1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode( 442 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 443 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 444 } 445 446 // Vector/Vector bitcast. 447 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 448 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 449 450 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 451 "Cannot handle this kind of promotion"); 452 // Promoted vector extract 453 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 454 455 } 456 457 // Trivial bitcast if the types are the same size and the destination 458 // vector type is legal. 459 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 460 TLI.isTypeLegal(ValueVT)) 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 463 if (ValueVT.getVectorNumElements() != 1) { 464 // Certain ABIs require that vectors are passed as integers. For vectors 465 // are the same size, this is an obvious bitcast. 466 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 467 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 468 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 469 // Bitcast Val back the original type and extract the corresponding 470 // vector we want. 471 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 472 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 473 ValueVT.getVectorElementType(), Elts); 474 Val = DAG.getBitcast(WiderVecType, Val); 475 return DAG.getNode( 476 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 488 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 Optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 503 SDValue *Parts, unsigned NumParts, MVT PartVT, 504 const Value *V, 505 Optional<CallingConv::ID> CallConv = None, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 EVT ValueVT = Val.getValueType(); 508 509 // Handle the vector case separately. 510 if (ValueVT.isVector()) 511 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 512 CallConv); 513 514 unsigned PartBits = PartVT.getSizeInBits(); 515 unsigned OrigNumParts = NumParts; 516 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 517 "Copying to an illegal type!"); 518 519 if (NumParts == 0) 520 return; 521 522 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 523 EVT PartEVT = PartVT; 524 if (PartEVT == ValueVT) { 525 assert(NumParts == 1 && "No-op copy with multiple parts!"); 526 Parts[0] = Val; 527 return; 528 } 529 530 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 531 // If the parts cover more bits than the value has, promote the value. 532 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 533 assert(NumParts == 1 && "Do not know what to promote to!"); 534 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 535 } else { 536 if (ValueVT.isFloatingPoint()) { 537 // FP values need to be bitcast, then extended if they are being put 538 // into a larger container. 539 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 540 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 541 } 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 } else if (PartBits == ValueVT.getSizeInBits()) { 551 // Different types of the same size. 552 assert(NumParts == 1 && PartEVT != ValueVT); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 555 // If the parts cover less bits than value has, truncate the value. 556 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 557 ValueVT.isInteger() && 558 "Unknown mismatch!"); 559 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 560 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 561 if (PartVT == MVT::x86mmx) 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } 564 565 // The value may have changed - recompute ValueVT. 566 ValueVT = Val.getValueType(); 567 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 568 "Failed to tile the value with PartVT!"); 569 570 if (NumParts == 1) { 571 if (PartEVT != ValueVT) { 572 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 573 "scalar-to-vector conversion failed"); 574 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 575 } 576 577 Parts[0] = Val; 578 return; 579 } 580 581 // Expand the value into multiple parts. 582 if (NumParts & (NumParts - 1)) { 583 // The number of parts is not a power of 2. Split off and copy the tail. 584 assert(PartVT.isInteger() && ValueVT.isInteger() && 585 "Do not know what to expand to!"); 586 unsigned RoundParts = 1 << Log2_32(NumParts); 587 unsigned RoundBits = RoundParts * PartBits; 588 unsigned OddParts = NumParts - RoundParts; 589 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 590 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 591 592 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 593 CallConv); 594 595 if (DAG.getDataLayout().isBigEndian()) 596 // The odd parts were reversed by getCopyToParts - unreverse them. 597 std::reverse(Parts + RoundParts, Parts + NumParts); 598 599 NumParts = RoundParts; 600 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 601 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 602 } 603 604 // The number of parts is a power of 2. Repeatedly bisect the value using 605 // EXTRACT_ELEMENT. 606 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 607 EVT::getIntegerVT(*DAG.getContext(), 608 ValueVT.getSizeInBits()), 609 Val); 610 611 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 612 for (unsigned i = 0; i < NumParts; i += StepSize) { 613 unsigned ThisBits = StepSize * PartBits / 2; 614 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 615 SDValue &Part0 = Parts[i]; 616 SDValue &Part1 = Parts[i+StepSize/2]; 617 618 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 619 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 620 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 621 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 622 623 if (ThisBits == PartBits && ThisVT != PartVT) { 624 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 625 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 626 } 627 } 628 } 629 630 if (DAG.getDataLayout().isBigEndian()) 631 std::reverse(Parts, Parts + OrigNumParts); 632 } 633 634 static SDValue widenVectorToPartType(SelectionDAG &DAG, 635 SDValue Val, const SDLoc &DL, EVT PartVT) { 636 if (!PartVT.isVector()) 637 return SDValue(); 638 639 EVT ValueVT = Val.getValueType(); 640 unsigned PartNumElts = PartVT.getVectorNumElements(); 641 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 642 if (PartNumElts > ValueNumElts && 643 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 644 EVT ElementVT = PartVT.getVectorElementType(); 645 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 646 // undef elements. 647 SmallVector<SDValue, 16> Ops; 648 DAG.ExtractVectorElements(Val, Ops); 649 SDValue EltUndef = DAG.getUNDEF(ElementVT); 650 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 651 Ops.push_back(EltUndef); 652 653 // FIXME: Use CONCAT for 2x -> 4x. 654 return DAG.getBuildVector(PartVT, DL, Ops); 655 } 656 657 return SDValue(); 658 } 659 660 /// getCopyToPartsVector - Create a series of nodes that contain the specified 661 /// value split into legal parts. 662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 663 SDValue Val, SDValue *Parts, unsigned NumParts, 664 MVT PartVT, const Value *V, 665 Optional<CallingConv::ID> CallConv) { 666 EVT ValueVT = Val.getValueType(); 667 assert(ValueVT.isVector() && "Not a vector"); 668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 669 const bool IsABIRegCopy = CallConv.hasValue(); 670 671 if (NumParts == 1) { 672 EVT PartEVT = PartVT; 673 if (PartEVT == ValueVT) { 674 // Nothing to do. 675 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 676 // Bitconvert vector->vector case. 677 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 678 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 679 Val = Widened; 680 } else if (PartVT.isVector() && 681 PartEVT.getVectorElementType().bitsGE( 682 ValueVT.getVectorElementType()) && 683 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 684 685 // Promoted vector extract 686 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorNumElements() == 1) { 689 Val = DAG.getNode( 690 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 691 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 692 } else { 693 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = 696 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 697 Val = DAG.getBitcast(IntermediateType, Val); 698 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 699 } 700 } 701 702 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 703 Parts[0] = Val; 704 return; 705 } 706 707 // Handle a multi-element vector. 708 EVT IntermediateVT; 709 MVT RegisterVT; 710 unsigned NumIntermediates; 711 unsigned NumRegs; 712 if (IsABIRegCopy) { 713 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 714 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } else { 717 NumRegs = 718 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } 721 722 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 723 NumParts = NumRegs; // Silence a compiler warning. 724 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 725 726 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 727 IntermediateVT.getVectorNumElements() : 1; 728 729 // Convert the vector to the appropriate type if necessary. 730 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 731 732 EVT BuiltVectorTy = EVT::getVectorVT( 733 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 734 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 735 if (ValueVT != BuiltVectorTy) { 736 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 737 Val = Widened; 738 739 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 740 } 741 742 // Split the vector into intermediate operands. 743 SmallVector<SDValue, 8> Ops(NumIntermediates); 744 for (unsigned i = 0; i != NumIntermediates; ++i) { 745 if (IntermediateVT.isVector()) { 746 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 747 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 748 } else { 749 Ops[i] = DAG.getNode( 750 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 751 DAG.getConstant(i, DL, IdxVT)); 752 } 753 } 754 755 // Split the intermediate operands into legal parts. 756 if (NumParts == NumIntermediates) { 757 // If the register was not expanded, promote or copy the value, 758 // as appropriate. 759 for (unsigned i = 0; i != NumParts; ++i) 760 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 761 } else if (NumParts > 0) { 762 // If the intermediate type was expanded, split each the value into 763 // legal parts. 764 assert(NumIntermediates != 0 && "division by zero"); 765 assert(NumParts % NumIntermediates == 0 && 766 "Must expand into a divisible number of parts!"); 767 unsigned Factor = NumParts / NumIntermediates; 768 for (unsigned i = 0; i != NumIntermediates; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 770 CallConv); 771 } 772 } 773 774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 775 EVT valuevt, Optional<CallingConv::ID> CC) 776 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 777 RegCount(1, regs.size()), CallConv(CC) {} 778 779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 780 const DataLayout &DL, unsigned Reg, Type *Ty, 781 Optional<CallingConv::ID> CC) { 782 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 783 784 CallConv = CC; 785 786 for (EVT ValueVT : ValueVTs) { 787 unsigned NumRegs = 788 isABIMangled() 789 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getNumRegisters(Context, ValueVT); 791 MVT RegisterVT = 792 isABIMangled() 793 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getRegisterType(Context, ValueVT); 795 for (unsigned i = 0; i != NumRegs; ++i) 796 Regs.push_back(Reg + i); 797 RegVTs.push_back(RegisterVT); 798 RegCount.push_back(NumRegs); 799 Reg += NumRegs; 800 } 801 } 802 803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 804 FunctionLoweringInfo &FuncInfo, 805 const SDLoc &dl, SDValue &Chain, 806 SDValue *Flag, const Value *V) const { 807 // A Value with type {} or [0 x %t] needs no registers. 808 if (ValueVTs.empty()) 809 return SDValue(); 810 811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 812 813 // Assemble the legal parts into the final values. 814 SmallVector<SDValue, 4> Values(ValueVTs.size()); 815 SmallVector<SDValue, 8> Parts; 816 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 // Copy the legal parts from the registers. 818 EVT ValueVT = ValueVTs[Value]; 819 unsigned NumRegs = RegCount[Value]; 820 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 821 *DAG.getContext(), 822 CallConv.getValue(), RegVTs[Value]) 823 : RegVTs[Value]; 824 825 Parts.resize(NumRegs); 826 for (unsigned i = 0; i != NumRegs; ++i) { 827 SDValue P; 828 if (!Flag) { 829 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 830 } else { 831 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 832 *Flag = P.getValue(2); 833 } 834 835 Chain = P.getValue(1); 836 Parts[i] = P; 837 838 // If the source register was virtual and if we know something about it, 839 // add an assert node. 840 if (!Register::isVirtualRegister(Regs[Part + i]) || 841 !RegisterVT.isInteger()) 842 continue; 843 844 const FunctionLoweringInfo::LiveOutInfo *LOI = 845 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 846 if (!LOI) 847 continue; 848 849 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 850 unsigned NumSignBits = LOI->NumSignBits; 851 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 852 853 if (NumZeroBits == RegSize) { 854 // The current value is a zero. 855 // Explicitly express that as it would be easier for 856 // optimizations to kick in. 857 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 858 continue; 859 } 860 861 // FIXME: We capture more information than the dag can represent. For 862 // now, just use the tightest assertzext/assertsext possible. 863 bool isSExt; 864 EVT FromVT(MVT::Other); 865 if (NumZeroBits) { 866 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 867 isSExt = false; 868 } else if (NumSignBits > 1) { 869 FromVT = 870 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 871 isSExt = true; 872 } else { 873 continue; 874 } 875 // Add an assertion node. 876 assert(FromVT != MVT::Other); 877 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 878 RegisterVT, P, DAG.getValueType(FromVT)); 879 } 880 881 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 882 RegisterVT, ValueVT, V, CallConv); 883 Part += NumRegs; 884 Parts.clear(); 885 } 886 887 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 888 } 889 890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 891 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 892 const Value *V, 893 ISD::NodeType PreferredExtendType) const { 894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 895 ISD::NodeType ExtendKind = PreferredExtendType; 896 897 // Get the list of the values's legal parts. 898 unsigned NumRegs = Regs.size(); 899 SmallVector<SDValue, 8> Parts(NumRegs); 900 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 901 unsigned NumParts = RegCount[Value]; 902 903 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 904 *DAG.getContext(), 905 CallConv.getValue(), RegVTs[Value]) 906 : RegVTs[Value]; 907 908 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 909 ExtendKind = ISD::ZERO_EXTEND; 910 911 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 912 NumParts, RegisterVT, V, CallConv, ExtendKind); 913 Part += NumParts; 914 } 915 916 // Copy the parts into the registers. 917 SmallVector<SDValue, 8> Chains(NumRegs); 918 for (unsigned i = 0; i != NumRegs; ++i) { 919 SDValue Part; 920 if (!Flag) { 921 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 922 } else { 923 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 924 *Flag = Part.getValue(1); 925 } 926 927 Chains[i] = Part.getValue(0); 928 } 929 930 if (NumRegs == 1 || Flag) 931 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 932 // flagged to it. That is the CopyToReg nodes and the user are considered 933 // a single scheduling unit. If we create a TokenFactor and return it as 934 // chain, then the TokenFactor is both a predecessor (operand) of the 935 // user as well as a successor (the TF operands are flagged to the user). 936 // c1, f1 = CopyToReg 937 // c2, f2 = CopyToReg 938 // c3 = TokenFactor c1, c2 939 // ... 940 // = op c3, ..., f2 941 Chain = Chains[NumRegs-1]; 942 else 943 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 944 } 945 946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 947 unsigned MatchingIdx, const SDLoc &dl, 948 SelectionDAG &DAG, 949 std::vector<SDValue> &Ops) const { 950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 951 952 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 953 if (HasMatching) 954 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 955 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 956 // Put the register class of the virtual registers in the flag word. That 957 // way, later passes can recompute register class constraints for inline 958 // assembly as well as normal instructions. 959 // Don't do this for tied operands that can use the regclass information 960 // from the def. 961 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 962 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 963 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 964 } 965 966 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 967 Ops.push_back(Res); 968 969 if (Code == InlineAsm::Kind_Clobber) { 970 // Clobbers should always have a 1:1 mapping with registers, and may 971 // reference registers that have illegal (e.g. vector) types. Hence, we 972 // shouldn't try to apply any sort of splitting logic to them. 973 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 974 "No 1:1 mapping from clobbers to regs?"); 975 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 976 (void)SP; 977 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 978 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 979 assert( 980 (Regs[I] != SP || 981 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 982 "If we clobbered the stack pointer, MFI should know about it."); 983 } 984 return; 985 } 986 987 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 988 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 989 MVT RegisterVT = RegVTs[Value]; 990 for (unsigned i = 0; i != NumRegs; ++i) { 991 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 992 unsigned TheReg = Regs[Reg++]; 993 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 994 } 995 } 996 } 997 998 SmallVector<std::pair<unsigned, unsigned>, 4> 999 RegsForValue::getRegsAndSizes() const { 1000 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1001 unsigned I = 0; 1002 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1003 unsigned RegCount = std::get<0>(CountAndVT); 1004 MVT RegisterVT = std::get<1>(CountAndVT); 1005 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1006 for (unsigned E = I + RegCount; I != E; ++I) 1007 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1008 } 1009 return OutVec; 1010 } 1011 1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1013 const TargetLibraryInfo *li) { 1014 AA = aa; 1015 GFI = gfi; 1016 LibInfo = li; 1017 DL = &DAG.getDataLayout(); 1018 Context = DAG.getContext(); 1019 LPadToCallSiteMap.clear(); 1020 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1021 } 1022 1023 void SelectionDAGBuilder::clear() { 1024 NodeMap.clear(); 1025 UnusedArgNodeMap.clear(); 1026 PendingLoads.clear(); 1027 PendingExports.clear(); 1028 CurInst = nullptr; 1029 HasTailCall = false; 1030 SDNodeOrder = LowestSDNodeOrder; 1031 StatepointLowering.clear(); 1032 } 1033 1034 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1035 DanglingDebugInfoMap.clear(); 1036 } 1037 1038 SDValue SelectionDAGBuilder::getRoot() { 1039 if (PendingLoads.empty()) 1040 return DAG.getRoot(); 1041 1042 if (PendingLoads.size() == 1) { 1043 SDValue Root = PendingLoads[0]; 1044 DAG.setRoot(Root); 1045 PendingLoads.clear(); 1046 return Root; 1047 } 1048 1049 // Otherwise, we have to make a token factor node. 1050 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1051 PendingLoads.clear(); 1052 DAG.setRoot(Root); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getControlRoot() { 1057 SDValue Root = DAG.getRoot(); 1058 1059 if (PendingExports.empty()) 1060 return Root; 1061 1062 // Turn all of the CopyToReg chains into one factored node. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = PendingExports.size(); 1065 for (; i != e; ++i) { 1066 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1067 if (PendingExports[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 PendingExports.push_back(Root); 1073 } 1074 1075 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1076 PendingExports); 1077 PendingExports.clear(); 1078 DAG.setRoot(Root); 1079 return Root; 1080 } 1081 1082 void SelectionDAGBuilder::visit(const Instruction &I) { 1083 // Set up outgoing PHI node register values before emitting the terminator. 1084 if (I.isTerminator()) { 1085 HandlePHINodesInSuccessorBlocks(I.getParent()); 1086 } 1087 1088 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1089 if (!isa<DbgInfoIntrinsic>(I)) 1090 ++SDNodeOrder; 1091 1092 CurInst = &I; 1093 1094 visit(I.getOpcode(), I); 1095 1096 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1097 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1098 // maps to this instruction. 1099 // TODO: We could handle all flags (nsw, etc) here. 1100 // TODO: If an IR instruction maps to >1 node, only the final node will have 1101 // flags set. 1102 if (SDNode *Node = getNodeForIRValue(&I)) { 1103 SDNodeFlags IncomingFlags; 1104 IncomingFlags.copyFMF(*FPMO); 1105 if (!Node->getFlags().isDefined()) 1106 Node->setFlags(IncomingFlags); 1107 else 1108 Node->intersectFlagsWith(IncomingFlags); 1109 } 1110 } 1111 1112 if (!I.isTerminator() && !HasTailCall && 1113 !isStatepoint(&I)) // statepoints handle their exports internally 1114 CopyToExportRegsIfNeeded(&I); 1115 1116 CurInst = nullptr; 1117 } 1118 1119 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1120 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1121 } 1122 1123 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1124 // Note: this doesn't use InstVisitor, because it has to work with 1125 // ConstantExpr's in addition to instructions. 1126 switch (Opcode) { 1127 default: llvm_unreachable("Unknown instruction type encountered!"); 1128 // Build the switch statement using the Instruction.def file. 1129 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1130 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1131 #include "llvm/IR/Instruction.def" 1132 } 1133 } 1134 1135 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1136 const DIExpression *Expr) { 1137 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1138 const DbgValueInst *DI = DDI.getDI(); 1139 DIVariable *DanglingVariable = DI->getVariable(); 1140 DIExpression *DanglingExpr = DI->getExpression(); 1141 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1142 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1143 return true; 1144 } 1145 return false; 1146 }; 1147 1148 for (auto &DDIMI : DanglingDebugInfoMap) { 1149 DanglingDebugInfoVector &DDIV = DDIMI.second; 1150 1151 // If debug info is to be dropped, run it through final checks to see 1152 // whether it can be salvaged. 1153 for (auto &DDI : DDIV) 1154 if (isMatchingDbgValue(DDI)) 1155 salvageUnresolvedDbgValue(DDI); 1156 1157 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1158 } 1159 } 1160 1161 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1162 // generate the debug data structures now that we've seen its definition. 1163 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1164 SDValue Val) { 1165 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1166 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1167 return; 1168 1169 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1170 for (auto &DDI : DDIV) { 1171 const DbgValueInst *DI = DDI.getDI(); 1172 assert(DI && "Ill-formed DanglingDebugInfo"); 1173 DebugLoc dl = DDI.getdl(); 1174 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1175 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1176 DILocalVariable *Variable = DI->getVariable(); 1177 DIExpression *Expr = DI->getExpression(); 1178 assert(Variable->isValidLocationForIntrinsic(dl) && 1179 "Expected inlined-at fields to agree"); 1180 SDDbgValue *SDV; 1181 if (Val.getNode()) { 1182 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1183 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1184 // we couldn't resolve it directly when examining the DbgValue intrinsic 1185 // in the first place we should not be more successful here). Unless we 1186 // have some test case that prove this to be correct we should avoid 1187 // calling EmitFuncArgumentDbgValue here. 1188 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1189 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1190 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1191 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1192 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1193 // inserted after the definition of Val when emitting the instructions 1194 // after ISel. An alternative could be to teach 1195 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1196 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1197 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1198 << ValSDNodeOrder << "\n"); 1199 SDV = getDbgValue(Val, Variable, Expr, dl, 1200 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1201 DAG.AddDbgValue(SDV, Val.getNode(), false); 1202 } else 1203 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1204 << "in EmitFuncArgumentDbgValue\n"); 1205 } else { 1206 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1207 auto Undef = 1208 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1209 auto SDV = 1210 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1211 DAG.AddDbgValue(SDV, nullptr, false); 1212 } 1213 } 1214 DDIV.clear(); 1215 } 1216 1217 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1218 Value *V = DDI.getDI()->getValue(); 1219 DILocalVariable *Var = DDI.getDI()->getVariable(); 1220 DIExpression *Expr = DDI.getDI()->getExpression(); 1221 DebugLoc DL = DDI.getdl(); 1222 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1223 unsigned SDOrder = DDI.getSDNodeOrder(); 1224 1225 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1226 // that DW_OP_stack_value is desired. 1227 assert(isa<DbgValueInst>(DDI.getDI())); 1228 bool StackValue = true; 1229 1230 // Can this Value can be encoded without any further work? 1231 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1232 return; 1233 1234 // Attempt to salvage back through as many instructions as possible. Bail if 1235 // a non-instruction is seen, such as a constant expression or global 1236 // variable. FIXME: Further work could recover those too. 1237 while (isa<Instruction>(V)) { 1238 Instruction &VAsInst = *cast<Instruction>(V); 1239 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1240 1241 // If we cannot salvage any further, and haven't yet found a suitable debug 1242 // expression, bail out. 1243 if (!NewExpr) 1244 break; 1245 1246 // New value and expr now represent this debuginfo. 1247 V = VAsInst.getOperand(0); 1248 Expr = NewExpr; 1249 1250 // Some kind of simplification occurred: check whether the operand of the 1251 // salvaged debug expression can be encoded in this DAG. 1252 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1253 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1254 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1255 return; 1256 } 1257 } 1258 1259 // This was the final opportunity to salvage this debug information, and it 1260 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1261 // any earlier variable location. 1262 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1263 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1264 DAG.AddDbgValue(SDV, nullptr, false); 1265 1266 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1267 << "\n"); 1268 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1269 << "\n"); 1270 } 1271 1272 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1273 DIExpression *Expr, DebugLoc dl, 1274 DebugLoc InstDL, unsigned Order) { 1275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1276 SDDbgValue *SDV; 1277 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1278 isa<ConstantPointerNull>(V)) { 1279 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 1284 // If the Value is a frame index, we can create a FrameIndex debug value 1285 // without relying on the DAG at all. 1286 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1287 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1288 if (SI != FuncInfo.StaticAllocaMap.end()) { 1289 auto SDV = 1290 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1291 /*IsIndirect*/ false, dl, SDNodeOrder); 1292 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1293 // is still available even if the SDNode gets optimized out. 1294 DAG.AddDbgValue(SDV, nullptr, false); 1295 return true; 1296 } 1297 } 1298 1299 // Do not use getValue() in here; we don't want to generate code at 1300 // this point if it hasn't been done yet. 1301 SDValue N = NodeMap[V]; 1302 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1303 N = UnusedArgNodeMap[V]; 1304 if (N.getNode()) { 1305 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1306 return true; 1307 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1308 DAG.AddDbgValue(SDV, N.getNode(), false); 1309 return true; 1310 } 1311 1312 // Special rules apply for the first dbg.values of parameter variables in a 1313 // function. Identify them by the fact they reference Argument Values, that 1314 // they're parameters, and they are parameters of the current function. We 1315 // need to let them dangle until they get an SDNode. 1316 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1317 !InstDL.getInlinedAt(); 1318 if (!IsParamOfFunc) { 1319 // The value is not used in this block yet (or it would have an SDNode). 1320 // We still want the value to appear for the user if possible -- if it has 1321 // an associated VReg, we can refer to that instead. 1322 auto VMI = FuncInfo.ValueMap.find(V); 1323 if (VMI != FuncInfo.ValueMap.end()) { 1324 unsigned Reg = VMI->second; 1325 // If this is a PHI node, it may be split up into several MI PHI nodes 1326 // (in FunctionLoweringInfo::set). 1327 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1328 V->getType(), None); 1329 if (RFV.occupiesMultipleRegs()) { 1330 unsigned Offset = 0; 1331 unsigned BitsToDescribe = 0; 1332 if (auto VarSize = Var->getSizeInBits()) 1333 BitsToDescribe = *VarSize; 1334 if (auto Fragment = Expr->getFragmentInfo()) 1335 BitsToDescribe = Fragment->SizeInBits; 1336 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1337 unsigned RegisterSize = RegAndSize.second; 1338 // Bail out if all bits are described already. 1339 if (Offset >= BitsToDescribe) 1340 break; 1341 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1342 ? BitsToDescribe - Offset 1343 : RegisterSize; 1344 auto FragmentExpr = DIExpression::createFragmentExpression( 1345 Expr, Offset, FragmentSize); 1346 if (!FragmentExpr) 1347 continue; 1348 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1349 false, dl, SDNodeOrder); 1350 DAG.AddDbgValue(SDV, nullptr, false); 1351 Offset += RegisterSize; 1352 } 1353 } else { 1354 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1355 DAG.AddDbgValue(SDV, nullptr, false); 1356 } 1357 return true; 1358 } 1359 } 1360 1361 return false; 1362 } 1363 1364 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1365 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1366 for (auto &Pair : DanglingDebugInfoMap) 1367 for (auto &DDI : Pair.second) 1368 salvageUnresolvedDbgValue(DDI); 1369 clearDanglingDebugInfo(); 1370 } 1371 1372 /// getCopyFromRegs - If there was virtual register allocated for the value V 1373 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1374 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1375 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1376 SDValue Result; 1377 1378 if (It != FuncInfo.ValueMap.end()) { 1379 unsigned InReg = It->second; 1380 1381 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1382 DAG.getDataLayout(), InReg, Ty, 1383 None); // This is not an ABI copy. 1384 SDValue Chain = DAG.getEntryNode(); 1385 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1386 V); 1387 resolveDanglingDebugInfo(V, Result); 1388 } 1389 1390 return Result; 1391 } 1392 1393 /// getValue - Return an SDValue for the given Value. 1394 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1395 // If we already have an SDValue for this value, use it. It's important 1396 // to do this first, so that we don't create a CopyFromReg if we already 1397 // have a regular SDValue. 1398 SDValue &N = NodeMap[V]; 1399 if (N.getNode()) return N; 1400 1401 // If there's a virtual register allocated and initialized for this 1402 // value, use it. 1403 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1404 return copyFromReg; 1405 1406 // Otherwise create a new SDValue and remember it. 1407 SDValue Val = getValueImpl(V); 1408 NodeMap[V] = Val; 1409 resolveDanglingDebugInfo(V, Val); 1410 return Val; 1411 } 1412 1413 // Return true if SDValue exists for the given Value 1414 bool SelectionDAGBuilder::findValue(const Value *V) const { 1415 return (NodeMap.find(V) != NodeMap.end()) || 1416 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1417 } 1418 1419 /// getNonRegisterValue - Return an SDValue for the given Value, but 1420 /// don't look in FuncInfo.ValueMap for a virtual register. 1421 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1422 // If we already have an SDValue for this value, use it. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) { 1425 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1426 // Remove the debug location from the node as the node is about to be used 1427 // in a location which may differ from the original debug location. This 1428 // is relevant to Constant and ConstantFP nodes because they can appear 1429 // as constant expressions inside PHI nodes. 1430 N->setDebugLoc(DebugLoc()); 1431 } 1432 return N; 1433 } 1434 1435 // Otherwise create a new SDValue and remember it. 1436 SDValue Val = getValueImpl(V); 1437 NodeMap[V] = Val; 1438 resolveDanglingDebugInfo(V, Val); 1439 return Val; 1440 } 1441 1442 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1443 /// Create an SDValue for the given value. 1444 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1446 1447 if (const Constant *C = dyn_cast<Constant>(V)) { 1448 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1449 1450 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1451 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1452 1453 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1454 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1455 1456 if (isa<ConstantPointerNull>(C)) { 1457 unsigned AS = V->getType()->getPointerAddressSpace(); 1458 return DAG.getConstant(0, getCurSDLoc(), 1459 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1460 } 1461 1462 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1463 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1464 1465 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1466 return DAG.getUNDEF(VT); 1467 1468 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1469 visit(CE->getOpcode(), *CE); 1470 SDValue N1 = NodeMap[V]; 1471 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1472 return N1; 1473 } 1474 1475 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1476 SmallVector<SDValue, 4> Constants; 1477 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1478 OI != OE; ++OI) { 1479 SDNode *Val = getValue(*OI).getNode(); 1480 // If the operand is an empty aggregate, there are no values. 1481 if (!Val) continue; 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Constants.push_back(SDValue(Val, i)); 1486 } 1487 1488 return DAG.getMergeValues(Constants, getCurSDLoc()); 1489 } 1490 1491 if (const ConstantDataSequential *CDS = 1492 dyn_cast<ConstantDataSequential>(C)) { 1493 SmallVector<SDValue, 4> Ops; 1494 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1495 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1496 // Add each leaf value from the operand to the Constants list 1497 // to form a flattened list of all the values. 1498 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1499 Ops.push_back(SDValue(Val, i)); 1500 } 1501 1502 if (isa<ArrayType>(CDS->getType())) 1503 return DAG.getMergeValues(Ops, getCurSDLoc()); 1504 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1505 } 1506 1507 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1508 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1509 "Unknown struct or array constant!"); 1510 1511 SmallVector<EVT, 4> ValueVTs; 1512 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1513 unsigned NumElts = ValueVTs.size(); 1514 if (NumElts == 0) 1515 return SDValue(); // empty struct 1516 SmallVector<SDValue, 4> Constants(NumElts); 1517 for (unsigned i = 0; i != NumElts; ++i) { 1518 EVT EltVT = ValueVTs[i]; 1519 if (isa<UndefValue>(C)) 1520 Constants[i] = DAG.getUNDEF(EltVT); 1521 else if (EltVT.isFloatingPoint()) 1522 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1523 else 1524 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1525 } 1526 1527 return DAG.getMergeValues(Constants, getCurSDLoc()); 1528 } 1529 1530 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1531 return DAG.getBlockAddress(BA, VT); 1532 1533 VectorType *VecTy = cast<VectorType>(V->getType()); 1534 unsigned NumElements = VecTy->getNumElements(); 1535 1536 // Now that we know the number and type of the elements, get that number of 1537 // elements into the Ops array based on what kind of constant it is. 1538 SmallVector<SDValue, 16> Ops; 1539 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1540 for (unsigned i = 0; i != NumElements; ++i) 1541 Ops.push_back(getValue(CV->getOperand(i))); 1542 } else { 1543 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1544 EVT EltVT = 1545 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1546 1547 SDValue Op; 1548 if (EltVT.isFloatingPoint()) 1549 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1550 else 1551 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1552 Ops.assign(NumElements, Op); 1553 } 1554 1555 // Create a BUILD_VECTOR node. 1556 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1557 } 1558 1559 // If this is a static alloca, generate it as the frameindex instead of 1560 // computation. 1561 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1562 DenseMap<const AllocaInst*, int>::iterator SI = 1563 FuncInfo.StaticAllocaMap.find(AI); 1564 if (SI != FuncInfo.StaticAllocaMap.end()) 1565 return DAG.getFrameIndex(SI->second, 1566 TLI.getFrameIndexTy(DAG.getDataLayout())); 1567 } 1568 1569 // If this is an instruction which fast-isel has deferred, select it now. 1570 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1571 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1572 1573 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1574 Inst->getType(), getABIRegCopyCC(V)); 1575 SDValue Chain = DAG.getEntryNode(); 1576 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1577 } 1578 1579 llvm_unreachable("Can't get register for value!"); 1580 } 1581 1582 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1583 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1584 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1585 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1586 bool IsSEH = isAsynchronousEHPersonality(Pers); 1587 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1588 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1589 if (!IsSEH) 1590 CatchPadMBB->setIsEHScopeEntry(); 1591 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1592 if (IsMSVCCXX || IsCoreCLR) 1593 CatchPadMBB->setIsEHFuncletEntry(); 1594 // Wasm does not need catchpads anymore 1595 if (!IsWasmCXX) 1596 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1597 getControlRoot())); 1598 } 1599 1600 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1601 // Update machine-CFG edge. 1602 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1603 FuncInfo.MBB->addSuccessor(TargetMBB); 1604 1605 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1606 bool IsSEH = isAsynchronousEHPersonality(Pers); 1607 if (IsSEH) { 1608 // If this is not a fall-through branch or optimizations are switched off, 1609 // emit the branch. 1610 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1611 TM.getOptLevel() == CodeGenOpt::None) 1612 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1613 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1614 return; 1615 } 1616 1617 // Figure out the funclet membership for the catchret's successor. 1618 // This will be used by the FuncletLayout pass to determine how to order the 1619 // BB's. 1620 // A 'catchret' returns to the outer scope's color. 1621 Value *ParentPad = I.getCatchSwitchParentPad(); 1622 const BasicBlock *SuccessorColor; 1623 if (isa<ConstantTokenNone>(ParentPad)) 1624 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1625 else 1626 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1627 assert(SuccessorColor && "No parent funclet for catchret!"); 1628 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1629 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1630 1631 // Create the terminator node. 1632 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1633 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1634 DAG.getBasicBlock(SuccessorColorMBB)); 1635 DAG.setRoot(Ret); 1636 } 1637 1638 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1639 // Don't emit any special code for the cleanuppad instruction. It just marks 1640 // the start of an EH scope/funclet. 1641 FuncInfo.MBB->setIsEHScopeEntry(); 1642 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1643 if (Pers != EHPersonality::Wasm_CXX) { 1644 FuncInfo.MBB->setIsEHFuncletEntry(); 1645 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1646 } 1647 } 1648 1649 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1650 // the control flow always stops at the single catch pad, as it does for a 1651 // cleanup pad. In case the exception caught is not of the types the catch pad 1652 // catches, it will be rethrown by a rethrow. 1653 static void findWasmUnwindDestinations( 1654 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1655 BranchProbability Prob, 1656 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1657 &UnwindDests) { 1658 while (EHPadBB) { 1659 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1660 if (isa<CleanupPadInst>(Pad)) { 1661 // Stop on cleanup pads. 1662 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1663 UnwindDests.back().first->setIsEHScopeEntry(); 1664 break; 1665 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1666 // Add the catchpad handlers to the possible destinations. We don't 1667 // continue to the unwind destination of the catchswitch for wasm. 1668 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1669 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1670 UnwindDests.back().first->setIsEHScopeEntry(); 1671 } 1672 break; 1673 } else { 1674 continue; 1675 } 1676 } 1677 } 1678 1679 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1680 /// many places it could ultimately go. In the IR, we have a single unwind 1681 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1682 /// This function skips over imaginary basic blocks that hold catchswitch 1683 /// instructions, and finds all the "real" machine 1684 /// basic block destinations. As those destinations may not be successors of 1685 /// EHPadBB, here we also calculate the edge probability to those destinations. 1686 /// The passed-in Prob is the edge probability to EHPadBB. 1687 static void findUnwindDestinations( 1688 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1689 BranchProbability Prob, 1690 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1691 &UnwindDests) { 1692 EHPersonality Personality = 1693 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1694 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1695 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1696 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1697 bool IsSEH = isAsynchronousEHPersonality(Personality); 1698 1699 if (IsWasmCXX) { 1700 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1701 assert(UnwindDests.size() <= 1 && 1702 "There should be at most one unwind destination for wasm"); 1703 return; 1704 } 1705 1706 while (EHPadBB) { 1707 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1708 BasicBlock *NewEHPadBB = nullptr; 1709 if (isa<LandingPadInst>(Pad)) { 1710 // Stop on landingpads. They are not funclets. 1711 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1712 break; 1713 } else if (isa<CleanupPadInst>(Pad)) { 1714 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1715 // personalities. 1716 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1717 UnwindDests.back().first->setIsEHScopeEntry(); 1718 UnwindDests.back().first->setIsEHFuncletEntry(); 1719 break; 1720 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1721 // Add the catchpad handlers to the possible destinations. 1722 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1723 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1724 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1725 if (IsMSVCCXX || IsCoreCLR) 1726 UnwindDests.back().first->setIsEHFuncletEntry(); 1727 if (!IsSEH) 1728 UnwindDests.back().first->setIsEHScopeEntry(); 1729 } 1730 NewEHPadBB = CatchSwitch->getUnwindDest(); 1731 } else { 1732 continue; 1733 } 1734 1735 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1736 if (BPI && NewEHPadBB) 1737 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1738 EHPadBB = NewEHPadBB; 1739 } 1740 } 1741 1742 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1743 // Update successor info. 1744 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1745 auto UnwindDest = I.getUnwindDest(); 1746 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1747 BranchProbability UnwindDestProb = 1748 (BPI && UnwindDest) 1749 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1750 : BranchProbability::getZero(); 1751 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1752 for (auto &UnwindDest : UnwindDests) { 1753 UnwindDest.first->setIsEHPad(); 1754 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1755 } 1756 FuncInfo.MBB->normalizeSuccProbs(); 1757 1758 // Create the terminator node. 1759 SDValue Ret = 1760 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1761 DAG.setRoot(Ret); 1762 } 1763 1764 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1765 report_fatal_error("visitCatchSwitch not yet implemented!"); 1766 } 1767 1768 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1770 auto &DL = DAG.getDataLayout(); 1771 SDValue Chain = getControlRoot(); 1772 SmallVector<ISD::OutputArg, 8> Outs; 1773 SmallVector<SDValue, 8> OutVals; 1774 1775 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1776 // lower 1777 // 1778 // %val = call <ty> @llvm.experimental.deoptimize() 1779 // ret <ty> %val 1780 // 1781 // differently. 