1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GetElementPtrTypeIterator.h" 71 #include "llvm/IR/InlineAsm.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsAArch64.h" 77 #include "llvm/IR/IntrinsicsWebAssembly.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Statepoint.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/Support/AtomicOrdering.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Target/TargetIntrinsicInfo.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetOptions.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <cstddef> 100 #include <iterator> 101 #include <limits> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace PatternMatch; 106 using namespace SwitchCG; 107 108 #define DEBUG_TYPE "isel" 109 110 /// LimitFloatPrecision - Generate low-precision inline sequences for 111 /// some float libcalls (6, 8 or 12 bits). 112 static unsigned LimitFloatPrecision; 113 114 static cl::opt<bool> 115 InsertAssertAlign("insert-assert-align", cl::init(true), 116 cl::desc("Insert the experimental `assertalign` node."), 117 cl::ReallyHidden); 118 119 static cl::opt<unsigned, true> 120 LimitFPPrecision("limit-float-precision", 121 cl::desc("Generate low-precision inline sequences " 122 "for some float libcalls"), 123 cl::location(LimitFloatPrecision), cl::Hidden, 124 cl::init(0)); 125 126 static cl::opt<unsigned> SwitchPeelThreshold( 127 "switch-peel-threshold", cl::Hidden, cl::init(66), 128 cl::desc("Set the case probability threshold for peeling the case from a " 129 "switch statement. A value greater than 100 will void this " 130 "optimization")); 131 132 // Limit the width of DAG chains. This is important in general to prevent 133 // DAG-based analysis from blowing up. For example, alias analysis and 134 // load clustering may not complete in reasonable time. It is difficult to 135 // recognize and avoid this situation within each individual analysis, and 136 // future analyses are likely to have the same behavior. Limiting DAG width is 137 // the safe approach and will be especially important with global DAGs. 138 // 139 // MaxParallelChains default is arbitrarily high to avoid affecting 140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 141 // sequence over this should have been converted to llvm.memcpy by the 142 // frontend. It is easy to induce this behavior with .ll code such as: 143 // %buffer = alloca [4096 x i8] 144 // %data = load [4096 x i8]* %argPtr 145 // store [4096 x i8] %data, [4096 x i8]* %buffer 146 static const unsigned MaxParallelChains = 64; 147 148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 149 const SDValue *Parts, unsigned NumParts, 150 MVT PartVT, EVT ValueVT, const Value *V, 151 Optional<CallingConv::ID> CC); 152 153 /// getCopyFromParts - Create a value that contains the specified legal parts 154 /// combined into the value they represent. If the parts combine to a type 155 /// larger than ValueVT then AssertOp can be used to specify whether the extra 156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 157 /// (ISD::AssertSext). 158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 159 const SDValue *Parts, unsigned NumParts, 160 MVT PartVT, EVT ValueVT, const Value *V, 161 Optional<CallingConv::ID> CC = None, 162 Optional<ISD::NodeType> AssertOp = None) { 163 // Let the target assemble the parts if it wants to 164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 165 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 166 PartVT, ValueVT, CC)) 167 return Val; 168 169 if (ValueVT.isVector()) 170 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 171 CC); 172 173 assert(NumParts > 0 && "No parts to assemble!"); 174 SDValue Val = Parts[0]; 175 176 if (NumParts > 1) { 177 // Assemble the value from multiple parts. 178 if (ValueVT.isInteger()) { 179 unsigned PartBits = PartVT.getSizeInBits(); 180 unsigned ValueBits = ValueVT.getSizeInBits(); 181 182 // Assemble the power of 2 part. 183 unsigned RoundParts = 184 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 185 unsigned RoundBits = PartBits * RoundParts; 186 EVT RoundVT = RoundBits == ValueBits ? 187 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 188 SDValue Lo, Hi; 189 190 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 191 192 if (RoundParts > 2) { 193 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 194 PartVT, HalfVT, V); 195 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 196 RoundParts / 2, PartVT, HalfVT, V); 197 } else { 198 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 199 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 200 } 201 202 if (DAG.getDataLayout().isBigEndian()) 203 std::swap(Lo, Hi); 204 205 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 206 207 if (RoundParts < NumParts) { 208 // Assemble the trailing non-power-of-2 part. 209 unsigned OddParts = NumParts - RoundParts; 210 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 211 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 212 OddVT, V, CC); 213 214 // Combine the round and odd parts. 215 Lo = Val; 216 if (DAG.getDataLayout().isBigEndian()) 217 std::swap(Lo, Hi); 218 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 219 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 220 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueSizeInBits(), DL, 222 TLI.getShiftAmountTy( 223 TotalVT, DAG.getDataLayout()))); 224 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 225 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 226 } 227 } else if (PartVT.isFloatingPoint()) { 228 // FP split into multiple FP parts (for ppcf128) 229 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 230 "Unexpected split"); 231 SDValue Lo, Hi; 232 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 233 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 234 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 235 std::swap(Lo, Hi); 236 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 237 } else { 238 // FP split into integer parts (soft fp) 239 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 240 !PartVT.isVector() && "Unexpected split"); 241 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 242 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 243 } 244 } 245 246 // There is now one part, held in Val. Correct it to match ValueVT. 247 // PartEVT is the type of the register class that holds the value. 248 // ValueVT is the type of the inline asm operation. 249 EVT PartEVT = Val.getValueType(); 250 251 if (PartEVT == ValueVT) 252 return Val; 253 254 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 255 ValueVT.bitsLT(PartEVT)) { 256 // For an FP value in an integer part, we need to truncate to the right 257 // width first. 258 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 259 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 260 } 261 262 // Handle types that have the same size. 263 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 264 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 265 266 // Handle types with different sizes. 267 if (PartEVT.isInteger() && ValueVT.isInteger()) { 268 if (ValueVT.bitsLT(PartEVT)) { 269 // For a truncate, see if we have any information to 270 // indicate whether the truncated bits will always be 271 // zero or sign-extension. 272 if (AssertOp) 273 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 274 DAG.getValueType(ValueVT)); 275 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 276 } 277 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 278 } 279 280 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 281 // FP_ROUND's are always exact here. 282 if (ValueVT.bitsLT(Val.getValueType())) 283 return DAG.getNode( 284 ISD::FP_ROUND, DL, ValueVT, Val, 285 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 286 287 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 288 } 289 290 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 291 // then truncating. 292 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 293 ValueVT.bitsLT(PartEVT)) { 294 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 295 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 296 } 297 298 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 299 } 300 301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 302 const Twine &ErrMsg) { 303 const Instruction *I = dyn_cast_or_null<Instruction>(V); 304 if (!V) 305 return Ctx.emitError(ErrMsg); 306 307 const char *AsmError = ", possible invalid constraint for vector type"; 308 if (const CallInst *CI = dyn_cast<CallInst>(I)) 309 if (CI->isInlineAsm()) 310 return Ctx.emitError(I, ErrMsg + AsmError); 311 312 return Ctx.emitError(I, ErrMsg); 313 } 314 315 /// getCopyFromPartsVector - Create a value that contains the specified legal 316 /// parts combined into the value they represent. If the parts combine to a 317 /// type larger than ValueVT then AssertOp can be used to specify whether the 318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 319 /// ValueVT (ISD::AssertSext). 320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 321 const SDValue *Parts, unsigned NumParts, 322 MVT PartVT, EVT ValueVT, const Value *V, 323 Optional<CallingConv::ID> CallConv) { 324 assert(ValueVT.isVector() && "Not a vector value"); 325 assert(NumParts > 0 && "No parts to assemble!"); 326 const bool IsABIRegCopy = CallConv.has_value(); 327 328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 329 SDValue Val = Parts[0]; 330 331 // Handle a multi-element vector. 332 if (NumParts > 1) { 333 EVT IntermediateVT; 334 MVT RegisterVT; 335 unsigned NumIntermediates; 336 unsigned NumRegs; 337 338 if (IsABIRegCopy) { 339 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 340 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 341 NumIntermediates, RegisterVT); 342 } else { 343 NumRegs = 344 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 345 NumIntermediates, RegisterVT); 346 } 347 348 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 349 NumParts = NumRegs; // Silence a compiler warning. 350 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 351 assert(RegisterVT.getSizeInBits() == 352 Parts[0].getSimpleValueType().getSizeInBits() && 353 "Part type sizes don't match!"); 354 355 // Assemble the parts into intermediate operands. 356 SmallVector<SDValue, 8> Ops(NumIntermediates); 357 if (NumIntermediates == NumParts) { 358 // If the register was not expanded, truncate or copy the value, 359 // as appropriate. 360 for (unsigned i = 0; i != NumParts; ++i) 361 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 362 PartVT, IntermediateVT, V, CallConv); 363 } else if (NumParts > 0) { 364 // If the intermediate type was expanded, build the intermediate 365 // operands from the parts. 366 assert(NumParts % NumIntermediates == 0 && 367 "Must expand into a divisible number of parts!"); 368 unsigned Factor = NumParts / NumIntermediates; 369 for (unsigned i = 0; i != NumIntermediates; ++i) 370 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 371 PartVT, IntermediateVT, V, CallConv); 372 } 373 374 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 375 // intermediate operands. 376 EVT BuiltVectorTy = 377 IntermediateVT.isVector() 378 ? EVT::getVectorVT( 379 *DAG.getContext(), IntermediateVT.getScalarType(), 380 IntermediateVT.getVectorElementCount() * NumParts) 381 : EVT::getVectorVT(*DAG.getContext(), 382 IntermediateVT.getScalarType(), 383 NumIntermediates); 384 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 385 : ISD::BUILD_VECTOR, 386 DL, BuiltVectorTy, Ops); 387 } 388 389 // There is now one part, held in Val. Correct it to match ValueVT. 390 EVT PartEVT = Val.getValueType(); 391 392 if (PartEVT == ValueVT) 393 return Val; 394 395 if (PartEVT.isVector()) { 396 // Vector/Vector bitcast. 397 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 398 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 399 400 // If the element type of the source/dest vectors are the same, but the 401 // parts vector has more elements than the value vector, then we have a 402 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 403 // elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 } 418 419 // Promoted vector extract 420 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 421 } 422 423 // Trivial bitcast if the types are the same size and the destination 424 // vector type is legal. 425 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 426 TLI.isTypeLegal(ValueVT)) 427 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 428 429 if (ValueVT.getVectorNumElements() != 1) { 430 // Certain ABIs require that vectors are passed as integers. For vectors 431 // are the same size, this is an obvious bitcast. 432 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 433 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 434 } else if (ValueVT.bitsLT(PartEVT)) { 435 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 436 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 437 // Drop the extra bits. 438 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 439 return DAG.getBitcast(ValueVT, Val); 440 } 441 442 diagnosePossiblyInvalidConstraint( 443 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 444 return DAG.getUNDEF(ValueVT); 445 } 446 447 // Handle cases such as i8 -> <1 x i1> 448 EVT ValueSVT = ValueVT.getVectorElementType(); 449 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 450 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 451 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 452 else 453 Val = ValueVT.isFloatingPoint() 454 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 455 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 456 } 457 458 return DAG.getBuildVector(ValueVT, DL, Val); 459 } 460 461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 462 SDValue Val, SDValue *Parts, unsigned NumParts, 463 MVT PartVT, const Value *V, 464 Optional<CallingConv::ID> CallConv); 465 466 /// getCopyToParts - Create a series of nodes that contain the specified value 467 /// split into legal parts. If the parts contain more bits than Val, then, for 468 /// integers, ExtendKind can be used to specify how to generate the extra bits. 469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 470 SDValue *Parts, unsigned NumParts, MVT PartVT, 471 const Value *V, 472 Optional<CallingConv::ID> CallConv = None, 473 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 474 // Let the target split the parts if it wants to 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 477 CallConv)) 478 return; 479 EVT ValueVT = Val.getValueType(); 480 481 // Handle the vector case separately. 482 if (ValueVT.isVector()) 483 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 484 CallConv); 485 486 unsigned PartBits = PartVT.getSizeInBits(); 487 unsigned OrigNumParts = NumParts; 488 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 489 "Copying to an illegal type!"); 490 491 if (NumParts == 0) 492 return; 493 494 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 495 EVT PartEVT = PartVT; 496 if (PartEVT == ValueVT) { 497 assert(NumParts == 1 && "No-op copy with multiple parts!"); 498 Parts[0] = Val; 499 return; 500 } 501 502 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 503 // If the parts cover more bits than the value has, promote the value. 504 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 505 assert(NumParts == 1 && "Do not know what to promote to!"); 506 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 507 } else { 508 if (ValueVT.isFloatingPoint()) { 509 // FP values need to be bitcast, then extended if they are being put 510 // into a larger container. 511 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 512 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 513 } 514 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 515 ValueVT.isInteger() && 516 "Unknown mismatch!"); 517 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 518 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 519 if (PartVT == MVT::x86mmx) 520 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 521 } 522 } else if (PartBits == ValueVT.getSizeInBits()) { 523 // Different types of the same size. 524 assert(NumParts == 1 && PartEVT != ValueVT); 525 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 526 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 527 // If the parts cover less bits than value has, truncate the value. 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 537 // The value may have changed - recompute ValueVT. 538 ValueVT = Val.getValueType(); 539 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 540 "Failed to tile the value with PartVT!"); 541 542 if (NumParts == 1) { 543 if (PartEVT != ValueVT) { 544 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 545 "scalar-to-vector conversion failed"); 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 Parts[0] = Val; 550 return; 551 } 552 553 // Expand the value into multiple parts. 554 if (NumParts & (NumParts - 1)) { 555 // The number of parts is not a power of 2. Split off and copy the tail. 556 assert(PartVT.isInteger() && ValueVT.isInteger() && 557 "Do not know what to expand to!"); 558 unsigned RoundParts = 1 << Log2_32(NumParts); 559 unsigned RoundBits = RoundParts * PartBits; 560 unsigned OddParts = NumParts - RoundParts; 561 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 562 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 563 564 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 565 CallConv); 566 567 if (DAG.getDataLayout().isBigEndian()) 568 // The odd parts were reversed by getCopyToParts - unreverse them. 569 std::reverse(Parts + RoundParts, Parts + NumParts); 570 571 NumParts = RoundParts; 572 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 573 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 574 } 575 576 // The number of parts is a power of 2. Repeatedly bisect the value using 577 // EXTRACT_ELEMENT. 578 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 579 EVT::getIntegerVT(*DAG.getContext(), 580 ValueVT.getSizeInBits()), 581 Val); 582 583 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 584 for (unsigned i = 0; i < NumParts; i += StepSize) { 585 unsigned ThisBits = StepSize * PartBits / 2; 586 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 587 SDValue &Part0 = Parts[i]; 588 SDValue &Part1 = Parts[i+StepSize/2]; 589 590 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 591 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 592 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 594 595 if (ThisBits == PartBits && ThisVT != PartVT) { 596 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 597 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 598 } 599 } 600 } 601 602 if (DAG.getDataLayout().isBigEndian()) 603 std::reverse(Parts, Parts + OrigNumParts); 604 } 605 606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 607 const SDLoc &DL, EVT PartVT) { 608 if (!PartVT.isVector()) 609 return SDValue(); 610 611 EVT ValueVT = Val.getValueType(); 612 ElementCount PartNumElts = PartVT.getVectorElementCount(); 613 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 614 615 // We only support widening vectors with equivalent element types and 616 // fixed/scalable properties. If a target needs to widen a fixed-length type 617 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 618 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 619 PartNumElts.isScalable() != ValueNumElts.isScalable() || 620 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 621 return SDValue(); 622 623 // Widening a scalable vector to another scalable vector is done by inserting 624 // the vector into a larger undef one. 625 if (PartNumElts.isScalable()) 626 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 627 Val, DAG.getVectorIdxConstant(0, DL)); 628 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 DAG.ExtractVectorElements(Val, Ops); 634 SDValue EltUndef = DAG.getUNDEF(ElementVT); 635 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 636 637 // FIXME: Use CONCAT for 2x -> 4x. 638 return DAG.getBuildVector(PartVT, DL, Ops); 639 } 640 641 /// getCopyToPartsVector - Create a series of nodes that contain the specified 642 /// value split into legal parts. 643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 644 SDValue Val, SDValue *Parts, unsigned NumParts, 645 MVT PartVT, const Value *V, 646 Optional<CallingConv::ID> CallConv) { 647 EVT ValueVT = Val.getValueType(); 648 assert(ValueVT.isVector() && "Not a vector"); 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 const bool IsABIRegCopy = CallConv.has_value(); 651 652 if (NumParts == 1) { 653 EVT PartEVT = PartVT; 654 if (PartEVT == ValueVT) { 655 // Nothing to do. 656 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 657 // Bitconvert vector->vector case. 658 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 659 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 660 Val = Widened; 661 } else if (PartVT.isVector() && 662 PartEVT.getVectorElementType().bitsGE( 663 ValueVT.getVectorElementType()) && 664 PartEVT.getVectorElementCount() == 665 ValueVT.getVectorElementCount()) { 666 667 // Promoted vector extract 668 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 669 } else if (PartEVT.isVector() && 670 PartEVT.getVectorElementType() != 671 ValueVT.getVectorElementType() && 672 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 673 TargetLowering::TypeWidenVector) { 674 // Combination of widening and promotion. 675 EVT WidenVT = 676 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 677 PartVT.getVectorElementCount()); 678 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 679 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 680 } else { 681 if (ValueVT.getVectorElementCount().isScalar()) { 682 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 683 DAG.getVectorIdxConstant(0, DL)); 684 } else { 685 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 686 assert(PartVT.getFixedSizeInBits() > ValueSize && 687 "lossy conversion of vector to scalar type"); 688 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 689 Val = DAG.getBitcast(IntermediateType, Val); 690 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 691 } 692 } 693 694 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 695 Parts[0] = Val; 696 return; 697 } 698 699 // Handle a multi-element vector. 700 EVT IntermediateVT; 701 MVT RegisterVT; 702 unsigned NumIntermediates; 703 unsigned NumRegs; 704 if (IsABIRegCopy) { 705 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 706 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 707 NumIntermediates, RegisterVT); 708 } else { 709 NumRegs = 710 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } 713 714 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 715 NumParts = NumRegs; // Silence a compiler warning. 716 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 717 718 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 719 "Mixing scalable and fixed vectors when copying in parts"); 720 721 Optional<ElementCount> DestEltCnt; 722 723 if (IntermediateVT.isVector()) 724 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 725 else 726 DestEltCnt = ElementCount::getFixed(NumIntermediates); 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 730 731 if (ValueVT == BuiltVectorTy) { 732 // Nothing to do. 733 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 734 // Bitconvert vector->vector case. 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } else { 737 if (BuiltVectorTy.getVectorElementType().bitsGT( 738 ValueVT.getVectorElementType())) { 739 // Integer promotion. 740 ValueVT = EVT::getVectorVT(*DAG.getContext(), 741 BuiltVectorTy.getVectorElementType(), 742 ValueVT.getVectorElementCount()); 743 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 744 } 745 746 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 747 Val = Widened; 748 } 749 } 750 751 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 752 753 // Split the vector into intermediate operands. 754 SmallVector<SDValue, 8> Ops(NumIntermediates); 755 for (unsigned i = 0; i != NumIntermediates; ++i) { 756 if (IntermediateVT.isVector()) { 757 // This does something sensible for scalable vectors - see the 758 // definition of EXTRACT_SUBVECTOR for further details. 759 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 760 Ops[i] = 761 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 762 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 763 } else { 764 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 765 DAG.getVectorIdxConstant(i, DL)); 766 } 767 } 768 769 // Split the intermediate operands into legal parts. 770 if (NumParts == NumIntermediates) { 771 // If the register was not expanded, promote or copy the value, 772 // as appropriate. 773 for (unsigned i = 0; i != NumParts; ++i) 774 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 775 } else if (NumParts > 0) { 776 // If the intermediate type was expanded, split each the value into 777 // legal parts. 778 assert(NumIntermediates != 0 && "division by zero"); 779 assert(NumParts % NumIntermediates == 0 && 780 "Must expand into a divisible number of parts!"); 781 unsigned Factor = NumParts / NumIntermediates; 782 for (unsigned i = 0; i != NumIntermediates; ++i) 783 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 784 CallConv); 785 } 786 } 787 788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 789 EVT valuevt, Optional<CallingConv::ID> CC) 790 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 791 RegCount(1, regs.size()), CallConv(CC) {} 792 793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 794 const DataLayout &DL, unsigned Reg, Type *Ty, 795 Optional<CallingConv::ID> CC) { 796 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 797 798 CallConv = CC; 799 800 for (EVT ValueVT : ValueVTs) { 801 unsigned NumRegs = 802 isABIMangled() 803 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 804 : TLI.getNumRegisters(Context, ValueVT); 805 MVT RegisterVT = 806 isABIMangled() 807 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 808 : TLI.getRegisterType(Context, ValueVT); 809 for (unsigned i = 0; i != NumRegs; ++i) 810 Regs.push_back(Reg + i); 811 RegVTs.push_back(RegisterVT); 812 RegCount.push_back(NumRegs); 813 Reg += NumRegs; 814 } 815 } 816 817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 818 FunctionLoweringInfo &FuncInfo, 819 const SDLoc &dl, SDValue &Chain, 820 SDValue *Flag, const Value *V) const { 821 // A Value with type {} or [0 x %t] needs no registers. 822 if (ValueVTs.empty()) 823 return SDValue(); 824 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 // Assemble the legal parts into the final values. 828 SmallVector<SDValue, 4> Values(ValueVTs.size()); 829 SmallVector<SDValue, 8> Parts; 830 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 831 // Copy the legal parts from the registers. 832 EVT ValueVT = ValueVTs[Value]; 833 unsigned NumRegs = RegCount[Value]; 834 MVT RegisterVT = 835 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 836 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 837 : RegVTs[Value]; 838 839 Parts.resize(NumRegs); 840 for (unsigned i = 0; i != NumRegs; ++i) { 841 SDValue P; 842 if (!Flag) { 843 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 844 } else { 845 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 846 *Flag = P.getValue(2); 847 } 848 849 Chain = P.getValue(1); 850 Parts[i] = P; 851 852 // If the source register was virtual and if we know something about it, 853 // add an assert node. 854 if (!Register::isVirtualRegister(Regs[Part + i]) || 855 !RegisterVT.isInteger()) 856 continue; 857 858 const FunctionLoweringInfo::LiveOutInfo *LOI = 859 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 860 if (!LOI) 861 continue; 862 863 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 864 unsigned NumSignBits = LOI->NumSignBits; 865 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 866 867 if (NumZeroBits == RegSize) { 868 // The current value is a zero. 869 // Explicitly express that as it would be easier for 870 // optimizations to kick in. 871 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 872 continue; 873 } 874 875 // FIXME: We capture more information than the dag can represent. For 876 // now, just use the tightest assertzext/assertsext possible. 877 bool isSExt; 878 EVT FromVT(MVT::Other); 879 if (NumZeroBits) { 880 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 881 isSExt = false; 882 } else if (NumSignBits > 1) { 883 FromVT = 884 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 885 isSExt = true; 886 } else { 887 continue; 888 } 889 // Add an assertion node. 890 assert(FromVT != MVT::Other); 891 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 892 RegisterVT, P, DAG.getValueType(FromVT)); 893 } 894 895 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 896 RegisterVT, ValueVT, V, CallConv); 897 Part += NumRegs; 898 Parts.clear(); 899 } 900 901 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 902 } 903 904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 905 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 906 const Value *V, 907 ISD::NodeType PreferredExtendType) const { 908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 909 ISD::NodeType ExtendKind = PreferredExtendType; 910 911 // Get the list of the values's legal parts. 912 unsigned NumRegs = Regs.size(); 913 SmallVector<SDValue, 8> Parts(NumRegs); 914 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 915 unsigned NumParts = RegCount[Value]; 916 917 MVT RegisterVT = 918 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 919 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 920 : RegVTs[Value]; 921 922 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 923 ExtendKind = ISD::ZERO_EXTEND; 924 925 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 926 NumParts, RegisterVT, V, CallConv, ExtendKind); 927 Part += NumParts; 928 } 929 930 // Copy the parts into the registers. 931 SmallVector<SDValue, 8> Chains(NumRegs); 932 for (unsigned i = 0; i != NumRegs; ++i) { 933 SDValue Part; 934 if (!Flag) { 935 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 936 } else { 937 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 938 *Flag = Part.getValue(1); 939 } 940 941 Chains[i] = Part.getValue(0); 942 } 943 944 if (NumRegs == 1 || Flag) 945 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 946 // flagged to it. That is the CopyToReg nodes and the user are considered 947 // a single scheduling unit. If we create a TokenFactor and return it as 948 // chain, then the TokenFactor is both a predecessor (operand) of the 949 // user as well as a successor (the TF operands are flagged to the user). 950 // c1, f1 = CopyToReg 951 // c2, f2 = CopyToReg 952 // c3 = TokenFactor c1, c2 953 // ... 954 // = op c3, ..., f2 955 Chain = Chains[NumRegs-1]; 956 else 957 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 958 } 959 960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 961 unsigned MatchingIdx, const SDLoc &dl, 962 SelectionDAG &DAG, 963 std::vector<SDValue> &Ops) const { 964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 965 966 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 967 if (HasMatching) 968 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 969 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 970 // Put the register class of the virtual registers in the flag word. That 971 // way, later passes can recompute register class constraints for inline 972 // assembly as well as normal instructions. 973 // Don't do this for tied operands that can use the regclass information 974 // from the def. 975 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 976 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 977 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 978 } 979 980 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 981 Ops.push_back(Res); 982 983 if (Code == InlineAsm::Kind_Clobber) { 984 // Clobbers should always have a 1:1 mapping with registers, and may 985 // reference registers that have illegal (e.g. vector) types. Hence, we 986 // shouldn't try to apply any sort of splitting logic to them. 987 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 988 "No 1:1 mapping from clobbers to regs?"); 989 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 990 (void)SP; 991 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 992 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 993 assert( 994 (Regs[I] != SP || 995 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 996 "If we clobbered the stack pointer, MFI should know about it."); 997 } 998 return; 999 } 1000 1001 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1002 MVT RegisterVT = RegVTs[Value]; 1003 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1004 RegisterVT); 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1007 unsigned TheReg = Regs[Reg++]; 1008 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1009 } 1010 } 1011 } 1012 1013 SmallVector<std::pair<unsigned, TypeSize>, 4> 1014 RegsForValue::getRegsAndSizes() const { 1015 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1016 unsigned I = 0; 1017 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1018 unsigned RegCount = std::get<0>(CountAndVT); 1019 MVT RegisterVT = std::get<1>(CountAndVT); 1020 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1021 for (unsigned E = I + RegCount; I != E; ++I) 1022 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1023 } 1024 return OutVec; 1025 } 1026 1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1028 const TargetLibraryInfo *li) { 1029 AA = aa; 1030 GFI = gfi; 1031 LibInfo = li; 1032 Context = DAG.getContext(); 1033 LPadToCallSiteMap.clear(); 1034 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1035 } 1036 1037 void SelectionDAGBuilder::clear() { 1038 NodeMap.clear(); 1039 UnusedArgNodeMap.clear(); 1040 PendingLoads.clear(); 1041 PendingExports.clear(); 1042 PendingConstrainedFP.clear(); 1043 PendingConstrainedFPStrict.clear(); 1044 CurInst = nullptr; 1045 HasTailCall = false; 1046 SDNodeOrder = LowestSDNodeOrder; 1047 StatepointLowering.clear(); 1048 } 1049 1050 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1051 DanglingDebugInfoMap.clear(); 1052 } 1053 1054 // Update DAG root to include dependencies on Pending chains. 1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1056 SDValue Root = DAG.getRoot(); 1057 1058 if (Pending.empty()) 1059 return Root; 1060 1061 // Add current root to PendingChains, unless we already indirectly 1062 // depend on it. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = Pending.size(); 1065 for (; i != e; ++i) { 1066 assert(Pending[i].getNode()->getNumOperands() > 1); 1067 if (Pending[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 Pending.push_back(Root); 1073 } 1074 1075 if (Pending.size() == 1) 1076 Root = Pending[0]; 1077 else 1078 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1079 1080 DAG.setRoot(Root); 1081 Pending.clear(); 1082 return Root; 1083 } 1084 1085 SDValue SelectionDAGBuilder::getMemoryRoot() { 1086 return updateRoot(PendingLoads); 1087 } 1088 1089 SDValue SelectionDAGBuilder::getRoot() { 1090 // Chain up all pending constrained intrinsics together with all 1091 // pending loads, by simply appending them to PendingLoads and 1092 // then calling getMemoryRoot(). 1093 PendingLoads.reserve(PendingLoads.size() + 1094 PendingConstrainedFP.size() + 1095 PendingConstrainedFPStrict.size()); 1096 PendingLoads.append(PendingConstrainedFP.begin(), 1097 PendingConstrainedFP.end()); 1098 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFP.clear(); 1101 PendingConstrainedFPStrict.clear(); 1102 return getMemoryRoot(); 1103 } 1104 1105 SDValue SelectionDAGBuilder::getControlRoot() { 1106 // We need to emit pending fpexcept.strict constrained intrinsics, 1107 // so append them to the PendingExports list. 1108 PendingExports.append(PendingConstrainedFPStrict.begin(), 1109 PendingConstrainedFPStrict.end()); 1110 PendingConstrainedFPStrict.clear(); 1111 return updateRoot(PendingExports); 1112 } 1113 1114 void SelectionDAGBuilder::visit(const Instruction &I) { 1115 // Set up outgoing PHI node register values before emitting the terminator. 1116 if (I.isTerminator()) { 1117 HandlePHINodesInSuccessorBlocks(I.getParent()); 1118 } 1119 1120 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1121 if (!isa<DbgInfoIntrinsic>(I)) 1122 ++SDNodeOrder; 1123 1124 CurInst = &I; 1125 1126 visit(I.getOpcode(), I); 1127 1128 if (!I.isTerminator() && !HasTailCall && 1129 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1130 CopyToExportRegsIfNeeded(&I); 1131 1132 CurInst = nullptr; 1133 } 1134 1135 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1136 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1137 } 1138 1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1140 // Note: this doesn't use InstVisitor, because it has to work with 1141 // ConstantExpr's in addition to instructions. 1142 switch (Opcode) { 1143 default: llvm_unreachable("Unknown instruction type encountered!"); 1144 // Build the switch statement using the Instruction.def file. 1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1146 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1147 #include "llvm/IR/Instruction.def" 1148 } 1149 } 1150 1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1152 DebugLoc DL, unsigned Order) { 1153 // We treat variadic dbg_values differently at this stage. 1154 if (DI->hasArgList()) { 1155 // For variadic dbg_values we will now insert an undef. 1156 // FIXME: We can potentially recover these! 1157 SmallVector<SDDbgOperand, 2> Locs; 1158 for (const Value *V : DI->getValues()) { 1159 auto Undef = UndefValue::get(V->getType()); 1160 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1161 } 1162 SDDbgValue *SDV = DAG.getDbgValueList( 1163 DI->getVariable(), DI->getExpression(), Locs, {}, 1164 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1165 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1166 } else { 1167 // TODO: Dangling debug info will eventually either be resolved or produce 1168 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1169 // between the original dbg.value location and its resolved DBG_VALUE, 1170 // which we should ideally fill with an extra Undef DBG_VALUE. 1171 assert(DI->getNumVariableLocationOps() == 1 && 1172 "DbgValueInst without an ArgList should have a single location " 1173 "operand."); 1174 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1175 } 1176 } 1177 1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1179 const DIExpression *Expr) { 1180 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1181 const DbgValueInst *DI = DDI.getDI(); 1182 DIVariable *DanglingVariable = DI->getVariable(); 1183 DIExpression *DanglingExpr = DI->getExpression(); 1184 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1185 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1186 return true; 1187 } 1188 return false; 1189 }; 1190 1191 for (auto &DDIMI : DanglingDebugInfoMap) { 1192 DanglingDebugInfoVector &DDIV = DDIMI.second; 1193 1194 // If debug info is to be dropped, run it through final checks to see 1195 // whether it can be salvaged. 1196 for (auto &DDI : DDIV) 1197 if (isMatchingDbgValue(DDI)) 1198 salvageUnresolvedDbgValue(DDI); 1199 1200 erase_if(DDIV, isMatchingDbgValue); 1201 } 1202 } 1203 1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1205 // generate the debug data structures now that we've seen its definition. 1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1207 SDValue Val) { 1208 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1209 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1210 return; 1211 1212 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1213 for (auto &DDI : DDIV) { 1214 const DbgValueInst *DI = DDI.getDI(); 1215 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1216 assert(DI && "Ill-formed DanglingDebugInfo"); 1217 DebugLoc dl = DDI.getdl(); 1218 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1219 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1220 DILocalVariable *Variable = DI->getVariable(); 1221 DIExpression *Expr = DI->getExpression(); 1222 assert(Variable->isValidLocationForIntrinsic(dl) && 1223 "Expected inlined-at fields to agree"); 1224 SDDbgValue *SDV; 1225 if (Val.getNode()) { 1226 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1227 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1228 // we couldn't resolve it directly when examining the DbgValue intrinsic 1229 // in the first place we should not be more successful here). Unless we 1230 // have some test case that prove this to be correct we should avoid 1231 // calling EmitFuncArgumentDbgValue here. 1232 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, 1233 FuncArgumentDbgValueKind::Value, Val)) { 1234 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1235 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1236 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1237 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1238 // inserted after the definition of Val when emitting the instructions 1239 // after ISel. An alternative could be to teach 1240 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1241 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1242 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1243 << ValSDNodeOrder << "\n"); 1244 SDV = getDbgValue(Val, Variable, Expr, dl, 1245 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1246 DAG.AddDbgValue(SDV, false); 1247 } else 1248 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1249 << "in EmitFuncArgumentDbgValue\n"); 1250 } else { 1251 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1252 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1253 auto SDV = 1254 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1255 DAG.AddDbgValue(SDV, false); 1256 } 1257 } 1258 DDIV.clear(); 1259 } 1260 1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1262 // TODO: For the variadic implementation, instead of only checking the fail 1263 // state of `handleDebugValue`, we need know specifically which values were 1264 // invalid, so that we attempt to salvage only those values when processing 1265 // a DIArgList. 1266 assert(!DDI.getDI()->hasArgList() && 1267 "Not implemented for variadic dbg_values"); 1268 Value *V = DDI.getDI()->getValue(0); 1269 DILocalVariable *Var = DDI.getDI()->getVariable(); 1270 DIExpression *Expr = DDI.getDI()->getExpression(); 1271 DebugLoc DL = DDI.getdl(); 1272 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1273 unsigned SDOrder = DDI.getSDNodeOrder(); 1274 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1275 // that DW_OP_stack_value is desired. 1276 assert(isa<DbgValueInst>(DDI.getDI())); 1277 bool StackValue = true; 1278 1279 // Can this Value can be encoded without any further work? 1280 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1281 return; 1282 1283 // Attempt to salvage back through as many instructions as possible. Bail if 1284 // a non-instruction is seen, such as a constant expression or global 1285 // variable. FIXME: Further work could recover those too. 1286 while (isa<Instruction>(V)) { 1287 Instruction &VAsInst = *cast<Instruction>(V); 1288 // Temporary "0", awaiting real implementation. 1289 SmallVector<uint64_t, 16> Ops; 1290 SmallVector<Value *, 4> AdditionalValues; 1291 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1292 AdditionalValues); 1293 // If we cannot salvage any further, and haven't yet found a suitable debug 1294 // expression, bail out. 1295 if (!V) 1296 break; 1297 1298 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1299 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1300 // here for variadic dbg_values, remove that condition. 1301 if (!AdditionalValues.empty()) 1302 break; 1303 1304 // New value and expr now represent this debuginfo. 1305 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1306 1307 // Some kind of simplification occurred: check whether the operand of the 1308 // salvaged debug expression can be encoded in this DAG. 1309 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1310 /*IsVariadic=*/false)) { 1311 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1312 << *DDI.getDI() << "\nBy stripping back to:\n " << *V); 1313 return; 1314 } 1315 } 1316 1317 // This was the final opportunity to salvage this debug information, and it 1318 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1319 // any earlier variable location. 1320 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1321 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1322 DAG.AddDbgValue(SDV, false); 1323 1324 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << *DDI.getDI() 1325 << "\n"); 1326 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1327 << "\n"); 1328 } 1329 1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1331 DILocalVariable *Var, 1332 DIExpression *Expr, DebugLoc dl, 1333 DebugLoc InstDL, unsigned Order, 1334 bool IsVariadic) { 1335 if (Values.empty()) 1336 return true; 1337 SmallVector<SDDbgOperand> LocationOps; 1338 SmallVector<SDNode *> Dependencies; 1339 for (const Value *V : Values) { 1340 // Constant value. 1341 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1342 isa<ConstantPointerNull>(V)) { 1343 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1344 continue; 1345 } 1346 1347 // Look through IntToPtr constants. 1348 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1349 if (CE->getOpcode() == Instruction::IntToPtr) { 1350 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1351 continue; 1352 } 1353 1354 // If the Value is a frame index, we can create a FrameIndex debug value 1355 // without relying on the DAG at all. 1356 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1357 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1358 if (SI != FuncInfo.StaticAllocaMap.end()) { 1359 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1360 continue; 1361 } 1362 } 1363 1364 // Do not use getValue() in here; we don't want to generate code at 1365 // this point if it hasn't been done yet. 1366 SDValue N = NodeMap[V]; 1367 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1368 N = UnusedArgNodeMap[V]; 1369 if (N.getNode()) { 1370 // Only emit func arg dbg value for non-variadic dbg.values for now. 1371 if (!IsVariadic && 1372 EmitFuncArgumentDbgValue(V, Var, Expr, dl, 1373 FuncArgumentDbgValueKind::Value, N)) 1374 return true; 1375 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1376 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1377 // describe stack slot locations. 1378 // 1379 // Consider "int x = 0; int *px = &x;". There are two kinds of 1380 // interesting debug values here after optimization: 1381 // 1382 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1383 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1384 // 1385 // Both describe the direct values of their associated variables. 1386 Dependencies.push_back(N.getNode()); 1387 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1388 continue; 1389 } 1390 LocationOps.emplace_back( 1391 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1392 continue; 1393 } 1394 1395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1396 // Special rules apply for the first dbg.values of parameter variables in a 1397 // function. Identify them by the fact they reference Argument Values, that 1398 // they're parameters, and they are parameters of the current function. We 1399 // need to let them dangle until they get an SDNode. 1400 bool IsParamOfFunc = 1401 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1402 if (IsParamOfFunc) 1403 return false; 1404 1405 // The value is not used in this block yet (or it would have an SDNode). 1406 // We still want the value to appear for the user if possible -- if it has 1407 // an associated VReg, we can refer to that instead. 1408 auto VMI = FuncInfo.ValueMap.find(V); 1409 if (VMI != FuncInfo.ValueMap.end()) { 1410 unsigned Reg = VMI->second; 1411 // If this is a PHI node, it may be split up into several MI PHI nodes 1412 // (in FunctionLoweringInfo::set). 1413 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1414 V->getType(), None); 1415 if (RFV.occupiesMultipleRegs()) { 1416 // FIXME: We could potentially support variadic dbg_values here. 1417 if (IsVariadic) 1418 return false; 1419 unsigned Offset = 0; 1420 unsigned BitsToDescribe = 0; 1421 if (auto VarSize = Var->getSizeInBits()) 1422 BitsToDescribe = *VarSize; 1423 if (auto Fragment = Expr->getFragmentInfo()) 1424 BitsToDescribe = Fragment->SizeInBits; 1425 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1426 // Bail out if all bits are described already. 1427 if (Offset >= BitsToDescribe) 1428 break; 1429 // TODO: handle scalable vectors. 1430 unsigned RegisterSize = RegAndSize.second; 1431 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1432 ? BitsToDescribe - Offset 1433 : RegisterSize; 1434 auto FragmentExpr = DIExpression::createFragmentExpression( 1435 Expr, Offset, FragmentSize); 1436 if (!FragmentExpr) 1437 continue; 1438 SDDbgValue *SDV = DAG.getVRegDbgValue( 1439 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1440 DAG.AddDbgValue(SDV, false); 1441 Offset += RegisterSize; 1442 } 1443 return true; 1444 } 1445 // We can use simple vreg locations for variadic dbg_values as well. 1446 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1447 continue; 1448 } 1449 // We failed to create a SDDbgOperand for V. 1450 return false; 1451 } 1452 1453 // We have created a SDDbgOperand for each Value in Values. 1454 // Should use Order instead of SDNodeOrder? 1455 assert(!LocationOps.empty()); 1456 SDDbgValue *SDV = 1457 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1458 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1459 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1460 return true; 1461 } 1462 1463 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1464 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1465 for (auto &Pair : DanglingDebugInfoMap) 1466 for (auto &DDI : Pair.second) 1467 salvageUnresolvedDbgValue(DDI); 1468 clearDanglingDebugInfo(); 1469 } 1470 1471 /// getCopyFromRegs - If there was virtual register allocated for the value V 1472 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1473 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1474 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1475 SDValue Result; 1476 1477 if (It != FuncInfo.ValueMap.end()) { 1478 Register InReg = It->second; 1479 1480 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1481 DAG.getDataLayout(), InReg, Ty, 1482 None); // This is not an ABI copy. 1483 SDValue Chain = DAG.getEntryNode(); 1484 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1485 V); 1486 resolveDanglingDebugInfo(V, Result); 1487 } 1488 1489 return Result; 1490 } 1491 1492 /// getValue - Return an SDValue for the given Value. 1493 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1494 // If we already have an SDValue for this value, use it. It's important 1495 // to do this first, so that we don't create a CopyFromReg if we already 1496 // have a regular SDValue. 1497 SDValue &N = NodeMap[V]; 1498 if (N.getNode()) return N; 1499 1500 // If there's a virtual register allocated and initialized for this 1501 // value, use it. 1502 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1503 return copyFromReg; 1504 1505 // Otherwise create a new SDValue and remember it. 1506 SDValue Val = getValueImpl(V); 1507 NodeMap[V] = Val; 1508 resolveDanglingDebugInfo(V, Val); 1509 return Val; 1510 } 1511 1512 /// getNonRegisterValue - Return an SDValue for the given Value, but 1513 /// don't look in FuncInfo.ValueMap for a virtual register. 1514 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1515 // If we already have an SDValue for this value, use it. 1516 SDValue &N = NodeMap[V]; 1517 if (N.getNode()) { 1518 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1519 // Remove the debug location from the node as the node is about to be used 1520 // in a location which may differ from the original debug location. This 1521 // is relevant to Constant and ConstantFP nodes because they can appear 1522 // as constant expressions inside PHI nodes. 