1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <deque> 108 #include <iterator> 109 #include <limits> 110 #include <optional> 111 #include <tuple> 112 113 using namespace llvm; 114 using namespace PatternMatch; 115 using namespace SwitchCG; 116 117 #define DEBUG_TYPE "isel" 118 119 /// LimitFloatPrecision - Generate low-precision inline sequences for 120 /// some float libcalls (6, 8 or 12 bits). 121 static unsigned LimitFloatPrecision; 122 123 static cl::opt<bool> 124 InsertAssertAlign("insert-assert-align", cl::init(true), 125 cl::desc("Insert the experimental `assertalign` node."), 126 cl::ReallyHidden); 127 128 static cl::opt<unsigned, true> 129 LimitFPPrecision("limit-float-precision", 130 cl::desc("Generate low-precision inline sequences " 131 "for some float libcalls"), 132 cl::location(LimitFloatPrecision), cl::Hidden, 133 cl::init(0)); 134 135 static cl::opt<unsigned> SwitchPeelThreshold( 136 "switch-peel-threshold", cl::Hidden, cl::init(66), 137 cl::desc("Set the case probability threshold for peeling the case from a " 138 "switch statement. A value greater than 100 will void this " 139 "optimization")); 140 141 // Limit the width of DAG chains. This is important in general to prevent 142 // DAG-based analysis from blowing up. For example, alias analysis and 143 // load clustering may not complete in reasonable time. It is difficult to 144 // recognize and avoid this situation within each individual analysis, and 145 // future analyses are likely to have the same behavior. Limiting DAG width is 146 // the safe approach and will be especially important with global DAGs. 147 // 148 // MaxParallelChains default is arbitrarily high to avoid affecting 149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 150 // sequence over this should have been converted to llvm.memcpy by the 151 // frontend. It is easy to induce this behavior with .ll code such as: 152 // %buffer = alloca [4096 x i8] 153 // %data = load [4096 x i8]* %argPtr 154 // store [4096 x i8] %data, [4096 x i8]* %buffer 155 static const unsigned MaxParallelChains = 64; 156 157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 SDValue InChain, 161 std::optional<CallingConv::ID> CC); 162 163 /// getCopyFromParts - Create a value that contains the specified legal parts 164 /// combined into the value they represent. If the parts combine to a type 165 /// larger than ValueVT then AssertOp can be used to specify whether the extra 166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 167 /// (ISD::AssertSext). 168 static SDValue 169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 170 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 171 SDValue InChain, 172 std::optional<CallingConv::ID> CC = std::nullopt, 173 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 174 // Let the target assemble the parts if it wants to 175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 176 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 177 PartVT, ValueVT, CC)) 178 return Val; 179 180 if (ValueVT.isVector()) 181 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 182 InChain, CC); 183 184 assert(NumParts > 0 && "No parts to assemble!"); 185 SDValue Val = Parts[0]; 186 187 if (NumParts > 1) { 188 // Assemble the value from multiple parts. 189 if (ValueVT.isInteger()) { 190 unsigned PartBits = PartVT.getSizeInBits(); 191 unsigned ValueBits = ValueVT.getSizeInBits(); 192 193 // Assemble the power of 2 part. 194 unsigned RoundParts = llvm::bit_floor(NumParts); 195 unsigned RoundBits = PartBits * RoundParts; 196 EVT RoundVT = RoundBits == ValueBits ? 197 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 198 SDValue Lo, Hi; 199 200 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 201 202 if (RoundParts > 2) { 203 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 204 InChain); 205 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 206 PartVT, HalfVT, V, InChain); 207 } else { 208 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 209 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 210 } 211 212 if (DAG.getDataLayout().isBigEndian()) 213 std::swap(Lo, Hi); 214 215 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 216 217 if (RoundParts < NumParts) { 218 // Assemble the trailing non-power-of-2 part. 219 unsigned OddParts = NumParts - RoundParts; 220 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 221 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 222 OddVT, V, InChain, CC); 223 224 // Combine the round and odd parts. 225 Lo = Val; 226 if (DAG.getDataLayout().isBigEndian()) 227 std::swap(Lo, Hi); 228 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 229 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 230 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 231 DAG.getConstant(Lo.getValueSizeInBits(), DL, 232 TLI.getShiftAmountTy( 233 TotalVT, DAG.getDataLayout()))); 234 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 235 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 236 } 237 } else if (PartVT.isFloatingPoint()) { 238 // FP split into multiple FP parts (for ppcf128) 239 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 240 "Unexpected split"); 241 SDValue Lo, Hi; 242 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 243 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 244 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 245 std::swap(Lo, Hi); 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 247 } else { 248 // FP split into integer parts (soft fp) 249 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 250 !PartVT.isVector() && "Unexpected split"); 251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 252 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 253 InChain, CC); 254 } 255 } 256 257 // There is now one part, held in Val. Correct it to match ValueVT. 258 // PartEVT is the type of the register class that holds the value. 259 // ValueVT is the type of the inline asm operation. 260 EVT PartEVT = Val.getValueType(); 261 262 if (PartEVT == ValueVT) 263 return Val; 264 265 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 266 ValueVT.bitsLT(PartEVT)) { 267 // For an FP value in an integer part, we need to truncate to the right 268 // width first. 269 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 271 } 272 273 // Handle types that have the same size. 274 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 275 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 276 277 // Handle types with different sizes. 278 if (PartEVT.isInteger() && ValueVT.isInteger()) { 279 if (ValueVT.bitsLT(PartEVT)) { 280 // For a truncate, see if we have any information to 281 // indicate whether the truncated bits will always be 282 // zero or sign-extension. 283 if (AssertOp) 284 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 285 DAG.getValueType(ValueVT)); 286 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 287 } 288 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 289 } 290 291 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 292 // FP_ROUND's are always exact here. 293 if (ValueVT.bitsLT(Val.getValueType())) { 294 295 SDValue NoChange = 296 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 297 298 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 299 llvm::Attribute::StrictFP)) { 300 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 301 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 302 NoChange); 303 } 304 305 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 306 } 307 308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 309 } 310 311 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 312 // then truncating. 313 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 314 ValueVT.bitsLT(PartEVT)) { 315 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 319 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 320 } 321 322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 323 const Twine &ErrMsg) { 324 const Instruction *I = dyn_cast_or_null<Instruction>(V); 325 if (!V) 326 return Ctx.emitError(ErrMsg); 327 328 const char *AsmError = ", possible invalid constraint for vector type"; 329 if (const CallInst *CI = dyn_cast<CallInst>(I)) 330 if (CI->isInlineAsm()) 331 return Ctx.emitError(I, ErrMsg + AsmError); 332 333 return Ctx.emitError(I, ErrMsg); 334 } 335 336 /// getCopyFromPartsVector - Create a value that contains the specified legal 337 /// parts combined into the value they represent. If the parts combine to a 338 /// type larger than ValueVT then AssertOp can be used to specify whether the 339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 340 /// ValueVT (ISD::AssertSext). 341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 342 const SDValue *Parts, unsigned NumParts, 343 MVT PartVT, EVT ValueVT, const Value *V, 344 SDValue InChain, 345 std::optional<CallingConv::ID> CallConv) { 346 assert(ValueVT.isVector() && "Not a vector value"); 347 assert(NumParts > 0 && "No parts to assemble!"); 348 const bool IsABIRegCopy = CallConv.has_value(); 349 350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 351 SDValue Val = Parts[0]; 352 353 // Handle a multi-element vector. 354 if (NumParts > 1) { 355 EVT IntermediateVT; 356 MVT RegisterVT; 357 unsigned NumIntermediates; 358 unsigned NumRegs; 359 360 if (IsABIRegCopy) { 361 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 362 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } else { 365 NumRegs = 366 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 367 NumIntermediates, RegisterVT); 368 } 369 370 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 371 NumParts = NumRegs; // Silence a compiler warning. 372 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 373 assert(RegisterVT.getSizeInBits() == 374 Parts[0].getSimpleValueType().getSizeInBits() && 375 "Part type sizes don't match!"); 376 377 // Assemble the parts into intermediate operands. 378 SmallVector<SDValue, 8> Ops(NumIntermediates); 379 if (NumIntermediates == NumParts) { 380 // If the register was not expanded, truncate or copy the value, 381 // as appropriate. 382 for (unsigned i = 0; i != NumParts; ++i) 383 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 384 V, InChain, CallConv); 385 } else if (NumParts > 0) { 386 // If the intermediate type was expanded, build the intermediate 387 // operands from the parts. 388 assert(NumParts % NumIntermediates == 0 && 389 "Must expand into a divisible number of parts!"); 390 unsigned Factor = NumParts / NumIntermediates; 391 for (unsigned i = 0; i != NumIntermediates; ++i) 392 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 393 IntermediateVT, V, InChain, CallConv); 394 } 395 396 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 397 // intermediate operands. 398 EVT BuiltVectorTy = 399 IntermediateVT.isVector() 400 ? EVT::getVectorVT( 401 *DAG.getContext(), IntermediateVT.getScalarType(), 402 IntermediateVT.getVectorElementCount() * NumParts) 403 : EVT::getVectorVT(*DAG.getContext(), 404 IntermediateVT.getScalarType(), 405 NumIntermediates); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // Vector/Vector bitcast. 419 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // If the parts vector has more elements than the value vector, then we 423 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 424 // Extract the elements we want. 425 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 426 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 427 ValueVT.getVectorElementCount().getKnownMinValue()) && 428 (PartEVT.getVectorElementCount().isScalable() == 429 ValueVT.getVectorElementCount().isScalable()) && 430 "Cannot narrow, it would be a lossy transformation"); 431 PartEVT = 432 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 433 ValueVT.getVectorElementCount()); 434 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 435 DAG.getVectorIdxConstant(0, DL)); 436 if (PartEVT == ValueVT) 437 return Val; 438 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 441 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } 445 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 } 449 450 // Trivial bitcast if the types are the same size and the destination 451 // vector type is legal. 452 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 453 TLI.isTypeLegal(ValueVT)) 454 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 455 456 if (ValueVT.getVectorNumElements() != 1) { 457 // Certain ABIs require that vectors are passed as integers. For vectors 458 // are the same size, this is an obvious bitcast. 459 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 } else if (ValueVT.bitsLT(PartEVT)) { 462 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 463 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 464 // Drop the extra bits. 465 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 466 return DAG.getBitcast(ValueVT, Val); 467 } 468 469 diagnosePossiblyInvalidConstraint( 470 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 471 return DAG.getUNDEF(ValueVT); 472 } 473 474 // Handle cases such as i8 -> <1 x i1> 475 EVT ValueSVT = ValueVT.getVectorElementType(); 476 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 477 unsigned ValueSize = ValueSVT.getSizeInBits(); 478 if (ValueSize == PartEVT.getSizeInBits()) { 479 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 480 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 481 // It's possible a scalar floating point type gets softened to integer and 482 // then promoted to a larger integer. If PartEVT is the larger integer 483 // we need to truncate it and then bitcast to the FP type. 484 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 485 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 486 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 487 Val = DAG.getBitcast(ValueSVT, Val); 488 } else { 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 } 494 495 return DAG.getBuildVector(ValueVT, DL, Val); 496 } 497 498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 499 SDValue Val, SDValue *Parts, unsigned NumParts, 500 MVT PartVT, const Value *V, 501 std::optional<CallingConv::ID> CallConv); 502 503 /// getCopyToParts - Create a series of nodes that contain the specified value 504 /// split into legal parts. If the parts contain more bits than Val, then, for 505 /// integers, ExtendKind can be used to specify how to generate the extra bits. 506 static void 507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 508 unsigned NumParts, MVT PartVT, const Value *V, 509 std::optional<CallingConv::ID> CallConv = std::nullopt, 510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 511 // Let the target split the parts if it wants to 512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 513 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 514 CallConv)) 515 return; 516 EVT ValueVT = Val.getValueType(); 517 518 // Handle the vector case separately. 519 if (ValueVT.isVector()) 520 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 521 CallConv); 522 523 unsigned OrigNumParts = NumParts; 524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 525 "Copying to an illegal type!"); 526 527 if (NumParts == 0) 528 return; 529 530 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 531 EVT PartEVT = PartVT; 532 if (PartEVT == ValueVT) { 533 assert(NumParts == 1 && "No-op copy with multiple parts!"); 534 Parts[0] = Val; 535 return; 536 } 537 538 unsigned PartBits = PartVT.getSizeInBits(); 539 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 540 // If the parts cover more bits than the value has, promote the value. 541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 542 assert(NumParts == 1 && "Do not know what to promote to!"); 543 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 544 } else { 545 if (ValueVT.isFloatingPoint()) { 546 // FP values need to be bitcast, then extended if they are being put 547 // into a larger container. 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 549 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 550 } 551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 552 ValueVT.isInteger() && 553 "Unknown mismatch!"); 554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 555 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 556 if (PartVT == MVT::x86mmx) 557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 558 } 559 } else if (PartBits == ValueVT.getSizeInBits()) { 560 // Different types of the same size. 561 assert(NumParts == 1 && PartEVT != ValueVT); 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 564 // If the parts cover less bits than value has, truncate the value. 565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 566 ValueVT.isInteger() && 567 "Unknown mismatch!"); 568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 569 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 570 if (PartVT == MVT::x86mmx) 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } 573 574 // The value may have changed - recompute ValueVT. 575 ValueVT = Val.getValueType(); 576 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 577 "Failed to tile the value with PartVT!"); 578 579 if (NumParts == 1) { 580 if (PartEVT != ValueVT) { 581 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 582 "scalar-to-vector conversion failed"); 583 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 584 } 585 586 Parts[0] = Val; 587 return; 588 } 589 590 // Expand the value into multiple parts. 591 if (NumParts & (NumParts - 1)) { 592 // The number of parts is not a power of 2. Split off and copy the tail. 593 assert(PartVT.isInteger() && ValueVT.isInteger() && 594 "Do not know what to expand to!"); 595 unsigned RoundParts = llvm::bit_floor(NumParts); 596 unsigned RoundBits = RoundParts * PartBits; 597 unsigned OddParts = NumParts - RoundParts; 598 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 599 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 600 601 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 602 CallConv); 603 604 if (DAG.getDataLayout().isBigEndian()) 605 // The odd parts were reversed by getCopyToParts - unreverse them. 606 std::reverse(Parts + RoundParts, Parts + NumParts); 607 608 NumParts = RoundParts; 609 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 611 } 612 613 // The number of parts is a power of 2. Repeatedly bisect the value using 614 // EXTRACT_ELEMENT. 615 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 616 EVT::getIntegerVT(*DAG.getContext(), 617 ValueVT.getSizeInBits()), 618 Val); 619 620 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 621 for (unsigned i = 0; i < NumParts; i += StepSize) { 622 unsigned ThisBits = StepSize * PartBits / 2; 623 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 624 SDValue &Part0 = Parts[i]; 625 SDValue &Part1 = Parts[i+StepSize/2]; 626 627 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 629 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 630 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 631 632 if (ThisBits == PartBits && ThisVT != PartVT) { 633 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 634 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 635 } 636 } 637 } 638 639 if (DAG.getDataLayout().isBigEndian()) 640 std::reverse(Parts, Parts + OrigNumParts); 641 } 642 643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 644 const SDLoc &DL, EVT PartVT) { 645 if (!PartVT.isVector()) 646 return SDValue(); 647 648 EVT ValueVT = Val.getValueType(); 649 EVT PartEVT = PartVT.getVectorElementType(); 650 EVT ValueEVT = ValueVT.getVectorElementType(); 651 ElementCount PartNumElts = PartVT.getVectorElementCount(); 652 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 653 654 // We only support widening vectors with equivalent element types and 655 // fixed/scalable properties. If a target needs to widen a fixed-length type 656 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 657 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 658 PartNumElts.isScalable() != ValueNumElts.isScalable()) 659 return SDValue(); 660 661 // Have a try for bf16 because some targets share its ABI with fp16. 662 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 663 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 664 "Cannot widen to illegal type"); 665 Val = DAG.getNode(ISD::BITCAST, DL, 666 ValueVT.changeVectorElementType(MVT::f16), Val); 667 } else if (PartEVT != ValueEVT) { 668 return SDValue(); 669 } 670 671 // Widening a scalable vector to another scalable vector is done by inserting 672 // the vector into a larger undef one. 673 if (PartNumElts.isScalable()) 674 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 675 Val, DAG.getVectorIdxConstant(0, DL)); 676 677 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 678 // undef elements. 679 SmallVector<SDValue, 16> Ops; 680 DAG.ExtractVectorElements(Val, Ops); 681 SDValue EltUndef = DAG.getUNDEF(PartEVT); 682 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 683 684 // FIXME: Use CONCAT for 2x -> 4x. 685 return DAG.getBuildVector(PartVT, DL, Ops); 686 } 687 688 /// getCopyToPartsVector - Create a series of nodes that contain the specified 689 /// value split into legal parts. 690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 691 SDValue Val, SDValue *Parts, unsigned NumParts, 692 MVT PartVT, const Value *V, 693 std::optional<CallingConv::ID> CallConv) { 694 EVT ValueVT = Val.getValueType(); 695 assert(ValueVT.isVector() && "Not a vector"); 696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 697 const bool IsABIRegCopy = CallConv.has_value(); 698 699 if (NumParts == 1) { 700 EVT PartEVT = PartVT; 701 if (PartEVT == ValueVT) { 702 // Nothing to do. 703 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 704 // Bitconvert vector->vector case. 705 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 706 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 707 Val = Widened; 708 } else if (PartVT.isVector() && 709 PartEVT.getVectorElementType().bitsGE( 710 ValueVT.getVectorElementType()) && 711 PartEVT.getVectorElementCount() == 712 ValueVT.getVectorElementCount()) { 713 714 // Promoted vector extract 715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 716 } else if (PartEVT.isVector() && 717 PartEVT.getVectorElementType() != 718 ValueVT.getVectorElementType() && 719 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 720 TargetLowering::TypeWidenVector) { 721 // Combination of widening and promotion. 722 EVT WidenVT = 723 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 724 PartVT.getVectorElementCount()); 725 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 726 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 727 } else { 728 // Don't extract an integer from a float vector. This can happen if the 729 // FP type gets softened to integer and then promoted. The promotion 730 // prevents it from being picked up by the earlier bitcast case. 731 if (ValueVT.getVectorElementCount().isScalar() && 732 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 733 // If we reach this condition and PartVT is FP, this means that 734 // ValueVT is also FP and both have a different size, otherwise we 735 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 736 // would be invalid since that would mean the smaller FP type has to 737 // be extended to the larger one. 738 if (PartVT.isFloatingPoint()) { 739 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 740 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 741 } else 742 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 743 DAG.getVectorIdxConstant(0, DL)); 744 } else { 745 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 746 assert(PartVT.getFixedSizeInBits() > ValueSize && 747 "lossy conversion of vector to scalar type"); 748 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 749 Val = DAG.getBitcast(IntermediateType, Val); 750 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 751 } 752 } 753 754 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 755 Parts[0] = Val; 756 return; 757 } 758 759 // Handle a multi-element vector. 760 EVT IntermediateVT; 761 MVT RegisterVT; 762 unsigned NumIntermediates; 763 unsigned NumRegs; 764 if (IsABIRegCopy) { 765 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 766 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 767 RegisterVT); 768 } else { 769 NumRegs = 770 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 771 NumIntermediates, RegisterVT); 772 } 773 774 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 775 NumParts = NumRegs; // Silence a compiler warning. 776 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 777 778 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 779 "Mixing scalable and fixed vectors when copying in parts"); 780 781 std::optional<ElementCount> DestEltCnt; 782 783 if (IntermediateVT.isVector()) 784 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 785 else 786 DestEltCnt = ElementCount::getFixed(NumIntermediates); 787 788 EVT BuiltVectorTy = EVT::getVectorVT( 789 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 790 791 if (ValueVT == BuiltVectorTy) { 792 // Nothing to do. 793 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 794 // Bitconvert vector->vector case. 795 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 796 } else { 797 if (BuiltVectorTy.getVectorElementType().bitsGT( 798 ValueVT.getVectorElementType())) { 799 // Integer promotion. 800 ValueVT = EVT::getVectorVT(*DAG.getContext(), 801 BuiltVectorTy.getVectorElementType(), 802 ValueVT.getVectorElementCount()); 803 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 804 } 805 806 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 807 Val = Widened; 808 } 809 } 810 811 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 812 813 // Split the vector into intermediate operands. 814 SmallVector<SDValue, 8> Ops(NumIntermediates); 815 for (unsigned i = 0; i != NumIntermediates; ++i) { 816 if (IntermediateVT.isVector()) { 817 // This does something sensible for scalable vectors - see the 818 // definition of EXTRACT_SUBVECTOR for further details. 819 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 820 Ops[i] = 821 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 822 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 823 } else { 824 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 825 DAG.getVectorIdxConstant(i, DL)); 826 } 827 } 828 829 // Split the intermediate operands into legal parts. 830 if (NumParts == NumIntermediates) { 831 // If the register was not expanded, promote or copy the value, 832 // as appropriate. 833 for (unsigned i = 0; i != NumParts; ++i) 834 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 835 } else if (NumParts > 0) { 836 // If the intermediate type was expanded, split each the value into 837 // legal parts. 838 assert(NumIntermediates != 0 && "division by zero"); 839 assert(NumParts % NumIntermediates == 0 && 840 "Must expand into a divisible number of parts!"); 841 unsigned Factor = NumParts / NumIntermediates; 842 for (unsigned i = 0; i != NumIntermediates; ++i) 843 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 844 CallConv); 845 } 846 } 847 848 RegsForValue::RegsForValue(const SmallVector<Register, 4> ®s, MVT regvt, 849 EVT valuevt, std::optional<CallingConv::ID> CC) 850 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 851 RegCount(1, regs.size()), CallConv(CC) {} 852 853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 854 const DataLayout &DL, Register Reg, Type *Ty, 855 std::optional<CallingConv::ID> CC) { 856 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 857 858 CallConv = CC; 859 860 for (EVT ValueVT : ValueVTs) { 861 unsigned NumRegs = 862 isABIMangled() 863 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 864 : TLI.getNumRegisters(Context, ValueVT); 865 MVT RegisterVT = 866 isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 868 : TLI.getRegisterType(Context, ValueVT); 869 for (unsigned i = 0; i != NumRegs; ++i) 870 Regs.push_back(Reg + i); 871 RegVTs.push_back(RegisterVT); 872 RegCount.push_back(NumRegs); 873 Reg = Reg.id() + NumRegs; 874 } 875 } 876 877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 878 FunctionLoweringInfo &FuncInfo, 879 const SDLoc &dl, SDValue &Chain, 880 SDValue *Glue, const Value *V) const { 881 // A Value with type {} or [0 x %t] needs no registers. 882 if (ValueVTs.empty()) 883 return SDValue(); 884 885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 886 887 // Assemble the legal parts into the final values. 888 SmallVector<SDValue, 4> Values(ValueVTs.size()); 889 SmallVector<SDValue, 8> Parts; 890 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 891 // Copy the legal parts from the registers. 892 EVT ValueVT = ValueVTs[Value]; 893 unsigned NumRegs = RegCount[Value]; 894 MVT RegisterVT = isABIMangled() 895 ? TLI.getRegisterTypeForCallingConv( 896 *DAG.getContext(), *CallConv, RegVTs[Value]) 897 : RegVTs[Value]; 898 899 Parts.resize(NumRegs); 900 for (unsigned i = 0; i != NumRegs; ++i) { 901 SDValue P; 902 if (!Glue) { 903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 904 } else { 905 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 906 *Glue = P.getValue(2); 907 } 908 909 Chain = P.getValue(1); 910 Parts[i] = P; 911 912 // If the source register was virtual and if we know something about it, 913 // add an assert node. 914 if (!Register::isVirtualRegister(Regs[Part + i]) || 915 !RegisterVT.isInteger()) 916 continue; 917 918 const FunctionLoweringInfo::LiveOutInfo *LOI = 919 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 920 if (!LOI) 921 continue; 922 923 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 924 unsigned NumSignBits = LOI->NumSignBits; 925 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 926 927 if (NumZeroBits == RegSize) { 928 // The current value is a zero. 929 // Explicitly express that as it would be easier for 930 // optimizations to kick in. 931 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 932 continue; 933 } 934 935 // FIXME: We capture more information than the dag can represent. For 936 // now, just use the tightest assertzext/assertsext possible. 937 bool isSExt; 938 EVT FromVT(MVT::Other); 939 if (NumZeroBits) { 940 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 941 isSExt = false; 942 } else if (NumSignBits > 1) { 943 FromVT = 944 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 945 isSExt = true; 946 } else { 947 continue; 948 } 949 // Add an assertion node. 950 assert(FromVT != MVT::Other); 951 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 952 RegisterVT, P, DAG.getValueType(FromVT)); 953 } 954 955 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 956 RegisterVT, ValueVT, V, Chain, CallConv); 957 Part += NumRegs; 958 Parts.clear(); 959 } 960 961 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 962 } 963 964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 965 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 966 const Value *V, 967 ISD::NodeType PreferredExtendType) const { 968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 969 ISD::NodeType ExtendKind = PreferredExtendType; 970 971 // Get the list of the values's legal parts. 972 unsigned NumRegs = Regs.size(); 973 SmallVector<SDValue, 8> Parts(NumRegs); 974 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumParts = RegCount[Value]; 976 977 MVT RegisterVT = isABIMangled() 978 ? TLI.getRegisterTypeForCallingConv( 979 *DAG.getContext(), *CallConv, RegVTs[Value]) 980 : RegVTs[Value]; 981 982 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 983 ExtendKind = ISD::ZERO_EXTEND; 984 985 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 986 NumParts, RegisterVT, V, CallConv, ExtendKind); 987 Part += NumParts; 988 } 989 990 // Copy the parts into the registers. 991 SmallVector<SDValue, 8> Chains(NumRegs); 992 for (unsigned i = 0; i != NumRegs; ++i) { 993 SDValue Part; 994 if (!Glue) { 995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 996 } else { 997 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 998 *Glue = Part.getValue(1); 999 } 1000 1001 Chains[i] = Part.getValue(0); 1002 } 1003 1004 if (NumRegs == 1 || Glue) 1005 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1006 // flagged to it. That is the CopyToReg nodes and the user are considered 1007 // a single scheduling unit. If we create a TokenFactor and return it as 1008 // chain, then the TokenFactor is both a predecessor (operand) of the 1009 // user as well as a successor (the TF operands are flagged to the user). 1010 // c1, f1 = CopyToReg 1011 // c2, f2 = CopyToReg 1012 // c3 = TokenFactor c1, c2 1013 // ... 1014 // = op c3, ..., f2 1015 Chain = Chains[NumRegs-1]; 1016 else 1017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1018 } 1019 1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1021 unsigned MatchingIdx, const SDLoc &dl, 1022 SelectionDAG &DAG, 1023 std::vector<SDValue> &Ops) const { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 InlineAsm::Flag Flag(Code, Regs.size()); 1027 if (HasMatching) 1028 Flag.setMatchingOp(MatchingIdx); 1029 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1030 // Put the register class of the virtual registers in the flag word. That 1031 // way, later passes can recompute register class constraints for inline 1032 // assembly as well as normal instructions. 1033 // Don't do this for tied operands that can use the regclass information 1034 // from the def. 1035 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1036 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1037 Flag.setRegClass(RC->getID()); 1038 } 1039 1040 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1041 Ops.push_back(Res); 1042 1043 if (Code == InlineAsm::Kind::Clobber) { 1044 // Clobbers should always have a 1:1 mapping with registers, and may 1045 // reference registers that have illegal (e.g. vector) types. Hence, we 1046 // shouldn't try to apply any sort of splitting logic to them. 1047 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1048 "No 1:1 mapping from clobbers to regs?"); 1049 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1050 (void)SP; 1051 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1052 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1053 assert( 1054 (Regs[I] != SP || 1055 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1056 "If we clobbered the stack pointer, MFI should know about it."); 1057 } 1058 return; 1059 } 1060 1061 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1062 MVT RegisterVT = RegVTs[Value]; 1063 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1064 RegisterVT); 1065 for (unsigned i = 0; i != NumRegs; ++i) { 1066 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1067 unsigned TheReg = Regs[Reg++]; 1068 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1069 } 1070 } 1071 } 1072 1073 SmallVector<std::pair<Register, TypeSize>, 4> 1074 RegsForValue::getRegsAndSizes() const { 1075 SmallVector<std::pair<Register, TypeSize>, 4> OutVec; 1076 unsigned I = 0; 1077 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1078 unsigned RegCount = std::get<0>(CountAndVT); 1079 MVT RegisterVT = std::get<1>(CountAndVT); 1080 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1081 for (unsigned E = I + RegCount; I != E; ++I) 1082 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1083 } 1084 return OutVec; 1085 } 1086 1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1088 AssumptionCache *ac, 1089 const TargetLibraryInfo *li) { 1090 AA = aa; 1091 AC = ac; 1092 GFI = gfi; 1093 LibInfo = li; 1094 Context = DAG.getContext(); 1095 LPadToCallSiteMap.clear(); 1096 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1097 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1098 *DAG.getMachineFunction().getFunction().getParent()); 1099 } 1100 1101 void SelectionDAGBuilder::clear() { 1102 NodeMap.clear(); 1103 UnusedArgNodeMap.clear(); 1104 PendingLoads.clear(); 1105 PendingExports.clear(); 1106 PendingConstrainedFP.clear(); 1107 PendingConstrainedFPStrict.clear(); 1108 CurInst = nullptr; 1109 HasTailCall = false; 1110 SDNodeOrder = LowestSDNodeOrder; 1111 StatepointLowering.clear(); 1112 } 1113 1114 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1115 DanglingDebugInfoMap.clear(); 1116 } 1117 1118 // Update DAG root to include dependencies on Pending chains. 1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1120 SDValue Root = DAG.getRoot(); 1121 1122 if (Pending.empty()) 1123 return Root; 1124 1125 // Add current root to PendingChains, unless we already indirectly 1126 // depend on it. 1127 if (Root.getOpcode() != ISD::EntryToken) { 1128 unsigned i = 0, e = Pending.size(); 1129 for (; i != e; ++i) { 1130 assert(Pending[i].getNode()->getNumOperands() > 1); 1131 if (Pending[i].getNode()->getOperand(0) == Root) 1132 break; // Don't add the root if we already indirectly depend on it. 1133 } 1134 1135 if (i == e) 1136 Pending.push_back(Root); 1137 } 1138 1139 if (Pending.size() == 1) 1140 Root = Pending[0]; 1141 else 1142 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1143 1144 DAG.setRoot(Root); 1145 Pending.clear(); 1146 return Root; 1147 } 1148 1149 SDValue SelectionDAGBuilder::getMemoryRoot() { 1150 return updateRoot(PendingLoads); 1151 } 1152 1153 SDValue SelectionDAGBuilder::getRoot() { 1154 // Chain up all pending constrained intrinsics together with all 1155 // pending loads, by simply appending them to PendingLoads and 1156 // then calling getMemoryRoot(). 1157 PendingLoads.reserve(PendingLoads.size() + 1158 PendingConstrainedFP.size() + 1159 PendingConstrainedFPStrict.size()); 1160 PendingLoads.append(PendingConstrainedFP.begin(), 1161 PendingConstrainedFP.end()); 1162 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1163 PendingConstrainedFPStrict.end()); 1164 PendingConstrainedFP.clear(); 1165 PendingConstrainedFPStrict.clear(); 1166 return getMemoryRoot(); 1167 } 1168 1169 SDValue SelectionDAGBuilder::getControlRoot() { 1170 // We need to emit pending fpexcept.strict constrained intrinsics, 1171 // so append them to the PendingExports list. 1172 PendingExports.append(PendingConstrainedFPStrict.begin(), 1173 PendingConstrainedFPStrict.end()); 1174 PendingConstrainedFPStrict.clear(); 1175 return updateRoot(PendingExports); 1176 } 1177 1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1179 DILocalVariable *Variable, 1180 DIExpression *Expression, 1181 DebugLoc DL) { 1182 assert(Variable && "Missing variable"); 1183 1184 // Check if address has undef value. 1185 if (!Address || isa<UndefValue>(Address) || 1186 (Address->use_empty() && !isa<Argument>(Address))) { 1187 LLVM_DEBUG( 1188 dbgs() 1189 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1190 return; 1191 } 1192 1193 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1194 1195 SDValue &N = NodeMap[Address]; 1196 if (!N.getNode() && isa<Argument>(Address)) 1197 // Check unused arguments map. 1198 N = UnusedArgNodeMap[Address]; 1199 SDDbgValue *SDV; 1200 if (N.getNode()) { 1201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1202 Address = BCI->getOperand(0); 1203 // Parameters are handled specially. 1204 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1205 if (IsParameter && FINode) { 1206 // Byval parameter. We have a frame index at this point. 1207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1208 /*IsIndirect*/ true, DL, SDNodeOrder); 1209 } else if (isa<Argument>(Address)) { 1210 // Address is an argument, so try to emit its dbg value using 1211 // virtual register info from the FuncInfo.ValueMap. 1212 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1213 FuncArgumentDbgValueKind::Declare, N); 1214 return; 1215 } else { 1216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1217 true, DL, SDNodeOrder); 1218 } 1219 DAG.AddDbgValue(SDV, IsParameter); 1220 } else { 1221 // If Address is an argument then try to emit its dbg value using 1222 // virtual register info from the FuncInfo.ValueMap. 