1782 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1783 LowerDeoptimizingReturn(); 1784 return; 1785 } 1786 1787 if (!FuncInfo.CanLowerReturn) { 1788 unsigned DemoteReg = FuncInfo.DemoteRegister; 1789 const Function *F = I.getParent()->getParent(); 1790 1791 // Emit a store of the return value through the virtual register. 1792 // Leave Outs empty so that LowerReturn won't try to load return 1793 // registers the usual way. 1794 SmallVector<EVT, 1> PtrValueVTs; 1795 ComputeValueVTs(TLI, DL, 1796 F->getReturnType()->getPointerTo( 1797 DAG.getDataLayout().getAllocaAddrSpace()), 1798 PtrValueVTs); 1799 1800 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1801 DemoteReg, PtrValueVTs[0]); 1802 SDValue RetOp = getValue(I.getOperand(0)); 1803 1804 SmallVector<EVT, 4> ValueVTs, MemVTs; 1805 SmallVector<uint64_t, 4> Offsets; 1806 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1807 &Offsets); 1808 unsigned NumValues = ValueVTs.size(); 1809 1810 SmallVector<SDValue, 4> Chains(NumValues); 1811 for (unsigned i = 0; i != NumValues; ++i) { 1812 // An aggregate return value cannot wrap around the address space, so 1813 // offsets to its parts don't wrap either. 1814 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1815 1816 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1817 if (MemVTs[i] != ValueVTs[i]) 1818 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1819 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1820 // FIXME: better loc info would be nice. 1821 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1822 } 1823 1824 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1825 MVT::Other, Chains); 1826 } else if (I.getNumOperands() != 0) { 1827 SmallVector<EVT, 4> ValueVTs; 1828 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1829 unsigned NumValues = ValueVTs.size(); 1830 if (NumValues) { 1831 SDValue RetOp = getValue(I.getOperand(0)); 1832 1833 const Function *F = I.getParent()->getParent(); 1834 1835 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1836 I.getOperand(0)->getType(), F->getCallingConv(), 1837 /*IsVarArg*/ false); 1838 1839 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1840 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1841 Attribute::SExt)) 1842 ExtendKind = ISD::SIGN_EXTEND; 1843 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1844 Attribute::ZExt)) 1845 ExtendKind = ISD::ZERO_EXTEND; 1846 1847 LLVMContext &Context = F->getContext(); 1848 bool RetInReg = F->getAttributes().hasAttribute( 1849 AttributeList::ReturnIndex, Attribute::InReg); 1850 1851 for (unsigned j = 0; j != NumValues; ++j) { 1852 EVT VT = ValueVTs[j]; 1853 1854 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1855 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1856 1857 CallingConv::ID CC = F->getCallingConv(); 1858 1859 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1860 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1861 SmallVector<SDValue, 4> Parts(NumParts); 1862 getCopyToParts(DAG, getCurSDLoc(), 1863 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1864 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1865 1866 // 'inreg' on function refers to return value 1867 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1868 if (RetInReg) 1869 Flags.setInReg(); 1870 1871 if (I.getOperand(0)->getType()->isPointerTy()) { 1872 Flags.setPointer(); 1873 Flags.setPointerAddrSpace( 1874 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1875 } 1876 1877 if (NeedsRegBlock) { 1878 Flags.setInConsecutiveRegs(); 1879 if (j == NumValues - 1) 1880 Flags.setInConsecutiveRegsLast(); 1881 } 1882 1883 // Propagate extension type if any 1884 if (ExtendKind == ISD::SIGN_EXTEND) 1885 Flags.setSExt(); 1886 else if (ExtendKind == ISD::ZERO_EXTEND) 1887 Flags.setZExt(); 1888 1889 for (unsigned i = 0; i < NumParts; ++i) { 1890 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1891 VT, /*isfixed=*/true, 0, 0)); 1892 OutVals.push_back(Parts[i]); 1893 } 1894 } 1895 } 1896 } 1897 1898 // Push in swifterror virtual register as the last element of Outs. This makes 1899 // sure swifterror virtual register will be returned in the swifterror 1900 // physical register. 1901 const Function *F = I.getParent()->getParent(); 1902 if (TLI.supportSwiftError() && 1903 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1904 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1905 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1906 Flags.setSwiftError(); 1907 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1908 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1909 true /*isfixed*/, 1 /*origidx*/, 1910 0 /*partOffs*/)); 1911 // Create SDNode for the swifterror virtual register. 1912 OutVals.push_back( 1913 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1914 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1915 EVT(TLI.getPointerTy(DL)))); 1916 } 1917 1918 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1919 CallingConv::ID CallConv = 1920 DAG.getMachineFunction().getFunction().getCallingConv(); 1921 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1922 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1923 1924 // Verify that the target's LowerReturn behaved as expected. 1925 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1926 "LowerReturn didn't return a valid chain!"); 1927 1928 // Update the DAG with the new chain value resulting from return lowering. 1929 DAG.setRoot(Chain); 1930 } 1931 1932 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1933 /// created for it, emit nodes to copy the value into the virtual 1934 /// registers. 1935 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1936 // Skip empty types 1937 if (V->getType()->isEmptyTy()) 1938 return; 1939 1940 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1941 if (VMI != FuncInfo.ValueMap.end()) { 1942 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1943 CopyValueToVirtualRegister(V, VMI->second); 1944 } 1945 } 1946 1947 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1948 /// the current basic block, add it to ValueMap now so that we'll get a 1949 /// CopyTo/FromReg. 1950 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1951 // No need to export constants. 1952 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1953 1954 // Already exported? 1955 if (FuncInfo.isExportedInst(V)) return; 1956 1957 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1958 CopyValueToVirtualRegister(V, Reg); 1959 } 1960 1961 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1962 const BasicBlock *FromBB) { 1963 // The operands of the setcc have to be in this block. We don't know 1964 // how to export them from some other block. 1965 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1966 // Can export from current BB. 1967 if (VI->getParent() == FromBB) 1968 return true; 1969 1970 // Is already exported, noop. 1971 return FuncInfo.isExportedInst(V); 1972 } 1973 1974 // If this is an argument, we can export it if the BB is the entry block or 1975 // if it is already exported. 1976 if (isa<Argument>(V)) { 1977 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1978 return true; 1979 1980 // Otherwise, can only export this if it is already exported. 1981 return FuncInfo.isExportedInst(V); 1982 } 1983 1984 // Otherwise, constants can always be exported. 1985 return true; 1986 } 1987 1988 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1989 BranchProbability 1990 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1991 const MachineBasicBlock *Dst) const { 1992 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1993 const BasicBlock *SrcBB = Src->getBasicBlock(); 1994 const BasicBlock *DstBB = Dst->getBasicBlock(); 1995 if (!BPI) { 1996 // If BPI is not available, set the default probability as 1 / N, where N is 1997 // the number of successors. 1998 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1999 return BranchProbability(1, SuccSize); 2000 } 2001 return BPI->getEdgeProbability(SrcBB, DstBB); 2002 } 2003 2004 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2005 MachineBasicBlock *Dst, 2006 BranchProbability Prob) { 2007 if (!FuncInfo.BPI) 2008 Src->addSuccessorWithoutProb(Dst); 2009 else { 2010 if (Prob.isUnknown()) 2011 Prob = getEdgeProbability(Src, Dst); 2012 Src->addSuccessor(Dst, Prob); 2013 } 2014 } 2015 2016 static bool InBlock(const Value *V, const BasicBlock *BB) { 2017 if (const Instruction *I = dyn_cast<Instruction>(V)) 2018 return I->getParent() == BB; 2019 return true; 2020 } 2021 2022 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2023 /// This function emits a branch and is used at the leaves of an OR or an 2024 /// AND operator tree. 2025 void 2026 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2027 MachineBasicBlock *TBB, 2028 MachineBasicBlock *FBB, 2029 MachineBasicBlock *CurBB, 2030 MachineBasicBlock *SwitchBB, 2031 BranchProbability TProb, 2032 BranchProbability FProb, 2033 bool InvertCond) { 2034 const BasicBlock *BB = CurBB->getBasicBlock(); 2035 2036 // If the leaf of the tree is a comparison, merge the condition into 2037 // the caseblock. 2038 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2039 // The operands of the cmp have to be in this block. We don't know 2040 // how to export them from some other block. If this is the first block 2041 // of the sequence, no exporting is needed. 2042 if (CurBB == SwitchBB || 2043 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2044 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2045 ISD::CondCode Condition; 2046 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2047 ICmpInst::Predicate Pred = 2048 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2049 Condition = getICmpCondCode(Pred); 2050 } else { 2051 const FCmpInst *FC = cast<FCmpInst>(Cond); 2052 FCmpInst::Predicate Pred = 2053 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2054 Condition = getFCmpCondCode(Pred); 2055 if (TM.Options.NoNaNsFPMath) 2056 Condition = getFCmpCodeWithoutNaN(Condition); 2057 } 2058 2059 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2060 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2061 SL->SwitchCases.push_back(CB); 2062 return; 2063 } 2064 } 2065 2066 // Create a CaseBlock record representing this branch. 2067 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2068 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2069 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2070 SL->SwitchCases.push_back(CB); 2071 } 2072 2073 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2074 MachineBasicBlock *TBB, 2075 MachineBasicBlock *FBB, 2076 MachineBasicBlock *CurBB, 2077 MachineBasicBlock *SwitchBB, 2078 Instruction::BinaryOps Opc, 2079 BranchProbability TProb, 2080 BranchProbability FProb, 2081 bool InvertCond) { 2082 // Skip over not part of the tree and remember to invert op and operands at 2083 // next level. 2084 Value *NotCond; 2085 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2086 InBlock(NotCond, CurBB->getBasicBlock())) { 2087 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2088 !InvertCond); 2089 return; 2090 } 2091 2092 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2093 // Compute the effective opcode for Cond, taking into account whether it needs 2094 // to be inverted, e.g. 2095 // and (not (or A, B)), C 2096 // gets lowered as 2097 // and (and (not A, not B), C) 2098 unsigned BOpc = 0; 2099 if (BOp) { 2100 BOpc = BOp->getOpcode(); 2101 if (InvertCond) { 2102 if (BOpc == Instruction::And) 2103 BOpc = Instruction::Or; 2104 else if (BOpc == Instruction::Or) 2105 BOpc = Instruction::And; 2106 } 2107 } 2108 2109 // If this node is not part of the or/and tree, emit it as a branch. 2110 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2111 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2112 BOp->getParent() != CurBB->getBasicBlock() || 2113 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2114 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2115 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2116 TProb, FProb, InvertCond); 2117 return; 2118 } 2119 2120 // Create TmpBB after CurBB. 2121 MachineFunction::iterator BBI(CurBB); 2122 MachineFunction &MF = DAG.getMachineFunction(); 2123 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2124 CurBB->getParent()->insert(++BBI, TmpBB); 2125 2126 if (Opc == Instruction::Or) { 2127 // Codegen X | Y as: 2128 // BB1: 2129 // jmp_if_X TBB 2130 // jmp TmpBB 2131 // TmpBB: 2132 // jmp_if_Y TBB 2133 // jmp FBB 2134 // 2135 2136 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2137 // The requirement is that 2138 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2139 // = TrueProb for original BB. 2140 // Assuming the original probabilities are A and B, one choice is to set 2141 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2142 // A/(1+B) and 2B/(1+B). This choice assumes that 2143 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2144 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2145 // TmpBB, but the math is more complicated. 2146 2147 auto NewTrueProb = TProb / 2; 2148 auto NewFalseProb = TProb / 2 + FProb; 2149 // Emit the LHS condition. 2150 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2151 NewTrueProb, NewFalseProb, InvertCond); 2152 2153 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2154 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2155 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2156 // Emit the RHS condition into TmpBB. 2157 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2158 Probs[0], Probs[1], InvertCond); 2159 } else { 2160 assert(Opc == Instruction::And && "Unknown merge op!"); 2161 // Codegen X & Y as: 2162 // BB1: 2163 // jmp_if_X TmpBB 2164 // jmp FBB 2165 // TmpBB: 2166 // jmp_if_Y TBB 2167 // jmp FBB 2168 // 2169 // This requires creation of TmpBB after CurBB. 2170 2171 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2172 // The requirement is that 2173 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2174 // = FalseProb for original BB. 2175 // Assuming the original probabilities are A and B, one choice is to set 2176 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2177 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2178 // TrueProb for BB1 * FalseProb for TmpBB. 2179 2180 auto NewTrueProb = TProb + FProb / 2; 2181 auto NewFalseProb = FProb / 2; 2182 // Emit the LHS condition. 2183 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2184 NewTrueProb, NewFalseProb, InvertCond); 2185 2186 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2187 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2188 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2189 // Emit the RHS condition into TmpBB. 2190 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2191 Probs[0], Probs[1], InvertCond); 2192 } 2193 } 2194 2195 /// If the set of cases should be emitted as a series of branches, return true. 2196 /// If we should emit this as a bunch of and/or'd together conditions, return 2197 /// false. 2198 bool 2199 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2200 if (Cases.size() != 2) return true; 2201 2202 // If this is two comparisons of the same values or'd or and'd together, they 2203 // will get folded into a single comparison, so don't emit two blocks. 2204 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2205 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2206 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2207 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2208 return false; 2209 } 2210 2211 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2212 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2213 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2214 Cases[0].CC == Cases[1].CC && 2215 isa<Constant>(Cases[0].CmpRHS) && 2216 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2217 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2218 return false; 2219 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2220 return false; 2221 } 2222 2223 return true; 2224 } 2225 2226 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2227 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2228 2229 // Update machine-CFG edges. 2230 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2231 2232 if (I.isUnconditional()) { 2233 // Update machine-CFG edges. 2234 BrMBB->addSuccessor(Succ0MBB); 2235 2236 // If this is not a fall-through branch or optimizations are switched off, 2237 // emit the branch. 2238 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2239 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2240 MVT::Other, getControlRoot(), 2241 DAG.getBasicBlock(Succ0MBB))); 2242 2243 return; 2244 } 2245 2246 // If this condition is one of the special cases we handle, do special stuff 2247 // now. 2248 const Value *CondVal = I.getCondition(); 2249 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2250 2251 // If this is a series of conditions that are or'd or and'd together, emit 2252 // this as a sequence of branches instead of setcc's with and/or operations. 2253 // As long as jumps are not expensive, this should improve performance. 2254 // For example, instead of something like: 2255 // cmp A, B 2256 // C = seteq 2257 // cmp D, E 2258 // F = setle 2259 // or C, F 2260 // jnz foo 2261 // Emit: 2262 // cmp A, B 2263 // je foo 2264 // cmp D, E 2265 // jle foo 2266 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2267 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2268 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2269 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2270 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2271 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2272 Opcode, 2273 getEdgeProbability(BrMBB, Succ0MBB), 2274 getEdgeProbability(BrMBB, Succ1MBB), 2275 /*InvertCond=*/false); 2276 // If the compares in later blocks need to use values not currently 2277 // exported from this block, export them now. This block should always 2278 // be the first entry. 2279 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2280 2281 // Allow some cases to be rejected. 2282 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2283 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2284 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2285 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2286 } 2287 2288 // Emit the branch for this block. 2289 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2290 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2291 return; 2292 } 2293 2294 // Okay, we decided not to do this, remove any inserted MBB's and clear 2295 // SwitchCases. 2296 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2297 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2298 2299 SL->SwitchCases.clear(); 2300 } 2301 } 2302 2303 // Create a CaseBlock record representing this branch. 2304 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2305 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2306 2307 // Use visitSwitchCase to actually insert the fast branch sequence for this 2308 // cond branch. 2309 visitSwitchCase(CB, BrMBB); 2310 } 2311 2312 /// visitSwitchCase - Emits the necessary code to represent a single node in 2313 /// the binary search tree resulting from lowering a switch instruction. 2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2315 MachineBasicBlock *SwitchBB) { 2316 SDValue Cond; 2317 SDValue CondLHS = getValue(CB.CmpLHS); 2318 SDLoc dl = CB.DL; 2319 2320 if (CB.CC == ISD::SETTRUE) { 2321 // Branch or fall through to TrueBB. 2322 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2323 SwitchBB->normalizeSuccProbs(); 2324 if (CB.TrueBB != NextBlock(SwitchBB)) { 2325 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2326 DAG.getBasicBlock(CB.TrueBB))); 2327 } 2328 return; 2329 } 2330 2331 auto &TLI = DAG.getTargetLoweringInfo(); 2332 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2333 2334 // Build the setcc now. 2335 if (!CB.CmpMHS) { 2336 // Fold "(X == true)" to X and "(X == false)" to !X to 2337 // handle common cases produced by branch lowering. 2338 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) 2340 Cond = CondLHS; 2341 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2342 CB.CC == ISD::SETEQ) { 2343 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2344 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2345 } else { 2346 SDValue CondRHS = getValue(CB.CmpRHS); 2347 2348 // If a pointer's DAG type is larger than its memory type then the DAG 2349 // values are zero-extended. This breaks signed comparisons so truncate 2350 // back to the underlying type before doing the compare. 2351 if (CondLHS.getValueType() != MemVT) { 2352 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2353 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2354 } 2355 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2356 } 2357 } else { 2358 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2359 2360 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2361 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2362 2363 SDValue CmpOp = getValue(CB.CmpMHS); 2364 EVT VT = CmpOp.getValueType(); 2365 2366 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2367 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2368 ISD::SETLE); 2369 } else { 2370 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2371 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2372 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2373 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2374 } 2375 } 2376 2377 // Update successor info 2378 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2379 // TrueBB and FalseBB are always different unless the incoming IR is 2380 // degenerate. This only happens when running llc on weird IR. 2381 if (CB.TrueBB != CB.FalseBB) 2382 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2383 SwitchBB->normalizeSuccProbs(); 2384 2385 // If the lhs block is the next block, invert the condition so that we can 2386 // fall through to the lhs instead of the rhs block. 2387 if (CB.TrueBB == NextBlock(SwitchBB)) { 2388 std::swap(CB.TrueBB, CB.FalseBB); 2389 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2390 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2391 } 2392 2393 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2394 MVT::Other, getControlRoot(), Cond, 2395 DAG.getBasicBlock(CB.TrueBB)); 2396 2397 // Insert the false branch. Do this even if it's a fall through branch, 2398 // this makes it easier to do DAG optimizations which require inverting 2399 // the branch condition. 2400 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2401 DAG.getBasicBlock(CB.FalseBB)); 2402 2403 DAG.setRoot(BrCond); 2404 } 2405 2406 /// visitJumpTable - Emit JumpTable node in the current MBB 2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2408 // Emit the code for the jump table 2409 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2410 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2411 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2412 JT.Reg, PTy); 2413 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2414 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2415 MVT::Other, Index.getValue(1), 2416 Table, Index); 2417 DAG.setRoot(BrJumpTable); 2418 } 2419 2420 /// visitJumpTableHeader - This function emits necessary code to produce index 2421 /// in the JumpTable from switch case. 2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2423 JumpTableHeader &JTH, 2424 MachineBasicBlock *SwitchBB) { 2425 SDLoc dl = getCurSDLoc(); 2426 2427 // Subtract the lowest switch case value from the value being switched on. 2428 SDValue SwitchOp = getValue(JTH.SValue); 2429 EVT VT = SwitchOp.getValueType(); 2430 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2431 DAG.getConstant(JTH.First, dl, VT)); 2432 2433 // The SDNode we just created, which holds the value being switched on minus 2434 // the smallest case value, needs to be copied to a virtual register so it 2435 // can be used as an index into the jump table in a subsequent basic block. 2436 // This value may be smaller or larger than the target's pointer type, and 2437 // therefore require extension or truncating. 2438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2439 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2440 2441 unsigned JumpTableReg = 2442 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2443 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2444 JumpTableReg, SwitchOp); 2445 JT.Reg = JumpTableReg; 2446 2447 if (!JTH.OmitRangeCheck) { 2448 // Emit the range check for the jump table, and branch to the default block 2449 // for the switch statement if the value being switched on exceeds the 2450 // largest case in the switch. 2451 SDValue CMP = DAG.getSetCC( 2452 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2453 Sub.getValueType()), 2454 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2455 2456 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2457 MVT::Other, CopyTo, CMP, 2458 DAG.getBasicBlock(JT.Default)); 2459 2460 // Avoid emitting unnecessary branches to the next block. 2461 if (JT.MBB != NextBlock(SwitchBB)) 2462 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2463 DAG.getBasicBlock(JT.MBB)); 2464 2465 DAG.setRoot(BrCond); 2466 } else { 2467 // Avoid emitting unnecessary branches to the next block. 2468 if (JT.MBB != NextBlock(SwitchBB)) 2469 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2470 DAG.getBasicBlock(JT.MBB))); 2471 else 2472 DAG.setRoot(CopyTo); 2473 } 2474 } 2475 2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2477 /// variable if there exists one. 2478 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2479 SDValue &Chain) { 2480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2481 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2482 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2483 MachineFunction &MF = DAG.getMachineFunction(); 2484 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2485 MachineSDNode *Node = 2486 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2487 if (Global) { 2488 MachinePointerInfo MPInfo(Global); 2489 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2490 MachineMemOperand::MODereferenceable; 2491 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2492 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2493 DAG.setNodeMemRefs(Node, {MemRef}); 2494 } 2495 if (PtrTy != PtrMemTy) 2496 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2497 return SDValue(Node, 0); 2498 } 2499 2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2501 /// tail spliced into a stack protector check success bb. 2502 /// 2503 /// For a high level explanation of how this fits into the stack protector 2504 /// generation see the comment on the declaration of class 2505 /// StackProtectorDescriptor. 2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2507 MachineBasicBlock *ParentBB) { 2508 2509 // First create the loads to the guard/stack slot for the comparison. 2510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2511 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2512 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2513 2514 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2515 int FI = MFI.getStackProtectorIndex(); 2516 2517 SDValue Guard; 2518 SDLoc dl = getCurSDLoc(); 2519 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2520 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2521 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2522 2523 // Generate code to load the content of the guard slot. 2524 SDValue GuardVal = DAG.getLoad( 2525 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2526 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2527 MachineMemOperand::MOVolatile); 2528 2529 if (TLI.useStackGuardXorFP()) 2530 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2531 2532 // Retrieve guard check function, nullptr if instrumentation is inlined. 2533 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2534 // The target provides a guard check function to validate the guard value. 2535 // Generate a call to that function with the content of the guard slot as 2536 // argument. 2537 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2538 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2539 2540 TargetLowering::ArgListTy Args; 2541 TargetLowering::ArgListEntry Entry; 2542 Entry.Node = GuardVal; 2543 Entry.Ty = FnTy->getParamType(0); 2544 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2545 Entry.IsInReg = true; 2546 Args.push_back(Entry); 2547 2548 TargetLowering::CallLoweringInfo CLI(DAG); 2549 CLI.setDebugLoc(getCurSDLoc()) 2550 .setChain(DAG.getEntryNode()) 2551 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2552 getValue(GuardCheckFn), std::move(Args)); 2553 2554 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2555 DAG.setRoot(Result.second); 2556 return; 2557 } 2558 2559 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2560 // Otherwise, emit a volatile load to retrieve the stack guard value. 2561 SDValue Chain = DAG.getEntryNode(); 2562 if (TLI.useLoadStackGuardNode()) { 2563 Guard = getLoadStackGuard(DAG, dl, Chain); 2564 } else { 2565 const Value *IRGuard = TLI.getSDagStackGuard(M); 2566 SDValue GuardPtr = getValue(IRGuard); 2567 2568 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2569 MachinePointerInfo(IRGuard, 0), Align, 2570 MachineMemOperand::MOVolatile); 2571 } 2572 2573 // Perform the comparison via a subtract/getsetcc. 2574 EVT VT = Guard.getValueType(); 2575 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2576 2577 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2578 *DAG.getContext(), 2579 Sub.getValueType()), 2580 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2581 2582 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2583 // branch to failure MBB. 2584 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2585 MVT::Other, GuardVal.getOperand(0), 2586 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2587 // Otherwise branch to success MBB. 2588 SDValue Br = DAG.getNode(ISD::BR, dl, 2589 MVT::Other, BrCond, 2590 DAG.getBasicBlock(SPD.getSuccessMBB())); 2591 2592 DAG.setRoot(Br); 2593 } 2594 2595 /// Codegen the failure basic block for a stack protector check. 2596 /// 2597 /// A failure stack protector machine basic block consists simply of a call to 2598 /// __stack_chk_fail(). 2599 /// 2600 /// For a high level explanation of how this fits into the stack protector 2601 /// generation see the comment on the declaration of class 2602 /// StackProtectorDescriptor. 2603 void 2604 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2606 TargetLowering::MakeLibCallOptions CallOptions; 2607 CallOptions.setDiscardResult(true); 2608 SDValue Chain = 2609 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2610 None, CallOptions, getCurSDLoc()).second; 2611 // On PS4, the "return address" must still be within the calling function, 2612 // even if it's at the very end, so emit an explicit TRAP here. 2613 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2614 if (TM.getTargetTriple().isPS4CPU()) 2615 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2616 2617 DAG.setRoot(Chain); 2618 } 2619 2620 /// visitBitTestHeader - This function emits necessary code to produce value 2621 /// suitable for "bit tests" 2622 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2623 MachineBasicBlock *SwitchBB) { 2624 SDLoc dl = getCurSDLoc(); 2625 2626 // Subtract the minimum value. 2627 SDValue SwitchOp = getValue(B.SValue); 2628 EVT VT = SwitchOp.getValueType(); 2629 SDValue RangeSub = 2630 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2631 2632 // Determine the type of the test operands. 2633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2634 bool UsePtrType = false; 2635 if (!TLI.isTypeLegal(VT)) { 2636 UsePtrType = true; 2637 } else { 2638 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2639 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2640 // Switch table case range are encoded into series of masks. 2641 // Just use pointer type, it's guaranteed to fit. 2642 UsePtrType = true; 2643 break; 2644 } 2645 } 2646 SDValue Sub = RangeSub; 2647 if (UsePtrType) { 2648 VT = TLI.getPointerTy(DAG.getDataLayout()); 2649 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2650 } 2651 2652 B.RegVT = VT.getSimpleVT(); 2653 B.Reg = FuncInfo.CreateReg(B.RegVT); 2654 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2655 2656 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2657 2658 if (!B.OmitRangeCheck) 2659 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2660 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2661 SwitchBB->normalizeSuccProbs(); 2662 2663 SDValue Root = CopyTo; 2664 if (!B.OmitRangeCheck) { 2665 // Conditional branch to the default block. 2666 SDValue RangeCmp = DAG.getSetCC(dl, 2667 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2668 RangeSub.getValueType()), 2669 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2670 ISD::SETUGT); 2671 2672 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2673 DAG.getBasicBlock(B.Default)); 2674 } 2675 2676 // Avoid emitting unnecessary branches to the next block. 2677 if (MBB != NextBlock(SwitchBB)) 2678 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2679 2680 DAG.setRoot(Root); 2681 } 2682 2683 /// visitBitTestCase - this function produces one "bit test" 2684 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2685 MachineBasicBlock* NextMBB, 2686 BranchProbability BranchProbToNext, 2687 unsigned Reg, 2688 BitTestCase &B, 2689 MachineBasicBlock *SwitchBB) { 2690 SDLoc dl = getCurSDLoc(); 2691 MVT VT = BB.RegVT; 2692 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2693 SDValue Cmp; 2694 unsigned PopCount = countPopulation(B.Mask); 2695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2696 if (PopCount == 1) { 2697 // Testing for a single bit; just compare the shift count with what it 2698 // would need to be to shift a 1 bit in that position. 2699 Cmp = DAG.getSetCC( 2700 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2701 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2702 ISD::SETEQ); 2703 } else if (PopCount == BB.Range) { 2704 // There is only one zero bit in the range, test for it directly. 2705 Cmp = DAG.getSetCC( 2706 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2707 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2708 ISD::SETNE); 2709 } else { 2710 // Make desired shift 2711 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2712 DAG.getConstant(1, dl, VT), ShiftOp); 2713 2714 // Emit bit tests and jumps 2715 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2716 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2717 Cmp = DAG.getSetCC( 2718 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2719 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2720 } 2721 2722 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2723 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2724 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2725 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2726 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2727 // one as they are relative probabilities (and thus work more like weights), 2728 // and hence we need to normalize them to let the sum of them become one. 2729 SwitchBB->normalizeSuccProbs(); 2730 2731 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2732 MVT::Other, getControlRoot(), 2733 Cmp, DAG.getBasicBlock(B.TargetBB)); 2734 2735 // Avoid emitting unnecessary branches to the next block. 2736 if (NextMBB != NextBlock(SwitchBB)) 2737 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2738 DAG.getBasicBlock(NextMBB)); 2739 2740 DAG.setRoot(BrAnd); 2741 } 2742 2743 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2744 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2745 2746 // Retrieve successors. Look through artificial IR level blocks like 2747 // catchswitch for successors. 2748 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2749 const BasicBlock *EHPadBB = I.getSuccessor(1); 2750 2751 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2752 // have to do anything here to lower funclet bundles. 2753 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2754 LLVMContext::OB_funclet, 2755 LLVMContext::OB_cfguardtarget}) && 2756 "Cannot lower invokes with arbitrary operand bundles yet!"); 2757 2758 const Value *Callee(I.getCalledValue()); 2759 const Function *Fn = dyn_cast<Function>(Callee); 2760 if (isa<InlineAsm>(Callee)) 2761 visitInlineAsm(&I); 2762 else if (Fn && Fn->isIntrinsic()) { 2763 switch (Fn->getIntrinsicID()) { 2764 default: 2765 llvm_unreachable("Cannot invoke this intrinsic"); 2766 case Intrinsic::donothing: 2767 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2768 break; 2769 case Intrinsic::experimental_patchpoint_void: 2770 case Intrinsic::experimental_patchpoint_i64: 2771 visitPatchpoint(&I, EHPadBB); 2772 break; 2773 case Intrinsic::experimental_gc_statepoint: 2774 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2775 break; 2776 case Intrinsic::wasm_rethrow_in_catch: { 2777 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2778 // special because it can be invoked, so we manually lower it to a DAG 2779 // node here. 2780 SmallVector<SDValue, 8> Ops; 2781 Ops.push_back(getRoot()); // inchain 2782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2783 Ops.push_back( 2784 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2785 TLI.getPointerTy(DAG.getDataLayout()))); 2786 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2787 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2788 break; 2789 } 2790 } 2791 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2792 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2793 // Eventually we will support lowering the @llvm.experimental.deoptimize 2794 // intrinsic, and right now there are no plans to support other intrinsics 2795 // with deopt state. 2796 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2797 } else { 2798 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2799 } 2800 2801 // If the value of the invoke is used outside of its defining block, make it 2802 // available as a virtual register. 2803 // We already took care of the exported value for the statepoint instruction 2804 // during call to the LowerStatepoint. 2805 if (!isStatepoint(I)) { 2806 CopyToExportRegsIfNeeded(&I); 2807 } 2808 2809 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2810 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2811 BranchProbability EHPadBBProb = 2812 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2813 : BranchProbability::getZero(); 2814 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2815 2816 // Update successor info. 2817 addSuccessorWithProb(InvokeMBB, Return); 2818 for (auto &UnwindDest : UnwindDests) { 2819 UnwindDest.first->setIsEHPad(); 2820 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2821 } 2822 InvokeMBB->normalizeSuccProbs(); 2823 2824 // Drop into normal successor. 2825 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2826 DAG.getBasicBlock(Return))); 2827 } 2828 2829 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2830 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2831 2832 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2833 // have to do anything here to lower funclet bundles. 2834 assert(!I.hasOperandBundlesOtherThan( 2835 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2836 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2837 2838 assert(isa<InlineAsm>(I.getCalledValue()) && 2839 "Only know how to handle inlineasm callbr"); 2840 visitInlineAsm(&I); 2841 2842 // Retrieve successors. 2843 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2844 2845 // Update successor info. 2846 addSuccessorWithProb(CallBrMBB, Return); 2847 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2848 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2849 addSuccessorWithProb(CallBrMBB, Target); 2850 } 2851 CallBrMBB->normalizeSuccProbs(); 2852 2853 // Drop into default successor. 2854 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2855 MVT::Other, getControlRoot(), 2856 DAG.getBasicBlock(Return))); 2857 } 2858 2859 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2860 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2861 } 2862 2863 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2864 assert(FuncInfo.MBB->isEHPad() && 2865 "Call to landingpad not in landing pad!"); 2866 2867 // If there aren't registers to copy the values into (e.g., during SjLj 2868 // exceptions), then don't bother to create these DAG nodes. 2869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2870 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2871 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2872 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2873 return; 2874 2875 // If landingpad's return type is token type, we don't create DAG nodes 2876 // for its exception pointer and selector value. The extraction of exception 2877 // pointer or selector value from token type landingpads is not currently 2878 // supported. 2879 if (LP.getType()->isTokenTy()) 2880 return; 2881 2882 SmallVector<EVT, 2> ValueVTs; 2883 SDLoc dl = getCurSDLoc(); 2884 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2885 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2886 2887 // Get the two live-in registers as SDValues. The physregs have already been 2888 // copied into virtual registers. 2889 SDValue Ops[2]; 2890 if (FuncInfo.ExceptionPointerVirtReg) { 2891 Ops[0] = DAG.getZExtOrTrunc( 2892 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2893 FuncInfo.ExceptionPointerVirtReg, 2894 TLI.getPointerTy(DAG.getDataLayout())), 2895 dl, ValueVTs[0]); 2896 } else { 2897 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2898 } 2899 Ops[1] = DAG.getZExtOrTrunc( 2900 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2901 FuncInfo.ExceptionSelectorVirtReg, 2902 TLI.getPointerTy(DAG.getDataLayout())), 2903 dl, ValueVTs[1]); 2904 2905 // Merge into one. 2906 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2907 DAG.getVTList(ValueVTs), Ops); 2908 setValue(&LP, Res); 2909 } 2910 2911 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2912 MachineBasicBlock *Last) { 2913 // Update JTCases. 2914 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2915 if (SL->JTCases[i].first.HeaderBB == First) 2916 SL->JTCases[i].first.HeaderBB = Last; 2917 2918 // Update BitTestCases. 2919 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2920 if (SL->BitTestCases[i].Parent == First) 2921 SL->BitTestCases[i].Parent = Last; 2922 } 2923 2924 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2925 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2926 2927 // Update machine-CFG edges with unique successors. 2928 SmallSet<BasicBlock*, 32> Done; 2929 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2930 BasicBlock *BB = I.getSuccessor(i); 2931 bool Inserted = Done.insert(BB).second; 2932 if (!Inserted) 2933 continue; 2934 2935 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2936 addSuccessorWithProb(IndirectBrMBB, Succ); 2937 } 2938 IndirectBrMBB->normalizeSuccProbs(); 2939 2940 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2941 MVT::Other, getControlRoot(), 2942 getValue(I.getAddress()))); 2943 } 2944 2945 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2946 if (!DAG.getTarget().Options.TrapUnreachable) 2947 return; 2948 2949 // We may be able to ignore unreachable behind a noreturn call. 2950 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2951 const BasicBlock &BB = *I.getParent(); 2952 if (&I != &BB.front()) { 2953 BasicBlock::const_iterator PredI = 2954 std::prev(BasicBlock::const_iterator(&I)); 2955 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2956 if (Call->doesNotReturn()) 2957 return; 2958 } 2959 } 2960 } 2961 2962 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2963 } 2964 2965 void SelectionDAGBuilder::visitFSub(const User &I) { 2966 // -0.0 - X --> fneg 2967 Type *Ty = I.getType(); 2968 if (isa<Constant>(I.getOperand(0)) && 2969 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2970 SDValue Op2 = getValue(I.getOperand(1)); 2971 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2972 Op2.getValueType(), Op2)); 2973 return; 2974 } 2975 2976 visitBinary(I, ISD::FSUB); 2977 } 2978 2979 /// Checks if the given instruction performs a vector reduction, in which case 2980 /// we have the freedom to alter the elements in the result as long as the 2981 /// reduction of them stays unchanged. 2982 static bool isVectorReductionOp(const User *I) { 2983 const Instruction *Inst = dyn_cast<Instruction>(I); 2984 if (!Inst || !Inst->getType()->isVectorTy()) 2985 return false; 2986 2987 auto OpCode = Inst->getOpcode(); 2988 switch (OpCode) { 2989 case Instruction::Add: 2990 case Instruction::Mul: 2991 case Instruction::And: 2992 case Instruction::Or: 2993 case Instruction::Xor: 2994 break; 2995 case Instruction::FAdd: 2996 case Instruction::FMul: 2997 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2998 if (FPOp->getFastMathFlags().isFast()) 2999 break; 3000 LLVM_FALLTHROUGH; 3001 default: 3002 return false; 3003 } 3004 3005 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3006 // Ensure the reduction size is a power of 2. 3007 if (!isPowerOf2_32(ElemNum)) 3008 return false; 3009 3010 unsigned ElemNumToReduce = ElemNum; 3011 3012 // Do DFS search on the def-use chain from the given instruction. We only 3013 // allow four kinds of operations during the search until we reach the 3014 // instruction that extracts the first element from the vector: 3015 // 3016 // 1. The reduction operation of the same opcode as the given instruction. 