1198       SDValue RetOp = getValue(I.getOperand(0));
1199       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1200         EVT VT = ValueVTs[j];
1201 
1202         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1203 
1204         const Function *F = I.getParent()->getParent();
1205         if (F->paramHasAttr(0, Attribute::SExt))
1206           ExtendKind = ISD::SIGN_EXTEND;
1207         else if (F->paramHasAttr(0, Attribute::ZExt))
1208           ExtendKind = ISD::ZERO_EXTEND;
1209 
1210         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1211           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1212 
1213         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1214         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1215         SmallVector<SDValue, 4> Parts(NumParts);
1216         getCopyToParts(DAG, getCurDebugLoc(),
1217                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1218                        &Parts[0], NumParts, PartVT, ExtendKind);
1219 
1220         // 'inreg' on function refers to return value
1221         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1222         if (F->paramHasAttr(0, Attribute::InReg))
1223           Flags.setInReg();
1224 
1225         // Propagate extension type if any
1226         if (ExtendKind == ISD::SIGN_EXTEND)
1227           Flags.setSExt();
1228         else if (ExtendKind == ISD::ZERO_EXTEND)
1229           Flags.setZExt();
1230 
1231         for (unsigned i = 0; i < NumParts; ++i) {
1232           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1233                                         /*isfixed=*/true));
1234           OutVals.push_back(Parts[i]);
1235         }
1236       }
1237     }
1238   }
1239 
1240   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1241   CallingConv::ID CallConv =
1242     DAG.getMachineFunction().getFunction()->getCallingConv();
1243   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1244                           Outs, OutVals, getCurDebugLoc(), DAG);
1245 
1246   // Verify that the target's LowerReturn behaved as expected.
1247   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1248          "LowerReturn didn't return a valid chain!");
1249 
1250   // Update the DAG with the new chain value resulting from return lowering.
1251   DAG.setRoot(Chain);
1252 }
1253 
1254 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1255 /// created for it, emit nodes to copy the value into the virtual
1256 /// registers.
1257 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1258   // Skip empty types
1259   if (V->getType()->isEmptyTy())
1260     return;
1261 
1262   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1263   if (VMI != FuncInfo.ValueMap.end()) {
1264     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1265     CopyValueToVirtualRegister(V, VMI->second);
1266   }
1267 }
1268 
1269 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1270 /// the current basic block, add it to ValueMap now so that we'll get a
1271 /// CopyTo/FromReg.
1272 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1273   // No need to export constants.
1274   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1275 
1276   // Already exported?
1277   if (FuncInfo.isExportedInst(V)) return;
1278 
1279   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1280   CopyValueToVirtualRegister(V, Reg);
1281 }
1282 
1283 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1284                                                      const BasicBlock *FromBB) {
1285   // The operands of the setcc have to be in this block.  We don't know
1286   // how to export them from some other block.
1287   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1288     // Can export from current BB.
1289     if (VI->getParent() == FromBB)
1290       return true;
1291 
1292     // Is already exported, noop.
1293     return FuncInfo.isExportedInst(V);
1294   }
1295 
1296   // If this is an argument, we can export it if the BB is the entry block or
1297   // if it is already exported.
1298   if (isa<Argument>(V)) {
1299     if (FromBB == &FromBB->getParent()->getEntryBlock())
1300       return true;
1301 
1302     // Otherwise, can only export this if it is already exported.
1303     return FuncInfo.isExportedInst(V);
1304   }
1305 
1306   // Otherwise, constants can always be exported.
1307   return true;
1308 }
1309 
1310 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1311 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1312                                             const MachineBasicBlock *Dst) const {
1313   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1314   if (!BPI)
1315     return 0;
1316   const BasicBlock *SrcBB = Src->getBasicBlock();
1317   const BasicBlock *DstBB = Dst->getBasicBlock();
1318   return BPI->getEdgeWeight(SrcBB, DstBB);
1319 }
1320 
1321 void SelectionDAGBuilder::
1322 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1323                        uint32_t Weight /* = 0 */) {
1324   if (!Weight)
1325     Weight = getEdgeWeight(Src, Dst);
1326   Src->addSuccessor(Dst, Weight);
1327 }
1328 
1329 
1330 static bool InBlock(const Value *V, const BasicBlock *BB) {
1331   if (const Instruction *I = dyn_cast<Instruction>(V))
1332     return I->getParent() == BB;
1333   return true;
1334 }
1335 
1336 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1337 /// This function emits a branch and is used at the leaves of an OR or an
1338 /// AND operator tree.
1339 ///
1340 void
1341 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1342                                                   MachineBasicBlock *TBB,
1343                                                   MachineBasicBlock *FBB,
1344                                                   MachineBasicBlock *CurBB,
1345                                                   MachineBasicBlock *SwitchBB) {
1346   const BasicBlock *BB = CurBB->getBasicBlock();
1347 
1348   // If the leaf of the tree is a comparison, merge the condition into
1349   // the caseblock.
1350   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1351     // The operands of the cmp have to be in this block.  We don't know
1352     // how to export them from some other block.  If this is the first block
1353     // of the sequence, no exporting is needed.
1354     if (CurBB == SwitchBB ||
1355         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1356          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1357       ISD::CondCode Condition;
1358       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1359         Condition = getICmpCondCode(IC->getPredicate());
1360       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1361         Condition = getFCmpCondCode(FC->getPredicate());
1362         if (TM.Options.NoNaNsFPMath)
1363           Condition = getFCmpCodeWithoutNaN(Condition);
1364       } else {
1365         Condition = ISD::SETEQ; // silence warning.
1366         llvm_unreachable("Unknown compare instruction");
1367       }
1368 
1369       CaseBlock CB(Condition, BOp->getOperand(0),
1370                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1371       SwitchCases.push_back(CB);
1372       return;
1373     }
1374   }
1375 
1376   // Create a CaseBlock record representing this branch.
1377   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1378                NULL, TBB, FBB, CurBB);
1379   SwitchCases.push_back(CB);
1380 }
1381 
1382 /// FindMergedConditions - If Cond is an expression like
1383 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1384                                                MachineBasicBlock *TBB,
1385                                                MachineBasicBlock *FBB,
1386                                                MachineBasicBlock *CurBB,
1387                                                MachineBasicBlock *SwitchBB,
1388                                                unsigned Opc) {
1389   // If this node is not part of the or/and tree, emit it as a branch.
1390   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1391   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1392       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1393       BOp->getParent() != CurBB->getBasicBlock() ||
1394       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1395       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1396     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1397     return;
1398   }
1399 
1400   //  Create TmpBB after CurBB.
1401   MachineFunction::iterator BBI = CurBB;
1402   MachineFunction &MF = DAG.getMachineFunction();
1403   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1404   CurBB->getParent()->insert(++BBI, TmpBB);
1405 
1406   if (Opc == Instruction::Or) {
1407     // Codegen X | Y as:
1408     //   jmp_if_X TBB
1409     //   jmp TmpBB
1410     // TmpBB:
1411     //   jmp_if_Y TBB
1412     //   jmp FBB
1413     //
1414 
1415     // Emit the LHS condition.
1416     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1417 
1418     // Emit the RHS condition into TmpBB.
1419     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1420   } else {
1421     assert(Opc == Instruction::And && "Unknown merge op!");
1422     // Codegen X & Y as:
1423     //   jmp_if_X TmpBB
1424     //   jmp FBB
1425     // TmpBB:
1426     //   jmp_if_Y TBB
1427     //   jmp FBB
1428     //
1429     //  This requires creation of TmpBB after CurBB.
1430 
1431     // Emit the LHS condition.
1432     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1433 
1434     // Emit the RHS condition into TmpBB.
1435     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1436   }
1437 }
1438 
1439 /// If the set of cases should be emitted as a series of branches, return true.
1440 /// If we should emit this as a bunch of and/or'd together conditions, return
1441 /// false.
1442 bool
1443 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1444   if (Cases.size() != 2) return true;
1445 
1446   // If this is two comparisons of the same values or'd or and'd together, they
1447   // will get folded into a single comparison, so don't emit two blocks.
1448   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1449        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1450       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1451        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1452     return false;
1453   }
1454 
1455   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1456   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1457   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1458       Cases[0].CC == Cases[1].CC &&
1459       isa<Constant>(Cases[0].CmpRHS) &&
1460       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1461     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1462       return false;
1463     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1464       return false;
1465   }
1466 
1467   return true;
1468 }
1469 
1470 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1471   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1472 
1473   // Update machine-CFG edges.
1474   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1475 
1476   // Figure out which block is immediately after the current one.
1477   MachineBasicBlock *NextBlock = 0;
1478   MachineFunction::iterator BBI = BrMBB;
1479   if (++BBI != FuncInfo.MF->end())
1480     NextBlock = BBI;
1481 
1482   if (I.isUnconditional()) {
1483     // Update machine-CFG edges.
1484     BrMBB->addSuccessor(Succ0MBB);
1485 
1486     // If this is not a fall-through branch, emit the branch.
1487     if (Succ0MBB != NextBlock)
1488       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1489                               MVT::Other, getControlRoot(),
1490                               DAG.getBasicBlock(Succ0MBB)));
1491 
1492     return;
1493   }
1494 
1495   // If this condition is one of the special cases we handle, do special stuff
1496   // now.
1497   const Value *CondVal = I.getCondition();
1498   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1499 
1500   // If this is a series of conditions that are or'd or and'd together, emit
1501   // this as a sequence of branches instead of setcc's with and/or operations.
1502   // As long as jumps are not expensive, this should improve performance.
1503   // For example, instead of something like:
1504   //     cmp A, B
1505   //     C = seteq
1506   //     cmp D, E
1507   //     F = setle
1508   //     or C, F
1509   //     jnz foo
1510   // Emit:
1511   //     cmp A, B
1512   //     je foo
1513   //     cmp D, E
1514   //     jle foo
1515   //
1516   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1517     if (!TLI.isJumpExpensive() &&
1518         BOp->hasOneUse() &&
1519         (BOp->getOpcode() == Instruction::And ||
1520          BOp->getOpcode() == Instruction::Or)) {
1521       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1522                            BOp->getOpcode());
1523       // If the compares in later blocks need to use values not currently
1524       // exported from this block, export them now.  This block should always
1525       // be the first entry.
1526       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1527 
1528       // Allow some cases to be rejected.
1529       if (ShouldEmitAsBranches(SwitchCases)) {
1530         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1531           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1532           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1533         }
1534 
1535         // Emit the branch for this block.
1536         visitSwitchCase(SwitchCases[0], BrMBB);
1537         SwitchCases.erase(SwitchCases.begin());
1538         return;
1539       }
1540 
1541       // Okay, we decided not to do this, remove any inserted MBB's and clear
1542       // SwitchCases.
1543       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1544         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1545 
1546       SwitchCases.clear();
1547     }
1548   }
1549 
1550   // Create a CaseBlock record representing this branch.
1551   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1552                NULL, Succ0MBB, Succ1MBB, BrMBB);
1553 
1554   // Use visitSwitchCase to actually insert the fast branch sequence for this
1555   // cond branch.
1556   visitSwitchCase(CB, BrMBB);
1557 }
1558 
1559 /// visitSwitchCase - Emits the necessary code to represent a single node in
1560 /// the binary search tree resulting from lowering a switch instruction.
1561 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1562                                           MachineBasicBlock *SwitchBB) {
1563   SDValue Cond;
1564   SDValue CondLHS = getValue(CB.CmpLHS);
1565   DebugLoc dl = getCurDebugLoc();
1566 
1567   // Build the setcc now.
1568   if (CB.CmpMHS == NULL) {
1569     // Fold "(X == true)" to X and "(X == false)" to !X to
1570     // handle common cases produced by branch lowering.
1571     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1572         CB.CC == ISD::SETEQ)
1573       Cond = CondLHS;
1574     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1575              CB.CC == ISD::SETEQ) {
1576       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1577       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1578     } else
1579       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1580   } else {
1581     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1582 
1583     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1584     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1585 
1586     SDValue CmpOp = getValue(CB.CmpMHS);
1587     EVT VT = CmpOp.getValueType();
1588 
1589     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1590       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1591                           ISD::SETLE);
1592     } else {
1593       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1594                                 VT, CmpOp, DAG.getConstant(Low, VT));
1595       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1596                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1597     }
1598   }
1599 
1600   // Update successor info
1601   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1602   addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1603 
1604   // Set NextBlock to be the MBB immediately after the current one, if any.
1605   // This is used to avoid emitting unnecessary branches to the next block.
1606   MachineBasicBlock *NextBlock = 0;
1607   MachineFunction::iterator BBI = SwitchBB;
1608   if (++BBI != FuncInfo.MF->end())
1609     NextBlock = BBI;
1610 
1611   // If the lhs block is the next block, invert the condition so that we can
1612   // fall through to the lhs instead of the rhs block.
1613   if (CB.TrueBB == NextBlock) {
1614     std::swap(CB.TrueBB, CB.FalseBB);
1615     SDValue True = DAG.getConstant(1, Cond.getValueType());
1616     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1617   }
1618 
1619   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1620                                MVT::Other, getControlRoot(), Cond,
1621                                DAG.getBasicBlock(CB.TrueBB));
1622 
1623   // Insert the false branch. Do this even if it's a fall through branch,
1624   // this makes it easier to do DAG optimizations which require inverting
1625   // the branch condition.
1626   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1627                        DAG.getBasicBlock(CB.FalseBB));
1628 
1629   DAG.setRoot(BrCond);
1630 }
1631 
1632 /// visitJumpTable - Emit JumpTable node in the current MBB
1633 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1634   // Emit the code for the jump table
1635   assert(JT.Reg != -1U && "Should lower JT Header first!");
1636   EVT PTy = TLI.getPointerTy();
1637   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1638                                      JT.Reg, PTy);
1639   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1640   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1641                                     MVT::Other, Index.getValue(1),
1642                                     Table, Index);
1643   DAG.setRoot(BrJumpTable);
1644 }
1645 
1646 /// visitJumpTableHeader - This function emits necessary code to produce index
1647 /// in the JumpTable from switch case.
1648 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1649                                                JumpTableHeader &JTH,
1650                                                MachineBasicBlock *SwitchBB) {
1651   // Subtract the lowest switch case value from the value being switched on and
1652   // conditional branch to default mbb if the result is greater than the
1653   // difference between smallest and largest cases.
1654   SDValue SwitchOp = getValue(JTH.SValue);
1655   EVT VT = SwitchOp.getValueType();
1656   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1657                             DAG.getConstant(JTH.First, VT));
1658 
1659   // The SDNode we just created, which holds the value being switched on minus
1660   // the smallest case value, needs to be copied to a virtual register so it
1661   // can be used as an index into the jump table in a subsequent basic block.
1662   // This value may be smaller or larger than the target's pointer type, and
1663   // therefore require extension or truncating.
1664   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1665 
1666   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1667   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1668                                     JumpTableReg, SwitchOp);
1669   JT.Reg = JumpTableReg;
1670 
1671   // Emit the range check for the jump table, and branch to the default block
1672   // for the switch statement if the value being switched on exceeds the largest
1673   // case in the switch.
1674   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1675                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1676                              DAG.getConstant(JTH.Last-JTH.First,VT),
1677                              ISD::SETUGT);
1678 
1679   // Set NextBlock to be the MBB immediately after the current one, if any.
1680   // This is used to avoid emitting unnecessary branches to the next block.
1681   MachineBasicBlock *NextBlock = 0;
1682   MachineFunction::iterator BBI = SwitchBB;
1683 
1684   if (++BBI != FuncInfo.MF->end())
1685     NextBlock = BBI;
1686 
1687   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1688                                MVT::Other, CopyTo, CMP,
1689                                DAG.getBasicBlock(JT.Default));
1690 
1691   if (JT.MBB != NextBlock)
1692     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1693                          DAG.getBasicBlock(JT.MBB));
1694 
1695   DAG.setRoot(BrCond);
1696 }
1697 
1698 /// visitBitTestHeader - This function emits necessary code to produce value
1699 /// suitable for "bit tests"
1700 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1701                                              MachineBasicBlock *SwitchBB) {
1702   // Subtract the minimum value
1703   SDValue SwitchOp = getValue(B.SValue);
1704   EVT VT = SwitchOp.getValueType();
1705   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1706                             DAG.getConstant(B.First, VT));
1707 
1708   // Check range
1709   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1710                                   TLI.getSetCCResultType(Sub.getValueType()),
1711                                   Sub, DAG.getConstant(B.Range, VT),
1712                                   ISD::SETUGT);
1713 
1714   // Determine the type of the test operands.
1715   bool UsePtrType = false;
1716   if (!TLI.isTypeLegal(VT))
1717     UsePtrType = true;
1718   else {
1719     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1720       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1721         // Switch table case range are encoded into series of masks.
1722         // Just use pointer type, it's guaranteed to fit.
1723         UsePtrType = true;
1724         break;
1725       }
1726   }
1727   if (UsePtrType) {
1728     VT = TLI.getPointerTy();
1729     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1730   }
1731 
1732   B.RegVT = VT;
1733   B.Reg = FuncInfo.CreateReg(VT);
1734   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1735                                     B.Reg, Sub);
1736 
1737   // Set NextBlock to be the MBB immediately after the current one, if any.
1738   // This is used to avoid emitting unnecessary branches to the next block.
1739   MachineBasicBlock *NextBlock = 0;
1740   MachineFunction::iterator BBI = SwitchBB;
1741   if (++BBI != FuncInfo.MF->end())
1742     NextBlock = BBI;
1743 
1744   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1745 
1746   addSuccessorWithWeight(SwitchBB, B.Default);
1747   addSuccessorWithWeight(SwitchBB, MBB);
1748 
1749   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1750                                 MVT::Other, CopyTo, RangeCmp,
1751                                 DAG.getBasicBlock(B.Default));
1752 
1753   if (MBB != NextBlock)
1754     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1755                           DAG.getBasicBlock(MBB));
1756 
1757   DAG.setRoot(BrRange);
1758 }
1759 
1760 /// visitBitTestCase - this function produces one "bit test"
1761 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1762                                            MachineBasicBlock* NextMBB,
1763                                            unsigned Reg,
1764                                            BitTestCase &B,
1765                                            MachineBasicBlock *SwitchBB) {
1766   EVT VT = BB.RegVT;
1767   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1768                                        Reg, VT);
1769   SDValue Cmp;
1770   unsigned PopCount = CountPopulation_64(B.Mask);
1771   if (PopCount == 1) {
1772     // Testing for a single bit; just compare the shift count with what it
1773     // would need to be to shift a 1 bit in that position.
1774     Cmp = DAG.getSetCC(getCurDebugLoc(),
1775                        TLI.getSetCCResultType(VT),
1776                        ShiftOp,
1777                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1778                        ISD::SETEQ);
1779   } else if (PopCount == BB.Range) {
1780     // There is only one zero bit in the range, test for it directly.
1781     Cmp = DAG.getSetCC(getCurDebugLoc(),
1782                        TLI.getSetCCResultType(VT),
1783                        ShiftOp,
1784                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1785                        ISD::SETNE);
1786   } else {
1787     // Make desired shift
1788     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1789                                     DAG.getConstant(1, VT), ShiftOp);
1790 
1791     // Emit bit tests and jumps
1792     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1793                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1794     Cmp = DAG.getSetCC(getCurDebugLoc(),
1795                        TLI.getSetCCResultType(VT),
1796                        AndOp, DAG.getConstant(0, VT),
1797                        ISD::SETNE);
1798   }
1799 
1800   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1801   addSuccessorWithWeight(SwitchBB, NextMBB);
1802 
1803   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1804                               MVT::Other, getControlRoot(),
1805                               Cmp, DAG.getBasicBlock(B.TargetBB));
1806 
1807   // Set NextBlock to be the MBB immediately after the current one, if any.
1808   // This is used to avoid emitting unnecessary branches to the next block.
1809   MachineBasicBlock *NextBlock = 0;
1810   MachineFunction::iterator BBI = SwitchBB;
1811   if (++BBI != FuncInfo.MF->end())
1812     NextBlock = BBI;
1813 
1814   if (NextMBB != NextBlock)
1815     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1816                         DAG.getBasicBlock(NextMBB));
1817 
1818   DAG.setRoot(BrAnd);
1819 }
1820 
1821 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1822   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1823 
1824   // Retrieve successors.
1825   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1826   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1827 
1828   const Value *Callee(I.getCalledValue());
1829   if (isa<InlineAsm>(Callee))
1830     visitInlineAsm(&I);
1831   else
1832     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1833 
1834   // If the value of the invoke is used outside of its defining block, make it
1835   // available as a virtual register.
1836   CopyToExportRegsIfNeeded(&I);
1837 
1838   // Update successor info
1839   addSuccessorWithWeight(InvokeMBB, Return);
1840   addSuccessorWithWeight(InvokeMBB, LandingPad);
1841 
1842   // Drop into normal successor.
1843   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1844                           MVT::Other, getControlRoot(),
1845                           DAG.getBasicBlock(Return)));
1846 }
1847 
1848 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1849   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1850 }
1851 
1852 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1853   assert(FuncInfo.MBB->isLandingPad() &&
1854          "Call to landingpad not in landing pad!");
1855 
1856   MachineBasicBlock *MBB = FuncInfo.MBB;
1857   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1858   AddLandingPadInfo(LP, MMI, MBB);
1859 
1860   // If there aren't registers to copy the values into (e.g., during SjLj
1861   // exceptions), then don't bother to create these DAG nodes.
1862   if (TLI.getExceptionPointerRegister() == 0 &&
1863       TLI.getExceptionSelectorRegister() == 0)
1864     return;
1865 
1866   SmallVector<EVT, 2> ValueVTs;
1867   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1868 
1869   // Insert the EXCEPTIONADDR instruction.
1870   assert(FuncInfo.MBB->isLandingPad() &&
1871          "Call to eh.exception not in landing pad!");
1872   SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1873   SDValue Ops[2];
1874   Ops[0] = DAG.getRoot();
1875   SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1876   SDValue Chain = Op1.getValue(1);
1877 
1878   // Insert the EHSELECTION instruction.
1879   VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1880   Ops[0] = Op1;
1881   Ops[1] = Chain;
1882   SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1883   Chain = Op2.getValue(1);
1884   Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1885 
1886   Ops[0] = Op1;
1887   Ops[1] = Op2;
1888   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1889                             DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1890                             &Ops[0], 2);
1891 
1892   std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1893   setValue(&LP, RetPair.first);
1894   DAG.setRoot(RetPair.second);
1895 }
1896 
1897 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1898 /// small case ranges).