1223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1224 FuncArgumentDbgValueKind::Declare, N)) { 1225 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1226 << " (could not emit func-arg dbg_value)\n"); 1227 } 1228 } 1229 return; 1230 } 1231 1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1233 // Add SDDbgValue nodes for any var locs here. Do so before updating 1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1235 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1236 // Add SDDbgValue nodes for any var locs here. Do so before updating 1237 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1238 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1239 It != End; ++It) { 1240 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1241 dropDanglingDebugInfo(Var, It->Expr); 1242 if (It->Values.isKillLocation(It->Expr)) { 1243 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1244 continue; 1245 } 1246 SmallVector<Value *> Values(It->Values.location_ops()); 1247 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1248 It->Values.hasArgList())) { 1249 SmallVector<Value *, 4> Vals(It->Values.location_ops()); 1250 addDanglingDebugInfo(Vals, 1251 FnVarLocs->getDILocalVariable(It->VariableID), 1252 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1253 } 1254 } 1255 } 1256 1257 // We must skip DbgVariableRecords if they've already been processed above as 1258 // we have just emitted the debug values resulting from assignment tracking 1259 // analysis, making any existing DbgVariableRecords redundant (and probably 1260 // less correct). We still need to process DbgLabelRecords. This does sink 1261 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1262 // be important as it does so deterministcally and ordering between 1263 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1264 // printing). 1265 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1266 // Is there is any debug-info attached to this instruction, in the form of 1267 // DbgRecord non-instruction debug-info records. 1268 for (DbgRecord &DR : I.getDbgRecordRange()) { 1269 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1270 assert(DLR->getLabel() && "Missing label"); 1271 SDDbgLabel *SDV = 1272 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1273 DAG.AddDbgLabel(SDV); 1274 continue; 1275 } 1276 1277 if (SkipDbgVariableRecords) 1278 continue; 1279 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1280 DILocalVariable *Variable = DVR.getVariable(); 1281 DIExpression *Expression = DVR.getExpression(); 1282 dropDanglingDebugInfo(Variable, Expression); 1283 1284 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1285 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1286 continue; 1287 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1288 << "\n"); 1289 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1290 DVR.getDebugLoc()); 1291 continue; 1292 } 1293 1294 // A DbgVariableRecord with no locations is a kill location. 1295 SmallVector<Value *, 4> Values(DVR.location_ops()); 1296 if (Values.empty()) { 1297 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1298 SDNodeOrder); 1299 continue; 1300 } 1301 1302 // A DbgVariableRecord with an undef or absent location is also a kill 1303 // location. 1304 if (llvm::any_of(Values, 1305 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1306 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1307 SDNodeOrder); 1308 continue; 1309 } 1310 1311 bool IsVariadic = DVR.hasArgList(); 1312 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1313 SDNodeOrder, IsVariadic)) { 1314 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1315 DVR.getDebugLoc(), SDNodeOrder); 1316 } 1317 } 1318 } 1319 1320 void SelectionDAGBuilder::visit(const Instruction &I) { 1321 visitDbgInfo(I); 1322 1323 // Set up outgoing PHI node register values before emitting the terminator. 1324 if (I.isTerminator()) { 1325 HandlePHINodesInSuccessorBlocks(I.getParent()); 1326 } 1327 1328 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1329 if (!isa<DbgInfoIntrinsic>(I)) 1330 ++SDNodeOrder; 1331 1332 CurInst = &I; 1333 1334 // Set inserted listener only if required. 1335 bool NodeInserted = false; 1336 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1337 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1338 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1339 if (PCSectionsMD || MMRA) { 1340 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1341 DAG, [&](SDNode *) { NodeInserted = true; }); 1342 } 1343 1344 visit(I.getOpcode(), I); 1345 1346 if (!I.isTerminator() && !HasTailCall && 1347 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1348 CopyToExportRegsIfNeeded(&I); 1349 1350 // Handle metadata. 1351 if (PCSectionsMD || MMRA) { 1352 auto It = NodeMap.find(&I); 1353 if (It != NodeMap.end()) { 1354 if (PCSectionsMD) 1355 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1356 if (MMRA) 1357 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1358 } else if (NodeInserted) { 1359 // This should not happen; if it does, don't let it go unnoticed so we can 1360 // fix it. Relevant visit*() function is probably missing a setValue(). 1361 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1362 << I.getModule()->getName() << "]\n"; 1363 LLVM_DEBUG(I.dump()); 1364 assert(false); 1365 } 1366 } 1367 1368 CurInst = nullptr; 1369 } 1370 1371 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1372 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1373 } 1374 1375 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1376 // Note: this doesn't use InstVisitor, because it has to work with 1377 // ConstantExpr's in addition to instructions. 1378 switch (Opcode) { 1379 default: llvm_unreachable("Unknown instruction type encountered!"); 1380 // Build the switch statement using the Instruction.def file. 1381 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1382 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1383 #include "llvm/IR/Instruction.def" 1384 } 1385 } 1386 1387 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1388 DILocalVariable *Variable, 1389 DebugLoc DL, unsigned Order, 1390 SmallVectorImpl<Value *> &Values, 1391 DIExpression *Expression) { 1392 // For variadic dbg_values we will now insert an undef. 1393 // FIXME: We can potentially recover these! 1394 SmallVector<SDDbgOperand, 2> Locs; 1395 for (const Value *V : Values) { 1396 auto *Undef = UndefValue::get(V->getType()); 1397 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1398 } 1399 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1400 /*IsIndirect=*/false, DL, Order, 1401 /*IsVariadic=*/true); 1402 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1403 return true; 1404 } 1405 1406 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1407 DILocalVariable *Var, 1408 DIExpression *Expr, 1409 bool IsVariadic, DebugLoc DL, 1410 unsigned Order) { 1411 if (IsVariadic) { 1412 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1413 return; 1414 } 1415 // TODO: Dangling debug info will eventually either be resolved or produce 1416 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1417 // between the original dbg.value location and its resolved DBG_VALUE, 1418 // which we should ideally fill with an extra Undef DBG_VALUE. 1419 assert(Values.size() == 1); 1420 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1421 } 1422 1423 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1424 const DIExpression *Expr) { 1425 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1426 DIVariable *DanglingVariable = DDI.getVariable(); 1427 DIExpression *DanglingExpr = DDI.getExpression(); 1428 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1429 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1430 << printDDI(nullptr, DDI) << "\n"); 1431 return true; 1432 } 1433 return false; 1434 }; 1435 1436 for (auto &DDIMI : DanglingDebugInfoMap) { 1437 DanglingDebugInfoVector &DDIV = DDIMI.second; 1438 1439 // If debug info is to be dropped, run it through final checks to see 1440 // whether it can be salvaged. 1441 for (auto &DDI : DDIV) 1442 if (isMatchingDbgValue(DDI)) 1443 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1444 1445 erase_if(DDIV, isMatchingDbgValue); 1446 } 1447 } 1448 1449 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1450 // generate the debug data structures now that we've seen its definition. 1451 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1452 SDValue Val) { 1453 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1454 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1455 return; 1456 1457 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1458 for (auto &DDI : DDIV) { 1459 DebugLoc DL = DDI.getDebugLoc(); 1460 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1461 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1462 DILocalVariable *Variable = DDI.getVariable(); 1463 DIExpression *Expr = DDI.getExpression(); 1464 assert(Variable->isValidLocationForIntrinsic(DL) && 1465 "Expected inlined-at fields to agree"); 1466 SDDbgValue *SDV; 1467 if (Val.getNode()) { 1468 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1469 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1470 // we couldn't resolve it directly when examining the DbgValue intrinsic 1471 // in the first place we should not be more successful here). Unless we 1472 // have some test case that prove this to be correct we should avoid 1473 // calling EmitFuncArgumentDbgValue here. 1474 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1475 FuncArgumentDbgValueKind::Value, Val)) { 1476 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1477 << printDDI(V, DDI) << "\n"); 1478 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1479 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1480 // inserted after the definition of Val when emitting the instructions 1481 // after ISel. An alternative could be to teach 1482 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1483 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1484 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1485 << ValSDNodeOrder << "\n"); 1486 SDV = getDbgValue(Val, Variable, Expr, DL, 1487 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1488 DAG.AddDbgValue(SDV, false); 1489 } else 1490 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1491 << printDDI(V, DDI) 1492 << " in EmitFuncArgumentDbgValue\n"); 1493 } else { 1494 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1495 << "\n"); 1496 auto Undef = UndefValue::get(V->getType()); 1497 auto SDV = 1498 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1499 DAG.AddDbgValue(SDV, false); 1500 } 1501 } 1502 DDIV.clear(); 1503 } 1504 1505 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1506 DanglingDebugInfo &DDI) { 1507 // TODO: For the variadic implementation, instead of only checking the fail 1508 // state of `handleDebugValue`, we need know specifically which values were 1509 // invalid, so that we attempt to salvage only those values when processing 1510 // a DIArgList. 1511 const Value *OrigV = V; 1512 DILocalVariable *Var = DDI.getVariable(); 1513 DIExpression *Expr = DDI.getExpression(); 1514 DebugLoc DL = DDI.getDebugLoc(); 1515 unsigned SDOrder = DDI.getSDNodeOrder(); 1516 1517 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1518 // that DW_OP_stack_value is desired. 1519 bool StackValue = true; 1520 1521 // Can this Value can be encoded without any further work? 1522 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1523 return; 1524 1525 // Attempt to salvage back through as many instructions as possible. Bail if 1526 // a non-instruction is seen, such as a constant expression or global 1527 // variable. FIXME: Further work could recover those too. 1528 while (isa<Instruction>(V)) { 1529 const Instruction &VAsInst = *cast<const Instruction>(V); 1530 // Temporary "0", awaiting real implementation. 1531 SmallVector<uint64_t, 16> Ops; 1532 SmallVector<Value *, 4> AdditionalValues; 1533 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1534 Expr->getNumLocationOperands(), Ops, 1535 AdditionalValues); 1536 // If we cannot salvage any further, and haven't yet found a suitable debug 1537 // expression, bail out. 1538 if (!V) 1539 break; 1540 1541 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1542 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1543 // here for variadic dbg_values, remove that condition. 1544 if (!AdditionalValues.empty()) 1545 break; 1546 1547 // New value and expr now represent this debuginfo. 1548 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1549 1550 // Some kind of simplification occurred: check whether the operand of the 1551 // salvaged debug expression can be encoded in this DAG. 1552 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1553 LLVM_DEBUG( 1554 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1555 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1556 return; 1557 } 1558 } 1559 1560 // This was the final opportunity to salvage this debug information, and it 1561 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1562 // any earlier variable location. 1563 assert(OrigV && "V shouldn't be null"); 1564 auto *Undef = UndefValue::get(OrigV->getType()); 1565 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1566 DAG.AddDbgValue(SDV, false); 1567 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1568 << printDDI(OrigV, DDI) << "\n"); 1569 } 1570 1571 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1572 DIExpression *Expr, 1573 DebugLoc DbgLoc, 1574 unsigned Order) { 1575 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1576 DIExpression *NewExpr = 1577 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1578 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1579 /*IsVariadic*/ false); 1580 } 1581 1582 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1583 DILocalVariable *Var, 1584 DIExpression *Expr, DebugLoc DbgLoc, 1585 unsigned Order, bool IsVariadic) { 1586 if (Values.empty()) 1587 return true; 1588 1589 // Filter EntryValue locations out early. 1590 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1591 return true; 1592 1593 SmallVector<SDDbgOperand> LocationOps; 1594 SmallVector<SDNode *> Dependencies; 1595 for (const Value *V : Values) { 1596 // Constant value. 1597 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1598 isa<ConstantPointerNull>(V)) { 1599 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1600 continue; 1601 } 1602 1603 // Look through IntToPtr constants. 1604 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1605 if (CE->getOpcode() == Instruction::IntToPtr) { 1606 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1607 continue; 1608 } 1609 1610 // If the Value is a frame index, we can create a FrameIndex debug value 1611 // without relying on the DAG at all. 1612 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1613 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1614 if (SI != FuncInfo.StaticAllocaMap.end()) { 1615 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1616 continue; 1617 } 1618 } 1619 1620 // Do not use getValue() in here; we don't want to generate code at 1621 // this point if it hasn't been done yet. 1622 SDValue N = NodeMap[V]; 1623 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1624 N = UnusedArgNodeMap[V]; 1625 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1806 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1807 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1808 getValue(CPA->getAddrDiscriminator()), 1809 getValue(CPA->getDiscriminator())); 1810 } 1811 1812 if (isa<ConstantPointerNull>(C)) { 1813 unsigned AS = V->getType()->getPointerAddressSpace(); 1814 return DAG.getConstant(0, getCurSDLoc(), 1815 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1816 } 1817 1818 if (match(C, m_VScale())) 1819 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1820 1821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1822 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1823 1824 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1825 return DAG.getUNDEF(VT); 1826 1827 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1828 visit(CE->getOpcode(), *CE); 1829 SDValue N1 = NodeMap[V]; 1830 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1831 return N1; 1832 } 1833 1834 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1835 SmallVector<SDValue, 4> Constants; 1836 for (const Use &U : C->operands()) { 1837 SDNode *Val = getValue(U).getNode(); 1838 // If the operand is an empty aggregate, there are no values. 1839 if (!Val) continue; 1840 // Add each leaf value from the operand to the Constants list 1841 // to form a flattened list of all the values. 1842 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1843 Constants.push_back(SDValue(Val, i)); 1844 } 1845 1846 return DAG.getMergeValues(Constants, getCurSDLoc()); 1847 } 1848 1849 if (const ConstantDataSequential *CDS = 1850 dyn_cast<ConstantDataSequential>(C)) { 1851 SmallVector<SDValue, 4> Ops; 1852 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1853 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1854 // Add each leaf value from the operand to the Constants list 1855 // to form a flattened list of all the values. 1856 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1857 Ops.push_back(SDValue(Val, i)); 1858 } 1859 1860 if (isa<ArrayType>(CDS->getType())) 1861 return DAG.getMergeValues(Ops, getCurSDLoc()); 1862 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1863 } 1864 1865 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1866 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1867 "Unknown struct or array constant!"); 1868 1869 SmallVector<EVT, 4> ValueVTs; 1870 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1871 unsigned NumElts = ValueVTs.size(); 1872 if (NumElts == 0) 1873 return SDValue(); // empty struct 1874 SmallVector<SDValue, 4> Constants(NumElts); 1875 for (unsigned i = 0; i != NumElts; ++i) { 1876 EVT EltVT = ValueVTs[i]; 1877 if (isa<UndefValue>(C)) 1878 Constants[i] = DAG.getUNDEF(EltVT); 1879 else if (EltVT.isFloatingPoint()) 1880 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1881 else 1882 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1883 } 1884 1885 return DAG.getMergeValues(Constants, getCurSDLoc()); 1886 } 1887 1888 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1889 return DAG.getBlockAddress(BA, VT); 1890 1891 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1892 return getValue(Equiv->getGlobalValue()); 1893 1894 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1895 return getValue(NC->getGlobalValue()); 1896 1897 if (VT == MVT::aarch64svcount) { 1898 assert(C->isNullValue() && "Can only zero this target type!"); 1899 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1900 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1901 } 1902 1903 VectorType *VecTy = cast<VectorType>(V->getType()); 1904 1905 // Now that we know the number and type of the elements, get that number of 1906 // elements into the Ops array based on what kind of constant it is. 1907 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1908 SmallVector<SDValue, 16> Ops; 1909 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1910 for (unsigned i = 0; i != NumElements; ++i) 1911 Ops.push_back(getValue(CV->getOperand(i))); 1912 1913 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1914 } 1915 1916 if (isa<ConstantAggregateZero>(C)) { 1917 EVT EltVT = 1918 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1919 1920 SDValue Op; 1921 if (EltVT.isFloatingPoint()) 1922 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1923 else 1924 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1925 1926 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1927 } 1928 1929 llvm_unreachable("Unknown vector constant"); 1930 } 1931 1932 // If this is a static alloca, generate it as the frameindex instead of 1933 // computation. 1934 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1935 DenseMap<const AllocaInst*, int>::iterator SI = 1936 FuncInfo.StaticAllocaMap.find(AI); 1937 if (SI != FuncInfo.StaticAllocaMap.end()) 1938 return DAG.getFrameIndex( 1939 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1940 } 1941 1942 // If this is an instruction which fast-isel has deferred, select it now. 1943 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1944 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1945 1946 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1947 Inst->getType(), std::nullopt); 1948 SDValue Chain = DAG.getEntryNode(); 1949 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1950 } 1951 1952 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1953 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1954 1955 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1956 return DAG.getBasicBlock(FuncInfo.getMBB(BB)); 1957 1958 llvm_unreachable("Can't get register for value!"); 1959 } 1960 1961 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1962 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1963 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1964 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1965 bool IsSEH = isAsynchronousEHPersonality(Pers); 1966 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1967 if (!IsSEH) 1968 CatchPadMBB->setIsEHScopeEntry(); 1969 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1970 if (IsMSVCCXX || IsCoreCLR) 1971 CatchPadMBB->setIsEHFuncletEntry(); 1972 } 1973 1974 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1975 // Update machine-CFG edge. 1976 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor()); 1977 FuncInfo.MBB->addSuccessor(TargetMBB); 1978 TargetMBB->setIsEHCatchretTarget(true); 1979 DAG.getMachineFunction().setHasEHCatchret(true); 1980 1981 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1982 bool IsSEH = isAsynchronousEHPersonality(Pers); 1983 if (IsSEH) { 1984 // If this is not a fall-through branch or optimizations are switched off, 1985 // emit the branch. 1986 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1987 TM.getOptLevel() == CodeGenOptLevel::None) 1988 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1989 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1990 return; 1991 } 1992 1993 // Figure out the funclet membership for the catchret's successor. 1994 // This will be used by the FuncletLayout pass to determine how to order the 1995 // BB's. 1996 // A 'catchret' returns to the outer scope's color. 1997 Value *ParentPad = I.getCatchSwitchParentPad(); 1998 const BasicBlock *SuccessorColor; 1999 if (isa<ConstantTokenNone>(ParentPad)) 2000 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2001 else 2002 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2003 assert(SuccessorColor && "No parent funclet for catchret!"); 2004 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor); 2005 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2006 2007 // Create the terminator node. 2008 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2009 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2010 DAG.getBasicBlock(SuccessorColorMBB)); 2011 DAG.setRoot(Ret); 2012 } 2013 2014 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2015 // Don't emit any special code for the cleanuppad instruction. It just marks 2016 // the start of an EH scope/funclet. 2017 FuncInfo.MBB->setIsEHScopeEntry(); 2018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2019 if (Pers != EHPersonality::Wasm_CXX) { 2020 FuncInfo.MBB->setIsEHFuncletEntry(); 2021 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2022 } 2023 } 2024 2025 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2026 // not match, it is OK to add only the first unwind destination catchpad to the 2027 // successors, because there will be at least one invoke instruction within the 2028 // catch scope that points to the next unwind destination, if one exists, so 2029 // CFGSort cannot mess up with BB sorting order. 2030 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2031 // call within them, and catchpads only consisting of 'catch (...)' have a 2032 // '__cxa_end_catch' call within them, both of which generate invokes in case 2033 // the next unwind destination exists, i.e., the next unwind destination is not 2034 // the caller.) 2035 // 2036 // Having at most one EH pad successor is also simpler and helps later 2037 // transformations. 2038 // 2039 // For example, 2040 // current: 2041 // invoke void @foo to ... unwind label %catch.dispatch 2042 // catch.dispatch: 2043 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2044 // catch.start: 2045 // ... 2046 // ... in this BB or some other child BB dominated by this BB there will be an 2047 // invoke that points to 'next' BB as an unwind destination 2048 // 2049 // next: ; We don't need to add this to 'current' BB's successor 2050 // ... 2051 static void findWasmUnwindDestinations( 2052 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2053 BranchProbability Prob, 2054 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2055 &UnwindDests) { 2056 while (EHPadBB) { 2057 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2058 if (isa<CleanupPadInst>(Pad)) { 2059 // Stop on cleanup pads. 2060 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 break; 2063 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2064 // Add the catchpad handlers to the possible destinations. We don't 2065 // continue to the unwind destination of the catchswitch for wasm. 2066 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2067 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2068 UnwindDests.back().first->setIsEHScopeEntry(); 2069 } 2070 break; 2071 } else { 2072 continue; 2073 } 2074 } 2075 } 2076 2077 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2078 /// many places it could ultimately go. In the IR, we have a single unwind 2079 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2080 /// This function skips over imaginary basic blocks that hold catchswitch 2081 /// instructions, and finds all the "real" machine 2082 /// basic block destinations. As those destinations may not be successors of 2083 /// EHPadBB, here we also calculate the edge probability to those destinations. 2084 /// The passed-in Prob is the edge probability to EHPadBB. 2085 static void findUnwindDestinations( 2086 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2087 BranchProbability Prob, 2088 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2089 &UnwindDests) { 2090 EHPersonality Personality = 2091 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2092 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2093 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2094 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2095 bool IsSEH = isAsynchronousEHPersonality(Personality); 2096 2097 if (IsWasmCXX) { 2098 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2099 assert(UnwindDests.size() <= 1 && 2100 "There should be at most one unwind destination for wasm"); 2101 return; 2102 } 2103 2104 while (EHPadBB) { 2105 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2106 BasicBlock *NewEHPadBB = nullptr; 2107 if (isa<LandingPadInst>(Pad)) { 2108 // Stop on landingpads. They are not funclets. 2109 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2110 break; 2111 } else if (isa<CleanupPadInst>(Pad)) { 2112 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2113 // personalities. 2114 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2115 UnwindDests.back().first->setIsEHScopeEntry(); 2116 UnwindDests.back().first->setIsEHFuncletEntry(); 2117 break; 2118 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2119 // Add the catchpad handlers to the possible destinations. 2120 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2121 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2122 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2123 if (IsMSVCCXX || IsCoreCLR) 2124 UnwindDests.back().first->setIsEHFuncletEntry(); 2125 if (!IsSEH) 2126 UnwindDests.back().first->setIsEHScopeEntry(); 2127 } 2128 NewEHPadBB = CatchSwitch->getUnwindDest(); 2129 } else { 2130 continue; 2131 } 2132 2133 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2134 if (BPI && NewEHPadBB) 2135 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2136 EHPadBB = NewEHPadBB; 2137 } 2138 } 2139 2140 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2141 // Update successor info. 2142 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2143 auto UnwindDest = I.getUnwindDest(); 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability UnwindDestProb = 2146 (BPI && UnwindDest) 2147 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2148 : BranchProbability::getZero(); 2149 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2150 for (auto &UnwindDest : UnwindDests) { 2151 UnwindDest.first->setIsEHPad(); 2152 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2153 } 2154 FuncInfo.MBB->normalizeSuccProbs(); 2155 2156 // Create the terminator node. 2157 SDValue Ret = 2158 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2159 DAG.setRoot(Ret); 2160 } 2161 2162 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2163 report_fatal_error("visitCatchSwitch not yet implemented!"); 2164 } 2165 2166 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 auto &DL = DAG.getDataLayout(); 2169 SDValue Chain = getControlRoot(); 2170 SmallVector<ISD::OutputArg, 8> Outs; 2171 SmallVector<SDValue, 8> OutVals; 2172 2173 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2174 // lower 2175 // 2176 // %val = call <ty> @llvm.experimental.deoptimize() 2177 // ret <ty> %val 2178 // 2179 // differently. 2180 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2181 LowerDeoptimizingReturn(); 2182 return; 2183 } 2184 2185 if (!FuncInfo.CanLowerReturn) { 2186 Register DemoteReg = FuncInfo.DemoteRegister; 2187 const Function *F = I.getParent()->getParent(); 2188 2189 // Emit a store of the return value through the virtual register. 2190 // Leave Outs empty so that LowerReturn won't try to load return 2191 // registers the usual way. 2192 SmallVector<EVT, 1> PtrValueVTs; 2193 ComputeValueVTs(TLI, DL, 2194 PointerType::get(F->getContext(), 2195 DAG.getDataLayout().getAllocaAddrSpace()), 2196 PtrValueVTs); 2197 2198 SDValue RetPtr = 2199 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2200 SDValue RetOp = getValue(I.getOperand(0)); 2201 2202 SmallVector<EVT, 4> ValueVTs, MemVTs; 2203 SmallVector<uint64_t, 4> Offsets; 2204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2205 &Offsets, 0); 2206 unsigned NumValues = ValueVTs.size(); 2207 2208 SmallVector<SDValue, 4> Chains(NumValues); 2209 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2210 for (unsigned i = 0; i != NumValues; ++i) { 2211 // An aggregate return value cannot wrap around the address space, so 2212 // offsets to its parts don't wrap either. 2213 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2214 TypeSize::getFixed(Offsets[i])); 2215 2216 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2217 if (MemVTs[i] != ValueVTs[i]) 2218 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2219 Chains[i] = DAG.getStore( 2220 Chain, getCurSDLoc(), Val, 2221 // FIXME: better loc info would be nice. 2222 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2223 commonAlignment(BaseAlign, Offsets[i])); 2224 } 2225 2226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2227 MVT::Other, Chains); 2228 } else if (I.getNumOperands() != 0) { 2229 SmallVector<EVT, 4> ValueVTs; 2230 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2231 unsigned NumValues = ValueVTs.size(); 2232 if (NumValues) { 2233 SDValue RetOp = getValue(I.getOperand(0)); 2234 2235 const Function *F = I.getParent()->getParent(); 2236 2237 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2238 I.getOperand(0)->getType(), F->getCallingConv(), 2239 /*IsVarArg*/ false, DL); 2240 2241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2242 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2243 ExtendKind = ISD::SIGN_EXTEND; 2244 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2245 ExtendKind = ISD::ZERO_EXTEND; 2246 2247 LLVMContext &Context = F->getContext(); 2248 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2249 2250 for (unsigned j = 0; j != NumValues; ++j) { 2251 EVT VT = ValueVTs[j]; 2252 2253 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2254 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2255 2256 CallingConv::ID CC = F->getCallingConv(); 2257 2258 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2259 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2260 SmallVector<SDValue, 4> Parts(NumParts); 2261 getCopyToParts(DAG, getCurSDLoc(), 2262 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2263 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2264 2265 // 'inreg' on function refers to return value 2266 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2267 if (RetInReg) 2268 Flags.setInReg(); 2269 2270 if (I.getOperand(0)->getType()->isPointerTy()) { 2271 Flags.setPointer(); 2272 Flags.setPointerAddrSpace( 2273 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2274 } 2275 2276 if (NeedsRegBlock) { 2277 Flags.setInConsecutiveRegs(); 2278 if (j == NumValues - 1) 2279 Flags.setInConsecutiveRegsLast(); 2280 } 2281 2282 // Propagate extension type if any 2283 if (ExtendKind == ISD::SIGN_EXTEND) 2284 Flags.setSExt(); 2285 else if (ExtendKind == ISD::ZERO_EXTEND) 2286 Flags.setZExt(); 2287 else if (F->getAttributes().hasRetAttr(Attribute::NoExt)) 2288 Flags.setNoExt(); 2289 2290 for (unsigned i = 0; i < NumParts; ++i) { 2291 Outs.push_back(ISD::OutputArg(Flags, 2292 Parts[i].getValueType().getSimpleVT(), 2293 VT, /*isfixed=*/true, 0, 0)); 2294 OutVals.push_back(Parts[i]); 2295 } 2296 } 2297 } 2298 } 2299 2300 // Push in swifterror virtual register as the last element of Outs. This makes 2301 // sure swifterror virtual register will be returned in the swifterror 2302 // physical register. 2303 const Function *F = I.getParent()->getParent(); 2304 if (TLI.supportSwiftError() && 2305 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2306 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2307 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2308 Flags.setSwiftError(); 2309 Outs.push_back(ISD::OutputArg( 2310 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2311 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2312 // Create SDNode for the swifterror virtual register. 2313 OutVals.push_back( 2314 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2315 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2316 EVT(TLI.getPointerTy(DL)))); 2317 } 2318 2319 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2320 CallingConv::ID CallConv = 2321 DAG.getMachineFunction().getFunction().getCallingConv(); 2322 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2323 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2324 2325 // Verify that the target's LowerReturn behaved as expected. 2326 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2327 "LowerReturn didn't return a valid chain!"); 2328 2329 // Update the DAG with the new chain value resulting from return lowering. 2330 DAG.setRoot(Chain); 2331 } 2332 2333 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2334 /// created for it, emit nodes to copy the value into the virtual 2335 /// registers. 2336 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2337 // Skip empty types 2338 if (V->getType()->isEmptyTy()) 2339 return; 2340 2341 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2342 if (VMI != FuncInfo.ValueMap.end()) { 2343 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2344 "Unused value assigned virtual registers!"); 2345 CopyValueToVirtualRegister(V, VMI->second); 2346 } 2347 } 2348 2349 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2350 /// the current basic block, add it to ValueMap now so that we'll get a 2351 /// CopyTo/FromReg. 2352 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2353 // No need to export constants. 2354 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2355 2356 // Already exported? 2357 if (FuncInfo.isExportedInst(V)) return; 2358 2359 Register Reg = FuncInfo.InitializeRegForValue(V); 2360 CopyValueToVirtualRegister(V, Reg); 2361 } 2362 2363 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2364 const BasicBlock *FromBB) { 2365 // The operands of the setcc have to be in this block. We don't know 2366 // how to export them from some other block. 2367 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2368 // Can export from current BB. 2369 if (VI->getParent() == FromBB) 2370 return true; 2371 2372 // Is already exported, noop. 2373 return FuncInfo.isExportedInst(V); 2374 } 2375 2376 // If this is an argument, we can export it if the BB is the entry block or 2377 // if it is already exported. 2378 if (isa<Argument>(V)) { 2379 if (FromBB->isEntryBlock()) 2380 return true; 2381 2382 // Otherwise, can only export this if it is already exported. 2383 return FuncInfo.isExportedInst(V); 2384 } 2385 2386 // Otherwise, constants can always be exported. 2387 return true; 2388 } 2389 2390 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2391 BranchProbability 2392 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2393 const MachineBasicBlock *Dst) const { 2394 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2395 const BasicBlock *SrcBB = Src->getBasicBlock(); 2396 const BasicBlock *DstBB = Dst->getBasicBlock(); 2397 if (!BPI) { 2398 // If BPI is not available, set the default probability as 1 / N, where N is 2399 // the number of successors. 2400 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2401 return BranchProbability(1, SuccSize); 2402 } 2403 return BPI->getEdgeProbability(SrcBB, DstBB); 2404 } 2405 2406 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2407 MachineBasicBlock *Dst, 2408 BranchProbability Prob) { 2409 if (!FuncInfo.BPI) 2410 Src->addSuccessorWithoutProb(Dst); 2411 else { 2412 if (Prob.isUnknown()) 2413 Prob = getEdgeProbability(Src, Dst); 2414 Src->addSuccessor(Dst, Prob); 2415 } 2416 } 2417 2418 static bool InBlock(const Value *V, const BasicBlock *BB) { 2419 if (const Instruction *I = dyn_cast<Instruction>(V)) 2420 return I->getParent() == BB; 2421 return true; 2422 } 2423 2424 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2425 /// This function emits a branch and is used at the leaves of an OR or an 2426 /// AND operator tree. 2427 void 2428 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2429 MachineBasicBlock *TBB, 2430 MachineBasicBlock *FBB, 2431 MachineBasicBlock *CurBB, 2432 MachineBasicBlock *SwitchBB, 2433 BranchProbability TProb, 2434 BranchProbability FProb, 2435 bool InvertCond) { 2436 const BasicBlock *BB = CurBB->getBasicBlock(); 2437 2438 // If the leaf of the tree is a comparison, merge the condition into 2439 // the caseblock. 2440 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2441 // The operands of the cmp have to be in this block. We don't know 2442 // how to export them from some other block. If this is the first block 2443 // of the sequence, no exporting is needed. 2444 if (CurBB == SwitchBB || 2445 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2446 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2447 ISD::CondCode Condition; 2448 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2449 ICmpInst::Predicate Pred = 2450 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2451 Condition = getICmpCondCode(Pred); 2452 } else { 2453 const FCmpInst *FC = cast<FCmpInst>(Cond); 2454 FCmpInst::Predicate Pred = 2455 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2456 Condition = getFCmpCondCode(Pred); 2457 if (TM.Options.NoNaNsFPMath) 2458 Condition = getFCmpCodeWithoutNaN(Condition); 2459 } 2460 2461 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2462 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2463 SL->SwitchCases.push_back(CB); 2464 return; 2465 } 2466 } 2467 2468 // Create a CaseBlock record representing this branch. 