3017 // 3018 // 2. PHI node. 3019 // 3020 // 3. ShuffleVector instruction together with a reduction operation that 3021 // does a partial reduction. 3022 // 3023 // 4. ExtractElement that extracts the first element from the vector, and we 3024 // stop searching the def-use chain here. 3025 // 3026 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3027 // from 1-3 to the stack to continue the DFS. The given instruction is not 3028 // a reduction operation if we meet any other instructions other than those 3029 // listed above. 3030 3031 SmallVector<const User *, 16> UsersToVisit{Inst}; 3032 SmallPtrSet<const User *, 16> Visited; 3033 bool ReduxExtracted = false; 3034 3035 while (!UsersToVisit.empty()) { 3036 auto User = UsersToVisit.back(); 3037 UsersToVisit.pop_back(); 3038 if (!Visited.insert(User).second) 3039 continue; 3040 3041 for (const auto &U : User->users()) { 3042 auto Inst = dyn_cast<Instruction>(U); 3043 if (!Inst) 3044 return false; 3045 3046 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3047 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3048 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3049 return false; 3050 UsersToVisit.push_back(U); 3051 } else if (const ShuffleVectorInst *ShufInst = 3052 dyn_cast<ShuffleVectorInst>(U)) { 3053 // Detect the following pattern: A ShuffleVector instruction together 3054 // with a reduction that do partial reduction on the first and second 3055 // ElemNumToReduce / 2 elements, and store the result in 3056 // ElemNumToReduce / 2 elements in another vector. 3057 3058 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3059 if (ResultElements < ElemNum) 3060 return false; 3061 3062 if (ElemNumToReduce == 1) 3063 return false; 3064 if (!isa<UndefValue>(U->getOperand(1))) 3065 return false; 3066 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3067 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3068 return false; 3069 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3070 if (ShufInst->getMaskValue(i) != -1) 3071 return false; 3072 3073 // There is only one user of this ShuffleVector instruction, which 3074 // must be a reduction operation. 3075 if (!U->hasOneUse()) 3076 return false; 3077 3078 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3079 if (!U2 || U2->getOpcode() != OpCode) 3080 return false; 3081 3082 // Check operands of the reduction operation. 3083 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3084 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3085 UsersToVisit.push_back(U2); 3086 ElemNumToReduce /= 2; 3087 } else 3088 return false; 3089 } else if (isa<ExtractElementInst>(U)) { 3090 // At this moment we should have reduced all elements in the vector. 3091 if (ElemNumToReduce != 1) 3092 return false; 3093 3094 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3095 if (!Val || !Val->isZero()) 3096 return false; 3097 3098 ReduxExtracted = true; 3099 } else 3100 return false; 3101 } 3102 } 3103 return ReduxExtracted; 3104 } 3105 3106 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3107 SDNodeFlags Flags; 3108 3109 SDValue Op = getValue(I.getOperand(0)); 3110 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3111 Op, Flags); 3112 setValue(&I, UnNodeValue); 3113 } 3114 3115 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3116 SDNodeFlags Flags; 3117 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3118 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3119 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3120 } 3121 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3122 Flags.setExact(ExactOp->isExact()); 3123 } 3124 if (isVectorReductionOp(&I)) { 3125 Flags.setVectorReduction(true); 3126 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3127 } 3128 3129 SDValue Op1 = getValue(I.getOperand(0)); 3130 SDValue Op2 = getValue(I.getOperand(1)); 3131 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3132 Op1, Op2, Flags); 3133 setValue(&I, BinNodeValue); 3134 } 3135 3136 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3137 SDValue Op1 = getValue(I.getOperand(0)); 3138 SDValue Op2 = getValue(I.getOperand(1)); 3139 3140 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3141 Op1.getValueType(), DAG.getDataLayout()); 3142 3143 // Coerce the shift amount to the right type if we can. 3144 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3145 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3146 unsigned Op2Size = Op2.getValueSizeInBits(); 3147 SDLoc DL = getCurSDLoc(); 3148 3149 // If the operand is smaller than the shift count type, promote it. 3150 if (ShiftSize > Op2Size) 3151 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3152 3153 // If the operand is larger than the shift count type but the shift 3154 // count type has enough bits to represent any shift value, truncate 3155 // it now. This is a common case and it exposes the truncate to 3156 // optimization early. 3157 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3158 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3159 // Otherwise we'll need to temporarily settle for some other convenient 3160 // type. Type legalization will make adjustments once the shiftee is split. 3161 else 3162 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3163 } 3164 3165 bool nuw = false; 3166 bool nsw = false; 3167 bool exact = false; 3168 3169 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3170 3171 if (const OverflowingBinaryOperator *OFBinOp = 3172 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3173 nuw = OFBinOp->hasNoUnsignedWrap(); 3174 nsw = OFBinOp->hasNoSignedWrap(); 3175 } 3176 if (const PossiblyExactOperator *ExactOp = 3177 dyn_cast<const PossiblyExactOperator>(&I)) 3178 exact = ExactOp->isExact(); 3179 } 3180 SDNodeFlags Flags; 3181 Flags.setExact(exact); 3182 Flags.setNoSignedWrap(nsw); 3183 Flags.setNoUnsignedWrap(nuw); 3184 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3185 Flags); 3186 setValue(&I, Res); 3187 } 3188 3189 void SelectionDAGBuilder::visitSDiv(const User &I) { 3190 SDValue Op1 = getValue(I.getOperand(0)); 3191 SDValue Op2 = getValue(I.getOperand(1)); 3192 3193 SDNodeFlags Flags; 3194 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3195 cast<PossiblyExactOperator>(&I)->isExact()); 3196 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3197 Op2, Flags)); 3198 } 3199 3200 void SelectionDAGBuilder::visitICmp(const User &I) { 3201 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3202 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3203 predicate = IC->getPredicate(); 3204 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3205 predicate = ICmpInst::Predicate(IC->getPredicate()); 3206 SDValue Op1 = getValue(I.getOperand(0)); 3207 SDValue Op2 = getValue(I.getOperand(1)); 3208 ISD::CondCode Opcode = getICmpCondCode(predicate); 3209 3210 auto &TLI = DAG.getTargetLoweringInfo(); 3211 EVT MemVT = 3212 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3213 3214 // If a pointer's DAG type is larger than its memory type then the DAG values 3215 // are zero-extended. This breaks signed comparisons so truncate back to the 3216 // underlying type before doing the compare. 3217 if (Op1.getValueType() != MemVT) { 3218 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3219 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3220 } 3221 3222 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3223 I.getType()); 3224 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3225 } 3226 3227 void SelectionDAGBuilder::visitFCmp(const User &I) { 3228 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3229 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3230 predicate = FC->getPredicate(); 3231 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3232 predicate = FCmpInst::Predicate(FC->getPredicate()); 3233 SDValue Op1 = getValue(I.getOperand(0)); 3234 SDValue Op2 = getValue(I.getOperand(1)); 3235 3236 ISD::CondCode Condition = getFCmpCondCode(predicate); 3237 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3238 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3239 Condition = getFCmpCodeWithoutNaN(Condition); 3240 3241 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3242 I.getType()); 3243 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3244 } 3245 3246 // Check if the condition of the select has one use or two users that are both 3247 // selects with the same condition. 3248 static bool hasOnlySelectUsers(const Value *Cond) { 3249 return llvm::all_of(Cond->users(), [](const Value *V) { 3250 return isa<SelectInst>(V); 3251 }); 3252 } 3253 3254 void SelectionDAGBuilder::visitSelect(const User &I) { 3255 SmallVector<EVT, 4> ValueVTs; 3256 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3257 ValueVTs); 3258 unsigned NumValues = ValueVTs.size(); 3259 if (NumValues == 0) return; 3260 3261 SmallVector<SDValue, 4> Values(NumValues); 3262 SDValue Cond = getValue(I.getOperand(0)); 3263 SDValue LHSVal = getValue(I.getOperand(1)); 3264 SDValue RHSVal = getValue(I.getOperand(2)); 3265 auto BaseOps = {Cond}; 3266 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3267 ISD::VSELECT : ISD::SELECT; 3268 3269 bool IsUnaryAbs = false; 3270 3271 // Min/max matching is only viable if all output VTs are the same. 3272 if (is_splat(ValueVTs)) { 3273 EVT VT = ValueVTs[0]; 3274 LLVMContext &Ctx = *DAG.getContext(); 3275 auto &TLI = DAG.getTargetLoweringInfo(); 3276 3277 // We care about the legality of the operation after it has been type 3278 // legalized. 3279 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3280 VT = TLI.getTypeToTransformTo(Ctx, VT); 3281 3282 // If the vselect is legal, assume we want to leave this as a vector setcc + 3283 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3284 // min/max is legal on the scalar type. 3285 bool UseScalarMinMax = VT.isVector() && 3286 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3287 3288 Value *LHS, *RHS; 3289 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3290 ISD::NodeType Opc = ISD::DELETED_NODE; 3291 switch (SPR.Flavor) { 3292 case SPF_UMAX: Opc = ISD::UMAX; break; 3293 case SPF_UMIN: Opc = ISD::UMIN; break; 3294 case SPF_SMAX: Opc = ISD::SMAX; break; 3295 case SPF_SMIN: Opc = ISD::SMIN; break; 3296 case SPF_FMINNUM: 3297 switch (SPR.NaNBehavior) { 3298 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3299 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3300 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3301 case SPNB_RETURNS_ANY: { 3302 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3303 Opc = ISD::FMINNUM; 3304 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3305 Opc = ISD::FMINIMUM; 3306 else if (UseScalarMinMax) 3307 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3308 ISD::FMINNUM : ISD::FMINIMUM; 3309 break; 3310 } 3311 } 3312 break; 3313 case SPF_FMAXNUM: 3314 switch (SPR.NaNBehavior) { 3315 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3316 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3317 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3318 case SPNB_RETURNS_ANY: 3319 3320 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3321 Opc = ISD::FMAXNUM; 3322 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3323 Opc = ISD::FMAXIMUM; 3324 else if (UseScalarMinMax) 3325 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3326 ISD::FMAXNUM : ISD::FMAXIMUM; 3327 break; 3328 } 3329 break; 3330 case SPF_ABS: 3331 IsUnaryAbs = true; 3332 Opc = ISD::ABS; 3333 break; 3334 case SPF_NABS: 3335 // TODO: we need to produce sub(0, abs(X)). 3336 default: break; 3337 } 3338 3339 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3340 (TLI.isOperationLegalOrCustom(Opc, VT) || 3341 (UseScalarMinMax && 3342 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3343 // If the underlying comparison instruction is used by any other 3344 // instruction, the consumed instructions won't be destroyed, so it is 3345 // not profitable to convert to a min/max. 3346 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3347 OpCode = Opc; 3348 LHSVal = getValue(LHS); 3349 RHSVal = getValue(RHS); 3350 BaseOps = {}; 3351 } 3352 3353 if (IsUnaryAbs) { 3354 OpCode = Opc; 3355 LHSVal = getValue(LHS); 3356 BaseOps = {}; 3357 } 3358 } 3359 3360 if (IsUnaryAbs) { 3361 for (unsigned i = 0; i != NumValues; ++i) { 3362 Values[i] = 3363 DAG.getNode(OpCode, getCurSDLoc(), 3364 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3365 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3366 } 3367 } else { 3368 for (unsigned i = 0; i != NumValues; ++i) { 3369 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3370 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3371 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3372 Values[i] = DAG.getNode( 3373 OpCode, getCurSDLoc(), 3374 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3375 } 3376 } 3377 3378 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3379 DAG.getVTList(ValueVTs), Values)); 3380 } 3381 3382 void SelectionDAGBuilder::visitTrunc(const User &I) { 3383 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3384 SDValue N = getValue(I.getOperand(0)); 3385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3386 I.getType()); 3387 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3388 } 3389 3390 void SelectionDAGBuilder::visitZExt(const User &I) { 3391 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3392 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3393 SDValue N = getValue(I.getOperand(0)); 3394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3395 I.getType()); 3396 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3397 } 3398 3399 void SelectionDAGBuilder::visitSExt(const User &I) { 3400 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3401 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3402 SDValue N = getValue(I.getOperand(0)); 3403 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3404 I.getType()); 3405 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3406 } 3407 3408 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3409 // FPTrunc is never a no-op cast, no need to check 3410 SDValue N = getValue(I.getOperand(0)); 3411 SDLoc dl = getCurSDLoc(); 3412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3413 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3414 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3415 DAG.getTargetConstant( 3416 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3417 } 3418 3419 void SelectionDAGBuilder::visitFPExt(const User &I) { 3420 // FPExt is never a no-op cast, no need to check 3421 SDValue N = getValue(I.getOperand(0)); 3422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3423 I.getType()); 3424 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3425 } 3426 3427 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3428 // FPToUI is never a no-op cast, no need to check 3429 SDValue N = getValue(I.getOperand(0)); 3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3431 I.getType()); 3432 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3433 } 3434 3435 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3436 // FPToSI is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3444 // UIToFP is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3452 // SIToFP is never a no-op cast, no need to check 3453 SDValue N = getValue(I.getOperand(0)); 3454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3455 I.getType()); 3456 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3457 } 3458 3459 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3460 // What to do depends on the size of the integer and the size of the pointer. 3461 // We can either truncate, zero extend, or no-op, accordingly. 3462 SDValue N = getValue(I.getOperand(0)); 3463 auto &TLI = DAG.getTargetLoweringInfo(); 3464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3465 I.getType()); 3466 EVT PtrMemVT = 3467 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3468 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3469 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3470 setValue(&I, N); 3471 } 3472 3473 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3474 // What to do depends on the size of the integer and the size of the pointer. 3475 // We can either truncate, zero extend, or no-op, accordingly. 3476 SDValue N = getValue(I.getOperand(0)); 3477 auto &TLI = DAG.getTargetLoweringInfo(); 3478 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3479 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3480 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3481 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3482 setValue(&I, N); 3483 } 3484 3485 void SelectionDAGBuilder::visitBitCast(const User &I) { 3486 SDValue N = getValue(I.getOperand(0)); 3487 SDLoc dl = getCurSDLoc(); 3488 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3489 I.getType()); 3490 3491 // BitCast assures us that source and destination are the same size so this is 3492 // either a BITCAST or a no-op. 3493 if (DestVT != N.getValueType()) 3494 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3495 DestVT, N)); // convert types. 3496 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3497 // might fold any kind of constant expression to an integer constant and that 3498 // is not what we are looking for. Only recognize a bitcast of a genuine 3499 // constant integer as an opaque constant. 3500 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3501 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3502 /*isOpaque*/true)); 3503 else 3504 setValue(&I, N); // noop cast. 3505 } 3506 3507 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3509 const Value *SV = I.getOperand(0); 3510 SDValue N = getValue(SV); 3511 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3512 3513 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3514 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3515 3516 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3517 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3518 3519 setValue(&I, N); 3520 } 3521 3522 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3523 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3524 SDValue InVec = getValue(I.getOperand(0)); 3525 SDValue InVal = getValue(I.getOperand(1)); 3526 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3527 TLI.getVectorIdxTy(DAG.getDataLayout())); 3528 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3529 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3530 InVec, InVal, InIdx)); 3531 } 3532 3533 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3535 SDValue InVec = getValue(I.getOperand(0)); 3536 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3537 TLI.getVectorIdxTy(DAG.getDataLayout())); 3538 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3539 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3540 InVec, InIdx)); 3541 } 3542 3543 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3544 SDValue Src1 = getValue(I.getOperand(0)); 3545 SDValue Src2 = getValue(I.getOperand(1)); 3546 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3547 SDLoc DL = getCurSDLoc(); 3548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3549 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3550 EVT SrcVT = Src1.getValueType(); 3551 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3552 3553 if (MaskV->isNullValue() && VT.isScalableVector()) { 3554 // Canonical splat form of first element of first input vector. 3555 SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3556 SrcVT.getScalarType(), Src1, 3557 DAG.getConstant(0, DL, 3558 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3559 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3560 return; 3561 } 3562 3563 // For now, we only handle splats for scalable vectors. 3564 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3565 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3566 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3567 3568 SmallVector<int, 8> Mask; 3569 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3570 unsigned MaskNumElts = Mask.size(); 3571 3572 if (SrcNumElts == MaskNumElts) { 3573 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3574 return; 3575 } 3576 3577 // Normalize the shuffle vector since mask and vector length don't match. 3578 if (SrcNumElts < MaskNumElts) { 3579 // Mask is longer than the source vectors. We can use concatenate vector to 3580 // make the mask and vectors lengths match. 3581 3582 if (MaskNumElts % SrcNumElts == 0) { 3583 // Mask length is a multiple of the source vector length. 3584 // Check if the shuffle is some kind of concatenation of the input 3585 // vectors. 3586 unsigned NumConcat = MaskNumElts / SrcNumElts; 3587 bool IsConcat = true; 3588 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3589 for (unsigned i = 0; i != MaskNumElts; ++i) { 3590 int Idx = Mask[i]; 3591 if (Idx < 0) 3592 continue; 3593 // Ensure the indices in each SrcVT sized piece are sequential and that 3594 // the same source is used for the whole piece. 3595 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3596 (ConcatSrcs[i / SrcNumElts] >= 0 && 3597 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3598 IsConcat = false; 3599 break; 3600 } 3601 // Remember which source this index came from. 3602 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3603 } 3604 3605 // The shuffle is concatenating multiple vectors together. Just emit 3606 // a CONCAT_VECTORS operation. 3607 if (IsConcat) { 3608 SmallVector<SDValue, 8> ConcatOps; 3609 for (auto Src : ConcatSrcs) { 3610 if (Src < 0) 3611 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3612 else if (Src == 0) 3613 ConcatOps.push_back(Src1); 3614 else 3615 ConcatOps.push_back(Src2); 3616 } 3617 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3618 return; 3619 } 3620 } 3621 3622 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3623 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3624 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3625 PaddedMaskNumElts); 3626 3627 // Pad both vectors with undefs to make them the same length as the mask. 3628 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3629 3630 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3631 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3632 MOps1[0] = Src1; 3633 MOps2[0] = Src2; 3634 3635 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3636 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3637 3638 // Readjust mask for new input vector length. 3639 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3640 for (unsigned i = 0; i != MaskNumElts; ++i) { 3641 int Idx = Mask[i]; 3642 if (Idx >= (int)SrcNumElts) 3643 Idx -= SrcNumElts - PaddedMaskNumElts; 3644 MappedOps[i] = Idx; 3645 } 3646 3647 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3648 3649 // If the concatenated vector was padded, extract a subvector with the 3650 // correct number of elements. 3651 if (MaskNumElts != PaddedMaskNumElts) 3652 Result = DAG.getNode( 3653 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3654 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3655 3656 setValue(&I, Result); 3657 return; 3658 } 3659 3660 if (SrcNumElts > MaskNumElts) { 3661 // Analyze the access pattern of the vector to see if we can extract 3662 // two subvectors and do the shuffle. 3663 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3664 bool CanExtract = true; 3665 for (int Idx : Mask) { 3666 unsigned Input = 0; 3667 if (Idx < 0) 3668 continue; 3669 3670 if (Idx >= (int)SrcNumElts) { 3671 Input = 1; 3672 Idx -= SrcNumElts; 3673 } 3674 3675 // If all the indices come from the same MaskNumElts sized portion of 3676 // the sources we can use extract. Also make sure the extract wouldn't 3677 // extract past the end of the source. 3678 int NewStartIdx = alignDown(Idx, MaskNumElts); 3679 if (NewStartIdx + MaskNumElts > SrcNumElts || 3680 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3681 CanExtract = false; 3682 // Make sure we always update StartIdx as we use it to track if all 3683 // elements are undef. 3684 StartIdx[Input] = NewStartIdx; 3685 } 3686 3687 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3688 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3689 return; 3690 } 3691 if (CanExtract) { 3692 // Extract appropriate subvector and generate a vector shuffle 3693 for (unsigned Input = 0; Input < 2; ++Input) { 3694 SDValue &Src = Input == 0 ? Src1 : Src2; 3695 if (StartIdx[Input] < 0) 3696 Src = DAG.getUNDEF(VT); 3697 else { 3698 Src = DAG.getNode( 3699 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3700 DAG.getConstant(StartIdx[Input], DL, 3701 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3702 } 3703 } 3704 3705 // Calculate new mask. 3706 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3707 for (int &Idx : MappedOps) { 3708 if (Idx >= (int)SrcNumElts) 3709 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3710 else if (Idx >= 0) 3711 Idx -= StartIdx[0]; 3712 } 3713 3714 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3715 return; 3716 } 3717 } 3718 3719 // We can't use either concat vectors or extract subvectors so fall back to 3720 // replacing the shuffle with extract and build vector. 3721 // to insert and build vector. 3722 EVT EltVT = VT.getVectorElementType(); 3723 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3724 SmallVector<SDValue,8> Ops; 3725 for (int Idx : Mask) { 3726 SDValue Res; 3727 3728 if (Idx < 0) { 3729 Res = DAG.getUNDEF(EltVT); 3730 } else { 3731 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3732 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3733 3734 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3735 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3736 } 3737 3738 Ops.push_back(Res); 3739 } 3740 3741 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3742 } 3743 3744 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3745 ArrayRef<unsigned> Indices; 3746 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3747 Indices = IV->getIndices(); 3748 else 3749 Indices = cast<ConstantExpr>(&I)->getIndices(); 3750 3751 const Value *Op0 = I.getOperand(0); 3752 const Value *Op1 = I.getOperand(1); 3753 Type *AggTy = I.getType(); 3754 Type *ValTy = Op1->getType(); 3755 bool IntoUndef = isa<UndefValue>(Op0); 3756 bool FromUndef = isa<UndefValue>(Op1); 3757 3758 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3759 3760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3761 SmallVector<EVT, 4> AggValueVTs; 3762 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3763 SmallVector<EVT, 4> ValValueVTs; 3764 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3765 3766 unsigned NumAggValues = AggValueVTs.size(); 3767 unsigned NumValValues = ValValueVTs.size(); 3768 SmallVector<SDValue, 4> Values(NumAggValues); 3769 3770 // Ignore an insertvalue that produces an empty object 3771 if (!NumAggValues) { 3772 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3773 return; 3774 } 3775 3776 SDValue Agg = getValue(Op0); 3777 unsigned i = 0; 3778 // Copy the beginning value(s) from the original aggregate. 3779 for (; i != LinearIndex; ++i) 3780 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3781 SDValue(Agg.getNode(), Agg.getResNo() + i); 3782 // Copy values from the inserted value(s). 3783 if (NumValValues) { 3784 SDValue Val = getValue(Op1); 3785 for (; i != LinearIndex + NumValValues; ++i) 3786 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3787 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3788 } 3789 // Copy remaining value(s) from the original aggregate. 3790 for (; i != NumAggValues; ++i) 3791 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3792 SDValue(Agg.getNode(), Agg.getResNo() + i); 3793 3794 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3795 DAG.getVTList(AggValueVTs), Values)); 3796 } 3797 3798 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3799 ArrayRef<unsigned> Indices; 3800 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3801 Indices = EV->getIndices(); 3802 else 3803 Indices = cast<ConstantExpr>(&I)->getIndices(); 3804 3805 const Value *Op0 = I.getOperand(0); 3806 Type *AggTy = Op0->getType(); 3807 Type *ValTy = I.getType(); 3808 bool OutOfUndef = isa<UndefValue>(Op0); 3809 3810 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3811 3812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3813 SmallVector<EVT, 4> ValValueVTs; 3814 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3815 3816 unsigned NumValValues = ValValueVTs.size(); 3817 3818 // Ignore a extractvalue that produces an empty object 3819 if (!NumValValues) { 3820 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3821 return; 3822 } 3823 3824 SmallVector<SDValue, 4> Values(NumValValues); 3825 3826 SDValue Agg = getValue(Op0); 3827 // Copy out the selected value(s). 3828 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3829 Values[i - LinearIndex] = 3830 OutOfUndef ? 3831 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3832 SDValue(Agg.getNode(), Agg.getResNo() + i); 3833 3834 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3835 DAG.getVTList(ValValueVTs), Values)); 3836 } 3837 3838 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3839 Value *Op0 = I.getOperand(0); 3840 // Note that the pointer operand may be a vector of pointers. Take the scalar 3841 // element which holds a pointer. 3842 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3843 SDValue N = getValue(Op0); 3844 SDLoc dl = getCurSDLoc(); 3845 auto &TLI = DAG.getTargetLoweringInfo(); 3846 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3847 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3848 3849 // Normalize Vector GEP - all scalar operands should be converted to the 3850 // splat vector. 3851 unsigned VectorWidth = I.getType()->isVectorTy() ? 3852 I.getType()->getVectorNumElements() : 0; 3853 3854 if (VectorWidth && !N.getValueType().isVector()) { 3855 LLVMContext &Context = *DAG.getContext(); 3856 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3857 N = DAG.getSplatBuildVector(VT, dl, N); 3858 } 3859 3860 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3861 GTI != E; ++GTI) { 3862 const Value *Idx = GTI.getOperand(); 3863 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3864 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3865 if (Field) { 3866 // N = N + Offset 3867 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3868 3869 // In an inbounds GEP with an offset that is nonnegative even when 3870 // interpreted as signed, assume there is no unsigned overflow. 3871 SDNodeFlags Flags; 3872 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3873 Flags.setNoUnsignedWrap(true); 3874 3875 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3876 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3877 } 3878 } else { 3879 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3880 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3881 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3882 3883 // If this is a scalar constant or a splat vector of constants, 3884 // handle it quickly. 3885 const auto *C = dyn_cast<Constant>(Idx); 3886 if (C && isa<VectorType>(C->getType())) 3887 C = C->getSplatValue(); 3888 3889 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3890 if (CI->isZero()) 3891 continue; 3892 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3893 LLVMContext &Context = *DAG.getContext(); 3894 SDValue OffsVal = VectorWidth ? 3895 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3896 DAG.getConstant(Offs, dl, IdxTy); 3897 3898 // In an inbounds GEP with an offset that is nonnegative even when 3899 // interpreted as signed, assume there is no unsigned overflow. 3900 SDNodeFlags Flags; 3901 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3902 Flags.setNoUnsignedWrap(true); 3903 3904 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3905 3906 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3907 continue; 3908 } 3909 3910 // N = N + Idx * ElementSize; 3911 SDValue IdxN = getValue(Idx); 3912 3913 if (!IdxN.getValueType().isVector() && VectorWidth) { 3914 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3915 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3916 } 3917 3918 // If the index is smaller or larger than intptr_t, truncate or extend 3919 // it. 3920 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3921 3922 // If this is a multiply by a power of two, turn it into a shl 3923 // immediately. This is a very common case. 3924 if (ElementSize != 1) { 3925 if (ElementSize.isPowerOf2()) { 3926 unsigned Amt = ElementSize.logBase2(); 3927 IdxN = DAG.getNode(ISD::SHL, dl, 3928 N.getValueType(), IdxN, 3929 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3930 } else { 3931 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3932 IdxN.getValueType()); 3933 IdxN = DAG.getNode(ISD::MUL, dl, 3934 N.getValueType(), IdxN, Scale); 3935 } 3936 } 3937 3938 N = DAG.getNode(ISD::ADD, dl, 3939 N.getValueType(), N, IdxN); 3940 } 3941 } 3942 3943 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3944 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3945 3946 setValue(&I, N); 3947 } 3948 3949 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3950 // If this is a fixed sized alloca in the entry block of the function, 3951 // allocate it statically on the stack. 3952 if (FuncInfo.StaticAllocaMap.count(&I)) 3953 return; // getValue will auto-populate this. 3954 3955 SDLoc dl = getCurSDLoc(); 3956 Type *Ty = I.getAllocatedType(); 3957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3958 auto &DL = DAG.getDataLayout(); 3959 uint64_t TySize = DL.getTypeAllocSize(Ty); 3960 unsigned Align = 3961 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3962 3963 SDValue AllocSize = getValue(I.getArraySize()); 3964 3965 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3966 if (AllocSize.getValueType() != IntPtr) 3967 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3968 3969 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3970 AllocSize, 3971 DAG.getConstant(TySize, dl, IntPtr)); 3972 3973 // Handle alignment. If the requested alignment is less than or equal to 3974 // the stack alignment, ignore it. If the size is greater than or equal to 3975 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3976 unsigned StackAlign = 3977 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3978 if (Align <= StackAlign) 3979 Align = 0; 3980 3981 // Round the size of the allocation up to the stack alignment size 3982 // by add SA-1 to the size. This doesn't overflow because we're computing 3983 // an address inside an alloca. 3984 SDNodeFlags Flags; 3985 Flags.setNoUnsignedWrap(true); 3986 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3987 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3988 3989 // Mask out the low bits for alignment purposes. 3990 AllocSize = 3991 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3992 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3993 3994 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3995 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3996 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3997 setValue(&I, DSA); 3998 DAG.setRoot(DSA.getValue(1)); 3999 4000 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4001 } 4002 4003 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4004 if (I.isAtomic()) 4005 return visitAtomicLoad(I); 4006 4007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4008 const Value *SV = I.getOperand(0); 4009 if (TLI.supportSwiftError()) { 4010 // Swifterror values can come from either a function parameter with 4011 // swifterror attribute or an alloca with swifterror attribute. 4012 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4013 if (Arg->hasSwiftErrorAttr()) 4014 return visitLoadFromSwiftError(I); 4015 } 4016 4017 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4018 if (Alloca->isSwiftError()) 4019 return visitLoadFromSwiftError(I); 4020 } 4021 } 4022 4023 SDValue Ptr = getValue(SV); 4024 4025 Type *Ty = I.getType(); 4026 4027 bool isVolatile = I.isVolatile(); 4028 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); 4029 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); 4030 bool isDereferenceable = 4031 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4032 unsigned Alignment = I.getAlignment(); 4033 4034 AAMDNodes AAInfo; 4035 I.getAAMetadata(AAInfo); 4036 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4037 4038 SmallVector<EVT, 4> ValueVTs, MemVTs; 4039 SmallVector<uint64_t, 4> Offsets; 4040 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4041 unsigned NumValues = ValueVTs.size(); 4042 if (NumValues == 0) 4043 return; 4044 4045 SDValue Root; 4046 bool ConstantMemory = false; 4047 if (isVolatile || NumValues > MaxParallelChains) 4048 // Serialize volatile loads with other side effects. 4049 Root = getRoot(); 4050 else if (AA && 4051 AA->pointsToConstantMemory(MemoryLocation( 4052 SV, 4053 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4054 AAInfo))) { 4055 // Do not serialize (non-volatile) loads of constant memory with anything. 4056 Root = DAG.getEntryNode(); 4057 ConstantMemory = true; 4058 } else { 4059 // Do not serialize non-volatile loads against each other. 4060 Root = DAG.getRoot(); 4061 } 4062 4063 SDLoc dl = getCurSDLoc(); 4064 4065 if (isVolatile) 4066 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4067 4068 // An aggregate load cannot wrap around the address space, so offsets to its 4069 // parts don't wrap either. 4070 SDNodeFlags Flags; 4071 Flags.setNoUnsignedWrap(true); 4072 4073 SmallVector<SDValue, 4> Values(NumValues); 4074 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4075 EVT PtrVT = Ptr.getValueType(); 4076 unsigned ChainI = 0; 4077 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4078 // Serializing loads here may result in excessive register pressure, and 4079 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4080 // could recover a bit by hoisting nodes upward in the chain by recognizing 4081 // they are side-effect free or do not alias. The optimizer should really 4082 // avoid this case by converting large object/array copies to llvm.memcpy 4083 // (MaxParallelChains should always remain as failsafe). 4084 if (ChainI == MaxParallelChains) { 4085 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4086 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4087 makeArrayRef(Chains.data(), ChainI)); 4088 Root = Chain; 4089 ChainI = 0; 4090 } 4091 SDValue A = DAG.getNode(ISD::ADD, dl, 4092 PtrVT, Ptr, 4093 DAG.getConstant(Offsets[i], dl, PtrVT), 4094 Flags); 4095 auto MMOFlags = MachineMemOperand::MONone; 4096 if (isVolatile) 4097 MMOFlags |= MachineMemOperand::MOVolatile; 4098 if (isNonTemporal) 4099 MMOFlags |= MachineMemOperand::MONonTemporal; 4100 if (isInvariant) 4101 MMOFlags |= MachineMemOperand::MOInvariant; 4102 if (isDereferenceable) 4103 MMOFlags |= MachineMemOperand::MODereferenceable; 4104 MMOFlags |= TLI.getMMOFlags(I); 4105 4106 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4107 MachinePointerInfo(SV, Offsets[i]), Alignment, 4108 MMOFlags, AAInfo, Ranges); 4109 Chains[ChainI] = L.getValue(1); 4110 4111 if (MemVTs[i] != ValueVTs[i]) 4112 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4113 4114 Values[i] = L; 4115 } 4116 4117 if (!ConstantMemory) { 4118 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4119 makeArrayRef(Chains.data(), ChainI)); 4120 if (isVolatile) 4121 DAG.setRoot(Chain); 4122 else 4123 PendingLoads.push_back(Chain); 4124 } 4125 4126 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4127 DAG.getVTList(ValueVTs), Values)); 4128 } 4129 4130 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4131 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4132 "call visitStoreToSwiftError when backend supports swifterror"); 4133 4134 SmallVector<EVT, 4> ValueVTs; 4135 SmallVector<uint64_t, 4> Offsets; 4136 const Value *SrcV = I.getOperand(0); 4137 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4138 SrcV->getType(), ValueVTs, &Offsets); 4139 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4140 "expect a single EVT for swifterror"); 4141 4142 SDValue Src = getValue(SrcV); 4143 // Create a virtual register, then update the virtual register. 4144 Register VReg = 4145 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4146 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4147 // Chain can be getRoot or getControlRoot. 4148 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4149 SDValue(Src.getNode(), Src.getResNo())); 4150 DAG.setRoot(CopyNode); 4151 } 4152 4153 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4154 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4155 "call visitLoadFromSwiftError when backend supports swifterror"); 4156 4157 assert(!I.isVolatile() && 4158 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4159 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4160 "Support volatile, non temporal, invariant for load_from_swift_error"); 4161 4162 const Value *SV = I.getOperand(0); 4163 Type *Ty = I.getType(); 4164 AAMDNodes AAInfo; 4165 I.getAAMetadata(AAInfo); 4166 assert( 4167 (!AA || 4168 !AA->pointsToConstantMemory(MemoryLocation( 4169 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4170 AAInfo))) && 4171 "load_from_swift_error should not be constant memory"); 4172 4173 SmallVector<EVT, 4> ValueVTs; 4174 SmallVector<uint64_t, 4> Offsets; 4175 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4176 ValueVTs, &Offsets); 4177 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4178 "expect a single EVT for swifterror"); 4179 4180 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4181 SDValue L = DAG.getCopyFromReg( 4182 getRoot(), getCurSDLoc(), 4183 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4184 4185 setValue(&I, L); 4186 } 4187 4188 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4189 if (I.isAtomic()) 4190 return visitAtomicStore(I); 4191 4192 const Value *SrcV = I.getOperand(0); 4193 const Value *PtrV = I.getOperand(1); 4194 4195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4196 if (TLI.supportSwiftError()) { 4197 // Swifterror values can come from either a function parameter with 4198 // swifterror attribute or an alloca with swifterror attribute. 4199 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4200 if (Arg->hasSwiftErrorAttr()) 4201 return visitStoreToSwiftError(I); 4202 } 4203 4204 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4205 if (Alloca->isSwiftError()) 4206 return visitStoreToSwiftError(I); 4207 } 4208 } 4209 4210 SmallVector<EVT, 4> ValueVTs, MemVTs; 4211 SmallVector<uint64_t, 4> Offsets; 4212 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4213 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4214 unsigned NumValues = ValueVTs.size(); 4215 if (NumValues == 0) 4216 return; 4217 4218 // Get the lowered operands. Note that we do this after 4219 // checking if NumResults is zero, because with zero results 4220 // the operands won't have values in the map. 4221 SDValue Src = getValue(SrcV); 4222 SDValue Ptr = getValue(PtrV); 4223 4224 SDValue Root = getRoot(); 4225 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4226 SDLoc dl = getCurSDLoc(); 4227 unsigned Alignment = I.getAlignment(); 4228 AAMDNodes AAInfo; 4229 I.getAAMetadata(AAInfo); 4230 4231 auto MMOFlags = MachineMemOperand::MONone; 4232 if (I.isVolatile()) 4233 MMOFlags |= MachineMemOperand::MOVolatile; 4234 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4235 MMOFlags |= MachineMemOperand::MONonTemporal; 4236 MMOFlags |= TLI.getMMOFlags(I); 4237 4238 // An aggregate load cannot wrap around the address space, so offsets to its 4239 // parts don't wrap either. 4240 SDNodeFlags Flags; 4241 Flags.setNoUnsignedWrap(true); 4242 4243 unsigned ChainI = 0; 4244 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4245 // See visitLoad comments. 4246 if (ChainI == MaxParallelChains) { 4247 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4248 makeArrayRef(Chains.data(), ChainI)); 4249 Root = Chain; 4250 ChainI = 0; 4251 } 4252 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4253 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4254 if (MemVTs[i] != ValueVTs[i]) 4255 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4256 SDValue St = 4257 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4258 Alignment, MMOFlags, AAInfo); 4259 Chains[ChainI] = St; 4260 } 4261 4262 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4263 makeArrayRef(Chains.data(), ChainI)); 4264 DAG.setRoot(StoreNode); 4265 } 4266 4267 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4268 bool IsCompressing) { 4269 SDLoc sdl = getCurSDLoc(); 4270 4271 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4272 unsigned& Alignment) { 4273 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4274 Src0 = I.getArgOperand(0); 4275 Ptr = I.getArgOperand(1); 4276 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4277 Mask = I.getArgOperand(3); 4278 }; 4279 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4280 unsigned& Alignment) { 4281 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4282 Src0 = I.getArgOperand(0); 4283 Ptr = I.getArgOperand(1); 4284 Mask = I.getArgOperand(2); 4285 Alignment = 0; 4286 }; 4287 4288 Value *PtrOperand, *MaskOperand, *Src0Operand; 4289 unsigned Alignment; 4290 if (IsCompressing) 4291 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4292 else 4293 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4294 4295 SDValue Ptr = getValue(PtrOperand); 4296 SDValue Src0 = getValue(Src0Operand); 4297 SDValue Mask = getValue(MaskOperand); 4298 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4299 4300 EVT VT = Src0.getValueType(); 4301 if (!Alignment) 4302 Alignment = DAG.getEVTAlignment(VT); 4303 4304 AAMDNodes AAInfo; 4305 I.getAAMetadata(AAInfo); 4306 4307 MachineMemOperand *MMO = 4308 DAG.getMachineFunction(). 4309 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4310 MachineMemOperand::MOStore, 4311 // TODO: Make MachineMemOperands aware of scalable 4312 // vectors. 4313 VT.getStoreSize().getKnownMinSize(), 4314 Alignment, AAInfo); 4315 SDValue StoreNode = 4316 DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4317 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4318 DAG.setRoot(StoreNode); 4319 setValue(&I, StoreNode); 4320 } 4321 4322 // Get a uniform base for the Gather/Scatter intrinsic. 