1899 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1900                                                  CaseRecVector& WorkList,
1901                                                  const Value* SV,
1902                                                  MachineBasicBlock *Default,
1903                                                  MachineBasicBlock *SwitchBB) {
1904   Case& BackCase  = *(CR.Range.second-1);
1905 
1906   // Size is the number of Cases represented by this range.
1907   size_t Size = CR.Range.second - CR.Range.first;
1908   if (Size > 3)
1909     return false;
1910 
1911   // Get the MachineFunction which holds the current MBB.  This is used when
1912   // inserting any additional MBBs necessary to represent the switch.
1913   MachineFunction *CurMF = FuncInfo.MF;
1914 
1915   // Figure out which block is immediately after the current one.
1916   MachineBasicBlock *NextBlock = 0;
1917   MachineFunction::iterator BBI = CR.CaseBB;
1918 
1919   if (++BBI != FuncInfo.MF->end())
1920     NextBlock = BBI;
1921 
1922   // If any two of the cases has the same destination, and if one value
1923   // is the same as the other, but has one bit unset that the other has set,
1924   // use bit manipulation to do two compares at once.  For example:
1925   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1926   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1927   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1928   if (Size == 2 && CR.CaseBB == SwitchBB) {
1929     Case &Small = *CR.Range.first;
1930     Case &Big = *(CR.Range.second-1);
1931 
1932     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1933       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1934       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1935 
1936       // Check that there is only one bit different.
1937       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1938           (SmallValue | BigValue) == BigValue) {
1939         // Isolate the common bit.
1940         APInt CommonBit = BigValue & ~SmallValue;
1941         assert((SmallValue | CommonBit) == BigValue &&
1942                CommonBit.countPopulation() == 1 && "Not a common bit?");
1943 
1944         SDValue CondLHS = getValue(SV);
1945         EVT VT = CondLHS.getValueType();
1946         DebugLoc DL = getCurDebugLoc();
1947 
1948         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1949                                  DAG.getConstant(CommonBit, VT));
1950         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1951                                     Or, DAG.getConstant(BigValue, VT),
1952                                     ISD::SETEQ);
1953 
1954         // Update successor info.
1955         addSuccessorWithWeight(SwitchBB, Small.BB);
1956         addSuccessorWithWeight(SwitchBB, Default);
1957 
1958         // Insert the true branch.
1959         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1960                                      getControlRoot(), Cond,
1961                                      DAG.getBasicBlock(Small.BB));
1962 
1963         // Insert the false branch.
1964         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1965                              DAG.getBasicBlock(Default));
1966 
1967         DAG.setRoot(BrCond);
1968         return true;
1969       }
1970     }
1971   }
1972 
1973   // Rearrange the case blocks so that the last one falls through if possible.
1974   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1975     // The last case block won't fall through into 'NextBlock' if we emit the
1976     // branches in this order.  See if rearranging a case value would help.
1977     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1978       if (I->BB == NextBlock) {
1979         std::swap(*I, BackCase);
1980         break;
1981       }
1982     }
1983   }
1984 
1985   // Create a CaseBlock record representing a conditional branch to
1986   // the Case's target mbb if the value being switched on SV is equal
1987   // to C.
1988   MachineBasicBlock *CurBlock = CR.CaseBB;
1989   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1990     MachineBasicBlock *FallThrough;
1991     if (I != E-1) {
1992       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1993       CurMF->insert(BBI, FallThrough);
1994 
1995       // Put SV in a virtual register to make it available from the new blocks.
1996       ExportFromCurrentBlock(SV);
1997     } else {
1998       // If the last case doesn't match, go to the default block.
1999       FallThrough = Default;
2000     }
2001 
2002     const Value *RHS, *LHS, *MHS;
2003     ISD::CondCode CC;
2004     if (I->High == I->Low) {
2005       // This is just small small case range :) containing exactly 1 case
2006       CC = ISD::SETEQ;
2007       LHS = SV; RHS = I->High; MHS = NULL;
2008     } else {
2009       CC = ISD::SETLE;
2010       LHS = I->Low; MHS = SV; RHS = I->High;
2011     }
2012 
2013     uint32_t ExtraWeight = I->ExtraWeight;
2014     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2015                  /* me */ CurBlock,
2016                  /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2017 
2018     // If emitting the first comparison, just call visitSwitchCase to emit the
2019     // code into the current block.  Otherwise, push the CaseBlock onto the
2020     // vector to be later processed by SDISel, and insert the node's MBB
2021     // before the next MBB.
2022     if (CurBlock == SwitchBB)
2023       visitSwitchCase(CB, SwitchBB);
2024     else
2025       SwitchCases.push_back(CB);
2026 
2027     CurBlock = FallThrough;
2028   }
2029 
2030   return true;
2031 }
2032 
2033 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2034   return !TLI.getTargetMachine().Options.DisableJumpTables &&
2035           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2036            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2037 }
2038 
2039 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2040   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2041   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2042   return (LastExt - FirstExt + 1ULL);
2043 }
2044 
2045 /// handleJTSwitchCase - Emit jumptable for current switch case range
2046 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2047                                              CaseRecVector &WorkList,
2048                                              const Value *SV,
2049                                              MachineBasicBlock *Default,
2050                                              MachineBasicBlock *SwitchBB) {
2051   Case& FrontCase = *CR.Range.first;
2052   Case& BackCase  = *(CR.Range.second-1);
2053 
2054   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2055   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2056 
2057   APInt TSize(First.getBitWidth(), 0);
2058   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2059     TSize += I->size();
2060 
2061   if (!areJTsAllowed(TLI) || TSize.ult(4))
2062     return false;
2063 
2064   APInt Range = ComputeRange(First, Last);
2065   // The density is TSize / Range. Require at least 40%.
2066   // It should not be possible for IntTSize to saturate for sane code, but make
2067   // sure we handle Range saturation correctly.
2068   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2069   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2070   if (IntTSize * 10 < IntRange * 4)
2071     return false;
2072 
2073   DEBUG(dbgs() << "Lowering jump table\n"
2074                << "First entry: " << First << ". Last entry: " << Last << '\n'
2075                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2076 
2077   // Get the MachineFunction which holds the current MBB.  This is used when
2078   // inserting any additional MBBs necessary to represent the switch.
2079   MachineFunction *CurMF = FuncInfo.MF;
2080 
2081   // Figure out which block is immediately after the current one.
2082   MachineFunction::iterator BBI = CR.CaseBB;
2083   ++BBI;
2084 
2085   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2086 
2087   // Create a new basic block to hold the code for loading the address
2088   // of the jump table, and jumping to it.  Update successor information;
2089   // we will either branch to the default case for the switch, or the jump
2090   // table.
2091   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2092   CurMF->insert(BBI, JumpTableBB);
2093 
2094   addSuccessorWithWeight(CR.CaseBB, Default);
2095   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2096 
2097   // Build a vector of destination BBs, corresponding to each target
2098   // of the jump table. If the value of the jump table slot corresponds to
2099   // a case statement, push the case's BB onto the vector, otherwise, push
2100   // the default BB.
2101   std::vector<MachineBasicBlock*> DestBBs;
2102   APInt TEI = First;
2103   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2104     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2105     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2106 
2107     if (Low.sle(TEI) && TEI.sle(High)) {
2108       DestBBs.push_back(I->BB);
2109       if (TEI==High)
2110         ++I;
2111     } else {
2112       DestBBs.push_back(Default);
2113     }
2114   }
2115 
2116   // Update successor info. Add one edge to each unique successor.
2117   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2118   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2119          E = DestBBs.end(); I != E; ++I) {
2120     if (!SuccsHandled[(*I)->getNumber()]) {
2121       SuccsHandled[(*I)->getNumber()] = true;
2122       addSuccessorWithWeight(JumpTableBB, *I);
2123     }
2124   }
2125 
2126   // Create a jump table index for this jump table.
2127   unsigned JTEncoding = TLI.getJumpTableEncoding();
2128   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2129                        ->createJumpTableIndex(DestBBs);
2130 
2131   // Set the jump table information so that we can codegen it as a second
2132   // MachineBasicBlock
2133   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2134   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2135   if (CR.CaseBB == SwitchBB)
2136     visitJumpTableHeader(JT, JTH, SwitchBB);
2137 
2138   JTCases.push_back(JumpTableBlock(JTH, JT));
2139   return true;
2140 }
2141 
2142 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2143 /// 2 subtrees.
2144 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2145                                                   CaseRecVector& WorkList,
2146                                                   const Value* SV,
2147                                                   MachineBasicBlock *Default,
2148                                                   MachineBasicBlock *SwitchBB) {
2149   // Get the MachineFunction which holds the current MBB.  This is used when
2150   // inserting any additional MBBs necessary to represent the switch.
2151   MachineFunction *CurMF = FuncInfo.MF;
2152 
2153   // Figure out which block is immediately after the current one.
2154   MachineFunction::iterator BBI = CR.CaseBB;
2155   ++BBI;
2156 
2157   Case& FrontCase = *CR.Range.first;
2158   Case& BackCase  = *(CR.Range.second-1);
2159   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2160 
2161   // Size is the number of Cases represented by this range.
2162   unsigned Size = CR.Range.second - CR.Range.first;
2163 
2164   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2165   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2166   double FMetric = 0;
2167   CaseItr Pivot = CR.Range.first + Size/2;
2168 
2169   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2170   // (heuristically) allow us to emit JumpTable's later.
2171   APInt TSize(First.getBitWidth(), 0);
2172   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2173        I!=E; ++I)
2174     TSize += I->size();
2175 
2176   APInt LSize = FrontCase.size();
2177   APInt RSize = TSize-LSize;
2178   DEBUG(dbgs() << "Selecting best pivot: \n"
2179                << "First: " << First << ", Last: " << Last <<'\n'
2180                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2181   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2182        J!=E; ++I, ++J) {
2183     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2184     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2185     APInt Range = ComputeRange(LEnd, RBegin);
2186     assert((Range - 2ULL).isNonNegative() &&
2187            "Invalid case distance");
2188     // Use volatile double here to avoid excess precision issues on some hosts,
2189     // e.g. that use 80-bit X87 registers.
2190     volatile double LDensity =
2191        (double)LSize.roundToDouble() /
2192                            (LEnd - First + 1ULL).roundToDouble();
2193     volatile double RDensity =
2194       (double)RSize.roundToDouble() /
2195                            (Last - RBegin + 1ULL).roundToDouble();
2196     double Metric = Range.logBase2()*(LDensity+RDensity);
2197     // Should always split in some non-trivial place
2198     DEBUG(dbgs() <<"=>Step\n"
2199                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2200                  << "LDensity: " << LDensity
2201                  << ", RDensity: " << RDensity << '\n'
2202                  << "Metric: " << Metric << '\n');
2203     if (FMetric < Metric) {
2204       Pivot = J;
2205       FMetric = Metric;
2206       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2207     }
2208 
2209     LSize += J->size();
2210     RSize -= J->size();
2211   }
2212   if (areJTsAllowed(TLI)) {
2213     // If our case is dense we *really* should handle it earlier!
2214     assert((FMetric > 0) && "Should handle dense range earlier!");
2215   } else {
2216     Pivot = CR.Range.first + Size/2;
2217   }
2218 
2219   CaseRange LHSR(CR.Range.first, Pivot);
2220   CaseRange RHSR(Pivot, CR.Range.second);
2221   const Constant *C = Pivot->Low;
2222   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2223 
2224   // We know that we branch to the LHS if the Value being switched on is
2225   // less than the Pivot value, C.  We use this to optimize our binary
2226   // tree a bit, by recognizing that if SV is greater than or equal to the
2227   // LHS's Case Value, and that Case Value is exactly one less than the
2228   // Pivot's Value, then we can branch directly to the LHS's Target,
2229   // rather than creating a leaf node for it.
2230   if ((LHSR.second - LHSR.first) == 1 &&
2231       LHSR.first->High == CR.GE &&
2232       cast<ConstantInt>(C)->getValue() ==
2233       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2234     TrueBB = LHSR.first->BB;
2235   } else {
2236     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2237     CurMF->insert(BBI, TrueBB);
2238     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2239 
2240     // Put SV in a virtual register to make it available from the new blocks.
2241     ExportFromCurrentBlock(SV);
2242   }
2243 
2244   // Similar to the optimization above, if the Value being switched on is
2245   // known to be less than the Constant CR.LT, and the current Case Value
2246   // is CR.LT - 1, then we can branch directly to the target block for
2247   // the current Case Value, rather than emitting a RHS leaf node for it.
2248   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2249       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2250       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2251     FalseBB = RHSR.first->BB;
2252   } else {
2253     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2254     CurMF->insert(BBI, FalseBB);
2255     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2256 
2257     // Put SV in a virtual register to make it available from the new blocks.
2258     ExportFromCurrentBlock(SV);
2259   }
2260 
2261   // Create a CaseBlock record representing a conditional branch to
2262   // the LHS node if the value being switched on SV is less than C.
2263   // Otherwise, branch to LHS.
2264   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2265 
2266   if (CR.CaseBB == SwitchBB)
2267     visitSwitchCase(CB, SwitchBB);
2268   else
2269     SwitchCases.push_back(CB);
2270 
2271   return true;
2272 }
2273 
2274 /// handleBitTestsSwitchCase - if current case range has few destination and
2275 /// range span less, than machine word bitwidth, encode case range into series
2276 /// of masks and emit bit tests with these masks.
2277 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2278                                                    CaseRecVector& WorkList,
2279                                                    const Value* SV,
2280                                                    MachineBasicBlock* Default,
2281                                                    MachineBasicBlock *SwitchBB){
2282   EVT PTy = TLI.getPointerTy();
2283   unsigned IntPtrBits = PTy.getSizeInBits();
2284 
2285   Case& FrontCase = *CR.Range.first;
2286   Case& BackCase  = *(CR.Range.second-1);
2287 
2288   // Get the MachineFunction which holds the current MBB.  This is used when
2289   // inserting any additional MBBs necessary to represent the switch.
2290   MachineFunction *CurMF = FuncInfo.MF;
2291 
2292   // If target does not have legal shift left, do not emit bit tests at all.
2293   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2294     return false;
2295 
2296   size_t numCmps = 0;
2297   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2298        I!=E; ++I) {
2299     // Single case counts one, case range - two.
2300     numCmps += (I->Low == I->High ? 1 : 2);
2301   }
2302 
2303   // Count unique destinations
2304   SmallSet<MachineBasicBlock*, 4> Dests;
2305   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2306     Dests.insert(I->BB);
2307     if (Dests.size() > 3)
2308       // Don't bother the code below, if there are too much unique destinations
2309       return false;
2310   }
2311   DEBUG(dbgs() << "Total number of unique destinations: "
2312         << Dests.size() << '\n'
2313         << "Total number of comparisons: " << numCmps << '\n');
2314 
2315   // Compute span of values.
2316   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2317   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2318   APInt cmpRange = maxValue - minValue;
2319 
2320   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2321                << "Low bound: " << minValue << '\n'
2322                << "High bound: " << maxValue << '\n');
2323 
2324   if (cmpRange.uge(IntPtrBits) ||
2325       (!(Dests.size() == 1 && numCmps >= 3) &&
2326        !(Dests.size() == 2 && numCmps >= 5) &&
2327        !(Dests.size() >= 3 && numCmps >= 6)))
2328     return false;
2329 
2330   DEBUG(dbgs() << "Emitting bit tests\n");
2331   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2332 
2333   // Optimize the case where all the case values fit in a
2334   // word without having to subtract minValue. In this case,
2335   // we can optimize away the subtraction.
2336   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2337     cmpRange = maxValue;
2338   } else {
2339     lowBound = minValue;
2340   }
2341 
2342   CaseBitsVector CasesBits;
2343   unsigned i, count = 0;
2344 
2345   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2346     MachineBasicBlock* Dest = I->BB;
2347     for (i = 0; i < count; ++i)
2348       if (Dest == CasesBits[i].BB)
2349         break;
2350 
2351     if (i == count) {
2352       assert((count < 3) && "Too much destinations to test!");
2353       CasesBits.push_back(CaseBits(0, Dest, 0));
2354       count++;
2355     }
2356 
2357     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2358     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2359 
2360     uint64_t lo = (lowValue - lowBound).getZExtValue();
2361     uint64_t hi = (highValue - lowBound).getZExtValue();
2362 
2363     for (uint64_t j = lo; j <= hi; j++) {
2364       CasesBits[i].Mask |=  1ULL << j;
2365       CasesBits[i].Bits++;
2366     }
2367 
2368   }
2369   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2370 
2371   BitTestInfo BTC;
2372 
2373   // Figure out which block is immediately after the current one.
2374   MachineFunction::iterator BBI = CR.CaseBB;
2375   ++BBI;
2376 
2377   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2378 
2379   DEBUG(dbgs() << "Cases:\n");
2380   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2381     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2382                  << ", Bits: " << CasesBits[i].Bits
2383                  << ", BB: " << CasesBits[i].BB << '\n');
2384 
2385     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2386     CurMF->insert(BBI, CaseBB);
2387     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2388                               CaseBB,
2389                               CasesBits[i].BB));
2390 
2391     // Put SV in a virtual register to make it available from the new blocks.
2392     ExportFromCurrentBlock(SV);
2393   }
2394 
2395   BitTestBlock BTB(lowBound, cmpRange, SV,
2396                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2397                    CR.CaseBB, Default, BTC);
2398 
2399   if (CR.CaseBB == SwitchBB)
2400     visitBitTestHeader(BTB, SwitchBB);
2401 
2402   BitTestCases.push_back(BTB);
2403 
2404   return true;
2405 }
2406 
2407 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2408 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2409                                        const SwitchInst& SI) {
2410   size_t numCmps = 0;
2411 
2412   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2413   // Start with "simple" cases
2414   for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2415        i != e; ++i) {
2416     const BasicBlock *SuccBB = i.getCaseSuccessor();
2417     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2418 
2419     uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2420 
2421     Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2422                          SMBB, ExtraWeight));
2423   }
2424   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2425 
2426   // Merge case into clusters
2427   if (Cases.size() >= 2)
2428     // Must recompute end() each iteration because it may be
2429     // invalidated by erase if we hold on to it
2430     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2431          J != Cases.end(); ) {
2432       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2433       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2434       MachineBasicBlock* nextBB = J->BB;
2435       MachineBasicBlock* currentBB = I->BB;
2436 
2437       // If the two neighboring cases go to the same destination, merge them
2438       // into a single case.
2439       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2440         I->High = J->High;
2441         J = Cases.erase(J);
2442 
2443         if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2444           uint32_t CurWeight = currentBB->getBasicBlock() ?
2445             BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2446           uint32_t NextWeight = nextBB->getBasicBlock() ?
2447             BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2448 
2449           BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2450                              CurWeight + NextWeight);
2451         }
2452       } else {
2453         I = J++;
2454       }
2455     }
2456 
2457   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2458     if (I->Low != I->High)
2459       // A range counts double, since it requires two compares.
2460       ++numCmps;
2461   }
2462 
2463   return numCmps;
2464 }
2465 
2466 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2467                                            MachineBasicBlock *Last) {
2468   // Update JTCases.
2469   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2470     if (JTCases[i].first.HeaderBB == First)
2471       JTCases[i].first.HeaderBB = Last;
2472 
2473   // Update BitTestCases.
2474   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2475     if (BitTestCases[i].Parent == First)
2476       BitTestCases[i].Parent = Last;
2477 }
2478 
2479 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2480   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2481 
2482   // Figure out which block is immediately after the current one.
2483   MachineBasicBlock *NextBlock = 0;
2484   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2485 
2486   // If there is only the default destination, branch to it if it is not the
2487   // next basic block.  Otherwise, just fall through.
2488   if (!SI.getNumCases()) {
2489     // Update machine-CFG edges.
2490 
2491     // If this is not a fall-through branch, emit the branch.
2492     SwitchMBB->addSuccessor(Default);
2493     if (Default != NextBlock)
2494       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2495                               MVT::Other, getControlRoot(),
2496                               DAG.getBasicBlock(Default)));
2497 
2498     return;
2499   }
2500 
2501   // If there are any non-default case statements, create a vector of Cases
2502   // representing each one, and sort the vector so that we can efficiently
2503   // create a binary search tree from them.
2504   CaseVector Cases;
2505   size_t numCmps = Clusterify(Cases, SI);
2506   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2507                << ". Total compares: " << numCmps << '\n');
2508   (void)numCmps;
2509 
2510   // Get the Value to be switched on and default basic blocks, which will be
2511   // inserted into CaseBlock records, representing basic blocks in the binary
2512   // search tree.
2513   const Value *SV = SI.getCondition();
2514 
2515   // Push the initial CaseRec onto the worklist
2516   CaseRecVector WorkList;
2517   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2518                              CaseRange(Cases.begin(),Cases.end())));
2519 
2520   while (!WorkList.empty()) {
2521     // Grab a record representing a case range to process off the worklist
2522     CaseRec CR = WorkList.back();
2523     WorkList.pop_back();
2524 
2525     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2526       continue;
2527 
2528     // If the range has few cases (two or less) emit a series of specific
2529     // tests.
2530     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2531       continue;
2532 
2533     // If the switch has more than 5 blocks, and at least 40% dense, and the
2534     // target supports indirect branches, then emit a jump table rather than
2535     // lowering the switch to a binary tree of conditional branches.
2536     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2537       continue;
2538 
2539     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2540     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2541     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2542   }
2543 }
2544 
2545 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2546   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2547 
2548   // Update machine-CFG edges with unique successors.
2549   SmallVector<BasicBlock*, 32> succs;
2550   succs.reserve(I.getNumSuccessors());
2551   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2552     succs.push_back(I.getSuccessor(i));
2553   array_pod_sort(succs.begin(), succs.end());
2554   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2555   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2556     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2557     addSuccessorWithWeight(IndirectBrMBB, Succ);
2558   }
2559 
2560   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2561                           MVT::Other, getControlRoot(),
2562                           getValue(I.getAddress())));
2563 }
2564 
2565 void SelectionDAGBuilder::visitFSub(const User &I) {
2566   // -0.0 - X --> fneg
2567   Type *Ty = I.getType();
2568   if (isa<Constant>(I.getOperand(0)) &&
2569       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2570     SDValue Op2 = getValue(I.getOperand(1));
2571     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2572                              Op2.getValueType(), Op2));
2573     return;
2574   }
2575 
2576   visitBinary(I, ISD::FSUB);
2577 }
2578 
2579 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2580   SDValue Op1 = getValue(I.getOperand(0));
2581   SDValue Op2 = getValue(I.getOperand(1));
2582   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2583                            Op1.getValueType(), Op1, Op2));
2584 }
2585 
2586 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2587   SDValue Op1 = getValue(I.getOperand(0));
2588   SDValue Op2 = getValue(I.getOperand(1));
2589 
2590   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2591 
2592   // Coerce the shift amount to the right type if we can.