1523 N->setDebugLoc(DebugLoc()); 1524 } 1525 return N; 1526 } 1527 1528 // Otherwise create a new SDValue and remember it. 1529 SDValue Val = getValueImpl(V); 1530 NodeMap[V] = Val; 1531 resolveDanglingDebugInfo(V, Val); 1532 return Val; 1533 } 1534 1535 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1536 /// Create an SDValue for the given value. 1537 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1539 1540 if (const Constant *C = dyn_cast<Constant>(V)) { 1541 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1542 1543 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1544 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1545 1546 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1547 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1548 1549 if (isa<ConstantPointerNull>(C)) { 1550 unsigned AS = V->getType()->getPointerAddressSpace(); 1551 return DAG.getConstant(0, getCurSDLoc(), 1552 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1553 } 1554 1555 if (match(C, m_VScale(DAG.getDataLayout()))) 1556 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1557 1558 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1559 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1560 1561 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1562 return DAG.getUNDEF(VT); 1563 1564 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1565 visit(CE->getOpcode(), *CE); 1566 SDValue N1 = NodeMap[V]; 1567 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1568 return N1; 1569 } 1570 1571 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1572 SmallVector<SDValue, 4> Constants; 1573 for (const Use &U : C->operands()) { 1574 SDNode *Val = getValue(U).getNode(); 1575 // If the operand is an empty aggregate, there are no values. 1576 if (!Val) continue; 1577 // Add each leaf value from the operand to the Constants list 1578 // to form a flattened list of all the values. 1579 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1580 Constants.push_back(SDValue(Val, i)); 1581 } 1582 1583 return DAG.getMergeValues(Constants, getCurSDLoc()); 1584 } 1585 1586 if (const ConstantDataSequential *CDS = 1587 dyn_cast<ConstantDataSequential>(C)) { 1588 SmallVector<SDValue, 4> Ops; 1589 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1590 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1591 // Add each leaf value from the operand to the Constants list 1592 // to form a flattened list of all the values. 1593 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1594 Ops.push_back(SDValue(Val, i)); 1595 } 1596 1597 if (isa<ArrayType>(CDS->getType())) 1598 return DAG.getMergeValues(Ops, getCurSDLoc()); 1599 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1600 } 1601 1602 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1603 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1604 "Unknown struct or array constant!"); 1605 1606 SmallVector<EVT, 4> ValueVTs; 1607 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1608 unsigned NumElts = ValueVTs.size(); 1609 if (NumElts == 0) 1610 return SDValue(); // empty struct 1611 SmallVector<SDValue, 4> Constants(NumElts); 1612 for (unsigned i = 0; i != NumElts; ++i) { 1613 EVT EltVT = ValueVTs[i]; 1614 if (isa<UndefValue>(C)) 1615 Constants[i] = DAG.getUNDEF(EltVT); 1616 else if (EltVT.isFloatingPoint()) 1617 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1618 else 1619 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1620 } 1621 1622 return DAG.getMergeValues(Constants, getCurSDLoc()); 1623 } 1624 1625 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1626 return DAG.getBlockAddress(BA, VT); 1627 1628 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1629 return getValue(Equiv->getGlobalValue()); 1630 1631 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1632 return getValue(NC->getGlobalValue()); 1633 1634 VectorType *VecTy = cast<VectorType>(V->getType()); 1635 1636 // Now that we know the number and type of the elements, get that number of 1637 // elements into the Ops array based on what kind of constant it is. 1638 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1639 SmallVector<SDValue, 16> Ops; 1640 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1641 for (unsigned i = 0; i != NumElements; ++i) 1642 Ops.push_back(getValue(CV->getOperand(i))); 1643 1644 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1645 } 1646 1647 if (isa<ConstantAggregateZero>(C)) { 1648 EVT EltVT = 1649 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1650 1651 SDValue Op; 1652 if (EltVT.isFloatingPoint()) 1653 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1654 else 1655 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1656 1657 if (isa<ScalableVectorType>(VecTy)) 1658 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1659 1660 SmallVector<SDValue, 16> Ops; 1661 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1662 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1663 } 1664 1665 llvm_unreachable("Unknown vector constant"); 1666 } 1667 1668 // If this is a static alloca, generate it as the frameindex instead of 1669 // computation. 1670 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1671 DenseMap<const AllocaInst*, int>::iterator SI = 1672 FuncInfo.StaticAllocaMap.find(AI); 1673 if (SI != FuncInfo.StaticAllocaMap.end()) 1674 return DAG.getFrameIndex(SI->second, 1675 TLI.getFrameIndexTy(DAG.getDataLayout())); 1676 } 1677 1678 // If this is an instruction which fast-isel has deferred, select it now. 1679 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1680 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1681 1682 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1683 Inst->getType(), None); 1684 SDValue Chain = DAG.getEntryNode(); 1685 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1686 } 1687 1688 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1689 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1690 1691 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1692 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1693 1694 llvm_unreachable("Can't get register for value!"); 1695 } 1696 1697 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1698 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1699 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1700 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1701 bool IsSEH = isAsynchronousEHPersonality(Pers); 1702 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1703 if (!IsSEH) 1704 CatchPadMBB->setIsEHScopeEntry(); 1705 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1706 if (IsMSVCCXX || IsCoreCLR) 1707 CatchPadMBB->setIsEHFuncletEntry(); 1708 } 1709 1710 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1711 // Update machine-CFG edge. 1712 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1713 FuncInfo.MBB->addSuccessor(TargetMBB); 1714 TargetMBB->setIsEHCatchretTarget(true); 1715 DAG.getMachineFunction().setHasEHCatchret(true); 1716 1717 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1718 bool IsSEH = isAsynchronousEHPersonality(Pers); 1719 if (IsSEH) { 1720 // If this is not a fall-through branch or optimizations are switched off, 1721 // emit the branch. 1722 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1723 TM.getOptLevel() == CodeGenOpt::None) 1724 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1725 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1726 return; 1727 } 1728 1729 // Figure out the funclet membership for the catchret's successor. 1730 // This will be used by the FuncletLayout pass to determine how to order the 1731 // BB's. 1732 // A 'catchret' returns to the outer scope's color. 1733 Value *ParentPad = I.getCatchSwitchParentPad(); 1734 const BasicBlock *SuccessorColor; 1735 if (isa<ConstantTokenNone>(ParentPad)) 1736 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1737 else 1738 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1739 assert(SuccessorColor && "No parent funclet for catchret!"); 1740 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1741 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1742 1743 // Create the terminator node. 1744 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1745 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1746 DAG.getBasicBlock(SuccessorColorMBB)); 1747 DAG.setRoot(Ret); 1748 } 1749 1750 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1751 // Don't emit any special code for the cleanuppad instruction. It just marks 1752 // the start of an EH scope/funclet. 1753 FuncInfo.MBB->setIsEHScopeEntry(); 1754 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1755 if (Pers != EHPersonality::Wasm_CXX) { 1756 FuncInfo.MBB->setIsEHFuncletEntry(); 1757 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1758 } 1759 } 1760 1761 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1762 // not match, it is OK to add only the first unwind destination catchpad to the 1763 // successors, because there will be at least one invoke instruction within the 1764 // catch scope that points to the next unwind destination, if one exists, so 1765 // CFGSort cannot mess up with BB sorting order. 1766 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1767 // call within them, and catchpads only consisting of 'catch (...)' have a 1768 // '__cxa_end_catch' call within them, both of which generate invokes in case 1769 // the next unwind destination exists, i.e., the next unwind destination is not 1770 // the caller.) 1771 // 1772 // Having at most one EH pad successor is also simpler and helps later 1773 // transformations. 1774 // 1775 // For example, 1776 // current: 1777 // invoke void @foo to ... unwind label %catch.dispatch 1778 // catch.dispatch: 1779 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1780 // catch.start: 1781 // ... 1782 // ... in this BB or some other child BB dominated by this BB there will be an 1783 // invoke that points to 'next' BB as an unwind destination 1784 // 1785 // next: ; We don't need to add this to 'current' BB's successor 1786 // ... 1787 static void findWasmUnwindDestinations( 1788 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1789 BranchProbability Prob, 1790 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1791 &UnwindDests) { 1792 while (EHPadBB) { 1793 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1794 if (isa<CleanupPadInst>(Pad)) { 1795 // Stop on cleanup pads. 1796 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1797 UnwindDests.back().first->setIsEHScopeEntry(); 1798 break; 1799 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1800 // Add the catchpad handlers to the possible destinations. We don't 1801 // continue to the unwind destination of the catchswitch for wasm. 1802 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1803 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1804 UnwindDests.back().first->setIsEHScopeEntry(); 1805 } 1806 break; 1807 } else { 1808 continue; 1809 } 1810 } 1811 } 1812 1813 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1814 /// many places it could ultimately go. In the IR, we have a single unwind 1815 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1816 /// This function skips over imaginary basic blocks that hold catchswitch 1817 /// instructions, and finds all the "real" machine 1818 /// basic block destinations. As those destinations may not be successors of 1819 /// EHPadBB, here we also calculate the edge probability to those destinations. 1820 /// The passed-in Prob is the edge probability to EHPadBB. 1821 static void findUnwindDestinations( 1822 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1823 BranchProbability Prob, 1824 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1825 &UnwindDests) { 1826 EHPersonality Personality = 1827 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1828 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1829 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1830 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1831 bool IsSEH = isAsynchronousEHPersonality(Personality); 1832 1833 if (IsWasmCXX) { 1834 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1835 assert(UnwindDests.size() <= 1 && 1836 "There should be at most one unwind destination for wasm"); 1837 return; 1838 } 1839 1840 while (EHPadBB) { 1841 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1842 BasicBlock *NewEHPadBB = nullptr; 1843 if (isa<LandingPadInst>(Pad)) { 1844 // Stop on landingpads. They are not funclets. 1845 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1846 break; 1847 } else if (isa<CleanupPadInst>(Pad)) { 1848 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1849 // personalities. 1850 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1851 UnwindDests.back().first->setIsEHScopeEntry(); 1852 UnwindDests.back().first->setIsEHFuncletEntry(); 1853 break; 1854 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1855 // Add the catchpad handlers to the possible destinations. 1856 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1857 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1858 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1859 if (IsMSVCCXX || IsCoreCLR) 1860 UnwindDests.back().first->setIsEHFuncletEntry(); 1861 if (!IsSEH) 1862 UnwindDests.back().first->setIsEHScopeEntry(); 1863 } 1864 NewEHPadBB = CatchSwitch->getUnwindDest(); 1865 } else { 1866 continue; 1867 } 1868 1869 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1870 if (BPI && NewEHPadBB) 1871 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1872 EHPadBB = NewEHPadBB; 1873 } 1874 } 1875 1876 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1877 // Update successor info. 1878 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1879 auto UnwindDest = I.getUnwindDest(); 1880 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1881 BranchProbability UnwindDestProb = 1882 (BPI && UnwindDest) 1883 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1884 : BranchProbability::getZero(); 1885 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1886 for (auto &UnwindDest : UnwindDests) { 1887 UnwindDest.first->setIsEHPad(); 1888 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1889 } 1890 FuncInfo.MBB->normalizeSuccProbs(); 1891 1892 // Create the terminator node. 1893 SDValue Ret = 1894 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1895 DAG.setRoot(Ret); 1896 } 1897 1898 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1899 report_fatal_error("visitCatchSwitch not yet implemented!"); 1900 } 1901 1902 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1904 auto &DL = DAG.getDataLayout(); 1905 SDValue Chain = getControlRoot(); 1906 SmallVector<ISD::OutputArg, 8> Outs; 1907 SmallVector<SDValue, 8> OutVals; 1908 1909 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1910 // lower 1911 // 1912 // %val = call <ty> @llvm.experimental.deoptimize() 1913 // ret <ty> %val 1914 // 1915 // differently. 1916 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1917 LowerDeoptimizingReturn(); 1918 return; 1919 } 1920 1921 if (!FuncInfo.CanLowerReturn) { 1922 unsigned DemoteReg = FuncInfo.DemoteRegister; 1923 const Function *F = I.getParent()->getParent(); 1924 1925 // Emit a store of the return value through the virtual register. 1926 // Leave Outs empty so that LowerReturn won't try to load return 1927 // registers the usual way. 1928 SmallVector<EVT, 1> PtrValueVTs; 1929 ComputeValueVTs(TLI, DL, 1930 F->getReturnType()->getPointerTo( 1931 DAG.getDataLayout().getAllocaAddrSpace()), 1932 PtrValueVTs); 1933 1934 SDValue RetPtr = 1935 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1936 SDValue RetOp = getValue(I.getOperand(0)); 1937 1938 SmallVector<EVT, 4> ValueVTs, MemVTs; 1939 SmallVector<uint64_t, 4> Offsets; 1940 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1941 &Offsets); 1942 unsigned NumValues = ValueVTs.size(); 1943 1944 SmallVector<SDValue, 4> Chains(NumValues); 1945 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1946 for (unsigned i = 0; i != NumValues; ++i) { 1947 // An aggregate return value cannot wrap around the address space, so 1948 // offsets to its parts don't wrap either. 1949 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1950 TypeSize::Fixed(Offsets[i])); 1951 1952 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1953 if (MemVTs[i] != ValueVTs[i]) 1954 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1955 Chains[i] = DAG.getStore( 1956 Chain, getCurSDLoc(), Val, 1957 // FIXME: better loc info would be nice. 1958 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1959 commonAlignment(BaseAlign, Offsets[i])); 1960 } 1961 1962 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1963 MVT::Other, Chains); 1964 } else if (I.getNumOperands() != 0) { 1965 SmallVector<EVT, 4> ValueVTs; 1966 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1967 unsigned NumValues = ValueVTs.size(); 1968 if (NumValues) { 1969 SDValue RetOp = getValue(I.getOperand(0)); 1970 1971 const Function *F = I.getParent()->getParent(); 1972 1973 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1974 I.getOperand(0)->getType(), F->getCallingConv(), 1975 /*IsVarArg*/ false, DL); 1976 1977 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1978 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1979 ExtendKind = ISD::SIGN_EXTEND; 1980 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1981 ExtendKind = ISD::ZERO_EXTEND; 1982 1983 LLVMContext &Context = F->getContext(); 1984 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1985 1986 for (unsigned j = 0; j != NumValues; ++j) { 1987 EVT VT = ValueVTs[j]; 1988 1989 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1990 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1991 1992 CallingConv::ID CC = F->getCallingConv(); 1993 1994 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1995 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1996 SmallVector<SDValue, 4> Parts(NumParts); 1997 getCopyToParts(DAG, getCurSDLoc(), 1998 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1999 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2000 2001 // 'inreg' on function refers to return value 2002 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2003 if (RetInReg) 2004 Flags.setInReg(); 2005 2006 if (I.getOperand(0)->getType()->isPointerTy()) { 2007 Flags.setPointer(); 2008 Flags.setPointerAddrSpace( 2009 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2010 } 2011 2012 if (NeedsRegBlock) { 2013 Flags.setInConsecutiveRegs(); 2014 if (j == NumValues - 1) 2015 Flags.setInConsecutiveRegsLast(); 2016 } 2017 2018 // Propagate extension type if any 2019 if (ExtendKind == ISD::SIGN_EXTEND) 2020 Flags.setSExt(); 2021 else if (ExtendKind == ISD::ZERO_EXTEND) 2022 Flags.setZExt(); 2023 2024 for (unsigned i = 0; i < NumParts; ++i) { 2025 Outs.push_back(ISD::OutputArg(Flags, 2026 Parts[i].getValueType().getSimpleVT(), 2027 VT, /*isfixed=*/true, 0, 0)); 2028 OutVals.push_back(Parts[i]); 2029 } 2030 } 2031 } 2032 } 2033 2034 // Push in swifterror virtual register as the last element of Outs. This makes 2035 // sure swifterror virtual register will be returned in the swifterror 2036 // physical register. 2037 const Function *F = I.getParent()->getParent(); 2038 if (TLI.supportSwiftError() && 2039 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2040 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2041 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2042 Flags.setSwiftError(); 2043 Outs.push_back(ISD::OutputArg( 2044 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2045 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2046 // Create SDNode for the swifterror virtual register. 2047 OutVals.push_back( 2048 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2049 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2050 EVT(TLI.getPointerTy(DL)))); 2051 } 2052 2053 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2054 CallingConv::ID CallConv = 2055 DAG.getMachineFunction().getFunction().getCallingConv(); 2056 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2057 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2058 2059 // Verify that the target's LowerReturn behaved as expected. 2060 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2061 "LowerReturn didn't return a valid chain!"); 2062 2063 // Update the DAG with the new chain value resulting from return lowering. 2064 DAG.setRoot(Chain); 2065 } 2066 2067 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2068 /// created for it, emit nodes to copy the value into the virtual 2069 /// registers. 2070 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2071 // Skip empty types 2072 if (V->getType()->isEmptyTy()) 2073 return; 2074 2075 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2076 if (VMI != FuncInfo.ValueMap.end()) { 2077 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2078 CopyValueToVirtualRegister(V, VMI->second); 2079 } 2080 } 2081 2082 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2083 /// the current basic block, add it to ValueMap now so that we'll get a 2084 /// CopyTo/FromReg. 2085 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2086 // No need to export constants. 2087 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2088 2089 // Already exported? 2090 if (FuncInfo.isExportedInst(V)) return; 2091 2092 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2093 CopyValueToVirtualRegister(V, Reg); 2094 } 2095 2096 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2097 const BasicBlock *FromBB) { 2098 // The operands of the setcc have to be in this block. We don't know 2099 // how to export them from some other block. 2100 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2101 // Can export from current BB. 2102 if (VI->getParent() == FromBB) 2103 return true; 2104 2105 // Is already exported, noop. 2106 return FuncInfo.isExportedInst(V); 2107 } 2108 2109 // If this is an argument, we can export it if the BB is the entry block or 2110 // if it is already exported. 2111 if (isa<Argument>(V)) { 2112 if (FromBB->isEntryBlock()) 2113 return true; 2114 2115 // Otherwise, can only export this if it is already exported. 2116 return FuncInfo.isExportedInst(V); 2117 } 2118 2119 // Otherwise, constants can always be exported. 2120 return true; 2121 } 2122 2123 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2124 BranchProbability 2125 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2126 const MachineBasicBlock *Dst) const { 2127 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2128 const BasicBlock *SrcBB = Src->getBasicBlock(); 2129 const BasicBlock *DstBB = Dst->getBasicBlock(); 2130 if (!BPI) { 2131 // If BPI is not available, set the default probability as 1 / N, where N is 2132 // the number of successors. 2133 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2134 return BranchProbability(1, SuccSize); 2135 } 2136 return BPI->getEdgeProbability(SrcBB, DstBB); 2137 } 2138 2139 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2140 MachineBasicBlock *Dst, 2141 BranchProbability Prob) { 2142 if (!FuncInfo.BPI) 2143 Src->addSuccessorWithoutProb(Dst); 2144 else { 2145 if (Prob.isUnknown()) 2146 Prob = getEdgeProbability(Src, Dst); 2147 Src->addSuccessor(Dst, Prob); 2148 } 2149 } 2150 2151 static bool InBlock(const Value *V, const BasicBlock *BB) { 2152 if (const Instruction *I = dyn_cast<Instruction>(V)) 2153 return I->getParent() == BB; 2154 return true; 2155 } 2156 2157 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2158 /// This function emits a branch and is used at the leaves of an OR or an 2159 /// AND operator tree. 2160 void 2161 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2162 MachineBasicBlock *TBB, 2163 MachineBasicBlock *FBB, 2164 MachineBasicBlock *CurBB, 2165 MachineBasicBlock *SwitchBB, 2166 BranchProbability TProb, 2167 BranchProbability FProb, 2168 bool InvertCond) { 2169 const BasicBlock *BB = CurBB->getBasicBlock(); 2170 2171 // If the leaf of the tree is a comparison, merge the condition into 2172 // the caseblock. 2173 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2174 // The operands of the cmp have to be in this block. We don't know 2175 // how to export them from some other block. If this is the first block 2176 // of the sequence, no exporting is needed. 2177 if (CurBB == SwitchBB || 2178 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2179 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2180 ISD::CondCode Condition; 2181 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2182 ICmpInst::Predicate Pred = 2183 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2184 Condition = getICmpCondCode(Pred); 2185 } else { 2186 const FCmpInst *FC = cast<FCmpInst>(Cond); 2187 FCmpInst::Predicate Pred = 2188 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2189 Condition = getFCmpCondCode(Pred); 2190 if (TM.Options.NoNaNsFPMath) 2191 Condition = getFCmpCodeWithoutNaN(Condition); 2192 } 2193 2194 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2195 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2196 SL->SwitchCases.push_back(CB); 2197 return; 2198 } 2199 } 2200 2201 // Create a CaseBlock record representing this branch. 2202 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2203 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2204 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2205 SL->SwitchCases.push_back(CB); 2206 } 2207 2208 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2209 MachineBasicBlock *TBB, 2210 MachineBasicBlock *FBB, 2211 MachineBasicBlock *CurBB, 2212 MachineBasicBlock *SwitchBB, 2213 Instruction::BinaryOps Opc, 2214 BranchProbability TProb, 2215 BranchProbability FProb, 2216 bool InvertCond) { 2217 // Skip over not part of the tree and remember to invert op and operands at 2218 // next level. 2219 Value *NotCond; 2220 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2221 InBlock(NotCond, CurBB->getBasicBlock())) { 2222 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2223 !InvertCond); 2224 return; 2225 } 2226 2227 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2228 const Value *BOpOp0, *BOpOp1; 2229 // Compute the effective opcode for Cond, taking into account whether it needs 2230 // to be inverted, e.g. 2231 // and (not (or A, B)), C 2232 // gets lowered as 2233 // and (and (not A, not B), C) 2234 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2235 if (BOp) { 2236 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2237 ? Instruction::And 2238 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2239 ? Instruction::Or 2240 : (Instruction::BinaryOps)0); 2241 if (InvertCond) { 2242 if (BOpc == Instruction::And) 2243 BOpc = Instruction::Or; 2244 else if (BOpc == Instruction::Or) 2245 BOpc = Instruction::And; 2246 } 2247 } 2248 2249 // If this node is not part of the or/and tree, emit it as a branch. 2250 // Note that all nodes in the tree should have same opcode. 2251 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2252 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2253 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2254 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2255 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2256 TProb, FProb, InvertCond); 2257 return; 2258 } 2259 2260 // Create TmpBB after CurBB. 2261 MachineFunction::iterator BBI(CurBB); 2262 MachineFunction &MF = DAG.getMachineFunction(); 2263 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2264 CurBB->getParent()->insert(++BBI, TmpBB); 2265 2266 if (Opc == Instruction::Or) { 2267 // Codegen X | Y as: 2268 // BB1: 2269 // jmp_if_X TBB 2270 // jmp TmpBB 2271 // TmpBB: 2272 // jmp_if_Y TBB 2273 // jmp FBB 2274 // 2275 2276 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2277 // The requirement is that 2278 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2279 // = TrueProb for original BB. 2280 // Assuming the original probabilities are A and B, one choice is to set 2281 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2282 // A/(1+B) and 2B/(1+B). This choice assumes that 2283 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2284 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2285 // TmpBB, but the math is more complicated. 2286 2287 auto NewTrueProb = TProb / 2; 2288 auto NewFalseProb = TProb / 2 + FProb; 2289 // Emit the LHS condition. 2290 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2291 NewFalseProb, InvertCond); 2292 2293 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2294 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2295 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2296 // Emit the RHS condition into TmpBB. 2297 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2298 Probs[1], InvertCond); 2299 } else { 2300 assert(Opc == Instruction::And && "Unknown merge op!"); 2301 // Codegen X & Y as: 2302 // BB1: 2303 // jmp_if_X TmpBB 2304 // jmp FBB 2305 // TmpBB: 2306 // jmp_if_Y TBB 2307 // jmp FBB 2308 // 2309 // This requires creation of TmpBB after CurBB. 2310 2311 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2312 // The requirement is that 2313 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2314 // = FalseProb for original BB. 2315 // Assuming the original probabilities are A and B, one choice is to set 2316 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2317 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2318 // TrueProb for BB1 * FalseProb for TmpBB. 2319 2320 auto NewTrueProb = TProb + FProb / 2; 2321 auto NewFalseProb = FProb / 2; 2322 // Emit the LHS condition. 2323 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2324 NewFalseProb, InvertCond); 2325 2326 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2327 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2328 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2329 // Emit the RHS condition into TmpBB. 2330 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2331 Probs[1], InvertCond); 2332 } 2333 } 2334 2335 /// If the set of cases should be emitted as a series of branches, return true. 2336 /// If we should emit this as a bunch of and/or'd together conditions, return 2337 /// false. 2338 bool 2339 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2340 if (Cases.size() != 2) return true; 2341 2342 // If this is two comparisons of the same values or'd or and'd together, they 2343 // will get folded into a single comparison, so don't emit two blocks. 2344 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2345 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2346 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2347 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2348 return false; 2349 } 2350 2351 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2352 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2353 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2354 Cases[0].CC == Cases[1].CC && 2355 isa<Constant>(Cases[0].CmpRHS) && 2356 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2357 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2358 return false; 2359 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2360 return false; 2361 } 2362 2363 return true; 2364 } 2365 2366 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2367 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2368 2369 // Update machine-CFG edges. 2370 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2371 2372 if (I.isUnconditional()) { 2373 // Update machine-CFG edges. 2374 BrMBB->addSuccessor(Succ0MBB); 2375 2376 // If this is not a fall-through branch or optimizations are switched off, 2377 // emit the branch. 2378 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2379 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2380 MVT::Other, getControlRoot(), 2381 DAG.getBasicBlock(Succ0MBB))); 2382 2383 return; 2384 } 2385 2386 // If this condition is one of the special cases we handle, do special stuff 2387 // now. 2388 const Value *CondVal = I.getCondition(); 2389 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2390 2391 // If this is a series of conditions that are or'd or and'd together, emit 2392 // this as a sequence of branches instead of setcc's with and/or operations. 2393 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2394 // unpredictable branches, and vector extracts because those jumps are likely 2395 // expensive for any target), this should improve performance. 2396 // For example, instead of something like: 2397 // cmp A, B 2398 // C = seteq 2399 // cmp D, E 2400 // F = setle 2401 // or C, F 2402 // jnz foo 2403 // Emit: 2404 // cmp A, B 2405 // je foo 2406 // cmp D, E 2407 // jle foo 2408 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2409 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2410 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2411 Value *Vec; 2412 const Value *BOp0, *BOp1; 2413 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2414 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2415 Opcode = Instruction::And; 2416 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2417 Opcode = Instruction::Or; 2418 2419 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2420 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2421 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2422 getEdgeProbability(BrMBB, Succ0MBB), 2423 getEdgeProbability(BrMBB, Succ1MBB), 2424 /*InvertCond=*/false); 2425 // If the compares in later blocks need to use values not currently 2426 // exported from this block, export them now. This block should always 2427 // be the first entry. 2428 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2429 2430 // Allow some cases to be rejected. 2431 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2432 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2433 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2434 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2435 } 2436 2437 // Emit the branch for this block. 2438 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2439 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2440 return; 2441 } 2442 2443 // Okay, we decided not to do this, remove any inserted MBB's and clear 2444 // SwitchCases. 2445 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2446 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2447 2448 SL->SwitchCases.clear(); 2449 } 2450 } 2451 2452 // Create a CaseBlock record representing this branch. 2453 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2454 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2455 2456 // Use visitSwitchCase to actually insert the fast branch sequence for this 2457 // cond branch. 2458 visitSwitchCase(CB, BrMBB); 2459 } 2460 2461 /// visitSwitchCase - Emits the necessary code to represent a single node in 2462 /// the binary search tree resulting from lowering a switch instruction. 2463 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2464 MachineBasicBlock *SwitchBB) { 2465 SDValue Cond; 2466 SDValue CondLHS = getValue(CB.CmpLHS); 2467 SDLoc dl = CB.DL; 2468 2469 if (CB.CC == ISD::SETTRUE) { 2470 // Branch or fall through to TrueBB. 2471 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2472 SwitchBB->normalizeSuccProbs(); 2473 if (CB.TrueBB != NextBlock(SwitchBB)) { 2474 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2475 DAG.getBasicBlock(CB.TrueBB))); 2476 } 2477 return; 2478 } 2479 2480 auto &TLI = DAG.getTargetLoweringInfo(); 2481 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2482 2483 // Build the setcc now. 2484 if (!CB.CmpMHS) { 2485 // Fold "(X == true)" to X and "(X == false)" to !X to 2486 // handle common cases produced by branch lowering. 2487 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2488 CB.CC == ISD::SETEQ) 2489 Cond = CondLHS; 2490 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2491 CB.CC == ISD::SETEQ) { 2492 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2493 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2494 } else { 2495 SDValue CondRHS = getValue(CB.CmpRHS); 2496 2497 // If a pointer's DAG type is larger than its memory type then the DAG 2498 // values are zero-extended. This breaks signed comparisons so truncate 2499 // back to the underlying type before doing the compare. 2500 if (CondLHS.getValueType() != MemVT) { 2501 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2502 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2503 } 2504 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2505 } 2506 } else { 2507 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2508 2509 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2510 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2511 2512 SDValue CmpOp = getValue(CB.CmpMHS); 2513 EVT VT = CmpOp.getValueType(); 2514 2515 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2516 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2517 ISD::SETLE); 2518 } else { 2519 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2520 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2521 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2522 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2523 } 2524 } 2525 2526 // Update successor info 2527 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2528 // TrueBB and FalseBB are always different unless the incoming IR is 2529 // degenerate. This only happens when running llc on weird IR. 2530 if (CB.TrueBB != CB.FalseBB) 2531 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2532 SwitchBB->normalizeSuccProbs(); 2533 2534 // If the lhs block is the next block, invert the condition so that we can 2535 // fall through to the lhs instead of the rhs block. 2536 if (CB.TrueBB == NextBlock(SwitchBB)) { 2537 std::swap(CB.TrueBB, CB.FalseBB); 2538 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2539 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2540 } 2541 2542 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2543 MVT::Other, getControlRoot(), Cond, 2544 DAG.getBasicBlock(CB.TrueBB)); 2545 2546 // Insert the false branch. Do this even if it's a fall through branch, 2547 // this makes it easier to do DAG optimizations which require inverting 2548 // the branch condition. 2549 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2550 DAG.getBasicBlock(CB.FalseBB)); 2551 2552 DAG.setRoot(BrCond); 2553 } 2554 2555 /// visitJumpTable - Emit JumpTable node in the current MBB 2556 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2557 // Emit the code for the jump table 2558 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2559 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2560 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2561 JT.Reg, PTy); 2562 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2563 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2564 MVT::Other, Index.getValue(1), 2565 Table, Index); 2566 DAG.setRoot(BrJumpTable); 2567 } 2568 2569 /// visitJumpTableHeader - This function emits necessary code to produce index 2570 /// in the JumpTable from switch case. 2571 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2572 JumpTableHeader &JTH, 2573 MachineBasicBlock *SwitchBB) { 2574 SDLoc dl = getCurSDLoc(); 2575 2576 // Subtract the lowest switch case value from the value being switched on. 2577 SDValue SwitchOp = getValue(JTH.SValue); 2578 EVT VT = SwitchOp.getValueType(); 2579 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2580 DAG.getConstant(JTH.First, dl, VT)); 2581 2582 // The SDNode we just created, which holds the value being switched on minus 2583 // the smallest case value, needs to be copied to a virtual register so it 2584 // can be used as an index into the jump table in a subsequent basic block. 2585 // This value may be smaller or larger than the target's pointer type, and 2586 // therefore require extension or truncating. 2587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2588 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2589 2590 unsigned JumpTableReg = 2591 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2592 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2593 JumpTableReg, SwitchOp); 2594 JT.Reg = JumpTableReg; 2595 2596 if (!JTH.FallthroughUnreachable) { 2597 // Emit the range check for the jump table, and branch to the default block 2598 // for the switch statement if the value being switched on exceeds the 2599 // largest case in the switch. 2600 SDValue CMP = DAG.getSetCC( 2601 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2602 Sub.getValueType()), 2603 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2604 2605 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2606 MVT::Other, CopyTo, CMP, 2607 DAG.getBasicBlock(JT.Default)); 2608 2609 // Avoid emitting unnecessary branches to the next block. 2610 if (JT.MBB != NextBlock(SwitchBB)) 2611 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2612 DAG.getBasicBlock(JT.MBB)); 2613 2614 DAG.setRoot(BrCond); 2615 } else { 2616 // Avoid emitting unnecessary branches to the next block. 2617 if (JT.MBB != NextBlock(SwitchBB)) 2618 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2619 DAG.getBasicBlock(JT.MBB))); 2620 else 2621 DAG.setRoot(CopyTo); 2622 } 2623 } 2624 2625 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2626 /// variable if there exists one. 2627 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2628 SDValue &Chain) { 2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2630 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2631 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2632 MachineFunction &MF = DAG.getMachineFunction(); 2633 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2634 MachineSDNode *Node = 2635 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2636 if (Global) { 2637 MachinePointerInfo MPInfo(Global); 2638 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2639 MachineMemOperand::MODereferenceable; 2640 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2641 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2642 DAG.setNodeMemRefs(Node, {MemRef}); 2643 } 2644 if (PtrTy != PtrMemTy) 2645 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2646 return SDValue(Node, 0); 2647 } 2648 2649 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2650 /// tail spliced into a stack protector check success bb. 2651 /// 2652 /// For a high level explanation of how this fits into the stack protector 2653 /// generation see the comment on the declaration of class 2654 /// StackProtectorDescriptor. 2655 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2656 MachineBasicBlock *ParentBB) { 2657 2658 // First create the loads to the guard/stack slot for the comparison. 2659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2660 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2661 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2662 2663 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2664 int FI = MFI.getStackProtectorIndex(); 2665 2666 SDValue Guard; 2667 SDLoc dl = getCurSDLoc(); 2668 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2669 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2670 Align Align = 2671 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2672 2673 // Generate code to load the content of the guard slot. 2674 SDValue GuardVal = DAG.getLoad( 2675 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2676 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2677 MachineMemOperand::MOVolatile); 2678 2679 if (TLI.useStackGuardXorFP()) 2680 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2681 2682 // Retrieve guard check function, nullptr if instrumentation is inlined. 2683 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2684 // The target provides a guard check function to validate the guard value. 2685 // Generate a call to that function with the content of the guard slot as 2686 // argument. 2687 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2688 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2689 2690 TargetLowering::ArgListTy Args; 2691 TargetLowering::ArgListEntry Entry; 2692 Entry.Node = GuardVal; 2693 Entry.Ty = FnTy->getParamType(0); 2694 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2695 Entry.IsInReg = true; 2696 Args.push_back(Entry); 2697 2698 TargetLowering::CallLoweringInfo CLI(DAG); 2699 CLI.setDebugLoc(getCurSDLoc()) 2700 .setChain(DAG.getEntryNode()) 2701 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2702 getValue(GuardCheckFn), std::move(Args)); 2703 2704 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2705 DAG.setRoot(Result.second); 2706 return; 2707 } 2708 2709 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2710 // Otherwise, emit a volatile load to retrieve the stack guard value. 2711 SDValue Chain = DAG.getEntryNode(); 2712 if (TLI.useLoadStackGuardNode()) { 2713 Guard = getLoadStackGuard(DAG, dl, Chain); 2714 } else { 2715 const Value *IRGuard = TLI.getSDagStackGuard(M); 2716 SDValue GuardPtr = getValue(IRGuard); 2717 2718 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2719 MachinePointerInfo(IRGuard, 0), Align, 2720 MachineMemOperand::MOVolatile); 2721 } 2722 2723 // Perform the comparison via a getsetcc. 2724 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2725 *DAG.getContext(), 2726 Guard.getValueType()), 2727 Guard, GuardVal, ISD::SETNE); 2728 2729 // If the guard/stackslot do not equal, branch to failure MBB. 2730 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2731 MVT::Other, GuardVal.getOperand(0), 2732 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2733 // Otherwise branch to success MBB. 2734 SDValue Br = DAG.getNode(ISD::BR, dl, 2735 MVT::Other, BrCond, 2736 DAG.getBasicBlock(SPD.getSuccessMBB())); 2737 2738 DAG.setRoot(Br); 2739 } 2740 2741 /// Codegen the failure basic block for a stack protector check. 2742 /// 2743 /// A failure stack protector machine basic block consists simply of a call to 2744 /// __stack_chk_fail(). 2745 /// 2746 /// For a high level explanation of how this fits into the stack protector 2747 /// generation see the comment on the declaration of class 2748 /// StackProtectorDescriptor. 2749 void 2750 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2751 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2752 TargetLowering::MakeLibCallOptions CallOptions; 2753 CallOptions.setDiscardResult(true); 2754 SDValue Chain = 2755 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2756 None, CallOptions, getCurSDLoc()).second; 2757 // On PS4/PS5, the "return address" must still be within the calling 2758 // function, even if it's at the very end, so emit an explicit TRAP here. 2759 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2760 if (TM.getTargetTriple().isPS()) 2761 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2762 // WebAssembly needs an unreachable instruction after a non-returning call, 2763 // because the function return type can be different from __stack_chk_fail's 2764 // return type (void). 2765 if (TM.getTargetTriple().isWasm()) 2766 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2767 2768 DAG.setRoot(Chain); 2769 } 2770 2771 /// visitBitTestHeader - This function emits necessary code to produce value 2772 /// suitable for "bit tests" 2773 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2774 MachineBasicBlock *SwitchBB) { 2775 SDLoc dl = getCurSDLoc(); 2776 2777 // Subtract the minimum value. 2778 SDValue SwitchOp = getValue(B.SValue); 2779 EVT VT = SwitchOp.getValueType(); 2780 SDValue RangeSub = 2781 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2782 2783 // Determine the type of the test operands. 2784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2785 bool UsePtrType = false; 2786 if (!TLI.isTypeLegal(VT)) { 2787 UsePtrType = true; 2788 } else { 2789 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2790 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2791 // Switch table case range are encoded into series of masks. 2792 // Just use pointer type, it's guaranteed to fit. 2793 UsePtrType = true; 2794 break; 2795 } 2796 } 2797 SDValue Sub = RangeSub; 2798 if (UsePtrType) { 2799 VT = TLI.getPointerTy(DAG.getDataLayout()); 2800 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2801 } 2802 2803 B.RegVT = VT.getSimpleVT(); 2804 B.Reg = FuncInfo.CreateReg(B.RegVT); 2805 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2806 2807 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2808 2809 if (!B.FallthroughUnreachable) 2810 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2811 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2812 SwitchBB->normalizeSuccProbs(); 2813 2814 SDValue Root = CopyTo; 2815 if (!B.FallthroughUnreachable) { 2816 // Conditional branch to the default block. 2817 SDValue RangeCmp = DAG.getSetCC(dl, 2818 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2819 RangeSub.getValueType()), 2820 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2821 ISD::SETUGT); 2822 2823 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2824 DAG.getBasicBlock(B.Default)); 2825 } 2826 2827 // Avoid emitting unnecessary branches to the next block. 2828 if (MBB != NextBlock(SwitchBB)) 2829 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2830 2831 DAG.setRoot(Root); 2832 } 2833 2834 /// visitBitTestCase - this function produces one "bit test" 2835 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2836 MachineBasicBlock* NextMBB, 2837 BranchProbability BranchProbToNext, 2838 unsigned Reg, 2839 BitTestCase &B, 2840 MachineBasicBlock *SwitchBB) { 2841 SDLoc dl = getCurSDLoc(); 2842 MVT VT = BB.RegVT; 2843 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2844 SDValue Cmp; 2845 unsigned PopCount = countPopulation(B.Mask); 2846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2847 if (PopCount == 1) { 2848 // Testing for a single bit; just compare the shift count with what it 2849 // would need to be to shift a 1 bit in that position. 2850 Cmp = DAG.getSetCC( 2851 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2852 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2853 ISD::SETEQ); 2854 } else if (PopCount == BB.Range) { 2855 // There is only one zero bit in the range, test for it directly. 2856 Cmp = DAG.getSetCC( 2857 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2858 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2859 ISD::SETNE); 2860 } else { 2861 // Make desired shift 2862 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2863 DAG.getConstant(1, dl, VT), ShiftOp); 2864 2865 // Emit bit tests and jumps 2866 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2867 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2868 Cmp = DAG.getSetCC( 2869 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2870 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2871 } 2872 2873 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2874 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2875 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2876 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2877 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2878 // one as they are relative probabilities (and thus work more like weights), 2879 // and hence we need to normalize them to let the sum of them become one. 2880 SwitchBB->normalizeSuccProbs(); 2881 2882 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2883 MVT::Other, getControlRoot(), 2884 Cmp, DAG.getBasicBlock(B.TargetBB)); 2885 2886 // Avoid emitting unnecessary branches to the next block. 2887 if (NextMBB != NextBlock(SwitchBB)) 2888 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2889 DAG.getBasicBlock(NextMBB)); 2890 2891 DAG.setRoot(BrAnd); 2892 } 2893 2894 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2895 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2896 2897 // Retrieve successors. Look through artificial IR level blocks like 2898 // catchswitch for successors. 2899 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2900 const BasicBlock *EHPadBB = I.getSuccessor(1); 2901 2902 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2903 // have to do anything here to lower funclet bundles. 