2469 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2470 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2471 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2472 SL->SwitchCases.push_back(CB); 2473 } 2474 2475 // Collect dependencies on V recursively. This is used for the cost analysis in 2476 // `shouldKeepJumpConditionsTogether`. 2477 static bool collectInstructionDeps( 2478 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2479 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2480 unsigned Depth = 0) { 2481 // Return false if we have an incomplete count. 2482 if (Depth >= SelectionDAG::MaxRecursionDepth) 2483 return false; 2484 2485 auto *I = dyn_cast<Instruction>(V); 2486 if (I == nullptr) 2487 return true; 2488 2489 if (Necessary != nullptr) { 2490 // This instruction is necessary for the other side of the condition so 2491 // don't count it. 2492 if (Necessary->contains(I)) 2493 return true; 2494 } 2495 2496 // Already added this dep. 2497 if (!Deps->try_emplace(I, false).second) 2498 return true; 2499 2500 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2501 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2502 Depth + 1)) 2503 return false; 2504 return true; 2505 } 2506 2507 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2508 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2509 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2510 TargetLoweringBase::CondMergingParams Params) const { 2511 if (I.getNumSuccessors() != 2) 2512 return false; 2513 2514 if (!I.isConditional()) 2515 return false; 2516 2517 if (Params.BaseCost < 0) 2518 return false; 2519 2520 // Baseline cost. 2521 InstructionCost CostThresh = Params.BaseCost; 2522 2523 BranchProbabilityInfo *BPI = nullptr; 2524 if (Params.LikelyBias || Params.UnlikelyBias) 2525 BPI = FuncInfo.BPI; 2526 if (BPI != nullptr) { 2527 // See if we are either likely to get an early out or compute both lhs/rhs 2528 // of the condition. 2529 BasicBlock *IfFalse = I.getSuccessor(0); 2530 BasicBlock *IfTrue = I.getSuccessor(1); 2531 2532 std::optional<bool> Likely; 2533 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2534 Likely = true; 2535 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2536 Likely = false; 2537 2538 if (Likely) { 2539 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2540 // Its likely we will have to compute both lhs and rhs of condition 2541 CostThresh += Params.LikelyBias; 2542 else { 2543 if (Params.UnlikelyBias < 0) 2544 return false; 2545 // Its likely we will get an early out. 2546 CostThresh -= Params.UnlikelyBias; 2547 } 2548 } 2549 } 2550 2551 if (CostThresh <= 0) 2552 return false; 2553 2554 // Collect "all" instructions that lhs condition is dependent on. 2555 // Use map for stable iteration (to avoid non-determanism of iteration of 2556 // SmallPtrSet). The `bool` value is just a dummy. 2557 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2558 collectInstructionDeps(&LhsDeps, Lhs); 2559 // Collect "all" instructions that rhs condition is dependent on AND are 2560 // dependencies of lhs. This gives us an estimate on which instructions we 2561 // stand to save by splitting the condition. 2562 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2563 return false; 2564 // Add the compare instruction itself unless its a dependency on the LHS. 2565 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2566 if (!LhsDeps.contains(RhsI)) 2567 RhsDeps.try_emplace(RhsI, false); 2568 2569 const auto &TLI = DAG.getTargetLoweringInfo(); 2570 const auto &TTI = 2571 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2572 2573 InstructionCost CostOfIncluding = 0; 2574 // See if this instruction will need to computed independently of whether RHS 2575 // is. 2576 Value *BrCond = I.getCondition(); 2577 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2578 for (const auto *U : Ins->users()) { 2579 // If user is independent of RHS calculation we don't need to count it. 2580 if (auto *UIns = dyn_cast<Instruction>(U)) 2581 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2582 return false; 2583 } 2584 return true; 2585 }; 2586 2587 // Prune instructions from RHS Deps that are dependencies of unrelated 2588 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2589 // arbitrary and just meant to cap the how much time we spend in the pruning 2590 // loop. Its highly unlikely to come into affect. 2591 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2592 // Stop after a certain point. No incorrectness from including too many 2593 // instructions. 2594 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2595 const Instruction *ToDrop = nullptr; 2596 for (const auto &InsPair : RhsDeps) { 2597 if (!ShouldCountInsn(InsPair.first)) { 2598 ToDrop = InsPair.first; 2599 break; 2600 } 2601 } 2602 if (ToDrop == nullptr) 2603 break; 2604 RhsDeps.erase(ToDrop); 2605 } 2606 2607 for (const auto &InsPair : RhsDeps) { 2608 // Finally accumulate latency that we can only attribute to computing the 2609 // RHS condition. Use latency because we are essentially trying to calculate 2610 // the cost of the dependency chain. 2611 // Possible TODO: We could try to estimate ILP and make this more precise. 2612 CostOfIncluding += 2613 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2614 2615 if (CostOfIncluding > CostThresh) 2616 return false; 2617 } 2618 return true; 2619 } 2620 2621 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2622 MachineBasicBlock *TBB, 2623 MachineBasicBlock *FBB, 2624 MachineBasicBlock *CurBB, 2625 MachineBasicBlock *SwitchBB, 2626 Instruction::BinaryOps Opc, 2627 BranchProbability TProb, 2628 BranchProbability FProb, 2629 bool InvertCond) { 2630 // Skip over not part of the tree and remember to invert op and operands at 2631 // next level. 2632 Value *NotCond; 2633 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2634 InBlock(NotCond, CurBB->getBasicBlock())) { 2635 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2636 !InvertCond); 2637 return; 2638 } 2639 2640 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2641 const Value *BOpOp0, *BOpOp1; 2642 // Compute the effective opcode for Cond, taking into account whether it needs 2643 // to be inverted, e.g. 2644 // and (not (or A, B)), C 2645 // gets lowered as 2646 // and (and (not A, not B), C) 2647 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2648 if (BOp) { 2649 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2650 ? Instruction::And 2651 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2652 ? Instruction::Or 2653 : (Instruction::BinaryOps)0); 2654 if (InvertCond) { 2655 if (BOpc == Instruction::And) 2656 BOpc = Instruction::Or; 2657 else if (BOpc == Instruction::Or) 2658 BOpc = Instruction::And; 2659 } 2660 } 2661 2662 // If this node is not part of the or/and tree, emit it as a branch. 2663 // Note that all nodes in the tree should have same opcode. 2664 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2665 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2666 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2667 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2668 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2669 TProb, FProb, InvertCond); 2670 return; 2671 } 2672 2673 // Create TmpBB after CurBB. 2674 MachineFunction::iterator BBI(CurBB); 2675 MachineFunction &MF = DAG.getMachineFunction(); 2676 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2677 CurBB->getParent()->insert(++BBI, TmpBB); 2678 2679 if (Opc == Instruction::Or) { 2680 // Codegen X | Y as: 2681 // BB1: 2682 // jmp_if_X TBB 2683 // jmp TmpBB 2684 // TmpBB: 2685 // jmp_if_Y TBB 2686 // jmp FBB 2687 // 2688 2689 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2690 // The requirement is that 2691 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2692 // = TrueProb for original BB. 2693 // Assuming the original probabilities are A and B, one choice is to set 2694 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2695 // A/(1+B) and 2B/(1+B). This choice assumes that 2696 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2697 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2698 // TmpBB, but the math is more complicated. 2699 2700 auto NewTrueProb = TProb / 2; 2701 auto NewFalseProb = TProb / 2 + FProb; 2702 // Emit the LHS condition. 2703 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2704 NewFalseProb, InvertCond); 2705 2706 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2707 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2708 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2709 // Emit the RHS condition into TmpBB. 2710 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2711 Probs[1], InvertCond); 2712 } else { 2713 assert(Opc == Instruction::And && "Unknown merge op!"); 2714 // Codegen X & Y as: 2715 // BB1: 2716 // jmp_if_X TmpBB 2717 // jmp FBB 2718 // TmpBB: 2719 // jmp_if_Y TBB 2720 // jmp FBB 2721 // 2722 // This requires creation of TmpBB after CurBB. 2723 2724 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2725 // The requirement is that 2726 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2727 // = FalseProb for original BB. 2728 // Assuming the original probabilities are A and B, one choice is to set 2729 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2730 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2731 // TrueProb for BB1 * FalseProb for TmpBB. 2732 2733 auto NewTrueProb = TProb + FProb / 2; 2734 auto NewFalseProb = FProb / 2; 2735 // Emit the LHS condition. 2736 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2737 NewFalseProb, InvertCond); 2738 2739 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2740 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2741 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2742 // Emit the RHS condition into TmpBB. 2743 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2744 Probs[1], InvertCond); 2745 } 2746 } 2747 2748 /// If the set of cases should be emitted as a series of branches, return true. 2749 /// If we should emit this as a bunch of and/or'd together conditions, return 2750 /// false. 2751 bool 2752 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2753 if (Cases.size() != 2) return true; 2754 2755 // If this is two comparisons of the same values or'd or and'd together, they 2756 // will get folded into a single comparison, so don't emit two blocks. 2757 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2758 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2759 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2760 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2761 return false; 2762 } 2763 2764 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2765 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2766 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2767 Cases[0].CC == Cases[1].CC && 2768 isa<Constant>(Cases[0].CmpRHS) && 2769 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2770 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2771 return false; 2772 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2773 return false; 2774 } 2775 2776 return true; 2777 } 2778 2779 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2780 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2781 2782 // Update machine-CFG edges. 2783 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0)); 2784 2785 if (I.isUnconditional()) { 2786 // Update machine-CFG edges. 2787 BrMBB->addSuccessor(Succ0MBB); 2788 2789 // If this is not a fall-through branch or optimizations are switched off, 2790 // emit the branch. 2791 if (Succ0MBB != NextBlock(BrMBB) || 2792 TM.getOptLevel() == CodeGenOptLevel::None) { 2793 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2794 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2795 setValue(&I, Br); 2796 DAG.setRoot(Br); 2797 } 2798 2799 return; 2800 } 2801 2802 // If this condition is one of the special cases we handle, do special stuff 2803 // now. 2804 const Value *CondVal = I.getCondition(); 2805 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1)); 2806 2807 // If this is a series of conditions that are or'd or and'd together, emit 2808 // this as a sequence of branches instead of setcc's with and/or operations. 2809 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2810 // unpredictable branches, and vector extracts because those jumps are likely 2811 // expensive for any target), this should improve performance. 2812 // For example, instead of something like: 2813 // cmp A, B 2814 // C = seteq 2815 // cmp D, E 2816 // F = setle 2817 // or C, F 2818 // jnz foo 2819 // Emit: 2820 // cmp A, B 2821 // je foo 2822 // cmp D, E 2823 // jle foo 2824 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable); 2825 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2826 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2827 BOp->hasOneUse() && !IsUnpredictable) { 2828 Value *Vec; 2829 const Value *BOp0, *BOp1; 2830 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2831 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2832 Opcode = Instruction::And; 2833 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2834 Opcode = Instruction::Or; 2835 2836 if (Opcode && 2837 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2838 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2839 !shouldKeepJumpConditionsTogether( 2840 FuncInfo, I, Opcode, BOp0, BOp1, 2841 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2842 Opcode, BOp0, BOp1))) { 2843 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2844 getEdgeProbability(BrMBB, Succ0MBB), 2845 getEdgeProbability(BrMBB, Succ1MBB), 2846 /*InvertCond=*/false); 2847 // If the compares in later blocks need to use values not currently 2848 // exported from this block, export them now. This block should always 2849 // be the first entry. 2850 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2851 2852 // Allow some cases to be rejected. 2853 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2854 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2855 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2856 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2857 } 2858 2859 // Emit the branch for this block. 2860 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2861 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2862 return; 2863 } 2864 2865 // Okay, we decided not to do this, remove any inserted MBB's and clear 2866 // SwitchCases. 2867 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2868 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2869 2870 SL->SwitchCases.clear(); 2871 } 2872 } 2873 2874 // Create a CaseBlock record representing this branch. 2875 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2876 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(), 2877 BranchProbability::getUnknown(), BranchProbability::getUnknown(), 2878 IsUnpredictable); 2879 2880 // Use visitSwitchCase to actually insert the fast branch sequence for this 2881 // cond branch. 2882 visitSwitchCase(CB, BrMBB); 2883 } 2884 2885 /// visitSwitchCase - Emits the necessary code to represent a single node in 2886 /// the binary search tree resulting from lowering a switch instruction. 2887 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2888 MachineBasicBlock *SwitchBB) { 2889 SDValue Cond; 2890 SDValue CondLHS = getValue(CB.CmpLHS); 2891 SDLoc dl = CB.DL; 2892 2893 if (CB.CC == ISD::SETTRUE) { 2894 // Branch or fall through to TrueBB. 2895 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2896 SwitchBB->normalizeSuccProbs(); 2897 if (CB.TrueBB != NextBlock(SwitchBB)) { 2898 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2899 DAG.getBasicBlock(CB.TrueBB))); 2900 } 2901 return; 2902 } 2903 2904 auto &TLI = DAG.getTargetLoweringInfo(); 2905 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2906 2907 // Build the setcc now. 2908 if (!CB.CmpMHS) { 2909 // Fold "(X == true)" to X and "(X == false)" to !X to 2910 // handle common cases produced by branch lowering. 2911 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2912 CB.CC == ISD::SETEQ) 2913 Cond = CondLHS; 2914 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2915 CB.CC == ISD::SETEQ) { 2916 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2917 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2918 } else { 2919 SDValue CondRHS = getValue(CB.CmpRHS); 2920 2921 // If a pointer's DAG type is larger than its memory type then the DAG 2922 // values are zero-extended. This breaks signed comparisons so truncate 2923 // back to the underlying type before doing the compare. 2924 if (CondLHS.getValueType() != MemVT) { 2925 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2926 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2927 } 2928 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2929 } 2930 } else { 2931 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2932 2933 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2934 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2935 2936 SDValue CmpOp = getValue(CB.CmpMHS); 2937 EVT VT = CmpOp.getValueType(); 2938 2939 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2940 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2941 ISD::SETLE); 2942 } else { 2943 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2944 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2945 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2946 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2947 } 2948 } 2949 2950 // Update successor info 2951 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2952 // TrueBB and FalseBB are always different unless the incoming IR is 2953 // degenerate. This only happens when running llc on weird IR. 2954 if (CB.TrueBB != CB.FalseBB) 2955 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2956 SwitchBB->normalizeSuccProbs(); 2957 2958 // If the lhs block is the next block, invert the condition so that we can 2959 // fall through to the lhs instead of the rhs block. 2960 if (CB.TrueBB == NextBlock(SwitchBB)) { 2961 std::swap(CB.TrueBB, CB.FalseBB); 2962 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2963 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2964 } 2965 2966 SDNodeFlags Flags; 2967 Flags.setUnpredictable(CB.IsUnpredictable); 2968 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), 2969 Cond, DAG.getBasicBlock(CB.TrueBB), Flags); 2970 2971 setValue(CurInst, BrCond); 2972 2973 // Insert the false branch. Do this even if it's a fall through branch, 2974 // this makes it easier to do DAG optimizations which require inverting 2975 // the branch condition. 2976 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2977 DAG.getBasicBlock(CB.FalseBB)); 2978 2979 DAG.setRoot(BrCond); 2980 } 2981 2982 /// visitJumpTable - Emit JumpTable node in the current MBB 2983 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2984 // Emit the code for the jump table 2985 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2986 assert(JT.Reg && "Should lower JT Header first!"); 2987 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout()); 2988 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2989 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2990 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2991 Index.getValue(1), Table, Index); 2992 DAG.setRoot(BrJumpTable); 2993 } 2994 2995 /// visitJumpTableHeader - This function emits necessary code to produce index 2996 /// in the JumpTable from switch case. 2997 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2998 JumpTableHeader &JTH, 2999 MachineBasicBlock *SwitchBB) { 3000 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 3001 const SDLoc &dl = *JT.SL; 3002 3003 // Subtract the lowest switch case value from the value being switched on. 3004 SDValue SwitchOp = getValue(JTH.SValue); 3005 EVT VT = SwitchOp.getValueType(); 3006 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3007 DAG.getConstant(JTH.First, dl, VT)); 3008 3009 // The SDNode we just created, which holds the value being switched on minus 3010 // the smallest case value, needs to be copied to a virtual register so it 3011 // can be used as an index into the jump table in a subsequent basic block. 3012 // This value may be smaller or larger than the target's pointer type, and 3013 // therefore require extension or truncating. 3014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3015 SwitchOp = 3016 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout())); 3017 3018 Register JumpTableReg = 3019 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout())); 3020 SDValue CopyTo = 3021 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp); 3022 JT.Reg = JumpTableReg; 3023 3024 if (!JTH.FallthroughUnreachable) { 3025 // Emit the range check for the jump table, and branch to the default block 3026 // for the switch statement if the value being switched on exceeds the 3027 // largest case in the switch. 3028 SDValue CMP = DAG.getSetCC( 3029 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3030 Sub.getValueType()), 3031 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3032 3033 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3034 MVT::Other, CopyTo, CMP, 3035 DAG.getBasicBlock(JT.Default)); 3036 3037 // Avoid emitting unnecessary branches to the next block. 3038 if (JT.MBB != NextBlock(SwitchBB)) 3039 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3040 DAG.getBasicBlock(JT.MBB)); 3041 3042 DAG.setRoot(BrCond); 3043 } else { 3044 // Avoid emitting unnecessary branches to the next block. 3045 if (JT.MBB != NextBlock(SwitchBB)) 3046 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3047 DAG.getBasicBlock(JT.MBB))); 3048 else 3049 DAG.setRoot(CopyTo); 3050 } 3051 } 3052 3053 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3054 /// variable if there exists one. 3055 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3056 SDValue &Chain) { 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3059 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3060 MachineFunction &MF = DAG.getMachineFunction(); 3061 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3062 MachineSDNode *Node = 3063 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3064 if (Global) { 3065 MachinePointerInfo MPInfo(Global); 3066 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3067 MachineMemOperand::MODereferenceable; 3068 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3069 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3070 DAG.getEVTAlign(PtrTy)); 3071 DAG.setNodeMemRefs(Node, {MemRef}); 3072 } 3073 if (PtrTy != PtrMemTy) 3074 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3075 return SDValue(Node, 0); 3076 } 3077 3078 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3079 /// tail spliced into a stack protector check success bb. 3080 /// 3081 /// For a high level explanation of how this fits into the stack protector 3082 /// generation see the comment on the declaration of class 3083 /// StackProtectorDescriptor. 3084 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3085 MachineBasicBlock *ParentBB) { 3086 3087 // First create the loads to the guard/stack slot for the comparison. 3088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3089 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3090 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3091 3092 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3093 int FI = MFI.getStackProtectorIndex(); 3094 3095 SDValue Guard; 3096 SDLoc dl = getCurSDLoc(); 3097 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3098 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3099 Align Align = 3100 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3101 3102 // Generate code to load the content of the guard slot. 3103 SDValue GuardVal = DAG.getLoad( 3104 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3105 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3106 MachineMemOperand::MOVolatile); 3107 3108 if (TLI.useStackGuardXorFP()) 3109 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3110 3111 // Retrieve guard check function, nullptr if instrumentation is inlined. 3112 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3113 // The target provides a guard check function to validate the guard value. 3114 // Generate a call to that function with the content of the guard slot as 3115 // argument. 3116 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3117 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3118 3119 TargetLowering::ArgListTy Args; 3120 TargetLowering::ArgListEntry Entry; 3121 Entry.Node = GuardVal; 3122 Entry.Ty = FnTy->getParamType(0); 3123 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3124 Entry.IsInReg = true; 3125 Args.push_back(Entry); 3126 3127 TargetLowering::CallLoweringInfo CLI(DAG); 3128 CLI.setDebugLoc(getCurSDLoc()) 3129 .setChain(DAG.getEntryNode()) 3130 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3131 getValue(GuardCheckFn), std::move(Args)); 3132 3133 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3134 DAG.setRoot(Result.second); 3135 return; 3136 } 3137 3138 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3139 // Otherwise, emit a volatile load to retrieve the stack guard value. 3140 SDValue Chain = DAG.getEntryNode(); 3141 if (TLI.useLoadStackGuardNode(M)) { 3142 Guard = getLoadStackGuard(DAG, dl, Chain); 3143 } else { 3144 const Value *IRGuard = TLI.getSDagStackGuard(M); 3145 SDValue GuardPtr = getValue(IRGuard); 3146 3147 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3148 MachinePointerInfo(IRGuard, 0), Align, 3149 MachineMemOperand::MOVolatile); 3150 } 3151 3152 // Perform the comparison via a getsetcc. 3153 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3154 *DAG.getContext(), 3155 Guard.getValueType()), 3156 Guard, GuardVal, ISD::SETNE); 3157 3158 // If the guard/stackslot do not equal, branch to failure MBB. 3159 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3160 MVT::Other, GuardVal.getOperand(0), 3161 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3162 // Otherwise branch to success MBB. 3163 SDValue Br = DAG.getNode(ISD::BR, dl, 3164 MVT::Other, BrCond, 3165 DAG.getBasicBlock(SPD.getSuccessMBB())); 3166 3167 DAG.setRoot(Br); 3168 } 3169 3170 /// Codegen the failure basic block for a stack protector check. 3171 /// 3172 /// A failure stack protector machine basic block consists simply of a call to 3173 /// __stack_chk_fail(). 3174 /// 3175 /// For a high level explanation of how this fits into the stack protector 3176 /// generation see the comment on the declaration of class 3177 /// StackProtectorDescriptor. 3178 void 3179 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3181 TargetLowering::MakeLibCallOptions CallOptions; 3182 CallOptions.setDiscardResult(true); 3183 SDValue Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 3184 MVT::isVoid, {}, CallOptions, getCurSDLoc()) 3185 .second; 3186 3187 // Emit a trap instruction if we are required to do so. 3188 const TargetOptions &TargetOpts = DAG.getTarget().Options; 3189 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn) 3190 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3191 3192 DAG.setRoot(Chain); 3193 } 3194 3195 /// visitBitTestHeader - This function emits necessary code to produce value 3196 /// suitable for "bit tests" 3197 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3198 MachineBasicBlock *SwitchBB) { 3199 SDLoc dl = getCurSDLoc(); 3200 3201 // Subtract the minimum value. 3202 SDValue SwitchOp = getValue(B.SValue); 3203 EVT VT = SwitchOp.getValueType(); 3204 SDValue RangeSub = 3205 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3206 3207 // Determine the type of the test operands. 3208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3209 bool UsePtrType = false; 3210 if (!TLI.isTypeLegal(VT)) { 3211 UsePtrType = true; 3212 } else { 3213 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3214 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3215 // Switch table case range are encoded into series of masks. 3216 // Just use pointer type, it's guaranteed to fit. 3217 UsePtrType = true; 3218 break; 3219 } 3220 } 3221 SDValue Sub = RangeSub; 3222 if (UsePtrType) { 3223 VT = TLI.getPointerTy(DAG.getDataLayout()); 3224 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3225 } 3226 3227 B.RegVT = VT.getSimpleVT(); 3228 B.Reg = FuncInfo.CreateReg(B.RegVT); 3229 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3230 3231 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3232 3233 if (!B.FallthroughUnreachable) 3234 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3235 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3236 SwitchBB->normalizeSuccProbs(); 3237 3238 SDValue Root = CopyTo; 3239 if (!B.FallthroughUnreachable) { 3240 // Conditional branch to the default block. 3241 SDValue RangeCmp = DAG.getSetCC(dl, 3242 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3243 RangeSub.getValueType()), 3244 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3245 ISD::SETUGT); 3246 3247 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3248 DAG.getBasicBlock(B.Default)); 3249 } 3250 3251 // Avoid emitting unnecessary branches to the next block. 3252 if (MBB != NextBlock(SwitchBB)) 3253 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3254 3255 DAG.setRoot(Root); 3256 } 3257 3258 /// visitBitTestCase - this function produces one "bit test" 3259 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3260 MachineBasicBlock *NextMBB, 3261 BranchProbability BranchProbToNext, 3262 Register Reg, BitTestCase &B, 3263 MachineBasicBlock *SwitchBB) { 3264 SDLoc dl = getCurSDLoc(); 3265 MVT VT = BB.RegVT; 3266 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3267 SDValue Cmp; 3268 unsigned PopCount = llvm::popcount(B.Mask); 3269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3270 if (PopCount == 1) { 3271 // Testing for a single bit; just compare the shift count with what it 3272 // would need to be to shift a 1 bit in that position. 3273 Cmp = DAG.getSetCC( 3274 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3275 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3276 ISD::SETEQ); 3277 } else if (PopCount == BB.Range) { 3278 // There is only one zero bit in the range, test for it directly. 3279 Cmp = DAG.getSetCC( 3280 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3281 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3282 } else { 3283 // Make desired shift 3284 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3285 DAG.getConstant(1, dl, VT), ShiftOp); 3286 3287 // Emit bit tests and jumps 3288 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3289 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3290 Cmp = DAG.getSetCC( 3291 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3292 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3293 } 3294 3295 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3296 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3297 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3298 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3299 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3300 // one as they are relative probabilities (and thus work more like weights), 3301 // and hence we need to normalize them to let the sum of them become one. 3302 SwitchBB->normalizeSuccProbs(); 3303 3304 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3305 MVT::Other, getControlRoot(), 3306 Cmp, DAG.getBasicBlock(B.TargetBB)); 3307 3308 // Avoid emitting unnecessary branches to the next block. 3309 if (NextMBB != NextBlock(SwitchBB)) 3310 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3311 DAG.getBasicBlock(NextMBB)); 3312 3313 DAG.setRoot(BrAnd); 3314 } 3315 3316 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3317 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3318 3319 // Retrieve successors. Look through artificial IR level blocks like 3320 // catchswitch for successors. 3321 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0)); 3322 const BasicBlock *EHPadBB = I.getSuccessor(1); 3323 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB); 3324 3325 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3326 // have to do anything here to lower funclet bundles. 3327 assert(!I.hasOperandBundlesOtherThan( 3328 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3329 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3330 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3331 LLVMContext::OB_clang_arc_attachedcall}) && 3332 "Cannot lower invokes with arbitrary operand bundles yet!"); 3333 3334 const Value *Callee(I.getCalledOperand()); 3335 const Function *Fn = dyn_cast<Function>(Callee); 3336 if (isa<InlineAsm>(Callee)) 3337 visitInlineAsm(I, EHPadBB); 3338 else if (Fn && Fn->isIntrinsic()) { 3339 switch (Fn->getIntrinsicID()) { 3340 default: 3341 llvm_unreachable("Cannot invoke this intrinsic"); 3342 case Intrinsic::donothing: 3343 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3344 case Intrinsic::seh_try_begin: 3345 case Intrinsic::seh_scope_begin: 3346 case Intrinsic::seh_try_end: 3347 case Intrinsic::seh_scope_end: 3348 if (EHPadMBB) 3349 // a block referenced by EH table 3350 // so dtor-funclet not removed by opts 3351 EHPadMBB->setMachineBlockAddressTaken(); 3352 break; 3353 case Intrinsic::experimental_patchpoint_void: 3354 case Intrinsic::experimental_patchpoint: 3355 visitPatchpoint(I, EHPadBB); 3356 break; 3357 case Intrinsic::experimental_gc_statepoint: 3358 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3359 break; 3360 case Intrinsic::wasm_rethrow: { 3361 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3362 // special because it can be invoked, so we manually lower it to a DAG 3363 // node here. 3364 SmallVector<SDValue, 8> Ops; 3365 Ops.push_back(getControlRoot()); // inchain for the terminator node 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 Ops.push_back( 3368 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3369 TLI.getPointerTy(DAG.getDataLayout()))); 3370 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3371 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3372 break; 3373 } 3374 } 3375 } else if (I.hasDeoptState()) { 3376 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3377 // Eventually we will support lowering the @llvm.experimental.deoptimize 3378 // intrinsic, and right now there are no plans to support other intrinsics 3379 // with deopt state. 3380 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3381 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3382 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3383 } else { 3384 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3385 } 3386 3387 // If the value of the invoke is used outside of its defining block, make it 3388 // available as a virtual register. 3389 // We already took care of the exported value for the statepoint instruction 3390 // during call to the LowerStatepoint. 3391 if (!isa<GCStatepointInst>(I)) { 3392 CopyToExportRegsIfNeeded(&I); 3393 } 3394 3395 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3396 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3397 BranchProbability EHPadBBProb = 3398 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3399 : BranchProbability::getZero(); 3400 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3401 3402 // Update successor info. 3403 addSuccessorWithProb(InvokeMBB, Return); 3404 for (auto &UnwindDest : UnwindDests) { 3405 UnwindDest.first->setIsEHPad(); 3406 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3407 } 3408 InvokeMBB->normalizeSuccProbs(); 3409 3410 // Drop into normal successor. 3411 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3412 DAG.getBasicBlock(Return))); 3413 } 3414 3415 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3416 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3417 3418 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3419 // have to do anything here to lower funclet bundles. 3420 assert(!I.hasOperandBundlesOtherThan( 3421 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3422 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3423 3424 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3425 visitInlineAsm(I); 3426 CopyToExportRegsIfNeeded(&I); 3427 3428 // Retrieve successors. 3429 SmallPtrSet<BasicBlock *, 8> Dests; 3430 Dests.insert(I.getDefaultDest()); 3431 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest()); 3432 3433 // Update successor info. 3434 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3435 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3436 BasicBlock *Dest = I.getIndirectDest(i); 3437 MachineBasicBlock *Target = FuncInfo.getMBB(Dest); 3438 Target->setIsInlineAsmBrIndirectTarget(); 3439 Target->setMachineBlockAddressTaken(); 3440 Target->setLabelMustBeEmitted(); 3441 // Don't add duplicate machine successors. 3442 if (Dests.insert(Dest).second) 3443 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3444 } 3445 CallBrMBB->normalizeSuccProbs(); 3446 3447 // Drop into default successor. 3448 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3449 MVT::Other, getControlRoot(), 3450 DAG.getBasicBlock(Return))); 3451 } 3452 3453 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3454 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3455 } 3456 3457 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3458 assert(FuncInfo.MBB->isEHPad() && 3459 "Call to landingpad not in landing pad!"); 3460 3461 // If there aren't registers to copy the values into (e.g., during SjLj 3462 // exceptions), then don't bother to create these DAG nodes. 3463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3464 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3465 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3466 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3467 return; 3468 3469 // If landingpad's return type is token type, we don't create DAG nodes 3470 // for its exception pointer and selector value. The extraction of exception 3471 // pointer or selector value from token type landingpads is not currently 3472 // supported. 3473 if (LP.getType()->isTokenTy()) 3474 return; 3475 3476 SmallVector<EVT, 2> ValueVTs; 3477 SDLoc dl = getCurSDLoc(); 3478 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3479 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3480 3481 // Get the two live-in registers as SDValues. The physregs have already been 3482 // copied into virtual registers. 3483 SDValue Ops[2]; 3484 if (FuncInfo.ExceptionPointerVirtReg) { 3485 Ops[0] = DAG.getZExtOrTrunc( 3486 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3487 FuncInfo.ExceptionPointerVirtReg, 3488 TLI.getPointerTy(DAG.getDataLayout())), 3489 dl, ValueVTs[0]); 3490 } else { 3491 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3492 } 3493 Ops[1] = DAG.getZExtOrTrunc( 3494 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3495 FuncInfo.ExceptionSelectorVirtReg, 3496 TLI.getPointerTy(DAG.getDataLayout())), 3497 dl, ValueVTs[1]); 3498 3499 // Merge into one. 3500 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3501 DAG.getVTList(ValueVTs), Ops); 3502 setValue(&LP, Res); 3503 } 3504 3505 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3506 MachineBasicBlock *Last) { 3507 // Update JTCases. 3508 for (JumpTableBlock &JTB : SL->JTCases) 3509 if (JTB.first.HeaderBB == First) 3510 JTB.first.HeaderBB = Last; 3511 3512 // Update BitTestCases. 3513 for (BitTestBlock &BTB : SL->BitTestCases) 3514 if (BTB.Parent == First) 3515 BTB.Parent = Last; 3516 } 3517 3518 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3519 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3520 3521 // Update machine-CFG edges with unique successors. 