2593   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2594     unsigned ShiftSize = ShiftTy.getSizeInBits();
2595     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2596     DebugLoc DL = getCurDebugLoc();
2597 
2598     // If the operand is smaller than the shift count type, promote it.
2599     if (ShiftSize > Op2Size)
2600       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2601 
2602     // If the operand is larger than the shift count type but the shift
2603     // count type has enough bits to represent any shift value, truncate
2604     // it now. This is a common case and it exposes the truncate to
2605     // optimization early.
2606     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2607       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2608     // Otherwise we'll need to temporarily settle for some other convenient
2609     // type.  Type legalization will make adjustments once the shiftee is split.
2610     else
2611       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2612   }
2613 
2614   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2615                            Op1.getValueType(), Op1, Op2));
2616 }
2617 
2618 void SelectionDAGBuilder::visitSDiv(const User &I) {
2619   SDValue Op1 = getValue(I.getOperand(0));
2620   SDValue Op2 = getValue(I.getOperand(1));
2621 
2622   // Turn exact SDivs into multiplications.
2623   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2624   // exact bit.
2625   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2626       !isa<ConstantSDNode>(Op1) &&
2627       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2628     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2629   else
2630     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2631                              Op1, Op2));
2632 }
2633 
2634 void SelectionDAGBuilder::visitICmp(const User &I) {
2635   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2636   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2637     predicate = IC->getPredicate();
2638   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2639     predicate = ICmpInst::Predicate(IC->getPredicate());
2640   SDValue Op1 = getValue(I.getOperand(0));
2641   SDValue Op2 = getValue(I.getOperand(1));
2642   ISD::CondCode Opcode = getICmpCondCode(predicate);
2643 
2644   EVT DestVT = TLI.getValueType(I.getType());
2645   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2646 }
2647 
2648 void SelectionDAGBuilder::visitFCmp(const User &I) {
2649   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2650   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2651     predicate = FC->getPredicate();
2652   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2653     predicate = FCmpInst::Predicate(FC->getPredicate());
2654   SDValue Op1 = getValue(I.getOperand(0));
2655   SDValue Op2 = getValue(I.getOperand(1));
2656   ISD::CondCode Condition = getFCmpCondCode(predicate);
2657   if (TM.Options.NoNaNsFPMath)
2658     Condition = getFCmpCodeWithoutNaN(Condition);
2659   EVT DestVT = TLI.getValueType(I.getType());
2660   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2661 }
2662 
2663 void SelectionDAGBuilder::visitSelect(const User &I) {
2664   SmallVector<EVT, 4> ValueVTs;
2665   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2666   unsigned NumValues = ValueVTs.size();
2667   if (NumValues == 0) return;
2668 
2669   SmallVector<SDValue, 4> Values(NumValues);
2670   SDValue Cond     = getValue(I.getOperand(0));
2671   SDValue TrueVal  = getValue(I.getOperand(1));
2672   SDValue FalseVal = getValue(I.getOperand(2));
2673   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2674     ISD::VSELECT : ISD::SELECT;
2675 
2676   for (unsigned i = 0; i != NumValues; ++i)
2677     Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2678                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2679                             Cond,
2680                             SDValue(TrueVal.getNode(),
2681                                     TrueVal.getResNo() + i),
2682                             SDValue(FalseVal.getNode(),
2683                                     FalseVal.getResNo() + i));
2684 
2685   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2686                            DAG.getVTList(&ValueVTs[0], NumValues),
2687                            &Values[0], NumValues));
2688 }
2689 
2690 void SelectionDAGBuilder::visitTrunc(const User &I) {
2691   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2692   SDValue N = getValue(I.getOperand(0));
2693   EVT DestVT = TLI.getValueType(I.getType());
2694   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2695 }
2696 
2697 void SelectionDAGBuilder::visitZExt(const User &I) {
2698   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2699   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2700   SDValue N = getValue(I.getOperand(0));
2701   EVT DestVT = TLI.getValueType(I.getType());
2702   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2703 }
2704 
2705 void SelectionDAGBuilder::visitSExt(const User &I) {
2706   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2707   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2708   SDValue N = getValue(I.getOperand(0));
2709   EVT DestVT = TLI.getValueType(I.getType());
2710   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2711 }
2712 
2713 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2714   // FPTrunc is never a no-op cast, no need to check
2715   SDValue N = getValue(I.getOperand(0));
2716   EVT DestVT = TLI.getValueType(I.getType());
2717   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2718                            DestVT, N,
2719                            DAG.getTargetConstant(0, TLI.getPointerTy())));
2720 }
2721 
2722 void SelectionDAGBuilder::visitFPExt(const User &I){
2723   // FPExt is never a no-op cast, no need to check
2724   SDValue N = getValue(I.getOperand(0));
2725   EVT DestVT = TLI.getValueType(I.getType());
2726   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2727 }
2728 
2729 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2730   // FPToUI is never a no-op cast, no need to check
2731   SDValue N = getValue(I.getOperand(0));
2732   EVT DestVT = TLI.getValueType(I.getType());
2733   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2734 }
2735 
2736 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2737   // FPToSI is never a no-op cast, no need to check
2738   SDValue N = getValue(I.getOperand(0));
2739   EVT DestVT = TLI.getValueType(I.getType());
2740   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2741 }
2742 
2743 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2744   // UIToFP is never a no-op cast, no need to check
2745   SDValue N = getValue(I.getOperand(0));
2746   EVT DestVT = TLI.getValueType(I.getType());
2747   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2748 }
2749 
2750 void SelectionDAGBuilder::visitSIToFP(const User &I){
2751   // SIToFP is never a no-op cast, no need to check
2752   SDValue N = getValue(I.getOperand(0));
2753   EVT DestVT = TLI.getValueType(I.getType());
2754   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2755 }
2756 
2757 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2758   // What to do depends on the size of the integer and the size of the pointer.
2759   // We can either truncate, zero extend, or no-op, accordingly.
2760   SDValue N = getValue(I.getOperand(0));
2761   EVT DestVT = TLI.getValueType(I.getType());
2762   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2763 }
2764 
2765 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2766   // What to do depends on the size of the integer and the size of the pointer.
2767   // We can either truncate, zero extend, or no-op, accordingly.
2768   SDValue N = getValue(I.getOperand(0));
2769   EVT DestVT = TLI.getValueType(I.getType());
2770   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2771 }
2772 
2773 void SelectionDAGBuilder::visitBitCast(const User &I) {
2774   SDValue N = getValue(I.getOperand(0));
2775   EVT DestVT = TLI.getValueType(I.getType());
2776 
2777   // BitCast assures us that source and destination are the same size so this is
2778   // either a BITCAST or a no-op.
2779   if (DestVT != N.getValueType())
2780     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2781                              DestVT, N)); // convert types.
2782   else
2783     setValue(&I, N);            // noop cast.
2784 }
2785 
2786 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2787   SDValue InVec = getValue(I.getOperand(0));
2788   SDValue InVal = getValue(I.getOperand(1));
2789   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2790                               TLI.getPointerTy(),
2791                               getValue(I.getOperand(2)));
2792   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2793                            TLI.getValueType(I.getType()),
2794                            InVec, InVal, InIdx));
2795 }
2796 
2797 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2798   SDValue InVec = getValue(I.getOperand(0));
2799   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2800                               TLI.getPointerTy(),
2801                               getValue(I.getOperand(1)));
2802   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2803                            TLI.getValueType(I.getType()), InVec, InIdx));
2804 }
2805 
2806 // Utility for visitShuffleVector - Return true if every element in Mask,
2807 // begining // from position Pos and ending in Pos+Size, falls within the
2808 // specified sequential range [L, L+Pos). or is undef.
2809 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2810                                 int Pos, int Size, int Low) {
2811   for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2812     if (Mask[i] >= 0 && Mask[i] != Low)
2813       return false;
2814   return true;
2815 }
2816 
2817 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2818   SDValue Src1 = getValue(I.getOperand(0));
2819   SDValue Src2 = getValue(I.getOperand(1));
2820 
2821   SmallVector<int, 8> Mask;
2822   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2823   unsigned MaskNumElts = Mask.size();
2824 
2825   EVT VT = TLI.getValueType(I.getType());
2826   EVT SrcVT = Src1.getValueType();
2827   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2828 
2829   if (SrcNumElts == MaskNumElts) {
2830     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2831                                       &Mask[0]));
2832     return;
2833   }
2834 
2835   // Normalize the shuffle vector since mask and vector length don't match.
2836   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2837     // Mask is longer than the source vectors and is a multiple of the source
2838     // vectors.  We can use concatenate vector to make the mask and vectors
2839     // lengths match.
2840     if (SrcNumElts*2 == MaskNumElts) {
2841       // First check for Src1 in low and Src2 in high
2842       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2843           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2844         // The shuffle is concatenating two vectors together.
2845         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2846                                  VT, Src1, Src2));
2847         return;
2848       }
2849       // Then check for Src2 in low and Src1 in high
2850       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2851           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2852         // The shuffle is concatenating two vectors together.
2853         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2854                                  VT, Src2, Src1));
2855         return;
2856       }
2857     }
2858 
2859     // Pad both vectors with undefs to make them the same length as the mask.
2860     unsigned NumConcat = MaskNumElts / SrcNumElts;
2861     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2862     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2863     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2864 
2865     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2866     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2867     MOps1[0] = Src1;
2868     MOps2[0] = Src2;
2869 
2870     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2871                                                   getCurDebugLoc(), VT,
2872                                                   &MOps1[0], NumConcat);
2873     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2874                                                   getCurDebugLoc(), VT,
2875                                                   &MOps2[0], NumConcat);
2876 
2877     // Readjust mask for new input vector length.
2878     SmallVector<int, 8> MappedOps;
2879     for (unsigned i = 0; i != MaskNumElts; ++i) {
2880       int Idx = Mask[i];
2881       if (Idx < (int)SrcNumElts)
2882         MappedOps.push_back(Idx);
2883       else
2884         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2885     }
2886 
2887     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2888                                       &MappedOps[0]));
2889     return;
2890   }
2891 
2892   if (SrcNumElts > MaskNumElts) {
2893     // Analyze the access pattern of the vector to see if we can extract
2894     // two subvectors and do the shuffle. The analysis is done by calculating
2895     // the range of elements the mask access on both vectors.
2896     int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2897                         static_cast<int>(SrcNumElts+1)};
2898     int MaxRange[2] = {-1, -1};
2899 
2900     for (unsigned i = 0; i != MaskNumElts; ++i) {
2901       int Idx = Mask[i];
2902       int Input = 0;
2903       if (Idx < 0)
2904         continue;
2905 
2906       if (Idx >= (int)SrcNumElts) {
2907         Input = 1;
2908         Idx -= SrcNumElts;
2909       }
2910       if (Idx > MaxRange[Input])
2911         MaxRange[Input] = Idx;
2912       if (Idx < MinRange[Input])
2913         MinRange[Input] = Idx;
2914     }
2915 
2916     // Check if the access is smaller than the vector size and can we find
2917     // a reasonable extract index.
2918     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2919                                  // Extract.
2920     int StartIdx[2];  // StartIdx to extract from
2921     for (int Input=0; Input < 2; ++Input) {
2922       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2923         RangeUse[Input] = 0; // Unused
2924         StartIdx[Input] = 0;
2925       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2926         // Fits within range but we should see if we can find a good
2927         // start index that is a multiple of the mask length.
2928         if (MaxRange[Input] < (int)MaskNumElts) {
2929           RangeUse[Input] = 1; // Extract from beginning of the vector
2930           StartIdx[Input] = 0;
2931         } else {
2932           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2933           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2934               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2935             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2936         }
2937       }
2938     }
2939 
2940     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2941       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2942       return;
2943     }
2944     if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2945       // Extract appropriate subvector and generate a vector shuffle
2946       for (int Input=0; Input < 2; ++Input) {
2947         SDValue &Src = Input == 0 ? Src1 : Src2;
2948         if (RangeUse[Input] == 0)
2949           Src = DAG.getUNDEF(VT);
2950         else
2951           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2952                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2953       }
2954 
2955       // Calculate new mask.
2956       SmallVector<int, 8> MappedOps;
2957       for (unsigned i = 0; i != MaskNumElts; ++i) {
2958         int Idx = Mask[i];
2959         if (Idx < 0)
2960           MappedOps.push_back(Idx);
2961         else if (Idx < (int)SrcNumElts)
2962           MappedOps.push_back(Idx - StartIdx[0]);
2963         else
2964           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2965       }
2966 
2967       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2968                                         &MappedOps[0]));
2969       return;
2970     }
2971   }
2972 
2973   // We can't use either concat vectors or extract subvectors so fall back to
2974   // replacing the shuffle with extract and build vector.
2975   // to insert and build vector.
2976   EVT EltVT = VT.getVectorElementType();
2977   EVT PtrVT = TLI.getPointerTy();
2978   SmallVector<SDValue,8> Ops;
2979   for (unsigned i = 0; i != MaskNumElts; ++i) {
2980     if (Mask[i] < 0) {
2981       Ops.push_back(DAG.getUNDEF(EltVT));
2982     } else {
2983       int Idx = Mask[i];
2984       SDValue Res;
2985 
2986       if (Idx < (int)SrcNumElts)
2987         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2988                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2989       else
2990         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2991                           EltVT, Src2,
2992                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2993 
2994       Ops.push_back(Res);
2995     }
2996   }
2997 
2998   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2999                            VT, &Ops[0], Ops.size()));
3000 }
3001 
3002 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3003   const Value *Op0 = I.getOperand(0);
3004   const Value *Op1 = I.getOperand(1);
3005   Type *AggTy = I.getType();
3006   Type *ValTy = Op1->getType();
3007   bool IntoUndef = isa<UndefValue>(Op0);
3008   bool FromUndef = isa<UndefValue>(Op1);
3009 
3010   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3011 
3012   SmallVector<EVT, 4> AggValueVTs;
3013   ComputeValueVTs(TLI, AggTy, AggValueVTs);
3014   SmallVector<EVT, 4> ValValueVTs;
3015   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3016 
3017   unsigned NumAggValues = AggValueVTs.size();
3018   unsigned NumValValues = ValValueVTs.size();
3019   SmallVector<SDValue, 4> Values(NumAggValues);
3020 
3021   SDValue Agg = getValue(Op0);
3022   unsigned i = 0;
3023   // Copy the beginning value(s) from the original aggregate.
3024   for (; i != LinearIndex; ++i)
3025     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3026                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3027   // Copy values from the inserted value(s).
3028   if (NumValValues) {
3029     SDValue Val = getValue(Op1);
3030     for (; i != LinearIndex + NumValValues; ++i)
3031       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3032                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3033   }
3034   // Copy remaining value(s) from the original aggregate.
3035   for (; i != NumAggValues; ++i)
3036     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3037                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3038 
3039   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3040                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
3041                            &Values[0], NumAggValues));
3042 }
3043 
3044 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3045   const Value *Op0 = I.getOperand(0);
3046   Type *AggTy = Op0->getType();
3047   Type *ValTy = I.getType();
3048   bool OutOfUndef = isa<UndefValue>(Op0);
3049 
3050   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3051 
3052   SmallVector<EVT, 4> ValValueVTs;
3053   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3054 
3055   unsigned NumValValues = ValValueVTs.size();
3056 
3057   // Ignore a extractvalue that produces an empty object
3058   if (!NumValValues) {
3059     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3060     return;
3061   }
3062 
3063   SmallVector<SDValue, 4> Values(NumValValues);
3064 
3065   SDValue Agg = getValue(Op0);
3066   // Copy out the selected value(s).
3067   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3068     Values[i - LinearIndex] =
3069       OutOfUndef ?
3070         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3071         SDValue(Agg.getNode(), Agg.getResNo() + i);
3072 
3073   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3074                            DAG.getVTList(&ValValueVTs[0], NumValValues),
3075                            &Values[0], NumValValues));
3076 }
3077 
3078 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3079   SDValue N = getValue(I.getOperand(0));
3080   // Note that the pointer operand may be a vector of pointers. Take the scalar
3081   // element which holds a pointer.
3082   Type *Ty = I.getOperand(0)->getType()->getScalarType();
3083 
3084   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3085        OI != E; ++OI) {
3086     const Value *Idx = *OI;
3087     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3088       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3089       if (Field) {
3090         // N = N + Offset
3091         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3092         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3093                         DAG.getIntPtrConstant(Offset));
3094       }
3095 
3096       Ty = StTy->getElementType(Field);
3097     } else {
3098       Ty = cast<SequentialType>(Ty)->getElementType();
3099 
3100       // If this is a constant subscript, handle it quickly.
3101       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3102         if (CI->isZero()) continue;
3103         uint64_t Offs =
3104             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3105         SDValue OffsVal;
3106         EVT PTy = TLI.getPointerTy();
3107         unsigned PtrBits = PTy.getSizeInBits();
3108         if (PtrBits < 64)
3109           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3110                                 TLI.getPointerTy(),
3111                                 DAG.getConstant(Offs, MVT::i64));
3112         else
3113           OffsVal = DAG.getIntPtrConstant(Offs);
3114 
3115         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3116                         OffsVal);
3117         continue;
3118       }
3119 
3120       // N = N + Idx * ElementSize;
3121       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3122                                 TD->getTypeAllocSize(Ty));
3123       SDValue IdxN = getValue(Idx);
3124 
3125       // If the index is smaller or larger than intptr_t, truncate or extend
3126       // it.
3127       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3128 
3129       // If this is a multiply by a power of two, turn it into a shl
3130       // immediately.  This is a very common case.
3131       if (ElementSize != 1) {
3132         if (ElementSize.isPowerOf2()) {
3133           unsigned Amt = ElementSize.logBase2();
3134           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3135                              N.getValueType(), IdxN,
3136                              DAG.getConstant(Amt, IdxN.getValueType()));
3137         } else {
3138           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3139           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3140                              N.getValueType(), IdxN, Scale);
3141         }
3142       }
3143 
3144       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3145                       N.getValueType(), N, IdxN);
3146     }
3147   }
3148 
3149   setValue(&I, N);
3150 }
3151 
3152 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3153   // If this is a fixed sized alloca in the entry block of the function,
3154   // allocate it statically on the stack.
3155   if (FuncInfo.StaticAllocaMap.count(&I))
3156     return;   // getValue will auto-populate this.
3157 
3158   Type *Ty = I.getAllocatedType();
3159   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3160   unsigned Align =
3161     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3162              I.getAlignment());
3163 
3164   SDValue AllocSize = getValue(I.getArraySize());
3165 
3166   EVT IntPtr = TLI.getPointerTy();
3167   if (AllocSize.getValueType() != IntPtr)
3168     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3169 
3170   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3171                           AllocSize,
3172                           DAG.getConstant(TySize, IntPtr));
3173 
3174   // Handle alignment.  If the requested alignment is less than or equal to
3175   // the stack alignment, ignore it.  If the size is greater than or equal to
3176   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3177   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3178   if (Align <= StackAlign)
3179     Align = 0;
3180 
3181   // Round the size of the allocation up to the stack alignment size
3182   // by add SA-1 to the size.
3183   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3184                           AllocSize.getValueType(), AllocSize,
3185                           DAG.getIntPtrConstant(StackAlign-1));
3186 
3187   // Mask out the low bits for alignment purposes.
3188   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3189                           AllocSize.getValueType(), AllocSize,
3190                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3191 
3192   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3193   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3194   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3195                             VTs, Ops, 3);
3196   setValue(&I, DSA);
3197   DAG.setRoot(DSA.getValue(1));
3198 
3199   // Inform the Frame Information that we have just allocated a variable-sized
3200   // object.
3201   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3202 }
3203 
3204 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3205   if (I.isAtomic())
3206     return visitAtomicLoad(I);
3207 
3208   const Value *SV = I.getOperand(0);
3209   SDValue Ptr = getValue(SV);
3210 
3211   Type *Ty = I.getType();
3212 
3213   bool isVolatile = I.isVolatile();
3214   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3215   bool isInvariant = I.getMetadata("invariant.load") != 0;
3216   unsigned Alignment = I.getAlignment();
3217   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3218   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3219 
3220   SmallVector<EVT, 4> ValueVTs;
3221   SmallVector<uint64_t, 4> Offsets;
3222   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3223   unsigned NumValues = ValueVTs.size();
3224   if (NumValues == 0)
3225     return;
3226 
3227   SDValue Root;
3228   bool ConstantMemory = false;
3229   if (I.isVolatile() || NumValues > MaxParallelChains)
3230     // Serialize volatile loads with other side effects.
3231     Root = getRoot();
3232   else if (AA->pointsToConstantMemory(
3233              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3234     // Do not serialize (non-volatile) loads of constant memory with anything.
3235     Root = DAG.getEntryNode();
3236     ConstantMemory = true;
3237   } else {
3238     // Do not serialize non-volatile loads against each other.
3239     Root = DAG.getRoot();
3240   }
3241 
3242   SmallVector<SDValue, 4> Values(NumValues);
3243   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3244                                           NumValues));
3245   EVT PtrVT = Ptr.getValueType();
3246   unsigned ChainI = 0;
3247   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3248     // Serializing loads here may result in excessive register pressure, and
3249     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3250     // could recover a bit by hoisting nodes upward in the chain by recognizing
3251     // they are side-effect free or do not alias. The optimizer should really
3252     // avoid this case by converting large object/array copies to llvm.memcpy
3253     // (MaxParallelChains should always remain as failsafe).
3254     if (ChainI == MaxParallelChains) {
3255       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3256       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3257                                   MVT::Other, &Chains[0], ChainI);
3258       Root = Chain;
3259       ChainI = 0;
3260     }
3261     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3262                             PtrVT, Ptr,
3263                             DAG.getConstant(Offsets[i], PtrVT));
3264     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3265                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3266                             isNonTemporal, isInvariant, Alignment, TBAAInfo,
3267                             Ranges);
3268 
3269     Values[i] = L;
3270     Chains[ChainI] = L.getValue(1);
3271   }
3272 
3273   if (!ConstantMemory) {
3274     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3275                                 MVT::Other, &Chains[0], ChainI);
3276     if (isVolatile)
3277       DAG.setRoot(Chain);
3278     else
3279       PendingLoads.push_back(Chain);
3280   }
3281 
3282   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3283                            DAG.getVTList(&ValueVTs[0], NumValues),
3284                            &Values[0], NumValues));
3285 }
3286 
3287 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3288   if (I.isAtomic())
3289     return visitAtomicStore(I);
3290 
3291   const Value *SrcV = I.getOperand(0);
3292   const Value *PtrV = I.getOperand(1);
3293 
3294   SmallVector<EVT, 4> ValueVTs;
3295   SmallVector<uint64_t, 4> Offsets;
3296   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3297   unsigned NumValues = ValueVTs.size();
3298   if (NumValues == 0)
3299     return;
3300 
3301   // Get the lowered operands. Note that we do this after
3302   // checking if NumResults is zero, because with zero results
3303   // the operands won't have values in the map.