2904 assert(!I.hasOperandBundlesOtherThan( 2905 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2906 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2907 LLVMContext::OB_cfguardtarget, 2908 LLVMContext::OB_clang_arc_attachedcall}) && 2909 "Cannot lower invokes with arbitrary operand bundles yet!"); 2910 2911 const Value *Callee(I.getCalledOperand()); 2912 const Function *Fn = dyn_cast<Function>(Callee); 2913 if (isa<InlineAsm>(Callee)) 2914 visitInlineAsm(I, EHPadBB); 2915 else if (Fn && Fn->isIntrinsic()) { 2916 switch (Fn->getIntrinsicID()) { 2917 default: 2918 llvm_unreachable("Cannot invoke this intrinsic"); 2919 case Intrinsic::donothing: 2920 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2921 case Intrinsic::seh_try_begin: 2922 case Intrinsic::seh_scope_begin: 2923 case Intrinsic::seh_try_end: 2924 case Intrinsic::seh_scope_end: 2925 break; 2926 case Intrinsic::experimental_patchpoint_void: 2927 case Intrinsic::experimental_patchpoint_i64: 2928 visitPatchpoint(I, EHPadBB); 2929 break; 2930 case Intrinsic::experimental_gc_statepoint: 2931 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2932 break; 2933 case Intrinsic::wasm_rethrow: { 2934 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2935 // special because it can be invoked, so we manually lower it to a DAG 2936 // node here. 2937 SmallVector<SDValue, 8> Ops; 2938 Ops.push_back(getRoot()); // inchain 2939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2940 Ops.push_back( 2941 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2942 TLI.getPointerTy(DAG.getDataLayout()))); 2943 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2944 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2945 break; 2946 } 2947 } 2948 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2949 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2950 // Eventually we will support lowering the @llvm.experimental.deoptimize 2951 // intrinsic, and right now there are no plans to support other intrinsics 2952 // with deopt state. 2953 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2954 } else { 2955 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2956 } 2957 2958 // If the value of the invoke is used outside of its defining block, make it 2959 // available as a virtual register. 2960 // We already took care of the exported value for the statepoint instruction 2961 // during call to the LowerStatepoint. 2962 if (!isa<GCStatepointInst>(I)) { 2963 CopyToExportRegsIfNeeded(&I); 2964 } 2965 2966 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2967 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2968 BranchProbability EHPadBBProb = 2969 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2970 : BranchProbability::getZero(); 2971 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2972 2973 // Update successor info. 2974 addSuccessorWithProb(InvokeMBB, Return); 2975 for (auto &UnwindDest : UnwindDests) { 2976 UnwindDest.first->setIsEHPad(); 2977 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2978 } 2979 InvokeMBB->normalizeSuccProbs(); 2980 2981 // Drop into normal successor. 2982 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2983 DAG.getBasicBlock(Return))); 2984 } 2985 2986 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2987 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2988 2989 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2990 // have to do anything here to lower funclet bundles. 2991 assert(!I.hasOperandBundlesOtherThan( 2992 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2993 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2994 2995 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2996 visitInlineAsm(I); 2997 CopyToExportRegsIfNeeded(&I); 2998 2999 // Retrieve successors. 3000 SmallPtrSet<BasicBlock *, 8> Dests; 3001 Dests.insert(I.getDefaultDest()); 3002 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3003 3004 // Update successor info. 3005 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3006 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3007 BasicBlock *Dest = I.getIndirectDest(i); 3008 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3009 Target->setIsInlineAsmBrIndirectTarget(); 3010 Target->setMachineBlockAddressTaken(); 3011 // Don't add duplicate machine successors. 3012 if (Dests.insert(Dest).second) 3013 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3014 } 3015 CallBrMBB->normalizeSuccProbs(); 3016 3017 // Drop into default successor. 3018 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3019 MVT::Other, getControlRoot(), 3020 DAG.getBasicBlock(Return))); 3021 } 3022 3023 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3024 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3025 } 3026 3027 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3028 assert(FuncInfo.MBB->isEHPad() && 3029 "Call to landingpad not in landing pad!"); 3030 3031 // If there aren't registers to copy the values into (e.g., during SjLj 3032 // exceptions), then don't bother to create these DAG nodes. 3033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3034 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3035 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3036 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3037 return; 3038 3039 // If landingpad's return type is token type, we don't create DAG nodes 3040 // for its exception pointer and selector value. The extraction of exception 3041 // pointer or selector value from token type landingpads is not currently 3042 // supported. 3043 if (LP.getType()->isTokenTy()) 3044 return; 3045 3046 SmallVector<EVT, 2> ValueVTs; 3047 SDLoc dl = getCurSDLoc(); 3048 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3049 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3050 3051 // Get the two live-in registers as SDValues. The physregs have already been 3052 // copied into virtual registers. 3053 SDValue Ops[2]; 3054 if (FuncInfo.ExceptionPointerVirtReg) { 3055 Ops[0] = DAG.getZExtOrTrunc( 3056 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3057 FuncInfo.ExceptionPointerVirtReg, 3058 TLI.getPointerTy(DAG.getDataLayout())), 3059 dl, ValueVTs[0]); 3060 } else { 3061 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3062 } 3063 Ops[1] = DAG.getZExtOrTrunc( 3064 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3065 FuncInfo.ExceptionSelectorVirtReg, 3066 TLI.getPointerTy(DAG.getDataLayout())), 3067 dl, ValueVTs[1]); 3068 3069 // Merge into one. 3070 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3071 DAG.getVTList(ValueVTs), Ops); 3072 setValue(&LP, Res); 3073 } 3074 3075 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3076 MachineBasicBlock *Last) { 3077 // Update JTCases. 3078 for (JumpTableBlock &JTB : SL->JTCases) 3079 if (JTB.first.HeaderBB == First) 3080 JTB.first.HeaderBB = Last; 3081 3082 // Update BitTestCases. 3083 for (BitTestBlock &BTB : SL->BitTestCases) 3084 if (BTB.Parent == First) 3085 BTB.Parent = Last; 3086 } 3087 3088 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3089 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3090 3091 // Update machine-CFG edges with unique successors. 3092 SmallSet<BasicBlock*, 32> Done; 3093 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3094 BasicBlock *BB = I.getSuccessor(i); 3095 bool Inserted = Done.insert(BB).second; 3096 if (!Inserted) 3097 continue; 3098 3099 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3100 addSuccessorWithProb(IndirectBrMBB, Succ); 3101 } 3102 IndirectBrMBB->normalizeSuccProbs(); 3103 3104 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3105 MVT::Other, getControlRoot(), 3106 getValue(I.getAddress()))); 3107 } 3108 3109 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3110 if (!DAG.getTarget().Options.TrapUnreachable) 3111 return; 3112 3113 // We may be able to ignore unreachable behind a noreturn call. 3114 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3115 const BasicBlock &BB = *I.getParent(); 3116 if (&I != &BB.front()) { 3117 BasicBlock::const_iterator PredI = 3118 std::prev(BasicBlock::const_iterator(&I)); 3119 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3120 if (Call->doesNotReturn()) 3121 return; 3122 } 3123 } 3124 } 3125 3126 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3127 } 3128 3129 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3130 SDNodeFlags Flags; 3131 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3132 Flags.copyFMF(*FPOp); 3133 3134 SDValue Op = getValue(I.getOperand(0)); 3135 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3136 Op, Flags); 3137 setValue(&I, UnNodeValue); 3138 } 3139 3140 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3141 SDNodeFlags Flags; 3142 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3143 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3144 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3145 } 3146 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3147 Flags.setExact(ExactOp->isExact()); 3148 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3149 Flags.copyFMF(*FPOp); 3150 3151 SDValue Op1 = getValue(I.getOperand(0)); 3152 SDValue Op2 = getValue(I.getOperand(1)); 3153 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3154 Op1, Op2, Flags); 3155 setValue(&I, BinNodeValue); 3156 } 3157 3158 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3159 SDValue Op1 = getValue(I.getOperand(0)); 3160 SDValue Op2 = getValue(I.getOperand(1)); 3161 3162 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3163 Op1.getValueType(), DAG.getDataLayout()); 3164 3165 // Coerce the shift amount to the right type if we can. This exposes the 3166 // truncate or zext to optimization early. 3167 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3168 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3169 "Unexpected shift type"); 3170 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3171 } 3172 3173 bool nuw = false; 3174 bool nsw = false; 3175 bool exact = false; 3176 3177 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3178 3179 if (const OverflowingBinaryOperator *OFBinOp = 3180 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3181 nuw = OFBinOp->hasNoUnsignedWrap(); 3182 nsw = OFBinOp->hasNoSignedWrap(); 3183 } 3184 if (const PossiblyExactOperator *ExactOp = 3185 dyn_cast<const PossiblyExactOperator>(&I)) 3186 exact = ExactOp->isExact(); 3187 } 3188 SDNodeFlags Flags; 3189 Flags.setExact(exact); 3190 Flags.setNoSignedWrap(nsw); 3191 Flags.setNoUnsignedWrap(nuw); 3192 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3193 Flags); 3194 setValue(&I, Res); 3195 } 3196 3197 void SelectionDAGBuilder::visitSDiv(const User &I) { 3198 SDValue Op1 = getValue(I.getOperand(0)); 3199 SDValue Op2 = getValue(I.getOperand(1)); 3200 3201 SDNodeFlags Flags; 3202 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3203 cast<PossiblyExactOperator>(&I)->isExact()); 3204 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3205 Op2, Flags)); 3206 } 3207 3208 void SelectionDAGBuilder::visitICmp(const User &I) { 3209 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3210 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3211 predicate = IC->getPredicate(); 3212 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3213 predicate = ICmpInst::Predicate(IC->getPredicate()); 3214 SDValue Op1 = getValue(I.getOperand(0)); 3215 SDValue Op2 = getValue(I.getOperand(1)); 3216 ISD::CondCode Opcode = getICmpCondCode(predicate); 3217 3218 auto &TLI = DAG.getTargetLoweringInfo(); 3219 EVT MemVT = 3220 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3221 3222 // If a pointer's DAG type is larger than its memory type then the DAG values 3223 // are zero-extended. This breaks signed comparisons so truncate back to the 3224 // underlying type before doing the compare. 3225 if (Op1.getValueType() != MemVT) { 3226 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3227 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3228 } 3229 3230 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3231 I.getType()); 3232 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3233 } 3234 3235 void SelectionDAGBuilder::visitFCmp(const User &I) { 3236 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3237 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3238 predicate = FC->getPredicate(); 3239 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3240 predicate = FCmpInst::Predicate(FC->getPredicate()); 3241 SDValue Op1 = getValue(I.getOperand(0)); 3242 SDValue Op2 = getValue(I.getOperand(1)); 3243 3244 ISD::CondCode Condition = getFCmpCondCode(predicate); 3245 auto *FPMO = cast<FPMathOperator>(&I); 3246 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3247 Condition = getFCmpCodeWithoutNaN(Condition); 3248 3249 SDNodeFlags Flags; 3250 Flags.copyFMF(*FPMO); 3251 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3252 3253 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3254 I.getType()); 3255 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3256 } 3257 3258 // Check if the condition of the select has one use or two users that are both 3259 // selects with the same condition. 3260 static bool hasOnlySelectUsers(const Value *Cond) { 3261 return llvm::all_of(Cond->users(), [](const Value *V) { 3262 return isa<SelectInst>(V); 3263 }); 3264 } 3265 3266 void SelectionDAGBuilder::visitSelect(const User &I) { 3267 SmallVector<EVT, 4> ValueVTs; 3268 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3269 ValueVTs); 3270 unsigned NumValues = ValueVTs.size(); 3271 if (NumValues == 0) return; 3272 3273 SmallVector<SDValue, 4> Values(NumValues); 3274 SDValue Cond = getValue(I.getOperand(0)); 3275 SDValue LHSVal = getValue(I.getOperand(1)); 3276 SDValue RHSVal = getValue(I.getOperand(2)); 3277 SmallVector<SDValue, 1> BaseOps(1, Cond); 3278 ISD::NodeType OpCode = 3279 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3280 3281 bool IsUnaryAbs = false; 3282 bool Negate = false; 3283 3284 SDNodeFlags Flags; 3285 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3286 Flags.copyFMF(*FPOp); 3287 3288 // Min/max matching is only viable if all output VTs are the same. 3289 if (is_splat(ValueVTs)) { 3290 EVT VT = ValueVTs[0]; 3291 LLVMContext &Ctx = *DAG.getContext(); 3292 auto &TLI = DAG.getTargetLoweringInfo(); 3293 3294 // We care about the legality of the operation after it has been type 3295 // legalized. 3296 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3297 VT = TLI.getTypeToTransformTo(Ctx, VT); 3298 3299 // If the vselect is legal, assume we want to leave this as a vector setcc + 3300 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3301 // min/max is legal on the scalar type. 3302 bool UseScalarMinMax = VT.isVector() && 3303 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3304 3305 Value *LHS, *RHS; 3306 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3307 ISD::NodeType Opc = ISD::DELETED_NODE; 3308 switch (SPR.Flavor) { 3309 case SPF_UMAX: Opc = ISD::UMAX; break; 3310 case SPF_UMIN: Opc = ISD::UMIN; break; 3311 case SPF_SMAX: Opc = ISD::SMAX; break; 3312 case SPF_SMIN: Opc = ISD::SMIN; break; 3313 case SPF_FMINNUM: 3314 switch (SPR.NaNBehavior) { 3315 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3316 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3317 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3318 case SPNB_RETURNS_ANY: { 3319 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3320 Opc = ISD::FMINNUM; 3321 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3322 Opc = ISD::FMINIMUM; 3323 else if (UseScalarMinMax) 3324 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3325 ISD::FMINNUM : ISD::FMINIMUM; 3326 break; 3327 } 3328 } 3329 break; 3330 case SPF_FMAXNUM: 3331 switch (SPR.NaNBehavior) { 3332 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3333 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3334 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3335 case SPNB_RETURNS_ANY: 3336 3337 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3338 Opc = ISD::FMAXNUM; 3339 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3340 Opc = ISD::FMAXIMUM; 3341 else if (UseScalarMinMax) 3342 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3343 ISD::FMAXNUM : ISD::FMAXIMUM; 3344 break; 3345 } 3346 break; 3347 case SPF_NABS: 3348 Negate = true; 3349 [[fallthrough]]; 3350 case SPF_ABS: 3351 IsUnaryAbs = true; 3352 Opc = ISD::ABS; 3353 break; 3354 default: break; 3355 } 3356 3357 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3358 (TLI.isOperationLegalOrCustom(Opc, VT) || 3359 (UseScalarMinMax && 3360 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3361 // If the underlying comparison instruction is used by any other 3362 // instruction, the consumed instructions won't be destroyed, so it is 3363 // not profitable to convert to a min/max. 3364 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3365 OpCode = Opc; 3366 LHSVal = getValue(LHS); 3367 RHSVal = getValue(RHS); 3368 BaseOps.clear(); 3369 } 3370 3371 if (IsUnaryAbs) { 3372 OpCode = Opc; 3373 LHSVal = getValue(LHS); 3374 BaseOps.clear(); 3375 } 3376 } 3377 3378 if (IsUnaryAbs) { 3379 for (unsigned i = 0; i != NumValues; ++i) { 3380 SDLoc dl = getCurSDLoc(); 3381 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3382 Values[i] = 3383 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3384 if (Negate) 3385 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3386 Values[i]); 3387 } 3388 } else { 3389 for (unsigned i = 0; i != NumValues; ++i) { 3390 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3391 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3392 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3393 Values[i] = DAG.getNode( 3394 OpCode, getCurSDLoc(), 3395 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3396 } 3397 } 3398 3399 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3400 DAG.getVTList(ValueVTs), Values)); 3401 } 3402 3403 void SelectionDAGBuilder::visitTrunc(const User &I) { 3404 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3405 SDValue N = getValue(I.getOperand(0)); 3406 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3407 I.getType()); 3408 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3409 } 3410 3411 void SelectionDAGBuilder::visitZExt(const User &I) { 3412 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3413 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3414 SDValue N = getValue(I.getOperand(0)); 3415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3416 I.getType()); 3417 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3418 } 3419 3420 void SelectionDAGBuilder::visitSExt(const User &I) { 3421 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3422 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3423 SDValue N = getValue(I.getOperand(0)); 3424 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3425 I.getType()); 3426 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3427 } 3428 3429 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3430 // FPTrunc is never a no-op cast, no need to check 3431 SDValue N = getValue(I.getOperand(0)); 3432 SDLoc dl = getCurSDLoc(); 3433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3434 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3435 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3436 DAG.getTargetConstant( 3437 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3438 } 3439 3440 void SelectionDAGBuilder::visitFPExt(const User &I) { 3441 // FPExt is never a no-op cast, no need to check 3442 SDValue N = getValue(I.getOperand(0)); 3443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3444 I.getType()); 3445 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3446 } 3447 3448 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3449 // FPToUI is never a no-op cast, no need to check 3450 SDValue N = getValue(I.getOperand(0)); 3451 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3452 I.getType()); 3453 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3454 } 3455 3456 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3457 // FPToSI is never a no-op cast, no need to check 3458 SDValue N = getValue(I.getOperand(0)); 3459 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3460 I.getType()); 3461 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3462 } 3463 3464 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3465 // UIToFP is never a no-op cast, no need to check 3466 SDValue N = getValue(I.getOperand(0)); 3467 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3468 I.getType()); 3469 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3470 } 3471 3472 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3473 // SIToFP is never a no-op cast, no need to check 3474 SDValue N = getValue(I.getOperand(0)); 3475 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3476 I.getType()); 3477 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3478 } 3479 3480 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3481 // What to do depends on the size of the integer and the size of the pointer. 3482 // We can either truncate, zero extend, or no-op, accordingly. 3483 SDValue N = getValue(I.getOperand(0)); 3484 auto &TLI = DAG.getTargetLoweringInfo(); 3485 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3486 I.getType()); 3487 EVT PtrMemVT = 3488 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3489 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3490 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3491 setValue(&I, N); 3492 } 3493 3494 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3495 // What to do depends on the size of the integer and the size of the pointer. 3496 // We can either truncate, zero extend, or no-op, accordingly. 3497 SDValue N = getValue(I.getOperand(0)); 3498 auto &TLI = DAG.getTargetLoweringInfo(); 3499 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3500 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3501 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3502 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3503 setValue(&I, N); 3504 } 3505 3506 void SelectionDAGBuilder::visitBitCast(const User &I) { 3507 SDValue N = getValue(I.getOperand(0)); 3508 SDLoc dl = getCurSDLoc(); 3509 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3510 I.getType()); 3511 3512 // BitCast assures us that source and destination are the same size so this is 3513 // either a BITCAST or a no-op. 3514 if (DestVT != N.getValueType()) 3515 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3516 DestVT, N)); // convert types. 3517 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3518 // might fold any kind of constant expression to an integer constant and that 3519 // is not what we are looking for. Only recognize a bitcast of a genuine 3520 // constant integer as an opaque constant. 3521 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3522 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3523 /*isOpaque*/true)); 3524 else 3525 setValue(&I, N); // noop cast. 3526 } 3527 3528 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3530 const Value *SV = I.getOperand(0); 3531 SDValue N = getValue(SV); 3532 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3533 3534 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3535 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3536 3537 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3538 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3539 3540 setValue(&I, N); 3541 } 3542 3543 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 SDValue InVec = getValue(I.getOperand(0)); 3546 SDValue InVal = getValue(I.getOperand(1)); 3547 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3548 TLI.getVectorIdxTy(DAG.getDataLayout())); 3549 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3550 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3551 InVec, InVal, InIdx)); 3552 } 3553 3554 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3556 SDValue InVec = getValue(I.getOperand(0)); 3557 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3558 TLI.getVectorIdxTy(DAG.getDataLayout())); 3559 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3560 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3561 InVec, InIdx)); 3562 } 3563 3564 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3565 SDValue Src1 = getValue(I.getOperand(0)); 3566 SDValue Src2 = getValue(I.getOperand(1)); 3567 ArrayRef<int> Mask; 3568 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3569 Mask = SVI->getShuffleMask(); 3570 else 3571 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3572 SDLoc DL = getCurSDLoc(); 3573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3574 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3575 EVT SrcVT = Src1.getValueType(); 3576 3577 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3578 VT.isScalableVector()) { 3579 // Canonical splat form of first element of first input vector. 3580 SDValue FirstElt = 3581 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3582 DAG.getVectorIdxConstant(0, DL)); 3583 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3584 return; 3585 } 3586 3587 // For now, we only handle splats for scalable vectors. 3588 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3589 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3590 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3591 3592 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3593 unsigned MaskNumElts = Mask.size(); 3594 3595 if (SrcNumElts == MaskNumElts) { 3596 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3597 return; 3598 } 3599 3600 // Normalize the shuffle vector since mask and vector length don't match. 3601 if (SrcNumElts < MaskNumElts) { 3602 // Mask is longer than the source vectors. We can use concatenate vector to 3603 // make the mask and vectors lengths match. 3604 3605 if (MaskNumElts % SrcNumElts == 0) { 3606 // Mask length is a multiple of the source vector length. 3607 // Check if the shuffle is some kind of concatenation of the input 3608 // vectors. 3609 unsigned NumConcat = MaskNumElts / SrcNumElts; 3610 bool IsConcat = true; 3611 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3612 for (unsigned i = 0; i != MaskNumElts; ++i) { 3613 int Idx = Mask[i]; 3614 if (Idx < 0) 3615 continue; 3616 // Ensure the indices in each SrcVT sized piece are sequential and that 3617 // the same source is used for the whole piece. 3618 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3619 (ConcatSrcs[i / SrcNumElts] >= 0 && 3620 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3621 IsConcat = false; 3622 break; 3623 } 3624 // Remember which source this index came from. 3625 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3626 } 3627 3628 // The shuffle is concatenating multiple vectors together. Just emit 3629 // a CONCAT_VECTORS operation. 3630 if (IsConcat) { 3631 SmallVector<SDValue, 8> ConcatOps; 3632 for (auto Src : ConcatSrcs) { 3633 if (Src < 0) 3634 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3635 else if (Src == 0) 3636 ConcatOps.push_back(Src1); 3637 else 3638 ConcatOps.push_back(Src2); 3639 } 3640 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3641 return; 3642 } 3643 } 3644 3645 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3646 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3647 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3648 PaddedMaskNumElts); 3649 3650 // Pad both vectors with undefs to make them the same length as the mask. 3651 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3652 3653 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3654 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3655 MOps1[0] = Src1; 3656 MOps2[0] = Src2; 3657 3658 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3659 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3660 3661 // Readjust mask for new input vector length. 3662 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3663 for (unsigned i = 0; i != MaskNumElts; ++i) { 3664 int Idx = Mask[i]; 3665 if (Idx >= (int)SrcNumElts) 3666 Idx -= SrcNumElts - PaddedMaskNumElts; 3667 MappedOps[i] = Idx; 3668 } 3669 3670 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3671 3672 // If the concatenated vector was padded, extract a subvector with the 3673 // correct number of elements. 3674 if (MaskNumElts != PaddedMaskNumElts) 3675 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3676 DAG.getVectorIdxConstant(0, DL)); 3677 3678 setValue(&I, Result); 3679 return; 3680 } 3681 3682 if (SrcNumElts > MaskNumElts) { 3683 // Analyze the access pattern of the vector to see if we can extract 3684 // two subvectors and do the shuffle. 3685 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3686 bool CanExtract = true; 3687 for (int Idx : Mask) { 3688 unsigned Input = 0; 3689 if (Idx < 0) 3690 continue; 3691 3692 if (Idx >= (int)SrcNumElts) { 3693 Input = 1; 3694 Idx -= SrcNumElts; 3695 } 3696 3697 // If all the indices come from the same MaskNumElts sized portion of 3698 // the sources we can use extract. Also make sure the extract wouldn't 3699 // extract past the end of the source. 3700 int NewStartIdx = alignDown(Idx, MaskNumElts); 3701 if (NewStartIdx + MaskNumElts > SrcNumElts || 3702 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3703 CanExtract = false; 3704 // Make sure we always update StartIdx as we use it to track if all 3705 // elements are undef. 3706 StartIdx[Input] = NewStartIdx; 3707 } 3708 3709 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3710 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3711 return; 3712 } 3713 if (CanExtract) { 3714 // Extract appropriate subvector and generate a vector shuffle 3715 for (unsigned Input = 0; Input < 2; ++Input) { 3716 SDValue &Src = Input == 0 ? Src1 : Src2; 3717 if (StartIdx[Input] < 0) 3718 Src = DAG.getUNDEF(VT); 3719 else { 3720 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3721 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3722 } 3723 } 3724 3725 // Calculate new mask. 3726 SmallVector<int, 8> MappedOps(Mask); 3727 for (int &Idx : MappedOps) { 3728 if (Idx >= (int)SrcNumElts) 3729 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3730 else if (Idx >= 0) 3731 Idx -= StartIdx[0]; 3732 } 3733 3734 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3735 return; 3736 } 3737 } 3738 3739 // We can't use either concat vectors or extract subvectors so fall back to 3740 // replacing the shuffle with extract and build vector. 3741 // to insert and build vector. 3742 EVT EltVT = VT.getVectorElementType(); 3743 SmallVector<SDValue,8> Ops; 3744 for (int Idx : Mask) { 3745 SDValue Res; 3746 3747 if (Idx < 0) { 3748 Res = DAG.getUNDEF(EltVT); 3749 } else { 3750 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3751 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3752 3753 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3754 DAG.getVectorIdxConstant(Idx, DL)); 3755 } 3756 3757 Ops.push_back(Res); 3758 } 3759 3760 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3761 } 3762 3763 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3764 ArrayRef<unsigned> Indices = I.getIndices(); 3765 const Value *Op0 = I.getOperand(0); 3766 const Value *Op1 = I.getOperand(1); 3767 Type *AggTy = I.getType(); 3768 Type *ValTy = Op1->getType(); 3769 bool IntoUndef = isa<UndefValue>(Op0); 3770 bool FromUndef = isa<UndefValue>(Op1); 3771 3772 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3773 3774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3775 SmallVector<EVT, 4> AggValueVTs; 3776 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3777 SmallVector<EVT, 4> ValValueVTs; 3778 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3779 3780 unsigned NumAggValues = AggValueVTs.size(); 3781 unsigned NumValValues = ValValueVTs.size(); 3782 SmallVector<SDValue, 4> Values(NumAggValues); 3783 3784 // Ignore an insertvalue that produces an empty object 3785 if (!NumAggValues) { 3786 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3787 return; 3788 } 3789 3790 SDValue Agg = getValue(Op0); 3791 unsigned i = 0; 3792 // Copy the beginning value(s) from the original aggregate. 3793 for (; i != LinearIndex; ++i) 3794 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3795 SDValue(Agg.getNode(), Agg.getResNo() + i); 3796 // Copy values from the inserted value(s). 3797 if (NumValValues) { 3798 SDValue Val = getValue(Op1); 3799 for (; i != LinearIndex + NumValValues; ++i) 3800 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3801 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3802 } 3803 // Copy remaining value(s) from the original aggregate. 3804 for (; i != NumAggValues; ++i) 3805 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3806 SDValue(Agg.getNode(), Agg.getResNo() + i); 3807 3808 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3809 DAG.getVTList(AggValueVTs), Values)); 3810 } 3811 3812 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3813 ArrayRef<unsigned> Indices = I.getIndices(); 3814 const Value *Op0 = I.getOperand(0); 3815 Type *AggTy = Op0->getType(); 3816 Type *ValTy = I.getType(); 3817 bool OutOfUndef = isa<UndefValue>(Op0); 3818 3819 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3820 3821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3822 SmallVector<EVT, 4> ValValueVTs; 3823 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3824 3825 unsigned NumValValues = ValValueVTs.size(); 3826 3827 // Ignore a extractvalue that produces an empty object 3828 if (!NumValValues) { 3829 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3830 return; 3831 } 3832 3833 SmallVector<SDValue, 4> Values(NumValValues); 3834 3835 SDValue Agg = getValue(Op0); 3836 // Copy out the selected value(s). 3837 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3838 Values[i - LinearIndex] = 3839 OutOfUndef ? 3840 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3841 SDValue(Agg.getNode(), Agg.getResNo() + i); 3842 3843 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3844 DAG.getVTList(ValValueVTs), Values)); 3845 } 3846 3847 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3848 Value *Op0 = I.getOperand(0); 3849 // Note that the pointer operand may be a vector of pointers. Take the scalar 3850 // element which holds a pointer. 3851 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3852 SDValue N = getValue(Op0); 3853 SDLoc dl = getCurSDLoc(); 3854 auto &TLI = DAG.getTargetLoweringInfo(); 3855 3856 // Normalize Vector GEP - all scalar operands should be converted to the 3857 // splat vector. 3858 bool IsVectorGEP = I.getType()->isVectorTy(); 3859 ElementCount VectorElementCount = 3860 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3861 : ElementCount::getFixed(0); 3862 3863 if (IsVectorGEP && !N.getValueType().isVector()) { 3864 LLVMContext &Context = *DAG.getContext(); 3865 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3866 if (VectorElementCount.isScalable()) 3867 N = DAG.getSplatVector(VT, dl, N); 3868 else 3869 N = DAG.getSplatBuildVector(VT, dl, N); 3870 } 3871 3872 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3873 GTI != E; ++GTI) { 3874 const Value *Idx = GTI.getOperand(); 3875 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3876 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3877 if (Field) { 3878 // N = N + Offset 3879 uint64_t Offset = 3880 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3881 3882 // In an inbounds GEP with an offset that is nonnegative even when 3883 // interpreted as signed, assume there is no unsigned overflow. 3884 SDNodeFlags Flags; 3885 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3886 Flags.setNoUnsignedWrap(true); 3887 3888 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3889 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3890 } 3891 } else { 3892 // IdxSize is the width of the arithmetic according to IR semantics. 3893 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3894 // (and fix up the result later). 3895 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3896 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3897 TypeSize ElementSize = 3898 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3899 // We intentionally mask away the high bits here; ElementSize may not 3900 // fit in IdxTy. 3901 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3902 bool ElementScalable = ElementSize.isScalable(); 3903 3904 // If this is a scalar constant or a splat vector of constants, 3905 // handle it quickly. 3906 const auto *C = dyn_cast<Constant>(Idx); 3907 if (C && isa<VectorType>(C->getType())) 3908 C = C->getSplatValue(); 3909 3910 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3911 if (CI && CI->isZero()) 3912 continue; 3913 if (CI && !ElementScalable) { 3914 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3915 LLVMContext &Context = *DAG.getContext(); 3916 SDValue OffsVal; 3917 if (IsVectorGEP) 3918 OffsVal = DAG.getConstant( 3919 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3920 else 3921 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3922 3923 // In an inbounds GEP with an offset that is nonnegative even when 3924 // interpreted as signed, assume there is no unsigned overflow. 3925 SDNodeFlags Flags; 3926 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3927 Flags.setNoUnsignedWrap(true); 3928 3929 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3930 3931 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3932 continue; 3933 } 3934 3935 // N = N + Idx * ElementMul; 3936 SDValue IdxN = getValue(Idx); 3937 3938 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3939 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3940 VectorElementCount); 3941 if (VectorElementCount.isScalable()) 3942 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3943 else 3944 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3945 } 3946 3947 // If the index is smaller or larger than intptr_t, truncate or extend 3948 // it. 3949 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3950 3951 if (ElementScalable) { 3952 EVT VScaleTy = N.getValueType().getScalarType(); 3953 SDValue VScale = DAG.getNode( 3954 ISD::VSCALE, dl, VScaleTy, 3955 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3956 if (IsVectorGEP) 3957 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3958 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3959 } else { 3960 // If this is a multiply by a power of two, turn it into a shl 3961 // immediately. This is a very common case. 3962 if (ElementMul != 1) { 3963 if (ElementMul.isPowerOf2()) { 3964 unsigned Amt = ElementMul.logBase2(); 3965 IdxN = DAG.getNode(ISD::SHL, dl, 3966 N.getValueType(), IdxN, 3967 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3968 } else { 3969 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3970 IdxN.getValueType()); 3971 IdxN = DAG.getNode(ISD::MUL, dl, 3972 N.getValueType(), IdxN, Scale); 3973 } 3974 } 3975 } 3976 3977 N = DAG.getNode(ISD::ADD, dl, 3978 N.getValueType(), N, IdxN); 3979 } 3980 } 3981 3982 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3983 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3984 if (IsVectorGEP) { 3985 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3986 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3987 } 3988 3989 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3990 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3991 3992 setValue(&I, N); 3993 } 3994 3995 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3996 // If this is a fixed sized alloca in the entry block of the function, 3997 // allocate it statically on the stack. 3998 if (FuncInfo.StaticAllocaMap.count(&I)) 3999 return; // getValue will auto-populate this. 4000 4001 SDLoc dl = getCurSDLoc(); 4002 Type *Ty = I.getAllocatedType(); 4003 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4004 auto &DL = DAG.getDataLayout(); 4005 TypeSize TySize = DL.getTypeAllocSize(Ty); 4006 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4007 4008 SDValue AllocSize = getValue(I.getArraySize()); 4009 4010 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4011 if (AllocSize.getValueType() != IntPtr) 4012 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4013 4014 if (TySize.isScalable()) 4015 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4016 DAG.getVScale(dl, IntPtr, 4017 APInt(IntPtr.getScalarSizeInBits(), 4018 TySize.getKnownMinValue()))); 4019 else 4020 AllocSize = 4021 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4022 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4023 4024 // Handle alignment. If the requested alignment is less than or equal to 4025 // the stack alignment, ignore it. If the size is greater than or equal to 4026 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4027 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4028 if (*Alignment <= StackAlign) 4029 Alignment = None; 4030 4031 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4032 // Round the size of the allocation up to the stack alignment size 4033 // by add SA-1 to the size. This doesn't overflow because we're computing 4034 // an address inside an alloca. 4035 SDNodeFlags Flags; 4036 Flags.setNoUnsignedWrap(true); 4037 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4038 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4039 4040 // Mask out the low bits for alignment purposes. 4041 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4042 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4043 4044 SDValue Ops[] = { 4045 getRoot(), AllocSize, 4046 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4047 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4048 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4049 setValue(&I, DSA); 4050 DAG.setRoot(DSA.getValue(1)); 4051 4052 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4053 } 4054 4055 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4056 if (I.isAtomic()) 4057 return visitAtomicLoad(I); 4058 4059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4060 const Value *SV = I.getOperand(0); 4061 if (TLI.supportSwiftError()) { 4062 // Swifterror values can come from either a function parameter with 4063 // swifterror attribute or an alloca with swifterror attribute. 4064 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4065 if (Arg->hasSwiftErrorAttr()) 4066 return visitLoadFromSwiftError(I); 4067 } 4068 4069 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4070 if (Alloca->isSwiftError()) 4071 return visitLoadFromSwiftError(I); 4072 } 4073 } 4074 4075 SDValue Ptr = getValue(SV); 4076 4077 Type *Ty = I.getType(); 4078 Align Alignment = I.getAlign(); 4079 4080 AAMDNodes AAInfo = I.getAAMetadata(); 4081 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4082 4083 SmallVector<EVT, 4> ValueVTs, MemVTs; 4084 SmallVector<uint64_t, 4> Offsets; 4085 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4086 unsigned NumValues = ValueVTs.size(); 4087 if (NumValues == 0) 4088 return; 4089 4090 bool isVolatile = I.isVolatile(); 4091 MachineMemOperand::Flags MMOFlags = 4092 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4093 4094 SDValue Root; 4095 bool ConstantMemory = false; 4096 if (isVolatile) 4097 // Serialize volatile loads with other side effects. 4098 Root = getRoot(); 4099 else if (NumValues > MaxParallelChains) 4100 Root = getMemoryRoot(); 4101 else if (AA && 4102 AA->pointsToConstantMemory(MemoryLocation( 4103 SV, 4104 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4105 AAInfo))) { 4106 // Do not serialize (non-volatile) loads of constant memory with anything. 4107 Root = DAG.getEntryNode(); 4108 ConstantMemory = true; 4109 MMOFlags |= MachineMemOperand::MOInvariant; 4110 4111 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 4112 // but the previous usage implied it did. Probably should check 4113 // isDereferenceableAndAlignedPointer. 4114 MMOFlags |= MachineMemOperand::MODereferenceable; 4115 } else { 4116 // Do not serialize non-volatile loads against each other. 4117 Root = DAG.getRoot(); 4118 } 4119 4120 SDLoc dl = getCurSDLoc(); 4121 4122 if (isVolatile) 4123 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4124 4125 // An aggregate load cannot wrap around the address space, so offsets to its 4126 // parts don't wrap either. 4127 SDNodeFlags Flags; 4128 Flags.setNoUnsignedWrap(true); 4129 4130 SmallVector<SDValue, 4> Values(NumValues); 4131 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4132 EVT PtrVT = Ptr.getValueType(); 4133 4134 unsigned ChainI = 0; 4135 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4136 // Serializing loads here may result in excessive register pressure, and 4137 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4138 // could recover a bit by hoisting nodes upward in the chain by recognizing 4139 // they are side-effect free or do not alias. The optimizer should really 4140 // avoid this case by converting large object/array copies to llvm.memcpy 4141 // (MaxParallelChains should always remain as failsafe). 4142 if (ChainI == MaxParallelChains) { 4143 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4144 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4145 makeArrayRef(Chains.data(), ChainI)); 4146 Root = Chain; 4147 ChainI = 0; 4148 } 4149 SDValue A = DAG.getNode(ISD::ADD, dl, 4150 PtrVT, Ptr, 4151 DAG.getConstant(Offsets[i], dl, PtrVT), 4152 Flags); 4153 4154 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4155 MachinePointerInfo(SV, Offsets[i]), Alignment, 4156 MMOFlags, AAInfo, Ranges); 4157 Chains[ChainI] = L.getValue(1); 4158 4159 if (MemVTs[i] != ValueVTs[i]) 4160 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4161 4162 Values[i] = L; 4163 } 4164 4165 if (!ConstantMemory) { 4166 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4167 makeArrayRef(Chains.data(), ChainI)); 4168 if (isVolatile) 4169 DAG.setRoot(Chain); 4170 else 4171 PendingLoads.push_back(Chain); 4172 } 4173 4174 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4175 DAG.getVTList(ValueVTs), Values)); 4176 } 4177 4178 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4179 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4180 "call visitStoreToSwiftError when backend supports swifterror"); 4181 4182 SmallVector<EVT, 4> ValueVTs; 4183 SmallVector<uint64_t, 4> Offsets; 4184 const Value *SrcV = I.getOperand(0); 4185 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4186 SrcV->getType(), ValueVTs, &Offsets); 4187 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4188 "expect a single EVT for swifterror"); 4189 4190 SDValue Src = getValue(SrcV); 4191 // Create a virtual register, then update the virtual register. 4192 Register VReg = 4193 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4194 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4195 // Chain can be getRoot or getControlRoot. 4196 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4197 SDValue(Src.getNode(), Src.getResNo())); 4198 DAG.setRoot(CopyNode); 4199 } 4200 4201 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4202 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4203 "call visitLoadFromSwiftError when backend supports swifterror"); 4204 4205 assert(!I.isVolatile() && 4206 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4207 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4208 "Support volatile, non temporal, invariant for load_from_swift_error"); 4209 4210 const Value *SV = I.getOperand(0); 4211 Type *Ty = I.getType(); 4212 assert( 4213 (!AA || 4214 !AA->pointsToConstantMemory(MemoryLocation( 4215 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4216 I.getAAMetadata()))) && 4217 "load_from_swift_error should not be constant memory"); 4218 4219 SmallVector<EVT, 4> ValueVTs; 4220 SmallVector<uint64_t, 4> Offsets; 4221 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4222 ValueVTs, &Offsets); 4223 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4224 "expect a single EVT for swifterror"); 4225 4226 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4227 SDValue L = DAG.getCopyFromReg( 4228 getRoot(), getCurSDLoc(), 4229 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4230 4231 setValue(&I, L); 4232 } 4233 4234 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4235 if (I.isAtomic()) 4236 return visitAtomicStore(I); 4237 4238 const Value *SrcV = I.getOperand(0); 4239 const Value *PtrV = I.getOperand(1); 4240 4241 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4242 if (TLI.supportSwiftError()) { 4243 // Swifterror values can come from either a function parameter with 4244 // swifterror attribute or an alloca with swifterror attribute. 4245 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4246 if (Arg->hasSwiftErrorAttr()) 4247 return visitStoreToSwiftError(I); 4248 } 4249 4250 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4251 if (Alloca->isSwiftError()) 4252 return visitStoreToSwiftError(I); 4253 } 4254 } 4255 4256 SmallVector<EVT, 4> ValueVTs, MemVTs; 4257 SmallVector<uint64_t, 4> Offsets; 4258 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4259 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4260 unsigned NumValues = ValueVTs.size(); 4261 if (NumValues == 0) 4262 return; 4263 4264 // Get the lowered operands. Note that we do this after 4265 // checking if NumResults is zero, because with zero results 4266 // the operands won't have values in the map. 4267 SDValue Src = getValue(SrcV); 4268 SDValue Ptr = getValue(PtrV); 4269 4270 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4271 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4272 SDLoc dl = getCurSDLoc(); 4273 Align Alignment = I.getAlign(); 4274 AAMDNodes AAInfo = I.getAAMetadata(); 4275 4276 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4277 4278 // An aggregate load cannot wrap around the address space, so offsets to its 4279 // parts don't wrap either. 4280 SDNodeFlags Flags; 4281 Flags.setNoUnsignedWrap(true); 4282 4283 unsigned ChainI = 0; 4284 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4285 // See visitLoad comments. 4286 if (ChainI == MaxParallelChains) { 4287 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4288 makeArrayRef(Chains.data(), ChainI)); 4289 Root = Chain; 4290 ChainI = 0; 4291 } 4292 SDValue Add = 4293 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4294 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4295 if (MemVTs[i] != ValueVTs[i]) 4296 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4297 SDValue St = 4298 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4299 Alignment, MMOFlags, AAInfo); 4300 Chains[ChainI] = St; 4301 } 4302 4303 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4304 makeArrayRef(Chains.data(), ChainI)); 4305 DAG.setRoot(StoreNode); 4306 } 4307 4308 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4309 bool IsCompressing) { 4310 SDLoc sdl = getCurSDLoc(); 4311 4312 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4313 MaybeAlign &Alignment) { 4314 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4315 Src0 = I.getArgOperand(0); 4316 Ptr = I.getArgOperand(1); 4317 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4318 Mask = I.getArgOperand(3); 4319 }; 4320 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4321 MaybeAlign &Alignment) { 4322 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4323 Src0 = I.getArgOperand(0); 4324 Ptr = I.getArgOperand(1); 4325 Mask = I.getArgOperand(2); 4326 Alignment = None; 4327 }; 4328 4329 Value *PtrOperand, *MaskOperand, *Src0Operand; 4330 MaybeAlign Alignment; 4331 if (IsCompressing) 4332 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4333 else 4334 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4335 4336 SDValue Ptr = getValue(PtrOperand); 4337 SDValue Src0 = getValue(Src0Operand); 4338 SDValue Mask = getValue(MaskOperand); 4339 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4340 4341 EVT VT = Src0.getValueType(); 4342 if (!Alignment) 4343 Alignment = DAG.getEVTAlign(VT); 4344 4345 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4346 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4347 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4348 SDValue StoreNode = 4349 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4350 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4351 DAG.setRoot(StoreNode); 4352 setValue(&I, StoreNode); 4353 } 4354 4355 // Get a uniform base for the Gather/Scatter intrinsic. 4356 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4357 // We try to represent it as a base pointer + vector of indices. 