4323 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4324 // We try to represent it as a base pointer + vector of indices. 4325 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4326 // The first operand of the GEP may be a single pointer or a vector of pointers 4327 // Example: 4328 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4329 // or 4330 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4331 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4332 // 4333 // When the first GEP operand is a single pointer - it is the uniform base we 4334 // are looking for. If first operand of the GEP is a splat vector - we 4335 // extract the splat value and use it as a uniform base. 4336 // In all other cases the function returns 'false'. 4337 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4338 ISD::MemIndexType &IndexType, SDValue &Scale, 4339 SelectionDAGBuilder *SDB) { 4340 SelectionDAG& DAG = SDB->DAG; 4341 LLVMContext &Context = *DAG.getContext(); 4342 4343 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4344 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4345 if (!GEP) 4346 return false; 4347 4348 const Value *GEPPtr = GEP->getPointerOperand(); 4349 if (!GEPPtr->getType()->isVectorTy()) 4350 Ptr = GEPPtr; 4351 else if (!(Ptr = getSplatValue(GEPPtr))) 4352 return false; 4353 4354 unsigned FinalIndex = GEP->getNumOperands() - 1; 4355 Value *IndexVal = GEP->getOperand(FinalIndex); 4356 gep_type_iterator GTI = gep_type_begin(*GEP); 4357 4358 // Ensure all the other indices are 0. 4359 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4360 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4361 if (!C) 4362 return false; 4363 if (isa<VectorType>(C->getType())) 4364 C = C->getSplatValue(); 4365 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4366 if (!CI || !CI->isZero()) 4367 return false; 4368 } 4369 4370 // The operands of the GEP may be defined in another basic block. 4371 // In this case we'll not find nodes for the operands. 4372 if (!SDB->findValue(Ptr)) 4373 return false; 4374 Constant *C = dyn_cast<Constant>(IndexVal); 4375 if (!C && !SDB->findValue(IndexVal)) 4376 return false; 4377 4378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4379 const DataLayout &DL = DAG.getDataLayout(); 4380 StructType *STy = GTI.getStructTypeOrNull(); 4381 4382 if (STy) { 4383 const StructLayout *SL = DL.getStructLayout(STy); 4384 if (isa<VectorType>(C->getType())) { 4385 C = C->getSplatValue(); 4386 // FIXME: If getSplatValue may return nullptr for a structure? 4387 // If not, the following check can be removed. 4388 if (!C) 4389 return false; 4390 } 4391 auto *CI = cast<ConstantInt>(C); 4392 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4393 Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), 4394 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4395 } else { 4396 Scale = DAG.getTargetConstant( 4397 DL.getTypeAllocSize(GEP->getResultElementType()), 4398 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4399 Index = SDB->getValue(IndexVal); 4400 } 4401 Base = SDB->getValue(Ptr); 4402 IndexType = ISD::SIGNED_SCALED; 4403 4404 if (STy || !Index.getValueType().isVector()) { 4405 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4406 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4407 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4408 } 4409 return true; 4410 } 4411 4412 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4413 SDLoc sdl = getCurSDLoc(); 4414 4415 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4416 const Value *Ptr = I.getArgOperand(1); 4417 SDValue Src0 = getValue(I.getArgOperand(0)); 4418 SDValue Mask = getValue(I.getArgOperand(3)); 4419 EVT VT = Src0.getValueType(); 4420 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4421 if (!Alignment) 4422 Alignment = DAG.getEVTAlignment(VT); 4423 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4424 4425 AAMDNodes AAInfo; 4426 I.getAAMetadata(AAInfo); 4427 4428 SDValue Base; 4429 SDValue Index; 4430 ISD::MemIndexType IndexType; 4431 SDValue Scale; 4432 const Value *BasePtr = Ptr; 4433 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4434 this); 4435 4436 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4437 MachineMemOperand *MMO = DAG.getMachineFunction(). 4438 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4439 MachineMemOperand::MOStore, 4440 // TODO: Make MachineMemOperands aware of scalable 4441 // vectors. 4442 VT.getStoreSize().getKnownMinSize(), 4443 Alignment, AAInfo); 4444 if (!UniformBase) { 4445 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4446 Index = getValue(Ptr); 4447 IndexType = ISD::SIGNED_SCALED; 4448 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4449 } 4450 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4451 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4452 Ops, MMO, IndexType); 4453 DAG.setRoot(Scatter); 4454 setValue(&I, Scatter); 4455 } 4456 4457 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4458 SDLoc sdl = getCurSDLoc(); 4459 4460 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4461 unsigned& Alignment) { 4462 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4463 Ptr = I.getArgOperand(0); 4464 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4465 Mask = I.getArgOperand(2); 4466 Src0 = I.getArgOperand(3); 4467 }; 4468 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4469 unsigned& Alignment) { 4470 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4471 Ptr = I.getArgOperand(0); 4472 Alignment = 0; 4473 Mask = I.getArgOperand(1); 4474 Src0 = I.getArgOperand(2); 4475 }; 4476 4477 Value *PtrOperand, *MaskOperand, *Src0Operand; 4478 unsigned Alignment; 4479 if (IsExpanding) 4480 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4481 else 4482 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4483 4484 SDValue Ptr = getValue(PtrOperand); 4485 SDValue Src0 = getValue(Src0Operand); 4486 SDValue Mask = getValue(MaskOperand); 4487 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4488 4489 EVT VT = Src0.getValueType(); 4490 if (!Alignment) 4491 Alignment = DAG.getEVTAlignment(VT); 4492 4493 AAMDNodes AAInfo; 4494 I.getAAMetadata(AAInfo); 4495 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4496 4497 // Do not serialize masked loads of constant memory with anything. 4498 MemoryLocation ML; 4499 if (VT.isScalableVector()) 4500 ML = MemoryLocation(PtrOperand); 4501 else 4502 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4503 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4504 AAInfo); 4505 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4506 4507 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4508 4509 MachineMemOperand *MMO = 4510 DAG.getMachineFunction(). 4511 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4512 MachineMemOperand::MOLoad, 4513 // TODO: Make MachineMemOperands aware of scalable 4514 // vectors. 4515 VT.getStoreSize().getKnownMinSize(), 4516 Alignment, AAInfo, Ranges); 4517 4518 SDValue Load = 4519 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4520 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4521 if (AddToChain) 4522 PendingLoads.push_back(Load.getValue(1)); 4523 setValue(&I, Load); 4524 } 4525 4526 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4527 SDLoc sdl = getCurSDLoc(); 4528 4529 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4530 const Value *Ptr = I.getArgOperand(0); 4531 SDValue Src0 = getValue(I.getArgOperand(3)); 4532 SDValue Mask = getValue(I.getArgOperand(2)); 4533 4534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4535 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4536 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4537 if (!Alignment) 4538 Alignment = DAG.getEVTAlignment(VT); 4539 4540 AAMDNodes AAInfo; 4541 I.getAAMetadata(AAInfo); 4542 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4543 4544 SDValue Root = DAG.getRoot(); 4545 SDValue Base; 4546 SDValue Index; 4547 ISD::MemIndexType IndexType; 4548 SDValue Scale; 4549 const Value *BasePtr = Ptr; 4550 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4551 this); 4552 bool ConstantMemory = false; 4553 if (UniformBase && AA && 4554 AA->pointsToConstantMemory( 4555 MemoryLocation(BasePtr, 4556 LocationSize::precise( 4557 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4558 AAInfo))) { 4559 // Do not serialize (non-volatile) loads of constant memory with anything. 4560 Root = DAG.getEntryNode(); 4561 ConstantMemory = true; 4562 } 4563 4564 MachineMemOperand *MMO = 4565 DAG.getMachineFunction(). 4566 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4567 MachineMemOperand::MOLoad, 4568 // TODO: Make MachineMemOperands aware of scalable 4569 // vectors. 4570 VT.getStoreSize().getKnownMinSize(), 4571 Alignment, AAInfo, Ranges); 4572 4573 if (!UniformBase) { 4574 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4575 Index = getValue(Ptr); 4576 IndexType = ISD::SIGNED_SCALED; 4577 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4578 } 4579 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4580 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4581 Ops, MMO, IndexType); 4582 4583 SDValue OutChain = Gather.getValue(1); 4584 if (!ConstantMemory) 4585 PendingLoads.push_back(OutChain); 4586 setValue(&I, Gather); 4587 } 4588 4589 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4590 SDLoc dl = getCurSDLoc(); 4591 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4592 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4593 SyncScope::ID SSID = I.getSyncScopeID(); 4594 4595 SDValue InChain = getRoot(); 4596 4597 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4598 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4599 4600 auto Alignment = DAG.getEVTAlignment(MemVT); 4601 4602 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4603 if (I.isVolatile()) 4604 Flags |= MachineMemOperand::MOVolatile; 4605 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4606 4607 MachineFunction &MF = DAG.getMachineFunction(); 4608 MachineMemOperand *MMO = 4609 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4610 Flags, MemVT.getStoreSize(), Alignment, 4611 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4612 FailureOrdering); 4613 4614 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4615 dl, MemVT, VTs, InChain, 4616 getValue(I.getPointerOperand()), 4617 getValue(I.getCompareOperand()), 4618 getValue(I.getNewValOperand()), MMO); 4619 4620 SDValue OutChain = L.getValue(2); 4621 4622 setValue(&I, L); 4623 DAG.setRoot(OutChain); 4624 } 4625 4626 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4627 SDLoc dl = getCurSDLoc(); 4628 ISD::NodeType NT; 4629 switch (I.getOperation()) { 4630 default: llvm_unreachable("Unknown atomicrmw operation"); 4631 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4632 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4633 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4634 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4635 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4636 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4637 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4638 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4639 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4640 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4641 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4642 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4643 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4644 } 4645 AtomicOrdering Ordering = I.getOrdering(); 4646 SyncScope::ID SSID = I.getSyncScopeID(); 4647 4648 SDValue InChain = getRoot(); 4649 4650 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4651 auto Alignment = DAG.getEVTAlignment(MemVT); 4652 4653 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4654 if (I.isVolatile()) 4655 Flags |= MachineMemOperand::MOVolatile; 4656 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4657 4658 MachineFunction &MF = DAG.getMachineFunction(); 4659 MachineMemOperand *MMO = 4660 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4661 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4662 nullptr, SSID, Ordering); 4663 4664 SDValue L = 4665 DAG.getAtomic(NT, dl, MemVT, InChain, 4666 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4667 MMO); 4668 4669 SDValue OutChain = L.getValue(1); 4670 4671 setValue(&I, L); 4672 DAG.setRoot(OutChain); 4673 } 4674 4675 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4676 SDLoc dl = getCurSDLoc(); 4677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4678 SDValue Ops[3]; 4679 Ops[0] = getRoot(); 4680 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4681 TLI.getFenceOperandTy(DAG.getDataLayout())); 4682 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4683 TLI.getFenceOperandTy(DAG.getDataLayout())); 4684 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4685 } 4686 4687 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4688 SDLoc dl = getCurSDLoc(); 4689 AtomicOrdering Order = I.getOrdering(); 4690 SyncScope::ID SSID = I.getSyncScopeID(); 4691 4692 SDValue InChain = getRoot(); 4693 4694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4695 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4696 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4697 4698 if (!TLI.supportsUnalignedAtomics() && 4699 I.getAlignment() < MemVT.getSizeInBits() / 8) 4700 report_fatal_error("Cannot generate unaligned atomic load"); 4701 4702 auto Flags = MachineMemOperand::MOLoad; 4703 if (I.isVolatile()) 4704 Flags |= MachineMemOperand::MOVolatile; 4705 if (I.hasMetadata(LLVMContext::MD_invariant_load)) 4706 Flags |= MachineMemOperand::MOInvariant; 4707 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4708 DAG.getDataLayout())) 4709 Flags |= MachineMemOperand::MODereferenceable; 4710 4711 Flags |= TLI.getMMOFlags(I); 4712 4713 MachineMemOperand *MMO = 4714 DAG.getMachineFunction(). 4715 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4716 Flags, MemVT.getStoreSize(), 4717 I.getAlignment() ? I.getAlignment() : 4718 DAG.getEVTAlignment(MemVT), 4719 AAMDNodes(), nullptr, SSID, Order); 4720 4721 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4722 4723 SDValue Ptr = getValue(I.getPointerOperand()); 4724 4725 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4726 // TODO: Once this is better exercised by tests, it should be merged with 4727 // the normal path for loads to prevent future divergence. 4728 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4729 if (MemVT != VT) 4730 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4731 4732 setValue(&I, L); 4733 SDValue OutChain = L.getValue(1); 4734 if (!I.isUnordered()) 4735 DAG.setRoot(OutChain); 4736 else 4737 PendingLoads.push_back(OutChain); 4738 return; 4739 } 4740 4741 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4742 Ptr, MMO); 4743 4744 SDValue OutChain = L.getValue(1); 4745 if (MemVT != VT) 4746 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4747 4748 setValue(&I, L); 4749 DAG.setRoot(OutChain); 4750 } 4751 4752 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4753 SDLoc dl = getCurSDLoc(); 4754 4755 AtomicOrdering Ordering = I.getOrdering(); 4756 SyncScope::ID SSID = I.getSyncScopeID(); 4757 4758 SDValue InChain = getRoot(); 4759 4760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4761 EVT MemVT = 4762 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4763 4764 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4765 report_fatal_error("Cannot generate unaligned atomic store"); 4766 4767 auto Flags = MachineMemOperand::MOStore; 4768 if (I.isVolatile()) 4769 Flags |= MachineMemOperand::MOVolatile; 4770 Flags |= TLI.getMMOFlags(I); 4771 4772 MachineFunction &MF = DAG.getMachineFunction(); 4773 MachineMemOperand *MMO = 4774 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4775 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4776 nullptr, SSID, Ordering); 4777 4778 SDValue Val = getValue(I.getValueOperand()); 4779 if (Val.getValueType() != MemVT) 4780 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4781 SDValue Ptr = getValue(I.getPointerOperand()); 4782 4783 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4784 // TODO: Once this is better exercised by tests, it should be merged with 4785 // the normal path for stores to prevent future divergence. 4786 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4787 DAG.setRoot(S); 4788 return; 4789 } 4790 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4791 Ptr, Val, MMO); 4792 4793 4794 DAG.setRoot(OutChain); 4795 } 4796 4797 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4798 /// node. 4799 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4800 unsigned Intrinsic) { 4801 // Ignore the callsite's attributes. A specific call site may be marked with 4802 // readnone, but the lowering code will expect the chain based on the 4803 // definition. 4804 const Function *F = I.getCalledFunction(); 4805 bool HasChain = !F->doesNotAccessMemory(); 4806 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4807 4808 // Build the operand list. 4809 SmallVector<SDValue, 8> Ops; 4810 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4811 if (OnlyLoad) { 4812 // We don't need to serialize loads against other loads. 4813 Ops.push_back(DAG.getRoot()); 4814 } else { 4815 Ops.push_back(getRoot()); 4816 } 4817 } 4818 4819 // Info is set by getTgtMemInstrinsic 4820 TargetLowering::IntrinsicInfo Info; 4821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4822 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4823 DAG.getMachineFunction(), 4824 Intrinsic); 4825 4826 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4827 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4828 Info.opc == ISD::INTRINSIC_W_CHAIN) 4829 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4830 TLI.getPointerTy(DAG.getDataLayout()))); 4831 4832 // Add all operands of the call to the operand list. 4833 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4834 const Value *Arg = I.getArgOperand(i); 4835 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4836 Ops.push_back(getValue(Arg)); 4837 continue; 4838 } 4839 4840 // Use TargetConstant instead of a regular constant for immarg. 4841 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4842 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4843 assert(CI->getBitWidth() <= 64 && 4844 "large intrinsic immediates not handled"); 4845 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4846 } else { 4847 Ops.push_back( 4848 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4849 } 4850 } 4851 4852 SmallVector<EVT, 4> ValueVTs; 4853 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4854 4855 if (HasChain) 4856 ValueVTs.push_back(MVT::Other); 4857 4858 SDVTList VTs = DAG.getVTList(ValueVTs); 4859 4860 // Create the node. 4861 SDValue Result; 4862 if (IsTgtIntrinsic) { 4863 // This is target intrinsic that touches memory 4864 AAMDNodes AAInfo; 4865 I.getAAMetadata(AAInfo); 4866 Result = DAG.getMemIntrinsicNode( 4867 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4868 MachinePointerInfo(Info.ptrVal, Info.offset), 4869 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4870 } else if (!HasChain) { 4871 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4872 } else if (!I.getType()->isVoidTy()) { 4873 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4874 } else { 4875 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4876 } 4877 4878 if (HasChain) { 4879 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4880 if (OnlyLoad) 4881 PendingLoads.push_back(Chain); 4882 else 4883 DAG.setRoot(Chain); 4884 } 4885 4886 if (!I.getType()->isVoidTy()) { 4887 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4888 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4889 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4890 } else 4891 Result = lowerRangeToAssertZExt(DAG, I, Result); 4892 4893 setValue(&I, Result); 4894 } 4895 } 4896 4897 /// GetSignificand - Get the significand and build it into a floating-point 4898 /// number with exponent of 1: 4899 /// 4900 /// Op = (Op & 0x007fffff) | 0x3f800000; 4901 /// 4902 /// where Op is the hexadecimal representation of floating point value. 4903 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4904 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4905 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4906 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4907 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4908 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4909 } 4910 4911 /// GetExponent - Get the exponent: 4912 /// 4913 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4914 /// 4915 /// where Op is the hexadecimal representation of floating point value. 4916 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4917 const TargetLowering &TLI, const SDLoc &dl) { 4918 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4919 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4920 SDValue t1 = DAG.getNode( 4921 ISD::SRL, dl, MVT::i32, t0, 4922 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4923 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4924 DAG.getConstant(127, dl, MVT::i32)); 4925 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4926 } 4927 4928 /// getF32Constant - Get 32-bit floating point constant. 4929 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4930 const SDLoc &dl) { 4931 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4932 MVT::f32); 4933 } 4934 4935 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4936 SelectionDAG &DAG) { 4937 // TODO: What fast-math-flags should be set on the floating-point nodes? 4938 4939 // IntegerPartOfX = ((int32_t)(t0); 4940 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4941 4942 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4943 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4944 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4945 4946 // IntegerPartOfX <<= 23; 4947 IntegerPartOfX = DAG.getNode( 4948 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4949 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4950 DAG.getDataLayout()))); 4951 4952 SDValue TwoToFractionalPartOfX; 4953 if (LimitFloatPrecision <= 6) { 4954 // For floating-point precision of 6: 4955 // 4956 // TwoToFractionalPartOfX = 4957 // 0.997535578f + 4958 // (0.735607626f + 0.252464424f * x) * x; 4959 // 4960 // error 0.0144103317, which is 6 bits 4961 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4962 getF32Constant(DAG, 0x3e814304, dl)); 4963 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4964 getF32Constant(DAG, 0x3f3c50c8, dl)); 4965 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4966 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4967 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4968 } else if (LimitFloatPrecision <= 12) { 4969 // For floating-point precision of 12: 4970 // 4971 // TwoToFractionalPartOfX = 4972 // 0.999892986f + 4973 // (0.696457318f + 4974 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4975 // 4976 // error 0.000107046256, which is 13 to 14 bits 4977 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4978 getF32Constant(DAG, 0x3da235e3, dl)); 4979 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4980 getF32Constant(DAG, 0x3e65b8f3, dl)); 4981 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4982 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4983 getF32Constant(DAG, 0x3f324b07, dl)); 4984 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4985 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4986 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4987 } else { // LimitFloatPrecision <= 18 4988 // For floating-point precision of 18: 4989 // 4990 // TwoToFractionalPartOfX = 4991 // 0.999999982f + 4992 // (0.693148872f + 4993 // (0.240227044f + 4994 // (0.554906021e-1f + 4995 // (0.961591928e-2f + 4996 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4997 // error 2.47208000*10^(-7), which is better than 18 bits 4998 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4999 getF32Constant(DAG, 0x3924b03e, dl)); 5000 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5001 getF32Constant(DAG, 0x3ab24b87, dl)); 5002 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5003 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5004 getF32Constant(DAG, 0x3c1d8c17, dl)); 5005 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5006 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5007 getF32Constant(DAG, 0x3d634a1d, dl)); 5008 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5009 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5010 getF32Constant(DAG, 0x3e75fe14, dl)); 5011 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5012 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5013 getF32Constant(DAG, 0x3f317234, dl)); 5014 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5015 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5016 getF32Constant(DAG, 0x3f800000, dl)); 5017 } 5018 5019 // Add the exponent into the result in integer domain. 5020 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5021 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5022 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5023 } 5024 5025 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5026 /// limited-precision mode. 5027 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5028 const TargetLowering &TLI) { 5029 if (Op.getValueType() == MVT::f32 && 5030 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5031 5032 // Put the exponent in the right bit position for later addition to the 5033 // final result: 5034 // 5035 // t0 = Op * log2(e) 5036 5037 // TODO: What fast-math-flags should be set here? 5038 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5039 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5040 return getLimitedPrecisionExp2(t0, dl, DAG); 5041 } 5042 5043 // No special expansion. 5044 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5045 } 5046 5047 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5048 /// limited-precision mode. 5049 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5050 const TargetLowering &TLI) { 5051 // TODO: What fast-math-flags should be set on the floating-point nodes? 5052 5053 if (Op.getValueType() == MVT::f32 && 5054 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5055 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5056 5057 // Scale the exponent by log(2). 5058 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5059 SDValue LogOfExponent = 5060 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5061 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5062 5063 // Get the significand and build it into a floating-point number with 5064 // exponent of 1. 5065 SDValue X = GetSignificand(DAG, Op1, dl); 5066 5067 SDValue LogOfMantissa; 5068 if (LimitFloatPrecision <= 6) { 5069 // For floating-point precision of 6: 5070 // 5071 // LogofMantissa = 5072 // -1.1609546f + 5073 // (1.4034025f - 0.23903021f * x) * x; 5074 // 5075 // error 0.0034276066, which is better than 8 bits 5076 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5077 getF32Constant(DAG, 0xbe74c456, dl)); 5078 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5079 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5080 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5081 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5082 getF32Constant(DAG, 0x3f949a29, dl)); 5083 } else if (LimitFloatPrecision <= 12) { 5084 // For floating-point precision of 12: 5085 // 5086 // LogOfMantissa = 5087 // -1.7417939f + 5088 // (2.8212026f + 5089 // (-1.4699568f + 5090 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5091 // 5092 // error 0.000061011436, which is 14 bits 5093 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5094 getF32Constant(DAG, 0xbd67b6d6, dl)); 5095 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5096 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5097 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5098 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5099 getF32Constant(DAG, 0x3fbc278b, dl)); 5100 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5101 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5102 getF32Constant(DAG, 0x40348e95, dl)); 5103 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5104 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5105 getF32Constant(DAG, 0x3fdef31a, dl)); 5106 } else { // LimitFloatPrecision <= 18 5107 // For floating-point precision of 18: 5108 // 5109 // LogOfMantissa = 5110 // -2.1072184f + 5111 // (4.2372794f + 5112 // (-3.7029485f + 5113 // (2.2781945f + 5114 // (-0.87823314f + 5115 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5116 // 5117 // error 0.0000023660568, which is better than 18 bits 5118 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5119 getF32Constant(DAG, 0xbc91e5ac, dl)); 5120 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5121 getF32Constant(DAG, 0x3e4350aa, dl)); 5122 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5123 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5124 getF32Constant(DAG, 0x3f60d3e3, dl)); 5125 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5126 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5127 getF32Constant(DAG, 0x4011cdf0, dl)); 5128 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5129 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5130 getF32Constant(DAG, 0x406cfd1c, dl)); 5131 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5132 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5133 getF32Constant(DAG, 0x408797cb, dl)); 5134 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5135 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5136 getF32Constant(DAG, 0x4006dcab, dl)); 5137 } 5138 5139 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5140 } 5141 5142 // No special expansion. 5143 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5144 } 5145 5146 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5147 /// limited-precision mode. 5148 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5149 const TargetLowering &TLI) { 5150 // TODO: What fast-math-flags should be set on the floating-point nodes? 5151 5152 if (Op.getValueType() == MVT::f32 && 5153 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5154 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5155 5156 // Get the exponent. 5157 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5158 5159 // Get the significand and build it into a floating-point number with 5160 // exponent of 1. 5161 SDValue X = GetSignificand(DAG, Op1, dl); 5162 5163 // Different possible minimax approximations of significand in 5164 // floating-point for various degrees of accuracy over [1,2]. 5165 SDValue Log2ofMantissa; 5166 if (LimitFloatPrecision <= 6) { 5167 // For floating-point precision of 6: 5168 // 5169 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5170 // 5171 // error 0.0049451742, which is more than 7 bits 5172 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5173 getF32Constant(DAG, 0xbeb08fe0, dl)); 5174 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5175 getF32Constant(DAG, 0x40019463, dl)); 5176 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5177 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5178 getF32Constant(DAG, 0x3fd6633d, dl)); 5179 } else if (LimitFloatPrecision <= 12) { 5180 // For floating-point precision of 12: 5181 // 5182 // Log2ofMantissa = 5183 // -2.51285454f + 5184 // (4.07009056f + 5185 // (-2.12067489f + 5186 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5187 // 5188 // error 0.0000876136000, which is better than 13 bits 5189 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5190 getF32Constant(DAG, 0xbda7262e, dl)); 5191 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5192 getF32Constant(DAG, 0x3f25280b, dl)); 5193 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5194 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5195 getF32Constant(DAG, 0x4007b923, dl)); 5196 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5197 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5198 getF32Constant(DAG, 0x40823e2f, dl)); 5199 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5200 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5201 getF32Constant(DAG, 0x4020d29c, dl)); 5202 } else { // LimitFloatPrecision <= 18 5203 // For floating-point precision of 18: 5204 // 5205 // Log2ofMantissa = 5206 // -3.0400495f + 5207 // (6.1129976f + 5208 // (-5.3420409f + 5209 // (3.2865683f + 5210 // (-1.2669343f + 5211 // (0.27515199f - 5212 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5213 // 5214 // error 0.0000018516, which is better than 18 bits 5215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5216 getF32Constant(DAG, 0xbcd2769e, dl)); 5217 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5218 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5220 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5221 getF32Constant(DAG, 0x3fa22ae7, dl)); 5222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5223 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5224 getF32Constant(DAG, 0x40525723, dl)); 5225 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5226 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5227 getF32Constant(DAG, 0x40aaf200, dl)); 5228 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5229 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5230 getF32Constant(DAG, 0x40c39dad, dl)); 5231 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5232 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5233 getF32Constant(DAG, 0x4042902c, dl)); 5234 } 5235 5236 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5237 } 5238 5239 // No special expansion. 5240 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5241 } 5242 5243 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5244 /// limited-precision mode. 5245 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5246 const TargetLowering &TLI) { 5247 // TODO: What fast-math-flags should be set on the floating-point nodes? 5248 5249 if (Op.getValueType() == MVT::f32 && 5250 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5251 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5252 5253 // Scale the exponent by log10(2) [0.30102999f]. 5254 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5255 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5256 getF32Constant(DAG, 0x3e9a209a, dl)); 5257 5258 // Get the significand and build it into a floating-point number with 5259 // exponent of 1. 5260 SDValue X = GetSignificand(DAG, Op1, dl); 5261 5262 SDValue Log10ofMantissa; 5263 if (LimitFloatPrecision <= 6) { 5264 // For floating-point precision of 6: 5265 // 5266 // Log10ofMantissa = 5267 // -0.50419619f + 5268 // (0.60948995f - 0.10380950f * x) * x; 5269 // 5270 // error 0.0014886165, which is 6 bits 5271 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5272 getF32Constant(DAG, 0xbdd49a13, dl)); 5273 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5274 getF32Constant(DAG, 0x3f1c0789, dl)); 5275 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5276 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5277 getF32Constant(DAG, 0x3f011300, dl)); 5278 } else if (LimitFloatPrecision <= 12) { 5279 // For floating-point precision of 12: 5280 // 5281 // Log10ofMantissa = 5282 // -0.64831180f + 5283 // (0.91751397f + 5284 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5285 // 5286 // error 0.00019228036, which is better than 12 bits 5287 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5288 getF32Constant(DAG, 0x3d431f31, dl)); 5289 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5290 getF32Constant(DAG, 0x3ea21fb2, dl)); 5291 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5292 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5293 getF32Constant(DAG, 0x3f6ae232, dl)); 5294 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5295 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5296 getF32Constant(DAG, 0x3f25f7c3, dl)); 5297 } else { // LimitFloatPrecision <= 18 5298 // For floating-point precision of 18: 5299 // 5300 // Log10ofMantissa = 5301 // -0.84299375f + 5302 // (1.5327582f + 5303 // (-1.0688956f + 5304 // (0.49102474f + 5305 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5306 // 5307 // error 0.0000037995730, which is better than 18 bits 5308 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5309 getF32Constant(DAG, 0x3c5d51ce, dl)); 5310 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5311 getF32Constant(DAG, 0x3e00685a, dl)); 5312 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5313 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5314 getF32Constant(DAG, 0x3efb6798, dl)); 5315 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5316 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5317 getF32Constant(DAG, 0x3f88d192, dl)); 5318 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5319 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5320 getF32Constant(DAG, 0x3fc4316c, dl)); 5321 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5322 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5323 getF32Constant(DAG, 0x3f57ce70, dl)); 5324 } 5325 5326 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5327 } 5328 5329 // No special expansion. 5330 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5331 } 5332 5333 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5334 /// limited-precision mode. 5335 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5336 const TargetLowering &TLI) { 5337 if (Op.getValueType() == MVT::f32 && 5338 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5339 return getLimitedPrecisionExp2(Op, dl, DAG); 5340 5341 // No special expansion. 5342 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5343 } 5344 5345 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5346 /// limited-precision mode with x == 10.0f. 5347 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5348 SelectionDAG &DAG, const TargetLowering &TLI) { 5349 bool IsExp10 = false; 5350 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5351 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5352 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5353 APFloat Ten(10.0f); 5354 IsExp10 = LHSC->isExactlyValue(Ten); 5355 } 5356 } 5357 5358 // TODO: What fast-math-flags should be set on the FMUL node? 5359 if (IsExp10) { 5360 // Put the exponent in the right bit position for later addition to the 5361 // final result: 5362 // 5363 // #define LOG2OF10 3.3219281f 5364 // t0 = Op * LOG2OF10; 5365 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5366 getF32Constant(DAG, 0x40549a78, dl)); 5367 return getLimitedPrecisionExp2(t0, dl, DAG); 5368 } 5369 5370 // No special expansion. 5371 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5372 } 5373 5374 /// ExpandPowI - Expand a llvm.powi intrinsic. 5375 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5376 SelectionDAG &DAG) { 5377 // If RHS is a constant, we can expand this out to a multiplication tree, 5378 // otherwise we end up lowering to a call to __powidf2 (for example). When 5379 // optimizing for size, we only want to do this if the expansion would produce 5380 // a small number of multiplies, otherwise we do the full expansion. 5381 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5382 // Get the exponent as a positive value. 5383 unsigned Val = RHSC->getSExtValue(); 5384 if ((int)Val < 0) Val = -Val; 5385 5386 // powi(x, 0) -> 1.0 5387 if (Val == 0) 5388 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5389 5390 bool OptForSize = DAG.shouldOptForSize(); 5391 if (!OptForSize || 5392 // If optimizing for size, don't insert too many multiplies. 5393 // This inserts up to 5 multiplies. 5394 countPopulation(Val) + Log2_32(Val) < 7) { 5395 // We use the simple binary decomposition method to generate the multiply 5396 // sequence. There are more optimal ways to do this (for example, 5397 // powi(x,15) generates one more multiply than it should), but this has 5398 // the benefit of being both really simple and much better than a libcall. 5399 SDValue Res; // Logically starts equal to 1.0 5400 SDValue CurSquare = LHS; 5401 // TODO: Intrinsics should have fast-math-flags that propagate to these 5402 // nodes. 5403 while (Val) { 5404 if (Val & 1) { 5405 if (Res.getNode()) 5406 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5407 else 5408 Res = CurSquare; // 1.0*CurSquare. 5409 } 5410 5411 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5412 CurSquare, CurSquare); 5413 Val >>= 1; 5414 } 5415 5416 // If the original was negative, invert the result, producing 1/(x*x*x). 5417 if (RHSC->getSExtValue() < 0) 5418 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5419 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5420 return Res; 5421 } 5422 } 5423 5424 // Otherwise, expand to a libcall. 5425 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5426 } 5427 5428 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5429 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5430 static void 5431 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5432 const SDValue &N) { 5433 switch (N.getOpcode()) { 5434 case ISD::CopyFromReg: { 5435 SDValue Op = N.getOperand(1); 5436 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5437 Op.getValueType().getSizeInBits()); 5438 return; 5439 } 5440 case ISD::BITCAST: 5441 case ISD::AssertZext: 5442 case ISD::AssertSext: 5443 case ISD::TRUNCATE: 5444 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5445 return; 5446 case ISD::BUILD_PAIR: 5447 case ISD::BUILD_VECTOR: 5448 case ISD::CONCAT_VECTORS: 5449 for (SDValue Op : N->op_values()) 5450 getUnderlyingArgRegs(Regs, Op); 5451 return; 5452 default: 5453 return; 5454 } 5455 } 5456 5457 /// If the DbgValueInst is a dbg_value of a function argument, create the 5458 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5459 /// instruction selection, they will be inserted to the entry BB. 5460 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5461 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5462 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5463 const Argument *Arg = dyn_cast<Argument>(V); 5464 if (!Arg) 5465 return false; 5466 5467 if (!IsDbgDeclare) { 5468 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5469 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5470 // the entry block. 5471 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5472 if (!IsInEntryBlock) 5473 return false; 5474 5475 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5476 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5477 // variable that also is a param. 5478 // 5479 // Although, if we are at the top of the entry block already, we can still 5480 // emit using ArgDbgValue. This might catch some situations when the 5481 // dbg.value refers to an argument that isn't used in the entry block, so 5482 // any CopyToReg node would be optimized out and the only way to express 5483 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5484 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5485 // we should only emit as ArgDbgValue if the Variable is an argument to the 5486 // current function, and the dbg.value intrinsic is found in the entry 5487 // block. 5488 bool VariableIsFunctionInputArg = Variable->isParameter() && 5489 !DL->getInlinedAt(); 5490 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5491 if (!IsInPrologue && !VariableIsFunctionInputArg) 5492 return false; 5493 5494 // Here we assume that a function argument on IR level only can be used to 5495 // describe one input parameter on source level. If we for example have 5496 // source code like this 5497 // 5498 // struct A { long x, y; }; 5499 // void foo(struct A a, long b) { 5500 // ... 5501 // b = a.x; 5502 // ... 5503 // } 5504 // 5505 // and IR like this 5506 // 5507 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5508 // entry: 5509 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5510 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5511 // call void @llvm.dbg.value(metadata i32 %b, "b", 5512 // ... 5513 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5514 // ... 5515 // 5516 // then the last dbg.value is describing a parameter "b" using a value that 5517 // is an argument. But since we already has used %a1 to describe a parameter 5518 // we should not handle that last dbg.value here (that would result in an 5519 // incorrect hoisting of the DBG_VALUE to the function entry). 5520 // Notice that we allow one dbg.value per IR level argument, to accommodate 5521 // for the situation with fragments above. 5522 if (VariableIsFunctionInputArg) { 5523 unsigned ArgNo = Arg->getArgNo(); 5524 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5525 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5526 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5527 return false; 5528 FuncInfo.DescribedArgs.set(ArgNo); 5529 } 5530 } 5531 5532 MachineFunction &MF = DAG.getMachineFunction(); 5533 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5534 5535 Optional<MachineOperand> Op; 5536 // Some arguments' frame index is recorded during argument lowering. 5537 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5538 if (FI != std::numeric_limits<int>::max()) 5539 Op = MachineOperand::CreateFI(FI); 5540 5541 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5542 if (!Op && N.getNode()) { 5543 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5544 Register Reg; 5545 if (ArgRegsAndSizes.size() == 1) 5546 Reg = ArgRegsAndSizes.front().first; 5547 5548 if (Reg && Reg.isVirtual()) { 5549 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5550 Register PR = RegInfo.getLiveInPhysReg(Reg); 5551 if (PR) 5552 Reg = PR; 5553 } 5554 if (Reg) { 5555 Op = MachineOperand::CreateReg(Reg, false); 5556 } 5557 } 5558 5559 if (!Op && N.getNode()) { 5560 // Check if frame index is available. 5561 SDValue LCandidate = peekThroughBitcasts(N); 5562 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5563 if (FrameIndexSDNode *FINode = 5564 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5565 Op = MachineOperand::CreateFI(FINode->getIndex()); 5566 } 5567 5568 if (!Op) { 5569 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5570 auto splitMultiRegDbgValue 5571 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5572 unsigned Offset = 0; 5573 for (auto RegAndSize : SplitRegs) { 5574 // If the expression is already a fragment, the current register 5575 // offset+size might extend beyond the fragment. In this case, only 5576 // the register bits that are inside the fragment are relevant. 