3304   SDValue Src = getValue(SrcV);
3305   SDValue Ptr = getValue(PtrV);
3306 
3307   SDValue Root = getRoot();
3308   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3309                                           NumValues));
3310   EVT PtrVT = Ptr.getValueType();
3311   bool isVolatile = I.isVolatile();
3312   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3313   unsigned Alignment = I.getAlignment();
3314   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3315 
3316   unsigned ChainI = 0;
3317   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3318     // See visitLoad comments.
3319     if (ChainI == MaxParallelChains) {
3320       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3321                                   MVT::Other, &Chains[0], ChainI);
3322       Root = Chain;
3323       ChainI = 0;
3324     }
3325     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3326                               DAG.getConstant(Offsets[i], PtrVT));
3327     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3328                               SDValue(Src.getNode(), Src.getResNo() + i),
3329                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3330                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3331     Chains[ChainI] = St;
3332   }
3333 
3334   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3335                                   MVT::Other, &Chains[0], ChainI);
3336   ++SDNodeOrder;
3337   AssignOrderingToNode(StoreNode.getNode());
3338   DAG.setRoot(StoreNode);
3339 }
3340 
3341 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3342                                     SynchronizationScope Scope,
3343                                     bool Before, DebugLoc dl,
3344                                     SelectionDAG &DAG,
3345                                     const TargetLowering &TLI) {
3346   // Fence, if necessary
3347   if (Before) {
3348     if (Order == AcquireRelease || Order == SequentiallyConsistent)
3349       Order = Release;
3350     else if (Order == Acquire || Order == Monotonic)
3351       return Chain;
3352   } else {
3353     if (Order == AcquireRelease)
3354       Order = Acquire;
3355     else if (Order == Release || Order == Monotonic)
3356       return Chain;
3357   }
3358   SDValue Ops[3];
3359   Ops[0] = Chain;
3360   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3361   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3362   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3363 }
3364 
3365 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3366   DebugLoc dl = getCurDebugLoc();
3367   AtomicOrdering Order = I.getOrdering();
3368   SynchronizationScope Scope = I.getSynchScope();
3369 
3370   SDValue InChain = getRoot();
3371 
3372   if (TLI.getInsertFencesForAtomic())
3373     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3374                                    DAG, TLI);
3375 
3376   SDValue L =
3377     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3378                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3379                   InChain,
3380                   getValue(I.getPointerOperand()),
3381                   getValue(I.getCompareOperand()),
3382                   getValue(I.getNewValOperand()),
3383                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3384                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3385                   Scope);
3386 
3387   SDValue OutChain = L.getValue(1);
3388 
3389   if (TLI.getInsertFencesForAtomic())
3390     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3391                                     DAG, TLI);
3392 
3393   setValue(&I, L);
3394   DAG.setRoot(OutChain);
3395 }
3396 
3397 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3398   DebugLoc dl = getCurDebugLoc();
3399   ISD::NodeType NT;
3400   switch (I.getOperation()) {
3401   default: llvm_unreachable("Unknown atomicrmw operation");
3402   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3403   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3404   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3405   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3406   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3407   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3408   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3409   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3410   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3411   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3412   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3413   }
3414   AtomicOrdering Order = I.getOrdering();
3415   SynchronizationScope Scope = I.getSynchScope();
3416 
3417   SDValue InChain = getRoot();
3418 
3419   if (TLI.getInsertFencesForAtomic())
3420     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3421                                    DAG, TLI);
3422 
3423   SDValue L =
3424     DAG.getAtomic(NT, dl,
3425                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
3426                   InChain,
3427                   getValue(I.getPointerOperand()),
3428                   getValue(I.getValOperand()),
3429                   I.getPointerOperand(), 0 /* Alignment */,
3430                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3431                   Scope);
3432 
3433   SDValue OutChain = L.getValue(1);
3434 
3435   if (TLI.getInsertFencesForAtomic())
3436     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3437                                     DAG, TLI);
3438 
3439   setValue(&I, L);
3440   DAG.setRoot(OutChain);
3441 }
3442 
3443 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3444   DebugLoc dl = getCurDebugLoc();
3445   SDValue Ops[3];
3446   Ops[0] = getRoot();
3447   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3448   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3449   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3450 }
3451 
3452 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3453   DebugLoc dl = getCurDebugLoc();
3454   AtomicOrdering Order = I.getOrdering();
3455   SynchronizationScope Scope = I.getSynchScope();
3456 
3457   SDValue InChain = getRoot();
3458 
3459   EVT VT = EVT::getEVT(I.getType());
3460 
3461   if (I.getAlignment() * 8 < VT.getSizeInBits())
3462     report_fatal_error("Cannot generate unaligned atomic load");
3463 
3464   SDValue L =
3465     DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3466                   getValue(I.getPointerOperand()),
3467                   I.getPointerOperand(), I.getAlignment(),
3468                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3469                   Scope);
3470 
3471   SDValue OutChain = L.getValue(1);
3472 
3473   if (TLI.getInsertFencesForAtomic())
3474     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3475                                     DAG, TLI);
3476 
3477   setValue(&I, L);
3478   DAG.setRoot(OutChain);
3479 }
3480 
3481 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3482   DebugLoc dl = getCurDebugLoc();
3483 
3484   AtomicOrdering Order = I.getOrdering();
3485   SynchronizationScope Scope = I.getSynchScope();
3486 
3487   SDValue InChain = getRoot();
3488 
3489   EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3490 
3491   if (I.getAlignment() * 8 < VT.getSizeInBits())
3492     report_fatal_error("Cannot generate unaligned atomic store");
3493 
3494   if (TLI.getInsertFencesForAtomic())
3495     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3496                                    DAG, TLI);
3497 
3498   SDValue OutChain =
3499     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3500                   InChain,
3501                   getValue(I.getPointerOperand()),
3502                   getValue(I.getValueOperand()),
3503                   I.getPointerOperand(), I.getAlignment(),
3504                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3505                   Scope);
3506 
3507   if (TLI.getInsertFencesForAtomic())
3508     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3509                                     DAG, TLI);
3510 
3511   DAG.setRoot(OutChain);
3512 }
3513 
3514 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3515 /// node.
3516 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3517                                                unsigned Intrinsic) {
3518   bool HasChain = !I.doesNotAccessMemory();
3519   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3520 
3521   // Build the operand list.
3522   SmallVector<SDValue, 8> Ops;
3523   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3524     if (OnlyLoad) {
3525       // We don't need to serialize loads against other loads.
3526       Ops.push_back(DAG.getRoot());
3527     } else {
3528       Ops.push_back(getRoot());
3529     }
3530   }
3531 
3532   // Info is set by getTgtMemInstrinsic
3533   TargetLowering::IntrinsicInfo Info;
3534   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3535 
3536   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3537   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3538       Info.opc == ISD::INTRINSIC_W_CHAIN)
3539     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3540 
3541   // Add all operands of the call to the operand list.
3542   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3543     SDValue Op = getValue(I.getArgOperand(i));
3544     Ops.push_back(Op);
3545   }
3546 
3547   SmallVector<EVT, 4> ValueVTs;
3548   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3549 
3550   if (HasChain)
3551     ValueVTs.push_back(MVT::Other);
3552 
3553   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3554 
3555   // Create the node.
3556   SDValue Result;
3557   if (IsTgtIntrinsic) {
3558     // This is target intrinsic that touches memory
3559     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3560                                      VTs, &Ops[0], Ops.size(),
3561                                      Info.memVT,
3562                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3563                                      Info.align, Info.vol,
3564                                      Info.readMem, Info.writeMem);
3565   } else if (!HasChain) {
3566     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3567                          VTs, &Ops[0], Ops.size());
3568   } else if (!I.getType()->isVoidTy()) {
3569     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3570                          VTs, &Ops[0], Ops.size());
3571   } else {
3572     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3573                          VTs, &Ops[0], Ops.size());
3574   }
3575 
3576   if (HasChain) {
3577     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3578     if (OnlyLoad)
3579       PendingLoads.push_back(Chain);
3580     else
3581       DAG.setRoot(Chain);
3582   }
3583 
3584   if (!I.getType()->isVoidTy()) {
3585     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3586       EVT VT = TLI.getValueType(PTy);
3587       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3588     }
3589 
3590     setValue(&I, Result);
3591   } else {
3592     // Assign order to result here. If the intrinsic does not produce a result,
3593     // it won't be mapped to a SDNode and visit() will not assign it an order
3594     // number.
3595     ++SDNodeOrder;
3596     AssignOrderingToNode(Result.getNode());
3597   }
3598 }
3599 
3600 /// GetSignificand - Get the significand and build it into a floating-point
3601 /// number with exponent of 1:
3602 ///
3603 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3604 ///
3605 /// where Op is the hexidecimal representation of floating point value.
3606 static SDValue
3607 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3608   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3609                            DAG.getConstant(0x007fffff, MVT::i32));
3610   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3611                            DAG.getConstant(0x3f800000, MVT::i32));
3612   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3613 }
3614 
3615 /// GetExponent - Get the exponent:
3616 ///
3617 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3618 ///
3619 /// where Op is the hexidecimal representation of floating point value.
3620 static SDValue
3621 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3622             DebugLoc dl) {
3623   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3624                            DAG.getConstant(0x7f800000, MVT::i32));
3625   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3626                            DAG.getConstant(23, TLI.getPointerTy()));
3627   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3628                            DAG.getConstant(127, MVT::i32));
3629   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3630 }
3631 
3632 /// getF32Constant - Get 32-bit floating point constant.
3633 static SDValue
3634 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3635   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3636 }
3637 
3638 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3639 const char *
3640 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3641   SDValue Op1 = getValue(I.getArgOperand(0));
3642   SDValue Op2 = getValue(I.getArgOperand(1));
3643 
3644   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3645   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3646   return 0;
3647 }
3648 
3649 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3650 /// limited-precision mode.
3651 void
3652 SelectionDAGBuilder::visitExp(const CallInst &I) {
3653   SDValue result;
3654   DebugLoc dl = getCurDebugLoc();
3655 
3656   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3657       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3658     SDValue Op = getValue(I.getArgOperand(0));
3659 
3660     // Put the exponent in the right bit position for later addition to the
3661     // final result:
3662     //
3663     //   #define LOG2OFe 1.4426950f
3664     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3665     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3666                              getF32Constant(DAG, 0x3fb8aa3b));
3667     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3668 
3669     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3670     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3671     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3672 
3673     //   IntegerPartOfX <<= 23;
3674     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3675                                  DAG.getConstant(23, TLI.getPointerTy()));
3676 
3677     if (LimitFloatPrecision <= 6) {
3678       // For floating-point precision of 6:
3679       //
3680       //   TwoToFractionalPartOfX =
3681       //     0.997535578f +
3682       //       (0.735607626f + 0.252464424f * x) * x;
3683       //
3684       // error 0.0144103317, which is 6 bits
3685       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3686                                getF32Constant(DAG, 0x3e814304));
3687       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3688                                getF32Constant(DAG, 0x3f3c50c8));
3689       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3690       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3691                                getF32Constant(DAG, 0x3f7f5e7e));
3692       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3693 
3694       // Add the exponent into the result in integer domain.
3695       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3696                                TwoToFracPartOfX, IntegerPartOfX);
3697 
3698       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3699     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3700       // For floating-point precision of 12:
3701       //
3702       //   TwoToFractionalPartOfX =
3703       //     0.999892986f +
3704       //       (0.696457318f +
3705       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3706       //
3707       // 0.000107046256 error, which is 13 to 14 bits
3708       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3709                                getF32Constant(DAG, 0x3da235e3));
3710       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3711                                getF32Constant(DAG, 0x3e65b8f3));
3712       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3713       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3714                                getF32Constant(DAG, 0x3f324b07));
3715       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3716       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3717                                getF32Constant(DAG, 0x3f7ff8fd));
3718       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3719 
3720       // Add the exponent into the result in integer domain.
3721       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3722                                TwoToFracPartOfX, IntegerPartOfX);
3723 
3724       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3725     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3726       // For floating-point precision of 18:
3727       //
3728       //   TwoToFractionalPartOfX =
3729       //     0.999999982f +
3730       //       (0.693148872f +
3731       //         (0.240227044f +
3732       //           (0.554906021e-1f +
3733       //             (0.961591928e-2f +
3734       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3735       //
3736       // error 2.47208000*10^(-7), which is better than 18 bits
3737       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3738                                getF32Constant(DAG, 0x3924b03e));
3739       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3740                                getF32Constant(DAG, 0x3ab24b87));
3741       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3742       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3743                                getF32Constant(DAG, 0x3c1d8c17));
3744       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3745       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3746                                getF32Constant(DAG, 0x3d634a1d));
3747       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3748       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3749                                getF32Constant(DAG, 0x3e75fe14));
3750       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3751       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3752                                 getF32Constant(DAG, 0x3f317234));
3753       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3754       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3755                                 getF32Constant(DAG, 0x3f800000));
3756       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3757                                              MVT::i32, t13);
3758 
3759       // Add the exponent into the result in integer domain.
3760       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3761                                 TwoToFracPartOfX, IntegerPartOfX);
3762 
3763       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3764     }
3765   } else {
3766     // No special expansion.
3767     result = DAG.getNode(ISD::FEXP, dl,
3768                          getValue(I.getArgOperand(0)).getValueType(),
3769                          getValue(I.getArgOperand(0)));
3770   }
3771 
3772   setValue(&I, result);
3773 }
3774 
3775 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3776 /// limited-precision mode.
3777 void
3778 SelectionDAGBuilder::visitLog(const CallInst &I) {
3779   SDValue result;
3780   DebugLoc dl = getCurDebugLoc();
3781 
3782   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3783       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3784     SDValue Op = getValue(I.getArgOperand(0));
3785     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3786 
3787     // Scale the exponent by log(2) [0.69314718f].
3788     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3789     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3790                                         getF32Constant(DAG, 0x3f317218));
3791 
3792     // Get the significand and build it into a floating-point number with
3793     // exponent of 1.
3794     SDValue X = GetSignificand(DAG, Op1, dl);
3795 
3796     if (LimitFloatPrecision <= 6) {
3797       // For floating-point precision of 6:
3798       //
3799       //   LogofMantissa =
3800       //     -1.1609546f +
3801       //       (1.4034025f - 0.23903021f * x) * x;
3802       //
3803       // error 0.0034276066, which is better than 8 bits
3804       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3805                                getF32Constant(DAG, 0xbe74c456));
3806       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3807                                getF32Constant(DAG, 0x3fb3a2b1));
3808       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3809       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3810                                           getF32Constant(DAG, 0x3f949a29));
3811 
3812       result = DAG.getNode(ISD::FADD, dl,
3813                            MVT::f32, LogOfExponent, LogOfMantissa);
3814     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3815       // For floating-point precision of 12:
3816       //
3817       //   LogOfMantissa =
3818       //     -1.7417939f +
3819       //       (2.8212026f +
3820       //         (-1.4699568f +
3821       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3822       //
3823       // error 0.000061011436, which is 14 bits
3824       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3825                                getF32Constant(DAG, 0xbd67b6d6));
3826       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3827                                getF32Constant(DAG, 0x3ee4f4b8));
3828       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3829       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3830                                getF32Constant(DAG, 0x3fbc278b));
3831       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3832       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3833                                getF32Constant(DAG, 0x40348e95));
3834       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3835       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3836                                           getF32Constant(DAG, 0x3fdef31a));
3837 
3838       result = DAG.getNode(ISD::FADD, dl,
3839                            MVT::f32, LogOfExponent, LogOfMantissa);
3840     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3841       // For floating-point precision of 18:
3842       //
3843       //   LogOfMantissa =
3844       //     -2.1072184f +
3845       //       (4.2372794f +
3846       //         (-3.7029485f +
3847       //           (2.2781945f +
3848       //             (-0.87823314f +
3849       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3850       //
3851       // error 0.0000023660568, which is better than 18 bits
3852       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3853                                getF32Constant(DAG, 0xbc91e5ac));
3854       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3855                                getF32Constant(DAG, 0x3e4350aa));
3856       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3857       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3858                                getF32Constant(DAG, 0x3f60d3e3));
3859       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3860       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3861                                getF32Constant(DAG, 0x4011cdf0));
3862       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3863       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3864                                getF32Constant(DAG, 0x406cfd1c));
3865       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3866       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3867                                getF32Constant(DAG, 0x408797cb));
3868       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3869       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3870                                           getF32Constant(DAG, 0x4006dcab));
3871 
3872       result = DAG.getNode(ISD::FADD, dl,
3873                            MVT::f32, LogOfExponent, LogOfMantissa);
3874     }
3875   } else {
3876     // No special expansion.
3877     result = DAG.getNode(ISD::FLOG, dl,
3878                          getValue(I.getArgOperand(0)).getValueType(),
3879                          getValue(I.getArgOperand(0)));
3880   }
3881 
3882   setValue(&I, result);
3883 }
3884 
3885 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3886 /// limited-precision mode.
3887 void
3888 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3889   SDValue result;
3890   DebugLoc dl = getCurDebugLoc();
3891 
3892   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3893       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3894     SDValue Op = getValue(I.getArgOperand(0));
3895     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3896 
3897     // Get the exponent.
3898     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3899 
3900     // Get the significand and build it into a floating-point number with
3901     // exponent of 1.
3902     SDValue X = GetSignificand(DAG, Op1, dl);
3903 
3904     // Different possible minimax approximations of significand in
3905     // floating-point for various degrees of accuracy over [1,2].
3906     if (LimitFloatPrecision <= 6) {
3907       // For floating-point precision of 6:
3908       //
3909       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3910       //
3911       // error 0.0049451742, which is more than 7 bits
3912       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3913                                getF32Constant(DAG, 0xbeb08fe0));
3914       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3915                                getF32Constant(DAG, 0x40019463));
3916       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3917       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3918                                            getF32Constant(DAG, 0x3fd6633d));
3919 
3920       result = DAG.getNode(ISD::FADD, dl,
3921                            MVT::f32, LogOfExponent, Log2ofMantissa);
3922     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3923       // For floating-point precision of 12:
3924       //
3925       //   Log2ofMantissa =
3926       //     -2.51285454f +
3927       //       (4.07009056f +
3928       //         (-2.12067489f +
3929       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3930       //
3931       // error 0.0000876136000, which is better than 13 bits
3932       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3933                                getF32Constant(DAG, 0xbda7262e));
3934       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3935                                getF32Constant(DAG, 0x3f25280b));
3936       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3937       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3938                                getF32Constant(DAG, 0x4007b923));
3939       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3940       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3941                                getF32Constant(DAG, 0x40823e2f));
3942       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3943       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3944                                            getF32Constant(DAG, 0x4020d29c));
3945 
3946       result = DAG.getNode(ISD::FADD, dl,
3947                            MVT::f32, LogOfExponent, Log2ofMantissa);
3948     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3949       // For floating-point precision of 18:
3950       //
3951       //   Log2ofMantissa =
3952       //     -3.0400495f +
3953       //       (6.1129976f +
3954       //         (-5.3420409f +
3955       //           (3.2865683f +
3956       //             (-1.2669343f +
3957       //               (0.27515199f -
3958       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3959       //
3960       // error 0.0000018516, which is better than 18 bits
3961       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3962                                getF32Constant(DAG, 0xbcd2769e));
3963       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3964                                getF32Constant(DAG, 0x3e8ce0b9));
3965       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3966       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3967                                getF32Constant(DAG, 0x3fa22ae7));
3968       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3969       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3970                                getF32Constant(DAG, 0x40525723));
3971       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3972       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3973                                getF32Constant(DAG, 0x40aaf200));
3974       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3975       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3976                                getF32Constant(DAG, 0x40c39dad));
3977       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3978       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3979                                            getF32Constant(DAG, 0x4042902c));
3980 
3981       result = DAG.getNode(ISD::FADD, dl,
3982                            MVT::f32, LogOfExponent, Log2ofMantissa);
3983     }
3984   } else {
3985     // No special expansion.
3986     result = DAG.getNode(ISD::FLOG2, dl,
3987                          getValue(I.getArgOperand(0)).getValueType(),
3988                          getValue(I.getArgOperand(0)));
3989   }
3990 
3991   setValue(&I, result);
3992 }
3993 
3994 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3995 /// limited-precision mode.
3996 void
3997 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3998   SDValue result;
3999   DebugLoc dl = getCurDebugLoc();
4000 
4001   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4002       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4003     SDValue Op = getValue(I.getArgOperand(0));
4004     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4005 
4006     // Scale the exponent by log10(2) [0.30102999f].
4007     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4008     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4009                                         getF32Constant(DAG, 0x3e9a209a));
4010 
4011     // Get the significand and build it into a floating-point number with
4012     // exponent of 1.
4013     SDValue X = GetSignificand(DAG, Op1, dl);
4014 
4015     if (LimitFloatPrecision <= 6) {
4016       // For floating-point precision of 6:
4017       //
4018       //   Log10ofMantissa =
4019       //     -0.50419619f +
4020       //       (0.60948995f - 0.10380950f * x) * x;
4021       //
4022       // error 0.0014886165, which is 6 bits
4023       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4024                                getF32Constant(DAG, 0xbdd49a13));
4025       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4026                                getF32Constant(DAG, 0x3f1c0789));
4027       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4028       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4029                                             getF32Constant(DAG, 0x3f011300));
4030 
4031       result = DAG.getNode(ISD::FADD, dl,
4032                            MVT::f32, LogOfExponent, Log10ofMantissa);
4033     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4034       // For floating-point precision of 12:
4035       //
4036       //   Log10ofMantissa =
4037       //     -0.64831180f +
4038       //       (0.91751397f +
4039       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4040       //
4041       // error 0.00019228036, which is better than 12 bits
4042       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4043                                getF32Constant(DAG, 0x3d431f31));
4044       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4045                                getF32Constant(DAG, 0x3ea21fb2));
4046       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4047       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4048                                getF32Constant(DAG, 0x3f6ae232));
4049       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4050       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4051                                             getF32Constant(DAG, 0x3f25f7c3));
4052 
4053       result = DAG.getNode(ISD::FADD, dl,
4054                            MVT::f32, LogOfExponent, Log10ofMantissa);
4055     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4056       // For floating-point precision of 18:
4057       //
4058       //   Log10ofMantissa =
4059       //     -0.84299375f +
4060       //       (1.5327582f +
4061       //         (-1.0688956f +
4062       //           (0.49102474f +
4063       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4064       //
4065       // error 0.0000037995730, which is better than 18 bits
4066       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4067                                getF32Constant(DAG, 0x3c5d51ce));
4068       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4069                                getF32Constant(DAG, 0x3e00685a));
4070       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4071       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4072                                getF32Constant(DAG, 0x3efb6798));
4073       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4074       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4075                                getF32Constant(DAG, 0x3f88d192));
4076       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4077       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4078                                getF32Constant(DAG, 0x3fc4316c));
4079       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4080       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4081                                             getF32Constant(DAG, 0x3f57ce70));
4082 
4083       result = DAG.getNode(ISD::FADD, dl,
4084                            MVT::f32, LogOfExponent, Log10ofMantissa);
4085     }
4086   } else {
4087     // No special expansion.