3522 SmallSet<BasicBlock*, 32> Done; 3523 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3524 BasicBlock *BB = I.getSuccessor(i); 3525 bool Inserted = Done.insert(BB).second; 3526 if (!Inserted) 3527 continue; 3528 3529 MachineBasicBlock *Succ = FuncInfo.getMBB(BB); 3530 addSuccessorWithProb(IndirectBrMBB, Succ); 3531 } 3532 IndirectBrMBB->normalizeSuccProbs(); 3533 3534 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3535 MVT::Other, getControlRoot(), 3536 getValue(I.getAddress()))); 3537 } 3538 3539 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3540 if (!DAG.getTarget().Options.TrapUnreachable) 3541 return; 3542 3543 // We may be able to ignore unreachable behind a noreturn call. 3544 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3545 Call && Call->doesNotReturn()) { 3546 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3547 return; 3548 // Do not emit an additional trap instruction. 3549 if (Call->isNonContinuableTrap()) 3550 return; 3551 } 3552 3553 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3554 } 3555 3556 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3557 SDNodeFlags Flags; 3558 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3559 Flags.copyFMF(*FPOp); 3560 3561 SDValue Op = getValue(I.getOperand(0)); 3562 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3563 Op, Flags); 3564 setValue(&I, UnNodeValue); 3565 } 3566 3567 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3568 SDNodeFlags Flags; 3569 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3570 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3571 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3572 } 3573 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3574 Flags.setExact(ExactOp->isExact()); 3575 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3576 Flags.setDisjoint(DisjointOp->isDisjoint()); 3577 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3578 Flags.copyFMF(*FPOp); 3579 3580 SDValue Op1 = getValue(I.getOperand(0)); 3581 SDValue Op2 = getValue(I.getOperand(1)); 3582 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3583 Op1, Op2, Flags); 3584 setValue(&I, BinNodeValue); 3585 } 3586 3587 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3588 SDValue Op1 = getValue(I.getOperand(0)); 3589 SDValue Op2 = getValue(I.getOperand(1)); 3590 3591 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3592 Op1.getValueType(), DAG.getDataLayout()); 3593 3594 // Coerce the shift amount to the right type if we can. This exposes the 3595 // truncate or zext to optimization early. 3596 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3597 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3598 "Unexpected shift type"); 3599 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3600 } 3601 3602 bool nuw = false; 3603 bool nsw = false; 3604 bool exact = false; 3605 3606 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3607 3608 if (const OverflowingBinaryOperator *OFBinOp = 3609 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3610 nuw = OFBinOp->hasNoUnsignedWrap(); 3611 nsw = OFBinOp->hasNoSignedWrap(); 3612 } 3613 if (const PossiblyExactOperator *ExactOp = 3614 dyn_cast<const PossiblyExactOperator>(&I)) 3615 exact = ExactOp->isExact(); 3616 } 3617 SDNodeFlags Flags; 3618 Flags.setExact(exact); 3619 Flags.setNoSignedWrap(nsw); 3620 Flags.setNoUnsignedWrap(nuw); 3621 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3622 Flags); 3623 setValue(&I, Res); 3624 } 3625 3626 void SelectionDAGBuilder::visitSDiv(const User &I) { 3627 SDValue Op1 = getValue(I.getOperand(0)); 3628 SDValue Op2 = getValue(I.getOperand(1)); 3629 3630 SDNodeFlags Flags; 3631 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3632 cast<PossiblyExactOperator>(&I)->isExact()); 3633 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3634 Op2, Flags)); 3635 } 3636 3637 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3638 ICmpInst::Predicate predicate = I.getPredicate(); 3639 SDValue Op1 = getValue(I.getOperand(0)); 3640 SDValue Op2 = getValue(I.getOperand(1)); 3641 ISD::CondCode Opcode = getICmpCondCode(predicate); 3642 3643 auto &TLI = DAG.getTargetLoweringInfo(); 3644 EVT MemVT = 3645 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3646 3647 // If a pointer's DAG type is larger than its memory type then the DAG values 3648 // are zero-extended. This breaks signed comparisons so truncate back to the 3649 // underlying type before doing the compare. 3650 if (Op1.getValueType() != MemVT) { 3651 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3652 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3653 } 3654 3655 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3656 I.getType()); 3657 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3658 } 3659 3660 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3661 FCmpInst::Predicate predicate = I.getPredicate(); 3662 SDValue Op1 = getValue(I.getOperand(0)); 3663 SDValue Op2 = getValue(I.getOperand(1)); 3664 3665 ISD::CondCode Condition = getFCmpCondCode(predicate); 3666 auto *FPMO = cast<FPMathOperator>(&I); 3667 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3668 Condition = getFCmpCodeWithoutNaN(Condition); 3669 3670 SDNodeFlags Flags; 3671 Flags.copyFMF(*FPMO); 3672 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3673 3674 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3675 I.getType()); 3676 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3677 } 3678 3679 // Check if the condition of the select has one use or two users that are both 3680 // selects with the same condition. 3681 static bool hasOnlySelectUsers(const Value *Cond) { 3682 return llvm::all_of(Cond->users(), [](const Value *V) { 3683 return isa<SelectInst>(V); 3684 }); 3685 } 3686 3687 void SelectionDAGBuilder::visitSelect(const User &I) { 3688 SmallVector<EVT, 4> ValueVTs; 3689 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3690 ValueVTs); 3691 unsigned NumValues = ValueVTs.size(); 3692 if (NumValues == 0) return; 3693 3694 SmallVector<SDValue, 4> Values(NumValues); 3695 SDValue Cond = getValue(I.getOperand(0)); 3696 SDValue LHSVal = getValue(I.getOperand(1)); 3697 SDValue RHSVal = getValue(I.getOperand(2)); 3698 SmallVector<SDValue, 1> BaseOps(1, Cond); 3699 ISD::NodeType OpCode = 3700 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3701 3702 bool IsUnaryAbs = false; 3703 bool Negate = false; 3704 3705 SDNodeFlags Flags; 3706 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3707 Flags.copyFMF(*FPOp); 3708 3709 Flags.setUnpredictable( 3710 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3711 3712 // Min/max matching is only viable if all output VTs are the same. 3713 if (all_equal(ValueVTs)) { 3714 EVT VT = ValueVTs[0]; 3715 LLVMContext &Ctx = *DAG.getContext(); 3716 auto &TLI = DAG.getTargetLoweringInfo(); 3717 3718 // We care about the legality of the operation after it has been type 3719 // legalized. 3720 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3721 VT = TLI.getTypeToTransformTo(Ctx, VT); 3722 3723 // If the vselect is legal, assume we want to leave this as a vector setcc + 3724 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3725 // min/max is legal on the scalar type. 3726 bool UseScalarMinMax = VT.isVector() && 3727 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3728 3729 // ValueTracking's select pattern matching does not account for -0.0, 3730 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3731 // -0.0 is less than +0.0. 3732 const Value *LHS, *RHS; 3733 auto SPR = matchSelectPattern(&I, LHS, RHS); 3734 ISD::NodeType Opc = ISD::DELETED_NODE; 3735 switch (SPR.Flavor) { 3736 case SPF_UMAX: Opc = ISD::UMAX; break; 3737 case SPF_UMIN: Opc = ISD::UMIN; break; 3738 case SPF_SMAX: Opc = ISD::SMAX; break; 3739 case SPF_SMIN: Opc = ISD::SMIN; break; 3740 case SPF_FMINNUM: 3741 switch (SPR.NaNBehavior) { 3742 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3743 case SPNB_RETURNS_NAN: break; 3744 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3745 case SPNB_RETURNS_ANY: 3746 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3747 (UseScalarMinMax && 3748 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3749 Opc = ISD::FMINNUM; 3750 break; 3751 } 3752 break; 3753 case SPF_FMAXNUM: 3754 switch (SPR.NaNBehavior) { 3755 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3756 case SPNB_RETURNS_NAN: break; 3757 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3758 case SPNB_RETURNS_ANY: 3759 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3760 (UseScalarMinMax && 3761 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3762 Opc = ISD::FMAXNUM; 3763 break; 3764 } 3765 break; 3766 case SPF_NABS: 3767 Negate = true; 3768 [[fallthrough]]; 3769 case SPF_ABS: 3770 IsUnaryAbs = true; 3771 Opc = ISD::ABS; 3772 break; 3773 default: break; 3774 } 3775 3776 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3777 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3778 (UseScalarMinMax && 3779 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3780 // If the underlying comparison instruction is used by any other 3781 // instruction, the consumed instructions won't be destroyed, so it is 3782 // not profitable to convert to a min/max. 3783 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3784 OpCode = Opc; 3785 LHSVal = getValue(LHS); 3786 RHSVal = getValue(RHS); 3787 BaseOps.clear(); 3788 } 3789 3790 if (IsUnaryAbs) { 3791 OpCode = Opc; 3792 LHSVal = getValue(LHS); 3793 BaseOps.clear(); 3794 } 3795 } 3796 3797 if (IsUnaryAbs) { 3798 for (unsigned i = 0; i != NumValues; ++i) { 3799 SDLoc dl = getCurSDLoc(); 3800 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3801 Values[i] = 3802 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3803 if (Negate) 3804 Values[i] = DAG.getNegative(Values[i], dl, VT); 3805 } 3806 } else { 3807 for (unsigned i = 0; i != NumValues; ++i) { 3808 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3809 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3810 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3811 Values[i] = DAG.getNode( 3812 OpCode, getCurSDLoc(), 3813 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3814 } 3815 } 3816 3817 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3818 DAG.getVTList(ValueVTs), Values)); 3819 } 3820 3821 void SelectionDAGBuilder::visitTrunc(const User &I) { 3822 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3823 SDValue N = getValue(I.getOperand(0)); 3824 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3825 I.getType()); 3826 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3827 } 3828 3829 void SelectionDAGBuilder::visitZExt(const User &I) { 3830 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3831 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3832 SDValue N = getValue(I.getOperand(0)); 3833 auto &TLI = DAG.getTargetLoweringInfo(); 3834 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3835 3836 SDNodeFlags Flags; 3837 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3838 Flags.setNonNeg(PNI->hasNonNeg()); 3839 3840 // Eagerly use nonneg information to canonicalize towards sign_extend if 3841 // that is the target's preference. 3842 // TODO: Let the target do this later. 3843 if (Flags.hasNonNeg() && 3844 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3845 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3846 return; 3847 } 3848 3849 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3850 } 3851 3852 void SelectionDAGBuilder::visitSExt(const User &I) { 3853 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3854 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3855 SDValue N = getValue(I.getOperand(0)); 3856 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3857 I.getType()); 3858 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3859 } 3860 3861 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3862 // FPTrunc is never a no-op cast, no need to check 3863 SDValue N = getValue(I.getOperand(0)); 3864 SDLoc dl = getCurSDLoc(); 3865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3866 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3867 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3868 DAG.getTargetConstant( 3869 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3870 } 3871 3872 void SelectionDAGBuilder::visitFPExt(const User &I) { 3873 // FPExt is never a no-op cast, no need to check 3874 SDValue N = getValue(I.getOperand(0)); 3875 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3876 I.getType()); 3877 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3878 } 3879 3880 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3881 // FPToUI is never a no-op cast, no need to check 3882 SDValue N = getValue(I.getOperand(0)); 3883 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3884 I.getType()); 3885 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3886 } 3887 3888 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3889 // FPToSI is never a no-op cast, no need to check 3890 SDValue N = getValue(I.getOperand(0)); 3891 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3892 I.getType()); 3893 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3894 } 3895 3896 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3897 // UIToFP is never a no-op cast, no need to check 3898 SDValue N = getValue(I.getOperand(0)); 3899 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3900 I.getType()); 3901 SDNodeFlags Flags; 3902 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3903 Flags.setNonNeg(PNI->hasNonNeg()); 3904 3905 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3906 } 3907 3908 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3909 // SIToFP is never a no-op cast, no need to check 3910 SDValue N = getValue(I.getOperand(0)); 3911 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3912 I.getType()); 3913 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3914 } 3915 3916 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3917 // What to do depends on the size of the integer and the size of the pointer. 3918 // We can either truncate, zero extend, or no-op, accordingly. 3919 SDValue N = getValue(I.getOperand(0)); 3920 auto &TLI = DAG.getTargetLoweringInfo(); 3921 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3922 I.getType()); 3923 EVT PtrMemVT = 3924 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3925 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3926 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3927 setValue(&I, N); 3928 } 3929 3930 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3931 // What to do depends on the size of the integer and the size of the pointer. 3932 // We can either truncate, zero extend, or no-op, accordingly. 3933 SDValue N = getValue(I.getOperand(0)); 3934 auto &TLI = DAG.getTargetLoweringInfo(); 3935 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3936 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3937 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3938 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3939 setValue(&I, N); 3940 } 3941 3942 void SelectionDAGBuilder::visitBitCast(const User &I) { 3943 SDValue N = getValue(I.getOperand(0)); 3944 SDLoc dl = getCurSDLoc(); 3945 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3946 I.getType()); 3947 3948 // BitCast assures us that source and destination are the same size so this is 3949 // either a BITCAST or a no-op. 3950 if (DestVT != N.getValueType()) 3951 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3952 DestVT, N)); // convert types. 3953 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3954 // might fold any kind of constant expression to an integer constant and that 3955 // is not what we are looking for. Only recognize a bitcast of a genuine 3956 // constant integer as an opaque constant. 3957 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3958 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3959 /*isOpaque*/true)); 3960 else 3961 setValue(&I, N); // noop cast. 3962 } 3963 3964 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3966 const Value *SV = I.getOperand(0); 3967 SDValue N = getValue(SV); 3968 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3969 3970 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3971 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3972 3973 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3974 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3975 3976 setValue(&I, N); 3977 } 3978 3979 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3981 SDValue InVec = getValue(I.getOperand(0)); 3982 SDValue InVal = getValue(I.getOperand(1)); 3983 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3984 TLI.getVectorIdxTy(DAG.getDataLayout())); 3985 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3986 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3987 InVec, InVal, InIdx)); 3988 } 3989 3990 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3992 SDValue InVec = getValue(I.getOperand(0)); 3993 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3994 TLI.getVectorIdxTy(DAG.getDataLayout())); 3995 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3996 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3997 InVec, InIdx)); 3998 } 3999 4000 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4001 SDValue Src1 = getValue(I.getOperand(0)); 4002 SDValue Src2 = getValue(I.getOperand(1)); 4003 ArrayRef<int> Mask; 4004 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4005 Mask = SVI->getShuffleMask(); 4006 else 4007 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4008 SDLoc DL = getCurSDLoc(); 4009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4010 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4011 EVT SrcVT = Src1.getValueType(); 4012 4013 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4014 VT.isScalableVector()) { 4015 // Canonical splat form of first element of first input vector. 4016 SDValue FirstElt = 4017 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4018 DAG.getVectorIdxConstant(0, DL)); 4019 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4020 return; 4021 } 4022 4023 // For now, we only handle splats for scalable vectors. 4024 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4025 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4026 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4027 4028 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4029 unsigned MaskNumElts = Mask.size(); 4030 4031 if (SrcNumElts == MaskNumElts) { 4032 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4033 return; 4034 } 4035 4036 // Normalize the shuffle vector since mask and vector length don't match. 4037 if (SrcNumElts < MaskNumElts) { 4038 // Mask is longer than the source vectors. We can use concatenate vector to 4039 // make the mask and vectors lengths match. 4040 4041 if (MaskNumElts % SrcNumElts == 0) { 4042 // Mask length is a multiple of the source vector length. 4043 // Check if the shuffle is some kind of concatenation of the input 4044 // vectors. 4045 unsigned NumConcat = MaskNumElts / SrcNumElts; 4046 bool IsConcat = true; 4047 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4048 for (unsigned i = 0; i != MaskNumElts; ++i) { 4049 int Idx = Mask[i]; 4050 if (Idx < 0) 4051 continue; 4052 // Ensure the indices in each SrcVT sized piece are sequential and that 4053 // the same source is used for the whole piece. 4054 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4055 (ConcatSrcs[i / SrcNumElts] >= 0 && 4056 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4057 IsConcat = false; 4058 break; 4059 } 4060 // Remember which source this index came from. 4061 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4062 } 4063 4064 // The shuffle is concatenating multiple vectors together. Just emit 4065 // a CONCAT_VECTORS operation. 4066 if (IsConcat) { 4067 SmallVector<SDValue, 8> ConcatOps; 4068 for (auto Src : ConcatSrcs) { 4069 if (Src < 0) 4070 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4071 else if (Src == 0) 4072 ConcatOps.push_back(Src1); 4073 else 4074 ConcatOps.push_back(Src2); 4075 } 4076 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4077 return; 4078 } 4079 } 4080 4081 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4082 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4083 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4084 PaddedMaskNumElts); 4085 4086 // Pad both vectors with undefs to make them the same length as the mask. 4087 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4088 4089 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4090 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4091 MOps1[0] = Src1; 4092 MOps2[0] = Src2; 4093 4094 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4095 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4096 4097 // Readjust mask for new input vector length. 4098 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4099 for (unsigned i = 0; i != MaskNumElts; ++i) { 4100 int Idx = Mask[i]; 4101 if (Idx >= (int)SrcNumElts) 4102 Idx -= SrcNumElts - PaddedMaskNumElts; 4103 MappedOps[i] = Idx; 4104 } 4105 4106 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4107 4108 // If the concatenated vector was padded, extract a subvector with the 4109 // correct number of elements. 4110 if (MaskNumElts != PaddedMaskNumElts) 4111 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4112 DAG.getVectorIdxConstant(0, DL)); 4113 4114 setValue(&I, Result); 4115 return; 4116 } 4117 4118 if (SrcNumElts > MaskNumElts) { 4119 // Analyze the access pattern of the vector to see if we can extract 4120 // two subvectors and do the shuffle. 4121 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4122 bool CanExtract = true; 4123 for (int Idx : Mask) { 4124 unsigned Input = 0; 4125 if (Idx < 0) 4126 continue; 4127 4128 if (Idx >= (int)SrcNumElts) { 4129 Input = 1; 4130 Idx -= SrcNumElts; 4131 } 4132 4133 // If all the indices come from the same MaskNumElts sized portion of 4134 // the sources we can use extract. Also make sure the extract wouldn't 4135 // extract past the end of the source. 4136 int NewStartIdx = alignDown(Idx, MaskNumElts); 4137 if (NewStartIdx + MaskNumElts > SrcNumElts || 4138 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4139 CanExtract = false; 4140 // Make sure we always update StartIdx as we use it to track if all 4141 // elements are undef. 4142 StartIdx[Input] = NewStartIdx; 4143 } 4144 4145 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4146 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4147 return; 4148 } 4149 if (CanExtract) { 4150 // Extract appropriate subvector and generate a vector shuffle 4151 for (unsigned Input = 0; Input < 2; ++Input) { 4152 SDValue &Src = Input == 0 ? Src1 : Src2; 4153 if (StartIdx[Input] < 0) 4154 Src = DAG.getUNDEF(VT); 4155 else { 4156 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4157 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4158 } 4159 } 4160 4161 // Calculate new mask. 4162 SmallVector<int, 8> MappedOps(Mask); 4163 for (int &Idx : MappedOps) { 4164 if (Idx >= (int)SrcNumElts) 4165 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4166 else if (Idx >= 0) 4167 Idx -= StartIdx[0]; 4168 } 4169 4170 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4171 return; 4172 } 4173 } 4174 4175 // We can't use either concat vectors or extract subvectors so fall back to 4176 // replacing the shuffle with extract and build vector. 4177 // to insert and build vector. 4178 EVT EltVT = VT.getVectorElementType(); 4179 SmallVector<SDValue,8> Ops; 4180 for (int Idx : Mask) { 4181 SDValue Res; 4182 4183 if (Idx < 0) { 4184 Res = DAG.getUNDEF(EltVT); 4185 } else { 4186 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4187 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4188 4189 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4190 DAG.getVectorIdxConstant(Idx, DL)); 4191 } 4192 4193 Ops.push_back(Res); 4194 } 4195 4196 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4197 } 4198 4199 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4200 ArrayRef<unsigned> Indices = I.getIndices(); 4201 const Value *Op0 = I.getOperand(0); 4202 const Value *Op1 = I.getOperand(1); 4203 Type *AggTy = I.getType(); 4204 Type *ValTy = Op1->getType(); 4205 bool IntoUndef = isa<UndefValue>(Op0); 4206 bool FromUndef = isa<UndefValue>(Op1); 4207 4208 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4209 4210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4211 SmallVector<EVT, 4> AggValueVTs; 4212 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4213 SmallVector<EVT, 4> ValValueVTs; 4214 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4215 4216 unsigned NumAggValues = AggValueVTs.size(); 4217 unsigned NumValValues = ValValueVTs.size(); 4218 SmallVector<SDValue, 4> Values(NumAggValues); 4219 4220 // Ignore an insertvalue that produces an empty object 4221 if (!NumAggValues) { 4222 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4223 return; 4224 } 4225 4226 SDValue Agg = getValue(Op0); 4227 unsigned i = 0; 4228 // Copy the beginning value(s) from the original aggregate. 4229 for (; i != LinearIndex; ++i) 4230 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4231 SDValue(Agg.getNode(), Agg.getResNo() + i); 4232 // Copy values from the inserted value(s). 4233 if (NumValValues) { 4234 SDValue Val = getValue(Op1); 4235 for (; i != LinearIndex + NumValValues; ++i) 4236 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4237 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4238 } 4239 // Copy remaining value(s) from the original aggregate. 4240 for (; i != NumAggValues; ++i) 4241 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4242 SDValue(Agg.getNode(), Agg.getResNo() + i); 4243 4244 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4245 DAG.getVTList(AggValueVTs), Values)); 4246 } 4247 4248 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4249 ArrayRef<unsigned> Indices = I.getIndices(); 4250 const Value *Op0 = I.getOperand(0); 4251 Type *AggTy = Op0->getType(); 4252 Type *ValTy = I.getType(); 4253 bool OutOfUndef = isa<UndefValue>(Op0); 4254 4255 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4256 4257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4258 SmallVector<EVT, 4> ValValueVTs; 4259 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4260 4261 unsigned NumValValues = ValValueVTs.size(); 4262 4263 // Ignore a extractvalue that produces an empty object 4264 if (!NumValValues) { 4265 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4266 return; 4267 } 4268 4269 SmallVector<SDValue, 4> Values(NumValValues); 4270 4271 SDValue Agg = getValue(Op0); 4272 // Copy out the selected value(s). 4273 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4274 Values[i - LinearIndex] = 4275 OutOfUndef ? 4276 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4277 SDValue(Agg.getNode(), Agg.getResNo() + i); 4278 4279 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4280 DAG.getVTList(ValValueVTs), Values)); 4281 } 4282 4283 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4284 Value *Op0 = I.getOperand(0); 4285 // Note that the pointer operand may be a vector of pointers. Take the scalar 4286 // element which holds a pointer. 4287 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4288 SDValue N = getValue(Op0); 4289 SDLoc dl = getCurSDLoc(); 4290 auto &TLI = DAG.getTargetLoweringInfo(); 4291 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags(); 4292 4293 // Normalize Vector GEP - all scalar operands should be converted to the 4294 // splat vector. 4295 bool IsVectorGEP = I.getType()->isVectorTy(); 4296 ElementCount VectorElementCount = 4297 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4298 : ElementCount::getFixed(0); 4299 4300 if (IsVectorGEP && !N.getValueType().isVector()) { 4301 LLVMContext &Context = *DAG.getContext(); 4302 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4303 N = DAG.getSplat(VT, dl, N); 4304 } 4305 4306 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4307 GTI != E; ++GTI) { 4308 const Value *Idx = GTI.getOperand(); 4309 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4310 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4311 if (Field) { 4312 // N = N + Offset 4313 uint64_t Offset = 4314 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4315 4316 // In an inbounds GEP with an offset that is nonnegative even when 4317 // interpreted as signed, assume there is no unsigned overflow. 4318 SDNodeFlags Flags; 4319 if (NW.hasNoUnsignedWrap() || 4320 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap())) 4321 Flags |= SDNodeFlags::NoUnsignedWrap; 4322 4323 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4324 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4325 } 4326 } else { 4327 // IdxSize is the width of the arithmetic according to IR semantics. 4328 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4329 // (and fix up the result later). 4330 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4331 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4332 TypeSize ElementSize = 4333 GTI.getSequentialElementStride(DAG.getDataLayout()); 4334 // We intentionally mask away the high bits here; ElementSize may not 4335 // fit in IdxTy. 4336 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(), 4337 /*isSigned=*/false, /*implicitTrunc=*/true); 4338 bool ElementScalable = ElementSize.isScalable(); 4339 4340 // If this is a scalar constant or a splat vector of constants, 4341 // handle it quickly. 4342 const auto *C = dyn_cast<Constant>(Idx); 4343 if (C && isa<VectorType>(C->getType())) 4344 C = C->getSplatValue(); 4345 4346 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4347 if (CI && CI->isZero()) 4348 continue; 4349 if (CI && !ElementScalable) { 4350 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4351 LLVMContext &Context = *DAG.getContext(); 4352 SDValue OffsVal; 4353 if (IsVectorGEP) 4354 OffsVal = DAG.getConstant( 4355 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4356 else 4357 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4358 4359 // In an inbounds GEP with an offset that is nonnegative even when 4360 // interpreted as signed, assume there is no unsigned overflow. 4361 SDNodeFlags Flags; 4362 if (NW.hasNoUnsignedWrap() || 4363 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap())) 4364 Flags.setNoUnsignedWrap(true); 4365 4366 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4367 4368 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4369 continue; 4370 } 4371 4372 // N = N + Idx * ElementMul; 4373 SDValue IdxN = getValue(Idx); 4374 4375 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4376 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4377 VectorElementCount); 4378 IdxN = DAG.getSplat(VT, dl, IdxN); 4379 } 4380 4381 // If the index is smaller or larger than intptr_t, truncate or extend 4382 // it. 4383 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4384 4385 SDNodeFlags ScaleFlags; 4386 // The multiplication of an index by the type size does not wrap the 4387 // pointer index type in a signed sense (mul nsw). 4388 ScaleFlags.setNoSignedWrap(NW.hasNoUnsignedSignedWrap()); 4389 4390 // The multiplication of an index by the type size does not wrap the 4391 // pointer index type in an unsigned sense (mul nuw). 4392 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap()); 4393 4394 if (ElementScalable) { 4395 EVT VScaleTy = N.getValueType().getScalarType(); 4396 SDValue VScale = DAG.getNode( 4397 ISD::VSCALE, dl, VScaleTy, 4398 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4399 if (IsVectorGEP) 4400 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4401 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale, 4402 ScaleFlags); 4403 } else { 4404 // If this is a multiply by a power of two, turn it into a shl 4405 // immediately. This is a very common case. 4406 if (ElementMul != 1) { 4407 if (ElementMul.isPowerOf2()) { 4408 unsigned Amt = ElementMul.logBase2(); 4409 IdxN = DAG.getNode(ISD::SHL, dl, N.getValueType(), IdxN, 4410 DAG.getConstant(Amt, dl, IdxN.getValueType()), 4411 ScaleFlags); 4412 } else { 4413 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4414 IdxN.getValueType()); 4415 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale, 4416 ScaleFlags); 4417 } 4418 } 4419 } 4420 4421 // The successive addition of the current address, truncated to the 4422 // pointer index type and interpreted as an unsigned number, and each 4423 // offset, also interpreted as an unsigned number, does not wrap the 4424 // pointer index type (add nuw). 4425 SDNodeFlags AddFlags; 4426 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap()); 4427 4428 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, IdxN, AddFlags); 4429 } 4430 } 4431 4432 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4433 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4434 if (IsVectorGEP) { 4435 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4436 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4437 } 4438 4439 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4440 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4441 4442 setValue(&I, N); 4443 } 4444 4445 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4446 // If this is a fixed sized alloca in the entry block of the function, 4447 // allocate it statically on the stack. 4448 if (FuncInfo.StaticAllocaMap.count(&I)) 4449 return; // getValue will auto-populate this. 4450 4451 SDLoc dl = getCurSDLoc(); 4452 Type *Ty = I.getAllocatedType(); 4453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4454 auto &DL = DAG.getDataLayout(); 4455 TypeSize TySize = DL.getTypeAllocSize(Ty); 4456 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4457 4458 SDValue AllocSize = getValue(I.getArraySize()); 4459 4460 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4461 if (AllocSize.getValueType() != IntPtr) 4462 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4463 4464 if (TySize.isScalable()) 4465 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4466 DAG.getVScale(dl, IntPtr, 4467 APInt(IntPtr.getScalarSizeInBits(), 4468 TySize.getKnownMinValue()))); 4469 else { 4470 SDValue TySizeValue = 4471 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4472 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4473 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4474 } 4475 4476 // Handle alignment. If the requested alignment is less than or equal to 4477 // the stack alignment, ignore it. If the size is greater than or equal to 4478 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4479 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4480 if (*Alignment <= StackAlign) 4481 Alignment = std::nullopt; 4482 4483 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4484 // Round the size of the allocation up to the stack alignment size 4485 // by add SA-1 to the size. This doesn't overflow because we're computing 4486 // an address inside an alloca. 4487 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4488 DAG.getConstant(StackAlignMask, dl, IntPtr), 4489 SDNodeFlags::NoUnsignedWrap); 4490 4491 // Mask out the low bits for alignment purposes. 4492 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4493 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr)); 4494 4495 SDValue Ops[] = { 4496 getRoot(), AllocSize, 4497 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4498 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4499 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4500 setValue(&I, DSA); 4501 DAG.setRoot(DSA.getValue(1)); 4502 4503 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4504 } 4505 4506 static const MDNode *getRangeMetadata(const Instruction &I) { 4507 // If !noundef is not present, then !range violation results in a poison 4508 // value rather than immediate undefined behavior. In theory, transferring 4509 // these annotations to SDAG is fine, but in practice there are key SDAG 4510 // transforms that are known not to be poison-safe, such as folding logical 4511 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4512 // also present. 4513 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4514 return nullptr; 4515 return I.getMetadata(LLVMContext::MD_range); 4516 } 4517 4518 static std::optional<ConstantRange> getRange(const Instruction &I) { 4519 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4520 // see comment in getRangeMetadata about this check 4521 if (CB->hasRetAttr(Attribute::NoUndef)) 4522 return CB->getRange(); 4523 } 4524 if (const MDNode *Range = getRangeMetadata(I)) 4525 return getConstantRangeFromMetadata(*Range); 4526 return std::nullopt; 4527 } 4528 4529 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4530 if (I.isAtomic()) 4531 return visitAtomicLoad(I); 4532 4533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4534 const Value *SV = I.getOperand(0); 4535 if (TLI.supportSwiftError()) { 4536 // Swifterror values can come from either a function parameter with 4537 // swifterror attribute or an alloca with swifterror attribute. 4538 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4539 if (Arg->hasSwiftErrorAttr()) 4540 return visitLoadFromSwiftError(I); 4541 } 4542 4543 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4544 if (Alloca->isSwiftError()) 4545 return visitLoadFromSwiftError(I); 4546 } 4547 } 4548 4549 SDValue Ptr = getValue(SV); 4550 4551 Type *Ty = I.getType(); 4552 SmallVector<EVT, 4> ValueVTs, MemVTs; 4553 SmallVector<TypeSize, 4> Offsets; 4554 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4555 unsigned NumValues = ValueVTs.size(); 4556 if (NumValues == 0) 4557 return; 4558 4559 Align Alignment = I.getAlign(); 4560 AAMDNodes AAInfo = I.getAAMetadata(); 4561 const MDNode *Ranges = getRangeMetadata(I); 4562 bool isVolatile = I.isVolatile(); 4563 MachineMemOperand::Flags MMOFlags = 4564 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4565 4566 SDValue Root; 4567 bool ConstantMemory = false; 4568 if (isVolatile) 4569 // Serialize volatile loads with other side effects. 4570 Root = getRoot(); 4571 else if (NumValues > MaxParallelChains) 4572 Root = getMemoryRoot(); 4573 else if (AA && 4574 AA->pointsToConstantMemory(MemoryLocation( 4575 SV, 4576 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4577 AAInfo))) { 4578 // Do not serialize (non-volatile) loads of constant memory with anything. 4579 Root = DAG.getEntryNode(); 4580 ConstantMemory = true; 4581 MMOFlags |= MachineMemOperand::MOInvariant; 4582 } else { 4583 // Do not serialize non-volatile loads against each other. 4584 Root = DAG.getRoot(); 4585 } 4586 4587 SDLoc dl = getCurSDLoc(); 4588 4589 if (isVolatile) 4590 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4591 4592 SmallVector<SDValue, 4> Values(NumValues); 4593 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4594 4595 unsigned ChainI = 0; 4596 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4597 // Serializing loads here may result in excessive register pressure, and 4598 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4599 // could recover a bit by hoisting nodes upward in the chain by recognizing 4600 // they are side-effect free or do not alias. The optimizer should really 4601 // avoid this case by converting large object/array copies to llvm.memcpy 4602 // (MaxParallelChains should always remain as failsafe). 4603 if (ChainI == MaxParallelChains) { 4604 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4605 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4606 ArrayRef(Chains.data(), ChainI)); 4607 Root = Chain; 4608 ChainI = 0; 4609 } 4610 4611 // TODO: MachinePointerInfo only supports a fixed length offset. 