5577 int RegFragmentSizeInBits = RegAndSize.second; 5578 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5579 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5580 // The register is entirely outside the expression fragment, 5581 // so is irrelevant for debug info. 5582 if (Offset >= ExprFragmentSizeInBits) 5583 break; 5584 // The register is partially outside the expression fragment, only 5585 // the low bits within the fragment are relevant for debug info. 5586 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5587 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5588 } 5589 } 5590 5591 auto FragmentExpr = DIExpression::createFragmentExpression( 5592 Expr, Offset, RegFragmentSizeInBits); 5593 Offset += RegAndSize.second; 5594 // If a valid fragment expression cannot be created, the variable's 5595 // correct value cannot be determined and so it is set as Undef. 5596 if (!FragmentExpr) { 5597 SDDbgValue *SDV = DAG.getConstantDbgValue( 5598 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5599 DAG.AddDbgValue(SDV, nullptr, false); 5600 continue; 5601 } 5602 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5603 FuncInfo.ArgDbgValues.push_back( 5604 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5605 RegAndSize.first, Variable, *FragmentExpr)); 5606 } 5607 }; 5608 5609 // Check if ValueMap has reg number. 5610 DenseMap<const Value *, unsigned>::const_iterator 5611 VMI = FuncInfo.ValueMap.find(V); 5612 if (VMI != FuncInfo.ValueMap.end()) { 5613 const auto &TLI = DAG.getTargetLoweringInfo(); 5614 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5615 V->getType(), getABIRegCopyCC(V)); 5616 if (RFV.occupiesMultipleRegs()) { 5617 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5618 return true; 5619 } 5620 5621 Op = MachineOperand::CreateReg(VMI->second, false); 5622 } else if (ArgRegsAndSizes.size() > 1) { 5623 // This was split due to the calling convention, and no virtual register 5624 // mapping exists for the value. 5625 splitMultiRegDbgValue(ArgRegsAndSizes); 5626 return true; 5627 } 5628 } 5629 5630 if (!Op) 5631 return false; 5632 5633 assert(Variable->isValidLocationForIntrinsic(DL) && 5634 "Expected inlined-at fields to agree"); 5635 5636 // If the argument arrives in a stack slot, then what the IR thought was a 5637 // normal Value is actually in memory, and we must add a deref to load it. 5638 if (Op->isFI()) { 5639 int FI = Op->getIndex(); 5640 unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI); 5641 if (Expr->isImplicit()) { 5642 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size}; 5643 Expr = DIExpression::prependOpcodes(Expr, Ops); 5644 } else { 5645 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 5646 } 5647 } 5648 5649 // If this location was specified with a dbg.declare, then it and its 5650 // expression calculate the address of the variable. Append a deref to 5651 // force it to be a memory location. 5652 if (IsDbgDeclare) 5653 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5654 5655 FuncInfo.ArgDbgValues.push_back( 5656 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5657 *Op, Variable, Expr)); 5658 5659 return true; 5660 } 5661 5662 /// Return the appropriate SDDbgValue based on N. 5663 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5664 DILocalVariable *Variable, 5665 DIExpression *Expr, 5666 const DebugLoc &dl, 5667 unsigned DbgSDNodeOrder) { 5668 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5669 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5670 // stack slot locations. 5671 // 5672 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5673 // debug values here after optimization: 5674 // 5675 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5676 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5677 // 5678 // Both describe the direct values of their associated variables. 5679 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5680 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5681 } 5682 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5683 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5684 } 5685 5686 // VisualStudio defines setjmp as _setjmp 5687 #if defined(_MSC_VER) && defined(setjmp) && \ 5688 !defined(setjmp_undefined_for_msvc) 5689 # pragma push_macro("setjmp") 5690 # undef setjmp 5691 # define setjmp_undefined_for_msvc 5692 #endif 5693 5694 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5695 switch (Intrinsic) { 5696 case Intrinsic::smul_fix: 5697 return ISD::SMULFIX; 5698 case Intrinsic::umul_fix: 5699 return ISD::UMULFIX; 5700 default: 5701 llvm_unreachable("Unhandled fixed point intrinsic"); 5702 } 5703 } 5704 5705 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5706 const char *FunctionName) { 5707 assert(FunctionName && "FunctionName must not be nullptr"); 5708 SDValue Callee = DAG.getExternalSymbol( 5709 FunctionName, 5710 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5711 LowerCallTo(&I, Callee, I.isTailCall()); 5712 } 5713 5714 /// Lower the call to the specified intrinsic function. 5715 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5716 unsigned Intrinsic) { 5717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5718 SDLoc sdl = getCurSDLoc(); 5719 DebugLoc dl = getCurDebugLoc(); 5720 SDValue Res; 5721 5722 switch (Intrinsic) { 5723 default: 5724 // By default, turn this into a target intrinsic node. 5725 visitTargetIntrinsic(I, Intrinsic); 5726 return; 5727 case Intrinsic::vastart: visitVAStart(I); return; 5728 case Intrinsic::vaend: visitVAEnd(I); return; 5729 case Intrinsic::vacopy: visitVACopy(I); return; 5730 case Intrinsic::returnaddress: 5731 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5732 TLI.getPointerTy(DAG.getDataLayout()), 5733 getValue(I.getArgOperand(0)))); 5734 return; 5735 case Intrinsic::addressofreturnaddress: 5736 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5737 TLI.getPointerTy(DAG.getDataLayout()))); 5738 return; 5739 case Intrinsic::sponentry: 5740 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5741 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5742 return; 5743 case Intrinsic::frameaddress: 5744 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5745 TLI.getFrameIndexTy(DAG.getDataLayout()), 5746 getValue(I.getArgOperand(0)))); 5747 return; 5748 case Intrinsic::read_register: { 5749 Value *Reg = I.getArgOperand(0); 5750 SDValue Chain = getRoot(); 5751 SDValue RegName = 5752 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5753 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5754 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5755 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5756 setValue(&I, Res); 5757 DAG.setRoot(Res.getValue(1)); 5758 return; 5759 } 5760 case Intrinsic::write_register: { 5761 Value *Reg = I.getArgOperand(0); 5762 Value *RegValue = I.getArgOperand(1); 5763 SDValue Chain = getRoot(); 5764 SDValue RegName = 5765 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5766 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5767 RegName, getValue(RegValue))); 5768 return; 5769 } 5770 case Intrinsic::setjmp: 5771 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5772 return; 5773 case Intrinsic::longjmp: 5774 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5775 return; 5776 case Intrinsic::memcpy: { 5777 const auto &MCI = cast<MemCpyInst>(I); 5778 SDValue Op1 = getValue(I.getArgOperand(0)); 5779 SDValue Op2 = getValue(I.getArgOperand(1)); 5780 SDValue Op3 = getValue(I.getArgOperand(2)); 5781 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5782 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5783 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5784 unsigned Align = MinAlign(DstAlign, SrcAlign); 5785 bool isVol = MCI.isVolatile(); 5786 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5787 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5788 // node. 5789 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5790 false, isTC, 5791 MachinePointerInfo(I.getArgOperand(0)), 5792 MachinePointerInfo(I.getArgOperand(1))); 5793 updateDAGForMaybeTailCall(MC); 5794 return; 5795 } 5796 case Intrinsic::memset: { 5797 const auto &MSI = cast<MemSetInst>(I); 5798 SDValue Op1 = getValue(I.getArgOperand(0)); 5799 SDValue Op2 = getValue(I.getArgOperand(1)); 5800 SDValue Op3 = getValue(I.getArgOperand(2)); 5801 // @llvm.memset defines 0 and 1 to both mean no alignment. 5802 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5803 bool isVol = MSI.isVolatile(); 5804 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5805 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5806 isTC, MachinePointerInfo(I.getArgOperand(0))); 5807 updateDAGForMaybeTailCall(MS); 5808 return; 5809 } 5810 case Intrinsic::memmove: { 5811 const auto &MMI = cast<MemMoveInst>(I); 5812 SDValue Op1 = getValue(I.getArgOperand(0)); 5813 SDValue Op2 = getValue(I.getArgOperand(1)); 5814 SDValue Op3 = getValue(I.getArgOperand(2)); 5815 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5816 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5817 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5818 unsigned Align = MinAlign(DstAlign, SrcAlign); 5819 bool isVol = MMI.isVolatile(); 5820 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5821 // FIXME: Support passing different dest/src alignments to the memmove DAG 5822 // node. 5823 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5824 isTC, MachinePointerInfo(I.getArgOperand(0)), 5825 MachinePointerInfo(I.getArgOperand(1))); 5826 updateDAGForMaybeTailCall(MM); 5827 return; 5828 } 5829 case Intrinsic::memcpy_element_unordered_atomic: { 5830 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5831 SDValue Dst = getValue(MI.getRawDest()); 5832 SDValue Src = getValue(MI.getRawSource()); 5833 SDValue Length = getValue(MI.getLength()); 5834 5835 unsigned DstAlign = MI.getDestAlignment(); 5836 unsigned SrcAlign = MI.getSourceAlignment(); 5837 Type *LengthTy = MI.getLength()->getType(); 5838 unsigned ElemSz = MI.getElementSizeInBytes(); 5839 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5840 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5841 SrcAlign, Length, LengthTy, ElemSz, isTC, 5842 MachinePointerInfo(MI.getRawDest()), 5843 MachinePointerInfo(MI.getRawSource())); 5844 updateDAGForMaybeTailCall(MC); 5845 return; 5846 } 5847 case Intrinsic::memmove_element_unordered_atomic: { 5848 auto &MI = cast<AtomicMemMoveInst>(I); 5849 SDValue Dst = getValue(MI.getRawDest()); 5850 SDValue Src = getValue(MI.getRawSource()); 5851 SDValue Length = getValue(MI.getLength()); 5852 5853 unsigned DstAlign = MI.getDestAlignment(); 5854 unsigned SrcAlign = MI.getSourceAlignment(); 5855 Type *LengthTy = MI.getLength()->getType(); 5856 unsigned ElemSz = MI.getElementSizeInBytes(); 5857 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5858 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5859 SrcAlign, Length, LengthTy, ElemSz, isTC, 5860 MachinePointerInfo(MI.getRawDest()), 5861 MachinePointerInfo(MI.getRawSource())); 5862 updateDAGForMaybeTailCall(MC); 5863 return; 5864 } 5865 case Intrinsic::memset_element_unordered_atomic: { 5866 auto &MI = cast<AtomicMemSetInst>(I); 5867 SDValue Dst = getValue(MI.getRawDest()); 5868 SDValue Val = getValue(MI.getValue()); 5869 SDValue Length = getValue(MI.getLength()); 5870 5871 unsigned DstAlign = MI.getDestAlignment(); 5872 Type *LengthTy = MI.getLength()->getType(); 5873 unsigned ElemSz = MI.getElementSizeInBytes(); 5874 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5875 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5876 LengthTy, ElemSz, isTC, 5877 MachinePointerInfo(MI.getRawDest())); 5878 updateDAGForMaybeTailCall(MC); 5879 return; 5880 } 5881 case Intrinsic::dbg_addr: 5882 case Intrinsic::dbg_declare: { 5883 const auto &DI = cast<DbgVariableIntrinsic>(I); 5884 DILocalVariable *Variable = DI.getVariable(); 5885 DIExpression *Expression = DI.getExpression(); 5886 dropDanglingDebugInfo(Variable, Expression); 5887 assert(Variable && "Missing variable"); 5888 5889 // Check if address has undef value. 5890 const Value *Address = DI.getVariableLocation(); 5891 if (!Address || isa<UndefValue>(Address) || 5892 (Address->use_empty() && !isa<Argument>(Address))) { 5893 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5894 return; 5895 } 5896 5897 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5898 5899 // Check if this variable can be described by a frame index, typically 5900 // either as a static alloca or a byval parameter. 5901 int FI = std::numeric_limits<int>::max(); 5902 if (const auto *AI = 5903 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5904 if (AI->isStaticAlloca()) { 5905 auto I = FuncInfo.StaticAllocaMap.find(AI); 5906 if (I != FuncInfo.StaticAllocaMap.end()) 5907 FI = I->second; 5908 } 5909 } else if (const auto *Arg = dyn_cast<Argument>( 5910 Address->stripInBoundsConstantOffsets())) { 5911 FI = FuncInfo.getArgumentFrameIndex(Arg); 5912 } 5913 5914 // llvm.dbg.addr is control dependent and always generates indirect 5915 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5916 // the MachineFunction variable table. 5917 if (FI != std::numeric_limits<int>::max()) { 5918 if (Intrinsic == Intrinsic::dbg_addr) { 5919 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5920 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5921 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5922 } 5923 return; 5924 } 5925 5926 SDValue &N = NodeMap[Address]; 5927 if (!N.getNode() && isa<Argument>(Address)) 5928 // Check unused arguments map. 5929 N = UnusedArgNodeMap[Address]; 5930 SDDbgValue *SDV; 5931 if (N.getNode()) { 5932 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5933 Address = BCI->getOperand(0); 5934 // Parameters are handled specially. 5935 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5936 if (isParameter && FINode) { 5937 // Byval parameter. We have a frame index at this point. 5938 SDV = 5939 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5940 /*IsIndirect*/ true, dl, SDNodeOrder); 5941 } else if (isa<Argument>(Address)) { 5942 // Address is an argument, so try to emit its dbg value using 5943 // virtual register info from the FuncInfo.ValueMap. 5944 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5945 return; 5946 } else { 5947 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5948 true, dl, SDNodeOrder); 5949 } 5950 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5951 } else { 5952 // If Address is an argument then try to emit its dbg value using 5953 // virtual register info from the FuncInfo.ValueMap. 5954 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5955 N)) { 5956 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5957 } 5958 } 5959 return; 5960 } 5961 case Intrinsic::dbg_label: { 5962 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5963 DILabel *Label = DI.getLabel(); 5964 assert(Label && "Missing label"); 5965 5966 SDDbgLabel *SDV; 5967 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5968 DAG.AddDbgLabel(SDV); 5969 return; 5970 } 5971 case Intrinsic::dbg_value: { 5972 const DbgValueInst &DI = cast<DbgValueInst>(I); 5973 assert(DI.getVariable() && "Missing variable"); 5974 5975 DILocalVariable *Variable = DI.getVariable(); 5976 DIExpression *Expression = DI.getExpression(); 5977 dropDanglingDebugInfo(Variable, Expression); 5978 const Value *V = DI.getValue(); 5979 if (!V) 5980 return; 5981 5982 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5983 SDNodeOrder)) 5984 return; 5985 5986 // TODO: Dangling debug info will eventually either be resolved or produce 5987 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5988 // between the original dbg.value location and its resolved DBG_VALUE, which 5989 // we should ideally fill with an extra Undef DBG_VALUE. 5990 5991 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5992 return; 5993 } 5994 5995 case Intrinsic::eh_typeid_for: { 5996 // Find the type id for the given typeinfo. 5997 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5998 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5999 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6000 setValue(&I, Res); 6001 return; 6002 } 6003 6004 case Intrinsic::eh_return_i32: 6005 case Intrinsic::eh_return_i64: 6006 DAG.getMachineFunction().setCallsEHReturn(true); 6007 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6008 MVT::Other, 6009 getControlRoot(), 6010 getValue(I.getArgOperand(0)), 6011 getValue(I.getArgOperand(1)))); 6012 return; 6013 case Intrinsic::eh_unwind_init: 6014 DAG.getMachineFunction().setCallsUnwindInit(true); 6015 return; 6016 case Intrinsic::eh_dwarf_cfa: 6017 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6018 TLI.getPointerTy(DAG.getDataLayout()), 6019 getValue(I.getArgOperand(0)))); 6020 return; 6021 case Intrinsic::eh_sjlj_callsite: { 6022 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6023 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6024 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6025 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6026 6027 MMI.setCurrentCallSite(CI->getZExtValue()); 6028 return; 6029 } 6030 case Intrinsic::eh_sjlj_functioncontext: { 6031 // Get and store the index of the function context. 6032 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6033 AllocaInst *FnCtx = 6034 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6035 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6036 MFI.setFunctionContextIndex(FI); 6037 return; 6038 } 6039 case Intrinsic::eh_sjlj_setjmp: { 6040 SDValue Ops[2]; 6041 Ops[0] = getRoot(); 6042 Ops[1] = getValue(I.getArgOperand(0)); 6043 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6044 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6045 setValue(&I, Op.getValue(0)); 6046 DAG.setRoot(Op.getValue(1)); 6047 return; 6048 } 6049 case Intrinsic::eh_sjlj_longjmp: 6050 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6051 getRoot(), getValue(I.getArgOperand(0)))); 6052 return; 6053 case Intrinsic::eh_sjlj_setup_dispatch: 6054 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6055 getRoot())); 6056 return; 6057 case Intrinsic::masked_gather: 6058 visitMaskedGather(I); 6059 return; 6060 case Intrinsic::masked_load: 6061 visitMaskedLoad(I); 6062 return; 6063 case Intrinsic::masked_scatter: 6064 visitMaskedScatter(I); 6065 return; 6066 case Intrinsic::masked_store: 6067 visitMaskedStore(I); 6068 return; 6069 case Intrinsic::masked_expandload: 6070 visitMaskedLoad(I, true /* IsExpanding */); 6071 return; 6072 case Intrinsic::masked_compressstore: 6073 visitMaskedStore(I, true /* IsCompressing */); 6074 return; 6075 case Intrinsic::powi: 6076 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6077 getValue(I.getArgOperand(1)), DAG)); 6078 return; 6079 case Intrinsic::log: 6080 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6081 return; 6082 case Intrinsic::log2: 6083 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6084 return; 6085 case Intrinsic::log10: 6086 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6087 return; 6088 case Intrinsic::exp: 6089 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6090 return; 6091 case Intrinsic::exp2: 6092 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6093 return; 6094 case Intrinsic::pow: 6095 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6096 getValue(I.getArgOperand(1)), DAG, TLI)); 6097 return; 6098 case Intrinsic::sqrt: 6099 case Intrinsic::fabs: 6100 case Intrinsic::sin: 6101 case Intrinsic::cos: 6102 case Intrinsic::floor: 6103 case Intrinsic::ceil: 6104 case Intrinsic::trunc: 6105 case Intrinsic::rint: 6106 case Intrinsic::nearbyint: 6107 case Intrinsic::round: 6108 case Intrinsic::canonicalize: { 6109 unsigned Opcode; 6110 switch (Intrinsic) { 6111 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6112 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6113 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6114 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6115 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6116 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6117 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6118 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6119 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6120 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6121 case Intrinsic::round: Opcode = ISD::FROUND; break; 6122 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6123 } 6124 6125 setValue(&I, DAG.getNode(Opcode, sdl, 6126 getValue(I.getArgOperand(0)).getValueType(), 6127 getValue(I.getArgOperand(0)))); 6128 return; 6129 } 6130 case Intrinsic::lround: 6131 case Intrinsic::llround: 6132 case Intrinsic::lrint: 6133 case Intrinsic::llrint: { 6134 unsigned Opcode; 6135 switch (Intrinsic) { 6136 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6137 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6138 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6139 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6140 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6141 } 6142 6143 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6144 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6145 getValue(I.getArgOperand(0)))); 6146 return; 6147 } 6148 case Intrinsic::minnum: 6149 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6150 getValue(I.getArgOperand(0)).getValueType(), 6151 getValue(I.getArgOperand(0)), 6152 getValue(I.getArgOperand(1)))); 6153 return; 6154 case Intrinsic::maxnum: 6155 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6156 getValue(I.getArgOperand(0)).getValueType(), 6157 getValue(I.getArgOperand(0)), 6158 getValue(I.getArgOperand(1)))); 6159 return; 6160 case Intrinsic::minimum: 6161 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6162 getValue(I.getArgOperand(0)).getValueType(), 6163 getValue(I.getArgOperand(0)), 6164 getValue(I.getArgOperand(1)))); 6165 return; 6166 case Intrinsic::maximum: 6167 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6168 getValue(I.getArgOperand(0)).getValueType(), 6169 getValue(I.getArgOperand(0)), 6170 getValue(I.getArgOperand(1)))); 6171 return; 6172 case Intrinsic::copysign: 6173 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6174 getValue(I.getArgOperand(0)).getValueType(), 6175 getValue(I.getArgOperand(0)), 6176 getValue(I.getArgOperand(1)))); 6177 return; 6178 case Intrinsic::fma: 6179 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6180 getValue(I.getArgOperand(0)).getValueType(), 6181 getValue(I.getArgOperand(0)), 6182 getValue(I.getArgOperand(1)), 6183 getValue(I.getArgOperand(2)))); 6184 return; 6185 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6186 case Intrinsic::INTRINSIC: 6187 #include "llvm/IR/ConstrainedOps.def" 6188 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6189 return; 6190 case Intrinsic::fmuladd: { 6191 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6192 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6193 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6194 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6195 getValue(I.getArgOperand(0)).getValueType(), 6196 getValue(I.getArgOperand(0)), 6197 getValue(I.getArgOperand(1)), 6198 getValue(I.getArgOperand(2)))); 6199 } else { 6200 // TODO: Intrinsic calls should have fast-math-flags. 6201 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6202 getValue(I.getArgOperand(0)).getValueType(), 6203 getValue(I.getArgOperand(0)), 6204 getValue(I.getArgOperand(1))); 6205 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6206 getValue(I.getArgOperand(0)).getValueType(), 6207 Mul, 6208 getValue(I.getArgOperand(2))); 6209 setValue(&I, Add); 6210 } 6211 return; 6212 } 6213 case Intrinsic::convert_to_fp16: 6214 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6215 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6216 getValue(I.getArgOperand(0)), 6217 DAG.getTargetConstant(0, sdl, 6218 MVT::i32)))); 6219 return; 6220 case Intrinsic::convert_from_fp16: 6221 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6222 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6223 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6224 getValue(I.getArgOperand(0))))); 6225 return; 6226 case Intrinsic::pcmarker: { 6227 SDValue Tmp = getValue(I.getArgOperand(0)); 6228 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6229 return; 6230 } 6231 case Intrinsic::readcyclecounter: { 6232 SDValue Op = getRoot(); 6233 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6234 DAG.getVTList(MVT::i64, MVT::Other), Op); 6235 setValue(&I, Res); 6236 DAG.setRoot(Res.getValue(1)); 6237 return; 6238 } 6239 case Intrinsic::bitreverse: 6240 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6241 getValue(I.getArgOperand(0)).getValueType(), 6242 getValue(I.getArgOperand(0)))); 6243 return; 6244 case Intrinsic::bswap: 6245 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6246 getValue(I.getArgOperand(0)).getValueType(), 6247 getValue(I.getArgOperand(0)))); 6248 return; 6249 case Intrinsic::cttz: { 6250 SDValue Arg = getValue(I.getArgOperand(0)); 6251 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6252 EVT Ty = Arg.getValueType(); 6253 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6254 sdl, Ty, Arg)); 6255 return; 6256 } 6257 case Intrinsic::ctlz: { 6258 SDValue Arg = getValue(I.getArgOperand(0)); 6259 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6260 EVT Ty = Arg.getValueType(); 6261 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6262 sdl, Ty, Arg)); 6263 return; 6264 } 6265 case Intrinsic::ctpop: { 6266 SDValue Arg = getValue(I.getArgOperand(0)); 6267 EVT Ty = Arg.getValueType(); 6268 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6269 return; 6270 } 6271 case Intrinsic::fshl: 6272 case Intrinsic::fshr: { 6273 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6274 SDValue X = getValue(I.getArgOperand(0)); 6275 SDValue Y = getValue(I.getArgOperand(1)); 6276 SDValue Z = getValue(I.getArgOperand(2)); 6277 EVT VT = X.getValueType(); 6278 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6279 SDValue Zero = DAG.getConstant(0, sdl, VT); 6280 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6281 6282 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6283 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6284 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6285 return; 6286 } 6287 6288 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6289 // avoid the select that is necessary in the general case to filter out 6290 // the 0-shift possibility that leads to UB. 6291 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6292 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6293 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6294 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6295 return; 6296 } 6297 6298 // Some targets only rotate one way. Try the opposite direction. 6299 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6300 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6301 // Negate the shift amount because it is safe to ignore the high bits. 6302 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6303 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6304 return; 6305 } 6306 6307 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6308 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6309 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6310 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6311 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6312 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6313 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6314 return; 6315 } 6316 6317 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6318 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6319 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6320 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6321 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6322 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6323 6324 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6325 // and that is undefined. We must compare and select to avoid UB. 6326 EVT CCVT = MVT::i1; 6327 if (VT.isVector()) 6328 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6329 6330 // For fshl, 0-shift returns the 1st arg (X). 6331 // For fshr, 0-shift returns the 2nd arg (Y). 6332 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6333 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6334 return; 6335 } 6336 case Intrinsic::sadd_sat: { 6337 SDValue Op1 = getValue(I.getArgOperand(0)); 6338 SDValue Op2 = getValue(I.getArgOperand(1)); 6339 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6340 return; 6341 } 6342 case Intrinsic::uadd_sat: { 6343 SDValue Op1 = getValue(I.getArgOperand(0)); 6344 SDValue Op2 = getValue(I.getArgOperand(1)); 6345 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6346 return; 6347 } 6348 case Intrinsic::ssub_sat: { 6349 SDValue Op1 = getValue(I.getArgOperand(0)); 6350 SDValue Op2 = getValue(I.getArgOperand(1)); 6351 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6352 return; 6353 } 6354 case Intrinsic::usub_sat: { 6355 SDValue Op1 = getValue(I.getArgOperand(0)); 6356 SDValue Op2 = getValue(I.getArgOperand(1)); 6357 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6358 return; 6359 } 6360 case Intrinsic::smul_fix: 6361 case Intrinsic::umul_fix: { 6362 SDValue Op1 = getValue(I.getArgOperand(0)); 6363 SDValue Op2 = getValue(I.getArgOperand(1)); 6364 SDValue Op3 = getValue(I.getArgOperand(2)); 6365 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6366 Op1.getValueType(), Op1, Op2, Op3)); 6367 return; 6368 } 6369 case Intrinsic::smul_fix_sat: { 6370 SDValue Op1 = getValue(I.getArgOperand(0)); 6371 SDValue Op2 = getValue(I.getArgOperand(1)); 6372 SDValue Op3 = getValue(I.getArgOperand(2)); 6373 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6374 Op3)); 6375 return; 6376 } 6377 case Intrinsic::umul_fix_sat: { 6378 SDValue Op1 = getValue(I.getArgOperand(0)); 6379 SDValue Op2 = getValue(I.getArgOperand(1)); 6380 SDValue Op3 = getValue(I.getArgOperand(2)); 6381 setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6382 Op3)); 6383 return; 6384 } 6385 case Intrinsic::stacksave: { 6386 SDValue Op = getRoot(); 6387 Res = DAG.getNode( 6388 ISD::STACKSAVE, sdl, 6389 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6390 setValue(&I, Res); 6391 DAG.setRoot(Res.getValue(1)); 6392 return; 6393 } 6394 case Intrinsic::stackrestore: 6395 Res = getValue(I.getArgOperand(0)); 6396 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6397 return; 6398 case Intrinsic::get_dynamic_area_offset: { 6399 SDValue Op = getRoot(); 6400 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6401 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6402 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6403 // target. 6404 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6405 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6406 " intrinsic!"); 6407 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6408 Op); 6409 DAG.setRoot(Op); 6410 setValue(&I, Res); 6411 return; 6412 } 6413 case Intrinsic::stackguard: { 6414 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6415 MachineFunction &MF = DAG.getMachineFunction(); 6416 const Module &M = *MF.getFunction().getParent(); 6417 SDValue Chain = getRoot(); 6418 if (TLI.useLoadStackGuardNode()) { 6419 Res = getLoadStackGuard(DAG, sdl, Chain); 6420 } else { 6421 const Value *Global = TLI.getSDagStackGuard(M); 6422 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6423 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6424 MachinePointerInfo(Global, 0), Align, 6425 MachineMemOperand::MOVolatile); 6426 } 6427 if (TLI.useStackGuardXorFP()) 6428 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6429 DAG.setRoot(Chain); 6430 setValue(&I, Res); 6431 return; 6432 } 6433 case Intrinsic::stackprotector: { 6434 // Emit code into the DAG to store the stack guard onto the stack. 6435 MachineFunction &MF = DAG.getMachineFunction(); 6436 MachineFrameInfo &MFI = MF.getFrameInfo(); 6437 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6438 SDValue Src, Chain = getRoot(); 6439 6440 if (TLI.useLoadStackGuardNode()) 6441 Src = getLoadStackGuard(DAG, sdl, Chain); 6442 else 6443 Src = getValue(I.getArgOperand(0)); // The guard's value. 6444 6445 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6446 6447 int FI = FuncInfo.StaticAllocaMap[Slot]; 6448 MFI.setStackProtectorIndex(FI); 6449 6450 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6451 6452 // Store the stack protector onto the stack. 6453 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6454 DAG.getMachineFunction(), FI), 6455 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6456 setValue(&I, Res); 6457 DAG.setRoot(Res); 6458 return; 6459 } 6460 case Intrinsic::objectsize: 6461 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6462 6463 case Intrinsic::is_constant: 6464 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6465 6466 case Intrinsic::annotation: 6467 case Intrinsic::ptr_annotation: 6468 case Intrinsic::launder_invariant_group: 6469 case Intrinsic::strip_invariant_group: 6470 // Drop the intrinsic, but forward the value 6471 setValue(&I, getValue(I.getOperand(0))); 6472 return; 6473 case Intrinsic::assume: 6474 case Intrinsic::var_annotation: 6475 case Intrinsic::sideeffect: 6476 // Discard annotate attributes, assumptions, and artificial side-effects. 6477 return; 6478 6479 case Intrinsic::codeview_annotation: { 6480 // Emit a label associated with this metadata. 6481 MachineFunction &MF = DAG.getMachineFunction(); 6482 MCSymbol *Label = 6483 MF.getMMI().getContext().createTempSymbol("annotation", true); 6484 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6485 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6486 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6487 DAG.setRoot(Res); 6488 return; 6489 } 6490 6491 case Intrinsic::init_trampoline: { 6492 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6493 6494 SDValue Ops[6]; 6495 Ops[0] = getRoot(); 6496 Ops[1] = getValue(I.getArgOperand(0)); 6497 Ops[2] = getValue(I.getArgOperand(1)); 6498 Ops[3] = getValue(I.getArgOperand(2)); 6499 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6500 Ops[5] = DAG.getSrcValue(F); 6501 6502 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6503 6504 DAG.setRoot(Res); 6505 return; 6506 } 6507 case Intrinsic::adjust_trampoline: 6508 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6509 TLI.getPointerTy(DAG.getDataLayout()), 6510 getValue(I.getArgOperand(0)))); 6511 return; 6512 case Intrinsic::gcroot: { 6513 assert(DAG.getMachineFunction().getFunction().hasGC() && 6514 "only valid in functions with gc specified, enforced by Verifier"); 6515 assert(GFI && "implied by previous"); 6516 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6517 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6518 6519 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6520 GFI->addStackRoot(FI->getIndex(), TypeMap); 6521 return; 6522 } 6523 case Intrinsic::gcread: 6524 case Intrinsic::gcwrite: 6525 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6526 case Intrinsic::flt_rounds: 6527 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6528 return; 6529 6530 case Intrinsic::expect: 6531 // Just replace __builtin_expect(exp, c) with EXP. 6532 setValue(&I, getValue(I.getArgOperand(0))); 6533 return; 6534 6535 case Intrinsic::debugtrap: 6536 case Intrinsic::trap: { 6537 StringRef TrapFuncName = 6538 I.getAttributes() 6539 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6540 .getValueAsString(); 6541 if (TrapFuncName.empty()) { 6542 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6543 ISD::TRAP : ISD::DEBUGTRAP; 6544 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6545 return; 6546 } 6547 TargetLowering::ArgListTy Args; 6548 6549 TargetLowering::CallLoweringInfo CLI(DAG); 6550 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6551 CallingConv::C, I.getType(), 6552 DAG.getExternalSymbol(TrapFuncName.data(), 6553 TLI.getPointerTy(DAG.getDataLayout())), 6554 std::move(Args)); 6555 6556 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6557 DAG.setRoot(Result.second); 6558 return; 6559 } 6560 6561 case Intrinsic::uadd_with_overflow: 6562 case Intrinsic::sadd_with_overflow: 6563 case Intrinsic::usub_with_overflow: 6564 case Intrinsic::ssub_with_overflow: 6565 case Intrinsic::umul_with_overflow: 6566 case Intrinsic::smul_with_overflow: { 6567 ISD::NodeType Op; 6568 switch (Intrinsic) { 6569 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6570 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6571 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6572 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6573 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6574 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6575 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6576 } 6577 SDValue Op1 = getValue(I.getArgOperand(0)); 6578 SDValue Op2 = getValue(I.getArgOperand(1)); 6579 6580 EVT ResultVT = Op1.getValueType(); 6581 EVT OverflowVT = MVT::i1; 6582 if (ResultVT.isVector()) 6583 OverflowVT = EVT::getVectorVT( 6584 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6585 6586 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6587 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6588 return; 6589 } 6590 case Intrinsic::prefetch: { 6591 SDValue Ops[5]; 6592 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6593 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6594 Ops[0] = DAG.getRoot(); 6595 Ops[1] = getValue(I.getArgOperand(0)); 6596 Ops[2] = getValue(I.getArgOperand(1)); 6597 Ops[3] = getValue(I.getArgOperand(2)); 6598 Ops[4] = getValue(I.getArgOperand(3)); 6599 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6600 DAG.getVTList(MVT::Other), Ops, 6601 EVT::getIntegerVT(*Context, 8), 6602 MachinePointerInfo(I.getArgOperand(0)), 6603 0, /* align */ 6604 Flags); 6605 6606 // Chain the prefetch in parallell with any pending loads, to stay out of 6607 // the way of later optimizations. 6608 PendingLoads.push_back(Result); 6609 Result = getRoot(); 6610 DAG.setRoot(Result); 6611 return; 6612 } 6613 case Intrinsic::lifetime_start: 6614 case Intrinsic::lifetime_end: { 6615 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6616 // Stack coloring is not enabled in O0, discard region information. 6617 if (TM.getOptLevel() == CodeGenOpt::None) 6618 return; 6619 6620 const int64_t ObjectSize = 6621 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6622 Value *const ObjectPtr = I.getArgOperand(1); 6623 SmallVector<const Value *, 4> Allocas; 6624 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6625 6626 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6627 E = Allocas.end(); Object != E; ++Object) { 6628 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6629 6630 // Could not find an Alloca. 6631 if (!LifetimeObject) 6632 continue; 6633 6634 // First check that the Alloca is static, otherwise it won't have a 6635 // valid frame index. 6636 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6637 if (SI == FuncInfo.StaticAllocaMap.end()) 6638 return; 6639 6640 const int FrameIndex = SI->second; 6641 int64_t Offset; 6642 if (GetPointerBaseWithConstantOffset( 6643 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6644 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6645 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6646 Offset); 6647 DAG.setRoot(Res); 6648 } 6649 return; 6650 } 6651 case Intrinsic::invariant_start: 6652 // Discard region information. 6653 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6654 return; 6655 case Intrinsic::invariant_end: 6656 // Discard region information. 6657 return; 6658 case Intrinsic::clear_cache: 6659 /// FunctionName may be null. 6660 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6661 lowerCallToExternalSymbol(I, FunctionName); 6662 return; 6663 case Intrinsic::donothing: 6664 // ignore 6665 return; 6666 case Intrinsic::experimental_stackmap: 6667 visitStackmap(I); 6668 return; 6669 case Intrinsic::experimental_patchpoint_void: 6670 case Intrinsic::experimental_patchpoint_i64: 6671 visitPatchpoint(&I); 6672 return; 6673 case Intrinsic::experimental_gc_statepoint: 6674 LowerStatepoint(ImmutableStatepoint(&I)); 6675 return; 6676 case Intrinsic::experimental_gc_result: 6677 visitGCResult(cast<GCResultInst>(I)); 6678 return; 6679 case Intrinsic::experimental_gc_relocate: 6680 visitGCRelocate(cast<GCRelocateInst>(I)); 6681 return; 6682 case Intrinsic::instrprof_increment: 6683 llvm_unreachable("instrprof failed to lower an increment"); 6684 case Intrinsic::instrprof_value_profile: 6685 llvm_unreachable("instrprof failed to lower a value profiling call"); 6686 case Intrinsic::localescape: { 6687 MachineFunction &MF = DAG.getMachineFunction(); 6688 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6689 6690 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6691 // is the same on all targets. 6692 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6693 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6694 if (isa<ConstantPointerNull>(Arg)) 6695 continue; // Skip null pointers. They represent a hole in index space. 6696 AllocaInst *Slot = cast<AllocaInst>(Arg); 6697 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6698 "can only escape static allocas"); 6699 int FI = FuncInfo.StaticAllocaMap[Slot]; 6700 MCSymbol *FrameAllocSym = 6701 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6702 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6703 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6704 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6705 .addSym(FrameAllocSym) 6706 .addFrameIndex(FI); 6707 } 6708 6709 return; 6710 } 6711 6712 case Intrinsic::localrecover: { 6713 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6714 MachineFunction &MF = DAG.getMachineFunction(); 6715 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6716 6717 // Get the symbol that defines the frame offset. 6718 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6719 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6720 unsigned IdxVal = 6721 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6722 MCSymbol *FrameAllocSym = 6723 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6724 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6725 6726 // Create a MCSymbol for the label to avoid any target lowering 6727 // that would make this PC relative. 6728 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6729 SDValue OffsetVal = 6730 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6731 6732 // Add the offset to the FP. 6733 Value *FP = I.getArgOperand(1); 6734 SDValue FPVal = getValue(FP); 6735 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6736 setValue(&I, Add); 6737 6738 return; 6739 } 6740 6741 case Intrinsic::eh_exceptionpointer: 6742 case Intrinsic::eh_exceptioncode: { 6743 // Get the exception pointer vreg, copy from it, and resize it to fit. 6744 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6745 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6746 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6747 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6748 SDValue N = 6749 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6750 if (Intrinsic == Intrinsic::eh_exceptioncode) 6751 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6752 setValue(&I, N); 6753 return; 6754 } 6755 case Intrinsic::xray_customevent: { 6756 // Here we want to make sure that the intrinsic behaves as if it has a 6757 // specific calling convention, and only for x86_64. 6758 // FIXME: Support other platforms later. 6759 const auto &Triple = DAG.getTarget().getTargetTriple(); 6760 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6761 return; 6762 6763 SDLoc DL = getCurSDLoc(); 6764 SmallVector<SDValue, 8> Ops; 6765 6766 // We want to say that we always want the arguments in registers. 6767 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6768 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6769 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6770 SDValue Chain = getRoot(); 6771 Ops.push_back(LogEntryVal); 6772 Ops.push_back(StrSizeVal); 6773 Ops.push_back(Chain); 6774 6775 // We need to enforce the calling convention for the callsite, so that 6776 // argument ordering is enforced correctly, and that register allocation can 6777 // see that some registers may be assumed clobbered and have to preserve 6778 // them across calls to the intrinsic. 6779 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6780 DL, NodeTys, Ops); 6781 SDValue patchableNode = SDValue(MN, 0); 6782 DAG.setRoot(patchableNode); 6783 setValue(&I, patchableNode); 6784 return; 6785 } 6786 case Intrinsic::xray_typedevent: { 6787 // Here we want to make sure that the intrinsic behaves as if it has a 6788 // specific calling convention, and only for x86_64. 6789 // FIXME: Support other platforms later. 6790 const auto &Triple = DAG.getTarget().getTargetTriple(); 6791 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6792 return; 6793 6794 SDLoc DL = getCurSDLoc(); 6795 SmallVector<SDValue, 8> Ops; 6796 6797 // We want to say that we always want the arguments in registers. 6798 // It's unclear to me how manipulating the selection DAG here forces callers 6799 // to provide arguments in registers instead of on the stack. 6800 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6801 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6802 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6803 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6804 SDValue Chain = getRoot(); 6805 Ops.push_back(LogTypeId); 6806 Ops.push_back(LogEntryVal); 6807 Ops.push_back(StrSizeVal); 6808 Ops.push_back(Chain); 6809 6810 // We need to enforce the calling convention for the callsite, so that 6811 // argument ordering is enforced correctly, and that register allocation can 6812 // see that some registers may be assumed clobbered and have to preserve 6813 // them across calls to the intrinsic. 