4088     result = DAG.getNode(ISD::FLOG10, dl,
4089                          getValue(I.getArgOperand(0)).getValueType(),
4090                          getValue(I.getArgOperand(0)));
4091   }
4092 
4093   setValue(&I, result);
4094 }
4095 
4096 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4097 /// limited-precision mode.
4098 void
4099 SelectionDAGBuilder::visitExp2(const CallInst &I) {
4100   SDValue result;
4101   DebugLoc dl = getCurDebugLoc();
4102 
4103   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4104       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4105     SDValue Op = getValue(I.getArgOperand(0));
4106 
4107     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4108 
4109     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4110     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4111     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4112 
4113     //   IntegerPartOfX <<= 23;
4114     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4115                                  DAG.getConstant(23, TLI.getPointerTy()));
4116 
4117     if (LimitFloatPrecision <= 6) {
4118       // For floating-point precision of 6:
4119       //
4120       //   TwoToFractionalPartOfX =
4121       //     0.997535578f +
4122       //       (0.735607626f + 0.252464424f * x) * x;
4123       //
4124       // error 0.0144103317, which is 6 bits
4125       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4126                                getF32Constant(DAG, 0x3e814304));
4127       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4128                                getF32Constant(DAG, 0x3f3c50c8));
4129       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4130       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4131                                getF32Constant(DAG, 0x3f7f5e7e));
4132       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4133       SDValue TwoToFractionalPartOfX =
4134         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4135 
4136       result = DAG.getNode(ISD::BITCAST, dl,
4137                            MVT::f32, TwoToFractionalPartOfX);
4138     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4139       // For floating-point precision of 12:
4140       //
4141       //   TwoToFractionalPartOfX =
4142       //     0.999892986f +
4143       //       (0.696457318f +
4144       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4145       //
4146       // error 0.000107046256, which is 13 to 14 bits
4147       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4148                                getF32Constant(DAG, 0x3da235e3));
4149       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4150                                getF32Constant(DAG, 0x3e65b8f3));
4151       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4152       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4153                                getF32Constant(DAG, 0x3f324b07));
4154       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4155       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4156                                getF32Constant(DAG, 0x3f7ff8fd));
4157       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4158       SDValue TwoToFractionalPartOfX =
4159         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4160 
4161       result = DAG.getNode(ISD::BITCAST, dl,
4162                            MVT::f32, TwoToFractionalPartOfX);
4163     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4164       // For floating-point precision of 18:
4165       //
4166       //   TwoToFractionalPartOfX =
4167       //     0.999999982f +
4168       //       (0.693148872f +
4169       //         (0.240227044f +
4170       //           (0.554906021e-1f +
4171       //             (0.961591928e-2f +
4172       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4173       // error 2.47208000*10^(-7), which is better than 18 bits
4174       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4175                                getF32Constant(DAG, 0x3924b03e));
4176       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4177                                getF32Constant(DAG, 0x3ab24b87));
4178       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4179       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4180                                getF32Constant(DAG, 0x3c1d8c17));
4181       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4182       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4183                                getF32Constant(DAG, 0x3d634a1d));
4184       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4185       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4186                                getF32Constant(DAG, 0x3e75fe14));
4187       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4188       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4189                                 getF32Constant(DAG, 0x3f317234));
4190       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4191       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4192                                 getF32Constant(DAG, 0x3f800000));
4193       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4194       SDValue TwoToFractionalPartOfX =
4195         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4196 
4197       result = DAG.getNode(ISD::BITCAST, dl,
4198                            MVT::f32, TwoToFractionalPartOfX);
4199     }
4200   } else {
4201     // No special expansion.
4202     result = DAG.getNode(ISD::FEXP2, dl,
4203                          getValue(I.getArgOperand(0)).getValueType(),
4204                          getValue(I.getArgOperand(0)));
4205   }
4206 
4207   setValue(&I, result);
4208 }
4209 
4210 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4211 /// limited-precision mode with x == 10.0f.
4212 void
4213 SelectionDAGBuilder::visitPow(const CallInst &I) {
4214   SDValue result;
4215   const Value *Val = I.getArgOperand(0);
4216   DebugLoc dl = getCurDebugLoc();
4217   bool IsExp10 = false;
4218 
4219   if (getValue(Val).getValueType() == MVT::f32 &&
4220       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4221       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4222     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4223       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4224         APFloat Ten(10.0f);
4225         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4226       }
4227     }
4228   }
4229 
4230   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4231     SDValue Op = getValue(I.getArgOperand(1));
4232 
4233     // Put the exponent in the right bit position for later addition to the
4234     // final result:
4235     //
4236     //   #define LOG2OF10 3.3219281f
4237     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4238     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4239                              getF32Constant(DAG, 0x40549a78));
4240     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4241 
4242     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4243     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4244     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4245 
4246     //   IntegerPartOfX <<= 23;
4247     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4248                                  DAG.getConstant(23, TLI.getPointerTy()));
4249 
4250     if (LimitFloatPrecision <= 6) {
4251       // For floating-point precision of 6:
4252       //
4253       //   twoToFractionalPartOfX =
4254       //     0.997535578f +
4255       //       (0.735607626f + 0.252464424f * x) * x;
4256       //
4257       // error 0.0144103317, which is 6 bits
4258       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4259                                getF32Constant(DAG, 0x3e814304));
4260       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4261                                getF32Constant(DAG, 0x3f3c50c8));
4262       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4263       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4264                                getF32Constant(DAG, 0x3f7f5e7e));
4265       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4266       SDValue TwoToFractionalPartOfX =
4267         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4268 
4269       result = DAG.getNode(ISD::BITCAST, dl,
4270                            MVT::f32, TwoToFractionalPartOfX);
4271     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4272       // For floating-point precision of 12:
4273       //
4274       //   TwoToFractionalPartOfX =
4275       //     0.999892986f +
4276       //       (0.696457318f +
4277       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4278       //
4279       // error 0.000107046256, which is 13 to 14 bits
4280       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4281                                getF32Constant(DAG, 0x3da235e3));
4282       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4283                                getF32Constant(DAG, 0x3e65b8f3));
4284       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4285       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4286                                getF32Constant(DAG, 0x3f324b07));
4287       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4288       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4289                                getF32Constant(DAG, 0x3f7ff8fd));
4290       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4291       SDValue TwoToFractionalPartOfX =
4292         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4293 
4294       result = DAG.getNode(ISD::BITCAST, dl,
4295                            MVT::f32, TwoToFractionalPartOfX);
4296     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4297       // For floating-point precision of 18:
4298       //
4299       //   TwoToFractionalPartOfX =
4300       //     0.999999982f +
4301       //       (0.693148872f +
4302       //         (0.240227044f +
4303       //           (0.554906021e-1f +
4304       //             (0.961591928e-2f +
4305       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4306       // error 2.47208000*10^(-7), which is better than 18 bits
4307       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4308                                getF32Constant(DAG, 0x3924b03e));
4309       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4310                                getF32Constant(DAG, 0x3ab24b87));
4311       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4312       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4313                                getF32Constant(DAG, 0x3c1d8c17));
4314       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4315       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4316                                getF32Constant(DAG, 0x3d634a1d));
4317       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4318       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4319                                getF32Constant(DAG, 0x3e75fe14));
4320       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4321       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4322                                 getF32Constant(DAG, 0x3f317234));
4323       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4324       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4325                                 getF32Constant(DAG, 0x3f800000));
4326       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4327       SDValue TwoToFractionalPartOfX =
4328         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4329 
4330       result = DAG.getNode(ISD::BITCAST, dl,
4331                            MVT::f32, TwoToFractionalPartOfX);
4332     }
4333   } else {
4334     // No special expansion.
4335     result = DAG.getNode(ISD::FPOW, dl,
4336                          getValue(I.getArgOperand(0)).getValueType(),
4337                          getValue(I.getArgOperand(0)),
4338                          getValue(I.getArgOperand(1)));
4339   }
4340 
4341   setValue(&I, result);
4342 }
4343 
4344 
4345 /// ExpandPowI - Expand a llvm.powi intrinsic.
4346 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4347                           SelectionDAG &DAG) {
4348   // If RHS is a constant, we can expand this out to a multiplication tree,
4349   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4350   // optimizing for size, we only want to do this if the expansion would produce
4351   // a small number of multiplies, otherwise we do the full expansion.
4352   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4353     // Get the exponent as a positive value.
4354     unsigned Val = RHSC->getSExtValue();
4355     if ((int)Val < 0) Val = -Val;
4356 
4357     // powi(x, 0) -> 1.0
4358     if (Val == 0)
4359       return DAG.getConstantFP(1.0, LHS.getValueType());
4360 
4361     const Function *F = DAG.getMachineFunction().getFunction();
4362     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4363         // If optimizing for size, don't insert too many multiplies.  This
4364         // inserts up to 5 multiplies.
4365         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4366       // We use the simple binary decomposition method to generate the multiply
4367       // sequence.  There are more optimal ways to do this (for example,
4368       // powi(x,15) generates one more multiply than it should), but this has
4369       // the benefit of being both really simple and much better than a libcall.
4370       SDValue Res;  // Logically starts equal to 1.0
4371       SDValue CurSquare = LHS;
4372       while (Val) {
4373         if (Val & 1) {
4374           if (Res.getNode())
4375             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4376           else
4377             Res = CurSquare;  // 1.0*CurSquare.
4378         }
4379 
4380         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4381                                 CurSquare, CurSquare);
4382         Val >>= 1;
4383       }
4384 
4385       // If the original was negative, invert the result, producing 1/(x*x*x).
4386       if (RHSC->getSExtValue() < 0)
4387         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4388                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4389       return Res;
4390     }
4391   }
4392 
4393   // Otherwise, expand to a libcall.
4394   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4395 }
4396 
4397 // getTruncatedArgReg - Find underlying register used for an truncated
4398 // argument.
4399 static unsigned getTruncatedArgReg(const SDValue &N) {
4400   if (N.getOpcode() != ISD::TRUNCATE)
4401     return 0;
4402 
4403   const SDValue &Ext = N.getOperand(0);
4404   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4405     const SDValue &CFR = Ext.getOperand(0);
4406     if (CFR.getOpcode() == ISD::CopyFromReg)
4407       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4408     else
4409       if (CFR.getOpcode() == ISD::TRUNCATE)
4410         return getTruncatedArgReg(CFR);
4411   }
4412   return 0;
4413 }
4414 
4415 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4416 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4417 /// At the end of instruction selection, they will be inserted to the entry BB.
4418 bool
4419 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4420                                               int64_t Offset,
4421                                               const SDValue &N) {
4422   const Argument *Arg = dyn_cast<Argument>(V);
4423   if (!Arg)
4424     return false;
4425 
4426   MachineFunction &MF = DAG.getMachineFunction();
4427   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4428   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4429 
4430   // Ignore inlined function arguments here.
4431   DIVariable DV(Variable);
4432   if (DV.isInlinedFnArgument(MF.getFunction()))
4433     return false;
4434 
4435   unsigned Reg = 0;
4436   // Some arguments' frame index is recorded during argument lowering.
4437   Offset = FuncInfo.getArgumentFrameIndex(Arg);
4438   if (Offset)
4439       Reg = TRI->getFrameRegister(MF);
4440 
4441   if (!Reg && N.getNode()) {
4442     if (N.getOpcode() == ISD::CopyFromReg)
4443       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4444     else
4445       Reg = getTruncatedArgReg(N);
4446     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4447       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4448       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4449       if (PR)
4450         Reg = PR;
4451     }
4452   }
4453 
4454   if (!Reg) {
4455     // Check if ValueMap has reg number.
4456     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4457     if (VMI != FuncInfo.ValueMap.end())
4458       Reg = VMI->second;
4459   }
4460 
4461   if (!Reg && N.getNode()) {
4462     // Check if frame index is available.
4463     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4464       if (FrameIndexSDNode *FINode =
4465           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4466         Reg = TRI->getFrameRegister(MF);
4467         Offset = FINode->getIndex();
4468       }
4469   }
4470 
4471   if (!Reg)
4472     return false;
4473 
4474   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4475                                     TII->get(TargetOpcode::DBG_VALUE))
4476     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4477   FuncInfo.ArgDbgValues.push_back(&*MIB);
4478   return true;
4479 }
4480 
4481 // VisualStudio defines setjmp as _setjmp
4482 #if defined(_MSC_VER) && defined(setjmp) && \
4483                          !defined(setjmp_undefined_for_msvc)
4484 #  pragma push_macro("setjmp")
4485 #  undef setjmp
4486 #  define setjmp_undefined_for_msvc
4487 #endif
4488 
4489 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4490 /// we want to emit this as a call to a named external function, return the name
4491 /// otherwise lower it and return null.
4492 const char *
4493 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4494   DebugLoc dl = getCurDebugLoc();
4495   SDValue Res;
4496 
4497   switch (Intrinsic) {
4498   default:
4499     // By default, turn this into a target intrinsic node.
4500     visitTargetIntrinsic(I, Intrinsic);
4501     return 0;
4502   case Intrinsic::vastart:  visitVAStart(I); return 0;
4503   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4504   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4505   case Intrinsic::returnaddress:
4506     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4507                              getValue(I.getArgOperand(0))));
4508     return 0;
4509   case Intrinsic::frameaddress:
4510     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4511                              getValue(I.getArgOperand(0))));
4512     return 0;
4513   case Intrinsic::setjmp:
4514     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4515   case Intrinsic::longjmp:
4516     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4517   case Intrinsic::memcpy: {
4518     // Assert for address < 256 since we support only user defined address
4519     // spaces.
4520     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4521            < 256 &&
4522            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4523            < 256 &&
4524            "Unknown address space");
4525     SDValue Op1 = getValue(I.getArgOperand(0));
4526     SDValue Op2 = getValue(I.getArgOperand(1));
4527     SDValue Op3 = getValue(I.getArgOperand(2));
4528     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4529     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4530     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4531                               MachinePointerInfo(I.getArgOperand(0)),
4532                               MachinePointerInfo(I.getArgOperand(1))));
4533     return 0;
4534   }
4535   case Intrinsic::memset: {
4536     // Assert for address < 256 since we support only user defined address
4537     // spaces.
4538     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4539            < 256 &&
4540            "Unknown address space");
4541     SDValue Op1 = getValue(I.getArgOperand(0));
4542     SDValue Op2 = getValue(I.getArgOperand(1));
4543     SDValue Op3 = getValue(I.getArgOperand(2));
4544     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4545     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4546     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4547                               MachinePointerInfo(I.getArgOperand(0))));
4548     return 0;
4549   }
4550   case Intrinsic::memmove: {
4551     // Assert for address < 256 since we support only user defined address
4552     // spaces.
4553     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4554            < 256 &&
4555            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4556            < 256 &&
4557            "Unknown address space");
4558     SDValue Op1 = getValue(I.getArgOperand(0));
4559     SDValue Op2 = getValue(I.getArgOperand(1));
4560     SDValue Op3 = getValue(I.getArgOperand(2));
4561     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4562     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4563     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4564                                MachinePointerInfo(I.getArgOperand(0)),
4565                                MachinePointerInfo(I.getArgOperand(1))));
4566     return 0;
4567   }
4568   case Intrinsic::dbg_declare: {
4569     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4570     MDNode *Variable = DI.getVariable();
4571     const Value *Address = DI.getAddress();
4572     if (!Address || !DIVariable(Variable).Verify()) {
4573       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4574       return 0;
4575     }
4576 
4577     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4578     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4579     // absolute, but not relative, values are different depending on whether
4580     // debug info exists.
4581     ++SDNodeOrder;
4582 
4583     // Check if address has undef value.
4584     if (isa<UndefValue>(Address) ||
4585         (Address->use_empty() && !isa<Argument>(Address))) {
4586       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4587       return 0;
4588     }
4589 
4590     SDValue &N = NodeMap[Address];
4591     if (!N.getNode() && isa<Argument>(Address))
4592       // Check unused arguments map.
4593       N = UnusedArgNodeMap[Address];
4594     SDDbgValue *SDV;
4595     if (N.getNode()) {
4596       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4597         Address = BCI->getOperand(0);
4598       // Parameters are handled specially.
4599       bool isParameter =
4600         (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4601          isa<Argument>(Address));
4602 
4603       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4604 
4605       if (isParameter && !AI) {
4606         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4607         if (FINode)
4608           // Byval parameter.  We have a frame index at this point.
4609           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4610                                 0, dl, SDNodeOrder);
4611         else {
4612           // Address is an argument, so try to emit its dbg value using
4613           // virtual register info from the FuncInfo.ValueMap.
4614           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4615           return 0;
4616         }
4617       } else if (AI)
4618         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4619                               0, dl, SDNodeOrder);
4620       else {
4621         // Can't do anything with other non-AI cases yet.
4622         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4623         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4624         DEBUG(Address->dump());
4625         return 0;
4626       }
4627       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4628     } else {
4629       // If Address is an argument then try to emit its dbg value using
4630       // virtual register info from the FuncInfo.ValueMap.
4631       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4632         // If variable is pinned by a alloca in dominating bb then
4633         // use StaticAllocaMap.
4634         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4635           if (AI->getParent() != DI.getParent()) {
4636             DenseMap<const AllocaInst*, int>::iterator SI =
4637               FuncInfo.StaticAllocaMap.find(AI);
4638             if (SI != FuncInfo.StaticAllocaMap.end()) {
4639               SDV = DAG.getDbgValue(Variable, SI->second,
4640                                     0, dl, SDNodeOrder);
4641               DAG.AddDbgValue(SDV, 0, false);
4642               return 0;
4643             }
4644           }
4645         }
4646         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4647       }
4648     }
4649     return 0;
4650   }
4651   case Intrinsic::dbg_value: {
4652     const DbgValueInst &DI = cast<DbgValueInst>(I);
4653     if (!DIVariable(DI.getVariable()).Verify())
4654       return 0;
4655 
4656     MDNode *Variable = DI.getVariable();
4657     uint64_t Offset = DI.getOffset();
4658     const Value *V = DI.getValue();
4659     if (!V)
4660       return 0;
4661 
4662     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4663     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4664     // absolute, but not relative, values are different depending on whether
4665     // debug info exists.
4666     ++SDNodeOrder;
4667     SDDbgValue *SDV;
4668     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4669       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4670       DAG.AddDbgValue(SDV, 0, false);
4671     } else {
4672       // Do not use getValue() in here; we don't want to generate code at
4673       // this point if it hasn't been done yet.
4674       SDValue N = NodeMap[V];
4675       if (!N.getNode() && isa<Argument>(V))
4676         // Check unused arguments map.
4677         N = UnusedArgNodeMap[V];
4678       if (N.getNode()) {
4679         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4680           SDV = DAG.getDbgValue(Variable, N.getNode(),
4681                                 N.getResNo(), Offset, dl, SDNodeOrder);
4682           DAG.AddDbgValue(SDV, N.getNode(), false);
4683         }
4684       } else if (!V->use_empty() ) {
4685         // Do not call getValue(V) yet, as we don't want to generate code.
4686         // Remember it for later.
4687         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4688         DanglingDebugInfoMap[V] = DDI;
4689       } else {
4690         // We may expand this to cover more cases.  One case where we have no
4691         // data available is an unreferenced parameter.
4692         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4693       }
4694     }
4695 
4696     // Build a debug info table entry.
4697     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4698       V = BCI->getOperand(0);
4699     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4700     // Don't handle byval struct arguments or VLAs, for example.
4701     if (!AI) {
4702       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4703       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4704       return 0;
4705     }
4706     DenseMap<const AllocaInst*, int>::iterator SI =
4707       FuncInfo.StaticAllocaMap.find(AI);
4708     if (SI == FuncInfo.StaticAllocaMap.end())
4709       return 0; // VLAs.
4710     int FI = SI->second;
4711 
4712     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4713     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4714       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4715     return 0;
4716   }
4717 
4718   case Intrinsic::eh_typeid_for: {
4719     // Find the type id for the given typeinfo.
4720     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4721     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4722     Res = DAG.getConstant(TypeID, MVT::i32);
4723     setValue(&I, Res);
4724     return 0;
4725   }
4726 
4727   case Intrinsic::eh_return_i32:
4728   case Intrinsic::eh_return_i64:
4729     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4730     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4731                             MVT::Other,
4732                             getControlRoot(),
4733                             getValue(I.getArgOperand(0)),
4734                             getValue(I.getArgOperand(1))));
4735     return 0;
4736   case Intrinsic::eh_unwind_init:
4737     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4738     return 0;
4739   case Intrinsic::eh_dwarf_cfa: {
4740     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4741                                         TLI.getPointerTy());
4742     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4743                                  TLI.getPointerTy(),
4744                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4745                                              TLI.getPointerTy()),
4746                                  CfaArg);
4747     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4748                              TLI.getPointerTy(),
4749                              DAG.getConstant(0, TLI.getPointerTy()));
4750     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4751                              FA, Offset));
4752     return 0;
4753   }
4754   case Intrinsic::eh_sjlj_callsite: {
4755     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4756     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4757     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4758     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4759 
4760     MMI.setCurrentCallSite(CI->getZExtValue());
4761     return 0;
4762   }
4763   case Intrinsic::eh_sjlj_functioncontext: {
4764     // Get and store the index of the function context.