4358 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4359 // The first operand of the GEP may be a single pointer or a vector of pointers 4360 // Example: 4361 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4362 // or 4363 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4364 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4365 // 4366 // When the first GEP operand is a single pointer - it is the uniform base we 4367 // are looking for. If first operand of the GEP is a splat vector - we 4368 // extract the splat value and use it as a uniform base. 4369 // In all other cases the function returns 'false'. 4370 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4371 ISD::MemIndexType &IndexType, SDValue &Scale, 4372 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4373 uint64_t ElemSize) { 4374 SelectionDAG& DAG = SDB->DAG; 4375 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4376 const DataLayout &DL = DAG.getDataLayout(); 4377 4378 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4379 4380 // Handle splat constant pointer. 4381 if (auto *C = dyn_cast<Constant>(Ptr)) { 4382 C = C->getSplatValue(); 4383 if (!C) 4384 return false; 4385 4386 Base = SDB->getValue(C); 4387 4388 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4389 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4390 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4391 IndexType = ISD::SIGNED_SCALED; 4392 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4393 return true; 4394 } 4395 4396 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4397 if (!GEP || GEP->getParent() != CurBB) 4398 return false; 4399 4400 if (GEP->getNumOperands() != 2) 4401 return false; 4402 4403 const Value *BasePtr = GEP->getPointerOperand(); 4404 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4405 4406 // Make sure the base is scalar and the index is a vector. 4407 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4408 return false; 4409 4410 Base = SDB->getValue(BasePtr); 4411 Index = SDB->getValue(IndexVal); 4412 IndexType = ISD::SIGNED_SCALED; 4413 4414 // MGATHER/MSCATTER are only required to support scaling by one or by the 4415 // element size. Other scales may be produced using target-specific DAG 4416 // combines. 4417 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4418 if (ScaleVal != ElemSize && ScaleVal != 1) 4419 return false; 4420 4421 Scale = 4422 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4423 return true; 4424 } 4425 4426 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4427 SDLoc sdl = getCurSDLoc(); 4428 4429 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4430 const Value *Ptr = I.getArgOperand(1); 4431 SDValue Src0 = getValue(I.getArgOperand(0)); 4432 SDValue Mask = getValue(I.getArgOperand(3)); 4433 EVT VT = Src0.getValueType(); 4434 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4435 ->getMaybeAlignValue() 4436 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4438 4439 SDValue Base; 4440 SDValue Index; 4441 ISD::MemIndexType IndexType; 4442 SDValue Scale; 4443 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4444 I.getParent(), VT.getScalarStoreSize()); 4445 4446 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4447 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4448 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4449 // TODO: Make MachineMemOperands aware of scalable 4450 // vectors. 4451 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4452 if (!UniformBase) { 4453 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4454 Index = getValue(Ptr); 4455 IndexType = ISD::SIGNED_SCALED; 4456 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4457 } 4458 4459 EVT IdxVT = Index.getValueType(); 4460 EVT EltTy = IdxVT.getVectorElementType(); 4461 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4462 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4463 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4464 } 4465 4466 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4467 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4468 Ops, MMO, IndexType, false); 4469 DAG.setRoot(Scatter); 4470 setValue(&I, Scatter); 4471 } 4472 4473 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4474 SDLoc sdl = getCurSDLoc(); 4475 4476 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4477 MaybeAlign &Alignment) { 4478 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4479 Ptr = I.getArgOperand(0); 4480 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4481 Mask = I.getArgOperand(2); 4482 Src0 = I.getArgOperand(3); 4483 }; 4484 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4485 MaybeAlign &Alignment) { 4486 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4487 Ptr = I.getArgOperand(0); 4488 Alignment = None; 4489 Mask = I.getArgOperand(1); 4490 Src0 = I.getArgOperand(2); 4491 }; 4492 4493 Value *PtrOperand, *MaskOperand, *Src0Operand; 4494 MaybeAlign Alignment; 4495 if (IsExpanding) 4496 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4497 else 4498 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4499 4500 SDValue Ptr = getValue(PtrOperand); 4501 SDValue Src0 = getValue(Src0Operand); 4502 SDValue Mask = getValue(MaskOperand); 4503 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4504 4505 EVT VT = Src0.getValueType(); 4506 if (!Alignment) 4507 Alignment = DAG.getEVTAlign(VT); 4508 4509 AAMDNodes AAInfo = I.getAAMetadata(); 4510 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4511 4512 // Do not serialize masked loads of constant memory with anything. 4513 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4514 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4515 4516 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4517 4518 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4519 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4520 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4521 4522 SDValue Load = 4523 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4524 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4525 if (AddToChain) 4526 PendingLoads.push_back(Load.getValue(1)); 4527 setValue(&I, Load); 4528 } 4529 4530 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4531 SDLoc sdl = getCurSDLoc(); 4532 4533 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4534 const Value *Ptr = I.getArgOperand(0); 4535 SDValue Src0 = getValue(I.getArgOperand(3)); 4536 SDValue Mask = getValue(I.getArgOperand(2)); 4537 4538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4539 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4540 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4541 ->getMaybeAlignValue() 4542 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4543 4544 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4545 4546 SDValue Root = DAG.getRoot(); 4547 SDValue Base; 4548 SDValue Index; 4549 ISD::MemIndexType IndexType; 4550 SDValue Scale; 4551 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4552 I.getParent(), VT.getScalarStoreSize()); 4553 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4554 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4555 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4556 // TODO: Make MachineMemOperands aware of scalable 4557 // vectors. 4558 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4559 4560 if (!UniformBase) { 4561 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4562 Index = getValue(Ptr); 4563 IndexType = ISD::SIGNED_SCALED; 4564 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4565 } 4566 4567 EVT IdxVT = Index.getValueType(); 4568 EVT EltTy = IdxVT.getVectorElementType(); 4569 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4570 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4571 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4572 } 4573 4574 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4575 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4576 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4577 4578 PendingLoads.push_back(Gather.getValue(1)); 4579 setValue(&I, Gather); 4580 } 4581 4582 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4583 SDLoc dl = getCurSDLoc(); 4584 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4585 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4586 SyncScope::ID SSID = I.getSyncScopeID(); 4587 4588 SDValue InChain = getRoot(); 4589 4590 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4591 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4592 4593 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4594 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4595 4596 MachineFunction &MF = DAG.getMachineFunction(); 4597 MachineMemOperand *MMO = MF.getMachineMemOperand( 4598 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4599 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4600 FailureOrdering); 4601 4602 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4603 dl, MemVT, VTs, InChain, 4604 getValue(I.getPointerOperand()), 4605 getValue(I.getCompareOperand()), 4606 getValue(I.getNewValOperand()), MMO); 4607 4608 SDValue OutChain = L.getValue(2); 4609 4610 setValue(&I, L); 4611 DAG.setRoot(OutChain); 4612 } 4613 4614 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4615 SDLoc dl = getCurSDLoc(); 4616 ISD::NodeType NT; 4617 switch (I.getOperation()) { 4618 default: llvm_unreachable("Unknown atomicrmw operation"); 4619 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4620 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4621 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4622 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4623 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4624 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4625 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4626 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4627 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4628 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4629 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4630 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4631 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4632 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4633 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4634 } 4635 AtomicOrdering Ordering = I.getOrdering(); 4636 SyncScope::ID SSID = I.getSyncScopeID(); 4637 4638 SDValue InChain = getRoot(); 4639 4640 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4642 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4643 4644 MachineFunction &MF = DAG.getMachineFunction(); 4645 MachineMemOperand *MMO = MF.getMachineMemOperand( 4646 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4647 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4648 4649 SDValue L = 4650 DAG.getAtomic(NT, dl, MemVT, InChain, 4651 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4652 MMO); 4653 4654 SDValue OutChain = L.getValue(1); 4655 4656 setValue(&I, L); 4657 DAG.setRoot(OutChain); 4658 } 4659 4660 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4661 SDLoc dl = getCurSDLoc(); 4662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4663 SDValue Ops[3]; 4664 Ops[0] = getRoot(); 4665 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4666 TLI.getFenceOperandTy(DAG.getDataLayout())); 4667 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4668 TLI.getFenceOperandTy(DAG.getDataLayout())); 4669 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4670 } 4671 4672 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4673 SDLoc dl = getCurSDLoc(); 4674 AtomicOrdering Order = I.getOrdering(); 4675 SyncScope::ID SSID = I.getSyncScopeID(); 4676 4677 SDValue InChain = getRoot(); 4678 4679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4680 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4681 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4682 4683 if (!TLI.supportsUnalignedAtomics() && 4684 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4685 report_fatal_error("Cannot generate unaligned atomic load"); 4686 4687 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4688 4689 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4690 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4691 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4692 4693 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4694 4695 SDValue Ptr = getValue(I.getPointerOperand()); 4696 4697 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4698 // TODO: Once this is better exercised by tests, it should be merged with 4699 // the normal path for loads to prevent future divergence. 4700 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4701 if (MemVT != VT) 4702 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4703 4704 setValue(&I, L); 4705 SDValue OutChain = L.getValue(1); 4706 if (!I.isUnordered()) 4707 DAG.setRoot(OutChain); 4708 else 4709 PendingLoads.push_back(OutChain); 4710 return; 4711 } 4712 4713 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4714 Ptr, MMO); 4715 4716 SDValue OutChain = L.getValue(1); 4717 if (MemVT != VT) 4718 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4719 4720 setValue(&I, L); 4721 DAG.setRoot(OutChain); 4722 } 4723 4724 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4725 SDLoc dl = getCurSDLoc(); 4726 4727 AtomicOrdering Ordering = I.getOrdering(); 4728 SyncScope::ID SSID = I.getSyncScopeID(); 4729 4730 SDValue InChain = getRoot(); 4731 4732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4733 EVT MemVT = 4734 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4735 4736 if (!TLI.supportsUnalignedAtomics() && 4737 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4738 report_fatal_error("Cannot generate unaligned atomic store"); 4739 4740 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4741 4742 MachineFunction &MF = DAG.getMachineFunction(); 4743 MachineMemOperand *MMO = MF.getMachineMemOperand( 4744 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4745 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4746 4747 SDValue Val = getValue(I.getValueOperand()); 4748 if (Val.getValueType() != MemVT) 4749 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4750 SDValue Ptr = getValue(I.getPointerOperand()); 4751 4752 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4753 // TODO: Once this is better exercised by tests, it should be merged with 4754 // the normal path for stores to prevent future divergence. 4755 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4756 DAG.setRoot(S); 4757 return; 4758 } 4759 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4760 Ptr, Val, MMO); 4761 4762 4763 DAG.setRoot(OutChain); 4764 } 4765 4766 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4767 /// node. 4768 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4769 unsigned Intrinsic) { 4770 // Ignore the callsite's attributes. A specific call site may be marked with 4771 // readnone, but the lowering code will expect the chain based on the 4772 // definition. 4773 const Function *F = I.getCalledFunction(); 4774 bool HasChain = !F->doesNotAccessMemory(); 4775 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4776 4777 // Build the operand list. 4778 SmallVector<SDValue, 8> Ops; 4779 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4780 if (OnlyLoad) { 4781 // We don't need to serialize loads against other loads. 4782 Ops.push_back(DAG.getRoot()); 4783 } else { 4784 Ops.push_back(getRoot()); 4785 } 4786 } 4787 4788 // Info is set by getTgtMemIntrinsic 4789 TargetLowering::IntrinsicInfo Info; 4790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4791 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4792 DAG.getMachineFunction(), 4793 Intrinsic); 4794 4795 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4796 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4797 Info.opc == ISD::INTRINSIC_W_CHAIN) 4798 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4799 TLI.getPointerTy(DAG.getDataLayout()))); 4800 4801 // Add all operands of the call to the operand list. 4802 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4803 const Value *Arg = I.getArgOperand(i); 4804 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4805 Ops.push_back(getValue(Arg)); 4806 continue; 4807 } 4808 4809 // Use TargetConstant instead of a regular constant for immarg. 4810 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4811 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4812 assert(CI->getBitWidth() <= 64 && 4813 "large intrinsic immediates not handled"); 4814 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4815 } else { 4816 Ops.push_back( 4817 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4818 } 4819 } 4820 4821 SmallVector<EVT, 4> ValueVTs; 4822 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4823 4824 if (HasChain) 4825 ValueVTs.push_back(MVT::Other); 4826 4827 SDVTList VTs = DAG.getVTList(ValueVTs); 4828 4829 // Propagate fast-math-flags from IR to node(s). 4830 SDNodeFlags Flags; 4831 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4832 Flags.copyFMF(*FPMO); 4833 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4834 4835 // Create the node. 4836 SDValue Result; 4837 if (IsTgtIntrinsic) { 4838 // This is target intrinsic that touches memory 4839 Result = 4840 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4841 MachinePointerInfo(Info.ptrVal, Info.offset), 4842 Info.align, Info.flags, Info.size, 4843 I.getAAMetadata()); 4844 } else if (!HasChain) { 4845 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4846 } else if (!I.getType()->isVoidTy()) { 4847 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4848 } else { 4849 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4850 } 4851 4852 if (HasChain) { 4853 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4854 if (OnlyLoad) 4855 PendingLoads.push_back(Chain); 4856 else 4857 DAG.setRoot(Chain); 4858 } 4859 4860 if (!I.getType()->isVoidTy()) { 4861 if (!isa<VectorType>(I.getType())) 4862 Result = lowerRangeToAssertZExt(DAG, I, Result); 4863 4864 MaybeAlign Alignment = I.getRetAlign(); 4865 if (!Alignment) 4866 Alignment = F->getAttributes().getRetAlignment(); 4867 // Insert `assertalign` node if there's an alignment. 4868 if (InsertAssertAlign && Alignment) { 4869 Result = 4870 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4871 } 4872 4873 setValue(&I, Result); 4874 } 4875 } 4876 4877 /// GetSignificand - Get the significand and build it into a floating-point 4878 /// number with exponent of 1: 4879 /// 4880 /// Op = (Op & 0x007fffff) | 0x3f800000; 4881 /// 4882 /// where Op is the hexadecimal representation of floating point value. 4883 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4884 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4885 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4886 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4887 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4888 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4889 } 4890 4891 /// GetExponent - Get the exponent: 4892 /// 4893 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4894 /// 4895 /// where Op is the hexadecimal representation of floating point value. 4896 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4897 const TargetLowering &TLI, const SDLoc &dl) { 4898 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4899 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4900 SDValue t1 = DAG.getNode( 4901 ISD::SRL, dl, MVT::i32, t0, 4902 DAG.getConstant(23, dl, 4903 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4904 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4905 DAG.getConstant(127, dl, MVT::i32)); 4906 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4907 } 4908 4909 /// getF32Constant - Get 32-bit floating point constant. 4910 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4911 const SDLoc &dl) { 4912 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4913 MVT::f32); 4914 } 4915 4916 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4917 SelectionDAG &DAG) { 4918 // TODO: What fast-math-flags should be set on the floating-point nodes? 4919 4920 // IntegerPartOfX = ((int32_t)(t0); 4921 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4922 4923 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4924 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4925 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4926 4927 // IntegerPartOfX <<= 23; 4928 IntegerPartOfX = 4929 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4930 DAG.getConstant(23, dl, 4931 DAG.getTargetLoweringInfo().getShiftAmountTy( 4932 MVT::i32, DAG.getDataLayout()))); 4933 4934 SDValue TwoToFractionalPartOfX; 4935 if (LimitFloatPrecision <= 6) { 4936 // For floating-point precision of 6: 4937 // 4938 // TwoToFractionalPartOfX = 4939 // 0.997535578f + 4940 // (0.735607626f + 0.252464424f * x) * x; 4941 // 4942 // error 0.0144103317, which is 6 bits 4943 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4944 getF32Constant(DAG, 0x3e814304, dl)); 4945 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4946 getF32Constant(DAG, 0x3f3c50c8, dl)); 4947 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4948 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4949 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4950 } else if (LimitFloatPrecision <= 12) { 4951 // For floating-point precision of 12: 4952 // 4953 // TwoToFractionalPartOfX = 4954 // 0.999892986f + 4955 // (0.696457318f + 4956 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4957 // 4958 // error 0.000107046256, which is 13 to 14 bits 4959 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4960 getF32Constant(DAG, 0x3da235e3, dl)); 4961 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4962 getF32Constant(DAG, 0x3e65b8f3, dl)); 4963 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4964 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4965 getF32Constant(DAG, 0x3f324b07, dl)); 4966 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4967 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4968 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4969 } else { // LimitFloatPrecision <= 18 4970 // For floating-point precision of 18: 4971 // 4972 // TwoToFractionalPartOfX = 4973 // 0.999999982f + 4974 // (0.693148872f + 4975 // (0.240227044f + 4976 // (0.554906021e-1f + 4977 // (0.961591928e-2f + 4978 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4979 // error 2.47208000*10^(-7), which is better than 18 bits 4980 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4981 getF32Constant(DAG, 0x3924b03e, dl)); 4982 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4983 getF32Constant(DAG, 0x3ab24b87, dl)); 4984 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4985 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4986 getF32Constant(DAG, 0x3c1d8c17, dl)); 4987 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4988 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4989 getF32Constant(DAG, 0x3d634a1d, dl)); 4990 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4991 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4992 getF32Constant(DAG, 0x3e75fe14, dl)); 4993 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4994 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4995 getF32Constant(DAG, 0x3f317234, dl)); 4996 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4997 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4998 getF32Constant(DAG, 0x3f800000, dl)); 4999 } 5000 5001 // Add the exponent into the result in integer domain. 5002 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5003 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5004 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5005 } 5006 5007 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5008 /// limited-precision mode. 5009 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5010 const TargetLowering &TLI, SDNodeFlags Flags) { 5011 if (Op.getValueType() == MVT::f32 && 5012 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5013 5014 // Put the exponent in the right bit position for later addition to the 5015 // final result: 5016 // 5017 // t0 = Op * log2(e) 5018 5019 // TODO: What fast-math-flags should be set here? 5020 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5021 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5022 return getLimitedPrecisionExp2(t0, dl, DAG); 5023 } 5024 5025 // No special expansion. 5026 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5027 } 5028 5029 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5030 /// limited-precision mode. 5031 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5032 const TargetLowering &TLI, SDNodeFlags Flags) { 5033 // TODO: What fast-math-flags should be set on the floating-point nodes? 5034 5035 if (Op.getValueType() == MVT::f32 && 5036 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5037 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5038 5039 // Scale the exponent by log(2). 5040 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5041 SDValue LogOfExponent = 5042 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5043 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5044 5045 // Get the significand and build it into a floating-point number with 5046 // exponent of 1. 5047 SDValue X = GetSignificand(DAG, Op1, dl); 5048 5049 SDValue LogOfMantissa; 5050 if (LimitFloatPrecision <= 6) { 5051 // For floating-point precision of 6: 5052 // 5053 // LogofMantissa = 5054 // -1.1609546f + 5055 // (1.4034025f - 0.23903021f * x) * x; 5056 // 5057 // error 0.0034276066, which is better than 8 bits 5058 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5059 getF32Constant(DAG, 0xbe74c456, dl)); 5060 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5061 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5062 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5063 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5064 getF32Constant(DAG, 0x3f949a29, dl)); 5065 } else if (LimitFloatPrecision <= 12) { 5066 // For floating-point precision of 12: 5067 // 5068 // LogOfMantissa = 5069 // -1.7417939f + 5070 // (2.8212026f + 5071 // (-1.4699568f + 5072 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5073 // 5074 // error 0.000061011436, which is 14 bits 5075 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5076 getF32Constant(DAG, 0xbd67b6d6, dl)); 5077 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5078 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5080 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5081 getF32Constant(DAG, 0x3fbc278b, dl)); 5082 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5083 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5084 getF32Constant(DAG, 0x40348e95, dl)); 5085 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5086 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5087 getF32Constant(DAG, 0x3fdef31a, dl)); 5088 } else { // LimitFloatPrecision <= 18 5089 // For floating-point precision of 18: 5090 // 5091 // LogOfMantissa = 5092 // -2.1072184f + 5093 // (4.2372794f + 5094 // (-3.7029485f + 5095 // (2.2781945f + 5096 // (-0.87823314f + 5097 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5098 // 5099 // error 0.0000023660568, which is better than 18 bits 5100 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5101 getF32Constant(DAG, 0xbc91e5ac, dl)); 5102 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5103 getF32Constant(DAG, 0x3e4350aa, dl)); 5104 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5105 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5106 getF32Constant(DAG, 0x3f60d3e3, dl)); 5107 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5108 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5109 getF32Constant(DAG, 0x4011cdf0, dl)); 5110 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5111 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5112 getF32Constant(DAG, 0x406cfd1c, dl)); 5113 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5114 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5115 getF32Constant(DAG, 0x408797cb, dl)); 5116 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5117 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5118 getF32Constant(DAG, 0x4006dcab, dl)); 5119 } 5120 5121 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5122 } 5123 5124 // No special expansion. 5125 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5126 } 5127 5128 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5129 /// limited-precision mode. 5130 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5131 const TargetLowering &TLI, SDNodeFlags Flags) { 5132 // TODO: What fast-math-flags should be set on the floating-point nodes? 5133 5134 if (Op.getValueType() == MVT::f32 && 5135 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5136 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5137 5138 // Get the exponent. 5139 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5140 5141 // Get the significand and build it into a floating-point number with 5142 // exponent of 1. 5143 SDValue X = GetSignificand(DAG, Op1, dl); 5144 5145 // Different possible minimax approximations of significand in 5146 // floating-point for various degrees of accuracy over [1,2]. 5147 SDValue Log2ofMantissa; 5148 if (LimitFloatPrecision <= 6) { 5149 // For floating-point precision of 6: 5150 // 5151 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5152 // 5153 // error 0.0049451742, which is more than 7 bits 5154 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5155 getF32Constant(DAG, 0xbeb08fe0, dl)); 5156 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5157 getF32Constant(DAG, 0x40019463, dl)); 5158 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5159 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5160 getF32Constant(DAG, 0x3fd6633d, dl)); 5161 } else if (LimitFloatPrecision <= 12) { 5162 // For floating-point precision of 12: 5163 // 5164 // Log2ofMantissa = 5165 // -2.51285454f + 5166 // (4.07009056f + 5167 // (-2.12067489f + 5168 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5169 // 5170 // error 0.0000876136000, which is better than 13 bits 5171 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5172 getF32Constant(DAG, 0xbda7262e, dl)); 5173 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5174 getF32Constant(DAG, 0x3f25280b, dl)); 5175 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5176 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5177 getF32Constant(DAG, 0x4007b923, dl)); 5178 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5179 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5180 getF32Constant(DAG, 0x40823e2f, dl)); 5181 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5182 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5183 getF32Constant(DAG, 0x4020d29c, dl)); 5184 } else { // LimitFloatPrecision <= 18 5185 // For floating-point precision of 18: 5186 // 5187 // Log2ofMantissa = 5188 // -3.0400495f + 5189 // (6.1129976f + 5190 // (-5.3420409f + 5191 // (3.2865683f + 5192 // (-1.2669343f + 5193 // (0.27515199f - 5194 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5195 // 5196 // error 0.0000018516, which is better than 18 bits 5197 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5198 getF32Constant(DAG, 0xbcd2769e, dl)); 5199 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5200 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5201 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5202 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5203 getF32Constant(DAG, 0x3fa22ae7, dl)); 5204 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5205 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5206 getF32Constant(DAG, 0x40525723, dl)); 5207 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5208 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5209 getF32Constant(DAG, 0x40aaf200, dl)); 5210 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5211 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5212 getF32Constant(DAG, 0x40c39dad, dl)); 5213 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5214 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5215 getF32Constant(DAG, 0x4042902c, dl)); 5216 } 5217 5218 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5219 } 5220 5221 // No special expansion. 5222 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5223 } 5224 5225 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5226 /// limited-precision mode. 5227 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5228 const TargetLowering &TLI, SDNodeFlags Flags) { 5229 // TODO: What fast-math-flags should be set on the floating-point nodes? 5230 5231 if (Op.getValueType() == MVT::f32 && 5232 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5233 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5234 5235 // Scale the exponent by log10(2) [0.30102999f]. 5236 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5237 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5238 getF32Constant(DAG, 0x3e9a209a, dl)); 5239 5240 // Get the significand and build it into a floating-point number with 5241 // exponent of 1. 5242 SDValue X = GetSignificand(DAG, Op1, dl); 5243 5244 SDValue Log10ofMantissa; 5245 if (LimitFloatPrecision <= 6) { 5246 // For floating-point precision of 6: 5247 // 5248 // Log10ofMantissa = 5249 // -0.50419619f + 5250 // (0.60948995f - 0.10380950f * x) * x; 5251 // 5252 // error 0.0014886165, which is 6 bits 5253 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5254 getF32Constant(DAG, 0xbdd49a13, dl)); 5255 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5256 getF32Constant(DAG, 0x3f1c0789, dl)); 5257 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5258 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5259 getF32Constant(DAG, 0x3f011300, dl)); 5260 } else if (LimitFloatPrecision <= 12) { 5261 // For floating-point precision of 12: 5262 // 5263 // Log10ofMantissa = 5264 // -0.64831180f + 5265 // (0.91751397f + 5266 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5267 // 5268 // error 0.00019228036, which is better than 12 bits 5269 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5270 getF32Constant(DAG, 0x3d431f31, dl)); 5271 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5272 getF32Constant(DAG, 0x3ea21fb2, dl)); 5273 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5274 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5275 getF32Constant(DAG, 0x3f6ae232, dl)); 5276 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5277 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5278 getF32Constant(DAG, 0x3f25f7c3, dl)); 5279 } else { // LimitFloatPrecision <= 18 5280 // For floating-point precision of 18: 5281 // 5282 // Log10ofMantissa = 5283 // -0.84299375f + 5284 // (1.5327582f + 5285 // (-1.0688956f + 5286 // (0.49102474f + 5287 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5288 // 5289 // error 0.0000037995730, which is better than 18 bits 5290 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5291 getF32Constant(DAG, 0x3c5d51ce, dl)); 5292 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5293 getF32Constant(DAG, 0x3e00685a, dl)); 5294 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5295 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5296 getF32Constant(DAG, 0x3efb6798, dl)); 5297 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5298 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5299 getF32Constant(DAG, 0x3f88d192, dl)); 5300 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5301 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5302 getF32Constant(DAG, 0x3fc4316c, dl)); 5303 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5304 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5305 getF32Constant(DAG, 0x3f57ce70, dl)); 5306 } 5307 5308 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5309 } 5310 5311 // No special expansion. 5312 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5313 } 5314 5315 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5316 /// limited-precision mode. 5317 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5318 const TargetLowering &TLI, SDNodeFlags Flags) { 5319 if (Op.getValueType() == MVT::f32 && 5320 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5321 return getLimitedPrecisionExp2(Op, dl, DAG); 5322 5323 // No special expansion. 5324 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5325 } 5326 5327 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5328 /// limited-precision mode with x == 10.0f. 5329 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5330 SelectionDAG &DAG, const TargetLowering &TLI, 5331 SDNodeFlags Flags) { 5332 bool IsExp10 = false; 5333 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5334 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5335 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5336 APFloat Ten(10.0f); 5337 IsExp10 = LHSC->isExactlyValue(Ten); 5338 } 5339 } 5340 5341 // TODO: What fast-math-flags should be set on the FMUL node? 5342 if (IsExp10) { 5343 // Put the exponent in the right bit position for later addition to the 5344 // final result: 5345 // 5346 // #define LOG2OF10 3.3219281f 5347 // t0 = Op * LOG2OF10; 5348 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5349 getF32Constant(DAG, 0x40549a78, dl)); 5350 return getLimitedPrecisionExp2(t0, dl, DAG); 5351 } 5352 5353 // No special expansion. 5354 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5355 } 5356 5357 /// ExpandPowI - Expand a llvm.powi intrinsic. 5358 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5359 SelectionDAG &DAG) { 5360 // If RHS is a constant, we can expand this out to a multiplication tree if 5361 // it's beneficial on the target, otherwise we end up lowering to a call to 5362 // __powidf2 (for example). 5363 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5364 unsigned Val = RHSC->getSExtValue(); 5365 5366 // powi(x, 0) -> 1.0 5367 if (Val == 0) 5368 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5369 5370 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5371 Val, DAG.shouldOptForSize())) { 5372 // Get the exponent as a positive value. 5373 if ((int)Val < 0) 5374 Val = -Val; 5375 // We use the simple binary decomposition method to generate the multiply 5376 // sequence. There are more optimal ways to do this (for example, 5377 // powi(x,15) generates one more multiply than it should), but this has 5378 // the benefit of being both really simple and much better than a libcall. 5379 SDValue Res; // Logically starts equal to 1.0 5380 SDValue CurSquare = LHS; 5381 // TODO: Intrinsics should have fast-math-flags that propagate to these 5382 // nodes. 5383 while (Val) { 5384 if (Val & 1) { 5385 if (Res.getNode()) 5386 Res = 5387 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5388 else 5389 Res = CurSquare; // 1.0*CurSquare. 5390 } 5391 5392 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5393 CurSquare, CurSquare); 5394 Val >>= 1; 5395 } 5396 5397 // If the original was negative, invert the result, producing 1/(x*x*x). 5398 if (RHSC->getSExtValue() < 0) 5399 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5400 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5401 return Res; 5402 } 5403 } 5404 5405 // Otherwise, expand to a libcall. 5406 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5407 } 5408 5409 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5410 SDValue LHS, SDValue RHS, SDValue Scale, 5411 SelectionDAG &DAG, const TargetLowering &TLI) { 5412 EVT VT = LHS.getValueType(); 5413 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5414 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5415 LLVMContext &Ctx = *DAG.getContext(); 5416 5417 // If the type is legal but the operation isn't, this node might survive all 5418 // the way to operation legalization. If we end up there and we do not have 5419 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5420 // node. 5421 5422 // Coax the legalizer into expanding the node during type legalization instead 5423 // by bumping the size by one bit. This will force it to Promote, enabling the 5424 // early expansion and avoiding the need to expand later. 5425 5426 // We don't have to do this if Scale is 0; that can always be expanded, unless 5427 // it's a saturating signed operation. Those can experience true integer 5428 // division overflow, a case which we must avoid. 5429 5430 // FIXME: We wouldn't have to do this (or any of the early 5431 // expansion/promotion) if it was possible to expand a libcall of an 5432 // illegal type during operation legalization. But it's not, so things 5433 // get a bit hacky. 5434 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5435 if ((ScaleInt > 0 || (Saturating && Signed)) && 5436 (TLI.isTypeLegal(VT) || 5437 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5438 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5439 Opcode, VT, ScaleInt); 5440 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5441 EVT PromVT; 5442 if (VT.isScalarInteger()) 5443 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5444 else if (VT.isVector()) { 5445 PromVT = VT.getVectorElementType(); 5446 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5447 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5448 } else 5449 llvm_unreachable("Wrong VT for DIVFIX?"); 5450 if (Signed) { 5451 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5452 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5453 } else { 5454 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5455 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5456 } 5457 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5458 // For saturating operations, we need to shift up the LHS to get the 5459 // proper saturation width, and then shift down again afterwards. 5460 if (Saturating) 5461 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5462 DAG.getConstant(1, DL, ShiftTy)); 5463 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5464 if (Saturating) 5465 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5466 DAG.getConstant(1, DL, ShiftTy)); 5467 return DAG.getZExtOrTrunc(Res, DL, VT); 5468 } 5469 } 5470 5471 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5472 } 5473 5474 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5475 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5476 static void 5477 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5478 const SDValue &N) { 5479 switch (N.getOpcode()) { 5480 case ISD::CopyFromReg: { 5481 SDValue Op = N.getOperand(1); 5482 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5483 Op.getValueType().getSizeInBits()); 5484 return; 5485 } 5486 case ISD::BITCAST: 5487 case ISD::AssertZext: 5488 case ISD::AssertSext: 5489 case ISD::TRUNCATE: 5490 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5491 return; 5492 case ISD::BUILD_PAIR: 5493 case ISD::BUILD_VECTOR: 5494 case ISD::CONCAT_VECTORS: 5495 for (SDValue Op : N->op_values()) 5496 getUnderlyingArgRegs(Regs, Op); 5497 return; 5498 default: 5499 return; 5500 } 5501 } 5502 5503 /// If the DbgValueInst is a dbg_value of a function argument, create the 5504 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5505 /// instruction selection, they will be inserted to the entry BB. 5506 /// We don't currently support this for variadic dbg_values, as they shouldn't 5507 /// appear for function arguments or in the prologue. 5508 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5509 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5510 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5511 const Argument *Arg = dyn_cast<Argument>(V); 5512 if (!Arg) 5513 return false; 5514 5515 MachineFunction &MF = DAG.getMachineFunction(); 5516 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5517 5518 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5519 // we've been asked to pursue. 5520 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5521 bool Indirect) { 5522 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5523 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5524 // pointing at the VReg, which will be patched up later. 5525 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5526 auto MIB = BuildMI(MF, DL, Inst); 5527 MIB.addReg(Reg); 5528 MIB.addImm(0); 5529 MIB.addMetadata(Variable); 5530 auto *NewDIExpr = FragExpr; 5531 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5532 // the DIExpression. 5533 if (Indirect) 5534 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5535 MIB.addMetadata(NewDIExpr); 5536 return MIB; 5537 } else { 5538 // Create a completely standard DBG_VALUE. 5539 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5540 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5541 } 5542 }; 5543 5544 if (Kind == FuncArgumentDbgValueKind::Value) { 5545 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5546 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5547 // the entry block. 5548 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5549 if (!IsInEntryBlock) 5550 return false; 5551 5552 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5553 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5554 // variable that also is a param. 5555 // 5556 // Although, if we are at the top of the entry block already, we can still 5557 // emit using ArgDbgValue. This might catch some situations when the 5558 // dbg.value refers to an argument that isn't used in the entry block, so 5559 // any CopyToReg node would be optimized out and the only way to express 5560 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5561 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5562 // we should only emit as ArgDbgValue if the Variable is an argument to the 5563 // current function, and the dbg.value intrinsic is found in the entry 5564 // block. 5565 bool VariableIsFunctionInputArg = Variable->isParameter() && 5566 !DL->getInlinedAt(); 5567 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5568 if (!IsInPrologue && !VariableIsFunctionInputArg) 5569 return false; 5570 5571 // Here we assume that a function argument on IR level only can be used to 5572 // describe one input parameter on source level. If we for example have 5573 // source code like this 5574 // 5575 // struct A { long x, y; }; 5576 // void foo(struct A a, long b) { 5577 // ... 5578 // b = a.x; 5579 // ... 5580 // } 5581 // 5582 // and IR like this 5583 // 5584 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5585 // entry: 5586 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5587 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5588 // call void @llvm.dbg.value(metadata i32 %b, "b", 5589 // ... 5590 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5591 // ... 5592 // 5593 // then the last dbg.value is describing a parameter "b" using a value that 5594 // is an argument. But since we already has used %a1 to describe a parameter 5595 // we should not handle that last dbg.value here (that would result in an 5596 // incorrect hoisting of the DBG_VALUE to the function entry). 5597 // Notice that we allow one dbg.value per IR level argument, to accommodate 5598 // for the situation with fragments above. 5599 if (VariableIsFunctionInputArg) { 5600 unsigned ArgNo = Arg->getArgNo(); 5601 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5602 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5603 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5604 return false; 5605 FuncInfo.DescribedArgs.set(ArgNo); 5606 } 5607 } 5608 5609 bool IsIndirect = false; 5610 Optional<MachineOperand> Op; 5611 // Some arguments' frame index is recorded during argument lowering. 5612 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5613 if (FI != std::numeric_limits<int>::max()) 5614 Op = MachineOperand::CreateFI(FI); 5615 5616 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5617 if (!Op && N.getNode()) { 5618 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5619 Register Reg; 5620 if (ArgRegsAndSizes.size() == 1) 5621 Reg = ArgRegsAndSizes.front().first; 5622 5623 if (Reg && Reg.isVirtual()) { 5624 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5625 Register PR = RegInfo.getLiveInPhysReg(Reg); 5626 if (PR) 5627 Reg = PR; 5628 } 5629 if (Reg) { 5630 Op = MachineOperand::CreateReg(Reg, false); 5631 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5632 } 5633 } 5634 5635 if (!Op && N.getNode()) { 5636 // Check if frame index is available. 5637 SDValue LCandidate = peekThroughBitcasts(N); 5638 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5639 if (FrameIndexSDNode *FINode = 5640 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5641 Op = MachineOperand::CreateFI(FINode->getIndex()); 5642 } 5643 5644 if (!Op) { 5645 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5646 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5647 SplitRegs) { 5648 unsigned Offset = 0; 5649 for (const auto &RegAndSize : SplitRegs) { 5650 // If the expression is already a fragment, the current register 5651 // offset+size might extend beyond the fragment. In this case, only 5652 // the register bits that are inside the fragment are relevant. 5653 int RegFragmentSizeInBits = RegAndSize.second; 5654 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5655 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5656 // The register is entirely outside the expression fragment, 5657 // so is irrelevant for debug info. 5658 if (Offset >= ExprFragmentSizeInBits) 5659 break; 5660 // The register is partially outside the expression fragment, only 5661 // the low bits within the fragment are relevant for debug info. 5662 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5663 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5664 } 5665 } 5666 5667 auto FragmentExpr = DIExpression::createFragmentExpression( 5668 Expr, Offset, RegFragmentSizeInBits); 5669 Offset += RegAndSize.second; 5670 // If a valid fragment expression cannot be created, the variable's 5671 // correct value cannot be determined and so it is set as Undef. 5672 if (!FragmentExpr) { 5673 SDDbgValue *SDV = DAG.getConstantDbgValue( 5674 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5675 DAG.AddDbgValue(SDV, false); 5676 continue; 5677 } 5678 MachineInstr *NewMI = 5679 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5680 Kind != FuncArgumentDbgValueKind::Value); 5681 FuncInfo.ArgDbgValues.push_back(NewMI); 5682 } 5683 }; 5684 5685 // Check if ValueMap has reg number. 5686 DenseMap<const Value *, Register>::const_iterator 5687 VMI = FuncInfo.ValueMap.find(V); 5688 if (VMI != FuncInfo.ValueMap.end()) { 5689 const auto &TLI = DAG.getTargetLoweringInfo(); 5690 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5691 V->getType(), None); 5692 if (RFV.occupiesMultipleRegs()) { 5693 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5694 return true; 5695 } 5696 5697 Op = MachineOperand::CreateReg(VMI->second, false); 5698 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5699 } else if (ArgRegsAndSizes.size() > 1) { 5700 // This was split due to the calling convention, and no virtual register 5701 // mapping exists for the value. 5702 splitMultiRegDbgValue(ArgRegsAndSizes); 5703 return true; 5704 } 5705 } 5706 5707 if (!Op) 5708 return false; 5709 5710 assert(Variable->isValidLocationForIntrinsic(DL) && 5711 "Expected inlined-at fields to agree"); 5712 MachineInstr *NewMI = nullptr; 5713 5714 if (Op->isReg()) 5715 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5716 else 5717 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5718 Variable, Expr); 5719 5720 // Otherwise, use ArgDbgValues. 5721 FuncInfo.ArgDbgValues.push_back(NewMI); 5722 return true; 5723 } 5724 5725 /// Return the appropriate SDDbgValue based on N. 5726 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5727 DILocalVariable *Variable, 5728 DIExpression *Expr, 5729 const DebugLoc &dl, 5730 unsigned DbgSDNodeOrder) { 5731 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5732 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5733 // stack slot locations. 