4612 MachinePointerInfo PtrInfo = 4613 !Offsets[i].isScalable() || Offsets[i].isZero() 4614 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4615 : MachinePointerInfo(); 4616 4617 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4618 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4619 MMOFlags, AAInfo, Ranges); 4620 Chains[ChainI] = L.getValue(1); 4621 4622 if (MemVTs[i] != ValueVTs[i]) 4623 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4624 4625 Values[i] = L; 4626 } 4627 4628 if (!ConstantMemory) { 4629 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4630 ArrayRef(Chains.data(), ChainI)); 4631 if (isVolatile) 4632 DAG.setRoot(Chain); 4633 else 4634 PendingLoads.push_back(Chain); 4635 } 4636 4637 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4638 DAG.getVTList(ValueVTs), Values)); 4639 } 4640 4641 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4642 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4643 "call visitStoreToSwiftError when backend supports swifterror"); 4644 4645 SmallVector<EVT, 4> ValueVTs; 4646 SmallVector<uint64_t, 4> Offsets; 4647 const Value *SrcV = I.getOperand(0); 4648 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4649 SrcV->getType(), ValueVTs, &Offsets, 0); 4650 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4651 "expect a single EVT for swifterror"); 4652 4653 SDValue Src = getValue(SrcV); 4654 // Create a virtual register, then update the virtual register. 4655 Register VReg = 4656 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4657 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4658 // Chain can be getRoot or getControlRoot. 4659 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4660 SDValue(Src.getNode(), Src.getResNo())); 4661 DAG.setRoot(CopyNode); 4662 } 4663 4664 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4665 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4666 "call visitLoadFromSwiftError when backend supports swifterror"); 4667 4668 assert(!I.isVolatile() && 4669 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4670 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4671 "Support volatile, non temporal, invariant for load_from_swift_error"); 4672 4673 const Value *SV = I.getOperand(0); 4674 Type *Ty = I.getType(); 4675 assert( 4676 (!AA || 4677 !AA->pointsToConstantMemory(MemoryLocation( 4678 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4679 I.getAAMetadata()))) && 4680 "load_from_swift_error should not be constant memory"); 4681 4682 SmallVector<EVT, 4> ValueVTs; 4683 SmallVector<uint64_t, 4> Offsets; 4684 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4685 ValueVTs, &Offsets, 0); 4686 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4687 "expect a single EVT for swifterror"); 4688 4689 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4690 SDValue L = DAG.getCopyFromReg( 4691 getRoot(), getCurSDLoc(), 4692 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4693 4694 setValue(&I, L); 4695 } 4696 4697 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4698 if (I.isAtomic()) 4699 return visitAtomicStore(I); 4700 4701 const Value *SrcV = I.getOperand(0); 4702 const Value *PtrV = I.getOperand(1); 4703 4704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4705 if (TLI.supportSwiftError()) { 4706 // Swifterror values can come from either a function parameter with 4707 // swifterror attribute or an alloca with swifterror attribute. 4708 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4709 if (Arg->hasSwiftErrorAttr()) 4710 return visitStoreToSwiftError(I); 4711 } 4712 4713 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4714 if (Alloca->isSwiftError()) 4715 return visitStoreToSwiftError(I); 4716 } 4717 } 4718 4719 SmallVector<EVT, 4> ValueVTs, MemVTs; 4720 SmallVector<TypeSize, 4> Offsets; 4721 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4722 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4723 unsigned NumValues = ValueVTs.size(); 4724 if (NumValues == 0) 4725 return; 4726 4727 // Get the lowered operands. Note that we do this after 4728 // checking if NumResults is zero, because with zero results 4729 // the operands won't have values in the map. 4730 SDValue Src = getValue(SrcV); 4731 SDValue Ptr = getValue(PtrV); 4732 4733 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4734 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4735 SDLoc dl = getCurSDLoc(); 4736 Align Alignment = I.getAlign(); 4737 AAMDNodes AAInfo = I.getAAMetadata(); 4738 4739 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4740 4741 unsigned ChainI = 0; 4742 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4743 // See visitLoad comments. 4744 if (ChainI == MaxParallelChains) { 4745 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4746 ArrayRef(Chains.data(), ChainI)); 4747 Root = Chain; 4748 ChainI = 0; 4749 } 4750 4751 // TODO: MachinePointerInfo only supports a fixed length offset. 4752 MachinePointerInfo PtrInfo = 4753 !Offsets[i].isScalable() || Offsets[i].isZero() 4754 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4755 : MachinePointerInfo(); 4756 4757 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4758 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4759 if (MemVTs[i] != ValueVTs[i]) 4760 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4761 SDValue St = 4762 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4763 Chains[ChainI] = St; 4764 } 4765 4766 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4767 ArrayRef(Chains.data(), ChainI)); 4768 setValue(&I, StoreNode); 4769 DAG.setRoot(StoreNode); 4770 } 4771 4772 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4773 bool IsCompressing) { 4774 SDLoc sdl = getCurSDLoc(); 4775 4776 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4777 Align &Alignment) { 4778 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4779 Src0 = I.getArgOperand(0); 4780 Ptr = I.getArgOperand(1); 4781 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4782 Mask = I.getArgOperand(3); 4783 }; 4784 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4785 Align &Alignment) { 4786 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4787 Src0 = I.getArgOperand(0); 4788 Ptr = I.getArgOperand(1); 4789 Mask = I.getArgOperand(2); 4790 Alignment = I.getParamAlign(1).valueOrOne(); 4791 }; 4792 4793 Value *PtrOperand, *MaskOperand, *Src0Operand; 4794 Align Alignment; 4795 if (IsCompressing) 4796 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4797 else 4798 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4799 4800 SDValue Ptr = getValue(PtrOperand); 4801 SDValue Src0 = getValue(Src0Operand); 4802 SDValue Mask = getValue(MaskOperand); 4803 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4804 4805 EVT VT = Src0.getValueType(); 4806 4807 auto MMOFlags = MachineMemOperand::MOStore; 4808 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4809 MMOFlags |= MachineMemOperand::MONonTemporal; 4810 4811 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4812 MachinePointerInfo(PtrOperand), MMOFlags, 4813 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4814 4815 const auto &TLI = DAG.getTargetLoweringInfo(); 4816 const auto &TTI = 4817 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4818 SDValue StoreNode = 4819 !IsCompressing && 4820 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType()) 4821 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4822 Mask) 4823 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4824 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4825 IsCompressing); 4826 DAG.setRoot(StoreNode); 4827 setValue(&I, StoreNode); 4828 } 4829 4830 // Get a uniform base for the Gather/Scatter intrinsic. 4831 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4832 // We try to represent it as a base pointer + vector of indices. 4833 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4834 // The first operand of the GEP may be a single pointer or a vector of pointers 4835 // Example: 4836 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4837 // or 4838 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4839 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4840 // 4841 // When the first GEP operand is a single pointer - it is the uniform base we 4842 // are looking for. If first operand of the GEP is a splat vector - we 4843 // extract the splat value and use it as a uniform base. 4844 // In all other cases the function returns 'false'. 4845 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4846 ISD::MemIndexType &IndexType, SDValue &Scale, 4847 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4848 uint64_t ElemSize) { 4849 SelectionDAG& DAG = SDB->DAG; 4850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4851 const DataLayout &DL = DAG.getDataLayout(); 4852 4853 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4854 4855 // Handle splat constant pointer. 4856 if (auto *C = dyn_cast<Constant>(Ptr)) { 4857 C = C->getSplatValue(); 4858 if (!C) 4859 return false; 4860 4861 Base = SDB->getValue(C); 4862 4863 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4864 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4865 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4866 IndexType = ISD::SIGNED_SCALED; 4867 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4868 return true; 4869 } 4870 4871 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4872 if (!GEP || GEP->getParent() != CurBB) 4873 return false; 4874 4875 if (GEP->getNumOperands() != 2) 4876 return false; 4877 4878 const Value *BasePtr = GEP->getPointerOperand(); 4879 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4880 4881 // Make sure the base is scalar and the index is a vector. 4882 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4883 return false; 4884 4885 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4886 if (ScaleVal.isScalable()) 4887 return false; 4888 4889 // Target may not support the required addressing mode. 4890 if (ScaleVal != 1 && 4891 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4892 return false; 4893 4894 Base = SDB->getValue(BasePtr); 4895 Index = SDB->getValue(IndexVal); 4896 IndexType = ISD::SIGNED_SCALED; 4897 4898 Scale = 4899 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4900 return true; 4901 } 4902 4903 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4904 SDLoc sdl = getCurSDLoc(); 4905 4906 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4907 const Value *Ptr = I.getArgOperand(1); 4908 SDValue Src0 = getValue(I.getArgOperand(0)); 4909 SDValue Mask = getValue(I.getArgOperand(3)); 4910 EVT VT = Src0.getValueType(); 4911 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4912 ->getMaybeAlignValue() 4913 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4915 4916 SDValue Base; 4917 SDValue Index; 4918 ISD::MemIndexType IndexType; 4919 SDValue Scale; 4920 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4921 I.getParent(), VT.getScalarStoreSize()); 4922 4923 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4924 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4925 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4926 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4927 if (!UniformBase) { 4928 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4929 Index = getValue(Ptr); 4930 IndexType = ISD::SIGNED_SCALED; 4931 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4932 } 4933 4934 EVT IdxVT = Index.getValueType(); 4935 EVT EltTy = IdxVT.getVectorElementType(); 4936 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4937 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4938 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4939 } 4940 4941 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4942 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4943 Ops, MMO, IndexType, false); 4944 DAG.setRoot(Scatter); 4945 setValue(&I, Scatter); 4946 } 4947 4948 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4949 SDLoc sdl = getCurSDLoc(); 4950 4951 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4952 Align &Alignment) { 4953 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4954 Ptr = I.getArgOperand(0); 4955 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4956 Mask = I.getArgOperand(2); 4957 Src0 = I.getArgOperand(3); 4958 }; 4959 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4960 Align &Alignment) { 4961 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4962 Ptr = I.getArgOperand(0); 4963 Alignment = I.getParamAlign(0).valueOrOne(); 4964 Mask = I.getArgOperand(1); 4965 Src0 = I.getArgOperand(2); 4966 }; 4967 4968 Value *PtrOperand, *MaskOperand, *Src0Operand; 4969 Align Alignment; 4970 if (IsExpanding) 4971 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4972 else 4973 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4974 4975 SDValue Ptr = getValue(PtrOperand); 4976 SDValue Src0 = getValue(Src0Operand); 4977 SDValue Mask = getValue(MaskOperand); 4978 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4979 4980 EVT VT = Src0.getValueType(); 4981 AAMDNodes AAInfo = I.getAAMetadata(); 4982 const MDNode *Ranges = getRangeMetadata(I); 4983 4984 // Do not serialize masked loads of constant memory with anything. 4985 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4986 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4987 4988 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4989 4990 auto MMOFlags = MachineMemOperand::MOLoad; 4991 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4992 MMOFlags |= MachineMemOperand::MONonTemporal; 4993 4994 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4995 MachinePointerInfo(PtrOperand), MMOFlags, 4996 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4997 4998 const auto &TLI = DAG.getTargetLoweringInfo(); 4999 const auto &TTI = 5000 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 5001 // The Load/Res may point to different values and both of them are output 5002 // variables. 5003 SDValue Load; 5004 SDValue Res; 5005 if (!IsExpanding && 5006 TTI.hasConditionalLoadStoreForType(Src0Operand->getType())) 5007 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 5008 else 5009 Res = Load = 5010 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 5011 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 5012 if (AddToChain) 5013 PendingLoads.push_back(Load.getValue(1)); 5014 setValue(&I, Res); 5015 } 5016 5017 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 5018 SDLoc sdl = getCurSDLoc(); 5019 5020 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5021 const Value *Ptr = I.getArgOperand(0); 5022 SDValue Src0 = getValue(I.getArgOperand(3)); 5023 SDValue Mask = getValue(I.getArgOperand(2)); 5024 5025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5026 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5027 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5028 ->getMaybeAlignValue() 5029 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5030 5031 const MDNode *Ranges = getRangeMetadata(I); 5032 5033 SDValue Root = DAG.getRoot(); 5034 SDValue Base; 5035 SDValue Index; 5036 ISD::MemIndexType IndexType; 5037 SDValue Scale; 5038 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5039 I.getParent(), VT.getScalarStoreSize()); 5040 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5041 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5042 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5043 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5044 Ranges); 5045 5046 if (!UniformBase) { 5047 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5048 Index = getValue(Ptr); 5049 IndexType = ISD::SIGNED_SCALED; 5050 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5051 } 5052 5053 EVT IdxVT = Index.getValueType(); 5054 EVT EltTy = IdxVT.getVectorElementType(); 5055 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5056 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5057 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5058 } 5059 5060 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5061 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5062 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5063 5064 PendingLoads.push_back(Gather.getValue(1)); 5065 setValue(&I, Gather); 5066 } 5067 5068 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5069 SDLoc dl = getCurSDLoc(); 5070 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5071 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5072 SyncScope::ID SSID = I.getSyncScopeID(); 5073 5074 SDValue InChain = getRoot(); 5075 5076 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5077 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5078 5079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5080 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5081 5082 MachineFunction &MF = DAG.getMachineFunction(); 5083 MachineMemOperand *MMO = MF.getMachineMemOperand( 5084 MachinePointerInfo(I.getPointerOperand()), Flags, 5085 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5086 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5087 5088 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5089 dl, MemVT, VTs, InChain, 5090 getValue(I.getPointerOperand()), 5091 getValue(I.getCompareOperand()), 5092 getValue(I.getNewValOperand()), MMO); 5093 5094 SDValue OutChain = L.getValue(2); 5095 5096 setValue(&I, L); 5097 DAG.setRoot(OutChain); 5098 } 5099 5100 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5101 SDLoc dl = getCurSDLoc(); 5102 ISD::NodeType NT; 5103 switch (I.getOperation()) { 5104 default: llvm_unreachable("Unknown atomicrmw operation"); 5105 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5106 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5107 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5108 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5109 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5110 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5111 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5112 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5113 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5114 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5115 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5116 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5117 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5118 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5119 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5120 case AtomicRMWInst::UIncWrap: 5121 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5122 break; 5123 case AtomicRMWInst::UDecWrap: 5124 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5125 break; 5126 case AtomicRMWInst::USubCond: 5127 NT = ISD::ATOMIC_LOAD_USUB_COND; 5128 break; 5129 case AtomicRMWInst::USubSat: 5130 NT = ISD::ATOMIC_LOAD_USUB_SAT; 5131 break; 5132 } 5133 AtomicOrdering Ordering = I.getOrdering(); 5134 SyncScope::ID SSID = I.getSyncScopeID(); 5135 5136 SDValue InChain = getRoot(); 5137 5138 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5140 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5141 5142 MachineFunction &MF = DAG.getMachineFunction(); 5143 MachineMemOperand *MMO = MF.getMachineMemOperand( 5144 MachinePointerInfo(I.getPointerOperand()), Flags, 5145 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5146 AAMDNodes(), nullptr, SSID, Ordering); 5147 5148 SDValue L = 5149 DAG.getAtomic(NT, dl, MemVT, InChain, 5150 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5151 MMO); 5152 5153 SDValue OutChain = L.getValue(1); 5154 5155 setValue(&I, L); 5156 DAG.setRoot(OutChain); 5157 } 5158 5159 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5160 SDLoc dl = getCurSDLoc(); 5161 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5162 SDValue Ops[3]; 5163 Ops[0] = getRoot(); 5164 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5165 TLI.getFenceOperandTy(DAG.getDataLayout())); 5166 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5167 TLI.getFenceOperandTy(DAG.getDataLayout())); 5168 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5169 setValue(&I, N); 5170 DAG.setRoot(N); 5171 } 5172 5173 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5174 SDLoc dl = getCurSDLoc(); 5175 AtomicOrdering Order = I.getOrdering(); 5176 SyncScope::ID SSID = I.getSyncScopeID(); 5177 5178 SDValue InChain = getRoot(); 5179 5180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5181 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5182 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5183 5184 if (!TLI.supportsUnalignedAtomics() && 5185 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5186 report_fatal_error("Cannot generate unaligned atomic load"); 5187 5188 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5189 5190 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5191 MachinePointerInfo(I.getPointerOperand()), Flags, 5192 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5193 nullptr, SSID, Order); 5194 5195 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5196 5197 SDValue Ptr = getValue(I.getPointerOperand()); 5198 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5199 Ptr, MMO); 5200 5201 SDValue OutChain = L.getValue(1); 5202 if (MemVT != VT) 5203 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5204 5205 setValue(&I, L); 5206 DAG.setRoot(OutChain); 5207 } 5208 5209 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5210 SDLoc dl = getCurSDLoc(); 5211 5212 AtomicOrdering Ordering = I.getOrdering(); 5213 SyncScope::ID SSID = I.getSyncScopeID(); 5214 5215 SDValue InChain = getRoot(); 5216 5217 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5218 EVT MemVT = 5219 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5220 5221 if (!TLI.supportsUnalignedAtomics() && 5222 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5223 report_fatal_error("Cannot generate unaligned atomic store"); 5224 5225 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5226 5227 MachineFunction &MF = DAG.getMachineFunction(); 5228 MachineMemOperand *MMO = MF.getMachineMemOperand( 5229 MachinePointerInfo(I.getPointerOperand()), Flags, 5230 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5231 nullptr, SSID, Ordering); 5232 5233 SDValue Val = getValue(I.getValueOperand()); 5234 if (Val.getValueType() != MemVT) 5235 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5236 SDValue Ptr = getValue(I.getPointerOperand()); 5237 5238 SDValue OutChain = 5239 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5240 5241 setValue(&I, OutChain); 5242 DAG.setRoot(OutChain); 5243 } 5244 5245 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5246 /// node. 5247 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5248 unsigned Intrinsic) { 5249 // Ignore the callsite's attributes. A specific call site may be marked with 5250 // readnone, but the lowering code will expect the chain based on the 5251 // definition. 5252 const Function *F = I.getCalledFunction(); 5253 bool HasChain = !F->doesNotAccessMemory(); 5254 bool OnlyLoad = 5255 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow(); 5256 5257 // Build the operand list. 5258 SmallVector<SDValue, 8> Ops; 5259 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5260 if (OnlyLoad) { 5261 // We don't need to serialize loads against other loads. 5262 Ops.push_back(DAG.getRoot()); 5263 } else { 5264 Ops.push_back(getRoot()); 5265 } 5266 } 5267 5268 // Info is set by getTgtMemIntrinsic 5269 TargetLowering::IntrinsicInfo Info; 5270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5271 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5272 DAG.getMachineFunction(), 5273 Intrinsic); 5274 5275 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5276 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5277 Info.opc == ISD::INTRINSIC_W_CHAIN) 5278 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5279 TLI.getPointerTy(DAG.getDataLayout()))); 5280 5281 // Add all operands of the call to the operand list. 5282 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5283 const Value *Arg = I.getArgOperand(i); 5284 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5285 Ops.push_back(getValue(Arg)); 5286 continue; 5287 } 5288 5289 // Use TargetConstant instead of a regular constant for immarg. 5290 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5291 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5292 assert(CI->getBitWidth() <= 64 && 5293 "large intrinsic immediates not handled"); 5294 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5295 } else { 5296 Ops.push_back( 5297 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5298 } 5299 } 5300 5301 SmallVector<EVT, 4> ValueVTs; 5302 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5303 5304 if (HasChain) 5305 ValueVTs.push_back(MVT::Other); 5306 5307 SDVTList VTs = DAG.getVTList(ValueVTs); 5308 5309 // Propagate fast-math-flags from IR to node(s). 5310 SDNodeFlags Flags; 5311 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5312 Flags.copyFMF(*FPMO); 5313 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5314 5315 // Create the node. 5316 SDValue Result; 5317 5318 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5319 auto *Token = Bundle->Inputs[0].get(); 5320 SDValue ConvControlToken = getValue(Token); 5321 assert(Ops.back().getValueType() != MVT::Glue && 5322 "Did not expected another glue node here."); 5323 ConvControlToken = 5324 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5325 Ops.push_back(ConvControlToken); 5326 } 5327 5328 // In some cases, custom collection of operands from CallInst I may be needed. 5329 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5330 if (IsTgtIntrinsic) { 5331 // This is target intrinsic that touches memory 5332 // 5333 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5334 // didn't yield anything useful. 5335 MachinePointerInfo MPI; 5336 if (Info.ptrVal) 5337 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5338 else if (Info.fallbackAddressSpace) 5339 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5340 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5341 Info.memVT, MPI, Info.align, Info.flags, 5342 Info.size, I.getAAMetadata()); 5343 } else if (!HasChain) { 5344 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5345 } else if (!I.getType()->isVoidTy()) { 5346 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5347 } else { 5348 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5349 } 5350 5351 if (HasChain) { 5352 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5353 if (OnlyLoad) 5354 PendingLoads.push_back(Chain); 5355 else 5356 DAG.setRoot(Chain); 5357 } 5358 5359 if (!I.getType()->isVoidTy()) { 5360 if (!isa<VectorType>(I.getType())) 5361 Result = lowerRangeToAssertZExt(DAG, I, Result); 5362 5363 MaybeAlign Alignment = I.getRetAlign(); 5364 5365 // Insert `assertalign` node if there's an alignment. 5366 if (InsertAssertAlign && Alignment) { 5367 Result = 5368 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5369 } 5370 } 5371 5372 setValue(&I, Result); 5373 } 5374 5375 /// GetSignificand - Get the significand and build it into a floating-point 5376 /// number with exponent of 1: 5377 /// 5378 /// Op = (Op & 0x007fffff) | 0x3f800000; 5379 /// 5380 /// where Op is the hexadecimal representation of floating point value. 5381 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5382 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5383 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5384 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5385 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5386 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5387 } 5388 5389 /// GetExponent - Get the exponent: 5390 /// 5391 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5392 /// 5393 /// where Op is the hexadecimal representation of floating point value. 5394 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5395 const TargetLowering &TLI, const SDLoc &dl) { 5396 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5397 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5398 SDValue t1 = DAG.getNode( 5399 ISD::SRL, dl, MVT::i32, t0, 5400 DAG.getConstant(23, dl, 5401 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5402 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5403 DAG.getConstant(127, dl, MVT::i32)); 5404 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5405 } 5406 5407 /// getF32Constant - Get 32-bit floating point constant. 5408 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5409 const SDLoc &dl) { 5410 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5411 MVT::f32); 5412 } 5413 5414 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5415 SelectionDAG &DAG) { 5416 // TODO: What fast-math-flags should be set on the floating-point nodes? 5417 5418 // IntegerPartOfX = ((int32_t)(t0); 5419 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5420 5421 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5422 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5423 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5424 5425 // IntegerPartOfX <<= 23; 5426 IntegerPartOfX = 5427 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5428 DAG.getConstant(23, dl, 5429 DAG.getTargetLoweringInfo().getShiftAmountTy( 5430 MVT::i32, DAG.getDataLayout()))); 5431 5432 SDValue TwoToFractionalPartOfX; 5433 if (LimitFloatPrecision <= 6) { 5434 // For floating-point precision of 6: 5435 // 5436 // TwoToFractionalPartOfX = 5437 // 0.997535578f + 5438 // (0.735607626f + 0.252464424f * x) * x; 5439 // 5440 // error 0.0144103317, which is 6 bits 5441 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5442 getF32Constant(DAG, 0x3e814304, dl)); 5443 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5444 getF32Constant(DAG, 0x3f3c50c8, dl)); 5445 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5446 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5447 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5448 } else if (LimitFloatPrecision <= 12) { 5449 // For floating-point precision of 12: 5450 // 5451 // TwoToFractionalPartOfX = 5452 // 0.999892986f + 5453 // (0.696457318f + 5454 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5455 // 5456 // error 0.000107046256, which is 13 to 14 bits 5457 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5458 getF32Constant(DAG, 0x3da235e3, dl)); 5459 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5460 getF32Constant(DAG, 0x3e65b8f3, dl)); 5461 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5462 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5463 getF32Constant(DAG, 0x3f324b07, dl)); 5464 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5465 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5466 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5467 } else { // LimitFloatPrecision <= 18 5468 // For floating-point precision of 18: 5469 // 5470 // TwoToFractionalPartOfX = 5471 // 0.999999982f + 5472 // (0.693148872f + 5473 // (0.240227044f + 5474 // (0.554906021e-1f + 5475 // (0.961591928e-2f + 5476 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5477 // error 2.47208000*10^(-7), which is better than 18 bits 5478 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5479 getF32Constant(DAG, 0x3924b03e, dl)); 5480 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5481 getF32Constant(DAG, 0x3ab24b87, dl)); 5482 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5483 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5484 getF32Constant(DAG, 0x3c1d8c17, dl)); 5485 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5486 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5487 getF32Constant(DAG, 0x3d634a1d, dl)); 5488 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5489 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5490 getF32Constant(DAG, 0x3e75fe14, dl)); 5491 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5492 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5493 getF32Constant(DAG, 0x3f317234, dl)); 5494 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5495 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5496 getF32Constant(DAG, 0x3f800000, dl)); 5497 } 5498 5499 // Add the exponent into the result in integer domain. 5500 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5501 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5502 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5503 } 5504 5505 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5506 /// limited-precision mode. 5507 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5508 const TargetLowering &TLI, SDNodeFlags Flags) { 5509 if (Op.getValueType() == MVT::f32 && 5510 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5511 5512 // Put the exponent in the right bit position for later addition to the 5513 // final result: 5514 // 5515 // t0 = Op * log2(e) 5516 5517 // TODO: What fast-math-flags should be set here? 5518 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5519 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5520 return getLimitedPrecisionExp2(t0, dl, DAG); 5521 } 5522 5523 // No special expansion. 5524 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5525 } 5526 5527 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5528 /// limited-precision mode. 5529 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5530 const TargetLowering &TLI, SDNodeFlags Flags) { 5531 // TODO: What fast-math-flags should be set on the floating-point nodes? 5532 5533 if (Op.getValueType() == MVT::f32 && 5534 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5535 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5536 5537 // Scale the exponent by log(2). 5538 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5539 SDValue LogOfExponent = 5540 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5541 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5542 5543 // Get the significand and build it into a floating-point number with 5544 // exponent of 1. 5545 SDValue X = GetSignificand(DAG, Op1, dl); 5546 5547 SDValue LogOfMantissa; 5548 if (LimitFloatPrecision <= 6) { 5549 // For floating-point precision of 6: 5550 // 5551 // LogofMantissa = 5552 // -1.1609546f + 5553 // (1.4034025f - 0.23903021f * x) * x; 5554 // 5555 // error 0.0034276066, which is better than 8 bits 5556 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5557 getF32Constant(DAG, 0xbe74c456, dl)); 5558 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5559 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5560 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5561 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5562 getF32Constant(DAG, 0x3f949a29, dl)); 5563 } else if (LimitFloatPrecision <= 12) { 5564 // For floating-point precision of 12: 5565 // 5566 // LogOfMantissa = 5567 // -1.7417939f + 5568 // (2.8212026f + 5569 // (-1.4699568f + 5570 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5571 // 5572 // error 0.000061011436, which is 14 bits 5573 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5574 getF32Constant(DAG, 0xbd67b6d6, dl)); 5575 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5576 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5577 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5578 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5579 getF32Constant(DAG, 0x3fbc278b, dl)); 5580 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5581 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5582 getF32Constant(DAG, 0x40348e95, dl)); 5583 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5584 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5585 getF32Constant(DAG, 0x3fdef31a, dl)); 5586 } else { // LimitFloatPrecision <= 18 5587 // For floating-point precision of 18: 5588 // 5589 // LogOfMantissa = 5590 // -2.1072184f + 5591 // (4.2372794f + 5592 // (-3.7029485f + 5593 // (2.2781945f + 5594 // (-0.87823314f + 5595 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5596 // 5597 // error 0.0000023660568, which is better than 18 bits 5598 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5599 getF32Constant(DAG, 0xbc91e5ac, dl)); 5600 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5601 getF32Constant(DAG, 0x3e4350aa, dl)); 5602 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5603 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5604 getF32Constant(DAG, 0x3f60d3e3, dl)); 5605 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5606 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5607 getF32Constant(DAG, 0x4011cdf0, dl)); 5608 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5609 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5610 getF32Constant(DAG, 0x406cfd1c, dl)); 5611 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5612 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5613 getF32Constant(DAG, 0x408797cb, dl)); 5614 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5615 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5616 getF32Constant(DAG, 0x4006dcab, dl)); 5617 } 5618 5619 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5620 } 5621 5622 // No special expansion. 5623 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5624 } 5625 5626 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5627 /// limited-precision mode. 5628 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5629 const TargetLowering &TLI, SDNodeFlags Flags) { 5630 // TODO: What fast-math-flags should be set on the floating-point nodes? 5631 5632 if (Op.getValueType() == MVT::f32 && 5633 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5634 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5635 5636 // Get the exponent. 5637 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5638 5639 // Get the significand and build it into a floating-point number with 5640 // exponent of 1. 5641 SDValue X = GetSignificand(DAG, Op1, dl); 5642 5643 // Different possible minimax approximations of significand in 5644 // floating-point for various degrees of accuracy over [1,2]. 5645 SDValue Log2ofMantissa; 5646 if (LimitFloatPrecision <= 6) { 5647 // For floating-point precision of 6: 5648 // 5649 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5650 // 5651 // error 0.0049451742, which is more than 7 bits 5652 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5653 getF32Constant(DAG, 0xbeb08fe0, dl)); 5654 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5655 getF32Constant(DAG, 0x40019463, dl)); 5656 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5657 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5658 getF32Constant(DAG, 0x3fd6633d, dl)); 5659 } else if (LimitFloatPrecision <= 12) { 5660 // For floating-point precision of 12: 5661 // 5662 // Log2ofMantissa = 5663 // -2.51285454f + 5664 // (4.07009056f + 5665 // (-2.12067489f + 5666 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5667 // 5668 // error 0.0000876136000, which is better than 13 bits 5669 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5670 getF32Constant(DAG, 0xbda7262e, dl)); 5671 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5672 getF32Constant(DAG, 0x3f25280b, dl)); 5673 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5674 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5675 getF32Constant(DAG, 0x4007b923, dl)); 5676 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5677 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5678 getF32Constant(DAG, 0x40823e2f, dl)); 5679 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5680 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5681 getF32Constant(DAG, 0x4020d29c, dl)); 5682 } else { // LimitFloatPrecision <= 18 5683 // For floating-point precision of 18: 5684 // 5685 // Log2ofMantissa = 5686 // -3.0400495f + 5687 // (6.1129976f + 5688 // (-5.3420409f + 5689 // (3.2865683f + 5690 // (-1.2669343f + 5691 // (0.27515199f - 5692 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5693 // 5694 // error 0.0000018516, which is better than 18 bits 5695 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5696 getF32Constant(DAG, 0xbcd2769e, dl)); 5697 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5698 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5699 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5700 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5701 getF32Constant(DAG, 0x3fa22ae7, dl)); 5702 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5703 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5704 getF32Constant(DAG, 0x40525723, dl)); 5705 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5706 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5707 getF32Constant(DAG, 0x40aaf200, dl)); 5708 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5709 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5710 getF32Constant(DAG, 0x40c39dad, dl)); 5711 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5712 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5713 getF32Constant(DAG, 0x4042902c, dl)); 5714 } 5715 5716 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5717 } 5718 5719 // No special expansion. 