4765     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4766     AllocaInst *FnCtx =
4767       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4768     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4769     MFI->setFunctionContextIndex(FI);
4770     return 0;
4771   }
4772   case Intrinsic::eh_sjlj_setjmp: {
4773     SDValue Ops[2];
4774     Ops[0] = getRoot();
4775     Ops[1] = getValue(I.getArgOperand(0));
4776     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4777                              DAG.getVTList(MVT::i32, MVT::Other),
4778                              Ops, 2);
4779     setValue(&I, Op.getValue(0));
4780     DAG.setRoot(Op.getValue(1));
4781     return 0;
4782   }
4783   case Intrinsic::eh_sjlj_longjmp: {
4784     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4785                             getRoot(), getValue(I.getArgOperand(0))));
4786     return 0;
4787   }
4788 
4789   case Intrinsic::x86_mmx_pslli_w:
4790   case Intrinsic::x86_mmx_pslli_d:
4791   case Intrinsic::x86_mmx_pslli_q:
4792   case Intrinsic::x86_mmx_psrli_w:
4793   case Intrinsic::x86_mmx_psrli_d:
4794   case Intrinsic::x86_mmx_psrli_q:
4795   case Intrinsic::x86_mmx_psrai_w:
4796   case Intrinsic::x86_mmx_psrai_d: {
4797     SDValue ShAmt = getValue(I.getArgOperand(1));
4798     if (isa<ConstantSDNode>(ShAmt)) {
4799       visitTargetIntrinsic(I, Intrinsic);
4800       return 0;
4801     }
4802     unsigned NewIntrinsic = 0;
4803     EVT ShAmtVT = MVT::v2i32;
4804     switch (Intrinsic) {
4805     case Intrinsic::x86_mmx_pslli_w:
4806       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4807       break;
4808     case Intrinsic::x86_mmx_pslli_d:
4809       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4810       break;
4811     case Intrinsic::x86_mmx_pslli_q:
4812       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4813       break;
4814     case Intrinsic::x86_mmx_psrli_w:
4815       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4816       break;
4817     case Intrinsic::x86_mmx_psrli_d:
4818       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4819       break;
4820     case Intrinsic::x86_mmx_psrli_q:
4821       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4822       break;
4823     case Intrinsic::x86_mmx_psrai_w:
4824       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4825       break;
4826     case Intrinsic::x86_mmx_psrai_d:
4827       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4828       break;
4829     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4830     }
4831 
4832     // The vector shift intrinsics with scalars uses 32b shift amounts but
4833     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4834     // to be zero.
4835     // We must do this early because v2i32 is not a legal type.
4836     DebugLoc dl = getCurDebugLoc();
4837     SDValue ShOps[2];
4838     ShOps[0] = ShAmt;
4839     ShOps[1] = DAG.getConstant(0, MVT::i32);
4840     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4841     EVT DestVT = TLI.getValueType(I.getType());
4842     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4843     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4844                        DAG.getConstant(NewIntrinsic, MVT::i32),
4845                        getValue(I.getArgOperand(0)), ShAmt);
4846     setValue(&I, Res);
4847     return 0;
4848   }
4849   case Intrinsic::x86_avx_vinsertf128_pd_256:
4850   case Intrinsic::x86_avx_vinsertf128_ps_256:
4851   case Intrinsic::x86_avx_vinsertf128_si_256:
4852   case Intrinsic::x86_avx2_vinserti128: {
4853     DebugLoc dl = getCurDebugLoc();
4854     EVT DestVT = TLI.getValueType(I.getType());
4855     EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4856     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4857                    ElVT.getVectorNumElements();
4858     Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4859                       getValue(I.getArgOperand(0)),
4860                       getValue(I.getArgOperand(1)),
4861                       DAG.getConstant(Idx, MVT::i32));
4862     setValue(&I, Res);
4863     return 0;
4864   }
4865   case Intrinsic::convertff:
4866   case Intrinsic::convertfsi:
4867   case Intrinsic::convertfui:
4868   case Intrinsic::convertsif:
4869   case Intrinsic::convertuif:
4870   case Intrinsic::convertss:
4871   case Intrinsic::convertsu:
4872   case Intrinsic::convertus:
4873   case Intrinsic::convertuu: {
4874     ISD::CvtCode Code = ISD::CVT_INVALID;
4875     switch (Intrinsic) {
4876     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4877     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4878     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4879     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4880     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4881     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4882     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4883     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4884     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4885     }
4886     EVT DestVT = TLI.getValueType(I.getType());
4887     const Value *Op1 = I.getArgOperand(0);
4888     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4889                                DAG.getValueType(DestVT),
4890                                DAG.getValueType(getValue(Op1).getValueType()),
4891                                getValue(I.getArgOperand(1)),
4892                                getValue(I.getArgOperand(2)),
4893                                Code);
4894     setValue(&I, Res);
4895     return 0;
4896   }
4897   case Intrinsic::sqrt:
4898     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4899                              getValue(I.getArgOperand(0)).getValueType(),
4900                              getValue(I.getArgOperand(0))));
4901     return 0;
4902   case Intrinsic::powi:
4903     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4904                             getValue(I.getArgOperand(1)), DAG));
4905     return 0;
4906   case Intrinsic::sin:
4907     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4908                              getValue(I.getArgOperand(0)).getValueType(),
4909                              getValue(I.getArgOperand(0))));
4910     return 0;
4911   case Intrinsic::cos:
4912     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4913                              getValue(I.getArgOperand(0)).getValueType(),
4914                              getValue(I.getArgOperand(0))));
4915     return 0;
4916   case Intrinsic::log:
4917     visitLog(I);
4918     return 0;
4919   case Intrinsic::log2:
4920     visitLog2(I);
4921     return 0;
4922   case Intrinsic::log10:
4923     visitLog10(I);
4924     return 0;
4925   case Intrinsic::exp:
4926     visitExp(I);
4927     return 0;
4928   case Intrinsic::exp2:
4929     visitExp2(I);
4930     return 0;
4931   case Intrinsic::pow:
4932     visitPow(I);
4933     return 0;
4934   case Intrinsic::fma:
4935     setValue(&I, DAG.getNode(ISD::FMA, dl,
4936                              getValue(I.getArgOperand(0)).getValueType(),
4937                              getValue(I.getArgOperand(0)),
4938                              getValue(I.getArgOperand(1)),
4939                              getValue(I.getArgOperand(2))));
4940     return 0;
4941   case Intrinsic::convert_to_fp16:
4942     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4943                              MVT::i16, getValue(I.getArgOperand(0))));
4944     return 0;
4945   case Intrinsic::convert_from_fp16:
4946     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4947                              MVT::f32, getValue(I.getArgOperand(0))));
4948     return 0;
4949   case Intrinsic::pcmarker: {
4950     SDValue Tmp = getValue(I.getArgOperand(0));
4951     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4952     return 0;
4953   }
4954   case Intrinsic::readcyclecounter: {
4955     SDValue Op = getRoot();
4956     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4957                       DAG.getVTList(MVT::i64, MVT::Other),
4958                       &Op, 1);
4959     setValue(&I, Res);
4960     DAG.setRoot(Res.getValue(1));
4961     return 0;
4962   }
4963   case Intrinsic::bswap:
4964     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4965                              getValue(I.getArgOperand(0)).getValueType(),
4966                              getValue(I.getArgOperand(0))));
4967     return 0;
4968   case Intrinsic::cttz: {
4969     SDValue Arg = getValue(I.getArgOperand(0));
4970     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4971     EVT Ty = Arg.getValueType();
4972     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4973                              dl, Ty, Arg));
4974     return 0;
4975   }
4976   case Intrinsic::ctlz: {
4977     SDValue Arg = getValue(I.getArgOperand(0));
4978     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4979     EVT Ty = Arg.getValueType();
4980     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4981                              dl, Ty, Arg));
4982     return 0;
4983   }
4984   case Intrinsic::ctpop: {
4985     SDValue Arg = getValue(I.getArgOperand(0));
4986     EVT Ty = Arg.getValueType();
4987     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4988     return 0;
4989   }
4990   case Intrinsic::stacksave: {
4991     SDValue Op = getRoot();
4992     Res = DAG.getNode(ISD::STACKSAVE, dl,
4993                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4994     setValue(&I, Res);
4995     DAG.setRoot(Res.getValue(1));
4996     return 0;
4997   }
4998   case Intrinsic::stackrestore: {
4999     Res = getValue(I.getArgOperand(0));
5000     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
5001     return 0;
5002   }
5003   case Intrinsic::stackprotector: {
5004     // Emit code into the DAG to store the stack guard onto the stack.
5005     MachineFunction &MF = DAG.getMachineFunction();
5006     MachineFrameInfo *MFI = MF.getFrameInfo();
5007     EVT PtrTy = TLI.getPointerTy();
5008 
5009     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5010     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5011 
5012     int FI = FuncInfo.StaticAllocaMap[Slot];
5013     MFI->setStackProtectorIndex(FI);
5014 
5015     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5016 
5017     // Store the stack protector onto the stack.
5018     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5019                        MachinePointerInfo::getFixedStack(FI),
5020                        true, false, 0);
5021     setValue(&I, Res);
5022     DAG.setRoot(Res);
5023     return 0;
5024   }
5025   case Intrinsic::objectsize: {
5026     // If we don't know by now, we're never going to know.
5027     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5028 
5029     assert(CI && "Non-constant type in __builtin_object_size?");
5030 
5031     SDValue Arg = getValue(I.getCalledValue());
5032     EVT Ty = Arg.getValueType();
5033 
5034     if (CI->isZero())
5035       Res = DAG.getConstant(-1ULL, Ty);
5036     else
5037       Res = DAG.getConstant(0, Ty);
5038 
5039     setValue(&I, Res);
5040     return 0;
5041   }
5042   case Intrinsic::var_annotation:
5043     // Discard annotate attributes
5044     return 0;
5045 
5046   case Intrinsic::init_trampoline: {
5047     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5048 
5049     SDValue Ops[6];
5050     Ops[0] = getRoot();
5051     Ops[1] = getValue(I.getArgOperand(0));
5052     Ops[2] = getValue(I.getArgOperand(1));
5053     Ops[3] = getValue(I.getArgOperand(2));
5054     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5055     Ops[5] = DAG.getSrcValue(F);
5056 
5057     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5058 
5059     DAG.setRoot(Res);
5060     return 0;
5061   }
5062   case Intrinsic::adjust_trampoline: {
5063     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5064                              TLI.getPointerTy(),
5065                              getValue(I.getArgOperand(0))));
5066     return 0;
5067   }
5068   case Intrinsic::gcroot:
5069     if (GFI) {
5070       const Value *Alloca = I.getArgOperand(0);
5071       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5072 
5073       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5074       GFI->addStackRoot(FI->getIndex(), TypeMap);
5075     }
5076     return 0;
5077   case Intrinsic::gcread:
5078   case Intrinsic::gcwrite:
5079     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5080   case Intrinsic::flt_rounds:
5081     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5082     return 0;
5083 
5084   case Intrinsic::expect: {
5085     // Just replace __builtin_expect(exp, c) with EXP.
5086     setValue(&I, getValue(I.getArgOperand(0)));
5087     return 0;
5088   }
5089 
5090   case Intrinsic::trap: {
5091     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5092     if (TrapFuncName.empty()) {
5093       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5094       return 0;
5095     }
5096     TargetLowering::ArgListTy Args;
5097     std::pair<SDValue, SDValue> Result =
5098       TLI.LowerCallTo(getRoot(), I.getType(),
5099                  false, false, false, false, 0, CallingConv::C,
5100                  /*isTailCall=*/false,
5101                  /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5102                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5103                  Args, DAG, getCurDebugLoc());
5104     DAG.setRoot(Result.second);
5105     return 0;
5106   }
5107   case Intrinsic::uadd_with_overflow:
5108     return implVisitAluOverflow(I, ISD::UADDO);
5109   case Intrinsic::sadd_with_overflow:
5110     return implVisitAluOverflow(I, ISD::SADDO);
5111   case Intrinsic::usub_with_overflow:
5112     return implVisitAluOverflow(I, ISD::USUBO);
5113   case Intrinsic::ssub_with_overflow:
5114     return implVisitAluOverflow(I, ISD::SSUBO);
5115   case Intrinsic::umul_with_overflow:
5116     return implVisitAluOverflow(I, ISD::UMULO);
5117   case Intrinsic::smul_with_overflow:
5118     return implVisitAluOverflow(I, ISD::SMULO);
5119 
5120   case Intrinsic::prefetch: {
5121     SDValue Ops[5];
5122     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5123     Ops[0] = getRoot();
5124     Ops[1] = getValue(I.getArgOperand(0));
5125     Ops[2] = getValue(I.getArgOperand(1));
5126     Ops[3] = getValue(I.getArgOperand(2));
5127     Ops[4] = getValue(I.getArgOperand(3));
5128     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5129                                         DAG.getVTList(MVT::Other),
5130                                         &Ops[0], 5,
5131                                         EVT::getIntegerVT(*Context, 8),
5132                                         MachinePointerInfo(I.getArgOperand(0)),
5133                                         0, /* align */
5134                                         false, /* volatile */
5135                                         rw==0, /* read */
5136                                         rw==1)); /* write */
5137     return 0;
5138   }
5139 
5140   case Intrinsic::invariant_start:
5141   case Intrinsic::lifetime_start:
5142     // Discard region information.
5143     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5144     return 0;
5145   case Intrinsic::invariant_end:
5146   case Intrinsic::lifetime_end:
5147     // Discard region information.
5148     return 0;
5149   }
5150 }
5151 
5152 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5153                                       bool isTailCall,
5154                                       MachineBasicBlock *LandingPad) {
5155   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5156   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5157   Type *RetTy = FTy->getReturnType();
5158   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5159   MCSymbol *BeginLabel = 0;
5160 
5161   TargetLowering::ArgListTy Args;
5162   TargetLowering::ArgListEntry Entry;
5163   Args.reserve(CS.arg_size());
5164 
5165   // Check whether the function can return without sret-demotion.
5166   SmallVector<ISD::OutputArg, 4> Outs;
5167   SmallVector<uint64_t, 4> Offsets;
5168   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5169                 Outs, TLI, &Offsets);
5170 
5171   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5172 					   DAG.getMachineFunction(),
5173 					   FTy->isVarArg(), Outs,
5174 					   FTy->getContext());
5175 
5176   SDValue DemoteStackSlot;
5177   int DemoteStackIdx = -100;
5178 
5179   if (!CanLowerReturn) {
5180     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5181                       FTy->getReturnType());
5182     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5183                       FTy->getReturnType());
5184     MachineFunction &MF = DAG.getMachineFunction();
5185     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5186     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5187 
5188     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5189     Entry.Node = DemoteStackSlot;
5190     Entry.Ty = StackSlotPtrType;
5191     Entry.isSExt = false;
5192     Entry.isZExt = false;
5193     Entry.isInReg = false;
5194     Entry.isSRet = true;
5195     Entry.isNest = false;
5196     Entry.isByVal = false;
5197     Entry.Alignment = Align;
5198     Args.push_back(Entry);
5199     RetTy = Type::getVoidTy(FTy->getContext());
5200   }
5201 
5202   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5203        i != e; ++i) {
5204     const Value *V = *i;
5205 
5206     // Skip empty types
5207     if (V->getType()->isEmptyTy())
5208       continue;
5209 
5210     SDValue ArgNode = getValue(V);
5211     Entry.Node = ArgNode; Entry.Ty = V->getType();
5212 
5213     unsigned attrInd = i - CS.arg_begin() + 1;
5214     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5215     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5216     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5217     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5218     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5219     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5220     Entry.Alignment = CS.getParamAlignment(attrInd);
5221     Args.push_back(Entry);
5222   }
5223 
5224   if (LandingPad) {
5225     // Insert a label before the invoke call to mark the try range.  This can be
5226     // used to detect deletion of the invoke via the MachineModuleInfo.
5227     BeginLabel = MMI.getContext().CreateTempSymbol();
5228 
5229     // For SjLj, keep track of which landing pads go with which invokes
5230     // so as to maintain the ordering of pads in the LSDA.
5231     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5232     if (CallSiteIndex) {
5233       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5234       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5235 
5236       // Now that the call site is handled, stop tracking it.
5237       MMI.setCurrentCallSite(0);
5238     }
5239 
5240     // Both PendingLoads and PendingExports must be flushed here;
5241     // this call might not return.
5242     (void)getRoot();
5243     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5244   }
5245 
5246   // Check if target-independent constraints permit a tail call here.
5247   // Target-dependent constraints are checked within TLI.LowerCallTo.
5248   if (isTailCall &&
5249       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5250     isTailCall = false;
5251 
5252   // If there's a possibility that fast-isel has already selected some amount
5253   // of the current basic block, don't emit a tail call.
5254   if (isTailCall && TM.Options.EnableFastISel)
5255     isTailCall = false;
5256 
5257   std::pair<SDValue,SDValue> Result =
5258     TLI.LowerCallTo(getRoot(), RetTy,
5259                     CS.paramHasAttr(0, Attribute::SExt),
5260                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5261                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5262                     CS.getCallingConv(),
5263                     isTailCall,
5264                     CS.doesNotReturn(),
5265                     !CS.getInstruction()->use_empty(),
5266                     Callee, Args, DAG, getCurDebugLoc());
5267   assert((isTailCall || Result.second.getNode()) &&
5268          "Non-null chain expected with non-tail call!");
5269   assert((Result.second.getNode() || !Result.first.getNode()) &&
5270          "Null value expected with tail call!");
5271   if (Result.first.getNode()) {
5272     setValue(CS.getInstruction(), Result.first);
5273   } else if (!CanLowerReturn && Result.second.getNode()) {
5274     // The instruction result is the result of loading from the
5275     // hidden sret parameter.
5276     SmallVector<EVT, 1> PVTs;
5277     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5278 
5279     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5280     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5281     EVT PtrVT = PVTs[0];
5282     unsigned NumValues = Outs.size();
5283     SmallVector<SDValue, 4> Values(NumValues);
5284     SmallVector<SDValue, 4> Chains(NumValues);
5285 
5286     for (unsigned i = 0; i < NumValues; ++i) {
5287       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5288                                 DemoteStackSlot,
5289                                 DAG.getConstant(Offsets[i], PtrVT));
5290       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5291                               Add,
5292                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5293                               false, false, false, 1);
5294       Values[i] = L;
5295       Chains[i] = L.getValue(1);
5296     }
5297 
5298     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5299                                 MVT::Other, &Chains[0], NumValues);
5300     PendingLoads.push_back(Chain);
5301 
5302     // Collect the legal value parts into potentially illegal values
5303     // that correspond to the original function's return values.
5304     SmallVector<EVT, 4> RetTys;
5305     RetTy = FTy->getReturnType();
5306     ComputeValueVTs(TLI, RetTy, RetTys);
5307     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5308     SmallVector<SDValue, 4> ReturnValues;
5309     unsigned CurReg = 0;
5310     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5311       EVT VT = RetTys[I];
5312       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5313       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5314 
5315       SDValue ReturnValue =
5316         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5317                          RegisterVT, VT, AssertOp);
5318       ReturnValues.push_back(ReturnValue);
5319       CurReg += NumRegs;
5320     }
5321 
5322     setValue(CS.getInstruction(),
5323              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5324                          DAG.getVTList(&RetTys[0], RetTys.size()),
5325                          &ReturnValues[0], ReturnValues.size()));
5326   }
5327 
5328   // Assign order to nodes here. If the call does not produce a result, it won't
5329   // be mapped to a SDNode and visit() will not assign it an order number.
5330   if (!Result.second.getNode()) {
5331     // As a special case, a null chain means that a tail call has been emitted and
5332     // the DAG root is already updated.
5333     HasTailCall = true;
5334     ++SDNodeOrder;
5335     AssignOrderingToNode(DAG.getRoot().getNode());
5336   } else {
5337     DAG.setRoot(Result.second);
5338     ++SDNodeOrder;
5339     AssignOrderingToNode(Result.second.getNode());
5340   }
5341 
5342   if (LandingPad) {
5343     // Insert a label at the end of the invoke call to mark the try range.  This
5344     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5345     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5346     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5347 
5348     // Inform MachineModuleInfo of range.
5349     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5350   }
5351 }
5352 
5353 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5354 /// value is equal or not-equal to zero.
5355 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5356   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5357        UI != E; ++UI) {
5358     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5359       if (IC->isEquality())
5360         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5361           if (C->isNullValue())
5362             continue;
5363     // Unknown instruction.
5364     return false;
5365   }
5366   return true;
5367 }
5368 
5369 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5370                              Type *LoadTy,
5371                              SelectionDAGBuilder &Builder) {
5372 
5373   // Check to see if this load can be trivially constant folded, e.g. if the
5374   // input is from a string literal.
5375   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5376     // Cast pointer to the type we really want to load.
5377     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5378                                          PointerType::getUnqual(LoadTy));
5379 
5380     if (const Constant *LoadCst =
5381           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5382                                        Builder.TD))
5383       return Builder.getValue(LoadCst);
5384   }
5385 
5386   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5387   // still constant memory, the input chain can be the entry node.
5388   SDValue Root;
5389   bool ConstantMemory = false;
5390 
5391   // Do not serialize (non-volatile) loads of constant memory with anything.
5392   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5393     Root = Builder.DAG.getEntryNode();
5394     ConstantMemory = true;
5395   } else {
5396     // Do not serialize non-volatile loads against each other.
5397     Root = Builder.DAG.getRoot();
5398   }
5399 
5400   SDValue Ptr = Builder.getValue(PtrVal);
5401   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5402                                         Ptr, MachinePointerInfo(PtrVal),
5403                                         false /*volatile*/,
5404                                         false /*nontemporal*/,
5405                                         false /*isinvariant*/, 1 /* align=1 */);
5406 
5407   if (!ConstantMemory)
5408     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5409   return LoadVal;
5410 }
5411 
5412 
5413 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5414 /// If so, return true and lower it, otherwise return false and it will be
5415 /// lowered like a normal call.
5416 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5417   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5418   if (I.getNumArgOperands() != 3)
5419     return false;
5420 
5421   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5422   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5423       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5424       !I.getType()->isIntegerTy())
5425     return false;
5426 
5427   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5428 
5429   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5430   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5431   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5432     bool ActuallyDoIt = true;
5433     MVT LoadVT;
5434     Type *LoadTy;
5435     switch (Size->getZExtValue()) {
5436     default:
5437       LoadVT = MVT::Other;
5438       LoadTy = 0;
5439       ActuallyDoIt = false;
5440       break;
5441     case 2:
5442       LoadVT = MVT::i16;
5443       LoadTy = Type::getInt16Ty(Size->getContext());
5444       break;
5445     case 4:
5446       LoadVT = MVT::i32;
5447       LoadTy = Type::getInt32Ty(Size->getContext());
5448       break;
5449     case 8:
5450       LoadVT = MVT::i64;
5451       LoadTy = Type::getInt64Ty(Size->getContext());
5452       break;
5453         /*
5454     case 16:
5455       LoadVT = MVT::v4i32;
5456       LoadTy = Type::getInt32Ty(Size->getContext());
5457       LoadTy = VectorType::get(LoadTy, 4);
5458       break;
5459          */
5460     }
5461 
5462     // This turns into unaligned loads.  We only do this if the target natively
5463     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5464     // we'll only produce a small number of byte loads.