5734 // 5735 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5736 // debug values here after optimization: 5737 // 5738 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5739 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5740 // 5741 // Both describe the direct values of their associated variables. 5742 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5743 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5744 } 5745 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5746 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5747 } 5748 5749 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5750 switch (Intrinsic) { 5751 case Intrinsic::smul_fix: 5752 return ISD::SMULFIX; 5753 case Intrinsic::umul_fix: 5754 return ISD::UMULFIX; 5755 case Intrinsic::smul_fix_sat: 5756 return ISD::SMULFIXSAT; 5757 case Intrinsic::umul_fix_sat: 5758 return ISD::UMULFIXSAT; 5759 case Intrinsic::sdiv_fix: 5760 return ISD::SDIVFIX; 5761 case Intrinsic::udiv_fix: 5762 return ISD::UDIVFIX; 5763 case Intrinsic::sdiv_fix_sat: 5764 return ISD::SDIVFIXSAT; 5765 case Intrinsic::udiv_fix_sat: 5766 return ISD::UDIVFIXSAT; 5767 default: 5768 llvm_unreachable("Unhandled fixed point intrinsic"); 5769 } 5770 } 5771 5772 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5773 const char *FunctionName) { 5774 assert(FunctionName && "FunctionName must not be nullptr"); 5775 SDValue Callee = DAG.getExternalSymbol( 5776 FunctionName, 5777 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5778 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5779 } 5780 5781 /// Given a @llvm.call.preallocated.setup, return the corresponding 5782 /// preallocated call. 5783 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5784 assert(cast<CallBase>(PreallocatedSetup) 5785 ->getCalledFunction() 5786 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5787 "expected call_preallocated_setup Value"); 5788 for (const auto *U : PreallocatedSetup->users()) { 5789 auto *UseCall = cast<CallBase>(U); 5790 const Function *Fn = UseCall->getCalledFunction(); 5791 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5792 return UseCall; 5793 } 5794 } 5795 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5796 } 5797 5798 /// Lower the call to the specified intrinsic function. 5799 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5800 unsigned Intrinsic) { 5801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5802 SDLoc sdl = getCurSDLoc(); 5803 DebugLoc dl = getCurDebugLoc(); 5804 SDValue Res; 5805 5806 SDNodeFlags Flags; 5807 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5808 Flags.copyFMF(*FPOp); 5809 5810 switch (Intrinsic) { 5811 default: 5812 // By default, turn this into a target intrinsic node. 5813 visitTargetIntrinsic(I, Intrinsic); 5814 return; 5815 case Intrinsic::vscale: { 5816 match(&I, m_VScale(DAG.getDataLayout())); 5817 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5818 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5819 return; 5820 } 5821 case Intrinsic::vastart: visitVAStart(I); return; 5822 case Intrinsic::vaend: visitVAEnd(I); return; 5823 case Intrinsic::vacopy: visitVACopy(I); return; 5824 case Intrinsic::returnaddress: 5825 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5826 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5827 getValue(I.getArgOperand(0)))); 5828 return; 5829 case Intrinsic::addressofreturnaddress: 5830 setValue(&I, 5831 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5832 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5833 return; 5834 case Intrinsic::sponentry: 5835 setValue(&I, 5836 DAG.getNode(ISD::SPONENTRY, sdl, 5837 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5838 return; 5839 case Intrinsic::frameaddress: 5840 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5841 TLI.getFrameIndexTy(DAG.getDataLayout()), 5842 getValue(I.getArgOperand(0)))); 5843 return; 5844 case Intrinsic::read_volatile_register: 5845 case Intrinsic::read_register: { 5846 Value *Reg = I.getArgOperand(0); 5847 SDValue Chain = getRoot(); 5848 SDValue RegName = 5849 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5850 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5851 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5852 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5853 setValue(&I, Res); 5854 DAG.setRoot(Res.getValue(1)); 5855 return; 5856 } 5857 case Intrinsic::write_register: { 5858 Value *Reg = I.getArgOperand(0); 5859 Value *RegValue = I.getArgOperand(1); 5860 SDValue Chain = getRoot(); 5861 SDValue RegName = 5862 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5863 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5864 RegName, getValue(RegValue))); 5865 return; 5866 } 5867 case Intrinsic::memcpy: { 5868 const auto &MCI = cast<MemCpyInst>(I); 5869 SDValue Op1 = getValue(I.getArgOperand(0)); 5870 SDValue Op2 = getValue(I.getArgOperand(1)); 5871 SDValue Op3 = getValue(I.getArgOperand(2)); 5872 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5873 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5874 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5875 Align Alignment = std::min(DstAlign, SrcAlign); 5876 bool isVol = MCI.isVolatile(); 5877 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5878 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5879 // node. 5880 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5881 SDValue MC = DAG.getMemcpy( 5882 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5883 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5884 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5885 updateDAGForMaybeTailCall(MC); 5886 return; 5887 } 5888 case Intrinsic::memcpy_inline: { 5889 const auto &MCI = cast<MemCpyInlineInst>(I); 5890 SDValue Dst = getValue(I.getArgOperand(0)); 5891 SDValue Src = getValue(I.getArgOperand(1)); 5892 SDValue Size = getValue(I.getArgOperand(2)); 5893 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5894 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5895 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5896 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5897 Align Alignment = std::min(DstAlign, SrcAlign); 5898 bool isVol = MCI.isVolatile(); 5899 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5900 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5901 // node. 5902 SDValue MC = DAG.getMemcpy( 5903 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5904 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5905 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5906 updateDAGForMaybeTailCall(MC); 5907 return; 5908 } 5909 case Intrinsic::memset: { 5910 const auto &MSI = cast<MemSetInst>(I); 5911 SDValue Op1 = getValue(I.getArgOperand(0)); 5912 SDValue Op2 = getValue(I.getArgOperand(1)); 5913 SDValue Op3 = getValue(I.getArgOperand(2)); 5914 // @llvm.memset defines 0 and 1 to both mean no alignment. 5915 Align Alignment = MSI.getDestAlign().valueOrOne(); 5916 bool isVol = MSI.isVolatile(); 5917 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5918 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5919 SDValue MS = DAG.getMemset( 5920 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5921 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5922 updateDAGForMaybeTailCall(MS); 5923 return; 5924 } 5925 case Intrinsic::memset_inline: { 5926 const auto &MSII = cast<MemSetInlineInst>(I); 5927 SDValue Dst = getValue(I.getArgOperand(0)); 5928 SDValue Value = getValue(I.getArgOperand(1)); 5929 SDValue Size = getValue(I.getArgOperand(2)); 5930 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5931 // @llvm.memset defines 0 and 1 to both mean no alignment. 5932 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5933 bool isVol = MSII.isVolatile(); 5934 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5935 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5936 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5937 /* AlwaysInline */ true, isTC, 5938 MachinePointerInfo(I.getArgOperand(0)), 5939 I.getAAMetadata()); 5940 updateDAGForMaybeTailCall(MC); 5941 return; 5942 } 5943 case Intrinsic::memmove: { 5944 const auto &MMI = cast<MemMoveInst>(I); 5945 SDValue Op1 = getValue(I.getArgOperand(0)); 5946 SDValue Op2 = getValue(I.getArgOperand(1)); 5947 SDValue Op3 = getValue(I.getArgOperand(2)); 5948 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5949 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5950 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5951 Align Alignment = std::min(DstAlign, SrcAlign); 5952 bool isVol = MMI.isVolatile(); 5953 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5954 // FIXME: Support passing different dest/src alignments to the memmove DAG 5955 // node. 5956 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5957 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5958 isTC, MachinePointerInfo(I.getArgOperand(0)), 5959 MachinePointerInfo(I.getArgOperand(1)), 5960 I.getAAMetadata(), AA); 5961 updateDAGForMaybeTailCall(MM); 5962 return; 5963 } 5964 case Intrinsic::memcpy_element_unordered_atomic: { 5965 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5966 SDValue Dst = getValue(MI.getRawDest()); 5967 SDValue Src = getValue(MI.getRawSource()); 5968 SDValue Length = getValue(MI.getLength()); 5969 5970 Type *LengthTy = MI.getLength()->getType(); 5971 unsigned ElemSz = MI.getElementSizeInBytes(); 5972 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5973 SDValue MC = 5974 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 5975 isTC, MachinePointerInfo(MI.getRawDest()), 5976 MachinePointerInfo(MI.getRawSource())); 5977 updateDAGForMaybeTailCall(MC); 5978 return; 5979 } 5980 case Intrinsic::memmove_element_unordered_atomic: { 5981 auto &MI = cast<AtomicMemMoveInst>(I); 5982 SDValue Dst = getValue(MI.getRawDest()); 5983 SDValue Src = getValue(MI.getRawSource()); 5984 SDValue Length = getValue(MI.getLength()); 5985 5986 Type *LengthTy = MI.getLength()->getType(); 5987 unsigned ElemSz = MI.getElementSizeInBytes(); 5988 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5989 SDValue MC = 5990 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 5991 isTC, MachinePointerInfo(MI.getRawDest()), 5992 MachinePointerInfo(MI.getRawSource())); 5993 updateDAGForMaybeTailCall(MC); 5994 return; 5995 } 5996 case Intrinsic::memset_element_unordered_atomic: { 5997 auto &MI = cast<AtomicMemSetInst>(I); 5998 SDValue Dst = getValue(MI.getRawDest()); 5999 SDValue Val = getValue(MI.getValue()); 6000 SDValue Length = getValue(MI.getLength()); 6001 6002 Type *LengthTy = MI.getLength()->getType(); 6003 unsigned ElemSz = MI.getElementSizeInBytes(); 6004 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6005 SDValue MC = 6006 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6007 isTC, MachinePointerInfo(MI.getRawDest())); 6008 updateDAGForMaybeTailCall(MC); 6009 return; 6010 } 6011 case Intrinsic::call_preallocated_setup: { 6012 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6013 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6014 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6015 getRoot(), SrcValue); 6016 setValue(&I, Res); 6017 DAG.setRoot(Res); 6018 return; 6019 } 6020 case Intrinsic::call_preallocated_arg: { 6021 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6022 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6023 SDValue Ops[3]; 6024 Ops[0] = getRoot(); 6025 Ops[1] = SrcValue; 6026 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6027 MVT::i32); // arg index 6028 SDValue Res = DAG.getNode( 6029 ISD::PREALLOCATED_ARG, sdl, 6030 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6031 setValue(&I, Res); 6032 DAG.setRoot(Res.getValue(1)); 6033 return; 6034 } 6035 case Intrinsic::dbg_addr: 6036 case Intrinsic::dbg_declare: { 6037 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6038 // they are non-variadic. 6039 const auto &DI = cast<DbgVariableIntrinsic>(I); 6040 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6041 DILocalVariable *Variable = DI.getVariable(); 6042 DIExpression *Expression = DI.getExpression(); 6043 dropDanglingDebugInfo(Variable, Expression); 6044 assert(Variable && "Missing variable"); 6045 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6046 << "\n"); 6047 // Check if address has undef value. 6048 const Value *Address = DI.getVariableLocationOp(0); 6049 if (!Address || isa<UndefValue>(Address) || 6050 (Address->use_empty() && !isa<Argument>(Address))) { 6051 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6052 << " (bad/undef/unused-arg address)\n"); 6053 return; 6054 } 6055 6056 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6057 6058 // Check if this variable can be described by a frame index, typically 6059 // either as a static alloca or a byval parameter. 6060 int FI = std::numeric_limits<int>::max(); 6061 if (const auto *AI = 6062 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6063 if (AI->isStaticAlloca()) { 6064 auto I = FuncInfo.StaticAllocaMap.find(AI); 6065 if (I != FuncInfo.StaticAllocaMap.end()) 6066 FI = I->second; 6067 } 6068 } else if (const auto *Arg = dyn_cast<Argument>( 6069 Address->stripInBoundsConstantOffsets())) { 6070 FI = FuncInfo.getArgumentFrameIndex(Arg); 6071 } 6072 6073 // llvm.dbg.addr is control dependent and always generates indirect 6074 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6075 // the MachineFunction variable table. 6076 if (FI != std::numeric_limits<int>::max()) { 6077 if (Intrinsic == Intrinsic::dbg_addr) { 6078 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6079 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6080 dl, SDNodeOrder); 6081 DAG.AddDbgValue(SDV, isParameter); 6082 } else { 6083 LLVM_DEBUG(dbgs() << "Skipping " << DI 6084 << " (variable info stashed in MF side table)\n"); 6085 } 6086 return; 6087 } 6088 6089 SDValue &N = NodeMap[Address]; 6090 if (!N.getNode() && isa<Argument>(Address)) 6091 // Check unused arguments map. 6092 N = UnusedArgNodeMap[Address]; 6093 SDDbgValue *SDV; 6094 if (N.getNode()) { 6095 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6096 Address = BCI->getOperand(0); 6097 // Parameters are handled specially. 6098 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6099 if (isParameter && FINode) { 6100 // Byval parameter. We have a frame index at this point. 6101 SDV = 6102 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6103 /*IsIndirect*/ true, dl, SDNodeOrder); 6104 } else if (isa<Argument>(Address)) { 6105 // Address is an argument, so try to emit its dbg value using 6106 // virtual register info from the FuncInfo.ValueMap. 6107 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6108 FuncArgumentDbgValueKind::Declare, N); 6109 return; 6110 } else { 6111 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6112 true, dl, SDNodeOrder); 6113 } 6114 DAG.AddDbgValue(SDV, isParameter); 6115 } else { 6116 // If Address is an argument then try to emit its dbg value using 6117 // virtual register info from the FuncInfo.ValueMap. 6118 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6119 FuncArgumentDbgValueKind::Declare, N)) { 6120 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6121 << " (could not emit func-arg dbg_value)\n"); 6122 } 6123 } 6124 return; 6125 } 6126 case Intrinsic::dbg_label: { 6127 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6128 DILabel *Label = DI.getLabel(); 6129 assert(Label && "Missing label"); 6130 6131 SDDbgLabel *SDV; 6132 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6133 DAG.AddDbgLabel(SDV); 6134 return; 6135 } 6136 case Intrinsic::dbg_value: { 6137 const DbgValueInst &DI = cast<DbgValueInst>(I); 6138 assert(DI.getVariable() && "Missing variable"); 6139 6140 DILocalVariable *Variable = DI.getVariable(); 6141 DIExpression *Expression = DI.getExpression(); 6142 dropDanglingDebugInfo(Variable, Expression); 6143 SmallVector<Value *, 4> Values(DI.getValues()); 6144 if (Values.empty()) 6145 return; 6146 6147 if (llvm::is_contained(Values, nullptr)) 6148 return; 6149 6150 bool IsVariadic = DI.hasArgList(); 6151 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6152 SDNodeOrder, IsVariadic)) 6153 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6154 return; 6155 } 6156 6157 case Intrinsic::eh_typeid_for: { 6158 // Find the type id for the given typeinfo. 6159 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6160 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6161 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6162 setValue(&I, Res); 6163 return; 6164 } 6165 6166 case Intrinsic::eh_return_i32: 6167 case Intrinsic::eh_return_i64: 6168 DAG.getMachineFunction().setCallsEHReturn(true); 6169 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6170 MVT::Other, 6171 getControlRoot(), 6172 getValue(I.getArgOperand(0)), 6173 getValue(I.getArgOperand(1)))); 6174 return; 6175 case Intrinsic::eh_unwind_init: 6176 DAG.getMachineFunction().setCallsUnwindInit(true); 6177 return; 6178 case Intrinsic::eh_dwarf_cfa: 6179 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6180 TLI.getPointerTy(DAG.getDataLayout()), 6181 getValue(I.getArgOperand(0)))); 6182 return; 6183 case Intrinsic::eh_sjlj_callsite: { 6184 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6185 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6186 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6187 6188 MMI.setCurrentCallSite(CI->getZExtValue()); 6189 return; 6190 } 6191 case Intrinsic::eh_sjlj_functioncontext: { 6192 // Get and store the index of the function context. 6193 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6194 AllocaInst *FnCtx = 6195 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6196 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6197 MFI.setFunctionContextIndex(FI); 6198 return; 6199 } 6200 case Intrinsic::eh_sjlj_setjmp: { 6201 SDValue Ops[2]; 6202 Ops[0] = getRoot(); 6203 Ops[1] = getValue(I.getArgOperand(0)); 6204 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6205 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6206 setValue(&I, Op.getValue(0)); 6207 DAG.setRoot(Op.getValue(1)); 6208 return; 6209 } 6210 case Intrinsic::eh_sjlj_longjmp: 6211 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6212 getRoot(), getValue(I.getArgOperand(0)))); 6213 return; 6214 case Intrinsic::eh_sjlj_setup_dispatch: 6215 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6216 getRoot())); 6217 return; 6218 case Intrinsic::masked_gather: 6219 visitMaskedGather(I); 6220 return; 6221 case Intrinsic::masked_load: 6222 visitMaskedLoad(I); 6223 return; 6224 case Intrinsic::masked_scatter: 6225 visitMaskedScatter(I); 6226 return; 6227 case Intrinsic::masked_store: 6228 visitMaskedStore(I); 6229 return; 6230 case Intrinsic::masked_expandload: 6231 visitMaskedLoad(I, true /* IsExpanding */); 6232 return; 6233 case Intrinsic::masked_compressstore: 6234 visitMaskedStore(I, true /* IsCompressing */); 6235 return; 6236 case Intrinsic::powi: 6237 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6238 getValue(I.getArgOperand(1)), DAG)); 6239 return; 6240 case Intrinsic::log: 6241 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6242 return; 6243 case Intrinsic::log2: 6244 setValue(&I, 6245 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6246 return; 6247 case Intrinsic::log10: 6248 setValue(&I, 6249 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6250 return; 6251 case Intrinsic::exp: 6252 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6253 return; 6254 case Intrinsic::exp2: 6255 setValue(&I, 6256 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6257 return; 6258 case Intrinsic::pow: 6259 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6260 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6261 return; 6262 case Intrinsic::sqrt: 6263 case Intrinsic::fabs: 6264 case Intrinsic::sin: 6265 case Intrinsic::cos: 6266 case Intrinsic::floor: 6267 case Intrinsic::ceil: 6268 case Intrinsic::trunc: 6269 case Intrinsic::rint: 6270 case Intrinsic::nearbyint: 6271 case Intrinsic::round: 6272 case Intrinsic::roundeven: 6273 case Intrinsic::canonicalize: { 6274 unsigned Opcode; 6275 switch (Intrinsic) { 6276 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6277 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6278 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6279 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6280 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6281 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6282 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6283 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6284 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6285 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6286 case Intrinsic::round: Opcode = ISD::FROUND; break; 6287 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6288 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6289 } 6290 6291 setValue(&I, DAG.getNode(Opcode, sdl, 6292 getValue(I.getArgOperand(0)).getValueType(), 6293 getValue(I.getArgOperand(0)), Flags)); 6294 return; 6295 } 6296 case Intrinsic::lround: 6297 case Intrinsic::llround: 6298 case Intrinsic::lrint: 6299 case Intrinsic::llrint: { 6300 unsigned Opcode; 6301 switch (Intrinsic) { 6302 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6303 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6304 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6305 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6306 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6307 } 6308 6309 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6310 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6311 getValue(I.getArgOperand(0)))); 6312 return; 6313 } 6314 case Intrinsic::minnum: 6315 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6316 getValue(I.getArgOperand(0)).getValueType(), 6317 getValue(I.getArgOperand(0)), 6318 getValue(I.getArgOperand(1)), Flags)); 6319 return; 6320 case Intrinsic::maxnum: 6321 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6322 getValue(I.getArgOperand(0)).getValueType(), 6323 getValue(I.getArgOperand(0)), 6324 getValue(I.getArgOperand(1)), Flags)); 6325 return; 6326 case Intrinsic::minimum: 6327 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6328 getValue(I.getArgOperand(0)).getValueType(), 6329 getValue(I.getArgOperand(0)), 6330 getValue(I.getArgOperand(1)), Flags)); 6331 return; 6332 case Intrinsic::maximum: 6333 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6334 getValue(I.getArgOperand(0)).getValueType(), 6335 getValue(I.getArgOperand(0)), 6336 getValue(I.getArgOperand(1)), Flags)); 6337 return; 6338 case Intrinsic::copysign: 6339 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6340 getValue(I.getArgOperand(0)).getValueType(), 6341 getValue(I.getArgOperand(0)), 6342 getValue(I.getArgOperand(1)), Flags)); 6343 return; 6344 case Intrinsic::arithmetic_fence: { 6345 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6346 getValue(I.getArgOperand(0)).getValueType(), 6347 getValue(I.getArgOperand(0)), Flags)); 6348 return; 6349 } 6350 case Intrinsic::fma: 6351 setValue(&I, DAG.getNode( 6352 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6353 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6354 getValue(I.getArgOperand(2)), Flags)); 6355 return; 6356 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6357 case Intrinsic::INTRINSIC: 6358 #include "llvm/IR/ConstrainedOps.def" 6359 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6360 return; 6361 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6362 #include "llvm/IR/VPIntrinsics.def" 6363 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6364 return; 6365 case Intrinsic::fptrunc_round: { 6366 // Get the last argument, the metadata and convert it to an integer in the 6367 // call 6368 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6369 Optional<RoundingMode> RoundMode = 6370 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6371 6372 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6373 6374 // Propagate fast-math-flags from IR to node(s). 6375 SDNodeFlags Flags; 6376 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6377 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6378 6379 SDValue Result; 6380 Result = DAG.getNode( 6381 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6382 DAG.getTargetConstant((int)*RoundMode, sdl, 6383 TLI.getPointerTy(DAG.getDataLayout()))); 6384 setValue(&I, Result); 6385 6386 return; 6387 } 6388 case Intrinsic::fmuladd: { 6389 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6390 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6391 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6392 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6393 getValue(I.getArgOperand(0)).getValueType(), 6394 getValue(I.getArgOperand(0)), 6395 getValue(I.getArgOperand(1)), 6396 getValue(I.getArgOperand(2)), Flags)); 6397 } else { 6398 // TODO: Intrinsic calls should have fast-math-flags. 6399 SDValue Mul = DAG.getNode( 6400 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6401 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6402 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6403 getValue(I.getArgOperand(0)).getValueType(), 6404 Mul, getValue(I.getArgOperand(2)), Flags); 6405 setValue(&I, Add); 6406 } 6407 return; 6408 } 6409 case Intrinsic::convert_to_fp16: 6410 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6411 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6412 getValue(I.getArgOperand(0)), 6413 DAG.getTargetConstant(0, sdl, 6414 MVT::i32)))); 6415 return; 6416 case Intrinsic::convert_from_fp16: 6417 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6418 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6419 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6420 getValue(I.getArgOperand(0))))); 6421 return; 6422 case Intrinsic::fptosi_sat: { 6423 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6424 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6425 getValue(I.getArgOperand(0)), 6426 DAG.getValueType(VT.getScalarType()))); 6427 return; 6428 } 6429 case Intrinsic::fptoui_sat: { 6430 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6431 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6432 getValue(I.getArgOperand(0)), 6433 DAG.getValueType(VT.getScalarType()))); 6434 return; 6435 } 6436 case Intrinsic::set_rounding: 6437 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6438 {getRoot(), getValue(I.getArgOperand(0))}); 6439 setValue(&I, Res); 6440 DAG.setRoot(Res.getValue(0)); 6441 return; 6442 case Intrinsic::is_fpclass: { 6443 const DataLayout DLayout = DAG.getDataLayout(); 6444 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6445 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6446 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6447 MachineFunction &MF = DAG.getMachineFunction(); 6448 const Function &F = MF.getFunction(); 6449 SDValue Op = getValue(I.getArgOperand(0)); 6450 SDNodeFlags Flags; 6451 Flags.setNoFPExcept( 6452 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6453 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6454 // expansion can use illegal types. Making expansion early allows 6455 // legalizing these types prior to selection. 6456 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6457 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6458 setValue(&I, Result); 6459 return; 6460 } 6461 6462 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6463 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6464 setValue(&I, V); 6465 return; 6466 } 6467 case Intrinsic::pcmarker: { 6468 SDValue Tmp = getValue(I.getArgOperand(0)); 6469 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6470 return; 6471 } 6472 case Intrinsic::readcyclecounter: { 6473 SDValue Op = getRoot(); 6474 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6475 DAG.getVTList(MVT::i64, MVT::Other), Op); 6476 setValue(&I, Res); 6477 DAG.setRoot(Res.getValue(1)); 6478 return; 6479 } 6480 case Intrinsic::bitreverse: 6481 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6482 getValue(I.getArgOperand(0)).getValueType(), 6483 getValue(I.getArgOperand(0)))); 6484 return; 6485 case Intrinsic::bswap: 6486 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6487 getValue(I.getArgOperand(0)).getValueType(), 6488 getValue(I.getArgOperand(0)))); 6489 return; 6490 case Intrinsic::cttz: { 6491 SDValue Arg = getValue(I.getArgOperand(0)); 6492 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6493 EVT Ty = Arg.getValueType(); 6494 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6495 sdl, Ty, Arg)); 6496 return; 6497 } 6498 case Intrinsic::ctlz: { 6499 SDValue Arg = getValue(I.getArgOperand(0)); 6500 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6501 EVT Ty = Arg.getValueType(); 6502 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6503 sdl, Ty, Arg)); 6504 return; 6505 } 6506 case Intrinsic::ctpop: { 6507 SDValue Arg = getValue(I.getArgOperand(0)); 6508 EVT Ty = Arg.getValueType(); 6509 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6510 return; 6511 } 6512 case Intrinsic::fshl: 6513 case Intrinsic::fshr: { 6514 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6515 SDValue X = getValue(I.getArgOperand(0)); 6516 SDValue Y = getValue(I.getArgOperand(1)); 6517 SDValue Z = getValue(I.getArgOperand(2)); 6518 EVT VT = X.getValueType(); 6519 6520 if (X == Y) { 6521 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6522 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6523 } else { 6524 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6525 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6526 } 6527 return; 6528 } 6529 case Intrinsic::sadd_sat: { 6530 SDValue Op1 = getValue(I.getArgOperand(0)); 6531 SDValue Op2 = getValue(I.getArgOperand(1)); 6532 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6533 return; 6534 } 6535 case Intrinsic::uadd_sat: { 6536 SDValue Op1 = getValue(I.getArgOperand(0)); 6537 SDValue Op2 = getValue(I.getArgOperand(1)); 6538 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6539 return; 6540 } 6541 case Intrinsic::ssub_sat: { 6542 SDValue Op1 = getValue(I.getArgOperand(0)); 6543 SDValue Op2 = getValue(I.getArgOperand(1)); 6544 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6545 return; 6546 } 6547 case Intrinsic::usub_sat: { 6548 SDValue Op1 = getValue(I.getArgOperand(0)); 6549 SDValue Op2 = getValue(I.getArgOperand(1)); 6550 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6551 return; 6552 } 6553 case Intrinsic::sshl_sat: { 6554 SDValue Op1 = getValue(I.getArgOperand(0)); 6555 SDValue Op2 = getValue(I.getArgOperand(1)); 6556 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6557 return; 6558 } 6559 case Intrinsic::ushl_sat: { 6560 SDValue Op1 = getValue(I.getArgOperand(0)); 6561 SDValue Op2 = getValue(I.getArgOperand(1)); 6562 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6563 return; 6564 } 6565 case Intrinsic::smul_fix: 6566 case Intrinsic::umul_fix: 6567 case Intrinsic::smul_fix_sat: 6568 case Intrinsic::umul_fix_sat: { 6569 SDValue Op1 = getValue(I.getArgOperand(0)); 6570 SDValue Op2 = getValue(I.getArgOperand(1)); 6571 SDValue Op3 = getValue(I.getArgOperand(2)); 6572 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6573 Op1.getValueType(), Op1, Op2, Op3)); 6574 return; 6575 } 6576 case Intrinsic::sdiv_fix: 6577 case Intrinsic::udiv_fix: 6578 case Intrinsic::sdiv_fix_sat: 6579 case Intrinsic::udiv_fix_sat: { 6580 SDValue Op1 = getValue(I.getArgOperand(0)); 6581 SDValue Op2 = getValue(I.getArgOperand(1)); 6582 SDValue Op3 = getValue(I.getArgOperand(2)); 6583 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6584 Op1, Op2, Op3, DAG, TLI)); 6585 return; 6586 } 6587 case Intrinsic::smax: { 6588 SDValue Op1 = getValue(I.getArgOperand(0)); 6589 SDValue Op2 = getValue(I.getArgOperand(1)); 6590 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6591 return; 6592 } 6593 case Intrinsic::smin: { 6594 SDValue Op1 = getValue(I.getArgOperand(0)); 6595 SDValue Op2 = getValue(I.getArgOperand(1)); 6596 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6597 return; 6598 } 6599 case Intrinsic::umax: { 6600 SDValue Op1 = getValue(I.getArgOperand(0)); 6601 SDValue Op2 = getValue(I.getArgOperand(1)); 6602 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6603 return; 6604 } 6605 case Intrinsic::umin: { 6606 SDValue Op1 = getValue(I.getArgOperand(0)); 6607 SDValue Op2 = getValue(I.getArgOperand(1)); 6608 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6609 return; 6610 } 6611 case Intrinsic::abs: { 6612 // TODO: Preserve "int min is poison" arg in SDAG? 6613 SDValue Op1 = getValue(I.getArgOperand(0)); 6614 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6615 return; 6616 } 6617 case Intrinsic::stacksave: { 6618 SDValue Op = getRoot(); 6619 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6620 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6621 setValue(&I, Res); 6622 DAG.setRoot(Res.getValue(1)); 6623 return; 6624 } 6625 case Intrinsic::stackrestore: 6626 Res = getValue(I.getArgOperand(0)); 6627 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6628 return; 6629 case Intrinsic::get_dynamic_area_offset: { 6630 SDValue Op = getRoot(); 6631 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6632 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6633 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6634 // target. 6635 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6636 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6637 " intrinsic!"); 6638 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6639 Op); 6640 DAG.setRoot(Op); 6641 setValue(&I, Res); 6642 return; 6643 } 6644 case Intrinsic::stackguard: { 6645 MachineFunction &MF = DAG.getMachineFunction(); 6646 const Module &M = *MF.getFunction().getParent(); 6647 SDValue Chain = getRoot(); 6648 if (TLI.useLoadStackGuardNode()) { 6649 Res = getLoadStackGuard(DAG, sdl, Chain); 6650 } else { 6651 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6652 const Value *Global = TLI.getSDagStackGuard(M); 6653 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6654 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6655 MachinePointerInfo(Global, 0), Align, 6656 MachineMemOperand::MOVolatile); 6657 } 6658 if (TLI.useStackGuardXorFP()) 6659 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6660 DAG.setRoot(Chain); 6661 setValue(&I, Res); 6662 return; 6663 } 6664 case Intrinsic::stackprotector: { 6665 // Emit code into the DAG to store the stack guard onto the stack. 6666 MachineFunction &MF = DAG.getMachineFunction(); 6667 MachineFrameInfo &MFI = MF.getFrameInfo(); 6668 SDValue Src, Chain = getRoot(); 6669 6670 if (TLI.useLoadStackGuardNode()) 6671 Src = getLoadStackGuard(DAG, sdl, Chain); 6672 else 6673 Src = getValue(I.getArgOperand(0)); // The guard's value. 6674 6675 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6676 6677 int FI = FuncInfo.StaticAllocaMap[Slot]; 6678 MFI.setStackProtectorIndex(FI); 6679 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6680 6681 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6682 6683 // Store the stack protector onto the stack. 6684 Res = DAG.getStore( 6685 Chain, sdl, Src, FIN, 6686 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6687 MaybeAlign(), MachineMemOperand::MOVolatile); 6688 setValue(&I, Res); 6689 DAG.setRoot(Res); 6690 return; 6691 } 6692 case Intrinsic::objectsize: 6693 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6694 6695 case Intrinsic::is_constant: 6696 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6697 6698 case Intrinsic::annotation: 6699 case Intrinsic::ptr_annotation: 6700 case Intrinsic::launder_invariant_group: 6701 case Intrinsic::strip_invariant_group: 6702 // Drop the intrinsic, but forward the value 6703 setValue(&I, getValue(I.getOperand(0))); 6704 return; 6705 6706 case Intrinsic::assume: 6707 case Intrinsic::experimental_noalias_scope_decl: 6708 case Intrinsic::var_annotation: 6709 case Intrinsic::sideeffect: 6710 // Discard annotate attributes, noalias scope declarations, assumptions, and 6711 // artificial side-effects. 6712 return; 6713 6714 case Intrinsic::codeview_annotation: { 6715 // Emit a label associated with this metadata. 6716 MachineFunction &MF = DAG.getMachineFunction(); 6717 MCSymbol *Label = 6718 MF.getMMI().getContext().createTempSymbol("annotation", true); 6719 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6720 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6721 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6722 DAG.setRoot(Res); 6723 return; 6724 } 6725 6726 case Intrinsic::init_trampoline: { 6727 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6728 6729 SDValue Ops[6]; 6730 Ops[0] = getRoot(); 6731 Ops[1] = getValue(I.getArgOperand(0)); 6732 Ops[2] = getValue(I.getArgOperand(1)); 6733 Ops[3] = getValue(I.getArgOperand(2)); 6734 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6735 Ops[5] = DAG.getSrcValue(F); 6736 6737 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6738 6739 DAG.setRoot(Res); 6740 return; 6741 } 6742 case Intrinsic::adjust_trampoline: 6743 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6744 TLI.getPointerTy(DAG.getDataLayout()), 6745 getValue(I.getArgOperand(0)))); 6746 return; 6747 case Intrinsic::gcroot: { 6748 assert(DAG.getMachineFunction().getFunction().hasGC() && 6749 "only valid in functions with gc specified, enforced by Verifier"); 6750 assert(GFI && "implied by previous"); 6751 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6752 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6753 6754 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6755 GFI->addStackRoot(FI->getIndex(), TypeMap); 6756 return; 6757 } 6758 case Intrinsic::gcread: 6759 case Intrinsic::gcwrite: 6760 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6761 case Intrinsic::flt_rounds: 6762 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6763 setValue(&I, Res); 6764 DAG.setRoot(Res.getValue(1)); 6765 return; 6766 6767 case Intrinsic::expect: 6768 // Just replace __builtin_expect(exp, c) with EXP. 6769 setValue(&I, getValue(I.getArgOperand(0))); 6770 return; 6771 6772 case Intrinsic::ubsantrap: 6773 case Intrinsic::debugtrap: 6774 case Intrinsic::trap: { 6775 StringRef TrapFuncName = 6776 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6777 if (TrapFuncName.empty()) { 6778 switch (Intrinsic) { 6779 case Intrinsic::trap: 6780 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6781 break; 6782 case Intrinsic::debugtrap: 6783 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6784 break; 6785 case Intrinsic::ubsantrap: 6786 DAG.setRoot(DAG.getNode( 6787 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6788 DAG.getTargetConstant( 6789 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6790 MVT::i32))); 6791 break; 6792 default: llvm_unreachable("unknown trap intrinsic"); 6793 } 6794 return; 6795 } 6796 TargetLowering::ArgListTy Args; 6797 if (Intrinsic == Intrinsic::ubsantrap) { 6798 Args.push_back(TargetLoweringBase::ArgListEntry()); 6799 Args[0].Val = I.getArgOperand(0); 6800 Args[0].Node = getValue(Args[0].Val); 6801 Args[0].Ty = Args[0].Val->getType(); 6802 } 6803 6804 TargetLowering::CallLoweringInfo CLI(DAG); 6805 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6806 CallingConv::C, I.getType(), 6807 DAG.getExternalSymbol(TrapFuncName.data(), 6808 TLI.getPointerTy(DAG.getDataLayout())), 6809 std::move(Args)); 6810 6811 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6812 DAG.setRoot(Result.second); 6813 return; 6814 } 6815 6816 case Intrinsic::uadd_with_overflow: 6817 case Intrinsic::sadd_with_overflow: 6818 case Intrinsic::usub_with_overflow: 6819 case Intrinsic::ssub_with_overflow: 6820 case Intrinsic::umul_with_overflow: 6821 case Intrinsic::smul_with_overflow: { 6822 ISD::NodeType Op; 6823 switch (Intrinsic) { 6824 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6825 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6826 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6827 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6828 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6829 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6830 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6831 } 6832 SDValue Op1 = getValue(I.getArgOperand(0)); 6833 SDValue Op2 = getValue(I.getArgOperand(1)); 6834 6835 EVT ResultVT = Op1.getValueType(); 6836 EVT OverflowVT = MVT::i1; 6837 if (ResultVT.isVector()) 6838 OverflowVT = EVT::getVectorVT( 6839 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6840 6841 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6842 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6843 return; 6844 } 6845 case Intrinsic::prefetch: { 6846 SDValue Ops[5]; 6847 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6848 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6849 Ops[0] = DAG.getRoot(); 6850 Ops[1] = getValue(I.getArgOperand(0)); 6851 Ops[2] = getValue(I.getArgOperand(1)); 6852 Ops[3] = getValue(I.getArgOperand(2)); 6853 Ops[4] = getValue(I.getArgOperand(3)); 6854 SDValue Result = DAG.getMemIntrinsicNode( 6855 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6856 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6857 /* align */ None, Flags); 6858 6859 // Chain the prefetch in parallell with any pending loads, to stay out of 6860 // the way of later optimizations. 6861 PendingLoads.push_back(Result); 6862 Result = getRoot(); 6863 DAG.setRoot(Result); 6864 return; 6865 } 6866 case Intrinsic::lifetime_start: 6867 case Intrinsic::lifetime_end: { 6868 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6869 // Stack coloring is not enabled in O0, discard region information. 6870 if (TM.getOptLevel() == CodeGenOpt::None) 6871 return; 6872 6873 const int64_t ObjectSize = 6874 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6875 Value *const ObjectPtr = I.getArgOperand(1); 6876 SmallVector<const Value *, 4> Allocas; 6877 getUnderlyingObjects(ObjectPtr, Allocas); 6878 6879 for (const Value *Alloca : Allocas) { 6880 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6881 6882 // Could not find an Alloca. 6883 if (!LifetimeObject) 6884 continue; 6885 6886 // First check that the Alloca is static, otherwise it won't have a 6887 // valid frame index. 6888 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6889 if (SI == FuncInfo.StaticAllocaMap.end()) 6890 return; 6891 6892 const int FrameIndex = SI->second; 6893 int64_t Offset; 6894 if (GetPointerBaseWithConstantOffset( 6895 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6896 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6897 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6898 Offset); 6899 DAG.setRoot(Res); 6900 } 6901 return; 6902 } 6903 case Intrinsic::pseudoprobe: { 6904 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6905 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6906 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6907 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6908 DAG.setRoot(Res); 6909 return; 6910 } 6911 case Intrinsic::invariant_start: 6912 // Discard region information. 6913 setValue(&I, 6914 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6915 return; 6916 case Intrinsic::invariant_end: 6917 // Discard region information. 6918 return; 6919 case Intrinsic::clear_cache: 6920 /// FunctionName may be null. 6921 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6922 lowerCallToExternalSymbol(I, FunctionName); 6923 return; 6924 case Intrinsic::donothing: 6925 case Intrinsic::seh_try_begin: 6926 case Intrinsic::seh_scope_begin: 6927 case Intrinsic::seh_try_end: 6928 case Intrinsic::seh_scope_end: 6929 // ignore 6930 return; 6931 case Intrinsic::experimental_stackmap: 6932 visitStackmap(I); 6933 return; 6934 case Intrinsic::experimental_patchpoint_void: 6935 case Intrinsic::experimental_patchpoint_i64: 6936 visitPatchpoint(I); 6937 return; 6938 case Intrinsic::experimental_gc_statepoint: 6939 LowerStatepoint(cast<GCStatepointInst>(I)); 6940 return; 6941 case Intrinsic::experimental_gc_result: 6942 visitGCResult(cast<GCResultInst>(I)); 6943 return; 6944 case Intrinsic::experimental_gc_relocate: 6945 visitGCRelocate(cast<GCRelocateInst>(I)); 6946 return; 6947 case Intrinsic::instrprof_cover: 6948 llvm_unreachable("instrprof failed to lower a cover"); 6949 case Intrinsic::instrprof_increment: 6950 llvm_unreachable("instrprof failed to lower an increment"); 6951 case Intrinsic::instrprof_value_profile: 6952 llvm_unreachable("instrprof failed to lower a value profiling call"); 6953 case Intrinsic::localescape: { 6954 MachineFunction &MF = DAG.getMachineFunction(); 6955 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6956 6957 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6958 // is the same on all targets. 6959 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6960 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6961 if (isa<ConstantPointerNull>(Arg)) 6962 continue; // Skip null pointers. They represent a hole in index space. 6963 AllocaInst *Slot = cast<AllocaInst>(Arg); 6964 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6965 "can only escape static allocas"); 6966 int FI = FuncInfo.StaticAllocaMap[Slot]; 6967 MCSymbol *FrameAllocSym = 6968 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6969 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6971 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6972 .addSym(FrameAllocSym) 6973 .addFrameIndex(FI); 6974 } 6975 6976 return; 6977 } 6978 6979 case Intrinsic::localrecover: { 6980 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6981 MachineFunction &MF = DAG.getMachineFunction(); 6982 6983 // Get the symbol that defines the frame offset. 6984 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6985 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6986 unsigned IdxVal = 6987 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6988 MCSymbol *FrameAllocSym = 6989 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6990 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6991 6992 Value *FP = I.getArgOperand(1); 6993 SDValue FPVal = getValue(FP); 6994 EVT PtrVT = FPVal.getValueType(); 6995 6996 // Create a MCSymbol for the label to avoid any target lowering 6997 // that would make this PC relative. 6998 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6999 SDValue OffsetVal = 7000 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7001 7002 // Add the offset to the FP. 7003 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7004 setValue(&I, Add); 7005 7006 return; 7007 } 7008 7009 case Intrinsic::eh_exceptionpointer: 7010 case Intrinsic::eh_exceptioncode: { 7011 // Get the exception pointer vreg, copy from it, and resize it to fit. 7012 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7013 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7014 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7015 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7016 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7017 if (Intrinsic == Intrinsic::eh_exceptioncode) 7018 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7019 setValue(&I, N); 7020 return; 7021 } 7022 case Intrinsic::xray_customevent: { 7023 // Here we want to make sure that the intrinsic behaves as if it has a 7024 // specific calling convention, and only for x86_64. 7025 // FIXME: Support other platforms later. 7026 const auto &Triple = DAG.getTarget().getTargetTriple(); 7027 if (Triple.getArch() != Triple::x86_64) 7028 return; 7029 7030 SmallVector<SDValue, 8> Ops; 7031 7032 // We want to say that we always want the arguments in registers. 7033 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7034 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7035 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7036 SDValue Chain = getRoot(); 7037 Ops.push_back(LogEntryVal); 7038 Ops.push_back(StrSizeVal); 7039 Ops.push_back(Chain); 7040 7041 // We need to enforce the calling convention for the callsite, so that 7042 // argument ordering is enforced correctly, and that register allocation can 7043 // see that some registers may be assumed clobbered and have to preserve 7044 // them across calls to the intrinsic. 7045 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7046 sdl, NodeTys, Ops); 7047 SDValue patchableNode = SDValue(MN, 0); 7048 DAG.setRoot(patchableNode); 7049 setValue(&I, patchableNode); 7050 return; 7051 } 7052 case Intrinsic::xray_typedevent: { 7053 // Here we want to make sure that the intrinsic behaves as if it has a 7054 // specific calling convention, and only for x86_64. 7055 // FIXME: Support other platforms later. 7056 const auto &Triple = DAG.getTarget().getTargetTriple(); 7057 if (Triple.getArch() != Triple::x86_64) 7058 return; 7059 7060 SmallVector<SDValue, 8> Ops; 7061 7062 // We want to say that we always want the arguments in registers. 7063 // It's unclear to me how manipulating the selection DAG here forces callers 7064 // to provide arguments in registers instead of on the stack. 7065 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7066 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7067 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7068 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7069 SDValue Chain = getRoot(); 7070 Ops.push_back(LogTypeId); 7071 Ops.push_back(LogEntryVal); 7072 Ops.push_back(StrSizeVal); 7073 Ops.push_back(Chain); 7074 7075 // We need to enforce the calling convention for the callsite, so that 7076 // argument ordering is enforced correctly, and that register allocation can 7077 // see that some registers may be assumed clobbered and have to preserve 7078 // them across calls to the intrinsic. 7079 MachineSDNode *MN = DAG.getMachineNode( 7080 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7081 SDValue patchableNode = SDValue(MN, 0); 7082 DAG.setRoot(patchableNode); 7083 setValue(&I, patchableNode); 7084 return; 7085 } 7086 case Intrinsic::experimental_deoptimize: 7087 LowerDeoptimizeCall(&I); 7088 return; 7089 case Intrinsic::experimental_stepvector: 7090 visitStepVector(I); 7091 return; 7092 case Intrinsic::vector_reduce_fadd: 7093 case Intrinsic::vector_reduce_fmul: 7094 case Intrinsic::vector_reduce_add: 7095 case Intrinsic::vector_reduce_mul: 7096 case Intrinsic::vector_reduce_and: 7097 case Intrinsic::vector_reduce_or: 7098 case Intrinsic::vector_reduce_xor: 7099 case Intrinsic::vector_reduce_smax: 7100 case Intrinsic::vector_reduce_smin: 7101 case Intrinsic::vector_reduce_umax: 7102 case Intrinsic::vector_reduce_umin: 7103 case Intrinsic::vector_reduce_fmax: 7104 case Intrinsic::vector_reduce_fmin: 7105 visitVectorReduce(I, Intrinsic); 7106 return; 7107 7108 case Intrinsic::icall_branch_funnel: { 7109 SmallVector<SDValue, 16> Ops; 7110 Ops.push_back(getValue(I.getArgOperand(0))); 7111 7112 int64_t Offset; 7113 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7114 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7115 if (!Base) 7116 report_fatal_error( 7117 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7118 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7119 7120 struct BranchFunnelTarget { 7121 int64_t Offset; 7122 SDValue Target; 7123 }; 7124 SmallVector<BranchFunnelTarget, 8> Targets; 7125 7126 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7127 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7128 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7129 if (ElemBase != Base) 7130 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7131 "to the same GlobalValue"); 7132 7133 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7134 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7135 if (!GA) 7136 report_fatal_error( 7137 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7138 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7139 GA->getGlobal(), sdl, Val.getValueType(), 7140 GA->getOffset())}); 7141 } 7142 llvm::sort(Targets, 7143 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7144 return T1.Offset < T2.Offset; 7145 }); 7146 7147 for (auto &T : Targets) { 7148 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7149 Ops.push_back(T.Target); 7150 } 7151 7152 Ops.push_back(DAG.getRoot()); // Chain 7153 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7154 MVT::Other, Ops), 7155 0); 7156 DAG.setRoot(N); 7157 setValue(&I, N); 7158 HasTailCall = true; 7159 return; 7160 } 7161 7162 case Intrinsic::wasm_landingpad_index: 7163 // Information this intrinsic contained has been transferred to 7164 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7165 // delete it now. 7166 return; 7167 7168 case Intrinsic::aarch64_settag: 7169 case Intrinsic::aarch64_settag_zero: { 7170 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7171 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7172 SDValue Val = TSI.EmitTargetCodeForSetTag( 7173 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7174 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7175 ZeroMemory); 7176 DAG.setRoot(Val); 7177 setValue(&I, Val); 7178 return; 7179 } 7180 case Intrinsic::ptrmask: { 7181 SDValue Ptr = getValue(I.getOperand(0)); 7182 SDValue Const = getValue(I.getOperand(1)); 7183 7184 EVT PtrVT = Ptr.getValueType(); 7185 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7186 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7187 return; 7188 } 7189 case Intrinsic::threadlocal_address: { 7190 setValue(&I, getValue(I.getOperand(0))); 7191 return; 7192 } 7193 case Intrinsic::get_active_lane_mask: { 7194 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7195 SDValue Index = getValue(I.getOperand(0)); 7196 EVT ElementVT = Index.getValueType(); 7197 7198 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7199 visitTargetIntrinsic(I, Intrinsic); 7200 return; 7201 } 7202 7203 SDValue TripCount = getValue(I.getOperand(1)); 7204 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7205 7206 SDValue VectorIndex, VectorTripCount; 7207 if (VecTy.isScalableVector()) { 7208 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7209 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7210 } else { 7211 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7212 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7213 } 7214 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7215 SDValue VectorInduction = DAG.getNode( 7216 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7217 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7218 VectorTripCount, ISD::CondCode::SETULT); 7219 setValue(&I, SetCC); 7220 return; 7221 } 7222 case Intrinsic::vector_insert: { 7223 SDValue Vec = getValue(I.getOperand(0)); 7224 SDValue SubVec = getValue(I.getOperand(1)); 7225 SDValue Index = getValue(I.getOperand(2)); 7226 7227 // The intrinsic's index type is i64, but the SDNode requires an index type 7228 // suitable for the target. Convert the index as required. 