6814 MachineSDNode *MN = DAG.getMachineNode( 6815 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6816 SDValue patchableNode = SDValue(MN, 0); 6817 DAG.setRoot(patchableNode); 6818 setValue(&I, patchableNode); 6819 return; 6820 } 6821 case Intrinsic::experimental_deoptimize: 6822 LowerDeoptimizeCall(&I); 6823 return; 6824 6825 case Intrinsic::experimental_vector_reduce_v2_fadd: 6826 case Intrinsic::experimental_vector_reduce_v2_fmul: 6827 case Intrinsic::experimental_vector_reduce_add: 6828 case Intrinsic::experimental_vector_reduce_mul: 6829 case Intrinsic::experimental_vector_reduce_and: 6830 case Intrinsic::experimental_vector_reduce_or: 6831 case Intrinsic::experimental_vector_reduce_xor: 6832 case Intrinsic::experimental_vector_reduce_smax: 6833 case Intrinsic::experimental_vector_reduce_smin: 6834 case Intrinsic::experimental_vector_reduce_umax: 6835 case Intrinsic::experimental_vector_reduce_umin: 6836 case Intrinsic::experimental_vector_reduce_fmax: 6837 case Intrinsic::experimental_vector_reduce_fmin: 6838 visitVectorReduce(I, Intrinsic); 6839 return; 6840 6841 case Intrinsic::icall_branch_funnel: { 6842 SmallVector<SDValue, 16> Ops; 6843 Ops.push_back(getValue(I.getArgOperand(0))); 6844 6845 int64_t Offset; 6846 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6847 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6848 if (!Base) 6849 report_fatal_error( 6850 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6851 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6852 6853 struct BranchFunnelTarget { 6854 int64_t Offset; 6855 SDValue Target; 6856 }; 6857 SmallVector<BranchFunnelTarget, 8> Targets; 6858 6859 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6860 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6861 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6862 if (ElemBase != Base) 6863 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6864 "to the same GlobalValue"); 6865 6866 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6867 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6868 if (!GA) 6869 report_fatal_error( 6870 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6871 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6872 GA->getGlobal(), getCurSDLoc(), 6873 Val.getValueType(), GA->getOffset())}); 6874 } 6875 llvm::sort(Targets, 6876 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6877 return T1.Offset < T2.Offset; 6878 }); 6879 6880 for (auto &T : Targets) { 6881 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6882 Ops.push_back(T.Target); 6883 } 6884 6885 Ops.push_back(DAG.getRoot()); // Chain 6886 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6887 getCurSDLoc(), MVT::Other, Ops), 6888 0); 6889 DAG.setRoot(N); 6890 setValue(&I, N); 6891 HasTailCall = true; 6892 return; 6893 } 6894 6895 case Intrinsic::wasm_landingpad_index: 6896 // Information this intrinsic contained has been transferred to 6897 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6898 // delete it now. 6899 return; 6900 6901 case Intrinsic::aarch64_settag: 6902 case Intrinsic::aarch64_settag_zero: { 6903 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6904 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6905 SDValue Val = TSI.EmitTargetCodeForSetTag( 6906 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6907 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6908 ZeroMemory); 6909 DAG.setRoot(Val); 6910 setValue(&I, Val); 6911 return; 6912 } 6913 case Intrinsic::ptrmask: { 6914 SDValue Ptr = getValue(I.getOperand(0)); 6915 SDValue Const = getValue(I.getOperand(1)); 6916 6917 EVT DestVT = 6918 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6919 6920 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6921 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6922 return; 6923 } 6924 } 6925 } 6926 6927 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6928 const ConstrainedFPIntrinsic &FPI) { 6929 SDLoc sdl = getCurSDLoc(); 6930 6931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6932 SmallVector<EVT, 4> ValueVTs; 6933 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6934 ValueVTs.push_back(MVT::Other); // Out chain 6935 6936 // We do not need to serialize constrained FP intrinsics against 6937 // each other or against (nonvolatile) loads, so they can be 6938 // chained like loads. 6939 SDValue Chain = DAG.getRoot(); 6940 SmallVector<SDValue, 4> Opers; 6941 Opers.push_back(Chain); 6942 if (FPI.isUnaryOp()) { 6943 Opers.push_back(getValue(FPI.getArgOperand(0))); 6944 } else if (FPI.isTernaryOp()) { 6945 Opers.push_back(getValue(FPI.getArgOperand(0))); 6946 Opers.push_back(getValue(FPI.getArgOperand(1))); 6947 Opers.push_back(getValue(FPI.getArgOperand(2))); 6948 } else { 6949 Opers.push_back(getValue(FPI.getArgOperand(0))); 6950 Opers.push_back(getValue(FPI.getArgOperand(1))); 6951 } 6952 6953 unsigned Opcode; 6954 switch (FPI.getIntrinsicID()) { 6955 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6956 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6957 case Intrinsic::INTRINSIC: \ 6958 Opcode = ISD::STRICT_##DAGN; \ 6959 break; 6960 #include "llvm/IR/ConstrainedOps.def" 6961 } 6962 6963 // A few strict DAG nodes carry additional operands that are not 6964 // set up by the default code above. 6965 switch (Opcode) { 6966 default: break; 6967 case ISD::STRICT_FP_ROUND: 6968 Opers.push_back( 6969 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6970 break; 6971 case ISD::STRICT_FSETCC: 6972 case ISD::STRICT_FSETCCS: { 6973 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6974 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6975 break; 6976 } 6977 } 6978 6979 SDVTList VTs = DAG.getVTList(ValueVTs); 6980 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 6981 6982 if (FPI.getExceptionBehavior() != fp::ExceptionBehavior::ebIgnore) { 6983 SDNodeFlags Flags; 6984 Flags.setFPExcept(true); 6985 Result->setFlags(Flags); 6986 } 6987 6988 assert(Result.getNode()->getNumValues() == 2); 6989 // See above -- chain is handled like for loads here. 6990 SDValue OutChain = Result.getValue(1); 6991 PendingLoads.push_back(OutChain); 6992 SDValue FPResult = Result.getValue(0); 6993 setValue(&FPI, FPResult); 6994 } 6995 6996 std::pair<SDValue, SDValue> 6997 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6998 const BasicBlock *EHPadBB) { 6999 MachineFunction &MF = DAG.getMachineFunction(); 7000 MachineModuleInfo &MMI = MF.getMMI(); 7001 MCSymbol *BeginLabel = nullptr; 7002 7003 if (EHPadBB) { 7004 // Insert a label before the invoke call to mark the try range. This can be 7005 // used to detect deletion of the invoke via the MachineModuleInfo. 7006 BeginLabel = MMI.getContext().createTempSymbol(); 7007 7008 // For SjLj, keep track of which landing pads go with which invokes 7009 // so as to maintain the ordering of pads in the LSDA. 7010 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7011 if (CallSiteIndex) { 7012 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7013 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7014 7015 // Now that the call site is handled, stop tracking it. 7016 MMI.setCurrentCallSite(0); 7017 } 7018 7019 // Both PendingLoads and PendingExports must be flushed here; 7020 // this call might not return. 7021 (void)getRoot(); 7022 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7023 7024 CLI.setChain(getRoot()); 7025 } 7026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7027 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7028 7029 assert((CLI.IsTailCall || Result.second.getNode()) && 7030 "Non-null chain expected with non-tail call!"); 7031 assert((Result.second.getNode() || !Result.first.getNode()) && 7032 "Null value expected with tail call!"); 7033 7034 if (!Result.second.getNode()) { 7035 // As a special case, a null chain means that a tail call has been emitted 7036 // and the DAG root is already updated. 7037 HasTailCall = true; 7038 7039 // Since there's no actual continuation from this block, nothing can be 7040 // relying on us setting vregs for them. 7041 PendingExports.clear(); 7042 } else { 7043 DAG.setRoot(Result.second); 7044 } 7045 7046 if (EHPadBB) { 7047 // Insert a label at the end of the invoke call to mark the try range. This 7048 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7049 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7050 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7051 7052 // Inform MachineModuleInfo of range. 7053 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7054 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7055 // actually use outlined funclets and their LSDA info style. 7056 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7057 assert(CLI.CS); 7058 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7059 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7060 BeginLabel, EndLabel); 7061 } else if (!isScopedEHPersonality(Pers)) { 7062 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7063 } 7064 } 7065 7066 return Result; 7067 } 7068 7069 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7070 bool isTailCall, 7071 const BasicBlock *EHPadBB) { 7072 auto &DL = DAG.getDataLayout(); 7073 FunctionType *FTy = CS.getFunctionType(); 7074 Type *RetTy = CS.getType(); 7075 7076 TargetLowering::ArgListTy Args; 7077 Args.reserve(CS.arg_size()); 7078 7079 const Value *SwiftErrorVal = nullptr; 7080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7081 7082 // We can't tail call inside a function with a swifterror argument. Lowering 7083 // does not support this yet. It would have to move into the swifterror 7084 // register before the call. 7085 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7086 if (TLI.supportSwiftError() && 7087 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7088 isTailCall = false; 7089 7090 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7091 i != e; ++i) { 7092 TargetLowering::ArgListEntry Entry; 7093 const Value *V = *i; 7094 7095 // Skip empty types 7096 if (V->getType()->isEmptyTy()) 7097 continue; 7098 7099 SDValue ArgNode = getValue(V); 7100 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7101 7102 Entry.setAttributes(&CS, i - CS.arg_begin()); 7103 7104 // Use swifterror virtual register as input to the call. 7105 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7106 SwiftErrorVal = V; 7107 // We find the virtual register for the actual swifterror argument. 7108 // Instead of using the Value, we use the virtual register instead. 7109 Entry.Node = DAG.getRegister( 7110 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7111 EVT(TLI.getPointerTy(DL))); 7112 } 7113 7114 Args.push_back(Entry); 7115 7116 // If we have an explicit sret argument that is an Instruction, (i.e., it 7117 // might point to function-local memory), we can't meaningfully tail-call. 7118 if (Entry.IsSRet && isa<Instruction>(V)) 7119 isTailCall = false; 7120 } 7121 7122 // If call site has a cfguardtarget operand bundle, create and add an 7123 // additional ArgListEntry. 7124 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7125 TargetLowering::ArgListEntry Entry; 7126 Value *V = Bundle->Inputs[0]; 7127 SDValue ArgNode = getValue(V); 7128 Entry.Node = ArgNode; 7129 Entry.Ty = V->getType(); 7130 Entry.IsCFGuardTarget = true; 7131 Args.push_back(Entry); 7132 } 7133 7134 // Check if target-independent constraints permit a tail call here. 7135 // Target-dependent constraints are checked within TLI->LowerCallTo. 7136 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7137 isTailCall = false; 7138 7139 // Disable tail calls if there is an swifterror argument. Targets have not 7140 // been updated to support tail calls. 7141 if (TLI.supportSwiftError() && SwiftErrorVal) 7142 isTailCall = false; 7143 7144 TargetLowering::CallLoweringInfo CLI(DAG); 7145 CLI.setDebugLoc(getCurSDLoc()) 7146 .setChain(getRoot()) 7147 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7148 .setTailCall(isTailCall) 7149 .setConvergent(CS.isConvergent()); 7150 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7151 7152 if (Result.first.getNode()) { 7153 const Instruction *Inst = CS.getInstruction(); 7154 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7155 setValue(Inst, Result.first); 7156 } 7157 7158 // The last element of CLI.InVals has the SDValue for swifterror return. 7159 // Here we copy it to a virtual register and update SwiftErrorMap for 7160 // book-keeping. 7161 if (SwiftErrorVal && TLI.supportSwiftError()) { 7162 // Get the last element of InVals. 7163 SDValue Src = CLI.InVals.back(); 7164 Register VReg = SwiftError.getOrCreateVRegDefAt( 7165 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7166 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7167 DAG.setRoot(CopyNode); 7168 } 7169 } 7170 7171 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7172 SelectionDAGBuilder &Builder) { 7173 // Check to see if this load can be trivially constant folded, e.g. if the 7174 // input is from a string literal. 7175 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7176 // Cast pointer to the type we really want to load. 7177 Type *LoadTy = 7178 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7179 if (LoadVT.isVector()) 7180 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7181 7182 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7183 PointerType::getUnqual(LoadTy)); 7184 7185 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7186 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7187 return Builder.getValue(LoadCst); 7188 } 7189 7190 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7191 // still constant memory, the input chain can be the entry node. 7192 SDValue Root; 7193 bool ConstantMemory = false; 7194 7195 // Do not serialize (non-volatile) loads of constant memory with anything. 7196 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7197 Root = Builder.DAG.getEntryNode(); 7198 ConstantMemory = true; 7199 } else { 7200 // Do not serialize non-volatile loads against each other. 7201 Root = Builder.DAG.getRoot(); 7202 } 7203 7204 SDValue Ptr = Builder.getValue(PtrVal); 7205 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7206 Ptr, MachinePointerInfo(PtrVal), 7207 /* Alignment = */ 1); 7208 7209 if (!ConstantMemory) 7210 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7211 return LoadVal; 7212 } 7213 7214 /// Record the value for an instruction that produces an integer result, 7215 /// converting the type where necessary. 7216 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7217 SDValue Value, 7218 bool IsSigned) { 7219 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7220 I.getType(), true); 7221 if (IsSigned) 7222 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7223 else 7224 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7225 setValue(&I, Value); 7226 } 7227 7228 /// See if we can lower a memcmp call into an optimized form. If so, return 7229 /// true and lower it. Otherwise return false, and it will be lowered like a 7230 /// normal call. 7231 /// The caller already checked that \p I calls the appropriate LibFunc with a 7232 /// correct prototype. 7233 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7234 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7235 const Value *Size = I.getArgOperand(2); 7236 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7237 if (CSize && CSize->getZExtValue() == 0) { 7238 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7239 I.getType(), true); 7240 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7241 return true; 7242 } 7243 7244 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7245 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7246 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7247 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7248 if (Res.first.getNode()) { 7249 processIntegerCallValue(I, Res.first, true); 7250 PendingLoads.push_back(Res.second); 7251 return true; 7252 } 7253 7254 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7255 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7256 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7257 return false; 7258 7259 // If the target has a fast compare for the given size, it will return a 7260 // preferred load type for that size. Require that the load VT is legal and 7261 // that the target supports unaligned loads of that type. Otherwise, return 7262 // INVALID. 7263 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7265 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7266 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7267 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7268 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7269 // TODO: Check alignment of src and dest ptrs. 7270 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7271 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7272 if (!TLI.isTypeLegal(LVT) || 7273 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7274 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7275 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7276 } 7277 7278 return LVT; 7279 }; 7280 7281 // This turns into unaligned loads. We only do this if the target natively 7282 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7283 // we'll only produce a small number of byte loads. 7284 MVT LoadVT; 7285 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7286 switch (NumBitsToCompare) { 7287 default: 7288 return false; 7289 case 16: 7290 LoadVT = MVT::i16; 7291 break; 7292 case 32: 7293 LoadVT = MVT::i32; 7294 break; 7295 case 64: 7296 case 128: 7297 case 256: 7298 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7299 break; 7300 } 7301 7302 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7303 return false; 7304 7305 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7306 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7307 7308 // Bitcast to a wide integer type if the loads are vectors. 7309 if (LoadVT.isVector()) { 7310 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7311 LoadL = DAG.getBitcast(CmpVT, LoadL); 7312 LoadR = DAG.getBitcast(CmpVT, LoadR); 7313 } 7314 7315 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7316 processIntegerCallValue(I, Cmp, false); 7317 return true; 7318 } 7319 7320 /// See if we can lower a memchr call into an optimized form. If so, return 7321 /// true and lower it. Otherwise return false, and it will be lowered like a 7322 /// normal call. 7323 /// The caller already checked that \p I calls the appropriate LibFunc with a 7324 /// correct prototype. 7325 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7326 const Value *Src = I.getArgOperand(0); 7327 const Value *Char = I.getArgOperand(1); 7328 const Value *Length = I.getArgOperand(2); 7329 7330 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7331 std::pair<SDValue, SDValue> Res = 7332 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7333 getValue(Src), getValue(Char), getValue(Length), 7334 MachinePointerInfo(Src)); 7335 if (Res.first.getNode()) { 7336 setValue(&I, Res.first); 7337 PendingLoads.push_back(Res.second); 7338 return true; 7339 } 7340 7341 return false; 7342 } 7343 7344 /// See if we can lower a mempcpy call into an optimized form. If so, return 7345 /// true and lower it. Otherwise return false, and it will be lowered like a 7346 /// normal call. 7347 /// The caller already checked that \p I calls the appropriate LibFunc with a 7348 /// correct prototype. 7349 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7350 SDValue Dst = getValue(I.getArgOperand(0)); 7351 SDValue Src = getValue(I.getArgOperand(1)); 7352 SDValue Size = getValue(I.getArgOperand(2)); 7353 7354 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7355 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7356 unsigned Align = std::min(DstAlign, SrcAlign); 7357 if (Align == 0) // Alignment of one or both could not be inferred. 7358 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7359 7360 bool isVol = false; 7361 SDLoc sdl = getCurSDLoc(); 7362 7363 // In the mempcpy context we need to pass in a false value for isTailCall 7364 // because the return pointer needs to be adjusted by the size of 7365 // the copied memory. 7366 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7367 false, /*isTailCall=*/false, 7368 MachinePointerInfo(I.getArgOperand(0)), 7369 MachinePointerInfo(I.getArgOperand(1))); 7370 assert(MC.getNode() != nullptr && 7371 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7372 DAG.setRoot(MC); 7373 7374 // Check if Size needs to be truncated or extended. 7375 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7376 7377 // Adjust return pointer to point just past the last dst byte. 7378 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7379 Dst, Size); 7380 setValue(&I, DstPlusSize); 7381 return true; 7382 } 7383 7384 /// See if we can lower a strcpy call into an optimized form. If so, return 7385 /// true and lower it, otherwise return false and it will be lowered like a 7386 /// normal call. 7387 /// The caller already checked that \p I calls the appropriate LibFunc with a 7388 /// correct prototype. 7389 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7390 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7391 7392 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7393 std::pair<SDValue, SDValue> Res = 7394 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7395 getValue(Arg0), getValue(Arg1), 7396 MachinePointerInfo(Arg0), 7397 MachinePointerInfo(Arg1), isStpcpy); 7398 if (Res.first.getNode()) { 7399 setValue(&I, Res.first); 7400 DAG.setRoot(Res.second); 7401 return true; 7402 } 7403 7404 return false; 7405 } 7406 7407 /// See if we can lower a strcmp call into an optimized form. If so, return 7408 /// true and lower it, otherwise return false and it will be lowered like a 7409 /// normal call. 7410 /// The caller already checked that \p I calls the appropriate LibFunc with a 7411 /// correct prototype. 7412 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7413 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7414 7415 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7416 std::pair<SDValue, SDValue> Res = 7417 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7418 getValue(Arg0), getValue(Arg1), 7419 MachinePointerInfo(Arg0), 7420 MachinePointerInfo(Arg1)); 7421 if (Res.first.getNode()) { 7422 processIntegerCallValue(I, Res.first, true); 7423 PendingLoads.push_back(Res.second); 7424 return true; 7425 } 7426 7427 return false; 7428 } 7429 7430 /// See if we can lower a strlen call into an optimized form. If so, return 7431 /// true and lower it, otherwise return false and it will be lowered like a 7432 /// normal call. 7433 /// The caller already checked that \p I calls the appropriate LibFunc with a 7434 /// correct prototype. 7435 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7436 const Value *Arg0 = I.getArgOperand(0); 7437 7438 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7439 std::pair<SDValue, SDValue> Res = 7440 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7441 getValue(Arg0), MachinePointerInfo(Arg0)); 7442 if (Res.first.getNode()) { 7443 processIntegerCallValue(I, Res.first, false); 7444 PendingLoads.push_back(Res.second); 7445 return true; 7446 } 7447 7448 return false; 7449 } 7450 7451 /// See if we can lower a strnlen call into an optimized form. If so, return 7452 /// true and lower it, otherwise return false and it will be lowered like a 7453 /// normal call. 7454 /// The caller already checked that \p I calls the appropriate LibFunc with a 7455 /// correct prototype. 7456 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7457 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7458 7459 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7460 std::pair<SDValue, SDValue> Res = 7461 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7462 getValue(Arg0), getValue(Arg1), 7463 MachinePointerInfo(Arg0)); 7464 if (Res.first.getNode()) { 7465 processIntegerCallValue(I, Res.first, false); 7466 PendingLoads.push_back(Res.second); 7467 return true; 7468 } 7469 7470 return false; 7471 } 7472 7473 /// See if we can lower a unary floating-point operation into an SDNode with 7474 /// the specified Opcode. If so, return true and lower it, otherwise return 7475 /// false and it will be lowered like a normal call. 7476 /// The caller already checked that \p I calls the appropriate LibFunc with a 7477 /// correct prototype. 7478 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7479 unsigned Opcode) { 7480 // We already checked this call's prototype; verify it doesn't modify errno. 7481 if (!I.onlyReadsMemory()) 7482 return false; 7483 7484 SDValue Tmp = getValue(I.getArgOperand(0)); 7485 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7486 return true; 7487 } 7488 7489 /// See if we can lower a binary floating-point operation into an SDNode with 7490 /// the specified Opcode. If so, return true and lower it. Otherwise return 7491 /// false, and it will be lowered like a normal call. 7492 /// The caller already checked that \p I calls the appropriate LibFunc with a 7493 /// correct prototype. 7494 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7495 unsigned Opcode) { 7496 // We already checked this call's prototype; verify it doesn't modify errno. 7497 if (!I.onlyReadsMemory()) 7498 return false; 7499 7500 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7501 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7502 EVT VT = Tmp0.getValueType(); 7503 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7504 return true; 7505 } 7506 7507 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7508 // Handle inline assembly differently. 7509 if (isa<InlineAsm>(I.getCalledValue())) { 7510 visitInlineAsm(&I); 7511 return; 7512 } 7513 7514 if (Function *F = I.getCalledFunction()) { 7515 if (F->isDeclaration()) { 7516 // Is this an LLVM intrinsic or a target-specific intrinsic? 7517 unsigned IID = F->getIntrinsicID(); 7518 if (!IID) 7519 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7520 IID = II->getIntrinsicID(F); 7521 7522 if (IID) { 7523 visitIntrinsicCall(I, IID); 7524 return; 7525 } 7526 } 7527 7528 // Check for well-known libc/libm calls. If the function is internal, it 7529 // can't be a library call. Don't do the check if marked as nobuiltin for 7530 // some reason or the call site requires strict floating point semantics. 7531 LibFunc Func; 7532 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7533 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7534 LibInfo->hasOptimizedCodeGen(Func)) { 7535 switch (Func) { 7536 default: break; 7537 case LibFunc_copysign: 7538 case LibFunc_copysignf: 7539 case LibFunc_copysignl: 7540 // We already checked this call's prototype; verify it doesn't modify 7541 // errno. 7542 if (I.onlyReadsMemory()) { 7543 SDValue LHS = getValue(I.getArgOperand(0)); 7544 SDValue RHS = getValue(I.getArgOperand(1)); 7545 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7546 LHS.getValueType(), LHS, RHS)); 7547 return; 7548 } 7549 break; 7550 case LibFunc_fabs: 7551 case LibFunc_fabsf: 7552 case LibFunc_fabsl: 7553 if (visitUnaryFloatCall(I, ISD::FABS)) 7554 return; 7555 break; 7556 case LibFunc_fmin: 7557 case LibFunc_fminf: 7558 case LibFunc_fminl: 7559 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7560 return; 7561 break; 7562 case LibFunc_fmax: 7563 case LibFunc_fmaxf: 7564 case LibFunc_fmaxl: 7565 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7566 return; 7567 break; 7568 case LibFunc_sin: 7569 case LibFunc_sinf: 7570 case LibFunc_sinl: 7571 if (visitUnaryFloatCall(I, ISD::FSIN)) 7572 return; 7573 break; 7574 case LibFunc_cos: 7575 case LibFunc_cosf: 7576 case LibFunc_cosl: 7577 if (visitUnaryFloatCall(I, ISD::FCOS)) 7578 return; 7579 break; 7580 case LibFunc_sqrt: 7581 case LibFunc_sqrtf: 7582 case LibFunc_sqrtl: 7583 case LibFunc_sqrt_finite: 7584 case LibFunc_sqrtf_finite: 7585 case LibFunc_sqrtl_finite: 7586 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7587 return; 7588 break; 7589 case LibFunc_floor: 7590 case LibFunc_floorf: 7591 case LibFunc_floorl: 7592 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7593 return; 7594 break; 7595 case LibFunc_nearbyint: 7596 case LibFunc_nearbyintf: 7597 case LibFunc_nearbyintl: 7598 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7599 return; 7600 break; 7601 case LibFunc_ceil: 7602 case LibFunc_ceilf: 7603 case LibFunc_ceill: 7604 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7605 return; 7606 break; 7607 case LibFunc_rint: 7608 case LibFunc_rintf: 7609 case LibFunc_rintl: 7610 if (visitUnaryFloatCall(I, ISD::FRINT)) 7611 return; 7612 break; 7613 case LibFunc_round: 7614 case LibFunc_roundf: 7615 case LibFunc_roundl: 7616 if (visitUnaryFloatCall(I, ISD::FROUND)) 7617 return; 7618 break; 7619 case LibFunc_trunc: 7620 case LibFunc_truncf: 7621 case LibFunc_truncl: 7622 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7623 return; 7624 break; 7625 case LibFunc_log2: 7626 case LibFunc_log2f: 7627 case LibFunc_log2l: 7628 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7629 return; 7630 break; 7631 case LibFunc_exp2: 7632 case LibFunc_exp2f: 7633 case LibFunc_exp2l: 7634 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7635 return; 7636 break; 7637 case LibFunc_memcmp: 7638 if (visitMemCmpCall(I)) 7639 return; 7640 break; 7641 case LibFunc_mempcpy: 7642 if (visitMemPCpyCall(I)) 7643 return; 7644 break; 7645 case LibFunc_memchr: 7646 if (visitMemChrCall(I)) 7647 return; 7648 break; 7649 case LibFunc_strcpy: 7650 if (visitStrCpyCall(I, false)) 7651 return; 7652 break; 7653 case LibFunc_stpcpy: 7654 if (visitStrCpyCall(I, true)) 7655 return; 7656 break; 7657 case LibFunc_strcmp: 7658 if (visitStrCmpCall(I)) 7659 return; 7660 break; 7661 case LibFunc_strlen: 7662 if (visitStrLenCall(I)) 7663 return; 7664 break; 7665 case LibFunc_strnlen: 7666 if (visitStrNLenCall(I)) 7667 return; 7668 break; 7669 } 7670 } 7671 } 7672 7673 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7674 // have to do anything here to lower funclet bundles. 7675 // CFGuardTarget bundles are lowered in LowerCallTo. 7676 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7677 LLVMContext::OB_funclet, 7678 LLVMContext::OB_cfguardtarget}) && 7679 "Cannot lower calls with arbitrary operand bundles!"); 7680 7681 SDValue Callee = getValue(I.getCalledValue()); 7682 7683 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7684 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7685 else 7686 // Check if we can potentially perform a tail call. More detailed checking 7687 // is be done within LowerCallTo, after more information about the call is 7688 // known. 7689 LowerCallTo(&I, Callee, I.isTailCall()); 7690 } 7691 7692 namespace { 7693 7694 /// AsmOperandInfo - This contains information for each constraint that we are 7695 /// lowering. 7696 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7697 public: 7698 /// CallOperand - If this is the result output operand or a clobber 7699 /// this is null, otherwise it is the incoming operand to the CallInst. 7700 /// This gets modified as the asm is processed. 7701 SDValue CallOperand; 7702 7703 /// AssignedRegs - If this is a register or register class operand, this 7704 /// contains the set of register corresponding to the operand. 7705 RegsForValue AssignedRegs; 7706 7707 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7708 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7709 } 7710 7711 /// Whether or not this operand accesses memory 7712 bool hasMemory(const TargetLowering &TLI) const { 7713 // Indirect operand accesses access memory. 7714 if (isIndirect) 7715 return true; 7716 7717 for (const auto &Code : Codes) 7718 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7719 return true; 7720 7721 return false; 7722 } 7723 7724 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7725 /// corresponds to. If there is no Value* for this operand, it returns 7726 /// MVT::Other. 7727 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7728 const DataLayout &DL) const { 7729 if (!CallOperandVal) return MVT::Other; 7730 7731 if (isa<BasicBlock>(CallOperandVal)) 7732 return TLI.getPointerTy(DL); 7733 7734 llvm::Type *OpTy = CallOperandVal->getType(); 7735 7736 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7737 // If this is an indirect operand, the operand is a pointer to the 7738 // accessed type. 7739 if (isIndirect) { 7740 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7741 if (!PtrTy) 7742 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7743 OpTy = PtrTy->getElementType(); 7744 } 7745 7746 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7747 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7748 if (STy->getNumElements() == 1) 7749 OpTy = STy->getElementType(0); 7750 7751 // If OpTy is not a single value, it may be a struct/union that we 7752 // can tile with integers. 7753 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7754 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7755 switch (BitSize) { 7756 default: break; 7757 case 1: 7758 case 8: 7759 case 16: 7760 case 32: 7761 case 64: 7762 case 128: 7763 OpTy = IntegerType::get(Context, BitSize); 7764 break; 7765 } 7766 } 7767 7768 return TLI.getValueType(DL, OpTy, true); 7769 } 7770 }; 7771 7772 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7773 7774 } // end anonymous namespace 7775 7776 /// Make sure that the output operand \p OpInfo and its corresponding input 7777 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7778 /// out). 7779 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7780 SDISelAsmOperandInfo &MatchingOpInfo, 7781 SelectionDAG &DAG) { 7782 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7783 return; 7784 7785 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7786 const auto &TLI = DAG.getTargetLoweringInfo(); 7787 7788 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7789 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7790 OpInfo.ConstraintVT); 7791 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7792 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7793 MatchingOpInfo.ConstraintVT); 7794 if ((OpInfo.ConstraintVT.isInteger() != 7795 MatchingOpInfo.ConstraintVT.isInteger()) || 7796 (MatchRC.second != InputRC.second)) { 7797 // FIXME: error out in a more elegant fashion 7798 report_fatal_error("Unsupported asm: input constraint" 7799 " with a matching output constraint of" 7800 " incompatible type!"); 7801 } 7802 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7803 } 7804 7805 /// Get a direct memory input to behave well as an indirect operand. 7806 /// This may introduce stores, hence the need for a \p Chain. 7807 /// \return The (possibly updated) chain. 7808 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7809 SDISelAsmOperandInfo &OpInfo, 7810 SelectionDAG &DAG) { 7811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7812 7813 // If we don't have an indirect input, put it in the constpool if we can, 7814 // otherwise spill it to a stack slot. 7815 // TODO: This isn't quite right. We need to handle these according to 7816 // the addressing mode that the constraint wants. Also, this may take 7817 // an additional register for the computation and we don't want that 7818 // either. 7819 7820 // If the operand is a float, integer, or vector constant, spill to a 7821 // constant pool entry to get its address. 7822 const Value *OpVal = OpInfo.CallOperandVal; 7823 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7824 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7825 OpInfo.CallOperand = DAG.getConstantPool( 7826 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7827 return Chain; 7828 } 7829 7830 // Otherwise, create a stack slot and emit a store to it before the asm. 7831 Type *Ty = OpVal->getType(); 7832 auto &DL = DAG.getDataLayout(); 7833 uint64_t TySize = DL.getTypeAllocSize(Ty); 7834 unsigned Align = DL.getPrefTypeAlignment(Ty); 7835 MachineFunction &MF = DAG.getMachineFunction(); 7836 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7837 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7838 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7839 MachinePointerInfo::getFixedStack(MF, SSFI), 7840 TLI.getMemValueType(DL, Ty)); 7841 OpInfo.CallOperand = StackSlot; 7842 7843 return Chain; 7844 } 7845 7846 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7847 /// specified operand. We prefer to assign virtual registers, to allow the 7848 /// register allocator to handle the assignment process. However, if the asm 7849 /// uses features that we can't model on machineinstrs, we have SDISel do the 7850 /// allocation. This produces generally horrible, but correct, code. 7851 /// 7852 /// OpInfo describes the operand 7853 /// RefOpInfo describes the matching operand if any, the operand otherwise 7854 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7855 SDISelAsmOperandInfo &OpInfo, 7856 SDISelAsmOperandInfo &RefOpInfo) { 7857 LLVMContext &Context = *DAG.getContext(); 7858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7859 7860 MachineFunction &MF = DAG.getMachineFunction(); 7861 SmallVector<unsigned, 4> Regs; 7862 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7863 7864 // No work to do for memory operations. 7865 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7866 return; 7867 7868 // If this is a constraint for a single physreg, or a constraint for a 7869 // register class, find it. 7870 unsigned AssignedReg; 7871 const TargetRegisterClass *RC; 7872 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7873 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7874 // RC is unset only on failure. Return immediately. 7875 if (!RC) 7876 return; 7877 7878 // Get the actual register value type. This is important, because the user 7879 // may have asked for (e.g.) the AX register in i32 type. We need to 7880 // remember that AX is actually i16 to get the right extension. 7881 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7882 7883 if (OpInfo.ConstraintVT != MVT::Other) { 7884 // If this is an FP operand in an integer register (or visa versa), or more 7885 // generally if the operand value disagrees with the register class we plan 7886 // to stick it in, fix the operand type. 7887 // 7888 // If this is an input value, the bitcast to the new type is done now. 7889 // Bitcast for output value is done at the end of visitInlineAsm(). 7890 if ((OpInfo.Type == InlineAsm::isOutput || 7891 OpInfo.Type == InlineAsm::isInput) && 7892 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7893 // Try to convert to the first EVT that the reg class contains. If the 7894 // types are identical size, use a bitcast to convert (e.g. two differing 7895 // vector types). Note: output bitcast is done at the end of 7896 // visitInlineAsm(). 7897 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7898 // Exclude indirect inputs while they are unsupported because the code 7899 // to perform the load is missing and thus OpInfo.CallOperand still 7900 // refers to the input address rather than the pointed-to value. 7901 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7902 OpInfo.CallOperand = 7903 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7904 OpInfo.ConstraintVT = RegVT; 7905 // If the operand is an FP value and we want it in integer registers, 7906 // use the corresponding integer type. This turns an f64 value into 7907 // i64, which can be passed with two i32 values on a 32-bit machine. 7908 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7909 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7910 if (OpInfo.Type == InlineAsm::isInput) 7911 OpInfo.CallOperand = 7912 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7913 OpInfo.ConstraintVT = VT; 7914 } 7915 } 7916 } 7917 7918 // No need to allocate a matching input constraint since the constraint it's 7919 // matching to has already been allocated. 7920 if (OpInfo.isMatchingInputConstraint()) 7921 return; 7922 7923 EVT ValueVT = OpInfo.ConstraintVT; 7924 if (OpInfo.ConstraintVT == MVT::Other) 7925 ValueVT = RegVT; 7926 7927 // Initialize NumRegs. 7928 unsigned NumRegs = 1; 7929 if (OpInfo.ConstraintVT != MVT::Other) 7930 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7931 7932 // If this is a constraint for a specific physical register, like {r17}, 7933 // assign it now. 7934 7935 // If this associated to a specific register, initialize iterator to correct 7936 // place. If virtual, make sure we have enough registers 7937 7938 // Initialize iterator if necessary 7939 TargetRegisterClass::iterator I = RC->begin(); 7940 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7941 7942 // Do not check for single registers. 7943 if (AssignedReg) { 7944 for (; *I != AssignedReg; ++I) 7945 assert(I != RC->end() && "AssignedReg should be member of RC"); 7946 } 7947 7948 for (; NumRegs; --NumRegs, ++I) { 7949 assert(I != RC->end() && "Ran out of registers to allocate!"); 7950 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7951 Regs.push_back(R); 7952 } 7953 7954 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7955 } 7956 7957 static unsigned 7958 findMatchingInlineAsmOperand(unsigned OperandNo, 7959 const std::vector<SDValue> &AsmNodeOperands) { 7960 // Scan until we find the definition we already emitted of this operand. 7961 unsigned CurOp = InlineAsm::Op_FirstOperand; 7962 for (; OperandNo; --OperandNo) { 7963 // Advance to the next operand. 7964 unsigned OpFlag = 7965 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7966 assert((InlineAsm::isRegDefKind(OpFlag) || 7967 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7968 InlineAsm::isMemKind(OpFlag)) && 7969 "Skipped past definitions?"); 7970 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7971 } 7972 return CurOp; 7973 } 7974 7975 namespace { 7976 7977 class ExtraFlags { 7978 unsigned Flags = 0; 7979 7980 public: 7981 explicit ExtraFlags(ImmutableCallSite CS) { 7982 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7983 if (IA->hasSideEffects()) 7984 Flags |= InlineAsm::Extra_HasSideEffects; 7985 if (IA->isAlignStack()) 7986 Flags |= InlineAsm::Extra_IsAlignStack; 7987 if (CS.isConvergent()) 7988 Flags |= InlineAsm::Extra_IsConvergent; 7989 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7990 } 7991 7992 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7993 // Ideally, we would only check against memory constraints. However, the 7994 // meaning of an Other constraint can be target-specific and we can't easily 7995 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7996 // for Other constraints as well. 7997 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7998 OpInfo.ConstraintType == TargetLowering::C_Other) { 7999 if (OpInfo.Type == InlineAsm::isInput) 8000 Flags |= InlineAsm::Extra_MayLoad; 8001 else if (OpInfo.Type == InlineAsm::isOutput) 8002 Flags |= InlineAsm::Extra_MayStore; 8003 else if (OpInfo.Type == InlineAsm::isClobber) 8004 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8005 } 8006 } 8007 8008 unsigned get() const { return Flags; } 8009 }; 8010 8011 } // end anonymous namespace 8012 8013 /// visitInlineAsm - Handle a call to an InlineAsm object. 8014 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8015 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8016 8017 /// ConstraintOperands - Information about all of the constraints. 8018 SDISelAsmOperandInfoVector ConstraintOperands; 8019 8020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8021 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8022 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8023 8024 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8025 // AsmDialect, MayLoad, MayStore). 8026 bool HasSideEffect = IA->hasSideEffects(); 8027 ExtraFlags ExtraInfo(CS); 8028 8029 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8030 unsigned ResNo = 0; // ResNo - The result number of the next output. 8031 for (auto &T : TargetConstraints) { 8032 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8033 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8034 8035 // Compute the value type for each operand. 8036 if (OpInfo.Type == InlineAsm::isInput || 8037 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8038 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8039 8040 // Process the call argument. BasicBlocks are labels, currently appearing 8041 // only in asm's. 8042 const Instruction *I = CS.getInstruction(); 8043 if (isa<CallBrInst>(I) && 8044 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8045 cast<CallBrInst>(I)->getNumIndirectDests())) { 8046 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8047 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8048 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8049 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8050 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8051 } else { 8052 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8053 } 8054 8055 OpInfo.ConstraintVT = 8056 OpInfo 8057 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8058 .getSimpleVT(); 8059 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8060 // The return value of the call is this value. As such, there is no 8061 // corresponding argument. 8062 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8063 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8064 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8065 DAG.getDataLayout(), STy->getElementType(ResNo)); 8066 } else { 8067 assert(ResNo == 0 && "Asm only has one result!"); 8068 OpInfo.ConstraintVT = 8069 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8070 } 8071 ++ResNo; 8072 } else { 8073 OpInfo.ConstraintVT = MVT::Other; 8074 } 8075 8076 if (!HasSideEffect) 8077 HasSideEffect = OpInfo.hasMemory(TLI); 8078 8079 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8080 // FIXME: Could we compute this on OpInfo rather than T? 8081 8082 // Compute the constraint code and ConstraintType to use. 8083 TLI.ComputeConstraintToUse(T, SDValue()); 8084 8085 if (T.ConstraintType == TargetLowering::C_Immediate && 8086 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8087 // We've delayed emitting a diagnostic like the "n" constraint because 8088 // inlining could cause an integer showing up. 8089 return emitInlineAsmError( 8090 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8091 "integer constant expression"); 8092 8093 ExtraInfo.update(T); 8094 } 8095 8096 8097 // We won't need to flush pending loads if this asm doesn't touch 8098 // memory and is nonvolatile. 