5465 
5466     // Require that we can find a legal MVT, and only do this if the target
5467     // supports unaligned loads of that type.  Expanding into byte loads would
5468     // bloat the code.
5469     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5470       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5471       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5472       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5473         ActuallyDoIt = false;
5474     }
5475 
5476     if (ActuallyDoIt) {
5477       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5478       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5479 
5480       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5481                                  ISD::SETNE);
5482       EVT CallVT = TLI.getValueType(I.getType(), true);
5483       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5484       return true;
5485     }
5486   }
5487 
5488 
5489   return false;
5490 }
5491 
5492 
5493 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5494   // Handle inline assembly differently.
5495   if (isa<InlineAsm>(I.getCalledValue())) {
5496     visitInlineAsm(&I);
5497     return;
5498   }
5499 
5500   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5501   ComputeUsesVAFloatArgument(I, &MMI);
5502 
5503   const char *RenameFn = 0;
5504   if (Function *F = I.getCalledFunction()) {
5505     if (F->isDeclaration()) {
5506       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5507         if (unsigned IID = II->getIntrinsicID(F)) {
5508           RenameFn = visitIntrinsicCall(I, IID);
5509           if (!RenameFn)
5510             return;
5511         }
5512       }
5513       if (unsigned IID = F->getIntrinsicID()) {
5514         RenameFn = visitIntrinsicCall(I, IID);
5515         if (!RenameFn)
5516           return;
5517       }
5518     }
5519 
5520     // Check for well-known libc/libm calls.  If the function is internal, it
5521     // can't be a library call.
5522     if (!F->hasLocalLinkage() && F->hasName()) {
5523       StringRef Name = F->getName();
5524       if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5525           (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5526           (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5527         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5528             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5529             I.getType() == I.getArgOperand(0)->getType() &&
5530             I.getType() == I.getArgOperand(1)->getType()) {
5531           SDValue LHS = getValue(I.getArgOperand(0));
5532           SDValue RHS = getValue(I.getArgOperand(1));
5533           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5534                                    LHS.getValueType(), LHS, RHS));
5535           return;
5536         }
5537       } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5538                  (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5539                  (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5540         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5541             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5542             I.getType() == I.getArgOperand(0)->getType()) {
5543           SDValue Tmp = getValue(I.getArgOperand(0));
5544           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5545                                    Tmp.getValueType(), Tmp));
5546           return;
5547         }
5548       } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5549                  (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5550                  (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5551         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5552             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5553             I.getType() == I.getArgOperand(0)->getType() &&
5554             I.onlyReadsMemory()) {
5555           SDValue Tmp = getValue(I.getArgOperand(0));
5556           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5557                                    Tmp.getValueType(), Tmp));
5558           return;
5559         }
5560       } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5561                  (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5562                  (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5563         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5564             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5565             I.getType() == I.getArgOperand(0)->getType() &&
5566             I.onlyReadsMemory()) {
5567           SDValue Tmp = getValue(I.getArgOperand(0));
5568           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5569                                    Tmp.getValueType(), Tmp));
5570           return;
5571         }
5572       } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5573                  (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5574                  (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5575         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5576             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5577             I.getType() == I.getArgOperand(0)->getType() &&
5578             I.onlyReadsMemory()) {
5579           SDValue Tmp = getValue(I.getArgOperand(0));
5580           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5581                                    Tmp.getValueType(), Tmp));
5582           return;
5583         }
5584       } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5585                  (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5586                  (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5587         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5588             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5589             I.getType() == I.getArgOperand(0)->getType()) {
5590           SDValue Tmp = getValue(I.getArgOperand(0));
5591           setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5592                                    Tmp.getValueType(), Tmp));
5593           return;
5594         }
5595       } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5596                  (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5597                  (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5598         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5599             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5600             I.getType() == I.getArgOperand(0)->getType()) {
5601           SDValue Tmp = getValue(I.getArgOperand(0));
5602           setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5603                                    Tmp.getValueType(), Tmp));
5604           return;
5605         }
5606       } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5607                  (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5608                  (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5609         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5610             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5611             I.getType() == I.getArgOperand(0)->getType()) {
5612           SDValue Tmp = getValue(I.getArgOperand(0));
5613           setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5614                                    Tmp.getValueType(), Tmp));
5615           return;
5616         }
5617       } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5618                  (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5619                  (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5620         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5621             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5622             I.getType() == I.getArgOperand(0)->getType()) {
5623           SDValue Tmp = getValue(I.getArgOperand(0));
5624           setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5625                                    Tmp.getValueType(), Tmp));
5626           return;
5627         }
5628       } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5629                  (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5630                  (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5631         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5632             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5633             I.getType() == I.getArgOperand(0)->getType()) {
5634           SDValue Tmp = getValue(I.getArgOperand(0));
5635           setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5636                                    Tmp.getValueType(), Tmp));
5637           return;
5638         }
5639       } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5640                  (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5641                  (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5642         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5643             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5644             I.getType() == I.getArgOperand(0)->getType() &&
5645             I.onlyReadsMemory()) {
5646           SDValue Tmp = getValue(I.getArgOperand(0));
5647           setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5648                                    Tmp.getValueType(), Tmp));
5649           return;
5650         }
5651       } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5652                  (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5653                  (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5654         if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5655             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5656             I.getType() == I.getArgOperand(0)->getType() &&
5657             I.onlyReadsMemory()) {
5658           SDValue Tmp = getValue(I.getArgOperand(0));
5659           setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5660                                    Tmp.getValueType(), Tmp));
5661           return;
5662         }
5663       } else if (Name == "memcmp") {
5664         if (visitMemCmpCall(I))
5665           return;
5666       }
5667     }
5668   }
5669 
5670   SDValue Callee;
5671   if (!RenameFn)
5672     Callee = getValue(I.getCalledValue());
5673   else
5674     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5675 
5676   // Check if we can potentially perform a tail call. More detailed checking is
5677   // be done within LowerCallTo, after more information about the call is known.
5678   LowerCallTo(&I, Callee, I.isTailCall());
5679 }
5680 
5681 namespace {
5682 
5683 /// AsmOperandInfo - This contains information for each constraint that we are
5684 /// lowering.
5685 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5686 public:
5687   /// CallOperand - If this is the result output operand or a clobber
5688   /// this is null, otherwise it is the incoming operand to the CallInst.
5689   /// This gets modified as the asm is processed.
5690   SDValue CallOperand;
5691 
5692   /// AssignedRegs - If this is a register or register class operand, this
5693   /// contains the set of register corresponding to the operand.
5694   RegsForValue AssignedRegs;
5695 
5696   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5697     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5698   }
5699 
5700   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5701   /// corresponds to.  If there is no Value* for this operand, it returns
5702   /// MVT::Other.
5703   EVT getCallOperandValEVT(LLVMContext &Context,
5704                            const TargetLowering &TLI,
5705                            const TargetData *TD) const {
5706     if (CallOperandVal == 0) return MVT::Other;
5707 
5708     if (isa<BasicBlock>(CallOperandVal))
5709       return TLI.getPointerTy();
5710 
5711     llvm::Type *OpTy = CallOperandVal->getType();
5712 
5713     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5714     // If this is an indirect operand, the operand is a pointer to the
5715     // accessed type.
5716     if (isIndirect) {
5717       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5718       if (!PtrTy)
5719         report_fatal_error("Indirect operand for inline asm not a pointer!");
5720       OpTy = PtrTy->getElementType();
5721     }
5722 
5723     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5724     if (StructType *STy = dyn_cast<StructType>(OpTy))
5725       if (STy->getNumElements() == 1)
5726         OpTy = STy->getElementType(0);
5727 
5728     // If OpTy is not a single value, it may be a struct/union that we
5729     // can tile with integers.
5730     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5731       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5732       switch (BitSize) {
5733       default: break;
5734       case 1:
5735       case 8:
5736       case 16:
5737       case 32:
5738       case 64:
5739       case 128:
5740         OpTy = IntegerType::get(Context, BitSize);
5741         break;
5742       }
5743     }
5744 
5745     return TLI.getValueType(OpTy, true);
5746   }
5747 };
5748 
5749 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5750 
5751 } // end anonymous namespace
5752 
5753 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5754 /// specified operand.  We prefer to assign virtual registers, to allow the
5755 /// register allocator to handle the assignment process.  However, if the asm
5756 /// uses features that we can't model on machineinstrs, we have SDISel do the
5757 /// allocation.  This produces generally horrible, but correct, code.
5758 ///
5759 ///   OpInfo describes the operand.
5760 ///
5761 static void GetRegistersForValue(SelectionDAG &DAG,
5762                                  const TargetLowering &TLI,
5763                                  DebugLoc DL,
5764                                  SDISelAsmOperandInfo &OpInfo) {
5765   LLVMContext &Context = *DAG.getContext();
5766 
5767   MachineFunction &MF = DAG.getMachineFunction();
5768   SmallVector<unsigned, 4> Regs;
5769 
5770   // If this is a constraint for a single physreg, or a constraint for a
5771   // register class, find it.
5772   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5773     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5774                                      OpInfo.ConstraintVT);
5775 
5776   unsigned NumRegs = 1;
5777   if (OpInfo.ConstraintVT != MVT::Other) {
5778     // If this is a FP input in an integer register (or visa versa) insert a bit
5779     // cast of the input value.  More generally, handle any case where the input
5780     // value disagrees with the register class we plan to stick this in.
5781     if (OpInfo.Type == InlineAsm::isInput &&
5782         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5783       // Try to convert to the first EVT that the reg class contains.  If the
5784       // types are identical size, use a bitcast to convert (e.g. two differing
5785       // vector types).
5786       EVT RegVT = *PhysReg.second->vt_begin();
5787       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5788         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5789                                          RegVT, OpInfo.CallOperand);
5790         OpInfo.ConstraintVT = RegVT;
5791       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5792         // If the input is a FP value and we want it in FP registers, do a
5793         // bitcast to the corresponding integer type.  This turns an f64 value
5794         // into i64, which can be passed with two i32 values on a 32-bit
5795         // machine.
5796         RegVT = EVT::getIntegerVT(Context,
5797                                   OpInfo.ConstraintVT.getSizeInBits());
5798         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5799                                          RegVT, OpInfo.CallOperand);
5800         OpInfo.ConstraintVT = RegVT;
5801       }
5802     }
5803 
5804     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5805   }
5806 
5807   EVT RegVT;
5808   EVT ValueVT = OpInfo.ConstraintVT;
5809 
5810   // If this is a constraint for a specific physical register, like {r17},
5811   // assign it now.
5812   if (unsigned AssignedReg = PhysReg.first) {
5813     const TargetRegisterClass *RC = PhysReg.second;
5814     if (OpInfo.ConstraintVT == MVT::Other)
5815       ValueVT = *RC->vt_begin();
5816 
5817     // Get the actual register value type.  This is important, because the user
5818     // may have asked for (e.g.) the AX register in i32 type.  We need to
5819     // remember that AX is actually i16 to get the right extension.
5820     RegVT = *RC->vt_begin();
5821 
5822     // This is a explicit reference to a physical register.
5823     Regs.push_back(AssignedReg);
5824 
5825     // If this is an expanded reference, add the rest of the regs to Regs.
5826     if (NumRegs != 1) {
5827       TargetRegisterClass::iterator I = RC->begin();
5828       for (; *I != AssignedReg; ++I)
5829         assert(I != RC->end() && "Didn't find reg!");
5830 
5831       // Already added the first reg.
5832       --NumRegs; ++I;
5833       for (; NumRegs; --NumRegs, ++I) {
5834         assert(I != RC->end() && "Ran out of registers to allocate!");
5835         Regs.push_back(*I);
5836       }
5837     }
5838 
5839     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5840     return;
5841   }
5842 
5843   // Otherwise, if this was a reference to an LLVM register class, create vregs
5844   // for this reference.
5845   if (const TargetRegisterClass *RC = PhysReg.second) {
5846     RegVT = *RC->vt_begin();
5847     if (OpInfo.ConstraintVT == MVT::Other)
5848       ValueVT = RegVT;
5849 
5850     // Create the appropriate number of virtual registers.
5851     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5852     for (; NumRegs; --NumRegs)
5853       Regs.push_back(RegInfo.createVirtualRegister(RC));
5854 
5855     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5856     return;
5857   }
5858 
5859   // Otherwise, we couldn't allocate enough registers for this.
5860 }
5861 
5862 /// visitInlineAsm - Handle a call to an InlineAsm object.
5863 ///
5864 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5865   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5866 
5867   /// ConstraintOperands - Information about all of the constraints.
5868   SDISelAsmOperandInfoVector ConstraintOperands;
5869 
5870   TargetLowering::AsmOperandInfoVector
5871     TargetConstraints = TLI.ParseConstraints(CS);
5872 
5873   bool hasMemory = false;
5874 
5875   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5876   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5877   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5878     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5879     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5880 
5881     EVT OpVT = MVT::Other;
5882 
5883     // Compute the value type for each operand.
5884     switch (OpInfo.Type) {
5885     case InlineAsm::isOutput:
5886       // Indirect outputs just consume an argument.
5887       if (OpInfo.isIndirect) {
5888         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5889         break;
5890       }
5891 
5892       // The return value of the call is this value.  As such, there is no
5893       // corresponding argument.
5894       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5895       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5896         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5897       } else {
5898         assert(ResNo == 0 && "Asm only has one result!");
5899         OpVT = TLI.getValueType(CS.getType());
5900       }
5901       ++ResNo;
5902       break;
5903     case InlineAsm::isInput:
5904       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5905       break;
5906     case InlineAsm::isClobber:
5907       // Nothing to do.
5908       break;
5909     }
5910 
5911     // If this is an input or an indirect output, process the call argument.
5912     // BasicBlocks are labels, currently appearing only in asm's.
5913     if (OpInfo.CallOperandVal) {
5914       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5915         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5916       } else {
5917         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5918       }
5919 
5920       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5921     }
5922 
5923     OpInfo.ConstraintVT = OpVT;
5924 
5925     // Indirect operand accesses access memory.
5926     if (OpInfo.isIndirect)
5927       hasMemory = true;
5928     else {
5929       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5930         TargetLowering::ConstraintType
5931           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5932         if (CType == TargetLowering::C_Memory) {
5933           hasMemory = true;
5934           break;
5935         }
5936       }
5937     }
5938   }
5939 
5940   SDValue Chain, Flag;
5941 
5942   // We won't need to flush pending loads if this asm doesn't touch
5943   // memory and is nonvolatile.
5944   if (hasMemory || IA->hasSideEffects())
5945     Chain = getRoot();
5946   else
5947     Chain = DAG.getRoot();
5948 
5949   // Second pass over the constraints: compute which constraint option to use
5950   // and assign registers to constraints that want a specific physreg.
5951   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5952     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5953 
5954     // If this is an output operand with a matching input operand, look up the
5955     // matching input. If their types mismatch, e.g. one is an integer, the
5956     // other is floating point, or their sizes are different, flag it as an
5957     // error.
5958     if (OpInfo.hasMatchingInput()) {
5959       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5960 
5961       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5962 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5963 	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5964                                            OpInfo.ConstraintVT);
5965 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5966 	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5967                                            Input.ConstraintVT);
5968         if ((OpInfo.ConstraintVT.isInteger() !=
5969              Input.ConstraintVT.isInteger()) ||
5970             (MatchRC.second != InputRC.second)) {
5971           report_fatal_error("Unsupported asm: input constraint"
5972                              " with a matching output constraint of"
5973                              " incompatible type!");
5974         }
5975         Input.ConstraintVT = OpInfo.ConstraintVT;
5976       }
5977     }
5978 
5979     // Compute the constraint code and ConstraintType to use.
5980     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5981 
5982     // If this is a memory input, and if the operand is not indirect, do what we
5983     // need to to provide an address for the memory input.
5984     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5985         !OpInfo.isIndirect) {
5986       assert((OpInfo.isMultipleAlternative ||
5987               (OpInfo.Type == InlineAsm::isInput)) &&
5988              "Can only indirectify direct input operands!");
5989 
5990       // Memory operands really want the address of the value.  If we don't have
5991       // an indirect input, put it in the constpool if we can, otherwise spill
5992       // it to a stack slot.
5993       // TODO: This isn't quite right. We need to handle these according to
5994       // the addressing mode that the constraint wants. Also, this may take
5995       // an additional register for the computation and we don't want that
5996       // either.
5997 
5998       // If the operand is a float, integer, or vector constant, spill to a
5999       // constant pool entry to get its address.
6000       const Value *OpVal = OpInfo.CallOperandVal;
6001       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6002           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6003         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6004                                                  TLI.getPointerTy());
6005       } else {
6006         // Otherwise, create a stack slot and emit a store to it before the
6007         // asm.
6008         Type *Ty = OpVal->getType();
6009         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6010         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6011         MachineFunction &MF = DAG.getMachineFunction();
6012         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6013         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6014         Chain = DAG.getStore(Chain, getCurDebugLoc(),
6015                              OpInfo.CallOperand, StackSlot,
6016                              MachinePointerInfo::getFixedStack(SSFI),
6017                              false, false, 0);
6018         OpInfo.CallOperand = StackSlot;
6019       }
6020 
6021       // There is no longer a Value* corresponding to this operand.
6022       OpInfo.CallOperandVal = 0;
6023 
6024       // It is now an indirect operand.
6025       OpInfo.isIndirect = true;
6026     }
6027 
6028     // If this constraint is for a specific register, allocate it before
6029     // anything else.
6030     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6031       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6032   }
6033 
6034   // Second pass - Loop over all of the operands, assigning virtual or physregs
6035   // to register class operands.
6036   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6037     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6038 
6039     // C_Register operands have already been allocated, Other/Memory don't need
6040     // to be.
6041     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6042       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6043   }
6044 
6045   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6046   std::vector<SDValue> AsmNodeOperands;
6047   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6048   AsmNodeOperands.push_back(
6049           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6050                                       TLI.getPointerTy()));
6051 
6052   // If we have a !srcloc metadata node associated with it, we want to attach
6053   // this to the ultimately generated inline asm machineinstr.  To do this, we
6054   // pass in the third operand as this (potentially null) inline asm MDNode.
6055   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6056   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6057 
6058   // Remember the HasSideEffect and AlignStack bits as operand 3.
6059   unsigned ExtraInfo = 0;
6060   if (IA->hasSideEffects())
6061     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6062   if (IA->isAlignStack())
6063     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6064   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6065                                                   TLI.getPointerTy()));
6066 
6067   // Loop over all of the inputs, copying the operand values into the
6068   // appropriate registers and processing the output regs.
6069   RegsForValue RetValRegs;
6070 
6071   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6072   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6073 
6074   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6075     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6076 
6077     switch (OpInfo.Type) {
6078     case InlineAsm::isOutput: {
6079       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6080           OpInfo.ConstraintType != TargetLowering::C_Register) {
6081         // Memory output, or 'other' output (e.g. 'X' constraint).
6082         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6083 
6084         // Add information to the INLINEASM node to know about this output.
6085         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6086         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6087                                                         TLI.getPointerTy()));
6088         AsmNodeOperands.push_back(OpInfo.CallOperand);
6089         break;
6090       }
6091 
6092       // Otherwise, this is a register or register class output.
6093 
6094       // Copy the output from the appropriate register.  Find a register that
6095       // we can use.
6096       if (OpInfo.AssignedRegs.Regs.empty()) {
6097         LLVMContext &Ctx = *DAG.getContext();
6098         Ctx.emitError(CS.getInstruction(),
6099                       "couldn't allocate output register for constraint '" +
6100                            Twine(OpInfo.ConstraintCode) + "'");
6101         break;
6102       }
6103 
6104       // If this is an indirect operand, store through the pointer after the
6105       // asm.
6106       if (OpInfo.isIndirect) {
6107         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6108                                                       OpInfo.CallOperandVal));
6109       } else {
6110         // This is the result value of the call.
6111         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6112         // Concatenate this output onto the outputs list.
6113         RetValRegs.append(OpInfo.AssignedRegs);
6114       }
6115 
6116       // Add information to the INLINEASM node to know that this register is
6117       // set.
6118       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6119                                            InlineAsm::Kind_RegDefEarlyClobber :
6120                                                InlineAsm::Kind_RegDef,
6121                                                false,
6122                                                0,
6123                                                DAG,
6124                                                AsmNodeOperands);
6125       break;
6126     }
6127     case InlineAsm::isInput: {
6128       SDValue InOperandVal = OpInfo.CallOperand;
6129 
6130       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6131         // If this is required to match an output register we have already set,
6132         // just use its register.
6133         unsigned OperandNo = OpInfo.getMatchedOperand();
6134 
6135         // Scan until we find the definition we already emitted of this operand.
6136         // When we find it, create a RegsForValue operand.
6137         unsigned CurOp = InlineAsm::Op_FirstOperand;
6138         for (; OperandNo; --OperandNo) {
6139           // Advance to the next operand.
6140           unsigned OpFlag =
6141             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6142           assert((InlineAsm::isRegDefKind(OpFlag) ||
6143                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6144                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6145           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6146         }
6147 
6148         unsigned OpFlag =
6149           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6150         if (InlineAsm::isRegDefKind(OpFlag) ||
6151             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6152           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6153           if (OpInfo.isIndirect) {
6154             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6155             LLVMContext &Ctx = *DAG.getContext();
6156             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6157                           " don't know how to handle tied "
6158                           "indirect register inputs");
6159           }
6160 
6161           RegsForValue MatchedRegs;
6162           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6163           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6164           MatchedRegs.RegVTs.push_back(RegVT);
6165           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6166           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6167                i != e; ++i)
6168             MatchedRegs.Regs.push_back
6169               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6170 
6171           // Use the produced MatchedRegs object to
6172           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6173                                     Chain, &Flag);
6174           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6175                                            true, OpInfo.getMatchedOperand(),
6176                                            DAG, AsmNodeOperands);
6177           break;
6178         }
6179 
6180         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6181         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6182                "Unexpected number of operands");
6183         // Add information to the INLINEASM node to know about this input.
6184         // See InlineAsm.h isUseOperandTiedToDef.
6185         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6186                                                     OpInfo.getMatchedOperand());
6187         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6188                                                         TLI.getPointerTy()));
6189         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6190         break;
6191       }
6192 
6193       // Treat indirect 'X' constraint as memory.