7229 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7230 if (Index.getValueType() != VectorIdxTy) 7231 Index = DAG.getVectorIdxConstant( 7232 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7233 7234 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7235 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7236 Index)); 7237 return; 7238 } 7239 case Intrinsic::vector_extract: { 7240 SDValue Vec = getValue(I.getOperand(0)); 7241 SDValue Index = getValue(I.getOperand(1)); 7242 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7243 7244 // The intrinsic's index type is i64, but the SDNode requires an index type 7245 // suitable for the target. Convert the index as required. 7246 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7247 if (Index.getValueType() != VectorIdxTy) 7248 Index = DAG.getVectorIdxConstant( 7249 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7250 7251 setValue(&I, 7252 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7253 return; 7254 } 7255 case Intrinsic::experimental_vector_reverse: 7256 visitVectorReverse(I); 7257 return; 7258 case Intrinsic::experimental_vector_splice: 7259 visitVectorSplice(I); 7260 return; 7261 } 7262 } 7263 7264 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7265 const ConstrainedFPIntrinsic &FPI) { 7266 SDLoc sdl = getCurSDLoc(); 7267 7268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7269 SmallVector<EVT, 4> ValueVTs; 7270 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7271 ValueVTs.push_back(MVT::Other); // Out chain 7272 7273 // We do not need to serialize constrained FP intrinsics against 7274 // each other or against (nonvolatile) loads, so they can be 7275 // chained like loads. 7276 SDValue Chain = DAG.getRoot(); 7277 SmallVector<SDValue, 4> Opers; 7278 Opers.push_back(Chain); 7279 if (FPI.isUnaryOp()) { 7280 Opers.push_back(getValue(FPI.getArgOperand(0))); 7281 } else if (FPI.isTernaryOp()) { 7282 Opers.push_back(getValue(FPI.getArgOperand(0))); 7283 Opers.push_back(getValue(FPI.getArgOperand(1))); 7284 Opers.push_back(getValue(FPI.getArgOperand(2))); 7285 } else { 7286 Opers.push_back(getValue(FPI.getArgOperand(0))); 7287 Opers.push_back(getValue(FPI.getArgOperand(1))); 7288 } 7289 7290 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7291 assert(Result.getNode()->getNumValues() == 2); 7292 7293 // Push node to the appropriate list so that future instructions can be 7294 // chained up correctly. 7295 SDValue OutChain = Result.getValue(1); 7296 switch (EB) { 7297 case fp::ExceptionBehavior::ebIgnore: 7298 // The only reason why ebIgnore nodes still need to be chained is that 7299 // they might depend on the current rounding mode, and therefore must 7300 // not be moved across instruction that may change that mode. 7301 [[fallthrough]]; 7302 case fp::ExceptionBehavior::ebMayTrap: 7303 // These must not be moved across calls or instructions that may change 7304 // floating-point exception masks. 7305 PendingConstrainedFP.push_back(OutChain); 7306 break; 7307 case fp::ExceptionBehavior::ebStrict: 7308 // These must not be moved across calls or instructions that may change 7309 // floating-point exception masks or read floating-point exception flags. 7310 // In addition, they cannot be optimized out even if unused. 7311 PendingConstrainedFPStrict.push_back(OutChain); 7312 break; 7313 } 7314 }; 7315 7316 SDVTList VTs = DAG.getVTList(ValueVTs); 7317 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7318 7319 SDNodeFlags Flags; 7320 if (EB == fp::ExceptionBehavior::ebIgnore) 7321 Flags.setNoFPExcept(true); 7322 7323 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7324 Flags.copyFMF(*FPOp); 7325 7326 unsigned Opcode; 7327 switch (FPI.getIntrinsicID()) { 7328 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7329 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7330 case Intrinsic::INTRINSIC: \ 7331 Opcode = ISD::STRICT_##DAGN; \ 7332 break; 7333 #include "llvm/IR/ConstrainedOps.def" 7334 case Intrinsic::experimental_constrained_fmuladd: { 7335 Opcode = ISD::STRICT_FMA; 7336 // Break fmuladd into fmul and fadd. 7337 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7338 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7339 ValueVTs[0])) { 7340 Opers.pop_back(); 7341 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7342 pushOutChain(Mul, EB); 7343 Opcode = ISD::STRICT_FADD; 7344 Opers.clear(); 7345 Opers.push_back(Mul.getValue(1)); 7346 Opers.push_back(Mul.getValue(0)); 7347 Opers.push_back(getValue(FPI.getArgOperand(2))); 7348 } 7349 break; 7350 } 7351 } 7352 7353 // A few strict DAG nodes carry additional operands that are not 7354 // set up by the default code above. 7355 switch (Opcode) { 7356 default: break; 7357 case ISD::STRICT_FP_ROUND: 7358 Opers.push_back( 7359 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7360 break; 7361 case ISD::STRICT_FSETCC: 7362 case ISD::STRICT_FSETCCS: { 7363 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7364 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7365 if (TM.Options.NoNaNsFPMath) 7366 Condition = getFCmpCodeWithoutNaN(Condition); 7367 Opers.push_back(DAG.getCondCode(Condition)); 7368 break; 7369 } 7370 } 7371 7372 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7373 pushOutChain(Result, EB); 7374 7375 SDValue FPResult = Result.getValue(0); 7376 setValue(&FPI, FPResult); 7377 } 7378 7379 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7380 Optional<unsigned> ResOPC; 7381 switch (VPIntrin.getIntrinsicID()) { 7382 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7383 case Intrinsic::VPID: \ 7384 ResOPC = ISD::VPSD; \ 7385 break; 7386 #include "llvm/IR/VPIntrinsics.def" 7387 } 7388 7389 if (!ResOPC) 7390 llvm_unreachable( 7391 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7392 7393 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7394 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7395 if (VPIntrin.getFastMathFlags().allowReassoc()) 7396 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7397 : ISD::VP_REDUCE_FMUL; 7398 } 7399 7400 return *ResOPC; 7401 } 7402 7403 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7404 SmallVector<SDValue, 7> &OpValues, 7405 bool IsGather) { 7406 SDLoc DL = getCurSDLoc(); 7407 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7408 Value *PtrOperand = VPIntrin.getArgOperand(0); 7409 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7410 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7411 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7412 SDValue LD; 7413 bool AddToChain = true; 7414 if (!IsGather) { 7415 // Do not serialize variable-length loads of constant memory with 7416 // anything. 7417 if (!Alignment) 7418 Alignment = DAG.getEVTAlign(VT); 7419 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7420 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7421 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7422 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7423 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7424 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7425 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7426 MMO, false /*IsExpanding */); 7427 } else { 7428 if (!Alignment) 7429 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7430 unsigned AS = 7431 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7432 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7433 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7434 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7435 SDValue Base, Index, Scale; 7436 ISD::MemIndexType IndexType; 7437 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7438 this, VPIntrin.getParent(), 7439 VT.getScalarStoreSize()); 7440 if (!UniformBase) { 7441 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7442 Index = getValue(PtrOperand); 7443 IndexType = ISD::SIGNED_SCALED; 7444 Scale = 7445 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7446 } 7447 EVT IdxVT = Index.getValueType(); 7448 EVT EltTy = IdxVT.getVectorElementType(); 7449 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7450 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7451 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7452 } 7453 LD = DAG.getGatherVP( 7454 DAG.getVTList(VT, MVT::Other), VT, DL, 7455 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7456 IndexType); 7457 } 7458 if (AddToChain) 7459 PendingLoads.push_back(LD.getValue(1)); 7460 setValue(&VPIntrin, LD); 7461 } 7462 7463 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7464 SmallVector<SDValue, 7> &OpValues, 7465 bool IsScatter) { 7466 SDLoc DL = getCurSDLoc(); 7467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7468 Value *PtrOperand = VPIntrin.getArgOperand(1); 7469 EVT VT = OpValues[0].getValueType(); 7470 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7471 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7472 SDValue ST; 7473 if (!IsScatter) { 7474 if (!Alignment) 7475 Alignment = DAG.getEVTAlign(VT); 7476 SDValue Ptr = OpValues[1]; 7477 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7478 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7479 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7480 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7481 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7482 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7483 /* IsTruncating */ false, /*IsCompressing*/ false); 7484 } else { 7485 if (!Alignment) 7486 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7487 unsigned AS = 7488 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7489 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7490 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7491 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7492 SDValue Base, Index, Scale; 7493 ISD::MemIndexType IndexType; 7494 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7495 this, VPIntrin.getParent(), 7496 VT.getScalarStoreSize()); 7497 if (!UniformBase) { 7498 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7499 Index = getValue(PtrOperand); 7500 IndexType = ISD::SIGNED_SCALED; 7501 Scale = 7502 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7503 } 7504 EVT IdxVT = Index.getValueType(); 7505 EVT EltTy = IdxVT.getVectorElementType(); 7506 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7507 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7508 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7509 } 7510 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7511 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7512 OpValues[2], OpValues[3]}, 7513 MMO, IndexType); 7514 } 7515 DAG.setRoot(ST); 7516 setValue(&VPIntrin, ST); 7517 } 7518 7519 void SelectionDAGBuilder::visitVPStridedLoad( 7520 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7521 SDLoc DL = getCurSDLoc(); 7522 Value *PtrOperand = VPIntrin.getArgOperand(0); 7523 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7524 if (!Alignment) 7525 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7526 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7527 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7528 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7529 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7530 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7531 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7532 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7533 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7534 7535 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7536 OpValues[2], OpValues[3], MMO, 7537 false /*IsExpanding*/); 7538 7539 if (AddToChain) 7540 PendingLoads.push_back(LD.getValue(1)); 7541 setValue(&VPIntrin, LD); 7542 } 7543 7544 void SelectionDAGBuilder::visitVPStridedStore( 7545 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7546 SDLoc DL = getCurSDLoc(); 7547 Value *PtrOperand = VPIntrin.getArgOperand(1); 7548 EVT VT = OpValues[0].getValueType(); 7549 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7550 if (!Alignment) 7551 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7552 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7553 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7554 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7555 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7556 7557 SDValue ST = DAG.getStridedStoreVP( 7558 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7559 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7560 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7561 /*IsCompressing*/ false); 7562 7563 DAG.setRoot(ST); 7564 setValue(&VPIntrin, ST); 7565 } 7566 7567 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7569 SDLoc DL = getCurSDLoc(); 7570 7571 ISD::CondCode Condition; 7572 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7573 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7574 if (IsFP) { 7575 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7576 // flags, but calls that don't return floating-point types can't be 7577 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7578 Condition = getFCmpCondCode(CondCode); 7579 if (TM.Options.NoNaNsFPMath) 7580 Condition = getFCmpCodeWithoutNaN(Condition); 7581 } else { 7582 Condition = getICmpCondCode(CondCode); 7583 } 7584 7585 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7586 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7587 // #2 is the condition code 7588 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7589 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7590 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7591 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7592 "Unexpected target EVL type"); 7593 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7594 7595 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7596 VPIntrin.getType()); 7597 setValue(&VPIntrin, 7598 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7599 } 7600 7601 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7602 const VPIntrinsic &VPIntrin) { 7603 SDLoc DL = getCurSDLoc(); 7604 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7605 7606 auto IID = VPIntrin.getIntrinsicID(); 7607 7608 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7609 return visitVPCmp(*CmpI); 7610 7611 SmallVector<EVT, 4> ValueVTs; 7612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7613 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7614 SDVTList VTs = DAG.getVTList(ValueVTs); 7615 7616 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7617 7618 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7619 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7620 "Unexpected target EVL type"); 7621 7622 // Request operands. 7623 SmallVector<SDValue, 7> OpValues; 7624 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7625 auto Op = getValue(VPIntrin.getArgOperand(I)); 7626 if (I == EVLParamPos) 7627 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7628 OpValues.push_back(Op); 7629 } 7630 7631 switch (Opcode) { 7632 default: { 7633 SDNodeFlags SDFlags; 7634 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7635 SDFlags.copyFMF(*FPMO); 7636 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7637 setValue(&VPIntrin, Result); 7638 break; 7639 } 7640 case ISD::VP_LOAD: 7641 case ISD::VP_GATHER: 7642 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7643 Opcode == ISD::VP_GATHER); 7644 break; 7645 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7646 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7647 break; 7648 case ISD::VP_STORE: 7649 case ISD::VP_SCATTER: 7650 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7651 break; 7652 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7653 visitVPStridedStore(VPIntrin, OpValues); 7654 break; 7655 } 7656 } 7657 7658 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7659 const BasicBlock *EHPadBB, 7660 MCSymbol *&BeginLabel) { 7661 MachineFunction &MF = DAG.getMachineFunction(); 7662 MachineModuleInfo &MMI = MF.getMMI(); 7663 7664 // Insert a label before the invoke call to mark the try range. This can be 7665 // used to detect deletion of the invoke via the MachineModuleInfo. 7666 BeginLabel = MMI.getContext().createTempSymbol(); 7667 7668 // For SjLj, keep track of which landing pads go with which invokes 7669 // so as to maintain the ordering of pads in the LSDA. 7670 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7671 if (CallSiteIndex) { 7672 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7673 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7674 7675 // Now that the call site is handled, stop tracking it. 7676 MMI.setCurrentCallSite(0); 7677 } 7678 7679 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7680 } 7681 7682 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7683 const BasicBlock *EHPadBB, 7684 MCSymbol *BeginLabel) { 7685 assert(BeginLabel && "BeginLabel should've been set"); 7686 7687 MachineFunction &MF = DAG.getMachineFunction(); 7688 MachineModuleInfo &MMI = MF.getMMI(); 7689 7690 // Insert a label at the end of the invoke call to mark the try range. This 7691 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7692 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7693 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7694 7695 // Inform MachineModuleInfo of range. 7696 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7697 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7698 // actually use outlined funclets and their LSDA info style. 7699 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7700 assert(II && "II should've been set"); 7701 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7702 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7703 } else if (!isScopedEHPersonality(Pers)) { 7704 assert(EHPadBB); 7705 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7706 } 7707 7708 return Chain; 7709 } 7710 7711 std::pair<SDValue, SDValue> 7712 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7713 const BasicBlock *EHPadBB) { 7714 MCSymbol *BeginLabel = nullptr; 7715 7716 if (EHPadBB) { 7717 // Both PendingLoads and PendingExports must be flushed here; 7718 // this call might not return. 7719 (void)getRoot(); 7720 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7721 CLI.setChain(getRoot()); 7722 } 7723 7724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7725 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7726 7727 assert((CLI.IsTailCall || Result.second.getNode()) && 7728 "Non-null chain expected with non-tail call!"); 7729 assert((Result.second.getNode() || !Result.first.getNode()) && 7730 "Null value expected with tail call!"); 7731 7732 if (!Result.second.getNode()) { 7733 // As a special case, a null chain means that a tail call has been emitted 7734 // and the DAG root is already updated. 7735 HasTailCall = true; 7736 7737 // Since there's no actual continuation from this block, nothing can be 7738 // relying on us setting vregs for them. 7739 PendingExports.clear(); 7740 } else { 7741 DAG.setRoot(Result.second); 7742 } 7743 7744 if (EHPadBB) { 7745 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7746 BeginLabel)); 7747 } 7748 7749 return Result; 7750 } 7751 7752 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7753 bool isTailCall, 7754 bool isMustTailCall, 7755 const BasicBlock *EHPadBB) { 7756 auto &DL = DAG.getDataLayout(); 7757 FunctionType *FTy = CB.getFunctionType(); 7758 Type *RetTy = CB.getType(); 7759 7760 TargetLowering::ArgListTy Args; 7761 Args.reserve(CB.arg_size()); 7762 7763 const Value *SwiftErrorVal = nullptr; 7764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7765 7766 if (isTailCall) { 7767 // Avoid emitting tail calls in functions with the disable-tail-calls 7768 // attribute. 7769 auto *Caller = CB.getParent()->getParent(); 7770 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7771 "true" && !isMustTailCall) 7772 isTailCall = false; 7773 7774 // We can't tail call inside a function with a swifterror argument. Lowering 7775 // does not support this yet. It would have to move into the swifterror 7776 // register before the call. 7777 if (TLI.supportSwiftError() && 7778 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7779 isTailCall = false; 7780 } 7781 7782 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7783 TargetLowering::ArgListEntry Entry; 7784 const Value *V = *I; 7785 7786 // Skip empty types 7787 if (V->getType()->isEmptyTy()) 7788 continue; 7789 7790 SDValue ArgNode = getValue(V); 7791 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7792 7793 Entry.setAttributes(&CB, I - CB.arg_begin()); 7794 7795 // Use swifterror virtual register as input to the call. 7796 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7797 SwiftErrorVal = V; 7798 // We find the virtual register for the actual swifterror argument. 7799 // Instead of using the Value, we use the virtual register instead. 7800 Entry.Node = 7801 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7802 EVT(TLI.getPointerTy(DL))); 7803 } 7804 7805 Args.push_back(Entry); 7806 7807 // If we have an explicit sret argument that is an Instruction, (i.e., it 7808 // might point to function-local memory), we can't meaningfully tail-call. 7809 if (Entry.IsSRet && isa<Instruction>(V)) 7810 isTailCall = false; 7811 } 7812 7813 // If call site has a cfguardtarget operand bundle, create and add an 7814 // additional ArgListEntry. 7815 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7816 TargetLowering::ArgListEntry Entry; 7817 Value *V = Bundle->Inputs[0]; 7818 SDValue ArgNode = getValue(V); 7819 Entry.Node = ArgNode; 7820 Entry.Ty = V->getType(); 7821 Entry.IsCFGuardTarget = true; 7822 Args.push_back(Entry); 7823 } 7824 7825 // Check if target-independent constraints permit a tail call here. 7826 // Target-dependent constraints are checked within TLI->LowerCallTo. 7827 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7828 isTailCall = false; 7829 7830 // Disable tail calls if there is an swifterror argument. Targets have not 7831 // been updated to support tail calls. 7832 if (TLI.supportSwiftError() && SwiftErrorVal) 7833 isTailCall = false; 7834 7835 TargetLowering::CallLoweringInfo CLI(DAG); 7836 CLI.setDebugLoc(getCurSDLoc()) 7837 .setChain(getRoot()) 7838 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7839 .setTailCall(isTailCall) 7840 .setConvergent(CB.isConvergent()) 7841 .setIsPreallocated( 7842 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7843 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7844 7845 if (Result.first.getNode()) { 7846 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7847 setValue(&CB, Result.first); 7848 } 7849 7850 // The last element of CLI.InVals has the SDValue for swifterror return. 7851 // Here we copy it to a virtual register and update SwiftErrorMap for 7852 // book-keeping. 7853 if (SwiftErrorVal && TLI.supportSwiftError()) { 7854 // Get the last element of InVals. 7855 SDValue Src = CLI.InVals.back(); 7856 Register VReg = 7857 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7858 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7859 DAG.setRoot(CopyNode); 7860 } 7861 } 7862 7863 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7864 SelectionDAGBuilder &Builder) { 7865 // Check to see if this load can be trivially constant folded, e.g. if the 7866 // input is from a string literal. 7867 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7868 // Cast pointer to the type we really want to load. 7869 Type *LoadTy = 7870 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7871 if (LoadVT.isVector()) 7872 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7873 7874 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7875 PointerType::getUnqual(LoadTy)); 7876 7877 if (const Constant *LoadCst = 7878 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7879 LoadTy, Builder.DAG.getDataLayout())) 7880 return Builder.getValue(LoadCst); 7881 } 7882 7883 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7884 // still constant memory, the input chain can be the entry node. 7885 SDValue Root; 7886 bool ConstantMemory = false; 7887 7888 // Do not serialize (non-volatile) loads of constant memory with anything. 7889 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7890 Root = Builder.DAG.getEntryNode(); 7891 ConstantMemory = true; 7892 } else { 7893 // Do not serialize non-volatile loads against each other. 7894 Root = Builder.DAG.getRoot(); 7895 } 7896 7897 SDValue Ptr = Builder.getValue(PtrVal); 7898 SDValue LoadVal = 7899 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7900 MachinePointerInfo(PtrVal), Align(1)); 7901 7902 if (!ConstantMemory) 7903 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7904 return LoadVal; 7905 } 7906 7907 /// Record the value for an instruction that produces an integer result, 7908 /// converting the type where necessary. 7909 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7910 SDValue Value, 7911 bool IsSigned) { 7912 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7913 I.getType(), true); 7914 if (IsSigned) 7915 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7916 else 7917 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7918 setValue(&I, Value); 7919 } 7920 7921 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7922 /// true and lower it. Otherwise return false, and it will be lowered like a 7923 /// normal call. 7924 /// The caller already checked that \p I calls the appropriate LibFunc with a 7925 /// correct prototype. 7926 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7927 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7928 const Value *Size = I.getArgOperand(2); 7929 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 7930 if (CSize && CSize->getZExtValue() == 0) { 7931 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7932 I.getType(), true); 7933 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7934 return true; 7935 } 7936 7937 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7938 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7939 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7940 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7941 if (Res.first.getNode()) { 7942 processIntegerCallValue(I, Res.first, true); 7943 PendingLoads.push_back(Res.second); 7944 return true; 7945 } 7946 7947 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7948 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7949 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7950 return false; 7951 7952 // If the target has a fast compare for the given size, it will return a 7953 // preferred load type for that size. Require that the load VT is legal and 7954 // that the target supports unaligned loads of that type. Otherwise, return 7955 // INVALID. 7956 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7958 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7959 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7960 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7961 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7962 // TODO: Check alignment of src and dest ptrs. 7963 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7964 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7965 if (!TLI.isTypeLegal(LVT) || 7966 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7967 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7968 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7969 } 7970 7971 return LVT; 7972 }; 7973 7974 // This turns into unaligned loads. We only do this if the target natively 7975 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7976 // we'll only produce a small number of byte loads. 7977 MVT LoadVT; 7978 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7979 switch (NumBitsToCompare) { 7980 default: 7981 return false; 7982 case 16: 7983 LoadVT = MVT::i16; 7984 break; 7985 case 32: 7986 LoadVT = MVT::i32; 7987 break; 7988 case 64: 7989 case 128: 7990 case 256: 7991 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7992 break; 7993 } 7994 7995 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7996 return false; 7997 7998 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7999 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8000 8001 // Bitcast to a wide integer type if the loads are vectors. 8002 if (LoadVT.isVector()) { 8003 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8004 LoadL = DAG.getBitcast(CmpVT, LoadL); 8005 LoadR = DAG.getBitcast(CmpVT, LoadR); 8006 } 8007 8008 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8009 processIntegerCallValue(I, Cmp, false); 8010 return true; 8011 } 8012 8013 /// See if we can lower a memchr call into an optimized form. If so, return 8014 /// true and lower it. Otherwise return false, and it will be lowered like a 8015 /// normal call. 8016 /// The caller already checked that \p I calls the appropriate LibFunc with a 8017 /// correct prototype. 8018 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8019 const Value *Src = I.getArgOperand(0); 8020 const Value *Char = I.getArgOperand(1); 8021 const Value *Length = I.getArgOperand(2); 8022 8023 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8024 std::pair<SDValue, SDValue> Res = 8025 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8026 getValue(Src), getValue(Char), getValue(Length), 8027 MachinePointerInfo(Src)); 8028 if (Res.first.getNode()) { 8029 setValue(&I, Res.first); 8030 PendingLoads.push_back(Res.second); 8031 return true; 8032 } 8033 8034 return false; 8035 } 8036 8037 /// See if we can lower a mempcpy call into an optimized form. If so, return 8038 /// true and lower it. Otherwise return false, and it will be lowered like a 8039 /// normal call. 8040 /// The caller already checked that \p I calls the appropriate LibFunc with a 8041 /// correct prototype. 8042 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8043 SDValue Dst = getValue(I.getArgOperand(0)); 8044 SDValue Src = getValue(I.getArgOperand(1)); 8045 SDValue Size = getValue(I.getArgOperand(2)); 8046 8047 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8048 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8049 // DAG::getMemcpy needs Alignment to be defined. 8050 Align Alignment = std::min(DstAlign, SrcAlign); 8051 8052 bool isVol = false; 8053 SDLoc sdl = getCurSDLoc(); 8054 8055 // In the mempcpy context we need to pass in a false value for isTailCall 8056 // because the return pointer needs to be adjusted by the size of 8057 // the copied memory. 8058 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8059 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8060 /*isTailCall=*/false, 8061 MachinePointerInfo(I.getArgOperand(0)), 8062 MachinePointerInfo(I.getArgOperand(1)), 8063 I.getAAMetadata()); 8064 assert(MC.getNode() != nullptr && 8065 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8066 DAG.setRoot(MC); 8067 8068 // Check if Size needs to be truncated or extended. 8069 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8070 8071 // Adjust return pointer to point just past the last dst byte. 8072 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8073 Dst, Size); 8074 setValue(&I, DstPlusSize); 8075 return true; 8076 } 8077 8078 /// See if we can lower a strcpy call into an optimized form. If so, return 8079 /// true and lower it, otherwise return false and it will be lowered like a 8080 /// normal call. 8081 /// The caller already checked that \p I calls the appropriate LibFunc with a 8082 /// correct prototype. 8083 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8084 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8085 8086 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8087 std::pair<SDValue, SDValue> Res = 8088 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8089 getValue(Arg0), getValue(Arg1), 8090 MachinePointerInfo(Arg0), 8091 MachinePointerInfo(Arg1), isStpcpy); 8092 if (Res.first.getNode()) { 8093 setValue(&I, Res.first); 8094 DAG.setRoot(Res.second); 8095 return true; 8096 } 8097 8098 return false; 8099 } 8100 8101 /// See if we can lower a strcmp call into an optimized form. If so, return 8102 /// true and lower it, otherwise return false and it will be lowered like a 8103 /// normal call. 8104 /// The caller already checked that \p I calls the appropriate LibFunc with a 8105 /// correct prototype. 8106 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8107 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8108 8109 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8110 std::pair<SDValue, SDValue> Res = 8111 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8112 getValue(Arg0), getValue(Arg1), 8113 MachinePointerInfo(Arg0), 8114 MachinePointerInfo(Arg1)); 8115 if (Res.first.getNode()) { 8116 processIntegerCallValue(I, Res.first, true); 8117 PendingLoads.push_back(Res.second); 8118 return true; 8119 } 8120 8121 return false; 8122 } 8123 8124 /// See if we can lower a strlen call into an optimized form. If so, return 8125 /// true and lower it, otherwise return false and it will be lowered like a 8126 /// normal call. 8127 /// The caller already checked that \p I calls the appropriate LibFunc with a 8128 /// correct prototype. 8129 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8130 const Value *Arg0 = I.getArgOperand(0); 8131 8132 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8133 std::pair<SDValue, SDValue> Res = 8134 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8135 getValue(Arg0), MachinePointerInfo(Arg0)); 8136 if (Res.first.getNode()) { 8137 processIntegerCallValue(I, Res.first, false); 8138 PendingLoads.push_back(Res.second); 8139 return true; 8140 } 8141 8142 return false; 8143 } 8144 8145 /// See if we can lower a strnlen call into an optimized form. If so, return 8146 /// true and lower it, otherwise return false and it will be lowered like a 8147 /// normal call. 8148 /// The caller already checked that \p I calls the appropriate LibFunc with a 8149 /// correct prototype. 8150 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8151 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8152 8153 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8154 std::pair<SDValue, SDValue> Res = 8155 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8156 getValue(Arg0), getValue(Arg1), 8157 MachinePointerInfo(Arg0)); 8158 if (Res.first.getNode()) { 8159 processIntegerCallValue(I, Res.first, false); 8160 PendingLoads.push_back(Res.second); 8161 return true; 8162 } 8163 8164 return false; 8165 } 8166 8167 /// See if we can lower a unary floating-point operation into an SDNode with 8168 /// the specified Opcode. If so, return true and lower it, otherwise return 8169 /// false and it will be lowered like a normal call. 8170 /// The caller already checked that \p I calls the appropriate LibFunc with a 8171 /// correct prototype. 8172 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8173 unsigned Opcode) { 8174 // We already checked this call's prototype; verify it doesn't modify errno. 8175 if (!I.onlyReadsMemory()) 8176 return false; 8177 8178 SDNodeFlags Flags; 8179 Flags.copyFMF(cast<FPMathOperator>(I)); 8180 8181 SDValue Tmp = getValue(I.getArgOperand(0)); 8182 setValue(&I, 8183 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8184 return true; 8185 } 8186 8187 /// See if we can lower a binary floating-point operation into an SDNode with 8188 /// the specified Opcode. If so, return true and lower it. Otherwise return 8189 /// false, and it will be lowered like a normal call. 8190 /// The caller already checked that \p I calls the appropriate LibFunc with a 8191 /// correct prototype. 8192 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8193 unsigned Opcode) { 8194 // We already checked this call's prototype; verify it doesn't modify errno. 8195 if (!I.onlyReadsMemory()) 8196 return false; 8197 8198 SDNodeFlags Flags; 8199 Flags.copyFMF(cast<FPMathOperator>(I)); 8200 8201 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8202 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8203 EVT VT = Tmp0.getValueType(); 8204 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8205 return true; 8206 } 8207 8208 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8209 // Handle inline assembly differently. 8210 if (I.isInlineAsm()) { 8211 visitInlineAsm(I); 8212 return; 8213 } 8214 8215 if (Function *F = I.getCalledFunction()) { 8216 diagnoseDontCall(I); 8217 8218 if (F->isDeclaration()) { 8219 // Is this an LLVM intrinsic or a target-specific intrinsic? 8220 unsigned IID = F->getIntrinsicID(); 8221 if (!IID) 8222 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8223 IID = II->getIntrinsicID(F); 8224 8225 if (IID) { 8226 visitIntrinsicCall(I, IID); 8227 return; 8228 } 8229 } 8230 8231 // Check for well-known libc/libm calls. If the function is internal, it 8232 // can't be a library call. Don't do the check if marked as nobuiltin for 8233 // some reason or the call site requires strict floating point semantics. 8234 LibFunc Func; 8235 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8236 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8237 LibInfo->hasOptimizedCodeGen(Func)) { 8238 switch (Func) { 8239 default: break; 8240 case LibFunc_bcmp: 8241 if (visitMemCmpBCmpCall(I)) 8242 return; 8243 break; 8244 case LibFunc_copysign: 8245 case LibFunc_copysignf: 8246 case LibFunc_copysignl: 8247 // We already checked this call's prototype; verify it doesn't modify 8248 // errno. 8249 if (I.onlyReadsMemory()) { 8250 SDValue LHS = getValue(I.getArgOperand(0)); 8251 SDValue RHS = getValue(I.getArgOperand(1)); 8252 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8253 LHS.getValueType(), LHS, RHS)); 8254 return; 8255 } 8256 break; 8257 case LibFunc_fabs: 8258 case LibFunc_fabsf: 8259 case LibFunc_fabsl: 8260 if (visitUnaryFloatCall(I, ISD::FABS)) 8261 return; 8262 break; 8263 case LibFunc_fmin: 8264 case LibFunc_fminf: 8265 case LibFunc_fminl: 8266 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8267 return; 8268 break; 8269 case LibFunc_fmax: 8270 case LibFunc_fmaxf: 8271 case LibFunc_fmaxl: 8272 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8273 return; 8274 break; 8275 case LibFunc_sin: 8276 case LibFunc_sinf: 8277 case LibFunc_sinl: 8278 if (visitUnaryFloatCall(I, ISD::FSIN)) 8279 return; 8280 break; 8281 case LibFunc_cos: 8282 case LibFunc_cosf: 8283 case LibFunc_cosl: 8284 if (visitUnaryFloatCall(I, ISD::FCOS)) 8285 return; 8286 break; 8287 case LibFunc_sqrt: 8288 case LibFunc_sqrtf: 8289 case LibFunc_sqrtl: 8290 case LibFunc_sqrt_finite: 8291 case LibFunc_sqrtf_finite: 8292 case LibFunc_sqrtl_finite: 8293 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8294 return; 8295 break; 8296 case LibFunc_floor: 8297 case LibFunc_floorf: 8298 case LibFunc_floorl: 8299 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8300 return; 8301 break; 8302 case LibFunc_nearbyint: 8303 case LibFunc_nearbyintf: 8304 case LibFunc_nearbyintl: 8305 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8306 return; 8307 break; 8308 case LibFunc_ceil: 8309 case LibFunc_ceilf: 8310 case LibFunc_ceill: 8311 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8312 return; 8313 break; 8314 case LibFunc_rint: 8315 case LibFunc_rintf: 8316 case LibFunc_rintl: 8317 if (visitUnaryFloatCall(I, ISD::FRINT)) 8318 return; 8319 break; 8320 case LibFunc_round: 8321 case LibFunc_roundf: 8322 case LibFunc_roundl: 8323 if (visitUnaryFloatCall(I, ISD::FROUND)) 8324 return; 8325 break; 8326 case LibFunc_trunc: 8327 case LibFunc_truncf: 8328 case LibFunc_truncl: 8329 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8330 return; 8331 break; 8332 case LibFunc_log2: 8333 case LibFunc_log2f: 8334 case LibFunc_log2l: 8335 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8336 return; 8337 break; 8338 case LibFunc_exp2: 8339 case LibFunc_exp2f: 8340 case LibFunc_exp2l: 8341 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8342 return; 8343 break; 8344 case LibFunc_memcmp: 8345 if (visitMemCmpBCmpCall(I)) 8346 return; 8347 break; 8348 case LibFunc_mempcpy: 8349 if (visitMemPCpyCall(I)) 8350 return; 8351 break; 8352 case LibFunc_memchr: 8353 if (visitMemChrCall(I)) 8354 return; 8355 break; 8356 case LibFunc_strcpy: 8357 if (visitStrCpyCall(I, false)) 8358 return; 8359 break; 8360 case LibFunc_stpcpy: 8361 if (visitStrCpyCall(I, true)) 8362 return; 8363 break; 8364 case LibFunc_strcmp: 8365 if (visitStrCmpCall(I)) 8366 return; 8367 break; 8368 case LibFunc_strlen: 8369 if (visitStrLenCall(I)) 8370 return; 8371 break; 8372 case LibFunc_strnlen: 8373 if (visitStrNLenCall(I)) 8374 return; 8375 break; 8376 } 8377 } 8378 } 8379 8380 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8381 // have to do anything here to lower funclet bundles. 8382 // CFGuardTarget bundles are lowered in LowerCallTo. 8383 assert(!I.hasOperandBundlesOtherThan( 8384 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8385 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8386 LLVMContext::OB_clang_arc_attachedcall}) && 8387 "Cannot lower calls with arbitrary operand bundles!"); 8388 8389 SDValue Callee = getValue(I.getCalledOperand()); 8390 8391 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8392 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8393 else 8394 // Check if we can potentially perform a tail call. More detailed checking 8395 // is be done within LowerCallTo, after more information about the call is 8396 // known. 8397 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8398 } 8399 8400 namespace { 8401 8402 /// AsmOperandInfo - This contains information for each constraint that we are 8403 /// lowering. 8404 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8405 public: 8406 /// CallOperand - If this is the result output operand or a clobber 8407 /// this is null, otherwise it is the incoming operand to the CallInst. 8408 /// This gets modified as the asm is processed. 8409 SDValue CallOperand; 8410 8411 /// AssignedRegs - If this is a register or register class operand, this 8412 /// contains the set of register corresponding to the operand. 8413 RegsForValue AssignedRegs; 8414 8415 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8416 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8417 } 8418 8419 /// Whether or not this operand accesses memory 8420 bool hasMemory(const TargetLowering &TLI) const { 8421 // Indirect operand accesses access memory. 8422 if (isIndirect) 8423 return true; 8424 8425 for (const auto &Code : Codes) 8426 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8427 return true; 8428 8429 return false; 8430 } 8431 }; 8432 8433 8434 } // end anonymous namespace 8435 8436 /// Make sure that the output operand \p OpInfo and its corresponding input 8437 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8438 /// out). 8439 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8440 SDISelAsmOperandInfo &MatchingOpInfo, 8441 SelectionDAG &DAG) { 8442 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8443 return; 8444 8445 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8446 const auto &TLI = DAG.getTargetLoweringInfo(); 8447 8448 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8449 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8450 OpInfo.ConstraintVT); 8451 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8452 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8453 MatchingOpInfo.ConstraintVT); 8454 if ((OpInfo.ConstraintVT.isInteger() != 8455 MatchingOpInfo.ConstraintVT.isInteger()) || 8456 (MatchRC.second != InputRC.second)) { 8457 // FIXME: error out in a more elegant fashion 8458 report_fatal_error("Unsupported asm: input constraint" 8459 " with a matching output constraint of" 8460 " incompatible type!"); 8461 } 8462 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8463 } 8464 8465 /// Get a direct memory input to behave well as an indirect operand. 8466 /// This may introduce stores, hence the need for a \p Chain. 8467 /// \return The (possibly updated) chain. 8468 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8469 SDISelAsmOperandInfo &OpInfo, 8470 SelectionDAG &DAG) { 8471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8472 8473 // If we don't have an indirect input, put it in the constpool if we can, 8474 // otherwise spill it to a stack slot. 8475 // TODO: This isn't quite right. We need to handle these according to 8476 // the addressing mode that the constraint wants. Also, this may take 8477 // an additional register for the computation and we don't want that 8478 // either. 8479 8480 // If the operand is a float, integer, or vector constant, spill to a 8481 // constant pool entry to get its address. 8482 const Value *OpVal = OpInfo.CallOperandVal; 8483 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8484 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8485 OpInfo.CallOperand = DAG.getConstantPool( 8486 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8487 return Chain; 8488 } 8489 8490 // Otherwise, create a stack slot and emit a store to it before the asm. 8491 Type *Ty = OpVal->getType(); 8492 auto &DL = DAG.getDataLayout(); 8493 uint64_t TySize = DL.getTypeAllocSize(Ty); 8494 MachineFunction &MF = DAG.getMachineFunction(); 8495 int SSFI = MF.getFrameInfo().CreateStackObject( 8496 TySize, DL.getPrefTypeAlign(Ty), false); 8497 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8498 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8499 MachinePointerInfo::getFixedStack(MF, SSFI), 8500 TLI.getMemValueType(DL, Ty)); 8501 OpInfo.CallOperand = StackSlot; 8502 8503 return Chain; 8504 } 8505 8506 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8507 /// specified operand. We prefer to assign virtual registers, to allow the 8508 /// register allocator to handle the assignment process. However, if the asm 8509 /// uses features that we can't model on machineinstrs, we have SDISel do the 8510 /// allocation. This produces generally horrible, but correct, code. 8511 /// 8512 /// OpInfo describes the operand 8513 /// RefOpInfo describes the matching operand if any, the operand otherwise 8514 static llvm::Optional<unsigned> 8515 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8516 SDISelAsmOperandInfo &OpInfo, 8517 SDISelAsmOperandInfo &RefOpInfo) { 8518 LLVMContext &Context = *DAG.getContext(); 8519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8520 8521 MachineFunction &MF = DAG.getMachineFunction(); 8522 SmallVector<unsigned, 4> Regs; 8523 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8524 8525 // No work to do for memory/address operands. 8526 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8527 OpInfo.ConstraintType == TargetLowering::C_Address) 8528 return None; 8529 8530 // If this is a constraint for a single physreg, or a constraint for a 8531 // register class, find it. 8532 unsigned AssignedReg; 8533 const TargetRegisterClass *RC; 8534 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8535 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8536 // RC is unset only on failure. Return immediately. 8537 if (!RC) 8538 return None; 8539 8540 // Get the actual register value type. This is important, because the user 8541 // may have asked for (e.g.) the AX register in i32 type. We need to 8542 // remember that AX is actually i16 to get the right extension. 8543 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8544 8545 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8546 // If this is an FP operand in an integer register (or visa versa), or more 8547 // generally if the operand value disagrees with the register class we plan 8548 // to stick it in, fix the operand type. 8549 // 8550 // If this is an input value, the bitcast to the new type is done now. 8551 // Bitcast for output value is done at the end of visitInlineAsm(). 8552 if ((OpInfo.Type == InlineAsm::isOutput || 8553 OpInfo.Type == InlineAsm::isInput) && 8554 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8555 // Try to convert to the first EVT that the reg class contains. If the 8556 // types are identical size, use a bitcast to convert (e.g. two differing 8557 // vector types). Note: output bitcast is done at the end of 8558 // visitInlineAsm(). 8559 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8560 // Exclude indirect inputs while they are unsupported because the code 8561 // to perform the load is missing and thus OpInfo.CallOperand still 8562 // refers to the input address rather than the pointed-to value. 8563 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8564 OpInfo.CallOperand = 8565 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8566 OpInfo.ConstraintVT = RegVT; 8567 // If the operand is an FP value and we want it in integer registers, 8568 // use the corresponding integer type. This turns an f64 value into 8569 // i64, which can be passed with two i32 values on a 32-bit machine. 8570 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8571 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8572 if (OpInfo.Type == InlineAsm::isInput) 8573 OpInfo.CallOperand = 8574 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8575 OpInfo.ConstraintVT = VT; 8576 } 8577 } 8578 } 8579 8580 // No need to allocate a matching input constraint since the constraint it's 8581 // matching to has already been allocated. 8582 if (OpInfo.isMatchingInputConstraint()) 8583 return None; 8584 8585 EVT ValueVT = OpInfo.ConstraintVT; 8586 if (OpInfo.ConstraintVT == MVT::Other) 8587 ValueVT = RegVT; 8588 8589 // Initialize NumRegs. 8590 unsigned NumRegs = 1; 8591 if (OpInfo.ConstraintVT != MVT::Other) 8592 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8593 8594 // If this is a constraint for a specific physical register, like {r17}, 8595 // assign it now. 8596 8597 // If this associated to a specific register, initialize iterator to correct 8598 // place. If virtual, make sure we have enough registers 8599 8600 // Initialize iterator if necessary 8601 TargetRegisterClass::iterator I = RC->begin(); 8602 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8603 8604 // Do not check for single registers. 