8099 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8100 8101 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8102 if (IsCallBr) { 8103 // If this is a callbr we need to flush pending exports since inlineasm_br 8104 // is a terminator. We need to do this before nodes are glued to 8105 // the inlineasm_br node. 8106 Chain = getControlRoot(); 8107 } 8108 8109 // Second pass over the constraints: compute which constraint option to use. 8110 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8111 // If this is an output operand with a matching input operand, look up the 8112 // matching input. If their types mismatch, e.g. one is an integer, the 8113 // other is floating point, or their sizes are different, flag it as an 8114 // error. 8115 if (OpInfo.hasMatchingInput()) { 8116 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8117 patchMatchingInput(OpInfo, Input, DAG); 8118 } 8119 8120 // Compute the constraint code and ConstraintType to use. 8121 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8122 8123 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8124 OpInfo.Type == InlineAsm::isClobber) 8125 continue; 8126 8127 // If this is a memory input, and if the operand is not indirect, do what we 8128 // need to provide an address for the memory input. 8129 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8130 !OpInfo.isIndirect) { 8131 assert((OpInfo.isMultipleAlternative || 8132 (OpInfo.Type == InlineAsm::isInput)) && 8133 "Can only indirectify direct input operands!"); 8134 8135 // Memory operands really want the address of the value. 8136 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8137 8138 // There is no longer a Value* corresponding to this operand. 8139 OpInfo.CallOperandVal = nullptr; 8140 8141 // It is now an indirect operand. 8142 OpInfo.isIndirect = true; 8143 } 8144 8145 } 8146 8147 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8148 std::vector<SDValue> AsmNodeOperands; 8149 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8150 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8151 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8152 8153 // If we have a !srcloc metadata node associated with it, we want to attach 8154 // this to the ultimately generated inline asm machineinstr. To do this, we 8155 // pass in the third operand as this (potentially null) inline asm MDNode. 8156 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8157 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8158 8159 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8160 // bits as operand 3. 8161 AsmNodeOperands.push_back(DAG.getTargetConstant( 8162 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8163 8164 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8165 // this, assign virtual and physical registers for inputs and otput. 8166 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8167 // Assign Registers. 8168 SDISelAsmOperandInfo &RefOpInfo = 8169 OpInfo.isMatchingInputConstraint() 8170 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8171 : OpInfo; 8172 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8173 8174 switch (OpInfo.Type) { 8175 case InlineAsm::isOutput: 8176 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8177 ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8178 OpInfo.ConstraintType == TargetLowering::C_Other) && 8179 OpInfo.isIndirect)) { 8180 unsigned ConstraintID = 8181 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8182 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8183 "Failed to convert memory constraint code to constraint id."); 8184 8185 // Add information to the INLINEASM node to know about this output. 8186 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8187 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8188 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8189 MVT::i32)); 8190 AsmNodeOperands.push_back(OpInfo.CallOperand); 8191 break; 8192 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8193 OpInfo.ConstraintType == TargetLowering::C_Other) && 8194 !OpInfo.isIndirect) || 8195 OpInfo.ConstraintType == TargetLowering::C_Register || 8196 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8197 // Otherwise, this outputs to a register (directly for C_Register / 8198 // C_RegisterClass, and a target-defined fashion for 8199 // C_Immediate/C_Other). Find a register that we can use. 8200 if (OpInfo.AssignedRegs.Regs.empty()) { 8201 emitInlineAsmError( 8202 CS, "couldn't allocate output register for constraint '" + 8203 Twine(OpInfo.ConstraintCode) + "'"); 8204 return; 8205 } 8206 8207 // Add information to the INLINEASM node to know that this register is 8208 // set. 8209 OpInfo.AssignedRegs.AddInlineAsmOperands( 8210 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8211 : InlineAsm::Kind_RegDef, 8212 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8213 } 8214 break; 8215 8216 case InlineAsm::isInput: { 8217 SDValue InOperandVal = OpInfo.CallOperand; 8218 8219 if (OpInfo.isMatchingInputConstraint()) { 8220 // If this is required to match an output register we have already set, 8221 // just use its register. 8222 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8223 AsmNodeOperands); 8224 unsigned OpFlag = 8225 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8226 if (InlineAsm::isRegDefKind(OpFlag) || 8227 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8228 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8229 if (OpInfo.isIndirect) { 8230 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8231 emitInlineAsmError(CS, "inline asm not supported yet:" 8232 " don't know how to handle tied " 8233 "indirect register inputs"); 8234 return; 8235 } 8236 8237 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8238 SmallVector<unsigned, 4> Regs; 8239 8240 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8241 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8242 MachineRegisterInfo &RegInfo = 8243 DAG.getMachineFunction().getRegInfo(); 8244 for (unsigned i = 0; i != NumRegs; ++i) 8245 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8246 } else { 8247 emitInlineAsmError(CS, "inline asm error: This value type register " 8248 "class is not natively supported!"); 8249 return; 8250 } 8251 8252 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8253 8254 SDLoc dl = getCurSDLoc(); 8255 // Use the produced MatchedRegs object to 8256 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8257 CS.getInstruction()); 8258 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8259 true, OpInfo.getMatchedOperand(), dl, 8260 DAG, AsmNodeOperands); 8261 break; 8262 } 8263 8264 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8265 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8266 "Unexpected number of operands"); 8267 // Add information to the INLINEASM node to know about this input. 8268 // See InlineAsm.h isUseOperandTiedToDef. 8269 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8270 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8271 OpInfo.getMatchedOperand()); 8272 AsmNodeOperands.push_back(DAG.getTargetConstant( 8273 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8274 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8275 break; 8276 } 8277 8278 // Treat indirect 'X' constraint as memory. 8279 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8280 OpInfo.ConstraintType == TargetLowering::C_Other) && 8281 OpInfo.isIndirect) 8282 OpInfo.ConstraintType = TargetLowering::C_Memory; 8283 8284 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8285 OpInfo.ConstraintType == TargetLowering::C_Other) { 8286 std::vector<SDValue> Ops; 8287 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8288 Ops, DAG); 8289 if (Ops.empty()) { 8290 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8291 if (isa<ConstantSDNode>(InOperandVal)) { 8292 emitInlineAsmError(CS, "value out of range for constraint '" + 8293 Twine(OpInfo.ConstraintCode) + "'"); 8294 return; 8295 } 8296 8297 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8298 Twine(OpInfo.ConstraintCode) + "'"); 8299 return; 8300 } 8301 8302 // Add information to the INLINEASM node to know about this input. 8303 unsigned ResOpType = 8304 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8305 AsmNodeOperands.push_back(DAG.getTargetConstant( 8306 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8307 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8308 break; 8309 } 8310 8311 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8312 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8313 assert(InOperandVal.getValueType() == 8314 TLI.getPointerTy(DAG.getDataLayout()) && 8315 "Memory operands expect pointer values"); 8316 8317 unsigned ConstraintID = 8318 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8319 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8320 "Failed to convert memory constraint code to constraint id."); 8321 8322 // Add information to the INLINEASM node to know about this input. 8323 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8324 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8325 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8326 getCurSDLoc(), 8327 MVT::i32)); 8328 AsmNodeOperands.push_back(InOperandVal); 8329 break; 8330 } 8331 8332 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8333 OpInfo.ConstraintType == TargetLowering::C_Register || 8334 OpInfo.ConstraintType == TargetLowering::C_Immediate) && 8335 "Unknown constraint type!"); 8336 8337 // TODO: Support this. 8338 if (OpInfo.isIndirect) { 8339 emitInlineAsmError( 8340 CS, "Don't know how to handle indirect register inputs yet " 8341 "for constraint '" + 8342 Twine(OpInfo.ConstraintCode) + "'"); 8343 return; 8344 } 8345 8346 // Copy the input into the appropriate registers. 8347 if (OpInfo.AssignedRegs.Regs.empty()) { 8348 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8349 Twine(OpInfo.ConstraintCode) + "'"); 8350 return; 8351 } 8352 8353 SDLoc dl = getCurSDLoc(); 8354 8355 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8356 Chain, &Flag, CS.getInstruction()); 8357 8358 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8359 dl, DAG, AsmNodeOperands); 8360 break; 8361 } 8362 case InlineAsm::isClobber: 8363 // Add the clobbered value to the operand list, so that the register 8364 // allocator is aware that the physreg got clobbered. 8365 if (!OpInfo.AssignedRegs.Regs.empty()) 8366 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8367 false, 0, getCurSDLoc(), DAG, 8368 AsmNodeOperands); 8369 break; 8370 } 8371 } 8372 8373 // Finish up input operands. Set the input chain and add the flag last. 8374 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8375 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8376 8377 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8378 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8379 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8380 Flag = Chain.getValue(1); 8381 8382 // Do additional work to generate outputs. 8383 8384 SmallVector<EVT, 1> ResultVTs; 8385 SmallVector<SDValue, 1> ResultValues; 8386 SmallVector<SDValue, 8> OutChains; 8387 8388 llvm::Type *CSResultType = CS.getType(); 8389 ArrayRef<Type *> ResultTypes; 8390 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8391 ResultTypes = StructResult->elements(); 8392 else if (!CSResultType->isVoidTy()) 8393 ResultTypes = makeArrayRef(CSResultType); 8394 8395 auto CurResultType = ResultTypes.begin(); 8396 auto handleRegAssign = [&](SDValue V) { 8397 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8398 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8399 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8400 ++CurResultType; 8401 // If the type of the inline asm call site return value is different but has 8402 // same size as the type of the asm output bitcast it. One example of this 8403 // is for vectors with different width / number of elements. This can 8404 // happen for register classes that can contain multiple different value 8405 // types. The preg or vreg allocated may not have the same VT as was 8406 // expected. 8407 // 8408 // This can also happen for a return value that disagrees with the register 8409 // class it is put in, eg. a double in a general-purpose register on a 8410 // 32-bit machine. 8411 if (ResultVT != V.getValueType() && 8412 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8413 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8414 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8415 V.getValueType().isInteger()) { 8416 // If a result value was tied to an input value, the computed result 8417 // may have a wider width than the expected result. Extract the 8418 // relevant portion. 8419 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8420 } 8421 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8422 ResultVTs.push_back(ResultVT); 8423 ResultValues.push_back(V); 8424 }; 8425 8426 // Deal with output operands. 8427 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8428 if (OpInfo.Type == InlineAsm::isOutput) { 8429 SDValue Val; 8430 // Skip trivial output operands. 8431 if (OpInfo.AssignedRegs.Regs.empty()) 8432 continue; 8433 8434 switch (OpInfo.ConstraintType) { 8435 case TargetLowering::C_Register: 8436 case TargetLowering::C_RegisterClass: 8437 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8438 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8439 break; 8440 case TargetLowering::C_Immediate: 8441 case TargetLowering::C_Other: 8442 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8443 OpInfo, DAG); 8444 break; 8445 case TargetLowering::C_Memory: 8446 break; // Already handled. 8447 case TargetLowering::C_Unknown: 8448 assert(false && "Unexpected unknown constraint"); 8449 } 8450 8451 // Indirect output manifest as stores. Record output chains. 8452 if (OpInfo.isIndirect) { 8453 const Value *Ptr = OpInfo.CallOperandVal; 8454 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8455 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8456 MachinePointerInfo(Ptr)); 8457 OutChains.push_back(Store); 8458 } else { 8459 // generate CopyFromRegs to associated registers. 8460 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8461 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8462 for (const SDValue &V : Val->op_values()) 8463 handleRegAssign(V); 8464 } else 8465 handleRegAssign(Val); 8466 } 8467 } 8468 } 8469 8470 // Set results. 8471 if (!ResultValues.empty()) { 8472 assert(CurResultType == ResultTypes.end() && 8473 "Mismatch in number of ResultTypes"); 8474 assert(ResultValues.size() == ResultTypes.size() && 8475 "Mismatch in number of output operands in asm result"); 8476 8477 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8478 DAG.getVTList(ResultVTs), ResultValues); 8479 setValue(CS.getInstruction(), V); 8480 } 8481 8482 // Collect store chains. 8483 if (!OutChains.empty()) 8484 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8485 8486 // Only Update Root if inline assembly has a memory effect. 8487 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8488 DAG.setRoot(Chain); 8489 } 8490 8491 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8492 const Twine &Message) { 8493 LLVMContext &Ctx = *DAG.getContext(); 8494 Ctx.emitError(CS.getInstruction(), Message); 8495 8496 // Make sure we leave the DAG in a valid state 8497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8498 SmallVector<EVT, 1> ValueVTs; 8499 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8500 8501 if (ValueVTs.empty()) 8502 return; 8503 8504 SmallVector<SDValue, 1> Ops; 8505 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8506 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8507 8508 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8509 } 8510 8511 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8512 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8513 MVT::Other, getRoot(), 8514 getValue(I.getArgOperand(0)), 8515 DAG.getSrcValue(I.getArgOperand(0)))); 8516 } 8517 8518 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8520 const DataLayout &DL = DAG.getDataLayout(); 8521 SDValue V = DAG.getVAArg( 8522 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8523 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8524 DL.getABITypeAlignment(I.getType())); 8525 DAG.setRoot(V.getValue(1)); 8526 8527 if (I.getType()->isPointerTy()) 8528 V = DAG.getPtrExtOrTrunc( 8529 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8530 setValue(&I, V); 8531 } 8532 8533 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8534 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8535 MVT::Other, getRoot(), 8536 getValue(I.getArgOperand(0)), 8537 DAG.getSrcValue(I.getArgOperand(0)))); 8538 } 8539 8540 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8541 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8542 MVT::Other, getRoot(), 8543 getValue(I.getArgOperand(0)), 8544 getValue(I.getArgOperand(1)), 8545 DAG.getSrcValue(I.getArgOperand(0)), 8546 DAG.getSrcValue(I.getArgOperand(1)))); 8547 } 8548 8549 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8550 const Instruction &I, 8551 SDValue Op) { 8552 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8553 if (!Range) 8554 return Op; 8555 8556 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8557 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8558 return Op; 8559 8560 APInt Lo = CR.getUnsignedMin(); 8561 if (!Lo.isMinValue()) 8562 return Op; 8563 8564 APInt Hi = CR.getUnsignedMax(); 8565 unsigned Bits = std::max(Hi.getActiveBits(), 8566 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8567 8568 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8569 8570 SDLoc SL = getCurSDLoc(); 8571 8572 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8573 DAG.getValueType(SmallVT)); 8574 unsigned NumVals = Op.getNode()->getNumValues(); 8575 if (NumVals == 1) 8576 return ZExt; 8577 8578 SmallVector<SDValue, 4> Ops; 8579 8580 Ops.push_back(ZExt); 8581 for (unsigned I = 1; I != NumVals; ++I) 8582 Ops.push_back(Op.getValue(I)); 8583 8584 return DAG.getMergeValues(Ops, SL); 8585 } 8586 8587 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8588 /// the call being lowered. 8589 /// 8590 /// This is a helper for lowering intrinsics that follow a target calling 8591 /// convention or require stack pointer adjustment. Only a subset of the 8592 /// intrinsic's operands need to participate in the calling convention. 8593 void SelectionDAGBuilder::populateCallLoweringInfo( 8594 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8595 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8596 bool IsPatchPoint) { 8597 TargetLowering::ArgListTy Args; 8598 Args.reserve(NumArgs); 8599 8600 // Populate the argument list. 8601 // Attributes for args start at offset 1, after the return attribute. 8602 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8603 ArgI != ArgE; ++ArgI) { 8604 const Value *V = Call->getOperand(ArgI); 8605 8606 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8607 8608 TargetLowering::ArgListEntry Entry; 8609 Entry.Node = getValue(V); 8610 Entry.Ty = V->getType(); 8611 Entry.setAttributes(Call, ArgI); 8612 Args.push_back(Entry); 8613 } 8614 8615 CLI.setDebugLoc(getCurSDLoc()) 8616 .setChain(getRoot()) 8617 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8618 .setDiscardResult(Call->use_empty()) 8619 .setIsPatchPoint(IsPatchPoint); 8620 } 8621 8622 /// Add a stack map intrinsic call's live variable operands to a stackmap 8623 /// or patchpoint target node's operand list. 8624 /// 8625 /// Constants are converted to TargetConstants purely as an optimization to 8626 /// avoid constant materialization and register allocation. 8627 /// 8628 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8629 /// generate addess computation nodes, and so FinalizeISel can convert the 8630 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8631 /// address materialization and register allocation, but may also be required 8632 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8633 /// alloca in the entry block, then the runtime may assume that the alloca's 8634 /// StackMap location can be read immediately after compilation and that the 8635 /// location is valid at any point during execution (this is similar to the 8636 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8637 /// only available in a register, then the runtime would need to trap when 8638 /// execution reaches the StackMap in order to read the alloca's location. 8639 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8640 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8641 SelectionDAGBuilder &Builder) { 8642 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8643 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8644 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8645 Ops.push_back( 8646 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8647 Ops.push_back( 8648 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8649 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8650 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8651 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8652 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8653 } else 8654 Ops.push_back(OpVal); 8655 } 8656 } 8657 8658 /// Lower llvm.experimental.stackmap directly to its target opcode. 8659 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8660 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8661 // [live variables...]) 8662 8663 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8664 8665 SDValue Chain, InFlag, Callee, NullPtr; 8666 SmallVector<SDValue, 32> Ops; 8667 8668 SDLoc DL = getCurSDLoc(); 8669 Callee = getValue(CI.getCalledValue()); 8670 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8671 8672 // The stackmap intrinsic only records the live variables (the arguments 8673 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8674 // intrinsic, this won't be lowered to a function call. This means we don't 8675 // have to worry about calling conventions and target specific lowering code. 8676 // Instead we perform the call lowering right here. 8677 // 8678 // chain, flag = CALLSEQ_START(chain, 0, 0) 8679 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8680 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8681 // 8682 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8683 InFlag = Chain.getValue(1); 8684 8685 // Add the <id> and <numBytes> constants. 8686 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8687 Ops.push_back(DAG.getTargetConstant( 8688 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8689 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8690 Ops.push_back(DAG.getTargetConstant( 8691 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8692 MVT::i32)); 8693 8694 // Push live variables for the stack map. 8695 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8696 8697 // We are not pushing any register mask info here on the operands list, 8698 // because the stackmap doesn't clobber anything. 8699 8700 // Push the chain and the glue flag. 8701 Ops.push_back(Chain); 8702 Ops.push_back(InFlag); 8703 8704 // Create the STACKMAP node. 8705 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8706 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8707 Chain = SDValue(SM, 0); 8708 InFlag = Chain.getValue(1); 8709 8710 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8711 8712 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8713 8714 // Set the root to the target-lowered call chain. 8715 DAG.setRoot(Chain); 8716 8717 // Inform the Frame Information that we have a stackmap in this function. 8718 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8719 } 8720 8721 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8722 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8723 const BasicBlock *EHPadBB) { 8724 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8725 // i32 <numBytes>, 8726 // i8* <target>, 8727 // i32 <numArgs>, 8728 // [Args...], 8729 // [live variables...]) 8730 8731 CallingConv::ID CC = CS.getCallingConv(); 8732 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8733 bool HasDef = !CS->getType()->isVoidTy(); 8734 SDLoc dl = getCurSDLoc(); 8735 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8736 8737 // Handle immediate and symbolic callees. 8738 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8739 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8740 /*isTarget=*/true); 8741 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8742 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8743 SDLoc(SymbolicCallee), 8744 SymbolicCallee->getValueType(0)); 8745 8746 // Get the real number of arguments participating in the call <numArgs> 8747 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8748 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8749 8750 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8751 // Intrinsics include all meta-operands up to but not including CC. 8752 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8753 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8754 "Not enough arguments provided to the patchpoint intrinsic"); 8755 8756 // For AnyRegCC the arguments are lowered later on manually. 8757 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8758 Type *ReturnTy = 8759 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8760 8761 TargetLowering::CallLoweringInfo CLI(DAG); 8762 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8763 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8764 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8765 8766 SDNode *CallEnd = Result.second.getNode(); 8767 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8768 CallEnd = CallEnd->getOperand(0).getNode(); 8769 8770 /// Get a call instruction from the call sequence chain. 8771 /// Tail calls are not allowed. 8772 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8773 "Expected a callseq node."); 8774 SDNode *Call = CallEnd->getOperand(0).getNode(); 8775 bool HasGlue = Call->getGluedNode(); 8776 8777 // Replace the target specific call node with the patchable intrinsic. 8778 SmallVector<SDValue, 8> Ops; 8779 8780 // Add the <id> and <numBytes> constants. 8781 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8782 Ops.push_back(DAG.getTargetConstant( 8783 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8784 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8785 Ops.push_back(DAG.getTargetConstant( 8786 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8787 MVT::i32)); 8788 8789 // Add the callee. 8790 Ops.push_back(Callee); 8791 8792 // Adjust <numArgs> to account for any arguments that have been passed on the 8793 // stack instead. 8794 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8795 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8796 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8797 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8798 8799 // Add the calling convention 8800 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8801 8802 // Add the arguments we omitted previously. The register allocator should 8803 // place these in any free register. 8804 if (IsAnyRegCC) 8805 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8806 Ops.push_back(getValue(CS.getArgument(i))); 8807 8808 // Push the arguments from the call instruction up to the register mask. 8809 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8810 Ops.append(Call->op_begin() + 2, e); 8811 8812 // Push live variables for the stack map. 8813 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8814 8815 // Push the register mask info. 8816 if (HasGlue) 8817 Ops.push_back(*(Call->op_end()-2)); 8818 else 8819 Ops.push_back(*(Call->op_end()-1)); 8820 8821 // Push the chain (this is originally the first operand of the call, but 8822 // becomes now the last or second to last operand). 8823 Ops.push_back(*(Call->op_begin())); 8824 8825 // Push the glue flag (last operand). 8826 if (HasGlue) 8827 Ops.push_back(*(Call->op_end()-1)); 8828 8829 SDVTList NodeTys; 8830 if (IsAnyRegCC && HasDef) { 8831 // Create the return types based on the intrinsic definition 8832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8833 SmallVector<EVT, 3> ValueVTs; 8834 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8835 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8836 8837 // There is always a chain and a glue type at the end 8838 ValueVTs.push_back(MVT::Other); 8839 ValueVTs.push_back(MVT::Glue); 8840 NodeTys = DAG.getVTList(ValueVTs); 8841 } else 8842 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8843 8844 // Replace the target specific call node with a PATCHPOINT node. 8845 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8846 dl, NodeTys, Ops); 8847 8848 // Update the NodeMap. 8849 if (HasDef) { 8850 if (IsAnyRegCC) 8851 setValue(CS.getInstruction(), SDValue(MN, 0)); 8852 else 8853 setValue(CS.getInstruction(), Result.first); 8854 } 8855 8856 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8857 // call sequence. Furthermore the location of the chain and glue can change 8858 // when the AnyReg calling convention is used and the intrinsic returns a 8859 // value. 8860 if (IsAnyRegCC && HasDef) { 8861 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8862 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8863 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8864 } else 8865 DAG.ReplaceAllUsesWith(Call, MN); 8866 DAG.DeleteNode(Call); 8867 8868 // Inform the Frame Information that we have a patchpoint in this function. 8869 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8870 } 8871 8872 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8873 unsigned Intrinsic) { 8874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8875 SDValue Op1 = getValue(I.getArgOperand(0)); 8876 SDValue Op2; 8877 if (I.getNumArgOperands() > 1) 8878 Op2 = getValue(I.getArgOperand(1)); 8879 SDLoc dl = getCurSDLoc(); 8880 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8881 SDValue Res; 8882 FastMathFlags FMF; 8883 if (isa<FPMathOperator>(I)) 8884 FMF = I.getFastMathFlags(); 8885 8886 switch (Intrinsic) { 8887 case Intrinsic::experimental_vector_reduce_v2_fadd: 8888 if (FMF.allowReassoc()) 8889 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8890 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8891 else 8892 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8893 break; 8894 case Intrinsic::experimental_vector_reduce_v2_fmul: 8895 if (FMF.allowReassoc()) 8896 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8897 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8898 else 8899 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8900 break; 8901 case Intrinsic::experimental_vector_reduce_add: 8902 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8903 break; 8904 case Intrinsic::experimental_vector_reduce_mul: 8905 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8906 break; 8907 case Intrinsic::experimental_vector_reduce_and: 8908 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8909 break; 8910 case Intrinsic::experimental_vector_reduce_or: 8911 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8912 break; 8913 case Intrinsic::experimental_vector_reduce_xor: 8914 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8915 break; 8916 case Intrinsic::experimental_vector_reduce_smax: 8917 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8918 break; 8919 case Intrinsic::experimental_vector_reduce_smin: 8920 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8921 break; 8922 case Intrinsic::experimental_vector_reduce_umax: 8923 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8924 break; 8925 case Intrinsic::experimental_vector_reduce_umin: 8926 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8927 break; 8928 case Intrinsic::experimental_vector_reduce_fmax: 8929 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8930 break; 8931 case Intrinsic::experimental_vector_reduce_fmin: 8932 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8933 break; 8934 default: 8935 llvm_unreachable("Unhandled vector reduce intrinsic"); 8936 } 8937 setValue(&I, Res); 8938 } 8939 8940 /// Returns an AttributeList representing the attributes applied to the return 8941 /// value of the given call. 8942 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8943 SmallVector<Attribute::AttrKind, 2> Attrs; 8944 if (CLI.RetSExt) 8945 Attrs.push_back(Attribute::SExt); 8946 if (CLI.RetZExt) 8947 Attrs.push_back(Attribute::ZExt); 8948 if (CLI.IsInReg) 8949 Attrs.push_back(Attribute::InReg); 8950 8951 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8952 Attrs); 8953 } 8954 8955 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8956 /// implementation, which just calls LowerCall. 8957 /// FIXME: When all targets are 8958 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8959 std::pair<SDValue, SDValue> 8960 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8961 // Handle the incoming return values from the call. 8962 CLI.Ins.clear(); 8963 Type *OrigRetTy = CLI.RetTy; 8964 SmallVector<EVT, 4> RetTys; 8965 SmallVector<uint64_t, 4> Offsets; 8966 auto &DL = CLI.DAG.getDataLayout(); 8967 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8968 8969 if (CLI.IsPostTypeLegalization) { 8970 // If we are lowering a libcall after legalization, split the return type. 8971 SmallVector<EVT, 4> OldRetTys; 8972 SmallVector<uint64_t, 4> OldOffsets; 8973 RetTys.swap(OldRetTys); 8974 Offsets.swap(OldOffsets); 8975 8976 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8977 EVT RetVT = OldRetTys[i]; 8978 uint64_t Offset = OldOffsets[i]; 8979 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8980 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8981 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8982 RetTys.append(NumRegs, RegisterVT); 8983 for (unsigned j = 0; j != NumRegs; ++j) 8984 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8985 } 8986 } 8987 8988 SmallVector<ISD::OutputArg, 4> Outs; 8989 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8990 8991 bool CanLowerReturn = 8992 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8993 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8994 8995 SDValue DemoteStackSlot; 8996 int DemoteStackIdx = -100; 8997 if (!CanLowerReturn) { 8998 // FIXME: equivalent assert? 8999 // assert(!CS.hasInAllocaArgument() && 9000 // "sret demotion is incompatible with inalloca"); 9001 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9002 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9003 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9004 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9005 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9006 DL.getAllocaAddrSpace()); 9007 9008 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9009 ArgListEntry Entry; 9010 Entry.Node = DemoteStackSlot; 9011 Entry.Ty = StackSlotPtrType; 9012 Entry.IsSExt = false; 9013 Entry.IsZExt = false; 9014 Entry.IsInReg = false; 9015 Entry.IsSRet = true; 9016 Entry.IsNest = false; 9017 Entry.IsByVal = false; 9018 Entry.IsReturned = false; 9019 Entry.IsSwiftSelf = false; 9020 Entry.IsSwiftError = false; 9021 Entry.IsCFGuardTarget = false; 9022 Entry.Alignment = Align; 9023 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9024 CLI.NumFixedArgs += 1; 9025 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9026 9027 // sret demotion isn't compatible with tail-calls, since the sret argument 9028 // points into the callers stack frame. 9029 CLI.IsTailCall = false; 9030 } else { 9031 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9032 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9033 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9034 ISD::ArgFlagsTy Flags; 9035 if (NeedsRegBlock) { 9036 Flags.setInConsecutiveRegs(); 9037 if (I == RetTys.size() - 1) 9038 Flags.setInConsecutiveRegsLast(); 9039 } 9040 EVT VT = RetTys[I]; 9041 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9042 CLI.CallConv, VT); 9043 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9044 CLI.CallConv, VT); 9045 for (unsigned i = 0; i != NumRegs; ++i) { 9046 ISD::InputArg MyFlags; 9047 MyFlags.Flags = Flags; 9048 MyFlags.VT = RegisterVT; 9049 MyFlags.ArgVT = VT; 9050 MyFlags.Used = CLI.IsReturnValueUsed; 9051 if (CLI.RetTy->isPointerTy()) { 9052 MyFlags.Flags.setPointer(); 9053 MyFlags.Flags.setPointerAddrSpace( 9054 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9055 } 9056 if (CLI.RetSExt) 9057 MyFlags.Flags.setSExt(); 9058 if (CLI.RetZExt) 9059 MyFlags.Flags.setZExt(); 9060 if (CLI.IsInReg) 9061 MyFlags.Flags.setInReg(); 9062 CLI.Ins.push_back(MyFlags); 9063 } 9064 } 9065 } 9066 9067 // We push in swifterror return as the last element of CLI.Ins. 9068 ArgListTy &Args = CLI.getArgs(); 9069 if (supportSwiftError()) { 9070 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9071 if (Args[i].IsSwiftError) { 9072 ISD::InputArg MyFlags; 9073 MyFlags.VT = getPointerTy(DL); 9074 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9075 MyFlags.Flags.setSwiftError(); 9076 CLI.Ins.push_back(MyFlags); 9077 } 9078 } 9079 } 9080 9081 // Handle all of the outgoing arguments. 9082 CLI.Outs.clear(); 9083 CLI.OutVals.clear(); 9084 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9085 SmallVector<EVT, 4> ValueVTs; 9086 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9087 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9088 Type *FinalType = Args[i].Ty; 9089 if (Args[i].IsByVal) 9090 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9091 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9092 FinalType, CLI.CallConv, CLI.IsVarArg); 9093 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9094 ++Value) { 9095 EVT VT = ValueVTs[Value]; 9096 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9097 SDValue Op = SDValue(Args[i].Node.getNode(), 9098 Args[i].Node.getResNo() + Value); 9099 ISD::ArgFlagsTy Flags; 9100 9101 // Certain targets (such as MIPS), may have a different ABI alignment 9102 // for a type depending on the context. Give the target a chance to 9103 // specify the alignment it wants. 9104 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9105 9106 if (Args[i].Ty->isPointerTy()) { 9107 Flags.setPointer(); 9108 Flags.setPointerAddrSpace( 9109 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9110 } 9111 if (Args[i].IsZExt) 9112 Flags.setZExt(); 9113 if (Args[i].IsSExt) 9114 Flags.setSExt(); 9115 if (Args[i].IsInReg) { 9116 // If we are using vectorcall calling convention, a structure that is 9117 // passed InReg - is surely an HVA 9118 if (CLI.CallConv == CallingConv::X86_VectorCall && 9119 isa<StructType>(FinalType)) { 9120 // The first value of a structure is marked 9121 if (0 == Value) 9122 Flags.setHvaStart(); 9123 Flags.setHva(); 9124 } 9125 // Set InReg Flag 9126 Flags.setInReg(); 9127 } 9128 if (Args[i].IsSRet) 9129 Flags.setSRet(); 9130 if (Args[i].IsSwiftSelf) 9131 Flags.setSwiftSelf(); 9132 if (Args[i].IsSwiftError) 9133 Flags.setSwiftError(); 9134 if (Args[i].IsCFGuardTarget) 9135 Flags.setCFGuardTarget(); 9136 if (Args[i].IsByVal) 9137 Flags.setByVal(); 9138 if (Args[i].IsInAlloca) { 9139 Flags.setInAlloca(); 9140 // Set the byval flag for CCAssignFn callbacks that don't know about 9141 // inalloca. This way we can know how many bytes we should've allocated 9142 // and how many bytes a callee cleanup function will pop. If we port 9143 // inalloca to more targets, we'll have to add custom inalloca handling 9144 // in the various CC lowering callbacks. 9145 Flags.setByVal(); 9146 } 9147 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9148 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9149 Type *ElementTy = Ty->getElementType(); 9150 9151 unsigned FrameSize = DL.getTypeAllocSize( 9152 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9153 Flags.setByValSize(FrameSize); 9154 9155 // info is not there but there are cases it cannot get right. 9156 unsigned FrameAlign; 9157 if (Args[i].Alignment) 9158 FrameAlign = Args[i].Alignment; 9159 else 9160 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9161 Flags.setByValAlign(Align(FrameAlign)); 9162 } 9163 if (Args[i].IsNest) 9164 Flags.setNest(); 9165 if (NeedsRegBlock) 9166 Flags.setInConsecutiveRegs(); 9167 Flags.setOrigAlign(OriginalAlignment); 9168 9169 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9170 CLI.CallConv, VT); 9171 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9172 CLI.CallConv, VT); 9173 SmallVector<SDValue, 4> Parts(NumParts); 9174 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9175 9176 if (Args[i].IsSExt) 9177 ExtendKind = ISD::SIGN_EXTEND; 9178 else if (Args[i].IsZExt) 9179 ExtendKind = ISD::ZERO_EXTEND; 9180 9181 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9182 // for now. 9183 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9184 CanLowerReturn) { 9185 assert((CLI.RetTy == Args[i].Ty || 9186 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9187 CLI.RetTy->getPointerAddressSpace() == 9188 Args[i].Ty->getPointerAddressSpace())) && 9189 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9190 // Before passing 'returned' to the target lowering code, ensure that 9191 // either the register MVT and the actual EVT are the same size or that 9192 // the return value and argument are extended in the same way; in these 9193 // cases it's safe to pass the argument register value unchanged as the 9194 // return register value (although it's at the target's option whether 9195 // to do so) 9196 // TODO: allow code generation to take advantage of partially preserved 9197 // registers rather than clobbering the entire register when the 9198 // parameter extension method is not compatible with the return 9199 // extension method 9200 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9201 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9202 CLI.RetZExt == Args[i].IsZExt)) 9203 Flags.setReturned(); 9204 } 9205 9206 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9207 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9208 9209 for (unsigned j = 0; j != NumParts; ++j) { 9210 // if it isn't first piece, alignment must be 1 9211 // For scalable vectors the scalable part is currently handled 9212 // by individual targets, so we just use the known minimum size here. 9213 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9214 i < CLI.NumFixedArgs, i, 9215 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9216 if (NumParts > 1 && j == 0) 9217 MyFlags.Flags.setSplit(); 9218 else if (j != 0) { 9219 MyFlags.Flags.setOrigAlign(Align::None()); 9220 if (j == NumParts - 1) 9221 MyFlags.Flags.setSplitEnd(); 9222 } 9223 9224 CLI.Outs.push_back(MyFlags); 9225 CLI.OutVals.push_back(Parts[j]); 9226 } 9227 9228 if (NeedsRegBlock && Value == NumValues - 1) 9229 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9230 } 9231 } 9232 9233 SmallVector<SDValue, 4> InVals; 9234 CLI.Chain = LowerCall(CLI, InVals); 9235 9236 // Update CLI.InVals to use outside of this function. 9237 CLI.InVals = InVals; 9238 9239 // Verify that the target's LowerCall behaved as expected. 9240 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9241 "LowerCall didn't return a valid chain!"); 9242 assert((!CLI.IsTailCall || InVals.empty()) && 9243 "LowerCall emitted a return value for a tail call!"); 9244 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9245 "LowerCall didn't emit the correct number of values!"); 9246 9247 // For a tail call, the return value is merely live-out and there aren't 9248 // any nodes in the DAG representing it. Return a special value to 9249 // indicate that a tail call has been emitted and no more Instructions 9250 // should be processed in the current block. 9251 if (CLI.IsTailCall) { 9252 CLI.DAG.setRoot(CLI.Chain); 9253 return std::make_pair(SDValue(), SDValue()); 9254 } 9255 9256 #ifndef NDEBUG 9257 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9258 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9259 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9260 "LowerCall emitted a value with the wrong type!"); 9261 } 9262 #endif 9263 9264 SmallVector<SDValue, 4> ReturnValues; 9265 if (!CanLowerReturn) { 9266 // The instruction result is the result of loading from the 9267 // hidden sret parameter. 9268 SmallVector<EVT, 1> PVTs; 9269 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9270 9271 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9272 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9273 EVT PtrVT = PVTs[0]; 9274 9275 unsigned NumValues = RetTys.size(); 9276 ReturnValues.resize(NumValues); 9277 SmallVector<SDValue, 4> Chains(NumValues); 9278 9279 // An aggregate return value cannot wrap around the address space, so 9280 // offsets to its parts don't wrap either. 9281 SDNodeFlags Flags; 9282 Flags.setNoUnsignedWrap(true); 9283 9284 for (unsigned i = 0; i < NumValues; ++i) { 9285 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9286 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9287 PtrVT), Flags); 9288 SDValue L = CLI.DAG.getLoad( 9289 RetTys[i], CLI.DL, CLI.Chain, Add, 9290 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9291 DemoteStackIdx, Offsets[i]), 9292 /* Alignment = */ 1); 9293 ReturnValues[i] = L; 9294 Chains[i] = L.getValue(1); 9295 } 9296 9297 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9298 } else { 9299 // Collect the legal value parts into potentially illegal values 9300 // that correspond to the original function's return values. 9301 Optional<ISD::NodeType> AssertOp; 9302 if (CLI.RetSExt) 9303 AssertOp = ISD::AssertSext; 9304 else if (CLI.RetZExt) 9305 AssertOp = ISD::AssertZext; 9306 unsigned CurReg = 0; 9307 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9308 EVT VT = RetTys[I]; 9309 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9310 CLI.CallConv, VT); 9311 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9312 CLI.CallConv, VT); 9313 9314 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9315 NumRegs, RegisterVT, VT, nullptr, 9316 CLI.CallConv, AssertOp)); 9317 CurReg += NumRegs; 9318 } 9319 9320 // For a function returning void, there is no return value. We can't create 9321 // such a node, so we just return a null return value in that case. In 9322 // that case, nothing will actually look at the value. 