6194       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6195           OpInfo.isIndirect)
6196         OpInfo.ConstraintType = TargetLowering::C_Memory;
6197 
6198       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6199         std::vector<SDValue> Ops;
6200         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6201                                          Ops, DAG);
6202         if (Ops.empty()) {
6203           LLVMContext &Ctx = *DAG.getContext();
6204           Ctx.emitError(CS.getInstruction(),
6205                         "invalid operand for inline asm constraint '" +
6206                         Twine(OpInfo.ConstraintCode) + "'");
6207           break;
6208         }
6209 
6210         // Add information to the INLINEASM node to know about this input.
6211         unsigned ResOpType =
6212           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6213         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6214                                                         TLI.getPointerTy()));
6215         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6216         break;
6217       }
6218 
6219       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6220         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6221         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6222                "Memory operands expect pointer values");
6223 
6224         // Add information to the INLINEASM node to know about this input.
6225         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6226         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6227                                                         TLI.getPointerTy()));
6228         AsmNodeOperands.push_back(InOperandVal);
6229         break;
6230       }
6231 
6232       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6233               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6234              "Unknown constraint type!");
6235       assert(!OpInfo.isIndirect &&
6236              "Don't know how to handle indirect register inputs yet!");
6237 
6238       // Copy the input into the appropriate registers.
6239       if (OpInfo.AssignedRegs.Regs.empty()) {
6240         LLVMContext &Ctx = *DAG.getContext();
6241         Ctx.emitError(CS.getInstruction(),
6242                       "couldn't allocate input reg for constraint '" +
6243                            Twine(OpInfo.ConstraintCode) + "'");
6244         break;
6245       }
6246 
6247       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6248                                         Chain, &Flag);
6249 
6250       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6251                                                DAG, AsmNodeOperands);
6252       break;
6253     }
6254     case InlineAsm::isClobber: {
6255       // Add the clobbered value to the operand list, so that the register
6256       // allocator is aware that the physreg got clobbered.
6257       if (!OpInfo.AssignedRegs.Regs.empty())
6258         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6259                                                  false, 0, DAG,
6260                                                  AsmNodeOperands);
6261       break;
6262     }
6263     }
6264   }
6265 
6266   // Finish up input operands.  Set the input chain and add the flag last.
6267   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6268   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6269 
6270   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6271                       DAG.getVTList(MVT::Other, MVT::Glue),
6272                       &AsmNodeOperands[0], AsmNodeOperands.size());
6273   Flag = Chain.getValue(1);
6274 
6275   // If this asm returns a register value, copy the result from that register
6276   // and set it as the value of the call.
6277   if (!RetValRegs.Regs.empty()) {
6278     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6279                                              Chain, &Flag);
6280 
6281     // FIXME: Why don't we do this for inline asms with MRVs?
6282     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6283       EVT ResultType = TLI.getValueType(CS.getType());
6284 
6285       // If any of the results of the inline asm is a vector, it may have the
6286       // wrong width/num elts.  This can happen for register classes that can
6287       // contain multiple different value types.  The preg or vreg allocated may
6288       // not have the same VT as was expected.  Convert it to the right type
6289       // with bit_convert.
6290       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6291         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6292                           ResultType, Val);
6293 
6294       } else if (ResultType != Val.getValueType() &&
6295                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6296         // If a result value was tied to an input value, the computed result may
6297         // have a wider width than the expected result.  Extract the relevant
6298         // portion.
6299         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6300       }
6301 
6302       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6303     }
6304 
6305     setValue(CS.getInstruction(), Val);
6306     // Don't need to use this as a chain in this case.
6307     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6308       return;
6309   }
6310 
6311   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6312 
6313   // Process indirect outputs, first output all of the flagged copies out of
6314   // physregs.
6315   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6316     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6317     const Value *Ptr = IndirectStoresToEmit[i].second;
6318     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6319                                              Chain, &Flag);
6320     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6321   }
6322 
6323   // Emit the non-flagged stores from the physregs.
6324   SmallVector<SDValue, 8> OutChains;
6325   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6326     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6327                                StoresToEmit[i].first,
6328                                getValue(StoresToEmit[i].second),
6329                                MachinePointerInfo(StoresToEmit[i].second),
6330                                false, false, 0);
6331     OutChains.push_back(Val);
6332   }
6333 
6334   if (!OutChains.empty())
6335     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6336                         &OutChains[0], OutChains.size());
6337 
6338   DAG.setRoot(Chain);
6339 }
6340 
6341 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6342   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6343                           MVT::Other, getRoot(),
6344                           getValue(I.getArgOperand(0)),
6345                           DAG.getSrcValue(I.getArgOperand(0))));
6346 }
6347 
6348 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6349   const TargetData &TD = *TLI.getTargetData();
6350   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6351                            getRoot(), getValue(I.getOperand(0)),
6352                            DAG.getSrcValue(I.getOperand(0)),
6353                            TD.getABITypeAlignment(I.getType()));
6354   setValue(&I, V);
6355   DAG.setRoot(V.getValue(1));
6356 }
6357 
6358 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6359   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6360                           MVT::Other, getRoot(),
6361                           getValue(I.getArgOperand(0)),
6362                           DAG.getSrcValue(I.getArgOperand(0))));
6363 }
6364 
6365 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6366   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6367                           MVT::Other, getRoot(),
6368                           getValue(I.getArgOperand(0)),
6369                           getValue(I.getArgOperand(1)),
6370                           DAG.getSrcValue(I.getArgOperand(0)),
6371                           DAG.getSrcValue(I.getArgOperand(1))));
6372 }
6373 
6374 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6375 /// implementation, which just calls LowerCall.
6376 /// FIXME: When all targets are
6377 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6378 std::pair<SDValue, SDValue>
6379 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6380                             bool RetSExt, bool RetZExt, bool isVarArg,
6381                             bool isInreg, unsigned NumFixedArgs,
6382                             CallingConv::ID CallConv, bool isTailCall,
6383                             bool doesNotRet, bool isReturnValueUsed,
6384                             SDValue Callee,
6385                             ArgListTy &Args, SelectionDAG &DAG,
6386                             DebugLoc dl) const {
6387   // Handle all of the outgoing arguments.
6388   SmallVector<ISD::OutputArg, 32> Outs;
6389   SmallVector<SDValue, 32> OutVals;
6390   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6391     SmallVector<EVT, 4> ValueVTs;
6392     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6393     for (unsigned Value = 0, NumValues = ValueVTs.size();
6394          Value != NumValues; ++Value) {
6395       EVT VT = ValueVTs[Value];
6396       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6397       SDValue Op = SDValue(Args[i].Node.getNode(),
6398                            Args[i].Node.getResNo() + Value);
6399       ISD::ArgFlagsTy Flags;
6400       unsigned OriginalAlignment =
6401         getTargetData()->getABITypeAlignment(ArgTy);
6402 
6403       if (Args[i].isZExt)
6404         Flags.setZExt();
6405       if (Args[i].isSExt)
6406         Flags.setSExt();
6407       if (Args[i].isInReg)
6408         Flags.setInReg();
6409       if (Args[i].isSRet)
6410         Flags.setSRet();
6411       if (Args[i].isByVal) {
6412         Flags.setByVal();
6413         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6414         Type *ElementTy = Ty->getElementType();
6415         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6416         // For ByVal, alignment should come from FE.  BE will guess if this
6417         // info is not there but there are cases it cannot get right.
6418         unsigned FrameAlign;
6419         if (Args[i].Alignment)
6420           FrameAlign = Args[i].Alignment;
6421         else
6422           FrameAlign = getByValTypeAlignment(ElementTy);
6423         Flags.setByValAlign(FrameAlign);
6424       }
6425       if (Args[i].isNest)
6426         Flags.setNest();
6427       Flags.setOrigAlign(OriginalAlignment);
6428 
6429       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6430       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6431       SmallVector<SDValue, 4> Parts(NumParts);
6432       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6433 
6434       if (Args[i].isSExt)
6435         ExtendKind = ISD::SIGN_EXTEND;
6436       else if (Args[i].isZExt)
6437         ExtendKind = ISD::ZERO_EXTEND;
6438 
6439       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6440                      PartVT, ExtendKind);
6441 
6442       for (unsigned j = 0; j != NumParts; ++j) {
6443         // if it isn't first piece, alignment must be 1
6444         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6445                                i < NumFixedArgs);
6446         if (NumParts > 1 && j == 0)
6447           MyFlags.Flags.setSplit();
6448         else if (j != 0)
6449           MyFlags.Flags.setOrigAlign(1);
6450 
6451         Outs.push_back(MyFlags);
6452         OutVals.push_back(Parts[j]);
6453       }
6454     }
6455   }
6456 
6457   // Handle the incoming return values from the call.
6458   SmallVector<ISD::InputArg, 32> Ins;
6459   SmallVector<EVT, 4> RetTys;
6460   ComputeValueVTs(*this, RetTy, RetTys);
6461   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6462     EVT VT = RetTys[I];
6463     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6464     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6465     for (unsigned i = 0; i != NumRegs; ++i) {
6466       ISD::InputArg MyFlags;
6467       MyFlags.VT = RegisterVT.getSimpleVT();
6468       MyFlags.Used = isReturnValueUsed;
6469       if (RetSExt)
6470         MyFlags.Flags.setSExt();
6471       if (RetZExt)
6472         MyFlags.Flags.setZExt();
6473       if (isInreg)
6474         MyFlags.Flags.setInReg();
6475       Ins.push_back(MyFlags);
6476     }
6477   }
6478 
6479   SmallVector<SDValue, 4> InVals;
6480   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, doesNotRet, isTailCall,
6481                     Outs, OutVals, Ins, dl, DAG, InVals);
6482 
6483   // Verify that the target's LowerCall behaved as expected.
6484   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6485          "LowerCall didn't return a valid chain!");
6486   assert((!isTailCall || InVals.empty()) &&
6487          "LowerCall emitted a return value for a tail call!");
6488   assert((isTailCall || InVals.size() == Ins.size()) &&
6489          "LowerCall didn't emit the correct number of values!");
6490 
6491   // For a tail call, the return value is merely live-out and there aren't
6492   // any nodes in the DAG representing it. Return a special value to
6493   // indicate that a tail call has been emitted and no more Instructions
6494   // should be processed in the current block.
6495   if (isTailCall) {
6496     DAG.setRoot(Chain);
6497     return std::make_pair(SDValue(), SDValue());
6498   }
6499 
6500   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6501           assert(InVals[i].getNode() &&
6502                  "LowerCall emitted a null value!");
6503           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6504                  "LowerCall emitted a value with the wrong type!");
6505         });
6506 
6507   // Collect the legal value parts into potentially illegal values
6508   // that correspond to the original function's return values.
6509   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6510   if (RetSExt)
6511     AssertOp = ISD::AssertSext;
6512   else if (RetZExt)
6513     AssertOp = ISD::AssertZext;
6514   SmallVector<SDValue, 4> ReturnValues;
6515   unsigned CurReg = 0;
6516   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6517     EVT VT = RetTys[I];
6518     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6519     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6520 
6521     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6522                                             NumRegs, RegisterVT, VT,
6523                                             AssertOp));
6524     CurReg += NumRegs;
6525   }
6526 
6527   // For a function returning void, there is no return value. We can't create
6528   // such a node, so we just return a null return value in that case. In
6529   // that case, nothing will actually look at the value.
6530   if (ReturnValues.empty())
6531     return std::make_pair(SDValue(), Chain);
6532 
6533   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6534                             DAG.getVTList(&RetTys[0], RetTys.size()),
6535                             &ReturnValues[0], ReturnValues.size());
6536   return std::make_pair(Res, Chain);
6537 }
6538 
6539 void TargetLowering::LowerOperationWrapper(SDNode *N,
6540                                            SmallVectorImpl<SDValue> &Results,
6541                                            SelectionDAG &DAG) const {
6542   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6543   if (Res.getNode())
6544     Results.push_back(Res);
6545 }
6546 
6547 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6548   llvm_unreachable("LowerOperation not implemented for this target!");
6549 }
6550 
6551 void
6552 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6553   SDValue Op = getNonRegisterValue(V);
6554   assert((Op.getOpcode() != ISD::CopyFromReg ||
6555           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6556          "Copy from a reg to the same reg!");
6557   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6558 
6559   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6560   SDValue Chain = DAG.getEntryNode();
6561   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6562   PendingExports.push_back(Chain);
6563 }
6564 
6565 #include "llvm/CodeGen/SelectionDAGISel.h"
6566 
6567 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6568 /// entry block, return true.  This includes arguments used by switches, since
6569 /// the switch may expand into multiple basic blocks.
6570 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6571   // With FastISel active, we may be splitting blocks, so force creation
6572   // of virtual registers for all non-dead arguments.
6573   if (FastISel)
6574     return A->use_empty();
6575 
6576   const BasicBlock *Entry = A->getParent()->begin();
6577   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6578        UI != E; ++UI) {
6579     const User *U = *UI;
6580     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6581       return false;  // Use not in entry block.
6582   }
6583   return true;
6584 }
6585 
6586 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6587   // If this is the entry block, emit arguments.
6588   const Function &F = *LLVMBB->getParent();
6589   SelectionDAG &DAG = SDB->DAG;
6590   DebugLoc dl = SDB->getCurDebugLoc();
6591   const TargetData *TD = TLI.getTargetData();
6592   SmallVector<ISD::InputArg, 16> Ins;
6593 
6594   // Check whether the function can return without sret-demotion.
6595   SmallVector<ISD::OutputArg, 4> Outs;
6596   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6597                 Outs, TLI);
6598 
6599   if (!FuncInfo->CanLowerReturn) {
6600     // Put in an sret pointer parameter before all the other parameters.
6601     SmallVector<EVT, 1> ValueVTs;
6602     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6603 
6604     // NOTE: Assuming that a pointer will never break down to more than one VT
6605     // or one register.
6606     ISD::ArgFlagsTy Flags;
6607     Flags.setSRet();
6608     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6609     ISD::InputArg RetArg(Flags, RegisterVT, true);
6610     Ins.push_back(RetArg);
6611   }
6612 
6613   // Set up the incoming argument description vector.
6614   unsigned Idx = 1;
6615   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6616        I != E; ++I, ++Idx) {
6617     SmallVector<EVT, 4> ValueVTs;
6618     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6619     bool isArgValueUsed = !I->use_empty();
6620     for (unsigned Value = 0, NumValues = ValueVTs.size();
6621          Value != NumValues; ++Value) {
6622       EVT VT = ValueVTs[Value];
6623       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6624       ISD::ArgFlagsTy Flags;
6625       unsigned OriginalAlignment =
6626         TD->getABITypeAlignment(ArgTy);
6627 
6628       if (F.paramHasAttr(Idx, Attribute::ZExt))
6629         Flags.setZExt();
6630       if (F.paramHasAttr(Idx, Attribute::SExt))
6631         Flags.setSExt();
6632       if (F.paramHasAttr(Idx, Attribute::InReg))
6633         Flags.setInReg();
6634       if (F.paramHasAttr(Idx, Attribute::StructRet))
6635         Flags.setSRet();
6636       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6637         Flags.setByVal();
6638         PointerType *Ty = cast<PointerType>(I->getType());
6639         Type *ElementTy = Ty->getElementType();
6640         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6641         // For ByVal, alignment should be passed from FE.  BE will guess if
6642         // this info is not there but there are cases it cannot get right.
6643         unsigned FrameAlign;
6644         if (F.getParamAlignment(Idx))
6645           FrameAlign = F.getParamAlignment(Idx);
6646         else
6647           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6648         Flags.setByValAlign(FrameAlign);
6649       }
6650       if (F.paramHasAttr(Idx, Attribute::Nest))
6651         Flags.setNest();
6652       Flags.setOrigAlign(OriginalAlignment);
6653 
6654       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6655       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6656       for (unsigned i = 0; i != NumRegs; ++i) {
6657         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6658         if (NumRegs > 1 && i == 0)
6659           MyFlags.Flags.setSplit();
6660         // if it isn't first piece, alignment must be 1
6661         else if (i > 0)
6662           MyFlags.Flags.setOrigAlign(1);
6663         Ins.push_back(MyFlags);
6664       }
6665     }
6666   }
6667 
6668   // Call the target to set up the argument values.
6669   SmallVector<SDValue, 8> InVals;
6670   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6671                                              F.isVarArg(), Ins,
6672                                              dl, DAG, InVals);
6673 
6674   // Verify that the target's LowerFormalArguments behaved as expected.
6675   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6676          "LowerFormalArguments didn't return a valid chain!");
6677   assert(InVals.size() == Ins.size() &&
6678          "LowerFormalArguments didn't emit the correct number of values!");
6679   DEBUG({
6680       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6681         assert(InVals[i].getNode() &&
6682                "LowerFormalArguments emitted a null value!");
6683         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6684                "LowerFormalArguments emitted a value with the wrong type!");
6685       }
6686     });
6687 
6688   // Update the DAG with the new chain value resulting from argument lowering.
6689   DAG.setRoot(NewRoot);
6690 
6691   // Set up the argument values.
6692   unsigned i = 0;
6693   Idx = 1;
6694   if (!FuncInfo->CanLowerReturn) {
6695     // Create a virtual register for the sret pointer, and put in a copy
6696     // from the sret argument into it.
6697     SmallVector<EVT, 1> ValueVTs;
6698     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6699     EVT VT = ValueVTs[0];
6700     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6701     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6702     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6703                                         RegVT, VT, AssertOp);
6704 
6705     MachineFunction& MF = SDB->DAG.getMachineFunction();
6706     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6707     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6708     FuncInfo->DemoteRegister = SRetReg;
6709     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6710                                     SRetReg, ArgValue);
6711     DAG.setRoot(NewRoot);
6712 
6713     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6714     // Idx indexes LLVM arguments.  Don't touch it.
6715     ++i;
6716   }
6717 
6718   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6719       ++I, ++Idx) {
6720     SmallVector<SDValue, 4> ArgValues;
6721     SmallVector<EVT, 4> ValueVTs;
6722     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6723     unsigned NumValues = ValueVTs.size();
6724 
6725     // If this argument is unused then remember its value. It is used to generate
6726     // debugging information.
6727     if (I->use_empty() && NumValues)
6728       SDB->setUnusedArgValue(I, InVals[i]);
6729 
6730     for (unsigned Val = 0; Val != NumValues; ++Val) {
6731       EVT VT = ValueVTs[Val];
6732       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6733       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6734 
6735       if (!I->use_empty()) {
6736         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6737         if (F.paramHasAttr(Idx, Attribute::SExt))
6738           AssertOp = ISD::AssertSext;
6739         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6740           AssertOp = ISD::AssertZext;
6741 
6742         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6743                                              NumParts, PartVT, VT,
6744                                              AssertOp));
6745       }
6746 
6747       i += NumParts;
6748     }
6749 
6750     // We don't need to do anything else for unused arguments.
6751     if (ArgValues.empty())
6752       continue;
6753 
6754     // Note down frame index.
6755     if (FrameIndexSDNode *FI =
6756 	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6757       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6758 
6759     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6760                                      SDB->getCurDebugLoc());
6761 
6762     SDB->setValue(I, Res);
6763     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6764       if (LoadSDNode *LNode =
6765           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6766         if (FrameIndexSDNode *FI =
6767             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6768         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6769     }
6770 
6771     // If this argument is live outside of the entry block, insert a copy from
6772     // wherever we got it to the vreg that other BB's will reference it as.
6773     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6774       // If we can, though, try to skip creating an unnecessary vreg.
6775       // FIXME: This isn't very clean... it would be nice to make this more
6776       // general.  It's also subtly incompatible with the hacks FastISel
6777       // uses with vregs.
6778       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6779       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6780         FuncInfo->ValueMap[I] = Reg;
6781         continue;
6782       }
6783     }
6784     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6785       FuncInfo->InitializeRegForValue(I);
6786       SDB->CopyToExportRegsIfNeeded(I);
6787     }
6788   }
6789 
6790   assert(i == InVals.size() && "Argument register count mismatch!");
6791 
6792   // Finally, if the target has anything special to do, allow it to do so.
6793   // FIXME: this should insert code into the DAG!
6794   EmitFunctionEntryCode();
6795 }
6796 
6797 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6798 /// ensure constants are generated when needed.  Remember the virtual registers
6799 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6800 /// directly add them, because expansion might result in multiple MBB's for one
6801 /// BB.  As such, the start of the BB might correspond to a different MBB than
6802 /// the end.
6803 ///
6804 void
6805 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6806   const TerminatorInst *TI = LLVMBB->getTerminator();
6807 
6808   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6809 
6810   // Check successor nodes' PHI nodes that expect a constant to be available
6811   // from this block.
6812   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6813     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6814     if (!isa<PHINode>(SuccBB->begin())) continue;
6815     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6816 
6817     // If this terminator has multiple identical successors (common for
6818     // switches), only handle each succ once.
6819     if (!SuccsHandled.insert(SuccMBB)) continue;
6820 
6821     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6822 
6823     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6824     // nodes and Machine PHI nodes, but the incoming operands have not been
6825     // emitted yet.
6826     for (BasicBlock::const_iterator I = SuccBB->begin();
6827          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6828       // Ignore dead phi's.
6829       if (PN->use_empty()) continue;
6830 
6831       // Skip empty types
6832       if (PN->getType()->isEmptyTy())
6833         continue;
6834 
6835       unsigned Reg;
6836       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6837 
6838       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6839         unsigned &RegOut = ConstantsOut[C];
6840         if (RegOut == 0) {
6841           RegOut = FuncInfo.CreateRegs(C->getType());
6842           CopyValueToVirtualRegister(C, RegOut);
6843         }
6844         Reg = RegOut;
6845       } else {
6846         DenseMap<const Value *, unsigned>::iterator I =
6847           FuncInfo.ValueMap.find(PHIOp);
6848         if (I != FuncInfo.ValueMap.end())
6849           Reg = I->second;
6850         else {
6851           assert(isa<AllocaInst>(PHIOp) &&
6852                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6853                  "Didn't codegen value into a register!??");
6854           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6855           CopyValueToVirtualRegister(PHIOp, Reg);
6856         }
6857       }
6858 
6859       // Remember that this register needs to added to the machine PHI node as
6860       // the input for this MBB.
6861       SmallVector<EVT, 4> ValueVTs;
6862       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6863       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6864         EVT VT = ValueVTs[vti];
6865         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6866         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6867           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6868         Reg += NumRegisters;
6869       }
6870     }
6871   }
6872   ConstantsOut.clear();
6873 }
6874