5720 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5721 } 5722 5723 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5724 /// limited-precision mode. 5725 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5726 const TargetLowering &TLI, SDNodeFlags Flags) { 5727 // TODO: What fast-math-flags should be set on the floating-point nodes? 5728 5729 if (Op.getValueType() == MVT::f32 && 5730 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5731 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5732 5733 // Scale the exponent by log10(2) [0.30102999f]. 5734 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5735 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5736 getF32Constant(DAG, 0x3e9a209a, dl)); 5737 5738 // Get the significand and build it into a floating-point number with 5739 // exponent of 1. 5740 SDValue X = GetSignificand(DAG, Op1, dl); 5741 5742 SDValue Log10ofMantissa; 5743 if (LimitFloatPrecision <= 6) { 5744 // For floating-point precision of 6: 5745 // 5746 // Log10ofMantissa = 5747 // -0.50419619f + 5748 // (0.60948995f - 0.10380950f * x) * x; 5749 // 5750 // error 0.0014886165, which is 6 bits 5751 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5752 getF32Constant(DAG, 0xbdd49a13, dl)); 5753 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5754 getF32Constant(DAG, 0x3f1c0789, dl)); 5755 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5756 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5757 getF32Constant(DAG, 0x3f011300, dl)); 5758 } else if (LimitFloatPrecision <= 12) { 5759 // For floating-point precision of 12: 5760 // 5761 // Log10ofMantissa = 5762 // -0.64831180f + 5763 // (0.91751397f + 5764 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5765 // 5766 // error 0.00019228036, which is better than 12 bits 5767 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5768 getF32Constant(DAG, 0x3d431f31, dl)); 5769 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5770 getF32Constant(DAG, 0x3ea21fb2, dl)); 5771 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5772 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5773 getF32Constant(DAG, 0x3f6ae232, dl)); 5774 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5775 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5776 getF32Constant(DAG, 0x3f25f7c3, dl)); 5777 } else { // LimitFloatPrecision <= 18 5778 // For floating-point precision of 18: 5779 // 5780 // Log10ofMantissa = 5781 // -0.84299375f + 5782 // (1.5327582f + 5783 // (-1.0688956f + 5784 // (0.49102474f + 5785 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5786 // 5787 // error 0.0000037995730, which is better than 18 bits 5788 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5789 getF32Constant(DAG, 0x3c5d51ce, dl)); 5790 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5791 getF32Constant(DAG, 0x3e00685a, dl)); 5792 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5793 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5794 getF32Constant(DAG, 0x3efb6798, dl)); 5795 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5796 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5797 getF32Constant(DAG, 0x3f88d192, dl)); 5798 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5799 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5800 getF32Constant(DAG, 0x3fc4316c, dl)); 5801 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5802 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5803 getF32Constant(DAG, 0x3f57ce70, dl)); 5804 } 5805 5806 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5807 } 5808 5809 // No special expansion. 5810 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5811 } 5812 5813 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5814 /// limited-precision mode. 5815 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5816 const TargetLowering &TLI, SDNodeFlags Flags) { 5817 if (Op.getValueType() == MVT::f32 && 5818 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5819 return getLimitedPrecisionExp2(Op, dl, DAG); 5820 5821 // No special expansion. 5822 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5823 } 5824 5825 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5826 /// limited-precision mode with x == 10.0f. 5827 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5828 SelectionDAG &DAG, const TargetLowering &TLI, 5829 SDNodeFlags Flags) { 5830 bool IsExp10 = false; 5831 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5832 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5833 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5834 APFloat Ten(10.0f); 5835 IsExp10 = LHSC->isExactlyValue(Ten); 5836 } 5837 } 5838 5839 // TODO: What fast-math-flags should be set on the FMUL node? 5840 if (IsExp10) { 5841 // Put the exponent in the right bit position for later addition to the 5842 // final result: 5843 // 5844 // #define LOG2OF10 3.3219281f 5845 // t0 = Op * LOG2OF10; 5846 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5847 getF32Constant(DAG, 0x40549a78, dl)); 5848 return getLimitedPrecisionExp2(t0, dl, DAG); 5849 } 5850 5851 // No special expansion. 5852 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5853 } 5854 5855 /// ExpandPowI - Expand a llvm.powi intrinsic. 5856 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5857 SelectionDAG &DAG) { 5858 // If RHS is a constant, we can expand this out to a multiplication tree if 5859 // it's beneficial on the target, otherwise we end up lowering to a call to 5860 // __powidf2 (for example). 5861 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5862 unsigned Val = RHSC->getSExtValue(); 5863 5864 // powi(x, 0) -> 1.0 5865 if (Val == 0) 5866 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5867 5868 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5869 Val, DAG.shouldOptForSize())) { 5870 // Get the exponent as a positive value. 5871 if ((int)Val < 0) 5872 Val = -Val; 5873 // We use the simple binary decomposition method to generate the multiply 5874 // sequence. There are more optimal ways to do this (for example, 5875 // powi(x,15) generates one more multiply than it should), but this has 5876 // the benefit of being both really simple and much better than a libcall. 5877 SDValue Res; // Logically starts equal to 1.0 5878 SDValue CurSquare = LHS; 5879 // TODO: Intrinsics should have fast-math-flags that propagate to these 5880 // nodes. 5881 while (Val) { 5882 if (Val & 1) { 5883 if (Res.getNode()) 5884 Res = 5885 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5886 else 5887 Res = CurSquare; // 1.0*CurSquare. 5888 } 5889 5890 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5891 CurSquare, CurSquare); 5892 Val >>= 1; 5893 } 5894 5895 // If the original was negative, invert the result, producing 1/(x*x*x). 5896 if (RHSC->getSExtValue() < 0) 5897 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5898 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5899 return Res; 5900 } 5901 } 5902 5903 // Otherwise, expand to a libcall. 5904 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5905 } 5906 5907 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5908 SDValue LHS, SDValue RHS, SDValue Scale, 5909 SelectionDAG &DAG, const TargetLowering &TLI) { 5910 EVT VT = LHS.getValueType(); 5911 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5912 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5913 LLVMContext &Ctx = *DAG.getContext(); 5914 5915 // If the type is legal but the operation isn't, this node might survive all 5916 // the way to operation legalization. If we end up there and we do not have 5917 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5918 // node. 5919 5920 // Coax the legalizer into expanding the node during type legalization instead 5921 // by bumping the size by one bit. This will force it to Promote, enabling the 5922 // early expansion and avoiding the need to expand later. 5923 5924 // We don't have to do this if Scale is 0; that can always be expanded, unless 5925 // it's a saturating signed operation. Those can experience true integer 5926 // division overflow, a case which we must avoid. 5927 5928 // FIXME: We wouldn't have to do this (or any of the early 5929 // expansion/promotion) if it was possible to expand a libcall of an 5930 // illegal type during operation legalization. But it's not, so things 5931 // get a bit hacky. 5932 unsigned ScaleInt = Scale->getAsZExtVal(); 5933 if ((ScaleInt > 0 || (Saturating && Signed)) && 5934 (TLI.isTypeLegal(VT) || 5935 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5936 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5937 Opcode, VT, ScaleInt); 5938 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5939 EVT PromVT; 5940 if (VT.isScalarInteger()) 5941 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5942 else if (VT.isVector()) { 5943 PromVT = VT.getVectorElementType(); 5944 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5945 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5946 } else 5947 llvm_unreachable("Wrong VT for DIVFIX?"); 5948 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5949 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5950 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5951 // For saturating operations, we need to shift up the LHS to get the 5952 // proper saturation width, and then shift down again afterwards. 5953 if (Saturating) 5954 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5955 DAG.getConstant(1, DL, ShiftTy)); 5956 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5957 if (Saturating) 5958 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5959 DAG.getConstant(1, DL, ShiftTy)); 5960 return DAG.getZExtOrTrunc(Res, DL, VT); 5961 } 5962 } 5963 5964 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5965 } 5966 5967 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5968 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5969 static void 5970 getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs, 5971 const SDValue &N) { 5972 switch (N.getOpcode()) { 5973 case ISD::CopyFromReg: { 5974 SDValue Op = N.getOperand(1); 5975 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5976 Op.getValueType().getSizeInBits()); 5977 return; 5978 } 5979 case ISD::BITCAST: 5980 case ISD::AssertZext: 5981 case ISD::AssertSext: 5982 case ISD::TRUNCATE: 5983 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5984 return; 5985 case ISD::BUILD_PAIR: 5986 case ISD::BUILD_VECTOR: 5987 case ISD::CONCAT_VECTORS: 5988 for (SDValue Op : N->op_values()) 5989 getUnderlyingArgRegs(Regs, Op); 5990 return; 5991 default: 5992 return; 5993 } 5994 } 5995 5996 /// If the DbgValueInst is a dbg_value of a function argument, create the 5997 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5998 /// instruction selection, they will be inserted to the entry BB. 5999 /// We don't currently support this for variadic dbg_values, as they shouldn't 6000 /// appear for function arguments or in the prologue. 6001 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 6002 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 6003 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 6004 const Argument *Arg = dyn_cast<Argument>(V); 6005 if (!Arg) 6006 return false; 6007 6008 MachineFunction &MF = DAG.getMachineFunction(); 6009 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6010 6011 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 6012 // we've been asked to pursue. 6013 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 6014 bool Indirect) { 6015 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 6016 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 6017 // pointing at the VReg, which will be patched up later. 6018 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 6019 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 6020 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 6021 /* isKill */ false, /* isDead */ false, 6022 /* isUndef */ false, /* isEarlyClobber */ false, 6023 /* SubReg */ 0, /* isDebug */ true)}); 6024 6025 auto *NewDIExpr = FragExpr; 6026 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6027 // the DIExpression. 6028 if (Indirect) 6029 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6030 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6031 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6032 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6033 } else { 6034 // Create a completely standard DBG_VALUE. 6035 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6036 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6037 } 6038 }; 6039 6040 if (Kind == FuncArgumentDbgValueKind::Value) { 6041 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6042 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6043 // the entry block. 6044 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6045 if (!IsInEntryBlock) 6046 return false; 6047 6048 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6049 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6050 // variable that also is a param. 6051 // 6052 // Although, if we are at the top of the entry block already, we can still 6053 // emit using ArgDbgValue. This might catch some situations when the 6054 // dbg.value refers to an argument that isn't used in the entry block, so 6055 // any CopyToReg node would be optimized out and the only way to express 6056 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6057 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6058 // we should only emit as ArgDbgValue if the Variable is an argument to the 6059 // current function, and the dbg.value intrinsic is found in the entry 6060 // block. 6061 bool VariableIsFunctionInputArg = Variable->isParameter() && 6062 !DL->getInlinedAt(); 6063 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6064 if (!IsInPrologue && !VariableIsFunctionInputArg) 6065 return false; 6066 6067 // Here we assume that a function argument on IR level only can be used to 6068 // describe one input parameter on source level. If we for example have 6069 // source code like this 6070 // 6071 // struct A { long x, y; }; 6072 // void foo(struct A a, long b) { 6073 // ... 6074 // b = a.x; 6075 // ... 6076 // } 6077 // 6078 // and IR like this 6079 // 6080 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6081 // entry: 6082 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6083 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6084 // call void @llvm.dbg.value(metadata i32 %b, "b", 6085 // ... 6086 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6087 // ... 6088 // 6089 // then the last dbg.value is describing a parameter "b" using a value that 6090 // is an argument. But since we already has used %a1 to describe a parameter 6091 // we should not handle that last dbg.value here (that would result in an 6092 // incorrect hoisting of the DBG_VALUE to the function entry). 6093 // Notice that we allow one dbg.value per IR level argument, to accommodate 6094 // for the situation with fragments above. 6095 // If there is no node for the value being handled, we return true to skip 6096 // the normal generation of debug info, as it would kill existing debug 6097 // info for the parameter in case of duplicates. 6098 if (VariableIsFunctionInputArg) { 6099 unsigned ArgNo = Arg->getArgNo(); 6100 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6101 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6102 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6103 return !NodeMap[V].getNode(); 6104 FuncInfo.DescribedArgs.set(ArgNo); 6105 } 6106 } 6107 6108 bool IsIndirect = false; 6109 std::optional<MachineOperand> Op; 6110 // Some arguments' frame index is recorded during argument lowering. 6111 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6112 if (FI != std::numeric_limits<int>::max()) 6113 Op = MachineOperand::CreateFI(FI); 6114 6115 SmallVector<std::pair<Register, TypeSize>, 8> ArgRegsAndSizes; 6116 if (!Op && N.getNode()) { 6117 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6118 Register Reg; 6119 if (ArgRegsAndSizes.size() == 1) 6120 Reg = ArgRegsAndSizes.front().first; 6121 6122 if (Reg && Reg.isVirtual()) { 6123 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6124 Register PR = RegInfo.getLiveInPhysReg(Reg); 6125 if (PR) 6126 Reg = PR; 6127 } 6128 if (Reg) { 6129 Op = MachineOperand::CreateReg(Reg, false); 6130 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6131 } 6132 } 6133 6134 if (!Op && N.getNode()) { 6135 // Check if frame index is available. 6136 SDValue LCandidate = peekThroughBitcasts(N); 6137 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6138 if (FrameIndexSDNode *FINode = 6139 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6140 Op = MachineOperand::CreateFI(FINode->getIndex()); 6141 } 6142 6143 if (!Op) { 6144 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6145 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>> 6146 SplitRegs) { 6147 unsigned Offset = 0; 6148 for (const auto &RegAndSize : SplitRegs) { 6149 // If the expression is already a fragment, the current register 6150 // offset+size might extend beyond the fragment. In this case, only 6151 // the register bits that are inside the fragment are relevant. 6152 int RegFragmentSizeInBits = RegAndSize.second; 6153 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6154 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6155 // The register is entirely outside the expression fragment, 6156 // so is irrelevant for debug info. 6157 if (Offset >= ExprFragmentSizeInBits) 6158 break; 6159 // The register is partially outside the expression fragment, only 6160 // the low bits within the fragment are relevant for debug info. 6161 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6162 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6163 } 6164 } 6165 6166 auto FragmentExpr = DIExpression::createFragmentExpression( 6167 Expr, Offset, RegFragmentSizeInBits); 6168 Offset += RegAndSize.second; 6169 // If a valid fragment expression cannot be created, the variable's 6170 // correct value cannot be determined and so it is set as Undef. 6171 if (!FragmentExpr) { 6172 SDDbgValue *SDV = DAG.getConstantDbgValue( 6173 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6174 DAG.AddDbgValue(SDV, false); 6175 continue; 6176 } 6177 MachineInstr *NewMI = 6178 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6179 Kind != FuncArgumentDbgValueKind::Value); 6180 FuncInfo.ArgDbgValues.push_back(NewMI); 6181 } 6182 }; 6183 6184 // Check if ValueMap has reg number. 6185 DenseMap<const Value *, Register>::const_iterator 6186 VMI = FuncInfo.ValueMap.find(V); 6187 if (VMI != FuncInfo.ValueMap.end()) { 6188 const auto &TLI = DAG.getTargetLoweringInfo(); 6189 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6190 V->getType(), std::nullopt); 6191 if (RFV.occupiesMultipleRegs()) { 6192 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6193 return true; 6194 } 6195 6196 Op = MachineOperand::CreateReg(VMI->second, false); 6197 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6198 } else if (ArgRegsAndSizes.size() > 1) { 6199 // This was split due to the calling convention, and no virtual register 6200 // mapping exists for the value. 6201 splitMultiRegDbgValue(ArgRegsAndSizes); 6202 return true; 6203 } 6204 } 6205 6206 if (!Op) 6207 return false; 6208 6209 assert(Variable->isValidLocationForIntrinsic(DL) && 6210 "Expected inlined-at fields to agree"); 6211 MachineInstr *NewMI = nullptr; 6212 6213 if (Op->isReg()) 6214 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6215 else 6216 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6217 Variable, Expr); 6218 6219 // Otherwise, use ArgDbgValues. 6220 FuncInfo.ArgDbgValues.push_back(NewMI); 6221 return true; 6222 } 6223 6224 /// Return the appropriate SDDbgValue based on N. 6225 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6226 DILocalVariable *Variable, 6227 DIExpression *Expr, 6228 const DebugLoc &dl, 6229 unsigned DbgSDNodeOrder) { 6230 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6231 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6232 // stack slot locations. 6233 // 6234 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6235 // debug values here after optimization: 6236 // 6237 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6238 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6239 // 6240 // Both describe the direct values of their associated variables. 6241 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6242 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6243 } 6244 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6245 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6246 } 6247 6248 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6249 switch (Intrinsic) { 6250 case Intrinsic::smul_fix: 6251 return ISD::SMULFIX; 6252 case Intrinsic::umul_fix: 6253 return ISD::UMULFIX; 6254 case Intrinsic::smul_fix_sat: 6255 return ISD::SMULFIXSAT; 6256 case Intrinsic::umul_fix_sat: 6257 return ISD::UMULFIXSAT; 6258 case Intrinsic::sdiv_fix: 6259 return ISD::SDIVFIX; 6260 case Intrinsic::udiv_fix: 6261 return ISD::UDIVFIX; 6262 case Intrinsic::sdiv_fix_sat: 6263 return ISD::SDIVFIXSAT; 6264 case Intrinsic::udiv_fix_sat: 6265 return ISD::UDIVFIXSAT; 6266 default: 6267 llvm_unreachable("Unhandled fixed point intrinsic"); 6268 } 6269 } 6270 6271 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6272 const char *FunctionName) { 6273 assert(FunctionName && "FunctionName must not be nullptr"); 6274 SDValue Callee = DAG.getExternalSymbol( 6275 FunctionName, 6276 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6277 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6278 } 6279 6280 /// Given a @llvm.call.preallocated.setup, return the corresponding 6281 /// preallocated call. 6282 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6283 assert(cast<CallBase>(PreallocatedSetup) 6284 ->getCalledFunction() 6285 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6286 "expected call_preallocated_setup Value"); 6287 for (const auto *U : PreallocatedSetup->users()) { 6288 auto *UseCall = cast<CallBase>(U); 6289 const Function *Fn = UseCall->getCalledFunction(); 6290 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6291 return UseCall; 6292 } 6293 } 6294 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6295 } 6296 6297 /// If DI is a debug value with an EntryValue expression, lower it using the 6298 /// corresponding physical register of the associated Argument value 6299 /// (guaranteed to exist by the verifier). 6300 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6301 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6302 DIExpression *Expr, DebugLoc DbgLoc) { 6303 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6304 return false; 6305 6306 // These properties are guaranteed by the verifier. 6307 const Argument *Arg = cast<Argument>(Values[0]); 6308 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6309 6310 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6311 if (ArgIt == FuncInfo.ValueMap.end()) { 6312 LLVM_DEBUG( 6313 dbgs() << "Dropping dbg.value: expression is entry_value but " 6314 "couldn't find an associated register for the Argument\n"); 6315 return true; 6316 } 6317 Register ArgVReg = ArgIt->getSecond(); 6318 6319 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6320 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6321 SDDbgValue *SDV = DAG.getVRegDbgValue( 6322 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6323 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6324 return true; 6325 } 6326 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6327 "couldn't find a physical register\n"); 6328 return true; 6329 } 6330 6331 /// Lower the call to the specified intrinsic function. 6332 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6333 unsigned Intrinsic) { 6334 SDLoc sdl = getCurSDLoc(); 6335 switch (Intrinsic) { 6336 case Intrinsic::experimental_convergence_anchor: 6337 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6338 break; 6339 case Intrinsic::experimental_convergence_entry: 6340 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6341 break; 6342 case Intrinsic::experimental_convergence_loop: { 6343 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6344 auto *Token = Bundle->Inputs[0].get(); 6345 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6346 getValue(Token))); 6347 break; 6348 } 6349 } 6350 } 6351 6352 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6353 unsigned IntrinsicID) { 6354 // For now, we're only lowering an 'add' histogram. 6355 // We can add others later, e.g. saturating adds, min/max. 6356 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6357 "Tried to lower unsupported histogram type"); 6358 SDLoc sdl = getCurSDLoc(); 6359 Value *Ptr = I.getOperand(0); 6360 SDValue Inc = getValue(I.getOperand(1)); 6361 SDValue Mask = getValue(I.getOperand(2)); 6362 6363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6364 DataLayout TargetDL = DAG.getDataLayout(); 6365 EVT VT = Inc.getValueType(); 6366 Align Alignment = DAG.getEVTAlign(VT); 6367 6368 const MDNode *Ranges = getRangeMetadata(I); 6369 6370 SDValue Root = DAG.getRoot(); 6371 SDValue Base; 6372 SDValue Index; 6373 ISD::MemIndexType IndexType; 6374 SDValue Scale; 6375 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6376 I.getParent(), VT.getScalarStoreSize()); 6377 6378 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6379 6380 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6381 MachinePointerInfo(AS), 6382 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6383 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6384 6385 if (!UniformBase) { 6386 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6387 Index = getValue(Ptr); 6388 IndexType = ISD::SIGNED_SCALED; 6389 Scale = 6390 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6391 } 6392 6393 EVT IdxVT = Index.getValueType(); 6394 EVT EltTy = IdxVT.getVectorElementType(); 6395 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6396 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6397 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6398 } 6399 6400 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6401 6402 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6403 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6404 Ops, MMO, IndexType); 6405 6406 setValue(&I, Histogram); 6407 DAG.setRoot(Histogram); 6408 } 6409 6410 /// Lower the call to the specified intrinsic function. 6411 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6412 unsigned Intrinsic) { 6413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6414 SDLoc sdl = getCurSDLoc(); 6415 DebugLoc dl = getCurDebugLoc(); 6416 SDValue Res; 6417 6418 SDNodeFlags Flags; 6419 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6420 Flags.copyFMF(*FPOp); 6421 6422 switch (Intrinsic) { 6423 default: 6424 // By default, turn this into a target intrinsic node. 6425 visitTargetIntrinsic(I, Intrinsic); 6426 return; 6427 case Intrinsic::vscale: { 6428 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6429 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6430 return; 6431 } 6432 case Intrinsic::vastart: visitVAStart(I); return; 6433 case Intrinsic::vaend: visitVAEnd(I); return; 6434 case Intrinsic::vacopy: visitVACopy(I); return; 6435 case Intrinsic::returnaddress: 6436 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6437 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6438 getValue(I.getArgOperand(0)))); 6439 return; 6440 case Intrinsic::addressofreturnaddress: 6441 setValue(&I, 6442 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6443 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6444 return; 6445 case Intrinsic::sponentry: 6446 setValue(&I, 6447 DAG.getNode(ISD::SPONENTRY, sdl, 6448 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6449 return; 6450 case Intrinsic::frameaddress: 6451 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6452 TLI.getFrameIndexTy(DAG.getDataLayout()), 6453 getValue(I.getArgOperand(0)))); 6454 return; 6455 case Intrinsic::read_volatile_register: 6456 case Intrinsic::read_register: { 6457 Value *Reg = I.getArgOperand(0); 6458 SDValue Chain = getRoot(); 6459 SDValue RegName = 6460 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6461 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6462 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6463 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6464 setValue(&I, Res); 6465 DAG.setRoot(Res.getValue(1)); 6466 return; 6467 } 6468 case Intrinsic::write_register: { 6469 Value *Reg = I.getArgOperand(0); 6470 Value *RegValue = I.getArgOperand(1); 6471 SDValue Chain = getRoot(); 6472 SDValue RegName = 6473 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6474 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6475 RegName, getValue(RegValue))); 6476 return; 6477 } 6478 case Intrinsic::memcpy: { 6479 const auto &MCI = cast<MemCpyInst>(I); 6480 SDValue Op1 = getValue(I.getArgOperand(0)); 6481 SDValue Op2 = getValue(I.getArgOperand(1)); 6482 SDValue Op3 = getValue(I.getArgOperand(2)); 6483 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6484 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6485 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6486 Align Alignment = std::min(DstAlign, SrcAlign); 6487 bool isVol = MCI.isVolatile(); 6488 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6489 // node. 6490 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6491 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6492 /* AlwaysInline */ false, &I, std::nullopt, 6493 MachinePointerInfo(I.getArgOperand(0)), 6494 MachinePointerInfo(I.getArgOperand(1)), 6495 I.getAAMetadata(), AA); 6496 updateDAGForMaybeTailCall(MC); 6497 return; 6498 } 6499 case Intrinsic::memcpy_inline: { 6500 const auto &MCI = cast<MemCpyInlineInst>(I); 6501 SDValue Dst = getValue(I.getArgOperand(0)); 6502 SDValue Src = getValue(I.getArgOperand(1)); 6503 SDValue Size = getValue(I.getArgOperand(2)); 6504 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6505 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6506 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6507 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6508 Align Alignment = std::min(DstAlign, SrcAlign); 6509 bool isVol = MCI.isVolatile(); 6510 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6511 // node. 6512 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6513 /* AlwaysInline */ true, &I, std::nullopt, 6514 MachinePointerInfo(I.getArgOperand(0)), 6515 MachinePointerInfo(I.getArgOperand(1)), 6516 I.getAAMetadata(), AA); 6517 updateDAGForMaybeTailCall(MC); 6518 return; 6519 } 6520 case Intrinsic::memset: { 6521 const auto &MSI = cast<MemSetInst>(I); 6522 SDValue Op1 = getValue(I.getArgOperand(0)); 6523 SDValue Op2 = getValue(I.getArgOperand(1)); 6524 SDValue Op3 = getValue(I.getArgOperand(2)); 6525 // @llvm.memset defines 0 and 1 to both mean no alignment. 6526 Align Alignment = MSI.getDestAlign().valueOrOne(); 6527 bool isVol = MSI.isVolatile(); 6528 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6529 SDValue MS = DAG.getMemset( 6530 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6531 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6532 updateDAGForMaybeTailCall(MS); 6533 return; 6534 } 6535 case Intrinsic::memset_inline: { 6536 const auto &MSII = cast<MemSetInlineInst>(I); 6537 SDValue Dst = getValue(I.getArgOperand(0)); 6538 SDValue Value = getValue(I.getArgOperand(1)); 6539 SDValue Size = getValue(I.getArgOperand(2)); 6540 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6541 // @llvm.memset defines 0 and 1 to both mean no alignment. 6542 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6543 bool isVol = MSII.isVolatile(); 6544 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6545 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6546 /* AlwaysInline */ true, &I, 6547 MachinePointerInfo(I.getArgOperand(0)), 6548 I.getAAMetadata()); 6549 updateDAGForMaybeTailCall(MC); 6550 return; 6551 } 6552 case Intrinsic::memmove: { 6553 const auto &MMI = cast<MemMoveInst>(I); 6554 SDValue Op1 = getValue(I.getArgOperand(0)); 6555 SDValue Op2 = getValue(I.getArgOperand(1)); 6556 SDValue Op3 = getValue(I.getArgOperand(2)); 6557 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6558 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6559 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6560 Align Alignment = std::min(DstAlign, SrcAlign); 6561 bool isVol = MMI.isVolatile(); 6562 // FIXME: Support passing different dest/src alignments to the memmove DAG 6563 // node. 6564 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6565 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I, 6566 /* OverrideTailCall */ std::nullopt, 6567 MachinePointerInfo(I.getArgOperand(0)), 6568 MachinePointerInfo(I.getArgOperand(1)), 6569 I.getAAMetadata(), AA); 6570 updateDAGForMaybeTailCall(MM); 6571 return; 6572 } 6573 case Intrinsic::memcpy_element_unordered_atomic: { 6574 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6575 SDValue Dst = getValue(MI.getRawDest()); 6576 SDValue Src = getValue(MI.getRawSource()); 6577 SDValue Length = getValue(MI.getLength()); 6578 6579 Type *LengthTy = MI.getLength()->getType(); 6580 unsigned ElemSz = MI.getElementSizeInBytes(); 6581 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6582 SDValue MC = 6583 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6584 isTC, MachinePointerInfo(MI.getRawDest()), 6585 MachinePointerInfo(MI.getRawSource())); 6586 updateDAGForMaybeTailCall(MC); 6587 return; 6588 } 6589 case Intrinsic::memmove_element_unordered_atomic: { 6590 auto &MI = cast<AtomicMemMoveInst>(I); 6591 SDValue Dst = getValue(MI.getRawDest()); 6592 SDValue Src = getValue(MI.getRawSource()); 6593 SDValue Length = getValue(MI.getLength()); 6594 6595 Type *LengthTy = MI.getLength()->getType(); 6596 unsigned ElemSz = MI.getElementSizeInBytes(); 6597 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6598 SDValue MC = 6599 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6600 isTC, MachinePointerInfo(MI.getRawDest()), 6601 MachinePointerInfo(MI.getRawSource())); 6602 updateDAGForMaybeTailCall(MC); 6603 return; 6604 } 6605 case Intrinsic::memset_element_unordered_atomic: { 6606 auto &MI = cast<AtomicMemSetInst>(I); 6607 SDValue Dst = getValue(MI.getRawDest()); 6608 SDValue Val = getValue(MI.getValue()); 6609 SDValue Length = getValue(MI.getLength()); 6610 6611 Type *LengthTy = MI.getLength()->getType(); 6612 unsigned ElemSz = MI.getElementSizeInBytes(); 6613 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6614 SDValue MC = 6615 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6616 isTC, MachinePointerInfo(MI.getRawDest())); 6617 updateDAGForMaybeTailCall(MC); 6618 return; 6619 } 6620 case Intrinsic::call_preallocated_setup: { 6621 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6622 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6623 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6624 getRoot(), SrcValue); 6625 setValue(&I, Res); 6626 DAG.setRoot(Res); 6627 return; 6628 } 6629 case Intrinsic::call_preallocated_arg: { 6630 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6631 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6632 SDValue Ops[3]; 6633 Ops[0] = getRoot(); 6634 Ops[1] = SrcValue; 6635 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6636 MVT::i32); // arg index 6637 SDValue Res = DAG.getNode( 6638 ISD::PREALLOCATED_ARG, sdl, 6639 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6640 setValue(&I, Res); 6641 DAG.setRoot(Res.getValue(1)); 6642 return; 6643 } 6644 case Intrinsic::dbg_declare: { 6645 const auto &DI = cast<DbgDeclareInst>(I); 6646 // Debug intrinsics are handled separately in assignment tracking mode. 6647 // Some intrinsics are handled right after Argument lowering. 6648 if (AssignmentTrackingEnabled || 6649 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6650 return; 6651 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6652 DILocalVariable *Variable = DI.getVariable(); 6653 DIExpression *Expression = DI.getExpression(); 6654 dropDanglingDebugInfo(Variable, Expression); 6655 // Assume dbg.declare can not currently use DIArgList, i.e. 6656 // it is non-variadic. 6657 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6658 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6659 DI.getDebugLoc()); 6660 return; 6661 } 6662 case Intrinsic::dbg_label: { 6663 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6664 DILabel *Label = DI.getLabel(); 6665 assert(Label && "Missing label"); 6666 6667 SDDbgLabel *SDV; 6668 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6669 DAG.AddDbgLabel(SDV); 6670 return; 6671 } 6672 case Intrinsic::dbg_assign: { 6673 // Debug intrinsics are handled separately in assignment tracking mode. 6674 if (AssignmentTrackingEnabled) 6675 return; 6676 // If assignment tracking hasn't been enabled then fall through and treat 6677 // the dbg.assign as a dbg.value. 6678 [[fallthrough]]; 6679 } 6680 case Intrinsic::dbg_value: { 6681 // Debug intrinsics are handled separately in assignment tracking mode. 6682 if (AssignmentTrackingEnabled) 6683 return; 6684 const DbgValueInst &DI = cast<DbgValueInst>(I); 6685 assert(DI.getVariable() && "Missing variable"); 6686 6687 DILocalVariable *Variable = DI.getVariable(); 6688 DIExpression *Expression = DI.getExpression(); 6689 dropDanglingDebugInfo(Variable, Expression); 6690 6691 if (DI.isKillLocation()) { 6692 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6693 return; 6694 } 6695 6696 SmallVector<Value *, 4> Values(DI.getValues()); 6697 if (Values.empty()) 6698 return; 6699 6700 bool IsVariadic = DI.hasArgList(); 6701 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6702 SDNodeOrder, IsVariadic)) 6703 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6704 DI.getDebugLoc(), SDNodeOrder); 6705 return; 6706 } 6707 6708 case Intrinsic::eh_typeid_for: { 6709 // Find the type id for the given typeinfo. 6710 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6711 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6712 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6713 setValue(&I, Res); 6714 return; 6715 } 6716 6717 case Intrinsic::eh_return_i32: 6718 case Intrinsic::eh_return_i64: 6719 DAG.getMachineFunction().setCallsEHReturn(true); 6720 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6721 MVT::Other, 6722 getControlRoot(), 6723 getValue(I.getArgOperand(0)), 6724 getValue(I.getArgOperand(1)))); 6725 return; 6726 case Intrinsic::eh_unwind_init: 6727 DAG.getMachineFunction().setCallsUnwindInit(true); 6728 return; 6729 case Intrinsic::eh_dwarf_cfa: 6730 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6731 TLI.getPointerTy(DAG.getDataLayout()), 6732 getValue(I.getArgOperand(0)))); 6733 return; 6734 case Intrinsic::eh_sjlj_callsite: { 6735 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6736 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6737 6738 FuncInfo.setCurrentCallSite(CI->getZExtValue()); 6739 return; 6740 } 6741 case Intrinsic::eh_sjlj_functioncontext: { 6742 // Get and store the index of the function context. 