8605 if (AssignedReg) { 8606 I = std::find(I, RC->end(), AssignedReg); 8607 if (I == RC->end()) { 8608 // RC does not contain the selected register, which indicates a 8609 // mismatch between the register and the required type/bitwidth. 8610 return {AssignedReg}; 8611 } 8612 } 8613 8614 for (; NumRegs; --NumRegs, ++I) { 8615 assert(I != RC->end() && "Ran out of registers to allocate!"); 8616 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8617 Regs.push_back(R); 8618 } 8619 8620 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8621 return None; 8622 } 8623 8624 static unsigned 8625 findMatchingInlineAsmOperand(unsigned OperandNo, 8626 const std::vector<SDValue> &AsmNodeOperands) { 8627 // Scan until we find the definition we already emitted of this operand. 8628 unsigned CurOp = InlineAsm::Op_FirstOperand; 8629 for (; OperandNo; --OperandNo) { 8630 // Advance to the next operand. 8631 unsigned OpFlag = 8632 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8633 assert((InlineAsm::isRegDefKind(OpFlag) || 8634 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8635 InlineAsm::isMemKind(OpFlag)) && 8636 "Skipped past definitions?"); 8637 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8638 } 8639 return CurOp; 8640 } 8641 8642 namespace { 8643 8644 class ExtraFlags { 8645 unsigned Flags = 0; 8646 8647 public: 8648 explicit ExtraFlags(const CallBase &Call) { 8649 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8650 if (IA->hasSideEffects()) 8651 Flags |= InlineAsm::Extra_HasSideEffects; 8652 if (IA->isAlignStack()) 8653 Flags |= InlineAsm::Extra_IsAlignStack; 8654 if (Call.isConvergent()) 8655 Flags |= InlineAsm::Extra_IsConvergent; 8656 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8657 } 8658 8659 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8660 // Ideally, we would only check against memory constraints. However, the 8661 // meaning of an Other constraint can be target-specific and we can't easily 8662 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8663 // for Other constraints as well. 8664 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8665 OpInfo.ConstraintType == TargetLowering::C_Other) { 8666 if (OpInfo.Type == InlineAsm::isInput) 8667 Flags |= InlineAsm::Extra_MayLoad; 8668 else if (OpInfo.Type == InlineAsm::isOutput) 8669 Flags |= InlineAsm::Extra_MayStore; 8670 else if (OpInfo.Type == InlineAsm::isClobber) 8671 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8672 } 8673 } 8674 8675 unsigned get() const { return Flags; } 8676 }; 8677 8678 } // end anonymous namespace 8679 8680 /// visitInlineAsm - Handle a call to an InlineAsm object. 8681 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8682 const BasicBlock *EHPadBB) { 8683 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8684 8685 /// ConstraintOperands - Information about all of the constraints. 8686 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8687 8688 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8689 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8690 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8691 8692 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8693 // AsmDialect, MayLoad, MayStore). 8694 bool HasSideEffect = IA->hasSideEffects(); 8695 ExtraFlags ExtraInfo(Call); 8696 8697 for (auto &T : TargetConstraints) { 8698 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8699 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8700 8701 if (OpInfo.CallOperandVal) 8702 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8703 8704 if (!HasSideEffect) 8705 HasSideEffect = OpInfo.hasMemory(TLI); 8706 8707 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8708 // FIXME: Could we compute this on OpInfo rather than T? 8709 8710 // Compute the constraint code and ConstraintType to use. 8711 TLI.ComputeConstraintToUse(T, SDValue()); 8712 8713 if (T.ConstraintType == TargetLowering::C_Immediate && 8714 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8715 // We've delayed emitting a diagnostic like the "n" constraint because 8716 // inlining could cause an integer showing up. 8717 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8718 "' expects an integer constant " 8719 "expression"); 8720 8721 ExtraInfo.update(T); 8722 } 8723 8724 // We won't need to flush pending loads if this asm doesn't touch 8725 // memory and is nonvolatile. 8726 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8727 8728 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8729 if (EmitEHLabels) { 8730 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8731 } 8732 bool IsCallBr = isa<CallBrInst>(Call); 8733 8734 if (IsCallBr || EmitEHLabels) { 8735 // If this is a callbr or invoke we need to flush pending exports since 8736 // inlineasm_br and invoke are terminators. 8737 // We need to do this before nodes are glued to the inlineasm_br node. 8738 Chain = getControlRoot(); 8739 } 8740 8741 MCSymbol *BeginLabel = nullptr; 8742 if (EmitEHLabels) { 8743 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8744 } 8745 8746 // Second pass over the constraints: compute which constraint option to use. 8747 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8748 // If this is an output operand with a matching input operand, look up the 8749 // matching input. If their types mismatch, e.g. one is an integer, the 8750 // other is floating point, or their sizes are different, flag it as an 8751 // error. 8752 if (OpInfo.hasMatchingInput()) { 8753 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8754 patchMatchingInput(OpInfo, Input, DAG); 8755 } 8756 8757 // Compute the constraint code and ConstraintType to use. 8758 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8759 8760 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8761 OpInfo.Type == InlineAsm::isClobber) || 8762 OpInfo.ConstraintType == TargetLowering::C_Address) 8763 continue; 8764 8765 // If this is a memory input, and if the operand is not indirect, do what we 8766 // need to provide an address for the memory input. 8767 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8768 !OpInfo.isIndirect) { 8769 assert((OpInfo.isMultipleAlternative || 8770 (OpInfo.Type == InlineAsm::isInput)) && 8771 "Can only indirectify direct input operands!"); 8772 8773 // Memory operands really want the address of the value. 8774 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8775 8776 // There is no longer a Value* corresponding to this operand. 8777 OpInfo.CallOperandVal = nullptr; 8778 8779 // It is now an indirect operand. 8780 OpInfo.isIndirect = true; 8781 } 8782 8783 } 8784 8785 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8786 std::vector<SDValue> AsmNodeOperands; 8787 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8788 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8789 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8790 8791 // If we have a !srcloc metadata node associated with it, we want to attach 8792 // this to the ultimately generated inline asm machineinstr. To do this, we 8793 // pass in the third operand as this (potentially null) inline asm MDNode. 8794 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8795 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8796 8797 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8798 // bits as operand 3. 8799 AsmNodeOperands.push_back(DAG.getTargetConstant( 8800 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8801 8802 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8803 // this, assign virtual and physical registers for inputs and otput. 8804 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8805 // Assign Registers. 8806 SDISelAsmOperandInfo &RefOpInfo = 8807 OpInfo.isMatchingInputConstraint() 8808 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8809 : OpInfo; 8810 const auto RegError = 8811 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8812 if (RegError) { 8813 const MachineFunction &MF = DAG.getMachineFunction(); 8814 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8815 const char *RegName = TRI.getName(RegError.value()); 8816 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8817 "' allocated for constraint '" + 8818 Twine(OpInfo.ConstraintCode) + 8819 "' does not match required type"); 8820 return; 8821 } 8822 8823 auto DetectWriteToReservedRegister = [&]() { 8824 const MachineFunction &MF = DAG.getMachineFunction(); 8825 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8826 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8827 if (Register::isPhysicalRegister(Reg) && 8828 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8829 const char *RegName = TRI.getName(Reg); 8830 emitInlineAsmError(Call, "write to reserved register '" + 8831 Twine(RegName) + "'"); 8832 return true; 8833 } 8834 } 8835 return false; 8836 }; 8837 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8838 (OpInfo.Type == InlineAsm::isInput && 8839 !OpInfo.isMatchingInputConstraint())) && 8840 "Only address as input operand is allowed."); 8841 8842 switch (OpInfo.Type) { 8843 case InlineAsm::isOutput: 8844 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8845 unsigned ConstraintID = 8846 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8847 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8848 "Failed to convert memory constraint code to constraint id."); 8849 8850 // Add information to the INLINEASM node to know about this output. 8851 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8852 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8853 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8854 MVT::i32)); 8855 AsmNodeOperands.push_back(OpInfo.CallOperand); 8856 } else { 8857 // Otherwise, this outputs to a register (directly for C_Register / 8858 // C_RegisterClass, and a target-defined fashion for 8859 // C_Immediate/C_Other). Find a register that we can use. 8860 if (OpInfo.AssignedRegs.Regs.empty()) { 8861 emitInlineAsmError( 8862 Call, "couldn't allocate output register for constraint '" + 8863 Twine(OpInfo.ConstraintCode) + "'"); 8864 return; 8865 } 8866 8867 if (DetectWriteToReservedRegister()) 8868 return; 8869 8870 // Add information to the INLINEASM node to know that this register is 8871 // set. 8872 OpInfo.AssignedRegs.AddInlineAsmOperands( 8873 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8874 : InlineAsm::Kind_RegDef, 8875 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8876 } 8877 break; 8878 8879 case InlineAsm::isInput: 8880 case InlineAsm::isLabel: { 8881 SDValue InOperandVal = OpInfo.CallOperand; 8882 8883 if (OpInfo.isMatchingInputConstraint()) { 8884 // If this is required to match an output register we have already set, 8885 // just use its register. 8886 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8887 AsmNodeOperands); 8888 unsigned OpFlag = 8889 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8890 if (InlineAsm::isRegDefKind(OpFlag) || 8891 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8892 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8893 if (OpInfo.isIndirect) { 8894 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8895 emitInlineAsmError(Call, "inline asm not supported yet: " 8896 "don't know how to handle tied " 8897 "indirect register inputs"); 8898 return; 8899 } 8900 8901 SmallVector<unsigned, 4> Regs; 8902 MachineFunction &MF = DAG.getMachineFunction(); 8903 MachineRegisterInfo &MRI = MF.getRegInfo(); 8904 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8905 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8906 Register TiedReg = R->getReg(); 8907 MVT RegVT = R->getSimpleValueType(0); 8908 const TargetRegisterClass *RC = 8909 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8910 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8911 : TRI.getMinimalPhysRegClass(TiedReg); 8912 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8913 for (unsigned i = 0; i != NumRegs; ++i) 8914 Regs.push_back(MRI.createVirtualRegister(RC)); 8915 8916 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8917 8918 SDLoc dl = getCurSDLoc(); 8919 // Use the produced MatchedRegs object to 8920 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8921 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8922 true, OpInfo.getMatchedOperand(), dl, 8923 DAG, AsmNodeOperands); 8924 break; 8925 } 8926 8927 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8928 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8929 "Unexpected number of operands"); 8930 // Add information to the INLINEASM node to know about this input. 8931 // See InlineAsm.h isUseOperandTiedToDef. 8932 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8933 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8934 OpInfo.getMatchedOperand()); 8935 AsmNodeOperands.push_back(DAG.getTargetConstant( 8936 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8937 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8938 break; 8939 } 8940 8941 // Treat indirect 'X' constraint as memory. 8942 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8943 OpInfo.isIndirect) 8944 OpInfo.ConstraintType = TargetLowering::C_Memory; 8945 8946 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8947 OpInfo.ConstraintType == TargetLowering::C_Other) { 8948 std::vector<SDValue> Ops; 8949 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8950 Ops, DAG); 8951 if (Ops.empty()) { 8952 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8953 if (isa<ConstantSDNode>(InOperandVal)) { 8954 emitInlineAsmError(Call, "value out of range for constraint '" + 8955 Twine(OpInfo.ConstraintCode) + "'"); 8956 return; 8957 } 8958 8959 emitInlineAsmError(Call, 8960 "invalid operand for inline asm constraint '" + 8961 Twine(OpInfo.ConstraintCode) + "'"); 8962 return; 8963 } 8964 8965 // Add information to the INLINEASM node to know about this input. 8966 unsigned ResOpType = 8967 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8968 AsmNodeOperands.push_back(DAG.getTargetConstant( 8969 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8970 llvm::append_range(AsmNodeOperands, Ops); 8971 break; 8972 } 8973 8974 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8975 OpInfo.ConstraintType == TargetLowering::C_Address) { 8976 assert((OpInfo.isIndirect || 8977 OpInfo.ConstraintType != TargetLowering::C_Memory) && 8978 "Operand must be indirect to be a mem!"); 8979 assert(InOperandVal.getValueType() == 8980 TLI.getPointerTy(DAG.getDataLayout()) && 8981 "Memory operands expect pointer values"); 8982 8983 unsigned ConstraintID = 8984 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8985 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8986 "Failed to convert memory constraint code to constraint id."); 8987 8988 // Add information to the INLINEASM node to know about this input. 8989 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8990 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8991 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8992 getCurSDLoc(), 8993 MVT::i32)); 8994 AsmNodeOperands.push_back(InOperandVal); 8995 break; 8996 } 8997 8998 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8999 OpInfo.ConstraintType == TargetLowering::C_Register) && 9000 "Unknown constraint type!"); 9001 9002 // TODO: Support this. 9003 if (OpInfo.isIndirect) { 9004 emitInlineAsmError( 9005 Call, "Don't know how to handle indirect register inputs yet " 9006 "for constraint '" + 9007 Twine(OpInfo.ConstraintCode) + "'"); 9008 return; 9009 } 9010 9011 // Copy the input into the appropriate registers. 9012 if (OpInfo.AssignedRegs.Regs.empty()) { 9013 emitInlineAsmError(Call, 9014 "couldn't allocate input reg for constraint '" + 9015 Twine(OpInfo.ConstraintCode) + "'"); 9016 return; 9017 } 9018 9019 if (DetectWriteToReservedRegister()) 9020 return; 9021 9022 SDLoc dl = getCurSDLoc(); 9023 9024 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9025 &Call); 9026 9027 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9028 dl, DAG, AsmNodeOperands); 9029 break; 9030 } 9031 case InlineAsm::isClobber: 9032 // Add the clobbered value to the operand list, so that the register 9033 // allocator is aware that the physreg got clobbered. 9034 if (!OpInfo.AssignedRegs.Regs.empty()) 9035 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9036 false, 0, getCurSDLoc(), DAG, 9037 AsmNodeOperands); 9038 break; 9039 } 9040 } 9041 9042 // Finish up input operands. Set the input chain and add the flag last. 9043 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9044 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9045 9046 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9047 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9048 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9049 Flag = Chain.getValue(1); 9050 9051 // Do additional work to generate outputs. 9052 9053 SmallVector<EVT, 1> ResultVTs; 9054 SmallVector<SDValue, 1> ResultValues; 9055 SmallVector<SDValue, 8> OutChains; 9056 9057 llvm::Type *CallResultType = Call.getType(); 9058 ArrayRef<Type *> ResultTypes; 9059 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9060 ResultTypes = StructResult->elements(); 9061 else if (!CallResultType->isVoidTy()) 9062 ResultTypes = makeArrayRef(CallResultType); 9063 9064 auto CurResultType = ResultTypes.begin(); 9065 auto handleRegAssign = [&](SDValue V) { 9066 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9067 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9068 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9069 ++CurResultType; 9070 // If the type of the inline asm call site return value is different but has 9071 // same size as the type of the asm output bitcast it. One example of this 9072 // is for vectors with different width / number of elements. This can 9073 // happen for register classes that can contain multiple different value 9074 // types. The preg or vreg allocated may not have the same VT as was 9075 // expected. 9076 // 9077 // This can also happen for a return value that disagrees with the register 9078 // class it is put in, eg. a double in a general-purpose register on a 9079 // 32-bit machine. 9080 if (ResultVT != V.getValueType() && 9081 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9082 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9083 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9084 V.getValueType().isInteger()) { 9085 // If a result value was tied to an input value, the computed result 9086 // may have a wider width than the expected result. Extract the 9087 // relevant portion. 9088 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9089 } 9090 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9091 ResultVTs.push_back(ResultVT); 9092 ResultValues.push_back(V); 9093 }; 9094 9095 // Deal with output operands. 9096 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9097 if (OpInfo.Type == InlineAsm::isOutput) { 9098 SDValue Val; 9099 // Skip trivial output operands. 9100 if (OpInfo.AssignedRegs.Regs.empty()) 9101 continue; 9102 9103 switch (OpInfo.ConstraintType) { 9104 case TargetLowering::C_Register: 9105 case TargetLowering::C_RegisterClass: 9106 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9107 Chain, &Flag, &Call); 9108 break; 9109 case TargetLowering::C_Immediate: 9110 case TargetLowering::C_Other: 9111 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9112 OpInfo, DAG); 9113 break; 9114 case TargetLowering::C_Memory: 9115 break; // Already handled. 9116 case TargetLowering::C_Address: 9117 break; // Silence warning. 9118 case TargetLowering::C_Unknown: 9119 assert(false && "Unexpected unknown constraint"); 9120 } 9121 9122 // Indirect output manifest as stores. Record output chains. 9123 if (OpInfo.isIndirect) { 9124 const Value *Ptr = OpInfo.CallOperandVal; 9125 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9126 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9127 MachinePointerInfo(Ptr)); 9128 OutChains.push_back(Store); 9129 } else { 9130 // generate CopyFromRegs to associated registers. 9131 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9132 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9133 for (const SDValue &V : Val->op_values()) 9134 handleRegAssign(V); 9135 } else 9136 handleRegAssign(Val); 9137 } 9138 } 9139 } 9140 9141 // Set results. 9142 if (!ResultValues.empty()) { 9143 assert(CurResultType == ResultTypes.end() && 9144 "Mismatch in number of ResultTypes"); 9145 assert(ResultValues.size() == ResultTypes.size() && 9146 "Mismatch in number of output operands in asm result"); 9147 9148 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9149 DAG.getVTList(ResultVTs), ResultValues); 9150 setValue(&Call, V); 9151 } 9152 9153 // Collect store chains. 9154 if (!OutChains.empty()) 9155 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9156 9157 if (EmitEHLabels) { 9158 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9159 } 9160 9161 // Only Update Root if inline assembly has a memory effect. 9162 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9163 EmitEHLabels) 9164 DAG.setRoot(Chain); 9165 } 9166 9167 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9168 const Twine &Message) { 9169 LLVMContext &Ctx = *DAG.getContext(); 9170 Ctx.emitError(&Call, Message); 9171 9172 // Make sure we leave the DAG in a valid state 9173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9174 SmallVector<EVT, 1> ValueVTs; 9175 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9176 9177 if (ValueVTs.empty()) 9178 return; 9179 9180 SmallVector<SDValue, 1> Ops; 9181 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9182 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9183 9184 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9185 } 9186 9187 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9188 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9189 MVT::Other, getRoot(), 9190 getValue(I.getArgOperand(0)), 9191 DAG.getSrcValue(I.getArgOperand(0)))); 9192 } 9193 9194 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9196 const DataLayout &DL = DAG.getDataLayout(); 9197 SDValue V = DAG.getVAArg( 9198 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9199 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9200 DL.getABITypeAlign(I.getType()).value()); 9201 DAG.setRoot(V.getValue(1)); 9202 9203 if (I.getType()->isPointerTy()) 9204 V = DAG.getPtrExtOrTrunc( 9205 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9206 setValue(&I, V); 9207 } 9208 9209 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9210 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9211 MVT::Other, getRoot(), 9212 getValue(I.getArgOperand(0)), 9213 DAG.getSrcValue(I.getArgOperand(0)))); 9214 } 9215 9216 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9217 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9218 MVT::Other, getRoot(), 9219 getValue(I.getArgOperand(0)), 9220 getValue(I.getArgOperand(1)), 9221 DAG.getSrcValue(I.getArgOperand(0)), 9222 DAG.getSrcValue(I.getArgOperand(1)))); 9223 } 9224 9225 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9226 const Instruction &I, 9227 SDValue Op) { 9228 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9229 if (!Range) 9230 return Op; 9231 9232 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9233 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9234 return Op; 9235 9236 APInt Lo = CR.getUnsignedMin(); 9237 if (!Lo.isMinValue()) 9238 return Op; 9239 9240 APInt Hi = CR.getUnsignedMax(); 9241 unsigned Bits = std::max(Hi.getActiveBits(), 9242 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9243 9244 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9245 9246 SDLoc SL = getCurSDLoc(); 9247 9248 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9249 DAG.getValueType(SmallVT)); 9250 unsigned NumVals = Op.getNode()->getNumValues(); 9251 if (NumVals == 1) 9252 return ZExt; 9253 9254 SmallVector<SDValue, 4> Ops; 9255 9256 Ops.push_back(ZExt); 9257 for (unsigned I = 1; I != NumVals; ++I) 9258 Ops.push_back(Op.getValue(I)); 9259 9260 return DAG.getMergeValues(Ops, SL); 9261 } 9262 9263 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9264 /// the call being lowered. 9265 /// 9266 /// This is a helper for lowering intrinsics that follow a target calling 9267 /// convention or require stack pointer adjustment. Only a subset of the 9268 /// intrinsic's operands need to participate in the calling convention. 9269 void SelectionDAGBuilder::populateCallLoweringInfo( 9270 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9271 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9272 bool IsPatchPoint) { 9273 TargetLowering::ArgListTy Args; 9274 Args.reserve(NumArgs); 9275 9276 // Populate the argument list. 9277 // Attributes for args start at offset 1, after the return attribute. 9278 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9279 ArgI != ArgE; ++ArgI) { 9280 const Value *V = Call->getOperand(ArgI); 9281 9282 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9283 9284 TargetLowering::ArgListEntry Entry; 9285 Entry.Node = getValue(V); 9286 Entry.Ty = V->getType(); 9287 Entry.setAttributes(Call, ArgI); 9288 Args.push_back(Entry); 9289 } 9290 9291 CLI.setDebugLoc(getCurSDLoc()) 9292 .setChain(getRoot()) 9293 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9294 .setDiscardResult(Call->use_empty()) 9295 .setIsPatchPoint(IsPatchPoint) 9296 .setIsPreallocated( 9297 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9298 } 9299 9300 /// Add a stack map intrinsic call's live variable operands to a stackmap 9301 /// or patchpoint target node's operand list. 9302 /// 9303 /// Constants are converted to TargetConstants purely as an optimization to 9304 /// avoid constant materialization and register allocation. 9305 /// 9306 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9307 /// generate addess computation nodes, and so FinalizeISel can convert the 9308 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9309 /// address materialization and register allocation, but may also be required 9310 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9311 /// alloca in the entry block, then the runtime may assume that the alloca's 9312 /// StackMap location can be read immediately after compilation and that the 9313 /// location is valid at any point during execution (this is similar to the 9314 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9315 /// only available in a register, then the runtime would need to trap when 9316 /// execution reaches the StackMap in order to read the alloca's location. 9317 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9318 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9319 SelectionDAGBuilder &Builder) { 9320 SelectionDAG &DAG = Builder.DAG; 9321 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9322 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9323 9324 // Things on the stack are pointer-typed, meaning that they are already 9325 // legal and can be emitted directly to target nodes. 9326 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9327 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9328 } else { 9329 // Otherwise emit a target independent node to be legalised. 9330 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9331 } 9332 } 9333 } 9334 9335 /// Lower llvm.experimental.stackmap. 9336 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9337 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9338 // [live variables...]) 9339 9340 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9341 9342 SDValue Chain, InFlag, Callee, NullPtr; 9343 SmallVector<SDValue, 32> Ops; 9344 9345 SDLoc DL = getCurSDLoc(); 9346 Callee = getValue(CI.getCalledOperand()); 9347 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9348 9349 // The stackmap intrinsic only records the live variables (the arguments 9350 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9351 // intrinsic, this won't be lowered to a function call. This means we don't 9352 // have to worry about calling conventions and target specific lowering code. 9353 // Instead we perform the call lowering right here. 9354 // 9355 // chain, flag = CALLSEQ_START(chain, 0, 0) 9356 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9357 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9358 // 9359 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9360 InFlag = Chain.getValue(1); 9361 9362 // Add the STACKMAP operands, starting with DAG house-keeping. 9363 Ops.push_back(Chain); 9364 Ops.push_back(InFlag); 9365 9366 // Add the <id>, <numShadowBytes> operands. 9367 // 9368 // These do not require legalisation, and can be emitted directly to target 9369 // constant nodes. 9370 SDValue ID = getValue(CI.getArgOperand(0)); 9371 assert(ID.getValueType() == MVT::i64); 9372 SDValue IDConst = DAG.getTargetConstant( 9373 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9374 Ops.push_back(IDConst); 9375 9376 SDValue Shad = getValue(CI.getArgOperand(1)); 9377 assert(Shad.getValueType() == MVT::i32); 9378 SDValue ShadConst = DAG.getTargetConstant( 9379 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9380 Ops.push_back(ShadConst); 9381 9382 // Add the live variables. 9383 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9384 9385 // Create the STACKMAP node. 9386 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9387 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9388 InFlag = Chain.getValue(1); 9389 9390 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9391 9392 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9393 9394 // Set the root to the target-lowered call chain. 9395 DAG.setRoot(Chain); 9396 9397 // Inform the Frame Information that we have a stackmap in this function. 9398 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9399 } 9400 9401 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9402 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9403 const BasicBlock *EHPadBB) { 9404 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9405 // i32 <numBytes>, 9406 // i8* <target>, 9407 // i32 <numArgs>, 9408 // [Args...], 9409 // [live variables...]) 9410 9411 CallingConv::ID CC = CB.getCallingConv(); 9412 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9413 bool HasDef = !CB.getType()->isVoidTy(); 9414 SDLoc dl = getCurSDLoc(); 9415 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9416 9417 // Handle immediate and symbolic callees. 9418 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9419 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9420 /*isTarget=*/true); 9421 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9422 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9423 SDLoc(SymbolicCallee), 9424 SymbolicCallee->getValueType(0)); 9425 9426 // Get the real number of arguments participating in the call <numArgs> 9427 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9428 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9429 9430 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9431 // Intrinsics include all meta-operands up to but not including CC. 9432 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9433 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9434 "Not enough arguments provided to the patchpoint intrinsic"); 9435 9436 // For AnyRegCC the arguments are lowered later on manually. 9437 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9438 Type *ReturnTy = 9439 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9440 9441 TargetLowering::CallLoweringInfo CLI(DAG); 9442 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9443 ReturnTy, true); 9444 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9445 9446 SDNode *CallEnd = Result.second.getNode(); 9447 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9448 CallEnd = CallEnd->getOperand(0).getNode(); 9449 9450 /// Get a call instruction from the call sequence chain. 9451 /// Tail calls are not allowed. 9452 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9453 "Expected a callseq node."); 9454 SDNode *Call = CallEnd->getOperand(0).getNode(); 9455 bool HasGlue = Call->getGluedNode(); 9456 9457 // Replace the target specific call node with the patchable intrinsic. 9458 SmallVector<SDValue, 8> Ops; 9459 9460 // Push the chain. 9461 Ops.push_back(*(Call->op_begin())); 9462 9463 // Optionally, push the glue (if any). 9464 if (HasGlue) 9465 Ops.push_back(*(Call->op_end() - 1)); 9466 9467 // Push the register mask info. 9468 if (HasGlue) 9469 Ops.push_back(*(Call->op_end() - 2)); 9470 else 9471 Ops.push_back(*(Call->op_end() - 1)); 9472 9473 // Add the <id> and <numBytes> constants. 9474 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9475 Ops.push_back(DAG.getTargetConstant( 9476 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9477 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9478 Ops.push_back(DAG.getTargetConstant( 9479 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9480 MVT::i32)); 9481 9482 // Add the callee. 9483 Ops.push_back(Callee); 9484 9485 // Adjust <numArgs> to account for any arguments that have been passed on the 9486 // stack instead. 9487 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9488 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9489 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9490 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9491 9492 // Add the calling convention 9493 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9494 9495 // Add the arguments we omitted previously. The register allocator should 9496 // place these in any free register. 9497 if (IsAnyRegCC) 9498 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9499 Ops.push_back(getValue(CB.getArgOperand(i))); 9500 9501 // Push the arguments from the call instruction. 9502 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9503 Ops.append(Call->op_begin() + 2, e); 9504 9505 // Push live variables for the stack map. 9506 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9507 9508 SDVTList NodeTys; 9509 if (IsAnyRegCC && HasDef) { 9510 // Create the return types based on the intrinsic definition 9511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9512 SmallVector<EVT, 3> ValueVTs; 9513 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9514 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9515 9516 // There is always a chain and a glue type at the end 9517 ValueVTs.push_back(MVT::Other); 9518 ValueVTs.push_back(MVT::Glue); 9519 NodeTys = DAG.getVTList(ValueVTs); 9520 } else 9521 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9522 9523 // Replace the target specific call node with a PATCHPOINT node. 9524 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9525 9526 // Update the NodeMap. 9527 if (HasDef) { 9528 if (IsAnyRegCC) 9529 setValue(&CB, SDValue(PPV.getNode(), 0)); 9530 else 9531 setValue(&CB, Result.first); 9532 } 9533 9534 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9535 // call sequence. Furthermore the location of the chain and glue can change 9536 // when the AnyReg calling convention is used and the intrinsic returns a 9537 // value. 9538 if (IsAnyRegCC && HasDef) { 9539 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9540 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9541 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9542 } else 9543 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9544 DAG.DeleteNode(Call); 9545 9546 // Inform the Frame Information that we have a patchpoint in this function. 9547 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9548 } 9549 9550 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9551 unsigned Intrinsic) { 9552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9553 SDValue Op1 = getValue(I.getArgOperand(0)); 9554 SDValue Op2; 9555 if (I.arg_size() > 1) 9556 Op2 = getValue(I.getArgOperand(1)); 9557 SDLoc dl = getCurSDLoc(); 9558 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9559 SDValue Res; 9560 SDNodeFlags SDFlags; 9561 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9562 SDFlags.copyFMF(*FPMO); 9563 9564 switch (Intrinsic) { 9565 case Intrinsic::vector_reduce_fadd: 9566 if (SDFlags.hasAllowReassociation()) 9567 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9568 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9569 SDFlags); 9570 else 9571 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9572 break; 9573 case Intrinsic::vector_reduce_fmul: 9574 if (SDFlags.hasAllowReassociation()) 9575 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9576 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9577 SDFlags); 9578 else 9579 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9580 break; 9581 case Intrinsic::vector_reduce_add: 9582 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9583 break; 9584 case Intrinsic::vector_reduce_mul: 9585 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9586 break; 9587 case Intrinsic::vector_reduce_and: 9588 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9589 break; 9590 case Intrinsic::vector_reduce_or: 9591 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9592 break; 9593 case Intrinsic::vector_reduce_xor: 9594 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9595 break; 9596 case Intrinsic::vector_reduce_smax: 9597 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9598 break; 9599 case Intrinsic::vector_reduce_smin: 9600 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9601 break; 9602 case Intrinsic::vector_reduce_umax: 9603 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9604 break; 9605 case Intrinsic::vector_reduce_umin: 9606 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9607 break; 9608 case Intrinsic::vector_reduce_fmax: 9609 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9610 break; 9611 case Intrinsic::vector_reduce_fmin: 9612 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9613 break; 9614 default: 9615 llvm_unreachable("Unhandled vector reduce intrinsic"); 9616 } 9617 setValue(&I, Res); 9618 } 9619 9620 /// Returns an AttributeList representing the attributes applied to the return 9621 /// value of the given call. 9622 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9623 SmallVector<Attribute::AttrKind, 2> Attrs; 9624 if (CLI.RetSExt) 9625 Attrs.push_back(Attribute::SExt); 9626 if (CLI.RetZExt) 9627 Attrs.push_back(Attribute::ZExt); 9628 if (CLI.IsInReg) 9629 Attrs.push_back(Attribute::InReg); 9630 9631 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9632 Attrs); 9633 } 9634 9635 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9636 /// implementation, which just calls LowerCall. 9637 /// FIXME: When all targets are 9638 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9639 std::pair<SDValue, SDValue> 9640 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9641 // Handle the incoming return values from the call. 9642 CLI.Ins.clear(); 9643 Type *OrigRetTy = CLI.RetTy; 9644 SmallVector<EVT, 4> RetTys; 9645 SmallVector<uint64_t, 4> Offsets; 9646 auto &DL = CLI.DAG.getDataLayout(); 9647 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9648 9649 if (CLI.IsPostTypeLegalization) { 9650 // If we are lowering a libcall after legalization, split the return type. 9651 SmallVector<EVT, 4> OldRetTys; 9652 SmallVector<uint64_t, 4> OldOffsets; 9653 RetTys.swap(OldRetTys); 9654 Offsets.swap(OldOffsets); 9655 9656 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9657 EVT RetVT = OldRetTys[i]; 9658 uint64_t Offset = OldOffsets[i]; 9659 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9660 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9661 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9662 RetTys.append(NumRegs, RegisterVT); 9663 for (unsigned j = 0; j != NumRegs; ++j) 9664 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9665 } 9666 } 9667 9668 SmallVector<ISD::OutputArg, 4> Outs; 9669 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9670 9671 bool CanLowerReturn = 9672 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9673 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9674 9675 SDValue DemoteStackSlot; 9676 int DemoteStackIdx = -100; 9677 if (!CanLowerReturn) { 9678 // FIXME: equivalent assert? 9679 // assert(!CS.hasInAllocaArgument() && 9680 // "sret demotion is incompatible with inalloca"); 9681 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9682 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9683 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9684 DemoteStackIdx = 9685 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9686 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9687 DL.getAllocaAddrSpace()); 9688 9689 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9690 ArgListEntry Entry; 9691 Entry.Node = DemoteStackSlot; 9692 Entry.Ty = StackSlotPtrType; 9693 Entry.IsSExt = false; 9694 Entry.IsZExt = false; 9695 Entry.IsInReg = false; 9696 Entry.IsSRet = true; 9697 Entry.IsNest = false; 9698 Entry.IsByVal = false; 9699 Entry.IsByRef = false; 9700 Entry.IsReturned = false; 9701 Entry.IsSwiftSelf = false; 9702 Entry.IsSwiftAsync = false; 9703 Entry.IsSwiftError = false; 9704 Entry.IsCFGuardTarget = false; 9705 Entry.Alignment = Alignment; 9706 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9707 CLI.NumFixedArgs += 1; 9708 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9709 9710 // sret demotion isn't compatible with tail-calls, since the sret argument 9711 // points into the callers stack frame. 9712 CLI.IsTailCall = false; 9713 } else { 9714 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9715 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9716 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9717 ISD::ArgFlagsTy Flags; 9718 if (NeedsRegBlock) { 9719 Flags.setInConsecutiveRegs(); 9720 if (I == RetTys.size() - 1) 9721 Flags.setInConsecutiveRegsLast(); 9722 } 9723 EVT VT = RetTys[I]; 9724 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9725 CLI.CallConv, VT); 9726 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9727 CLI.CallConv, VT); 9728 for (unsigned i = 0; i != NumRegs; ++i) { 9729 ISD::InputArg MyFlags; 9730 MyFlags.Flags = Flags; 9731 MyFlags.VT = RegisterVT; 9732 MyFlags.ArgVT = VT; 9733 MyFlags.Used = CLI.IsReturnValueUsed; 9734 if (CLI.RetTy->isPointerTy()) { 9735 MyFlags.Flags.setPointer(); 9736 MyFlags.Flags.setPointerAddrSpace( 9737 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9738 } 9739 if (CLI.RetSExt) 9740 MyFlags.Flags.setSExt(); 9741 if (CLI.RetZExt) 9742 MyFlags.Flags.setZExt(); 9743 if (CLI.IsInReg) 9744 MyFlags.Flags.setInReg(); 9745 CLI.Ins.push_back(MyFlags); 9746 } 9747 } 9748 } 9749 9750 // We push in swifterror return as the last element of CLI.Ins. 9751 ArgListTy &Args = CLI.getArgs(); 9752 if (supportSwiftError()) { 9753 for (const ArgListEntry &Arg : Args) { 9754 if (Arg.IsSwiftError) { 9755 ISD::InputArg MyFlags; 9756 MyFlags.VT = getPointerTy(DL); 9757 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9758 MyFlags.Flags.setSwiftError(); 9759 CLI.Ins.push_back(MyFlags); 9760 } 9761 } 9762 } 9763 9764 // Handle all of the outgoing arguments. 9765 CLI.Outs.clear(); 9766 CLI.OutVals.clear(); 9767 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9768 SmallVector<EVT, 4> ValueVTs; 9769 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9770 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9771 Type *FinalType = Args[i].Ty; 9772 if (Args[i].IsByVal) 9773 FinalType = Args[i].IndirectType; 9774 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9775 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9776 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9777 ++Value) { 9778 EVT VT = ValueVTs[Value]; 9779 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9780 SDValue Op = SDValue(Args[i].Node.getNode(), 9781 Args[i].Node.getResNo() + Value); 9782 ISD::ArgFlagsTy Flags; 9783 9784 // Certain targets (such as MIPS), may have a different ABI alignment 9785 // for a type depending on the context. Give the target a chance to 9786 // specify the alignment it wants. 9787 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9788 Flags.setOrigAlign(OriginalAlignment); 9789 9790 if (Args[i].Ty->isPointerTy()) { 9791 Flags.setPointer(); 9792 Flags.setPointerAddrSpace( 9793 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9794 } 9795 if (Args[i].IsZExt) 9796 Flags.setZExt(); 9797 if (Args[i].IsSExt) 9798 Flags.setSExt(); 9799 if (Args[i].IsInReg) { 9800 // If we are using vectorcall calling convention, a structure that is 9801 // passed InReg - is surely an HVA 9802 if (CLI.CallConv == CallingConv::X86_VectorCall && 9803 isa<StructType>(FinalType)) { 9804 // The first value of a structure is marked 9805 if (0 == Value) 9806 Flags.setHvaStart(); 9807 Flags.setHva(); 9808 } 9809 // Set InReg Flag 9810 Flags.setInReg(); 9811 } 9812 if (Args[i].IsSRet) 9813 Flags.setSRet(); 9814 if (Args[i].IsSwiftSelf) 9815 Flags.setSwiftSelf(); 9816 if (Args[i].IsSwiftAsync) 9817 Flags.setSwiftAsync(); 9818 if (Args[i].IsSwiftError) 9819 Flags.setSwiftError(); 9820 if (Args[i].IsCFGuardTarget) 9821 Flags.setCFGuardTarget(); 9822 if (Args[i].IsByVal) 9823 Flags.setByVal(); 9824 if (Args[i].IsByRef) 9825 Flags.setByRef(); 9826 if (Args[i].IsPreallocated) { 9827 Flags.setPreallocated(); 9828 // Set the byval flag for CCAssignFn callbacks that don't know about 9829 // preallocated. This way we can know how many bytes we should've 9830 // allocated and how many bytes a callee cleanup function will pop. If 9831 // we port preallocated to more targets, we'll have to add custom 9832 // preallocated handling in the various CC lowering callbacks. 9833 Flags.setByVal(); 9834 } 9835 if (Args[i].IsInAlloca) { 9836 Flags.setInAlloca(); 9837 // Set the byval flag for CCAssignFn callbacks that don't know about 9838 // inalloca. This way we can know how many bytes we should've allocated 9839 // and how many bytes a callee cleanup function will pop. If we port 9840 // inalloca to more targets, we'll have to add custom inalloca handling 9841 // in the various CC lowering callbacks. 9842 Flags.setByVal(); 9843 } 9844 Align MemAlign; 9845 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9846 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9847 Flags.setByValSize(FrameSize); 9848 9849 // info is not there but there are cases it cannot get right. 9850 if (auto MA = Args[i].Alignment) 9851 MemAlign = *MA; 9852 else 9853 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9854 } else if (auto MA = Args[i].Alignment) { 9855 MemAlign = *MA; 9856 } else { 9857 MemAlign = OriginalAlignment; 9858 } 9859 Flags.setMemAlign(MemAlign); 9860 if (Args[i].IsNest) 9861 Flags.setNest(); 9862 if (NeedsRegBlock) 9863 Flags.setInConsecutiveRegs(); 9864 9865 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9866 CLI.CallConv, VT); 9867 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9868 CLI.CallConv, VT); 9869 SmallVector<SDValue, 4> Parts(NumParts); 9870 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9871 9872 if (Args[i].IsSExt) 9873 ExtendKind = ISD::SIGN_EXTEND; 9874 else if (Args[i].IsZExt) 9875 ExtendKind = ISD::ZERO_EXTEND; 9876 9877 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9878 // for now. 9879 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9880 CanLowerReturn) { 9881 assert((CLI.RetTy == Args[i].Ty || 9882 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9883 CLI.RetTy->getPointerAddressSpace() == 9884 Args[i].Ty->getPointerAddressSpace())) && 9885 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9886 // Before passing 'returned' to the target lowering code, ensure that 9887 // either the register MVT and the actual EVT are the same size or that 9888 // the return value and argument are extended in the same way; in these 9889 // cases it's safe to pass the argument register value unchanged as the 9890 // return register value (although it's at the target's option whether 9891 // to do so) 9892 // TODO: allow code generation to take advantage of partially preserved 9893 // registers rather than clobbering the entire register when the 9894 // parameter extension method is not compatible with the return 9895 // extension method 9896 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9897 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9898 CLI.RetZExt == Args[i].IsZExt)) 9899 Flags.setReturned(); 9900 } 9901 9902 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9903 CLI.CallConv, ExtendKind); 9904 9905 for (unsigned j = 0; j != NumParts; ++j) { 9906 // if it isn't first piece, alignment must be 1 9907 // For scalable vectors the scalable part is currently handled 9908 // by individual targets, so we just use the known minimum size here. 9909 ISD::OutputArg MyFlags( 9910 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9911 i < CLI.NumFixedArgs, i, 9912 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9913 if (NumParts > 1 && j == 0) 9914 MyFlags.Flags.setSplit(); 9915 else if (j != 0) { 9916 MyFlags.Flags.setOrigAlign(Align(1)); 9917 if (j == NumParts - 1) 9918 MyFlags.Flags.setSplitEnd(); 9919 } 9920 9921 CLI.Outs.push_back(MyFlags); 9922 CLI.OutVals.push_back(Parts[j]); 9923 } 9924 9925 if (NeedsRegBlock && Value == NumValues - 1) 9926 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9927 } 9928 } 9929 9930 SmallVector<SDValue, 4> InVals; 9931 CLI.Chain = LowerCall(CLI, InVals); 9932 9933 // Update CLI.InVals to use outside of this function. 9934 CLI.InVals = InVals; 9935 9936 // Verify that the target's LowerCall behaved as expected. 9937 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9938 "LowerCall didn't return a valid chain!"); 9939 assert((!CLI.IsTailCall || InVals.empty()) && 9940 "LowerCall emitted a return value for a tail call!"); 9941 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9942 "LowerCall didn't emit the correct number of values!"); 9943 9944 // For a tail call, the return value is merely live-out and there aren't 9945 // any nodes in the DAG representing it. Return a special value to 9946 // indicate that a tail call has been emitted and no more Instructions 9947 // should be processed in the current block. 9948 if (CLI.IsTailCall) { 9949 CLI.DAG.setRoot(CLI.Chain); 9950 return std::make_pair(SDValue(), SDValue()); 9951 } 9952 9953 #ifndef NDEBUG 9954 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9955 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9956 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9957 "LowerCall emitted a value with the wrong type!"); 9958 } 9959 #endif 9960 9961 SmallVector<SDValue, 4> ReturnValues; 9962 if (!CanLowerReturn) { 9963 // The instruction result is the result of loading from the 9964 // hidden sret parameter. 9965 SmallVector<EVT, 1> PVTs; 9966 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9967 9968 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9969 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9970 EVT PtrVT = PVTs[0]; 9971 9972 unsigned NumValues = RetTys.size(); 9973 ReturnValues.resize(NumValues); 9974 SmallVector<SDValue, 4> Chains(NumValues); 9975 9976 // An aggregate return value cannot wrap around the address space, so 9977 // offsets to its parts don't wrap either. 9978 SDNodeFlags Flags; 9979 Flags.setNoUnsignedWrap(true); 9980 9981 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9982 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9983 for (unsigned i = 0; i < NumValues; ++i) { 9984 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9985 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9986 PtrVT), Flags); 9987 SDValue L = CLI.DAG.getLoad( 9988 RetTys[i], CLI.DL, CLI.Chain, Add, 9989 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9990 DemoteStackIdx, Offsets[i]), 9991 HiddenSRetAlign); 9992 ReturnValues[i] = L; 9993 Chains[i] = L.getValue(1); 9994 } 9995 9996 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9997 } else { 9998 // Collect the legal value parts into potentially illegal values 9999 // that correspond to the original function's return values. 