9323 if (ReturnValues.empty()) 9324 return std::make_pair(SDValue(), CLI.Chain); 9325 } 9326 9327 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9328 CLI.DAG.getVTList(RetTys), ReturnValues); 9329 return std::make_pair(Res, CLI.Chain); 9330 } 9331 9332 void TargetLowering::LowerOperationWrapper(SDNode *N, 9333 SmallVectorImpl<SDValue> &Results, 9334 SelectionDAG &DAG) const { 9335 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9336 Results.push_back(Res); 9337 } 9338 9339 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9340 llvm_unreachable("LowerOperation not implemented for this target!"); 9341 } 9342 9343 void 9344 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9345 SDValue Op = getNonRegisterValue(V); 9346 assert((Op.getOpcode() != ISD::CopyFromReg || 9347 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9348 "Copy from a reg to the same reg!"); 9349 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9350 9351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9352 // If this is an InlineAsm we have to match the registers required, not the 9353 // notional registers required by the type. 9354 9355 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9356 None); // This is not an ABI copy. 9357 SDValue Chain = DAG.getEntryNode(); 9358 9359 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9360 FuncInfo.PreferredExtendType.end()) 9361 ? ISD::ANY_EXTEND 9362 : FuncInfo.PreferredExtendType[V]; 9363 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9364 PendingExports.push_back(Chain); 9365 } 9366 9367 #include "llvm/CodeGen/SelectionDAGISel.h" 9368 9369 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9370 /// entry block, return true. This includes arguments used by switches, since 9371 /// the switch may expand into multiple basic blocks. 9372 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9373 // With FastISel active, we may be splitting blocks, so force creation 9374 // of virtual registers for all non-dead arguments. 9375 if (FastISel) 9376 return A->use_empty(); 9377 9378 const BasicBlock &Entry = A->getParent()->front(); 9379 for (const User *U : A->users()) 9380 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9381 return false; // Use not in entry block. 9382 9383 return true; 9384 } 9385 9386 using ArgCopyElisionMapTy = 9387 DenseMap<const Argument *, 9388 std::pair<const AllocaInst *, const StoreInst *>>; 9389 9390 /// Scan the entry block of the function in FuncInfo for arguments that look 9391 /// like copies into a local alloca. Record any copied arguments in 9392 /// ArgCopyElisionCandidates. 9393 static void 9394 findArgumentCopyElisionCandidates(const DataLayout &DL, 9395 FunctionLoweringInfo *FuncInfo, 9396 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9397 // Record the state of every static alloca used in the entry block. Argument 9398 // allocas are all used in the entry block, so we need approximately as many 9399 // entries as we have arguments. 9400 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9401 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9402 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9403 StaticAllocas.reserve(NumArgs * 2); 9404 9405 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9406 if (!V) 9407 return nullptr; 9408 V = V->stripPointerCasts(); 9409 const auto *AI = dyn_cast<AllocaInst>(V); 9410 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9411 return nullptr; 9412 auto Iter = StaticAllocas.insert({AI, Unknown}); 9413 return &Iter.first->second; 9414 }; 9415 9416 // Look for stores of arguments to static allocas. Look through bitcasts and 9417 // GEPs to handle type coercions, as long as the alloca is fully initialized 9418 // by the store. Any non-store use of an alloca escapes it and any subsequent 9419 // unanalyzed store might write it. 9420 // FIXME: Handle structs initialized with multiple stores. 9421 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9422 // Look for stores, and handle non-store uses conservatively. 9423 const auto *SI = dyn_cast<StoreInst>(&I); 9424 if (!SI) { 9425 // We will look through cast uses, so ignore them completely. 9426 if (I.isCast()) 9427 continue; 9428 // Ignore debug info intrinsics, they don't escape or store to allocas. 9429 if (isa<DbgInfoIntrinsic>(I)) 9430 continue; 9431 // This is an unknown instruction. Assume it escapes or writes to all 9432 // static alloca operands. 9433 for (const Use &U : I.operands()) { 9434 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9435 *Info = StaticAllocaInfo::Clobbered; 9436 } 9437 continue; 9438 } 9439 9440 // If the stored value is a static alloca, mark it as escaped. 9441 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9442 *Info = StaticAllocaInfo::Clobbered; 9443 9444 // Check if the destination is a static alloca. 9445 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9446 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9447 if (!Info) 9448 continue; 9449 const AllocaInst *AI = cast<AllocaInst>(Dst); 9450 9451 // Skip allocas that have been initialized or clobbered. 9452 if (*Info != StaticAllocaInfo::Unknown) 9453 continue; 9454 9455 // Check if the stored value is an argument, and that this store fully 9456 // initializes the alloca. Don't elide copies from the same argument twice. 9457 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9458 const auto *Arg = dyn_cast<Argument>(Val); 9459 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9460 Arg->getType()->isEmptyTy() || 9461 DL.getTypeStoreSize(Arg->getType()) != 9462 DL.getTypeAllocSize(AI->getAllocatedType()) || 9463 ArgCopyElisionCandidates.count(Arg)) { 9464 *Info = StaticAllocaInfo::Clobbered; 9465 continue; 9466 } 9467 9468 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9469 << '\n'); 9470 9471 // Mark this alloca and store for argument copy elision. 9472 *Info = StaticAllocaInfo::Elidable; 9473 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9474 9475 // Stop scanning if we've seen all arguments. This will happen early in -O0 9476 // builds, which is useful, because -O0 builds have large entry blocks and 9477 // many allocas. 9478 if (ArgCopyElisionCandidates.size() == NumArgs) 9479 break; 9480 } 9481 } 9482 9483 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9484 /// ArgVal is a load from a suitable fixed stack object. 9485 static void tryToElideArgumentCopy( 9486 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9487 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9488 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9489 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9490 SDValue ArgVal, bool &ArgHasUses) { 9491 // Check if this is a load from a fixed stack object. 9492 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9493 if (!LNode) 9494 return; 9495 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9496 if (!FINode) 9497 return; 9498 9499 // Check that the fixed stack object is the right size and alignment. 9500 // Look at the alignment that the user wrote on the alloca instead of looking 9501 // at the stack object. 9502 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9503 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9504 const AllocaInst *AI = ArgCopyIter->second.first; 9505 int FixedIndex = FINode->getIndex(); 9506 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9507 int OldIndex = AllocaIndex; 9508 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9509 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9510 LLVM_DEBUG( 9511 dbgs() << " argument copy elision failed due to bad fixed stack " 9512 "object size\n"); 9513 return; 9514 } 9515 unsigned RequiredAlignment = AI->getAlignment(); 9516 if (!RequiredAlignment) { 9517 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9518 AI->getAllocatedType()); 9519 } 9520 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9521 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9522 "greater than stack argument alignment (" 9523 << RequiredAlignment << " vs " 9524 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9525 return; 9526 } 9527 9528 // Perform the elision. Delete the old stack object and replace its only use 9529 // in the variable info map. Mark the stack object as mutable. 9530 LLVM_DEBUG({ 9531 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9532 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9533 << '\n'; 9534 }); 9535 MFI.RemoveStackObject(OldIndex); 9536 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9537 AllocaIndex = FixedIndex; 9538 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9539 Chains.push_back(ArgVal.getValue(1)); 9540 9541 // Avoid emitting code for the store implementing the copy. 9542 const StoreInst *SI = ArgCopyIter->second.second; 9543 ElidedArgCopyInstrs.insert(SI); 9544 9545 // Check for uses of the argument again so that we can avoid exporting ArgVal 9546 // if it is't used by anything other than the store. 9547 for (const Value *U : Arg.users()) { 9548 if (U != SI) { 9549 ArgHasUses = true; 9550 break; 9551 } 9552 } 9553 } 9554 9555 void SelectionDAGISel::LowerArguments(const Function &F) { 9556 SelectionDAG &DAG = SDB->DAG; 9557 SDLoc dl = SDB->getCurSDLoc(); 9558 const DataLayout &DL = DAG.getDataLayout(); 9559 SmallVector<ISD::InputArg, 16> Ins; 9560 9561 if (!FuncInfo->CanLowerReturn) { 9562 // Put in an sret pointer parameter before all the other parameters. 9563 SmallVector<EVT, 1> ValueVTs; 9564 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9565 F.getReturnType()->getPointerTo( 9566 DAG.getDataLayout().getAllocaAddrSpace()), 9567 ValueVTs); 9568 9569 // NOTE: Assuming that a pointer will never break down to more than one VT 9570 // or one register. 9571 ISD::ArgFlagsTy Flags; 9572 Flags.setSRet(); 9573 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9574 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9575 ISD::InputArg::NoArgIndex, 0); 9576 Ins.push_back(RetArg); 9577 } 9578 9579 // Look for stores of arguments to static allocas. Mark such arguments with a 9580 // flag to ask the target to give us the memory location of that argument if 9581 // available. 9582 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9583 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9584 9585 // Set up the incoming argument description vector. 9586 for (const Argument &Arg : F.args()) { 9587 unsigned ArgNo = Arg.getArgNo(); 9588 SmallVector<EVT, 4> ValueVTs; 9589 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9590 bool isArgValueUsed = !Arg.use_empty(); 9591 unsigned PartBase = 0; 9592 Type *FinalType = Arg.getType(); 9593 if (Arg.hasAttribute(Attribute::ByVal)) 9594 FinalType = Arg.getParamByValType(); 9595 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9596 FinalType, F.getCallingConv(), F.isVarArg()); 9597 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9598 Value != NumValues; ++Value) { 9599 EVT VT = ValueVTs[Value]; 9600 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9601 ISD::ArgFlagsTy Flags; 9602 9603 // Certain targets (such as MIPS), may have a different ABI alignment 9604 // for a type depending on the context. Give the target a chance to 9605 // specify the alignment it wants. 9606 const Align OriginalAlignment( 9607 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9608 9609 if (Arg.getType()->isPointerTy()) { 9610 Flags.setPointer(); 9611 Flags.setPointerAddrSpace( 9612 cast<PointerType>(Arg.getType())->getAddressSpace()); 9613 } 9614 if (Arg.hasAttribute(Attribute::ZExt)) 9615 Flags.setZExt(); 9616 if (Arg.hasAttribute(Attribute::SExt)) 9617 Flags.setSExt(); 9618 if (Arg.hasAttribute(Attribute::InReg)) { 9619 // If we are using vectorcall calling convention, a structure that is 9620 // passed InReg - is surely an HVA 9621 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9622 isa<StructType>(Arg.getType())) { 9623 // The first value of a structure is marked 9624 if (0 == Value) 9625 Flags.setHvaStart(); 9626 Flags.setHva(); 9627 } 9628 // Set InReg Flag 9629 Flags.setInReg(); 9630 } 9631 if (Arg.hasAttribute(Attribute::StructRet)) 9632 Flags.setSRet(); 9633 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9634 Flags.setSwiftSelf(); 9635 if (Arg.hasAttribute(Attribute::SwiftError)) 9636 Flags.setSwiftError(); 9637 if (Arg.hasAttribute(Attribute::ByVal)) 9638 Flags.setByVal(); 9639 if (Arg.hasAttribute(Attribute::InAlloca)) { 9640 Flags.setInAlloca(); 9641 // Set the byval flag for CCAssignFn callbacks that don't know about 9642 // inalloca. This way we can know how many bytes we should've allocated 9643 // and how many bytes a callee cleanup function will pop. If we port 9644 // inalloca to more targets, we'll have to add custom inalloca handling 9645 // in the various CC lowering callbacks. 9646 Flags.setByVal(); 9647 } 9648 if (F.getCallingConv() == CallingConv::X86_INTR) { 9649 // IA Interrupt passes frame (1st parameter) by value in the stack. 9650 if (ArgNo == 0) 9651 Flags.setByVal(); 9652 } 9653 if (Flags.isByVal() || Flags.isInAlloca()) { 9654 Type *ElementTy = Arg.getParamByValType(); 9655 9656 // For ByVal, size and alignment should be passed from FE. BE will 9657 // guess if this info is not there but there are cases it cannot get 9658 // right. 9659 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9660 Flags.setByValSize(FrameSize); 9661 9662 unsigned FrameAlign; 9663 if (Arg.getParamAlignment()) 9664 FrameAlign = Arg.getParamAlignment(); 9665 else 9666 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9667 Flags.setByValAlign(Align(FrameAlign)); 9668 } 9669 if (Arg.hasAttribute(Attribute::Nest)) 9670 Flags.setNest(); 9671 if (NeedsRegBlock) 9672 Flags.setInConsecutiveRegs(); 9673 Flags.setOrigAlign(OriginalAlignment); 9674 if (ArgCopyElisionCandidates.count(&Arg)) 9675 Flags.setCopyElisionCandidate(); 9676 if (Arg.hasAttribute(Attribute::Returned)) 9677 Flags.setReturned(); 9678 9679 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9680 *CurDAG->getContext(), F.getCallingConv(), VT); 9681 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9682 *CurDAG->getContext(), F.getCallingConv(), VT); 9683 for (unsigned i = 0; i != NumRegs; ++i) { 9684 // For scalable vectors, use the minimum size; individual targets 9685 // are responsible for handling scalable vector arguments and 9686 // return values. 9687 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9688 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9689 if (NumRegs > 1 && i == 0) 9690 MyFlags.Flags.setSplit(); 9691 // if it isn't first piece, alignment must be 1 9692 else if (i > 0) { 9693 MyFlags.Flags.setOrigAlign(Align::None()); 9694 if (i == NumRegs - 1) 9695 MyFlags.Flags.setSplitEnd(); 9696 } 9697 Ins.push_back(MyFlags); 9698 } 9699 if (NeedsRegBlock && Value == NumValues - 1) 9700 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9701 PartBase += VT.getStoreSize().getKnownMinSize(); 9702 } 9703 } 9704 9705 // Call the target to set up the argument values. 9706 SmallVector<SDValue, 8> InVals; 9707 SDValue NewRoot = TLI->LowerFormalArguments( 9708 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9709 9710 // Verify that the target's LowerFormalArguments behaved as expected. 9711 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9712 "LowerFormalArguments didn't return a valid chain!"); 9713 assert(InVals.size() == Ins.size() && 9714 "LowerFormalArguments didn't emit the correct number of values!"); 9715 LLVM_DEBUG({ 9716 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9717 assert(InVals[i].getNode() && 9718 "LowerFormalArguments emitted a null value!"); 9719 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9720 "LowerFormalArguments emitted a value with the wrong type!"); 9721 } 9722 }); 9723 9724 // Update the DAG with the new chain value resulting from argument lowering. 9725 DAG.setRoot(NewRoot); 9726 9727 // Set up the argument values. 9728 unsigned i = 0; 9729 if (!FuncInfo->CanLowerReturn) { 9730 // Create a virtual register for the sret pointer, and put in a copy 9731 // from the sret argument into it. 9732 SmallVector<EVT, 1> ValueVTs; 9733 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9734 F.getReturnType()->getPointerTo( 9735 DAG.getDataLayout().getAllocaAddrSpace()), 9736 ValueVTs); 9737 MVT VT = ValueVTs[0].getSimpleVT(); 9738 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9739 Optional<ISD::NodeType> AssertOp = None; 9740 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9741 nullptr, F.getCallingConv(), AssertOp); 9742 9743 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9744 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9745 Register SRetReg = 9746 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9747 FuncInfo->DemoteRegister = SRetReg; 9748 NewRoot = 9749 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9750 DAG.setRoot(NewRoot); 9751 9752 // i indexes lowered arguments. Bump it past the hidden sret argument. 9753 ++i; 9754 } 9755 9756 SmallVector<SDValue, 4> Chains; 9757 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9758 for (const Argument &Arg : F.args()) { 9759 SmallVector<SDValue, 4> ArgValues; 9760 SmallVector<EVT, 4> ValueVTs; 9761 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9762 unsigned NumValues = ValueVTs.size(); 9763 if (NumValues == 0) 9764 continue; 9765 9766 bool ArgHasUses = !Arg.use_empty(); 9767 9768 // Elide the copying store if the target loaded this argument from a 9769 // suitable fixed stack object. 9770 if (Ins[i].Flags.isCopyElisionCandidate()) { 9771 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9772 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9773 InVals[i], ArgHasUses); 9774 } 9775 9776 // If this argument is unused then remember its value. It is used to generate 9777 // debugging information. 9778 bool isSwiftErrorArg = 9779 TLI->supportSwiftError() && 9780 Arg.hasAttribute(Attribute::SwiftError); 9781 if (!ArgHasUses && !isSwiftErrorArg) { 9782 SDB->setUnusedArgValue(&Arg, InVals[i]); 9783 9784 // Also remember any frame index for use in FastISel. 9785 if (FrameIndexSDNode *FI = 9786 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9787 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9788 } 9789 9790 for (unsigned Val = 0; Val != NumValues; ++Val) { 9791 EVT VT = ValueVTs[Val]; 9792 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9793 F.getCallingConv(), VT); 9794 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9795 *CurDAG->getContext(), F.getCallingConv(), VT); 9796 9797 // Even an apparent 'unused' swifterror argument needs to be returned. So 9798 // we do generate a copy for it that can be used on return from the 9799 // function. 9800 if (ArgHasUses || isSwiftErrorArg) { 9801 Optional<ISD::NodeType> AssertOp; 9802 if (Arg.hasAttribute(Attribute::SExt)) 9803 AssertOp = ISD::AssertSext; 9804 else if (Arg.hasAttribute(Attribute::ZExt)) 9805 AssertOp = ISD::AssertZext; 9806 9807 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9808 PartVT, VT, nullptr, 9809 F.getCallingConv(), AssertOp)); 9810 } 9811 9812 i += NumParts; 9813 } 9814 9815 // We don't need to do anything else for unused arguments. 9816 if (ArgValues.empty()) 9817 continue; 9818 9819 // Note down frame index. 9820 if (FrameIndexSDNode *FI = 9821 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9822 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9823 9824 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9825 SDB->getCurSDLoc()); 9826 9827 SDB->setValue(&Arg, Res); 9828 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9829 // We want to associate the argument with the frame index, among 9830 // involved operands, that correspond to the lowest address. The 9831 // getCopyFromParts function, called earlier, is swapping the order of 9832 // the operands to BUILD_PAIR depending on endianness. The result of 9833 // that swapping is that the least significant bits of the argument will 9834 // be in the first operand of the BUILD_PAIR node, and the most 9835 // significant bits will be in the second operand. 9836 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9837 if (LoadSDNode *LNode = 9838 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9839 if (FrameIndexSDNode *FI = 9840 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9841 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9842 } 9843 9844 // Analyses past this point are naive and don't expect an assertion. 9845 if (Res.getOpcode() == ISD::AssertZext) 9846 Res = Res.getOperand(0); 9847 9848 // Update the SwiftErrorVRegDefMap. 9849 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9850 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9851 if (Register::isVirtualRegister(Reg)) 9852 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9853 Reg); 9854 } 9855 9856 // If this argument is live outside of the entry block, insert a copy from 9857 // wherever we got it to the vreg that other BB's will reference it as. 9858 if (Res.getOpcode() == ISD::CopyFromReg) { 9859 // If we can, though, try to skip creating an unnecessary vreg. 9860 // FIXME: This isn't very clean... it would be nice to make this more 9861 // general. 9862 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9863 if (Register::isVirtualRegister(Reg)) { 9864 FuncInfo->ValueMap[&Arg] = Reg; 9865 continue; 9866 } 9867 } 9868 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9869 FuncInfo->InitializeRegForValue(&Arg); 9870 SDB->CopyToExportRegsIfNeeded(&Arg); 9871 } 9872 } 9873 9874 if (!Chains.empty()) { 9875 Chains.push_back(NewRoot); 9876 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9877 } 9878 9879 DAG.setRoot(NewRoot); 9880 9881 assert(i == InVals.size() && "Argument register count mismatch!"); 9882 9883 // If any argument copy elisions occurred and we have debug info, update the 9884 // stale frame indices used in the dbg.declare variable info table. 9885 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9886 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9887 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9888 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9889 if (I != ArgCopyElisionFrameIndexMap.end()) 9890 VI.Slot = I->second; 9891 } 9892 } 9893 9894 // Finally, if the target has anything special to do, allow it to do so. 9895 EmitFunctionEntryCode(); 9896 } 9897 9898 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9899 /// ensure constants are generated when needed. Remember the virtual registers 9900 /// that need to be added to the Machine PHI nodes as input. We cannot just 9901 /// directly add them, because expansion might result in multiple MBB's for one 9902 /// BB. As such, the start of the BB might correspond to a different MBB than 9903 /// the end. 9904 void 9905 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9906 const Instruction *TI = LLVMBB->getTerminator(); 9907 9908 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9909 9910 // Check PHI nodes in successors that expect a value to be available from this 9911 // block. 9912 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9913 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9914 if (!isa<PHINode>(SuccBB->begin())) continue; 9915 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9916 9917 // If this terminator has multiple identical successors (common for 9918 // switches), only handle each succ once. 9919 if (!SuccsHandled.insert(SuccMBB).second) 9920 continue; 9921 9922 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9923 9924 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9925 // nodes and Machine PHI nodes, but the incoming operands have not been 9926 // emitted yet. 9927 for (const PHINode &PN : SuccBB->phis()) { 9928 // Ignore dead phi's. 9929 if (PN.use_empty()) 9930 continue; 9931 9932 // Skip empty types 9933 if (PN.getType()->isEmptyTy()) 9934 continue; 9935 9936 unsigned Reg; 9937 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9938 9939 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9940 unsigned &RegOut = ConstantsOut[C]; 9941 if (RegOut == 0) { 9942 RegOut = FuncInfo.CreateRegs(C); 9943 CopyValueToVirtualRegister(C, RegOut); 9944 } 9945 Reg = RegOut; 9946 } else { 9947 DenseMap<const Value *, unsigned>::iterator I = 9948 FuncInfo.ValueMap.find(PHIOp); 9949 if (I != FuncInfo.ValueMap.end()) 9950 Reg = I->second; 9951 else { 9952 assert(isa<AllocaInst>(PHIOp) && 9953 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9954 "Didn't codegen value into a register!??"); 9955 Reg = FuncInfo.CreateRegs(PHIOp); 9956 CopyValueToVirtualRegister(PHIOp, Reg); 9957 } 9958 } 9959 9960 // Remember that this register needs to added to the machine PHI node as 9961 // the input for this MBB. 9962 SmallVector<EVT, 4> ValueVTs; 9963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9964 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9965 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9966 EVT VT = ValueVTs[vti]; 9967 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9968 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9969 FuncInfo.PHINodesToUpdate.push_back( 9970 std::make_pair(&*MBBI++, Reg + i)); 9971 Reg += NumRegisters; 9972 } 9973 } 9974 } 9975 9976 ConstantsOut.clear(); 9977 } 9978 9979 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9980 /// is 0. 9981 MachineBasicBlock * 9982 SelectionDAGBuilder::StackProtectorDescriptor:: 9983 AddSuccessorMBB(const BasicBlock *BB, 9984 MachineBasicBlock *ParentMBB, 9985 bool IsLikely, 9986 MachineBasicBlock *SuccMBB) { 9987 // If SuccBB has not been created yet, create it. 9988 if (!SuccMBB) { 9989 MachineFunction *MF = ParentMBB->getParent(); 9990 MachineFunction::iterator BBI(ParentMBB); 9991 SuccMBB = MF->CreateMachineBasicBlock(BB); 9992 MF->insert(++BBI, SuccMBB); 9993 } 9994 // Add it as a successor of ParentMBB. 9995 ParentMBB->addSuccessor( 9996 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9997 return SuccMBB; 9998 } 9999 10000 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10001 MachineFunction::iterator I(MBB); 10002 if (++I == FuncInfo.MF->end()) 10003 return nullptr; 10004 return &*I; 10005 } 10006 10007 /// During lowering new call nodes can be created (such as memset, etc.). 10008 /// Those will become new roots of the current DAG, but complications arise 10009 /// when they are tail calls. In such cases, the call lowering will update 10010 /// the root, but the builder still needs to know that a tail call has been 10011 /// lowered in order to avoid generating an additional return. 10012 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10013 // If the node is null, we do have a tail call. 10014 if (MaybeTC.getNode() != nullptr) 10015 DAG.setRoot(MaybeTC); 10016 else 10017 HasTailCall = true; 10018 } 10019 10020 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10021 MachineBasicBlock *SwitchMBB, 10022 MachineBasicBlock *DefaultMBB) { 10023 MachineFunction *CurMF = FuncInfo.MF; 10024 MachineBasicBlock *NextMBB = nullptr; 10025 MachineFunction::iterator BBI(W.MBB); 10026 if (++BBI != FuncInfo.MF->end()) 10027 NextMBB = &*BBI; 10028 10029 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10030 10031 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10032 10033 if (Size == 2 && W.MBB == SwitchMBB) { 10034 // If any two of the cases has the same destination, and if one value 10035 // is the same as the other, but has one bit unset that the other has set, 10036 // use bit manipulation to do two compares at once. For example: 10037 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10038 // TODO: This could be extended to merge any 2 cases in switches with 3 10039 // cases. 10040 // TODO: Handle cases where W.CaseBB != SwitchBB. 10041 CaseCluster &Small = *W.FirstCluster; 10042 CaseCluster &Big = *W.LastCluster; 10043 10044 if (Small.Low == Small.High && Big.Low == Big.High && 10045 Small.MBB == Big.MBB) { 10046 const APInt &SmallValue = Small.Low->getValue(); 10047 const APInt &BigValue = Big.Low->getValue(); 10048 10049 // Check that there is only one bit different. 10050 APInt CommonBit = BigValue ^ SmallValue; 10051 if (CommonBit.isPowerOf2()) { 10052 SDValue CondLHS = getValue(Cond); 10053 EVT VT = CondLHS.getValueType(); 10054 SDLoc DL = getCurSDLoc(); 10055 10056 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10057 DAG.getConstant(CommonBit, DL, VT)); 10058 SDValue Cond = DAG.getSetCC( 10059 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10060 ISD::SETEQ); 10061 10062 // Update successor info. 10063 // Both Small and Big will jump to Small.BB, so we sum up the 10064 // probabilities. 10065 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10066 if (BPI) 10067 addSuccessorWithProb( 10068 SwitchMBB, DefaultMBB, 10069 // The default destination is the first successor in IR. 10070 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10071 else 10072 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10073 10074 // Insert the true branch. 10075 SDValue BrCond = 10076 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10077 DAG.getBasicBlock(Small.MBB)); 10078 // Insert the false branch. 10079 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10080 DAG.getBasicBlock(DefaultMBB)); 10081 10082 DAG.setRoot(BrCond); 10083 return; 10084 } 10085 } 10086 } 10087 10088 if (TM.getOptLevel() != CodeGenOpt::None) { 10089 // Here, we order cases by probability so the most likely case will be 10090 // checked first. However, two clusters can have the same probability in 10091 // which case their relative ordering is non-deterministic. So we use Low 10092 // as a tie-breaker as clusters are guaranteed to never overlap. 10093 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10094 [](const CaseCluster &a, const CaseCluster &b) { 10095 return a.Prob != b.Prob ? 10096 a.Prob > b.Prob : 10097 a.Low->getValue().slt(b.Low->getValue()); 10098 }); 10099 10100 // Rearrange the case blocks so that the last one falls through if possible 10101 // without changing the order of probabilities. 10102 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10103 --I; 10104 if (I->Prob > W.LastCluster->Prob) 10105 break; 10106 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10107 std::swap(*I, *W.LastCluster); 10108 break; 10109 } 10110 } 10111 } 10112 10113 // Compute total probability. 10114 BranchProbability DefaultProb = W.DefaultProb; 10115 BranchProbability UnhandledProbs = DefaultProb; 10116 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10117 UnhandledProbs += I->Prob; 10118 10119 MachineBasicBlock *CurMBB = W.MBB; 10120 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10121 bool FallthroughUnreachable = false; 10122 MachineBasicBlock *Fallthrough; 10123 if (I == W.LastCluster) { 10124 // For the last cluster, fall through to the default destination. 10125 Fallthrough = DefaultMBB; 10126 FallthroughUnreachable = isa<UnreachableInst>( 10127 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10128 } else { 10129 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10130 CurMF->insert(BBI, Fallthrough); 10131 // Put Cond in a virtual register to make it available from the new blocks. 10132 ExportFromCurrentBlock(Cond); 10133 } 10134 UnhandledProbs -= I->Prob; 10135 10136 switch (I->Kind) { 10137 case CC_JumpTable: { 10138 // FIXME: Optimize away range check based on pivot comparisons. 10139 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10140 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10141 10142 // The jump block hasn't been inserted yet; insert it here. 10143 MachineBasicBlock *JumpMBB = JT->MBB; 10144 CurMF->insert(BBI, JumpMBB); 10145 10146 auto JumpProb = I->Prob; 10147 auto FallthroughProb = UnhandledProbs; 10148 10149 // If the default statement is a target of the jump table, we evenly 10150 // distribute the default probability to successors of CurMBB. Also 10151 // update the probability on the edge from JumpMBB to Fallthrough. 10152 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10153 SE = JumpMBB->succ_end(); 10154 SI != SE; ++SI) { 10155 if (*SI == DefaultMBB) { 10156 JumpProb += DefaultProb / 2; 10157 FallthroughProb -= DefaultProb / 2; 10158 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10159 JumpMBB->normalizeSuccProbs(); 10160 break; 10161 } 10162 } 10163 10164 if (FallthroughUnreachable) { 10165 // Skip the range check if the fallthrough block is unreachable. 10166 JTH->OmitRangeCheck = true; 10167 } 10168 10169 if (!JTH->OmitRangeCheck) 10170 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10171 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10172 CurMBB->normalizeSuccProbs(); 10173 10174 // The jump table header will be inserted in our current block, do the 10175 // range check, and fall through to our fallthrough block. 10176 JTH->HeaderBB = CurMBB; 10177 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10178 10179 // If we're in the right place, emit the jump table header right now. 10180 if (CurMBB == SwitchMBB) { 10181 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10182 JTH->Emitted = true; 10183 } 10184 break; 10185 } 10186 case CC_BitTests: { 10187 // FIXME: Optimize away range check based on pivot comparisons. 10188 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10189 10190 // The bit test blocks haven't been inserted yet; insert them here. 10191 for (BitTestCase &BTC : BTB->Cases) 10192 CurMF->insert(BBI, BTC.ThisBB); 10193 10194 // Fill in fields of the BitTestBlock. 10195 BTB->Parent = CurMBB; 10196 BTB->Default = Fallthrough; 10197 10198 BTB->DefaultProb = UnhandledProbs; 10199 // If the cases in bit test don't form a contiguous range, we evenly 10200 // distribute the probability on the edge to Fallthrough to two 10201 // successors of CurMBB. 10202 if (!BTB->ContiguousRange) { 10203 BTB->Prob += DefaultProb / 2; 10204 BTB->DefaultProb -= DefaultProb / 2; 10205 } 10206 10207 if (FallthroughUnreachable) { 10208 // Skip the range check if the fallthrough block is unreachable. 10209 BTB->OmitRangeCheck = true; 10210 } 10211 10212 // If we're in the right place, emit the bit test header right now. 10213 if (CurMBB == SwitchMBB) { 10214 visitBitTestHeader(*BTB, SwitchMBB); 10215 BTB->Emitted = true; 10216 } 10217 break; 10218 } 10219 case CC_Range: { 10220 const Value *RHS, *LHS, *MHS; 10221 ISD::CondCode CC; 10222 if (I->Low == I->High) { 10223 // Check Cond == I->Low. 10224 CC = ISD::SETEQ; 10225 LHS = Cond; 10226 RHS=I->Low; 10227 MHS = nullptr; 10228 } else { 10229 // Check I->Low <= Cond <= I->High. 10230 CC = ISD::SETLE; 10231 LHS = I->Low; 10232 MHS = Cond; 10233 RHS = I->High; 10234 } 10235 10236 // If Fallthrough is unreachable, fold away the comparison. 10237 if (FallthroughUnreachable) 10238 CC = ISD::SETTRUE; 10239 10240 // The false probability is the sum of all unhandled cases. 10241 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10242 getCurSDLoc(), I->Prob, UnhandledProbs); 10243 10244 if (CurMBB == SwitchMBB) 10245 visitSwitchCase(CB, SwitchMBB); 10246 else 10247 SL->SwitchCases.push_back(CB); 10248 10249 break; 10250 } 10251 } 10252 CurMBB = Fallthrough; 10253 } 10254 } 10255 10256 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10257 CaseClusterIt First, 10258 CaseClusterIt Last) { 10259 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10260 if (X.Prob != CC.Prob) 10261 return X.Prob > CC.Prob; 10262 10263 // Ties are broken by comparing the case value. 10264 return X.Low->getValue().slt(CC.Low->getValue()); 10265 }); 10266 } 10267 10268 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10269 const SwitchWorkListItem &W, 10270 Value *Cond, 10271 MachineBasicBlock *SwitchMBB) { 10272 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10273 "Clusters not sorted?"); 10274 10275 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10276 10277 // Balance the tree based on branch probabilities to create a near-optimal (in 10278 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10279 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10280 CaseClusterIt LastLeft = W.FirstCluster; 10281 CaseClusterIt FirstRight = W.LastCluster; 10282 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10283 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10284 10285 // Move LastLeft and FirstRight towards each other from opposite directions to 10286 // find a partitioning of the clusters which balances the probability on both 10287 // sides. If LeftProb and RightProb are equal, alternate which side is 10288 // taken to ensure 0-probability nodes are distributed evenly. 10289 unsigned I = 0; 10290 while (LastLeft + 1 < FirstRight) { 10291 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10292 LeftProb += (++LastLeft)->Prob; 10293 else 10294 RightProb += (--FirstRight)->Prob; 10295 I++; 10296 } 10297 10298 while (true) { 10299 // Our binary search tree differs from a typical BST in that ours can have up 10300 // to three values in each leaf. The pivot selection above doesn't take that 10301 // into account, which means the tree might require more nodes and be less 10302 // efficient. We compensate for this here. 10303 10304 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10305 unsigned NumRight = W.LastCluster - FirstRight + 1; 10306 10307 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10308 // If one side has less than 3 clusters, and the other has more than 3, 10309 // consider taking a cluster from the other side. 10310 10311 if (NumLeft < NumRight) { 10312 // Consider moving the first cluster on the right to the left side. 10313 CaseCluster &CC = *FirstRight; 10314 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10315 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10316 if (LeftSideRank <= RightSideRank) { 10317 // Moving the cluster to the left does not demote it. 10318 ++LastLeft; 10319 ++FirstRight; 10320 continue; 10321 } 10322 } else { 10323 assert(NumRight < NumLeft); 10324 // Consider moving the last element on the left to the right side. 10325 CaseCluster &CC = *LastLeft; 10326 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10327 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10328 if (RightSideRank <= LeftSideRank) { 10329 // Moving the cluster to the right does not demot it. 10330 --LastLeft; 10331 --FirstRight; 10332 continue; 10333 } 10334 } 10335 } 10336 break; 10337 } 10338 10339 assert(LastLeft + 1 == FirstRight); 10340 assert(LastLeft >= W.FirstCluster); 10341 assert(FirstRight <= W.LastCluster); 10342 10343 // Use the first element on the right as pivot since we will make less-than 10344 // comparisons against it. 10345 CaseClusterIt PivotCluster = FirstRight; 10346 assert(PivotCluster > W.FirstCluster); 10347 assert(PivotCluster <= W.LastCluster); 10348 10349 CaseClusterIt FirstLeft = W.FirstCluster; 10350 CaseClusterIt LastRight = W.LastCluster; 10351 10352 const ConstantInt *Pivot = PivotCluster->Low; 10353 10354 // New blocks will be inserted immediately after the current one. 10355 MachineFunction::iterator BBI(W.MBB); 10356 ++BBI; 10357 10358 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10359 // we can branch to its destination directly if it's squeezed exactly in 10360 // between the known lower bound and Pivot - 1. 10361 MachineBasicBlock *LeftMBB; 10362 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10363 FirstLeft->Low == W.GE && 10364 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10365 LeftMBB = FirstLeft->MBB; 10366 } else { 10367 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10368 FuncInfo.MF->insert(BBI, LeftMBB); 10369 WorkList.push_back( 10370 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10371 // Put Cond in a virtual register to make it available from the new blocks. 10372 ExportFromCurrentBlock(Cond); 10373 } 10374 10375 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10376 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10377 // directly if RHS.High equals the current upper bound. 10378 MachineBasicBlock *RightMBB; 10379 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10380 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10381 RightMBB = FirstRight->MBB; 10382 } else { 10383 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10384 FuncInfo.MF->insert(BBI, RightMBB); 10385 WorkList.push_back( 10386 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10387 // Put Cond in a virtual register to make it available from the new blocks. 10388 ExportFromCurrentBlock(Cond); 10389 } 10390 10391 // Create the CaseBlock record that will be used to lower the branch. 10392 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10393 getCurSDLoc(), LeftProb, RightProb); 10394 10395 if (W.MBB == SwitchMBB) 10396 visitSwitchCase(CB, SwitchMBB); 10397 else 10398 SL->SwitchCases.push_back(CB); 10399 } 10400 10401 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10402 // from the swith statement. 10403 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10404 BranchProbability PeeledCaseProb) { 10405 if (PeeledCaseProb == BranchProbability::getOne()) 10406 return BranchProbability::getZero(); 10407 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10408 10409 uint32_t Numerator = CaseProb.getNumerator(); 10410 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10411 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10412 } 10413 10414 // Try to peel the top probability case if it exceeds the threshold. 10415 // Return current MachineBasicBlock for the switch statement if the peeling 10416 // does not occur. 10417 // If the peeling is performed, return the newly created MachineBasicBlock 10418 // for the peeled switch statement. Also update Clusters to remove the peeled 10419 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10420 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10421 const SwitchInst &SI, CaseClusterVector &Clusters, 10422 BranchProbability &PeeledCaseProb) { 10423 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10424 // Don't perform if there is only one cluster or optimizing for size. 10425 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10426 TM.getOptLevel() == CodeGenOpt::None || 10427 SwitchMBB->getParent()->getFunction().hasMinSize()) 10428 return SwitchMBB; 10429 10430 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10431 unsigned PeeledCaseIndex = 0; 10432 bool SwitchPeeled = false; 10433 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10434 CaseCluster &CC = Clusters[Index]; 10435 if (CC.Prob < TopCaseProb) 10436 continue; 10437 TopCaseProb = CC.Prob; 10438 PeeledCaseIndex = Index; 10439 SwitchPeeled = true; 10440 } 10441 if (!SwitchPeeled) 10442 return SwitchMBB; 10443 10444 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10445 << TopCaseProb << "\n"); 10446 10447 // Record the MBB for the peeled switch statement. 10448 MachineFunction::iterator BBI(SwitchMBB); 10449 ++BBI; 10450 MachineBasicBlock *PeeledSwitchMBB = 10451 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10452 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10453 10454 ExportFromCurrentBlock(SI.getCondition()); 10455 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10456 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10457 nullptr, nullptr, TopCaseProb.getCompl()}; 10458 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10459 10460 Clusters.erase(PeeledCaseIt); 10461 for (CaseCluster &CC : Clusters) { 10462 LLVM_DEBUG( 10463 dbgs() << "Scale the probablity for one cluster, before scaling: " 10464 << CC.Prob << "\n"); 10465 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10466 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10467 } 10468 PeeledCaseProb = TopCaseProb; 10469 return PeeledSwitchMBB; 10470 } 10471 10472 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10473 // Extract cases from the switch. 10474 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10475 CaseClusterVector Clusters; 10476 Clusters.reserve(SI.getNumCases()); 10477 for (auto I : SI.cases()) { 10478 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10479 const ConstantInt *CaseVal = I.getCaseValue(); 10480 BranchProbability Prob = 10481 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10482 : BranchProbability(1, SI.getNumCases() + 1); 10483 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10484 } 10485 10486 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10487 10488 // Cluster adjacent cases with the same destination. We do this at all 10489 // optimization levels because it's cheap to do and will make codegen faster 10490 // if there are many clusters. 10491 sortAndRangeify(Clusters); 10492 10493 // The branch probablity of the peeled case. 10494 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10495 MachineBasicBlock *PeeledSwitchMBB = 10496 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10497 10498 // If there is only the default destination, jump there directly. 10499 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10500 if (Clusters.empty()) { 10501 assert(PeeledSwitchMBB == SwitchMBB); 10502 SwitchMBB->addSuccessor(DefaultMBB); 10503 if (DefaultMBB != NextBlock(SwitchMBB)) { 10504 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10505 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10506 } 10507 return; 10508 } 10509 10510 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10511 SL->findBitTestClusters(Clusters, &SI); 10512 10513 LLVM_DEBUG({ 10514 dbgs() << "Case clusters: "; 10515 for (const CaseCluster &C : Clusters) { 10516 if (C.Kind == CC_JumpTable) 10517 dbgs() << "JT:"; 10518 if (C.Kind == CC_BitTests) 10519 dbgs() << "BT:"; 10520 10521 C.Low->getValue().print(dbgs(), true); 10522 if (C.Low != C.High) { 10523 dbgs() << '-'; 10524 C.High->getValue().print(dbgs(), true); 10525 } 10526 dbgs() << ' '; 10527 } 10528 dbgs() << '\n'; 10529 }); 10530 10531 assert(!Clusters.empty()); 10532 SwitchWorkList WorkList; 10533 CaseClusterIt First = Clusters.begin(); 10534 CaseClusterIt Last = Clusters.end() - 1; 10535 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10536 // Scale the branchprobability for DefaultMBB if the peel occurs and 10537 // DefaultMBB is not replaced. 10538 if (PeeledCaseProb != BranchProbability::getZero() && 10539 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10540 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10541 WorkList.push_back( 10542 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10543 10544 while (!WorkList.empty()) { 10545 SwitchWorkListItem W = WorkList.back(); 10546 WorkList.pop_back(); 10547 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10548 10549 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10550 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10551 // For optimized builds, lower large range as a balanced binary tree. 10552 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10553 continue; 10554 } 10555 10556 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10557 } 10558 } 10559 10560 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10561 SDValue N = getValue(I.getOperand(0)); 10562 setValue(&I, N); 10563 } 10564