6743 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6744 AllocaInst *FnCtx = 6745 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6746 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6747 MFI.setFunctionContextIndex(FI); 6748 return; 6749 } 6750 case Intrinsic::eh_sjlj_setjmp: { 6751 SDValue Ops[2]; 6752 Ops[0] = getRoot(); 6753 Ops[1] = getValue(I.getArgOperand(0)); 6754 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6755 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6756 setValue(&I, Op.getValue(0)); 6757 DAG.setRoot(Op.getValue(1)); 6758 return; 6759 } 6760 case Intrinsic::eh_sjlj_longjmp: 6761 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6762 getRoot(), getValue(I.getArgOperand(0)))); 6763 return; 6764 case Intrinsic::eh_sjlj_setup_dispatch: 6765 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6766 getRoot())); 6767 return; 6768 case Intrinsic::masked_gather: 6769 visitMaskedGather(I); 6770 return; 6771 case Intrinsic::masked_load: 6772 visitMaskedLoad(I); 6773 return; 6774 case Intrinsic::masked_scatter: 6775 visitMaskedScatter(I); 6776 return; 6777 case Intrinsic::masked_store: 6778 visitMaskedStore(I); 6779 return; 6780 case Intrinsic::masked_expandload: 6781 visitMaskedLoad(I, true /* IsExpanding */); 6782 return; 6783 case Intrinsic::masked_compressstore: 6784 visitMaskedStore(I, true /* IsCompressing */); 6785 return; 6786 case Intrinsic::powi: 6787 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6788 getValue(I.getArgOperand(1)), DAG)); 6789 return; 6790 case Intrinsic::log: 6791 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6792 return; 6793 case Intrinsic::log2: 6794 setValue(&I, 6795 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6796 return; 6797 case Intrinsic::log10: 6798 setValue(&I, 6799 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6800 return; 6801 case Intrinsic::exp: 6802 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6803 return; 6804 case Intrinsic::exp2: 6805 setValue(&I, 6806 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6807 return; 6808 case Intrinsic::pow: 6809 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6810 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6811 return; 6812 case Intrinsic::sqrt: 6813 case Intrinsic::fabs: 6814 case Intrinsic::sin: 6815 case Intrinsic::cos: 6816 case Intrinsic::tan: 6817 case Intrinsic::asin: 6818 case Intrinsic::acos: 6819 case Intrinsic::atan: 6820 case Intrinsic::sinh: 6821 case Intrinsic::cosh: 6822 case Intrinsic::tanh: 6823 case Intrinsic::exp10: 6824 case Intrinsic::floor: 6825 case Intrinsic::ceil: 6826 case Intrinsic::trunc: 6827 case Intrinsic::rint: 6828 case Intrinsic::nearbyint: 6829 case Intrinsic::round: 6830 case Intrinsic::roundeven: 6831 case Intrinsic::canonicalize: { 6832 unsigned Opcode; 6833 // clang-format off 6834 switch (Intrinsic) { 6835 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6836 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6837 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6838 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6839 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6840 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6841 case Intrinsic::asin: Opcode = ISD::FASIN; break; 6842 case Intrinsic::acos: Opcode = ISD::FACOS; break; 6843 case Intrinsic::atan: Opcode = ISD::FATAN; break; 6844 case Intrinsic::sinh: Opcode = ISD::FSINH; break; 6845 case Intrinsic::cosh: Opcode = ISD::FCOSH; break; 6846 case Intrinsic::tanh: Opcode = ISD::FTANH; break; 6847 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6848 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6849 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6850 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6851 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6852 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6853 case Intrinsic::round: Opcode = ISD::FROUND; break; 6854 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6855 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6856 } 6857 // clang-format on 6858 6859 setValue(&I, DAG.getNode(Opcode, sdl, 6860 getValue(I.getArgOperand(0)).getValueType(), 6861 getValue(I.getArgOperand(0)), Flags)); 6862 return; 6863 } 6864 case Intrinsic::atan2: 6865 setValue(&I, DAG.getNode(ISD::FATAN2, sdl, 6866 getValue(I.getArgOperand(0)).getValueType(), 6867 getValue(I.getArgOperand(0)), 6868 getValue(I.getArgOperand(1)), Flags)); 6869 return; 6870 case Intrinsic::lround: 6871 case Intrinsic::llround: 6872 case Intrinsic::lrint: 6873 case Intrinsic::llrint: { 6874 unsigned Opcode; 6875 // clang-format off 6876 switch (Intrinsic) { 6877 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6878 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6879 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6880 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6881 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6882 } 6883 // clang-format on 6884 6885 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6886 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6887 getValue(I.getArgOperand(0)))); 6888 return; 6889 } 6890 case Intrinsic::minnum: 6891 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6892 getValue(I.getArgOperand(0)).getValueType(), 6893 getValue(I.getArgOperand(0)), 6894 getValue(I.getArgOperand(1)), Flags)); 6895 return; 6896 case Intrinsic::maxnum: 6897 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6898 getValue(I.getArgOperand(0)).getValueType(), 6899 getValue(I.getArgOperand(0)), 6900 getValue(I.getArgOperand(1)), Flags)); 6901 return; 6902 case Intrinsic::minimum: 6903 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6904 getValue(I.getArgOperand(0)).getValueType(), 6905 getValue(I.getArgOperand(0)), 6906 getValue(I.getArgOperand(1)), Flags)); 6907 return; 6908 case Intrinsic::maximum: 6909 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6910 getValue(I.getArgOperand(0)).getValueType(), 6911 getValue(I.getArgOperand(0)), 6912 getValue(I.getArgOperand(1)), Flags)); 6913 return; 6914 case Intrinsic::minimumnum: 6915 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl, 6916 getValue(I.getArgOperand(0)).getValueType(), 6917 getValue(I.getArgOperand(0)), 6918 getValue(I.getArgOperand(1)), Flags)); 6919 return; 6920 case Intrinsic::maximumnum: 6921 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl, 6922 getValue(I.getArgOperand(0)).getValueType(), 6923 getValue(I.getArgOperand(0)), 6924 getValue(I.getArgOperand(1)), Flags)); 6925 return; 6926 case Intrinsic::copysign: 6927 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6928 getValue(I.getArgOperand(0)).getValueType(), 6929 getValue(I.getArgOperand(0)), 6930 getValue(I.getArgOperand(1)), Flags)); 6931 return; 6932 case Intrinsic::ldexp: 6933 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6934 getValue(I.getArgOperand(0)).getValueType(), 6935 getValue(I.getArgOperand(0)), 6936 getValue(I.getArgOperand(1)), Flags)); 6937 return; 6938 case Intrinsic::sincos: 6939 case Intrinsic::frexp: { 6940 unsigned Opcode; 6941 switch (Intrinsic) { 6942 default: 6943 llvm_unreachable("unexpected intrinsic"); 6944 case Intrinsic::sincos: 6945 Opcode = ISD::FSINCOS; 6946 break; 6947 case Intrinsic::frexp: 6948 Opcode = ISD::FFREXP; 6949 break; 6950 } 6951 SmallVector<EVT, 2> ValueVTs; 6952 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6953 SDVTList VTs = DAG.getVTList(ValueVTs); 6954 setValue( 6955 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags)); 6956 return; 6957 } 6958 case Intrinsic::arithmetic_fence: { 6959 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6960 getValue(I.getArgOperand(0)).getValueType(), 6961 getValue(I.getArgOperand(0)), Flags)); 6962 return; 6963 } 6964 case Intrinsic::fma: 6965 setValue(&I, DAG.getNode( 6966 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6967 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6968 getValue(I.getArgOperand(2)), Flags)); 6969 return; 6970 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6971 case Intrinsic::INTRINSIC: 6972 #include "llvm/IR/ConstrainedOps.def" 6973 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6974 return; 6975 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6976 #include "llvm/IR/VPIntrinsics.def" 6977 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6978 return; 6979 case Intrinsic::fptrunc_round: { 6980 // Get the last argument, the metadata and convert it to an integer in the 6981 // call 6982 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6983 std::optional<RoundingMode> RoundMode = 6984 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6985 6986 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6987 6988 // Propagate fast-math-flags from IR to node(s). 6989 SDNodeFlags Flags; 6990 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6991 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6992 6993 SDValue Result; 6994 Result = DAG.getNode( 6995 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6996 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32)); 6997 setValue(&I, Result); 6998 6999 return; 7000 } 7001 case Intrinsic::fmuladd: { 7002 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7003 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7004 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7005 setValue(&I, DAG.getNode(ISD::FMA, sdl, 7006 getValue(I.getArgOperand(0)).getValueType(), 7007 getValue(I.getArgOperand(0)), 7008 getValue(I.getArgOperand(1)), 7009 getValue(I.getArgOperand(2)), Flags)); 7010 } else { 7011 // TODO: Intrinsic calls should have fast-math-flags. 7012 SDValue Mul = DAG.getNode( 7013 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 7014 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 7015 SDValue Add = DAG.getNode(ISD::FADD, sdl, 7016 getValue(I.getArgOperand(0)).getValueType(), 7017 Mul, getValue(I.getArgOperand(2)), Flags); 7018 setValue(&I, Add); 7019 } 7020 return; 7021 } 7022 case Intrinsic::convert_to_fp16: 7023 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 7024 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 7025 getValue(I.getArgOperand(0)), 7026 DAG.getTargetConstant(0, sdl, 7027 MVT::i32)))); 7028 return; 7029 case Intrinsic::convert_from_fp16: 7030 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 7031 TLI.getValueType(DAG.getDataLayout(), I.getType()), 7032 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 7033 getValue(I.getArgOperand(0))))); 7034 return; 7035 case Intrinsic::fptosi_sat: { 7036 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7037 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 7038 getValue(I.getArgOperand(0)), 7039 DAG.getValueType(VT.getScalarType()))); 7040 return; 7041 } 7042 case Intrinsic::fptoui_sat: { 7043 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7044 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 7045 getValue(I.getArgOperand(0)), 7046 DAG.getValueType(VT.getScalarType()))); 7047 return; 7048 } 7049 case Intrinsic::set_rounding: 7050 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 7051 {getRoot(), getValue(I.getArgOperand(0))}); 7052 setValue(&I, Res); 7053 DAG.setRoot(Res.getValue(0)); 7054 return; 7055 case Intrinsic::is_fpclass: { 7056 const DataLayout DLayout = DAG.getDataLayout(); 7057 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 7058 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 7059 FPClassTest Test = static_cast<FPClassTest>( 7060 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 7061 MachineFunction &MF = DAG.getMachineFunction(); 7062 const Function &F = MF.getFunction(); 7063 SDValue Op = getValue(I.getArgOperand(0)); 7064 SDNodeFlags Flags; 7065 Flags.setNoFPExcept( 7066 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7067 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7068 // expansion can use illegal types. Making expansion early allows 7069 // legalizing these types prior to selection. 7070 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) && 7071 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) { 7072 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7073 setValue(&I, Result); 7074 return; 7075 } 7076 7077 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7078 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7079 setValue(&I, V); 7080 return; 7081 } 7082 case Intrinsic::get_fpenv: { 7083 const DataLayout DLayout = DAG.getDataLayout(); 7084 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7085 Align TempAlign = DAG.getEVTAlign(EnvVT); 7086 SDValue Chain = getRoot(); 7087 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7088 // and temporary storage in stack. 7089 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7090 Res = DAG.getNode( 7091 ISD::GET_FPENV, sdl, 7092 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7093 MVT::Other), 7094 Chain); 7095 } else { 7096 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7097 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7098 auto MPI = 7099 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7100 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7101 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7102 TempAlign); 7103 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7104 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7105 } 7106 setValue(&I, Res); 7107 DAG.setRoot(Res.getValue(1)); 7108 return; 7109 } 7110 case Intrinsic::set_fpenv: { 7111 const DataLayout DLayout = DAG.getDataLayout(); 7112 SDValue Env = getValue(I.getArgOperand(0)); 7113 EVT EnvVT = Env.getValueType(); 7114 Align TempAlign = DAG.getEVTAlign(EnvVT); 7115 SDValue Chain = getRoot(); 7116 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7117 // environment from memory. 7118 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7119 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7120 } else { 7121 // Allocate space in stack, copy environment bits into it and use this 7122 // memory in SET_FPENV_MEM. 7123 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7124 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7125 auto MPI = 7126 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7127 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7128 MachineMemOperand::MOStore); 7129 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7130 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7131 TempAlign); 7132 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7133 } 7134 DAG.setRoot(Chain); 7135 return; 7136 } 7137 case Intrinsic::reset_fpenv: 7138 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7139 return; 7140 case Intrinsic::get_fpmode: 7141 Res = DAG.getNode( 7142 ISD::GET_FPMODE, sdl, 7143 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7144 MVT::Other), 7145 DAG.getRoot()); 7146 setValue(&I, Res); 7147 DAG.setRoot(Res.getValue(1)); 7148 return; 7149 case Intrinsic::set_fpmode: 7150 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7151 getValue(I.getArgOperand(0))); 7152 DAG.setRoot(Res); 7153 return; 7154 case Intrinsic::reset_fpmode: { 7155 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7156 DAG.setRoot(Res); 7157 return; 7158 } 7159 case Intrinsic::pcmarker: { 7160 SDValue Tmp = getValue(I.getArgOperand(0)); 7161 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7162 return; 7163 } 7164 case Intrinsic::readcyclecounter: { 7165 SDValue Op = getRoot(); 7166 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7167 DAG.getVTList(MVT::i64, MVT::Other), Op); 7168 setValue(&I, Res); 7169 DAG.setRoot(Res.getValue(1)); 7170 return; 7171 } 7172 case Intrinsic::readsteadycounter: { 7173 SDValue Op = getRoot(); 7174 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7175 DAG.getVTList(MVT::i64, MVT::Other), Op); 7176 setValue(&I, Res); 7177 DAG.setRoot(Res.getValue(1)); 7178 return; 7179 } 7180 case Intrinsic::bitreverse: 7181 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7182 getValue(I.getArgOperand(0)).getValueType(), 7183 getValue(I.getArgOperand(0)))); 7184 return; 7185 case Intrinsic::bswap: 7186 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7187 getValue(I.getArgOperand(0)).getValueType(), 7188 getValue(I.getArgOperand(0)))); 7189 return; 7190 case Intrinsic::cttz: { 7191 SDValue Arg = getValue(I.getArgOperand(0)); 7192 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7193 EVT Ty = Arg.getValueType(); 7194 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7195 sdl, Ty, Arg)); 7196 return; 7197 } 7198 case Intrinsic::ctlz: { 7199 SDValue Arg = getValue(I.getArgOperand(0)); 7200 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7201 EVT Ty = Arg.getValueType(); 7202 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7203 sdl, Ty, Arg)); 7204 return; 7205 } 7206 case Intrinsic::ctpop: { 7207 SDValue Arg = getValue(I.getArgOperand(0)); 7208 EVT Ty = Arg.getValueType(); 7209 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7210 return; 7211 } 7212 case Intrinsic::fshl: 7213 case Intrinsic::fshr: { 7214 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7215 SDValue X = getValue(I.getArgOperand(0)); 7216 SDValue Y = getValue(I.getArgOperand(1)); 7217 SDValue Z = getValue(I.getArgOperand(2)); 7218 EVT VT = X.getValueType(); 7219 7220 if (X == Y) { 7221 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7222 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7223 } else { 7224 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7225 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7226 } 7227 return; 7228 } 7229 case Intrinsic::sadd_sat: { 7230 SDValue Op1 = getValue(I.getArgOperand(0)); 7231 SDValue Op2 = getValue(I.getArgOperand(1)); 7232 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7233 return; 7234 } 7235 case Intrinsic::uadd_sat: { 7236 SDValue Op1 = getValue(I.getArgOperand(0)); 7237 SDValue Op2 = getValue(I.getArgOperand(1)); 7238 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7239 return; 7240 } 7241 case Intrinsic::ssub_sat: { 7242 SDValue Op1 = getValue(I.getArgOperand(0)); 7243 SDValue Op2 = getValue(I.getArgOperand(1)); 7244 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7245 return; 7246 } 7247 case Intrinsic::usub_sat: { 7248 SDValue Op1 = getValue(I.getArgOperand(0)); 7249 SDValue Op2 = getValue(I.getArgOperand(1)); 7250 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7251 return; 7252 } 7253 case Intrinsic::sshl_sat: { 7254 SDValue Op1 = getValue(I.getArgOperand(0)); 7255 SDValue Op2 = getValue(I.getArgOperand(1)); 7256 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7257 return; 7258 } 7259 case Intrinsic::ushl_sat: { 7260 SDValue Op1 = getValue(I.getArgOperand(0)); 7261 SDValue Op2 = getValue(I.getArgOperand(1)); 7262 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7263 return; 7264 } 7265 case Intrinsic::smul_fix: 7266 case Intrinsic::umul_fix: 7267 case Intrinsic::smul_fix_sat: 7268 case Intrinsic::umul_fix_sat: { 7269 SDValue Op1 = getValue(I.getArgOperand(0)); 7270 SDValue Op2 = getValue(I.getArgOperand(1)); 7271 SDValue Op3 = getValue(I.getArgOperand(2)); 7272 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7273 Op1.getValueType(), Op1, Op2, Op3)); 7274 return; 7275 } 7276 case Intrinsic::sdiv_fix: 7277 case Intrinsic::udiv_fix: 7278 case Intrinsic::sdiv_fix_sat: 7279 case Intrinsic::udiv_fix_sat: { 7280 SDValue Op1 = getValue(I.getArgOperand(0)); 7281 SDValue Op2 = getValue(I.getArgOperand(1)); 7282 SDValue Op3 = getValue(I.getArgOperand(2)); 7283 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7284 Op1, Op2, Op3, DAG, TLI)); 7285 return; 7286 } 7287 case Intrinsic::smax: { 7288 SDValue Op1 = getValue(I.getArgOperand(0)); 7289 SDValue Op2 = getValue(I.getArgOperand(1)); 7290 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7291 return; 7292 } 7293 case Intrinsic::smin: { 7294 SDValue Op1 = getValue(I.getArgOperand(0)); 7295 SDValue Op2 = getValue(I.getArgOperand(1)); 7296 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7297 return; 7298 } 7299 case Intrinsic::umax: { 7300 SDValue Op1 = getValue(I.getArgOperand(0)); 7301 SDValue Op2 = getValue(I.getArgOperand(1)); 7302 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7303 return; 7304 } 7305 case Intrinsic::umin: { 7306 SDValue Op1 = getValue(I.getArgOperand(0)); 7307 SDValue Op2 = getValue(I.getArgOperand(1)); 7308 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7309 return; 7310 } 7311 case Intrinsic::abs: { 7312 // TODO: Preserve "int min is poison" arg in SDAG? 7313 SDValue Op1 = getValue(I.getArgOperand(0)); 7314 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7315 return; 7316 } 7317 case Intrinsic::scmp: { 7318 SDValue Op1 = getValue(I.getArgOperand(0)); 7319 SDValue Op2 = getValue(I.getArgOperand(1)); 7320 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7321 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7322 break; 7323 } 7324 case Intrinsic::ucmp: { 7325 SDValue Op1 = getValue(I.getArgOperand(0)); 7326 SDValue Op2 = getValue(I.getArgOperand(1)); 7327 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7328 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7329 break; 7330 } 7331 case Intrinsic::stacksave: { 7332 SDValue Op = getRoot(); 7333 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7334 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7335 setValue(&I, Res); 7336 DAG.setRoot(Res.getValue(1)); 7337 return; 7338 } 7339 case Intrinsic::stackrestore: 7340 Res = getValue(I.getArgOperand(0)); 7341 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7342 return; 7343 case Intrinsic::get_dynamic_area_offset: { 7344 SDValue Op = getRoot(); 7345 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7346 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7347 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7348 // target. 7349 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7350 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7351 " intrinsic!"); 7352 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7353 Op); 7354 DAG.setRoot(Op); 7355 setValue(&I, Res); 7356 return; 7357 } 7358 case Intrinsic::stackguard: { 7359 MachineFunction &MF = DAG.getMachineFunction(); 7360 const Module &M = *MF.getFunction().getParent(); 7361 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7362 SDValue Chain = getRoot(); 7363 if (TLI.useLoadStackGuardNode(M)) { 7364 Res = getLoadStackGuard(DAG, sdl, Chain); 7365 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7366 } else { 7367 const Value *Global = TLI.getSDagStackGuard(M); 7368 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7369 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7370 MachinePointerInfo(Global, 0), Align, 7371 MachineMemOperand::MOVolatile); 7372 } 7373 if (TLI.useStackGuardXorFP()) 7374 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7375 DAG.setRoot(Chain); 7376 setValue(&I, Res); 7377 return; 7378 } 7379 case Intrinsic::stackprotector: { 7380 // Emit code into the DAG to store the stack guard onto the stack. 7381 MachineFunction &MF = DAG.getMachineFunction(); 7382 MachineFrameInfo &MFI = MF.getFrameInfo(); 7383 const Module &M = *MF.getFunction().getParent(); 7384 SDValue Src, Chain = getRoot(); 7385 7386 if (TLI.useLoadStackGuardNode(M)) 7387 Src = getLoadStackGuard(DAG, sdl, Chain); 7388 else 7389 Src = getValue(I.getArgOperand(0)); // The guard's value. 7390 7391 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7392 7393 int FI = FuncInfo.StaticAllocaMap[Slot]; 7394 MFI.setStackProtectorIndex(FI); 7395 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7396 7397 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7398 7399 // Store the stack protector onto the stack. 7400 Res = DAG.getStore( 7401 Chain, sdl, Src, FIN, 7402 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7403 MaybeAlign(), MachineMemOperand::MOVolatile); 7404 setValue(&I, Res); 7405 DAG.setRoot(Res); 7406 return; 7407 } 7408 case Intrinsic::objectsize: 7409 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7410 7411 case Intrinsic::is_constant: 7412 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7413 7414 case Intrinsic::annotation: 7415 case Intrinsic::ptr_annotation: 7416 case Intrinsic::launder_invariant_group: 7417 case Intrinsic::strip_invariant_group: 7418 // Drop the intrinsic, but forward the value 7419 setValue(&I, getValue(I.getOperand(0))); 7420 return; 7421 7422 case Intrinsic::assume: 7423 case Intrinsic::experimental_noalias_scope_decl: 7424 case Intrinsic::var_annotation: 7425 case Intrinsic::sideeffect: 7426 // Discard annotate attributes, noalias scope declarations, assumptions, and 7427 // artificial side-effects. 7428 return; 7429 7430 case Intrinsic::codeview_annotation: { 7431 // Emit a label associated with this metadata. 7432 MachineFunction &MF = DAG.getMachineFunction(); 7433 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true); 7434 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7435 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7436 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7437 DAG.setRoot(Res); 7438 return; 7439 } 7440 7441 case Intrinsic::init_trampoline: { 7442 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7443 7444 SDValue Ops[6]; 7445 Ops[0] = getRoot(); 7446 Ops[1] = getValue(I.getArgOperand(0)); 7447 Ops[2] = getValue(I.getArgOperand(1)); 7448 Ops[3] = getValue(I.getArgOperand(2)); 7449 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7450 Ops[5] = DAG.getSrcValue(F); 7451 7452 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7453 7454 DAG.setRoot(Res); 7455 return; 7456 } 7457 case Intrinsic::adjust_trampoline: 7458 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7459 TLI.getPointerTy(DAG.getDataLayout()), 7460 getValue(I.getArgOperand(0)))); 7461 return; 7462 case Intrinsic::gcroot: { 7463 assert(DAG.getMachineFunction().getFunction().hasGC() && 7464 "only valid in functions with gc specified, enforced by Verifier"); 7465 assert(GFI && "implied by previous"); 7466 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7467 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7468 7469 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7470 GFI->addStackRoot(FI->getIndex(), TypeMap); 7471 return; 7472 } 7473 case Intrinsic::gcread: 7474 case Intrinsic::gcwrite: 7475 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7476 case Intrinsic::get_rounding: 7477 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7478 setValue(&I, Res); 7479 DAG.setRoot(Res.getValue(1)); 7480 return; 7481 7482 case Intrinsic::expect: 7483 // Just replace __builtin_expect(exp, c) with EXP. 7484 setValue(&I, getValue(I.getArgOperand(0))); 7485 return; 7486 7487 case Intrinsic::ubsantrap: 7488 case Intrinsic::debugtrap: 7489 case Intrinsic::trap: { 7490 StringRef TrapFuncName = 7491 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7492 if (TrapFuncName.empty()) { 7493 switch (Intrinsic) { 7494 case Intrinsic::trap: 7495 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7496 break; 7497 case Intrinsic::debugtrap: 7498 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7499 break; 7500 case Intrinsic::ubsantrap: 7501 DAG.setRoot(DAG.getNode( 7502 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7503 DAG.getTargetConstant( 7504 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7505 MVT::i32))); 7506 break; 7507 default: llvm_unreachable("unknown trap intrinsic"); 7508 } 7509 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(), 7510 I.hasFnAttr(Attribute::NoMerge)); 7511 return; 7512 } 7513 TargetLowering::ArgListTy Args; 7514 if (Intrinsic == Intrinsic::ubsantrap) { 7515 Args.push_back(TargetLoweringBase::ArgListEntry()); 7516 Args[0].Val = I.getArgOperand(0); 7517 Args[0].Node = getValue(Args[0].Val); 7518 Args[0].Ty = Args[0].Val->getType(); 7519 } 7520 7521 TargetLowering::CallLoweringInfo CLI(DAG); 7522 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7523 CallingConv::C, I.getType(), 7524 DAG.getExternalSymbol(TrapFuncName.data(), 7525 TLI.getPointerTy(DAG.getDataLayout())), 7526 std::move(Args)); 7527 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge); 7528 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7529 DAG.setRoot(Result.second); 7530 return; 7531 } 7532 7533 case Intrinsic::allow_runtime_check: 7534 case Intrinsic::allow_ubsan_check: 7535 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7536 return; 7537 7538 case Intrinsic::uadd_with_overflow: 7539 case Intrinsic::sadd_with_overflow: 7540 case Intrinsic::usub_with_overflow: 7541 case Intrinsic::ssub_with_overflow: 7542 case Intrinsic::umul_with_overflow: 7543 case Intrinsic::smul_with_overflow: { 7544 ISD::NodeType Op; 7545 switch (Intrinsic) { 7546 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7547 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7548 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7549 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7550 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7551 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7552 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7553 } 7554 SDValue Op1 = getValue(I.getArgOperand(0)); 7555 SDValue Op2 = getValue(I.getArgOperand(1)); 7556 7557 EVT ResultVT = Op1.getValueType(); 7558 EVT OverflowVT = MVT::i1; 7559 if (ResultVT.isVector()) 7560 OverflowVT = EVT::getVectorVT( 7561 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7562 7563 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7564 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7565 return; 7566 } 7567 case Intrinsic::prefetch: { 7568 SDValue Ops[5]; 7569 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7570 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7571 Ops[0] = DAG.getRoot(); 7572 Ops[1] = getValue(I.getArgOperand(0)); 7573 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7574 MVT::i32); 7575 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7576 MVT::i32); 7577 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7578 MVT::i32); 7579 SDValue Result = DAG.getMemIntrinsicNode( 7580 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7581 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7582 /* align */ std::nullopt, Flags); 7583 7584 // Chain the prefetch in parallel with any pending loads, to stay out of 7585 // the way of later optimizations. 7586 PendingLoads.push_back(Result); 7587 Result = getRoot(); 7588 DAG.setRoot(Result); 7589 return; 7590 } 7591 case Intrinsic::lifetime_start: 7592 case Intrinsic::lifetime_end: { 7593 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7594 // Stack coloring is not enabled in O0, discard region information. 7595 if (TM.getOptLevel() == CodeGenOptLevel::None) 7596 return; 7597 7598 const int64_t ObjectSize = 7599 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7600 Value *const ObjectPtr = I.getArgOperand(1); 7601 SmallVector<const Value *, 4> Allocas; 7602 getUnderlyingObjects(ObjectPtr, Allocas); 7603 7604 for (const Value *Alloca : Allocas) { 7605 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7606 7607 // Could not find an Alloca. 7608 if (!LifetimeObject) 7609 continue; 7610 7611 // First check that the Alloca is static, otherwise it won't have a 7612 // valid frame index. 7613 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7614 if (SI == FuncInfo.StaticAllocaMap.end()) 7615 return; 7616 7617 const int FrameIndex = SI->second; 7618 int64_t Offset; 7619 if (GetPointerBaseWithConstantOffset( 7620 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7621 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7622 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7623 Offset); 7624 DAG.setRoot(Res); 7625 } 7626 return; 7627 } 7628 case Intrinsic::pseudoprobe: { 7629 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7630 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7631 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7632 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7633 DAG.setRoot(Res); 7634 return; 7635 } 7636 case Intrinsic::invariant_start: 7637 // Discard region information. 7638 setValue(&I, 7639 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7640 return; 7641 case Intrinsic::invariant_end: 7642 // Discard region information. 7643 return; 7644 case Intrinsic::clear_cache: { 7645 SDValue InputChain = DAG.getRoot(); 7646 SDValue StartVal = getValue(I.getArgOperand(0)); 7647 SDValue EndVal = getValue(I.getArgOperand(1)); 7648 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7649 {InputChain, StartVal, EndVal}); 7650 setValue(&I, Res); 7651 DAG.setRoot(Res); 7652 return; 7653 } 7654 case Intrinsic::donothing: 7655 case Intrinsic::seh_try_begin: 7656 case Intrinsic::seh_scope_begin: 7657 case Intrinsic::seh_try_end: 7658 case Intrinsic::seh_scope_end: 7659 // ignore 7660 return; 7661 case Intrinsic::experimental_stackmap: 7662 visitStackmap(I); 7663 return; 7664 case Intrinsic::experimental_patchpoint_void: 7665 case Intrinsic::experimental_patchpoint: 7666 visitPatchpoint(I); 7667 return; 7668 case Intrinsic::experimental_gc_statepoint: 7669 LowerStatepoint(cast<GCStatepointInst>(I)); 7670 return; 7671 case Intrinsic::experimental_gc_result: 7672 visitGCResult(cast<GCResultInst>(I)); 7673 return; 7674 case Intrinsic::experimental_gc_relocate: 7675 visitGCRelocate(cast<GCRelocateInst>(I)); 7676 return; 7677 case Intrinsic::instrprof_cover: 7678 llvm_unreachable("instrprof failed to lower a cover"); 7679 case Intrinsic::instrprof_increment: 7680 llvm_unreachable("instrprof failed to lower an increment"); 7681 case Intrinsic::instrprof_timestamp: 7682 llvm_unreachable("instrprof failed to lower a timestamp"); 7683 case Intrinsic::instrprof_value_profile: 7684 llvm_unreachable("instrprof failed to lower a value profiling call"); 7685 case Intrinsic::instrprof_mcdc_parameters: 7686 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7687 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7688 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7689 case Intrinsic::localescape: { 7690 MachineFunction &MF = DAG.getMachineFunction(); 7691 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7692 7693 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7694 // is the same on all targets. 7695 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7696 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7697 if (isa<ConstantPointerNull>(Arg)) 7698 continue; // Skip null pointers. They represent a hole in index space. 7699 AllocaInst *Slot = cast<AllocaInst>(Arg); 7700 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7701 "can only escape static allocas"); 7702 int FI = FuncInfo.StaticAllocaMap[Slot]; 7703 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7704 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7705 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7706 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7707 .addSym(FrameAllocSym) 7708 .addFrameIndex(FI); 7709 } 7710 7711 return; 7712 } 7713 7714 case Intrinsic::localrecover: { 7715 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7716 MachineFunction &MF = DAG.getMachineFunction(); 7717 7718 // Get the symbol that defines the frame offset. 7719 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7720 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7721 unsigned IdxVal = 7722 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7723 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7724 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7725 7726 Value *FP = I.getArgOperand(1); 7727 SDValue FPVal = getValue(FP); 7728 EVT PtrVT = FPVal.getValueType(); 7729 7730 // Create a MCSymbol for the label to avoid any target lowering 7731 // that would make this PC relative. 7732 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7733 SDValue OffsetVal = 7734 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7735 7736 // Add the offset to the FP. 7737 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7738 setValue(&I, Add); 7739 7740 return; 7741 } 7742 7743 case Intrinsic::fake_use: { 7744 Value *V = I.getArgOperand(0); 7745 SDValue Ops[2]; 7746 // For Values not declared or previously used in this basic block, the 7747 // NodeMap will not have an entry, and `getValue` will assert if V has no 7748 // valid register value. 7749 auto FakeUseValue = [&]() -> SDValue { 7750 SDValue &N = NodeMap[V]; 7751 if (N.getNode()) 7752 return N; 7753 7754 // If there's a virtual register allocated and initialized for this 7755 // value, use it. 7756 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 7757 return copyFromReg; 7758 // FIXME: Do we want to preserve constants? It seems pointless. 7759 if (isa<Constant>(V)) 7760 return getValue(V); 7761 return SDValue(); 7762 }(); 7763 if (!FakeUseValue || FakeUseValue.isUndef()) 7764 return; 7765 Ops[0] = getRoot(); 7766 Ops[1] = FakeUseValue; 7767 // Also, do not translate a fake use with an undef operand, or any other 7768 // empty SDValues. 7769 if (!Ops[1] || Ops[1].isUndef()) 7770 return; 7771 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops)); 7772 return; 7773 } 7774 7775 case Intrinsic::eh_exceptionpointer: 7776 case Intrinsic::eh_exceptioncode: { 7777 // Get the exception pointer vreg, copy from it, and resize it to fit. 7778 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7779 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7780 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7781 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7782 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7783 if (Intrinsic == Intrinsic::eh_exceptioncode) 7784 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7785 setValue(&I, N); 7786 return; 7787 } 7788 case Intrinsic::xray_customevent: { 7789 // Here we want to make sure that the intrinsic behaves as if it has a 7790 // specific calling convention. 7791 const auto &Triple = DAG.getTarget().getTargetTriple(); 7792 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7793 return; 7794 7795 SmallVector<SDValue, 8> Ops; 7796 7797 // We want to say that we always want the arguments in registers. 7798 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7799 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7800 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7801 SDValue Chain = getRoot(); 7802 Ops.push_back(LogEntryVal); 7803 Ops.push_back(StrSizeVal); 7804 Ops.push_back(Chain); 7805 7806 // We need to enforce the calling convention for the callsite, so that 7807 // argument ordering is enforced correctly, and that register allocation can 7808 // see that some registers may be assumed clobbered and have to preserve 7809 // them across calls to the intrinsic. 7810 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7811 sdl, NodeTys, Ops); 7812 SDValue patchableNode = SDValue(MN, 0); 7813 DAG.setRoot(patchableNode); 7814 setValue(&I, patchableNode); 7815 return; 7816 } 7817 case Intrinsic::xray_typedevent: { 7818 // Here we want to make sure that the intrinsic behaves as if it has a 7819 // specific calling convention. 7820 const auto &Triple = DAG.getTarget().getTargetTriple(); 7821 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7822 return; 7823 7824 SmallVector<SDValue, 8> Ops; 7825 7826 // We want to say that we always want the arguments in registers. 7827 // It's unclear to me how manipulating the selection DAG here forces callers 7828 // to provide arguments in registers instead of on the stack. 7829 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7830 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7831 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7832 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7833 SDValue Chain = getRoot(); 7834 Ops.push_back(LogTypeId); 7835 Ops.push_back(LogEntryVal); 7836 Ops.push_back(StrSizeVal); 7837 Ops.push_back(Chain); 7838 7839 // We need to enforce the calling convention for the callsite, so that 7840 // argument ordering is enforced correctly, and that register allocation can 7841 // see that some registers may be assumed clobbered and have to preserve 7842 // them across calls to the intrinsic. 