10000 Optional<ISD::NodeType> AssertOp; 10001 if (CLI.RetSExt) 10002 AssertOp = ISD::AssertSext; 10003 else if (CLI.RetZExt) 10004 AssertOp = ISD::AssertZext; 10005 unsigned CurReg = 0; 10006 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10007 EVT VT = RetTys[I]; 10008 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10009 CLI.CallConv, VT); 10010 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10011 CLI.CallConv, VT); 10012 10013 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10014 NumRegs, RegisterVT, VT, nullptr, 10015 CLI.CallConv, AssertOp)); 10016 CurReg += NumRegs; 10017 } 10018 10019 // For a function returning void, there is no return value. We can't create 10020 // such a node, so we just return a null return value in that case. In 10021 // that case, nothing will actually look at the value. 10022 if (ReturnValues.empty()) 10023 return std::make_pair(SDValue(), CLI.Chain); 10024 } 10025 10026 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10027 CLI.DAG.getVTList(RetTys), ReturnValues); 10028 return std::make_pair(Res, CLI.Chain); 10029 } 10030 10031 /// Places new result values for the node in Results (their number 10032 /// and types must exactly match those of the original return values of 10033 /// the node), or leaves Results empty, which indicates that the node is not 10034 /// to be custom lowered after all. 10035 void TargetLowering::LowerOperationWrapper(SDNode *N, 10036 SmallVectorImpl<SDValue> &Results, 10037 SelectionDAG &DAG) const { 10038 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10039 10040 if (!Res.getNode()) 10041 return; 10042 10043 // If the original node has one result, take the return value from 10044 // LowerOperation as is. It might not be result number 0. 10045 if (N->getNumValues() == 1) { 10046 Results.push_back(Res); 10047 return; 10048 } 10049 10050 // If the original node has multiple results, then the return node should 10051 // have the same number of results. 10052 assert((N->getNumValues() == Res->getNumValues()) && 10053 "Lowering returned the wrong number of results!"); 10054 10055 // Places new result values base on N result number. 10056 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10057 Results.push_back(Res.getValue(I)); 10058 } 10059 10060 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10061 llvm_unreachable("LowerOperation not implemented for this target!"); 10062 } 10063 10064 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10065 unsigned Reg, 10066 ISD::NodeType ExtendType) { 10067 SDValue Op = getNonRegisterValue(V); 10068 assert((Op.getOpcode() != ISD::CopyFromReg || 10069 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10070 "Copy from a reg to the same reg!"); 10071 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10072 10073 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10074 // If this is an InlineAsm we have to match the registers required, not the 10075 // notional registers required by the type. 10076 10077 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10078 None); // This is not an ABI copy. 10079 SDValue Chain = DAG.getEntryNode(); 10080 10081 if (ExtendType == ISD::ANY_EXTEND) { 10082 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10083 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10084 ExtendType = PreferredExtendIt->second; 10085 } 10086 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10087 PendingExports.push_back(Chain); 10088 } 10089 10090 #include "llvm/CodeGen/SelectionDAGISel.h" 10091 10092 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10093 /// entry block, return true. This includes arguments used by switches, since 10094 /// the switch may expand into multiple basic blocks. 10095 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10096 // With FastISel active, we may be splitting blocks, so force creation 10097 // of virtual registers for all non-dead arguments. 10098 if (FastISel) 10099 return A->use_empty(); 10100 10101 const BasicBlock &Entry = A->getParent()->front(); 10102 for (const User *U : A->users()) 10103 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10104 return false; // Use not in entry block. 10105 10106 return true; 10107 } 10108 10109 using ArgCopyElisionMapTy = 10110 DenseMap<const Argument *, 10111 std::pair<const AllocaInst *, const StoreInst *>>; 10112 10113 /// Scan the entry block of the function in FuncInfo for arguments that look 10114 /// like copies into a local alloca. Record any copied arguments in 10115 /// ArgCopyElisionCandidates. 10116 static void 10117 findArgumentCopyElisionCandidates(const DataLayout &DL, 10118 FunctionLoweringInfo *FuncInfo, 10119 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10120 // Record the state of every static alloca used in the entry block. Argument 10121 // allocas are all used in the entry block, so we need approximately as many 10122 // entries as we have arguments. 10123 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10124 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10125 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10126 StaticAllocas.reserve(NumArgs * 2); 10127 10128 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10129 if (!V) 10130 return nullptr; 10131 V = V->stripPointerCasts(); 10132 const auto *AI = dyn_cast<AllocaInst>(V); 10133 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10134 return nullptr; 10135 auto Iter = StaticAllocas.insert({AI, Unknown}); 10136 return &Iter.first->second; 10137 }; 10138 10139 // Look for stores of arguments to static allocas. Look through bitcasts and 10140 // GEPs to handle type coercions, as long as the alloca is fully initialized 10141 // by the store. Any non-store use of an alloca escapes it and any subsequent 10142 // unanalyzed store might write it. 10143 // FIXME: Handle structs initialized with multiple stores. 10144 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10145 // Look for stores, and handle non-store uses conservatively. 10146 const auto *SI = dyn_cast<StoreInst>(&I); 10147 if (!SI) { 10148 // We will look through cast uses, so ignore them completely. 10149 if (I.isCast()) 10150 continue; 10151 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10152 // to allocas. 10153 if (I.isDebugOrPseudoInst()) 10154 continue; 10155 // This is an unknown instruction. Assume it escapes or writes to all 10156 // static alloca operands. 10157 for (const Use &U : I.operands()) { 10158 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10159 *Info = StaticAllocaInfo::Clobbered; 10160 } 10161 continue; 10162 } 10163 10164 // If the stored value is a static alloca, mark it as escaped. 10165 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10166 *Info = StaticAllocaInfo::Clobbered; 10167 10168 // Check if the destination is a static alloca. 10169 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10170 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10171 if (!Info) 10172 continue; 10173 const AllocaInst *AI = cast<AllocaInst>(Dst); 10174 10175 // Skip allocas that have been initialized or clobbered. 10176 if (*Info != StaticAllocaInfo::Unknown) 10177 continue; 10178 10179 // Check if the stored value is an argument, and that this store fully 10180 // initializes the alloca. 10181 // If the argument type has padding bits we can't directly forward a pointer 10182 // as the upper bits may contain garbage. 10183 // Don't elide copies from the same argument twice. 10184 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10185 const auto *Arg = dyn_cast<Argument>(Val); 10186 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10187 Arg->getType()->isEmptyTy() || 10188 DL.getTypeStoreSize(Arg->getType()) != 10189 DL.getTypeAllocSize(AI->getAllocatedType()) || 10190 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10191 ArgCopyElisionCandidates.count(Arg)) { 10192 *Info = StaticAllocaInfo::Clobbered; 10193 continue; 10194 } 10195 10196 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10197 << '\n'); 10198 10199 // Mark this alloca and store for argument copy elision. 10200 *Info = StaticAllocaInfo::Elidable; 10201 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10202 10203 // Stop scanning if we've seen all arguments. This will happen early in -O0 10204 // builds, which is useful, because -O0 builds have large entry blocks and 10205 // many allocas. 10206 if (ArgCopyElisionCandidates.size() == NumArgs) 10207 break; 10208 } 10209 } 10210 10211 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10212 /// ArgVal is a load from a suitable fixed stack object. 10213 static void tryToElideArgumentCopy( 10214 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10215 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10216 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10217 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10218 SDValue ArgVal, bool &ArgHasUses) { 10219 // Check if this is a load from a fixed stack object. 10220 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10221 if (!LNode) 10222 return; 10223 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10224 if (!FINode) 10225 return; 10226 10227 // Check that the fixed stack object is the right size and alignment. 10228 // Look at the alignment that the user wrote on the alloca instead of looking 10229 // at the stack object. 10230 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10231 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10232 const AllocaInst *AI = ArgCopyIter->second.first; 10233 int FixedIndex = FINode->getIndex(); 10234 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10235 int OldIndex = AllocaIndex; 10236 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10237 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10238 LLVM_DEBUG( 10239 dbgs() << " argument copy elision failed due to bad fixed stack " 10240 "object size\n"); 10241 return; 10242 } 10243 Align RequiredAlignment = AI->getAlign(); 10244 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10245 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10246 "greater than stack argument alignment (" 10247 << DebugStr(RequiredAlignment) << " vs " 10248 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10249 return; 10250 } 10251 10252 // Perform the elision. Delete the old stack object and replace its only use 10253 // in the variable info map. Mark the stack object as mutable. 10254 LLVM_DEBUG({ 10255 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10256 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10257 << '\n'; 10258 }); 10259 MFI.RemoveStackObject(OldIndex); 10260 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10261 AllocaIndex = FixedIndex; 10262 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10263 Chains.push_back(ArgVal.getValue(1)); 10264 10265 // Avoid emitting code for the store implementing the copy. 10266 const StoreInst *SI = ArgCopyIter->second.second; 10267 ElidedArgCopyInstrs.insert(SI); 10268 10269 // Check for uses of the argument again so that we can avoid exporting ArgVal 10270 // if it is't used by anything other than the store. 10271 for (const Value *U : Arg.users()) { 10272 if (U != SI) { 10273 ArgHasUses = true; 10274 break; 10275 } 10276 } 10277 } 10278 10279 void SelectionDAGISel::LowerArguments(const Function &F) { 10280 SelectionDAG &DAG = SDB->DAG; 10281 SDLoc dl = SDB->getCurSDLoc(); 10282 const DataLayout &DL = DAG.getDataLayout(); 10283 SmallVector<ISD::InputArg, 16> Ins; 10284 10285 // In Naked functions we aren't going to save any registers. 10286 if (F.hasFnAttribute(Attribute::Naked)) 10287 return; 10288 10289 if (!FuncInfo->CanLowerReturn) { 10290 // Put in an sret pointer parameter before all the other parameters. 10291 SmallVector<EVT, 1> ValueVTs; 10292 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10293 F.getReturnType()->getPointerTo( 10294 DAG.getDataLayout().getAllocaAddrSpace()), 10295 ValueVTs); 10296 10297 // NOTE: Assuming that a pointer will never break down to more than one VT 10298 // or one register. 10299 ISD::ArgFlagsTy Flags; 10300 Flags.setSRet(); 10301 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10302 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10303 ISD::InputArg::NoArgIndex, 0); 10304 Ins.push_back(RetArg); 10305 } 10306 10307 // Look for stores of arguments to static allocas. Mark such arguments with a 10308 // flag to ask the target to give us the memory location of that argument if 10309 // available. 10310 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10311 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10312 ArgCopyElisionCandidates); 10313 10314 // Set up the incoming argument description vector. 10315 for (const Argument &Arg : F.args()) { 10316 unsigned ArgNo = Arg.getArgNo(); 10317 SmallVector<EVT, 4> ValueVTs; 10318 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10319 bool isArgValueUsed = !Arg.use_empty(); 10320 unsigned PartBase = 0; 10321 Type *FinalType = Arg.getType(); 10322 if (Arg.hasAttribute(Attribute::ByVal)) 10323 FinalType = Arg.getParamByValType(); 10324 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10325 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10326 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10327 Value != NumValues; ++Value) { 10328 EVT VT = ValueVTs[Value]; 10329 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10330 ISD::ArgFlagsTy Flags; 10331 10332 10333 if (Arg.getType()->isPointerTy()) { 10334 Flags.setPointer(); 10335 Flags.setPointerAddrSpace( 10336 cast<PointerType>(Arg.getType())->getAddressSpace()); 10337 } 10338 if (Arg.hasAttribute(Attribute::ZExt)) 10339 Flags.setZExt(); 10340 if (Arg.hasAttribute(Attribute::SExt)) 10341 Flags.setSExt(); 10342 if (Arg.hasAttribute(Attribute::InReg)) { 10343 // If we are using vectorcall calling convention, a structure that is 10344 // passed InReg - is surely an HVA 10345 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10346 isa<StructType>(Arg.getType())) { 10347 // The first value of a structure is marked 10348 if (0 == Value) 10349 Flags.setHvaStart(); 10350 Flags.setHva(); 10351 } 10352 // Set InReg Flag 10353 Flags.setInReg(); 10354 } 10355 if (Arg.hasAttribute(Attribute::StructRet)) 10356 Flags.setSRet(); 10357 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10358 Flags.setSwiftSelf(); 10359 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10360 Flags.setSwiftAsync(); 10361 if (Arg.hasAttribute(Attribute::SwiftError)) 10362 Flags.setSwiftError(); 10363 if (Arg.hasAttribute(Attribute::ByVal)) 10364 Flags.setByVal(); 10365 if (Arg.hasAttribute(Attribute::ByRef)) 10366 Flags.setByRef(); 10367 if (Arg.hasAttribute(Attribute::InAlloca)) { 10368 Flags.setInAlloca(); 10369 // Set the byval flag for CCAssignFn callbacks that don't know about 10370 // inalloca. This way we can know how many bytes we should've allocated 10371 // and how many bytes a callee cleanup function will pop. If we port 10372 // inalloca to more targets, we'll have to add custom inalloca handling 10373 // in the various CC lowering callbacks. 10374 Flags.setByVal(); 10375 } 10376 if (Arg.hasAttribute(Attribute::Preallocated)) { 10377 Flags.setPreallocated(); 10378 // Set the byval flag for CCAssignFn callbacks that don't know about 10379 // preallocated. This way we can know how many bytes we should've 10380 // allocated and how many bytes a callee cleanup function will pop. If 10381 // we port preallocated to more targets, we'll have to add custom 10382 // preallocated handling in the various CC lowering callbacks. 10383 Flags.setByVal(); 10384 } 10385 10386 // Certain targets (such as MIPS), may have a different ABI alignment 10387 // for a type depending on the context. Give the target a chance to 10388 // specify the alignment it wants. 10389 const Align OriginalAlignment( 10390 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10391 Flags.setOrigAlign(OriginalAlignment); 10392 10393 Align MemAlign; 10394 Type *ArgMemTy = nullptr; 10395 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10396 Flags.isByRef()) { 10397 if (!ArgMemTy) 10398 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10399 10400 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10401 10402 // For in-memory arguments, size and alignment should be passed from FE. 10403 // BE will guess if this info is not there but there are cases it cannot 10404 // get right. 10405 if (auto ParamAlign = Arg.getParamStackAlign()) 10406 MemAlign = *ParamAlign; 10407 else if ((ParamAlign = Arg.getParamAlign())) 10408 MemAlign = *ParamAlign; 10409 else 10410 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10411 if (Flags.isByRef()) 10412 Flags.setByRefSize(MemSize); 10413 else 10414 Flags.setByValSize(MemSize); 10415 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10416 MemAlign = *ParamAlign; 10417 } else { 10418 MemAlign = OriginalAlignment; 10419 } 10420 Flags.setMemAlign(MemAlign); 10421 10422 if (Arg.hasAttribute(Attribute::Nest)) 10423 Flags.setNest(); 10424 if (NeedsRegBlock) 10425 Flags.setInConsecutiveRegs(); 10426 if (ArgCopyElisionCandidates.count(&Arg)) 10427 Flags.setCopyElisionCandidate(); 10428 if (Arg.hasAttribute(Attribute::Returned)) 10429 Flags.setReturned(); 10430 10431 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10432 *CurDAG->getContext(), F.getCallingConv(), VT); 10433 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10434 *CurDAG->getContext(), F.getCallingConv(), VT); 10435 for (unsigned i = 0; i != NumRegs; ++i) { 10436 // For scalable vectors, use the minimum size; individual targets 10437 // are responsible for handling scalable vector arguments and 10438 // return values. 10439 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10440 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10441 if (NumRegs > 1 && i == 0) 10442 MyFlags.Flags.setSplit(); 10443 // if it isn't first piece, alignment must be 1 10444 else if (i > 0) { 10445 MyFlags.Flags.setOrigAlign(Align(1)); 10446 if (i == NumRegs - 1) 10447 MyFlags.Flags.setSplitEnd(); 10448 } 10449 Ins.push_back(MyFlags); 10450 } 10451 if (NeedsRegBlock && Value == NumValues - 1) 10452 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10453 PartBase += VT.getStoreSize().getKnownMinSize(); 10454 } 10455 } 10456 10457 // Call the target to set up the argument values. 10458 SmallVector<SDValue, 8> InVals; 10459 SDValue NewRoot = TLI->LowerFormalArguments( 10460 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10461 10462 // Verify that the target's LowerFormalArguments behaved as expected. 10463 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10464 "LowerFormalArguments didn't return a valid chain!"); 10465 assert(InVals.size() == Ins.size() && 10466 "LowerFormalArguments didn't emit the correct number of values!"); 10467 LLVM_DEBUG({ 10468 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10469 assert(InVals[i].getNode() && 10470 "LowerFormalArguments emitted a null value!"); 10471 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10472 "LowerFormalArguments emitted a value with the wrong type!"); 10473 } 10474 }); 10475 10476 // Update the DAG with the new chain value resulting from argument lowering. 10477 DAG.setRoot(NewRoot); 10478 10479 // Set up the argument values. 10480 unsigned i = 0; 10481 if (!FuncInfo->CanLowerReturn) { 10482 // Create a virtual register for the sret pointer, and put in a copy 10483 // from the sret argument into it. 10484 SmallVector<EVT, 1> ValueVTs; 10485 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10486 F.getReturnType()->getPointerTo( 10487 DAG.getDataLayout().getAllocaAddrSpace()), 10488 ValueVTs); 10489 MVT VT = ValueVTs[0].getSimpleVT(); 10490 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10491 Optional<ISD::NodeType> AssertOp = None; 10492 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10493 nullptr, F.getCallingConv(), AssertOp); 10494 10495 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10496 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10497 Register SRetReg = 10498 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10499 FuncInfo->DemoteRegister = SRetReg; 10500 NewRoot = 10501 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10502 DAG.setRoot(NewRoot); 10503 10504 // i indexes lowered arguments. Bump it past the hidden sret argument. 10505 ++i; 10506 } 10507 10508 SmallVector<SDValue, 4> Chains; 10509 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10510 for (const Argument &Arg : F.args()) { 10511 SmallVector<SDValue, 4> ArgValues; 10512 SmallVector<EVT, 4> ValueVTs; 10513 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10514 unsigned NumValues = ValueVTs.size(); 10515 if (NumValues == 0) 10516 continue; 10517 10518 bool ArgHasUses = !Arg.use_empty(); 10519 10520 // Elide the copying store if the target loaded this argument from a 10521 // suitable fixed stack object. 10522 if (Ins[i].Flags.isCopyElisionCandidate()) { 10523 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10524 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10525 InVals[i], ArgHasUses); 10526 } 10527 10528 // If this argument is unused then remember its value. It is used to generate 10529 // debugging information. 10530 bool isSwiftErrorArg = 10531 TLI->supportSwiftError() && 10532 Arg.hasAttribute(Attribute::SwiftError); 10533 if (!ArgHasUses && !isSwiftErrorArg) { 10534 SDB->setUnusedArgValue(&Arg, InVals[i]); 10535 10536 // Also remember any frame index for use in FastISel. 10537 if (FrameIndexSDNode *FI = 10538 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10539 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10540 } 10541 10542 for (unsigned Val = 0; Val != NumValues; ++Val) { 10543 EVT VT = ValueVTs[Val]; 10544 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10545 F.getCallingConv(), VT); 10546 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10547 *CurDAG->getContext(), F.getCallingConv(), VT); 10548 10549 // Even an apparent 'unused' swifterror argument needs to be returned. So 10550 // we do generate a copy for it that can be used on return from the 10551 // function. 10552 if (ArgHasUses || isSwiftErrorArg) { 10553 Optional<ISD::NodeType> AssertOp; 10554 if (Arg.hasAttribute(Attribute::SExt)) 10555 AssertOp = ISD::AssertSext; 10556 else if (Arg.hasAttribute(Attribute::ZExt)) 10557 AssertOp = ISD::AssertZext; 10558 10559 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10560 PartVT, VT, nullptr, 10561 F.getCallingConv(), AssertOp)); 10562 } 10563 10564 i += NumParts; 10565 } 10566 10567 // We don't need to do anything else for unused arguments. 10568 if (ArgValues.empty()) 10569 continue; 10570 10571 // Note down frame index. 10572 if (FrameIndexSDNode *FI = 10573 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10574 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10575 10576 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10577 SDB->getCurSDLoc()); 10578 10579 SDB->setValue(&Arg, Res); 10580 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10581 // We want to associate the argument with the frame index, among 10582 // involved operands, that correspond to the lowest address. The 10583 // getCopyFromParts function, called earlier, is swapping the order of 10584 // the operands to BUILD_PAIR depending on endianness. The result of 10585 // that swapping is that the least significant bits of the argument will 10586 // be in the first operand of the BUILD_PAIR node, and the most 10587 // significant bits will be in the second operand. 10588 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10589 if (LoadSDNode *LNode = 10590 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10591 if (FrameIndexSDNode *FI = 10592 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10593 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10594 } 10595 10596 // Analyses past this point are naive and don't expect an assertion. 10597 if (Res.getOpcode() == ISD::AssertZext) 10598 Res = Res.getOperand(0); 10599 10600 // Update the SwiftErrorVRegDefMap. 10601 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10602 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10603 if (Register::isVirtualRegister(Reg)) 10604 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10605 Reg); 10606 } 10607 10608 // If this argument is live outside of the entry block, insert a copy from 10609 // wherever we got it to the vreg that other BB's will reference it as. 10610 if (Res.getOpcode() == ISD::CopyFromReg) { 10611 // If we can, though, try to skip creating an unnecessary vreg. 10612 // FIXME: This isn't very clean... it would be nice to make this more 10613 // general. 10614 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10615 if (Register::isVirtualRegister(Reg)) { 10616 FuncInfo->ValueMap[&Arg] = Reg; 10617 continue; 10618 } 10619 } 10620 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10621 FuncInfo->InitializeRegForValue(&Arg); 10622 SDB->CopyToExportRegsIfNeeded(&Arg); 10623 } 10624 } 10625 10626 if (!Chains.empty()) { 10627 Chains.push_back(NewRoot); 10628 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10629 } 10630 10631 DAG.setRoot(NewRoot); 10632 10633 assert(i == InVals.size() && "Argument register count mismatch!"); 10634 10635 // If any argument copy elisions occurred and we have debug info, update the 10636 // stale frame indices used in the dbg.declare variable info table. 10637 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10638 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10639 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10640 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10641 if (I != ArgCopyElisionFrameIndexMap.end()) 10642 VI.Slot = I->second; 10643 } 10644 } 10645 10646 // Finally, if the target has anything special to do, allow it to do so. 10647 emitFunctionEntryCode(); 10648 } 10649 10650 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10651 /// ensure constants are generated when needed. Remember the virtual registers 10652 /// that need to be added to the Machine PHI nodes as input. We cannot just 10653 /// directly add them, because expansion might result in multiple MBB's for one 10654 /// BB. As such, the start of the BB might correspond to a different MBB than 10655 /// the end. 10656 void 10657 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10658 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10659 const Instruction *TI = LLVMBB->getTerminator(); 10660 10661 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10662 10663 // Check PHI nodes in successors that expect a value to be available from this 10664 // block. 10665 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10666 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10667 if (!isa<PHINode>(SuccBB->begin())) continue; 10668 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10669 10670 // If this terminator has multiple identical successors (common for 10671 // switches), only handle each succ once. 10672 if (!SuccsHandled.insert(SuccMBB).second) 10673 continue; 10674 10675 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10676 10677 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10678 // nodes and Machine PHI nodes, but the incoming operands have not been 10679 // emitted yet. 10680 for (const PHINode &PN : SuccBB->phis()) { 10681 // Ignore dead phi's. 10682 if (PN.use_empty()) 10683 continue; 10684 10685 // Skip empty types 10686 if (PN.getType()->isEmptyTy()) 10687 continue; 10688 10689 unsigned Reg; 10690 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10691 10692 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10693 unsigned &RegOut = ConstantsOut[C]; 10694 if (RegOut == 0) { 10695 RegOut = FuncInfo.CreateRegs(C); 10696 // We need to zero/sign extend ConstantInt phi operands to match 10697 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10698 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10699 if (auto *CI = dyn_cast<ConstantInt>(C)) 10700 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10701 : ISD::ZERO_EXTEND; 10702 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10703 } 10704 Reg = RegOut; 10705 } else { 10706 DenseMap<const Value *, Register>::iterator I = 10707 FuncInfo.ValueMap.find(PHIOp); 10708 if (I != FuncInfo.ValueMap.end()) 10709 Reg = I->second; 10710 else { 10711 assert(isa<AllocaInst>(PHIOp) && 10712 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10713 "Didn't codegen value into a register!??"); 10714 Reg = FuncInfo.CreateRegs(PHIOp); 10715 CopyValueToVirtualRegister(PHIOp, Reg); 10716 } 10717 } 10718 10719 // Remember that this register needs to added to the machine PHI node as 10720 // the input for this MBB. 10721 SmallVector<EVT, 4> ValueVTs; 10722 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10723 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10724 EVT VT = ValueVTs[vti]; 10725 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10726 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10727 FuncInfo.PHINodesToUpdate.push_back( 10728 std::make_pair(&*MBBI++, Reg + i)); 10729 Reg += NumRegisters; 10730 } 10731 } 10732 } 10733 10734 ConstantsOut.clear(); 10735 } 10736 10737 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10738 MachineFunction::iterator I(MBB); 10739 if (++I == FuncInfo.MF->end()) 10740 return nullptr; 10741 return &*I; 10742 } 10743 10744 /// During lowering new call nodes can be created (such as memset, etc.). 10745 /// Those will become new roots of the current DAG, but complications arise 10746 /// when they are tail calls. In such cases, the call lowering will update 10747 /// the root, but the builder still needs to know that a tail call has been 10748 /// lowered in order to avoid generating an additional return. 10749 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10750 // If the node is null, we do have a tail call. 10751 if (MaybeTC.getNode() != nullptr) 10752 DAG.setRoot(MaybeTC); 10753 else 10754 HasTailCall = true; 10755 } 10756 10757 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10758 MachineBasicBlock *SwitchMBB, 10759 MachineBasicBlock *DefaultMBB) { 10760 MachineFunction *CurMF = FuncInfo.MF; 10761 MachineBasicBlock *NextMBB = nullptr; 10762 MachineFunction::iterator BBI(W.MBB); 10763 if (++BBI != FuncInfo.MF->end()) 10764 NextMBB = &*BBI; 10765 10766 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10767 10768 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10769 10770 if (Size == 2 && W.MBB == SwitchMBB) { 10771 // If any two of the cases has the same destination, and if one value 10772 // is the same as the other, but has one bit unset that the other has set, 10773 // use bit manipulation to do two compares at once. For example: 10774 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10775 // TODO: This could be extended to merge any 2 cases in switches with 3 10776 // cases. 10777 // TODO: Handle cases where W.CaseBB != SwitchBB. 10778 CaseCluster &Small = *W.FirstCluster; 10779 CaseCluster &Big = *W.LastCluster; 10780 10781 if (Small.Low == Small.High && Big.Low == Big.High && 10782 Small.MBB == Big.MBB) { 10783 const APInt &SmallValue = Small.Low->getValue(); 10784 const APInt &BigValue = Big.Low->getValue(); 10785 10786 // Check that there is only one bit different. 10787 APInt CommonBit = BigValue ^ SmallValue; 10788 if (CommonBit.isPowerOf2()) { 10789 SDValue CondLHS = getValue(Cond); 10790 EVT VT = CondLHS.getValueType(); 10791 SDLoc DL = getCurSDLoc(); 10792 10793 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10794 DAG.getConstant(CommonBit, DL, VT)); 10795 SDValue Cond = DAG.getSetCC( 10796 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10797 ISD::SETEQ); 10798 10799 // Update successor info. 10800 // Both Small and Big will jump to Small.BB, so we sum up the 10801 // probabilities. 10802 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10803 if (BPI) 10804 addSuccessorWithProb( 10805 SwitchMBB, DefaultMBB, 10806 // The default destination is the first successor in IR. 10807 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10808 else 10809 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10810 10811 // Insert the true branch. 10812 SDValue BrCond = 10813 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10814 DAG.getBasicBlock(Small.MBB)); 10815 // Insert the false branch. 10816 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10817 DAG.getBasicBlock(DefaultMBB)); 10818 10819 DAG.setRoot(BrCond); 10820 return; 10821 } 10822 } 10823 } 10824 10825 if (TM.getOptLevel() != CodeGenOpt::None) { 10826 // Here, we order cases by probability so the most likely case will be 10827 // checked first. However, two clusters can have the same probability in 10828 // which case their relative ordering is non-deterministic. So we use Low 10829 // as a tie-breaker as clusters are guaranteed to never overlap. 10830 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10831 [](const CaseCluster &a, const CaseCluster &b) { 10832 return a.Prob != b.Prob ? 10833 a.Prob > b.Prob : 10834 a.Low->getValue().slt(b.Low->getValue()); 10835 }); 10836 10837 // Rearrange the case blocks so that the last one falls through if possible 10838 // without changing the order of probabilities. 10839 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10840 --I; 10841 if (I->Prob > W.LastCluster->Prob) 10842 break; 10843 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10844 std::swap(*I, *W.LastCluster); 10845 break; 10846 } 10847 } 10848 } 10849 10850 // Compute total probability. 10851 BranchProbability DefaultProb = W.DefaultProb; 10852 BranchProbability UnhandledProbs = DefaultProb; 10853 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10854 UnhandledProbs += I->Prob; 10855 10856 MachineBasicBlock *CurMBB = W.MBB; 10857 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10858 bool FallthroughUnreachable = false; 10859 MachineBasicBlock *Fallthrough; 10860 if (I == W.LastCluster) { 10861 // For the last cluster, fall through to the default destination. 10862 Fallthrough = DefaultMBB; 10863 FallthroughUnreachable = isa<UnreachableInst>( 10864 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10865 } else { 10866 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10867 CurMF->insert(BBI, Fallthrough); 10868 // Put Cond in a virtual register to make it available from the new blocks. 10869 ExportFromCurrentBlock(Cond); 10870 } 10871 UnhandledProbs -= I->Prob; 10872 10873 switch (I->Kind) { 10874 case CC_JumpTable: { 10875 // FIXME: Optimize away range check based on pivot comparisons. 10876 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10877 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10878 10879 // The jump block hasn't been inserted yet; insert it here. 10880 MachineBasicBlock *JumpMBB = JT->MBB; 10881 CurMF->insert(BBI, JumpMBB); 10882 10883 auto JumpProb = I->Prob; 10884 auto FallthroughProb = UnhandledProbs; 10885 10886 // If the default statement is a target of the jump table, we evenly 10887 // distribute the default probability to successors of CurMBB. Also 10888 // update the probability on the edge from JumpMBB to Fallthrough. 10889 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10890 SE = JumpMBB->succ_end(); 10891 SI != SE; ++SI) { 10892 if (*SI == DefaultMBB) { 10893 JumpProb += DefaultProb / 2; 10894 FallthroughProb -= DefaultProb / 2; 10895 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10896 JumpMBB->normalizeSuccProbs(); 10897 break; 10898 } 10899 } 10900 10901 if (FallthroughUnreachable) 10902 JTH->FallthroughUnreachable = true; 10903 10904 if (!JTH->FallthroughUnreachable) 10905 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10906 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10907 CurMBB->normalizeSuccProbs(); 10908 10909 // The jump table header will be inserted in our current block, do the 10910 // range check, and fall through to our fallthrough block. 10911 JTH->HeaderBB = CurMBB; 10912 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10913 10914 // If we're in the right place, emit the jump table header right now. 10915 if (CurMBB == SwitchMBB) { 10916 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10917 JTH->Emitted = true; 10918 } 10919 break; 10920 } 10921 case CC_BitTests: { 10922 // FIXME: Optimize away range check based on pivot comparisons. 10923 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10924 10925 // The bit test blocks haven't been inserted yet; insert them here. 10926 for (BitTestCase &BTC : BTB->Cases) 10927 CurMF->insert(BBI, BTC.ThisBB); 10928 10929 // Fill in fields of the BitTestBlock. 10930 BTB->Parent = CurMBB; 10931 BTB->Default = Fallthrough; 10932 10933 BTB->DefaultProb = UnhandledProbs; 10934 // If the cases in bit test don't form a contiguous range, we evenly 10935 // distribute the probability on the edge to Fallthrough to two 10936 // successors of CurMBB. 10937 if (!BTB->ContiguousRange) { 10938 BTB->Prob += DefaultProb / 2; 10939 BTB->DefaultProb -= DefaultProb / 2; 10940 } 10941 10942 if (FallthroughUnreachable) 10943 BTB->FallthroughUnreachable = true; 10944 10945 // If we're in the right place, emit the bit test header right now. 10946 if (CurMBB == SwitchMBB) { 10947 visitBitTestHeader(*BTB, SwitchMBB); 10948 BTB->Emitted = true; 10949 } 10950 break; 10951 } 10952 case CC_Range: { 10953 const Value *RHS, *LHS, *MHS; 10954 ISD::CondCode CC; 10955 if (I->Low == I->High) { 10956 // Check Cond == I->Low. 10957 CC = ISD::SETEQ; 10958 LHS = Cond; 10959 RHS=I->Low; 10960 MHS = nullptr; 10961 } else { 10962 // Check I->Low <= Cond <= I->High. 10963 CC = ISD::SETLE; 10964 LHS = I->Low; 10965 MHS = Cond; 10966 RHS = I->High; 10967 } 10968 10969 // If Fallthrough is unreachable, fold away the comparison. 10970 if (FallthroughUnreachable) 10971 CC = ISD::SETTRUE; 10972 10973 // The false probability is the sum of all unhandled cases. 10974 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10975 getCurSDLoc(), I->Prob, UnhandledProbs); 10976 10977 if (CurMBB == SwitchMBB) 10978 visitSwitchCase(CB, SwitchMBB); 10979 else 10980 SL->SwitchCases.push_back(CB); 10981 10982 break; 10983 } 10984 } 10985 CurMBB = Fallthrough; 10986 } 10987 } 10988 10989 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10990 CaseClusterIt First, 10991 CaseClusterIt Last) { 10992 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10993 if (X.Prob != CC.Prob) 10994 return X.Prob > CC.Prob; 10995 10996 // Ties are broken by comparing the case value. 10997 return X.Low->getValue().slt(CC.Low->getValue()); 10998 }); 10999 } 11000 11001 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11002 const SwitchWorkListItem &W, 11003 Value *Cond, 11004 MachineBasicBlock *SwitchMBB) { 11005 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11006 "Clusters not sorted?"); 11007 11008 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11009 11010 // Balance the tree based on branch probabilities to create a near-optimal (in 11011 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11012 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11013 CaseClusterIt LastLeft = W.FirstCluster; 11014 CaseClusterIt FirstRight = W.LastCluster; 11015 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11016 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11017 11018 // Move LastLeft and FirstRight towards each other from opposite directions to 11019 // find a partitioning of the clusters which balances the probability on both 11020 // sides. If LeftProb and RightProb are equal, alternate which side is 11021 // taken to ensure 0-probability nodes are distributed evenly. 11022 unsigned I = 0; 11023 while (LastLeft + 1 < FirstRight) { 11024 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11025 LeftProb += (++LastLeft)->Prob; 11026 else 11027 RightProb += (--FirstRight)->Prob; 11028 I++; 11029 } 11030 11031 while (true) { 11032 // Our binary search tree differs from a typical BST in that ours can have up 11033 // to three values in each leaf. The pivot selection above doesn't take that 11034 // into account, which means the tree might require more nodes and be less 11035 // efficient. We compensate for this here. 11036 11037 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11038 unsigned NumRight = W.LastCluster - FirstRight + 1; 11039 11040 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11041 // If one side has less than 3 clusters, and the other has more than 3, 11042 // consider taking a cluster from the other side. 11043 11044 if (NumLeft < NumRight) { 11045 // Consider moving the first cluster on the right to the left side. 11046 CaseCluster &CC = *FirstRight; 11047 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11048 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11049 if (LeftSideRank <= RightSideRank) { 11050 // Moving the cluster to the left does not demote it. 11051 ++LastLeft; 11052 ++FirstRight; 11053 continue; 11054 } 11055 } else { 11056 assert(NumRight < NumLeft); 11057 // Consider moving the last element on the left to the right side. 11058 CaseCluster &CC = *LastLeft; 11059 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11060 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11061 if (RightSideRank <= LeftSideRank) { 11062 // Moving the cluster to the right does not demot it. 11063 --LastLeft; 11064 --FirstRight; 11065 continue; 11066 } 11067 } 11068 } 11069 break; 11070 } 11071 11072 assert(LastLeft + 1 == FirstRight); 11073 assert(LastLeft >= W.FirstCluster); 11074 assert(FirstRight <= W.LastCluster); 11075 11076 // Use the first element on the right as pivot since we will make less-than 11077 // comparisons against it. 11078 CaseClusterIt PivotCluster = FirstRight; 11079 assert(PivotCluster > W.FirstCluster); 11080 assert(PivotCluster <= W.LastCluster); 11081 11082 CaseClusterIt FirstLeft = W.FirstCluster; 11083 CaseClusterIt LastRight = W.LastCluster; 11084 11085 const ConstantInt *Pivot = PivotCluster->Low; 11086 11087 // New blocks will be inserted immediately after the current one. 11088 MachineFunction::iterator BBI(W.MBB); 11089 ++BBI; 11090 11091 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11092 // we can branch to its destination directly if it's squeezed exactly in 11093 // between the known lower bound and Pivot - 1. 11094 MachineBasicBlock *LeftMBB; 11095 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11096 FirstLeft->Low == W.GE && 11097 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11098 LeftMBB = FirstLeft->MBB; 11099 } else { 11100 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11101 FuncInfo.MF->insert(BBI, LeftMBB); 11102 WorkList.push_back( 11103 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11104 // Put Cond in a virtual register to make it available from the new blocks. 11105 ExportFromCurrentBlock(Cond); 11106 } 11107 11108 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11109 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11110 // directly if RHS.High equals the current upper bound. 11111 MachineBasicBlock *RightMBB; 11112 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11113 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11114 RightMBB = FirstRight->MBB; 11115 } else { 11116 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11117 FuncInfo.MF->insert(BBI, RightMBB); 11118 WorkList.push_back( 11119 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11120 // Put Cond in a virtual register to make it available from the new blocks. 11121 ExportFromCurrentBlock(Cond); 11122 } 11123 11124 // Create the CaseBlock record that will be used to lower the branch. 11125 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11126 getCurSDLoc(), LeftProb, RightProb); 11127 11128 if (W.MBB == SwitchMBB) 11129 visitSwitchCase(CB, SwitchMBB); 11130 else 11131 SL->SwitchCases.push_back(CB); 11132 } 11133 11134 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11135 // from the swith statement. 11136 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11137 BranchProbability PeeledCaseProb) { 11138 if (PeeledCaseProb == BranchProbability::getOne()) 11139 return BranchProbability::getZero(); 11140 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11141 11142 uint32_t Numerator = CaseProb.getNumerator(); 11143 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11144 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11145 } 11146 11147 // Try to peel the top probability case if it exceeds the threshold. 11148 // Return current MachineBasicBlock for the switch statement if the peeling 11149 // does not occur. 11150 // If the peeling is performed, return the newly created MachineBasicBlock 11151 // for the peeled switch statement. Also update Clusters to remove the peeled 11152 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11153 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11154 const SwitchInst &SI, CaseClusterVector &Clusters, 11155 BranchProbability &PeeledCaseProb) { 11156 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11157 // Don't perform if there is only one cluster or optimizing for size. 11158 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11159 TM.getOptLevel() == CodeGenOpt::None || 11160 SwitchMBB->getParent()->getFunction().hasMinSize()) 11161 return SwitchMBB; 11162 11163 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11164 unsigned PeeledCaseIndex = 0; 11165 bool SwitchPeeled = false; 11166 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11167 CaseCluster &CC = Clusters[Index]; 11168 if (CC.Prob < TopCaseProb) 11169 continue; 11170 TopCaseProb = CC.Prob; 11171 PeeledCaseIndex = Index; 11172 SwitchPeeled = true; 11173 } 11174 if (!SwitchPeeled) 11175 return SwitchMBB; 11176 11177 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11178 << TopCaseProb << "\n"); 11179 11180 // Record the MBB for the peeled switch statement. 11181 MachineFunction::iterator BBI(SwitchMBB); 11182 ++BBI; 11183 MachineBasicBlock *PeeledSwitchMBB = 11184 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11185 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11186 11187 ExportFromCurrentBlock(SI.getCondition()); 11188 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11189 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11190 nullptr, nullptr, TopCaseProb.getCompl()}; 11191 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11192 11193 Clusters.erase(PeeledCaseIt); 11194 for (CaseCluster &CC : Clusters) { 11195 LLVM_DEBUG( 11196 dbgs() << "Scale the probablity for one cluster, before scaling: " 11197 << CC.Prob << "\n"); 11198 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11199 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11200 } 11201 PeeledCaseProb = TopCaseProb; 11202 return PeeledSwitchMBB; 11203 } 11204 11205 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11206 // Extract cases from the switch. 11207 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11208 CaseClusterVector Clusters; 11209 Clusters.reserve(SI.getNumCases()); 11210 for (auto I : SI.cases()) { 11211 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11212 const ConstantInt *CaseVal = I.getCaseValue(); 11213 BranchProbability Prob = 11214 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11215 : BranchProbability(1, SI.getNumCases() + 1); 11216 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11217 } 11218 11219 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11220 11221 // Cluster adjacent cases with the same destination. We do this at all 11222 // optimization levels because it's cheap to do and will make codegen faster 11223 // if there are many clusters. 11224 sortAndRangeify(Clusters); 11225 11226 // The branch probablity of the peeled case. 11227 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11228 MachineBasicBlock *PeeledSwitchMBB = 11229 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11230 11231 // If there is only the default destination, jump there directly. 11232 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11233 if (Clusters.empty()) { 11234 assert(PeeledSwitchMBB == SwitchMBB); 11235 SwitchMBB->addSuccessor(DefaultMBB); 11236 if (DefaultMBB != NextBlock(SwitchMBB)) { 11237 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11238 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11239 } 11240 return; 11241 } 11242 11243 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11244 SL->findBitTestClusters(Clusters, &SI); 11245 11246 LLVM_DEBUG({ 11247 dbgs() << "Case clusters: "; 11248 for (const CaseCluster &C : Clusters) { 11249 if (C.Kind == CC_JumpTable) 11250 dbgs() << "JT:"; 11251 if (C.Kind == CC_BitTests) 11252 dbgs() << "BT:"; 11253 11254 C.Low->getValue().print(dbgs(), true); 11255 if (C.Low != C.High) { 11256 dbgs() << '-'; 11257 C.High->getValue().print(dbgs(), true); 11258 } 11259 dbgs() << ' '; 11260 } 11261 dbgs() << '\n'; 11262 }); 11263 11264 assert(!Clusters.empty()); 11265 SwitchWorkList WorkList; 11266 CaseClusterIt First = Clusters.begin(); 11267 CaseClusterIt Last = Clusters.end() - 1; 11268 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11269 // Scale the branchprobability for DefaultMBB if the peel occurs and 11270 // DefaultMBB is not replaced. 11271 if (PeeledCaseProb != BranchProbability::getZero() && 11272 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11273 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11274 WorkList.push_back( 11275 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11276 11277 while (!WorkList.empty()) { 11278 SwitchWorkListItem W = WorkList.pop_back_val(); 11279 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11280 11281 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11282 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11283 // For optimized builds, lower large range as a balanced binary tree. 11284 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11285 continue; 11286 } 11287 11288 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11289 } 11290 } 11291 11292 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11293 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11294 auto DL = getCurSDLoc(); 11295 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11296 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11297 } 11298 11299 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11301 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11302 11303 SDLoc DL = getCurSDLoc(); 11304 SDValue V = getValue(I.getOperand(0)); 11305 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11306 11307 if (VT.isScalableVector()) { 11308 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11309 return; 11310 } 11311 11312 // Use VECTOR_SHUFFLE for the fixed-length vector 11313 // to maintain existing behavior. 11314 SmallVector<int, 8> Mask; 11315 unsigned NumElts = VT.getVectorMinNumElements(); 11316 for (unsigned i = 0; i != NumElts; ++i) 11317 Mask.push_back(NumElts - 1 - i); 11318 11319 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11320 } 11321 11322 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11323 SmallVector<EVT, 4> ValueVTs; 11324 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11325 ValueVTs); 11326 unsigned NumValues = ValueVTs.size(); 11327 if (NumValues == 0) return; 11328 11329 SmallVector<SDValue, 4> Values(NumValues); 11330 SDValue Op = getValue(I.getOperand(0)); 11331 11332 for (unsigned i = 0; i != NumValues; ++i) 11333 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11334 SDValue(Op.getNode(), Op.getResNo() + i)); 11335 11336 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11337 DAG.getVTList(ValueVTs), Values)); 11338 } 11339 11340 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11342 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11343 11344 SDLoc DL = getCurSDLoc(); 11345 SDValue V1 = getValue(I.getOperand(0)); 11346 SDValue V2 = getValue(I.getOperand(1)); 11347 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11348 11349 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11350 if (VT.isScalableVector()) { 11351 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11352 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11353 DAG.getConstant(Imm, DL, IdxVT))); 11354 return; 11355 } 11356 11357 unsigned NumElts = VT.getVectorNumElements(); 11358 11359 uint64_t Idx = (NumElts + Imm) % NumElts; 11360 11361 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11362 SmallVector<int, 8> Mask; 11363 for (unsigned i = 0; i < NumElts; ++i) 11364 Mask.push_back(Idx + i); 11365 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11366 } 11367