7843 MachineSDNode *MN = DAG.getMachineNode( 7844 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7845 SDValue patchableNode = SDValue(MN, 0); 7846 DAG.setRoot(patchableNode); 7847 setValue(&I, patchableNode); 7848 return; 7849 } 7850 case Intrinsic::experimental_deoptimize: 7851 LowerDeoptimizeCall(&I); 7852 return; 7853 case Intrinsic::stepvector: 7854 visitStepVector(I); 7855 return; 7856 case Intrinsic::vector_reduce_fadd: 7857 case Intrinsic::vector_reduce_fmul: 7858 case Intrinsic::vector_reduce_add: 7859 case Intrinsic::vector_reduce_mul: 7860 case Intrinsic::vector_reduce_and: 7861 case Intrinsic::vector_reduce_or: 7862 case Intrinsic::vector_reduce_xor: 7863 case Intrinsic::vector_reduce_smax: 7864 case Intrinsic::vector_reduce_smin: 7865 case Intrinsic::vector_reduce_umax: 7866 case Intrinsic::vector_reduce_umin: 7867 case Intrinsic::vector_reduce_fmax: 7868 case Intrinsic::vector_reduce_fmin: 7869 case Intrinsic::vector_reduce_fmaximum: 7870 case Intrinsic::vector_reduce_fminimum: 7871 visitVectorReduce(I, Intrinsic); 7872 return; 7873 7874 case Intrinsic::icall_branch_funnel: { 7875 SmallVector<SDValue, 16> Ops; 7876 Ops.push_back(getValue(I.getArgOperand(0))); 7877 7878 int64_t Offset; 7879 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7880 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7881 if (!Base) 7882 report_fatal_error( 7883 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7884 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7885 7886 struct BranchFunnelTarget { 7887 int64_t Offset; 7888 SDValue Target; 7889 }; 7890 SmallVector<BranchFunnelTarget, 8> Targets; 7891 7892 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7893 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7894 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7895 if (ElemBase != Base) 7896 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7897 "to the same GlobalValue"); 7898 7899 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7900 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7901 if (!GA) 7902 report_fatal_error( 7903 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7904 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7905 GA->getGlobal(), sdl, Val.getValueType(), 7906 GA->getOffset())}); 7907 } 7908 llvm::sort(Targets, 7909 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7910 return T1.Offset < T2.Offset; 7911 }); 7912 7913 for (auto &T : Targets) { 7914 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7915 Ops.push_back(T.Target); 7916 } 7917 7918 Ops.push_back(DAG.getRoot()); // Chain 7919 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7920 MVT::Other, Ops), 7921 0); 7922 DAG.setRoot(N); 7923 setValue(&I, N); 7924 HasTailCall = true; 7925 return; 7926 } 7927 7928 case Intrinsic::wasm_landingpad_index: 7929 // Information this intrinsic contained has been transferred to 7930 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7931 // delete it now. 7932 return; 7933 7934 case Intrinsic::aarch64_settag: 7935 case Intrinsic::aarch64_settag_zero: { 7936 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7937 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7938 SDValue Val = TSI.EmitTargetCodeForSetTag( 7939 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7940 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7941 ZeroMemory); 7942 DAG.setRoot(Val); 7943 setValue(&I, Val); 7944 return; 7945 } 7946 case Intrinsic::amdgcn_cs_chain: { 7947 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7948 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7949 "Non-zero flags not supported yet"); 7950 7951 // At this point we don't care if it's amdgpu_cs_chain or 7952 // amdgpu_cs_chain_preserve. 7953 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7954 7955 Type *RetTy = I.getType(); 7956 assert(RetTy->isVoidTy() && "Should not return"); 7957 7958 SDValue Callee = getValue(I.getOperand(0)); 7959 7960 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7961 // We'll also tack the value of the EXEC mask at the end. 7962 TargetLowering::ArgListTy Args; 7963 Args.reserve(3); 7964 7965 for (unsigned Idx : {2, 3, 1}) { 7966 TargetLowering::ArgListEntry Arg; 7967 Arg.Node = getValue(I.getOperand(Idx)); 7968 Arg.Ty = I.getOperand(Idx)->getType(); 7969 Arg.setAttributes(&I, Idx); 7970 Args.push_back(Arg); 7971 } 7972 7973 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7974 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7975 Args[2].IsInReg = true; // EXEC should be inreg 7976 7977 TargetLowering::CallLoweringInfo CLI(DAG); 7978 CLI.setDebugLoc(getCurSDLoc()) 7979 .setChain(getRoot()) 7980 .setCallee(CC, RetTy, Callee, std::move(Args)) 7981 .setNoReturn(true) 7982 .setTailCall(true) 7983 .setConvergent(I.isConvergent()); 7984 CLI.CB = &I; 7985 std::pair<SDValue, SDValue> Result = 7986 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7987 (void)Result; 7988 assert(!Result.first.getNode() && !Result.second.getNode() && 7989 "Should've lowered as tail call"); 7990 7991 HasTailCall = true; 7992 return; 7993 } 7994 case Intrinsic::ptrmask: { 7995 SDValue Ptr = getValue(I.getOperand(0)); 7996 SDValue Mask = getValue(I.getOperand(1)); 7997 7998 // On arm64_32, pointers are 32 bits when stored in memory, but 7999 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 8000 // match the index type, but the pointer is 64 bits, so the the mask must be 8001 // zero-extended up to 64 bits to match the pointer. 8002 EVT PtrVT = 8003 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 8004 EVT MemVT = 8005 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 8006 assert(PtrVT == Ptr.getValueType()); 8007 assert(MemVT == Mask.getValueType()); 8008 if (MemVT != PtrVT) 8009 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 8010 8011 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 8012 return; 8013 } 8014 case Intrinsic::threadlocal_address: { 8015 setValue(&I, getValue(I.getOperand(0))); 8016 return; 8017 } 8018 case Intrinsic::get_active_lane_mask: { 8019 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8020 SDValue Index = getValue(I.getOperand(0)); 8021 EVT ElementVT = Index.getValueType(); 8022 8023 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 8024 visitTargetIntrinsic(I, Intrinsic); 8025 return; 8026 } 8027 8028 SDValue TripCount = getValue(I.getOperand(1)); 8029 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 8030 CCVT.getVectorElementCount()); 8031 8032 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 8033 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 8034 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 8035 SDValue VectorInduction = DAG.getNode( 8036 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 8037 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 8038 VectorTripCount, ISD::CondCode::SETULT); 8039 setValue(&I, SetCC); 8040 return; 8041 } 8042 case Intrinsic::experimental_get_vector_length: { 8043 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 8044 "Expected positive VF"); 8045 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 8046 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 8047 8048 SDValue Count = getValue(I.getOperand(0)); 8049 EVT CountVT = Count.getValueType(); 8050 8051 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 8052 visitTargetIntrinsic(I, Intrinsic); 8053 return; 8054 } 8055 8056 // Expand to a umin between the trip count and the maximum elements the type 8057 // can hold. 8058 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8059 8060 // Extend the trip count to at least the result VT. 8061 if (CountVT.bitsLT(VT)) { 8062 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 8063 CountVT = VT; 8064 } 8065 8066 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 8067 ElementCount::get(VF, IsScalable)); 8068 8069 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 8070 // Clip to the result type if needed. 8071 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 8072 8073 setValue(&I, Trunc); 8074 return; 8075 } 8076 case Intrinsic::experimental_vector_partial_reduce_add: { 8077 8078 if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) { 8079 visitTargetIntrinsic(I, Intrinsic); 8080 return; 8081 } 8082 8083 setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()), 8084 getValue(I.getOperand(0)), 8085 getValue(I.getOperand(1)))); 8086 return; 8087 } 8088 case Intrinsic::experimental_cttz_elts: { 8089 auto DL = getCurSDLoc(); 8090 SDValue Op = getValue(I.getOperand(0)); 8091 EVT OpVT = Op.getValueType(); 8092 8093 if (!TLI.shouldExpandCttzElements(OpVT)) { 8094 visitTargetIntrinsic(I, Intrinsic); 8095 return; 8096 } 8097 8098 if (OpVT.getScalarType() != MVT::i1) { 8099 // Compare the input vector elements to zero & use to count trailing zeros 8100 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 8101 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 8102 OpVT.getVectorElementCount()); 8103 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 8104 } 8105 8106 // If the zero-is-poison flag is set, we can assume the upper limit 8107 // of the result is VF-1. 8108 bool ZeroIsPoison = 8109 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8110 ConstantRange VScaleRange(1, true); // Dummy value. 8111 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8112 VScaleRange = getVScaleRange(I.getCaller(), 64); 8113 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8114 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8115 8116 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8117 8118 // Create the new vector type & get the vector length 8119 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8120 OpVT.getVectorElementCount()); 8121 8122 SDValue VL = 8123 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8124 8125 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8126 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8127 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8128 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8129 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8130 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8131 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8132 8133 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8134 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8135 8136 setValue(&I, Ret); 8137 return; 8138 } 8139 case Intrinsic::vector_insert: { 8140 SDValue Vec = getValue(I.getOperand(0)); 8141 SDValue SubVec = getValue(I.getOperand(1)); 8142 SDValue Index = getValue(I.getOperand(2)); 8143 8144 // The intrinsic's index type is i64, but the SDNode requires an index type 8145 // suitable for the target. Convert the index as required. 8146 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8147 if (Index.getValueType() != VectorIdxTy) 8148 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8149 8150 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8151 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8152 Index)); 8153 return; 8154 } 8155 case Intrinsic::vector_extract: { 8156 SDValue Vec = getValue(I.getOperand(0)); 8157 SDValue Index = getValue(I.getOperand(1)); 8158 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8159 8160 // The intrinsic's index type is i64, but the SDNode requires an index type 8161 // suitable for the target. Convert the index as required. 8162 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8163 if (Index.getValueType() != VectorIdxTy) 8164 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8165 8166 setValue(&I, 8167 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8168 return; 8169 } 8170 case Intrinsic::vector_reverse: 8171 visitVectorReverse(I); 8172 return; 8173 case Intrinsic::vector_splice: 8174 visitVectorSplice(I); 8175 return; 8176 case Intrinsic::callbr_landingpad: 8177 visitCallBrLandingPad(I); 8178 return; 8179 case Intrinsic::vector_interleave2: 8180 visitVectorInterleave(I); 8181 return; 8182 case Intrinsic::vector_deinterleave2: 8183 visitVectorDeinterleave(I); 8184 return; 8185 case Intrinsic::experimental_vector_compress: 8186 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl, 8187 getValue(I.getArgOperand(0)).getValueType(), 8188 getValue(I.getArgOperand(0)), 8189 getValue(I.getArgOperand(1)), 8190 getValue(I.getArgOperand(2)), Flags)); 8191 return; 8192 case Intrinsic::experimental_convergence_anchor: 8193 case Intrinsic::experimental_convergence_entry: 8194 case Intrinsic::experimental_convergence_loop: 8195 visitConvergenceControl(I, Intrinsic); 8196 return; 8197 case Intrinsic::experimental_vector_histogram_add: { 8198 visitVectorHistogram(I, Intrinsic); 8199 return; 8200 } 8201 } 8202 } 8203 8204 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8205 const ConstrainedFPIntrinsic &FPI) { 8206 SDLoc sdl = getCurSDLoc(); 8207 8208 // We do not need to serialize constrained FP intrinsics against 8209 // each other or against (nonvolatile) loads, so they can be 8210 // chained like loads. 8211 SDValue Chain = DAG.getRoot(); 8212 SmallVector<SDValue, 4> Opers; 8213 Opers.push_back(Chain); 8214 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8215 Opers.push_back(getValue(FPI.getArgOperand(I))); 8216 8217 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8218 assert(Result.getNode()->getNumValues() == 2); 8219 8220 // Push node to the appropriate list so that future instructions can be 8221 // chained up correctly. 8222 SDValue OutChain = Result.getValue(1); 8223 switch (EB) { 8224 case fp::ExceptionBehavior::ebIgnore: 8225 // The only reason why ebIgnore nodes still need to be chained is that 8226 // they might depend on the current rounding mode, and therefore must 8227 // not be moved across instruction that may change that mode. 8228 [[fallthrough]]; 8229 case fp::ExceptionBehavior::ebMayTrap: 8230 // These must not be moved across calls or instructions that may change 8231 // floating-point exception masks. 8232 PendingConstrainedFP.push_back(OutChain); 8233 break; 8234 case fp::ExceptionBehavior::ebStrict: 8235 // These must not be moved across calls or instructions that may change 8236 // floating-point exception masks or read floating-point exception flags. 8237 // In addition, they cannot be optimized out even if unused. 8238 PendingConstrainedFPStrict.push_back(OutChain); 8239 break; 8240 } 8241 }; 8242 8243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8244 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8245 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8246 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8247 8248 SDNodeFlags Flags; 8249 if (EB == fp::ExceptionBehavior::ebIgnore) 8250 Flags.setNoFPExcept(true); 8251 8252 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8253 Flags.copyFMF(*FPOp); 8254 8255 unsigned Opcode; 8256 switch (FPI.getIntrinsicID()) { 8257 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8258 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8259 case Intrinsic::INTRINSIC: \ 8260 Opcode = ISD::STRICT_##DAGN; \ 8261 break; 8262 #include "llvm/IR/ConstrainedOps.def" 8263 case Intrinsic::experimental_constrained_fmuladd: { 8264 Opcode = ISD::STRICT_FMA; 8265 // Break fmuladd into fmul and fadd. 8266 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8267 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8268 Opers.pop_back(); 8269 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8270 pushOutChain(Mul, EB); 8271 Opcode = ISD::STRICT_FADD; 8272 Opers.clear(); 8273 Opers.push_back(Mul.getValue(1)); 8274 Opers.push_back(Mul.getValue(0)); 8275 Opers.push_back(getValue(FPI.getArgOperand(2))); 8276 } 8277 break; 8278 } 8279 } 8280 8281 // A few strict DAG nodes carry additional operands that are not 8282 // set up by the default code above. 8283 switch (Opcode) { 8284 default: break; 8285 case ISD::STRICT_FP_ROUND: 8286 Opers.push_back( 8287 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8288 break; 8289 case ISD::STRICT_FSETCC: 8290 case ISD::STRICT_FSETCCS: { 8291 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8292 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8293 if (TM.Options.NoNaNsFPMath) 8294 Condition = getFCmpCodeWithoutNaN(Condition); 8295 Opers.push_back(DAG.getCondCode(Condition)); 8296 break; 8297 } 8298 } 8299 8300 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8301 pushOutChain(Result, EB); 8302 8303 SDValue FPResult = Result.getValue(0); 8304 setValue(&FPI, FPResult); 8305 } 8306 8307 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8308 std::optional<unsigned> ResOPC; 8309 switch (VPIntrin.getIntrinsicID()) { 8310 case Intrinsic::vp_ctlz: { 8311 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8312 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8313 break; 8314 } 8315 case Intrinsic::vp_cttz: { 8316 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8317 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8318 break; 8319 } 8320 case Intrinsic::vp_cttz_elts: { 8321 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8322 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8323 break; 8324 } 8325 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8326 case Intrinsic::VPID: \ 8327 ResOPC = ISD::VPSD; \ 8328 break; 8329 #include "llvm/IR/VPIntrinsics.def" 8330 } 8331 8332 if (!ResOPC) 8333 llvm_unreachable( 8334 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8335 8336 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8337 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8338 if (VPIntrin.getFastMathFlags().allowReassoc()) 8339 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8340 : ISD::VP_REDUCE_FMUL; 8341 } 8342 8343 return *ResOPC; 8344 } 8345 8346 void SelectionDAGBuilder::visitVPLoad( 8347 const VPIntrinsic &VPIntrin, EVT VT, 8348 const SmallVectorImpl<SDValue> &OpValues) { 8349 SDLoc DL = getCurSDLoc(); 8350 Value *PtrOperand = VPIntrin.getArgOperand(0); 8351 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8352 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8353 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8354 SDValue LD; 8355 // Do not serialize variable-length loads of constant memory with 8356 // anything. 8357 if (!Alignment) 8358 Alignment = DAG.getEVTAlign(VT); 8359 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8360 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8361 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8362 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8363 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8364 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8365 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8366 MMO, false /*IsExpanding */); 8367 if (AddToChain) 8368 PendingLoads.push_back(LD.getValue(1)); 8369 setValue(&VPIntrin, LD); 8370 } 8371 8372 void SelectionDAGBuilder::visitVPGather( 8373 const VPIntrinsic &VPIntrin, EVT VT, 8374 const SmallVectorImpl<SDValue> &OpValues) { 8375 SDLoc DL = getCurSDLoc(); 8376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8377 Value *PtrOperand = VPIntrin.getArgOperand(0); 8378 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8379 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8380 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8381 SDValue LD; 8382 if (!Alignment) 8383 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8384 unsigned AS = 8385 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8386 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8387 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8388 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8389 SDValue Base, Index, Scale; 8390 ISD::MemIndexType IndexType; 8391 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8392 this, VPIntrin.getParent(), 8393 VT.getScalarStoreSize()); 8394 if (!UniformBase) { 8395 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8396 Index = getValue(PtrOperand); 8397 IndexType = ISD::SIGNED_SCALED; 8398 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8399 } 8400 EVT IdxVT = Index.getValueType(); 8401 EVT EltTy = IdxVT.getVectorElementType(); 8402 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8403 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8404 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8405 } 8406 LD = DAG.getGatherVP( 8407 DAG.getVTList(VT, MVT::Other), VT, DL, 8408 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8409 IndexType); 8410 PendingLoads.push_back(LD.getValue(1)); 8411 setValue(&VPIntrin, LD); 8412 } 8413 8414 void SelectionDAGBuilder::visitVPStore( 8415 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8416 SDLoc DL = getCurSDLoc(); 8417 Value *PtrOperand = VPIntrin.getArgOperand(1); 8418 EVT VT = OpValues[0].getValueType(); 8419 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8420 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8421 SDValue ST; 8422 if (!Alignment) 8423 Alignment = DAG.getEVTAlign(VT); 8424 SDValue Ptr = OpValues[1]; 8425 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8426 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8427 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8428 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8429 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8430 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8431 /* IsTruncating */ false, /*IsCompressing*/ false); 8432 DAG.setRoot(ST); 8433 setValue(&VPIntrin, ST); 8434 } 8435 8436 void SelectionDAGBuilder::visitVPScatter( 8437 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8438 SDLoc DL = getCurSDLoc(); 8439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8440 Value *PtrOperand = VPIntrin.getArgOperand(1); 8441 EVT VT = OpValues[0].getValueType(); 8442 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8443 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8444 SDValue ST; 8445 if (!Alignment) 8446 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8447 unsigned AS = 8448 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8449 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8450 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8451 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8452 SDValue Base, Index, Scale; 8453 ISD::MemIndexType IndexType; 8454 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8455 this, VPIntrin.getParent(), 8456 VT.getScalarStoreSize()); 8457 if (!UniformBase) { 8458 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8459 Index = getValue(PtrOperand); 8460 IndexType = ISD::SIGNED_SCALED; 8461 Scale = 8462 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8463 } 8464 EVT IdxVT = Index.getValueType(); 8465 EVT EltTy = IdxVT.getVectorElementType(); 8466 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8467 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8468 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8469 } 8470 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8471 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8472 OpValues[2], OpValues[3]}, 8473 MMO, IndexType); 8474 DAG.setRoot(ST); 8475 setValue(&VPIntrin, ST); 8476 } 8477 8478 void SelectionDAGBuilder::visitVPStridedLoad( 8479 const VPIntrinsic &VPIntrin, EVT VT, 8480 const SmallVectorImpl<SDValue> &OpValues) { 8481 SDLoc DL = getCurSDLoc(); 8482 Value *PtrOperand = VPIntrin.getArgOperand(0); 8483 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8484 if (!Alignment) 8485 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8486 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8487 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8488 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8489 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8490 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8491 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8492 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8493 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8494 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8495 8496 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8497 OpValues[2], OpValues[3], MMO, 8498 false /*IsExpanding*/); 8499 8500 if (AddToChain) 8501 PendingLoads.push_back(LD.getValue(1)); 8502 setValue(&VPIntrin, LD); 8503 } 8504 8505 void SelectionDAGBuilder::visitVPStridedStore( 8506 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8507 SDLoc DL = getCurSDLoc(); 8508 Value *PtrOperand = VPIntrin.getArgOperand(1); 8509 EVT VT = OpValues[0].getValueType(); 8510 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8511 if (!Alignment) 8512 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8513 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8514 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8515 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8516 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8517 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8518 8519 SDValue ST = DAG.getStridedStoreVP( 8520 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8521 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8522 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8523 /*IsCompressing*/ false); 8524 8525 DAG.setRoot(ST); 8526 setValue(&VPIntrin, ST); 8527 } 8528 8529 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8531 SDLoc DL = getCurSDLoc(); 8532 8533 ISD::CondCode Condition; 8534 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8535 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8536 if (IsFP) { 8537 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8538 // flags, but calls that don't return floating-point types can't be 8539 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8540 Condition = getFCmpCondCode(CondCode); 8541 if (TM.Options.NoNaNsFPMath) 8542 Condition = getFCmpCodeWithoutNaN(Condition); 8543 } else { 8544 Condition = getICmpCondCode(CondCode); 8545 } 8546 8547 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8548 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8549 // #2 is the condition code 8550 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8551 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8552 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8553 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8554 "Unexpected target EVL type"); 8555 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8556 8557 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8558 VPIntrin.getType()); 8559 setValue(&VPIntrin, 8560 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8561 } 8562 8563 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8564 const VPIntrinsic &VPIntrin) { 8565 SDLoc DL = getCurSDLoc(); 8566 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8567 8568 auto IID = VPIntrin.getIntrinsicID(); 8569 8570 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8571 return visitVPCmp(*CmpI); 8572 8573 SmallVector<EVT, 4> ValueVTs; 8574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8575 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8576 SDVTList VTs = DAG.getVTList(ValueVTs); 8577 8578 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8579 8580 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8581 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8582 "Unexpected target EVL type"); 8583 8584 // Request operands. 8585 SmallVector<SDValue, 7> OpValues; 8586 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8587 auto Op = getValue(VPIntrin.getArgOperand(I)); 8588 if (I == EVLParamPos) 8589 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8590 OpValues.push_back(Op); 8591 } 8592 8593 switch (Opcode) { 8594 default: { 8595 SDNodeFlags SDFlags; 8596 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8597 SDFlags.copyFMF(*FPMO); 8598 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8599 setValue(&VPIntrin, Result); 8600 break; 8601 } 8602 case ISD::VP_LOAD: 8603 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8604 break; 8605 case ISD::VP_GATHER: 8606 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8607 break; 8608 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8609 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8610 break; 8611 case ISD::VP_STORE: 8612 visitVPStore(VPIntrin, OpValues); 8613 break; 8614 case ISD::VP_SCATTER: 8615 visitVPScatter(VPIntrin, OpValues); 8616 break; 8617 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8618 visitVPStridedStore(VPIntrin, OpValues); 8619 break; 8620 case ISD::VP_FMULADD: { 8621 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8622 SDNodeFlags SDFlags; 8623 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8624 SDFlags.copyFMF(*FPMO); 8625 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8626 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8627 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8628 } else { 8629 SDValue Mul = DAG.getNode( 8630 ISD::VP_FMUL, DL, VTs, 8631 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8632 SDValue Add = 8633 DAG.getNode(ISD::VP_FADD, DL, VTs, 8634 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8635 setValue(&VPIntrin, Add); 8636 } 8637 break; 8638 } 8639 case ISD::VP_IS_FPCLASS: { 8640 const DataLayout DLayout = DAG.getDataLayout(); 8641 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8642 auto Constant = OpValues[1]->getAsZExtVal(); 8643 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8644 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8645 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8646 setValue(&VPIntrin, V); 8647 return; 8648 } 8649 case ISD::VP_INTTOPTR: { 8650 SDValue N = OpValues[0]; 8651 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8652 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8653 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8654 OpValues[2]); 8655 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8656 OpValues[2]); 8657 setValue(&VPIntrin, N); 8658 break; 8659 } 8660 case ISD::VP_PTRTOINT: { 8661 SDValue N = OpValues[0]; 8662 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8663 VPIntrin.getType()); 8664 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8665 VPIntrin.getOperand(0)->getType()); 8666 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8667 OpValues[2]); 8668 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8669 OpValues[2]); 8670 setValue(&VPIntrin, N); 8671 break; 8672 } 8673 case ISD::VP_ABS: 8674 case ISD::VP_CTLZ: 8675 case ISD::VP_CTLZ_ZERO_UNDEF: 8676 case ISD::VP_CTTZ: 8677 case ISD::VP_CTTZ_ZERO_UNDEF: 8678 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8679 case ISD::VP_CTTZ_ELTS: { 8680 SDValue Result = 8681 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8682 setValue(&VPIntrin, Result); 8683 break; 8684 } 8685 } 8686 } 8687 8688 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8689 const BasicBlock *EHPadBB, 8690 MCSymbol *&BeginLabel) { 8691 MachineFunction &MF = DAG.getMachineFunction(); 8692 8693 // Insert a label before the invoke call to mark the try range. This can be 8694 // used to detect deletion of the invoke via the MachineModuleInfo. 8695 BeginLabel = MF.getContext().createTempSymbol(); 8696 8697 // For SjLj, keep track of which landing pads go with which invokes 8698 // so as to maintain the ordering of pads in the LSDA. 8699 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite(); 8700 if (CallSiteIndex) { 8701 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8702 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex); 8703 8704 // Now that the call site is handled, stop tracking it. 8705 FuncInfo.setCurrentCallSite(0); 8706 } 8707 8708 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8709 } 8710 8711 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8712 const BasicBlock *EHPadBB, 8713 MCSymbol *BeginLabel) { 8714 assert(BeginLabel && "BeginLabel should've been set"); 8715 8716 MachineFunction &MF = DAG.getMachineFunction(); 8717 8718 // Insert a label at the end of the invoke call to mark the try range. This 8719 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8720 MCSymbol *EndLabel = MF.getContext().createTempSymbol(); 8721 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8722 8723 // Inform MachineModuleInfo of range. 8724 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8725 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8726 // actually use outlined funclets and their LSDA info style. 8727 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8728 assert(II && "II should've been set"); 8729 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8730 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8731 } else if (!isScopedEHPersonality(Pers)) { 8732 assert(EHPadBB); 8733 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel); 8734 } 8735 8736 return Chain; 8737 } 8738 8739 std::pair<SDValue, SDValue> 8740 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8741 const BasicBlock *EHPadBB) { 8742 MCSymbol *BeginLabel = nullptr; 8743 8744 if (EHPadBB) { 8745 // Both PendingLoads and PendingExports must be flushed here; 8746 // this call might not return. 8747 (void)getRoot(); 8748 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8749 CLI.setChain(getRoot()); 8750 } 8751 8752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8753 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8754 8755 assert((CLI.IsTailCall || Result.second.getNode()) && 8756 "Non-null chain expected with non-tail call!"); 8757 assert((Result.second.getNode() || !Result.first.getNode()) && 8758 "Null value expected with tail call!"); 8759 8760 if (!Result.second.getNode()) { 8761 // As a special case, a null chain means that a tail call has been emitted 8762 // and the DAG root is already updated. 8763 HasTailCall = true; 8764 8765 // Since there's no actual continuation from this block, nothing can be 8766 // relying on us setting vregs for them. 8767 PendingExports.clear(); 8768 } else { 8769 DAG.setRoot(Result.second); 8770 } 8771 8772 if (EHPadBB) { 8773 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8774 BeginLabel)); 8775 Result.second = getRoot(); 8776 } 8777 8778 return Result; 8779 } 8780 8781 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8782 bool isTailCall, bool isMustTailCall, 8783 const BasicBlock *EHPadBB, 8784 const TargetLowering::PtrAuthInfo *PAI) { 8785 auto &DL = DAG.getDataLayout(); 8786 FunctionType *FTy = CB.getFunctionType(); 8787 Type *RetTy = CB.getType(); 8788 8789 TargetLowering::ArgListTy Args; 8790 Args.reserve(CB.arg_size()); 8791 8792 const Value *SwiftErrorVal = nullptr; 8793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8794 8795 if (isTailCall) { 8796 // Avoid emitting tail calls in functions with the disable-tail-calls 8797 // attribute. 8798 auto *Caller = CB.getParent()->getParent(); 8799 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8800 "true" && !isMustTailCall) 8801 isTailCall = false; 8802 8803 // We can't tail call inside a function with a swifterror argument. Lowering 8804 // does not support this yet. It would have to move into the swifterror 8805 // register before the call. 8806 if (TLI.supportSwiftError() && 8807 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8808 isTailCall = false; 8809 } 8810 8811 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8812 TargetLowering::ArgListEntry Entry; 8813 const Value *V = *I; 8814 8815 // Skip empty types 8816 if (V->getType()->isEmptyTy()) 8817 continue; 8818 8819 SDValue ArgNode = getValue(V); 8820 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8821 8822 Entry.setAttributes(&CB, I - CB.arg_begin()); 8823 8824 // Use swifterror virtual register as input to the call. 8825 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8826 SwiftErrorVal = V; 8827 // We find the virtual register for the actual swifterror argument. 8828 // Instead of using the Value, we use the virtual register instead. 8829 Entry.Node = 8830 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8831 EVT(TLI.getPointerTy(DL))); 8832 } 8833 8834 Args.push_back(Entry); 8835 8836 // If we have an explicit sret argument that is an Instruction, (i.e., it 8837 // might point to function-local memory), we can't meaningfully tail-call. 8838 if (Entry.IsSRet && isa<Instruction>(V)) 8839 isTailCall = false; 8840 } 8841 8842 // If call site has a cfguardtarget operand bundle, create and add an 8843 // additional ArgListEntry. 8844 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8845 TargetLowering::ArgListEntry Entry; 8846 Value *V = Bundle->Inputs[0]; 8847 SDValue ArgNode = getValue(V); 8848 Entry.Node = ArgNode; 8849 Entry.Ty = V->getType(); 8850 Entry.IsCFGuardTarget = true; 8851 Args.push_back(Entry); 8852 } 8853 8854 // Check if target-independent constraints permit a tail call here. 8855 // Target-dependent constraints are checked within TLI->LowerCallTo. 8856 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8857 isTailCall = false; 8858 8859 // Disable tail calls if there is an swifterror argument. Targets have not 8860 // been updated to support tail calls. 8861 if (TLI.supportSwiftError() && SwiftErrorVal) 8862 isTailCall = false; 8863 8864 ConstantInt *CFIType = nullptr; 8865 if (CB.isIndirectCall()) { 8866 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8867 if (!TLI.supportKCFIBundles()) 8868 report_fatal_error( 8869 "Target doesn't support calls with kcfi operand bundles."); 8870 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8871 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8872 } 8873 } 8874 8875 SDValue ConvControlToken; 8876 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8877 auto *Token = Bundle->Inputs[0].get(); 8878 ConvControlToken = getValue(Token); 8879 } 8880 8881 TargetLowering::CallLoweringInfo CLI(DAG); 8882 CLI.setDebugLoc(getCurSDLoc()) 8883 .setChain(getRoot()) 8884 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8885 .setTailCall(isTailCall) 8886 .setConvergent(CB.isConvergent()) 8887 .setIsPreallocated( 8888 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8889 .setCFIType(CFIType) 8890 .setConvergenceControlToken(ConvControlToken); 8891 8892 // Set the pointer authentication info if we have it. 8893 if (PAI) { 8894 if (!TLI.supportPtrAuthBundles()) 8895 report_fatal_error( 8896 "This target doesn't support calls with ptrauth operand bundles."); 8897 CLI.setPtrAuth(*PAI); 8898 } 8899 8900 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8901 8902 if (Result.first.getNode()) { 8903 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8904 setValue(&CB, Result.first); 8905 } 8906 8907 // The last element of CLI.InVals has the SDValue for swifterror return. 8908 // Here we copy it to a virtual register and update SwiftErrorMap for 8909 // book-keeping. 8910 if (SwiftErrorVal && TLI.supportSwiftError()) { 8911 // Get the last element of InVals. 8912 SDValue Src = CLI.InVals.back(); 8913 Register VReg = 8914 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8915 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8916 DAG.setRoot(CopyNode); 8917 } 8918 } 8919 8920 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8921 SelectionDAGBuilder &Builder) { 8922 // Check to see if this load can be trivially constant folded, e.g. if the 8923 // input is from a string literal. 8924 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8925 // Cast pointer to the type we really want to load. 8926 Type *LoadTy = 8927 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8928 if (LoadVT.isVector()) 8929 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8930 8931 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8932 PointerType::getUnqual(LoadTy)); 8933 8934 if (const Constant *LoadCst = 8935 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8936 LoadTy, Builder.DAG.getDataLayout())) 8937 return Builder.getValue(LoadCst); 8938 } 8939 8940 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8941 // still constant memory, the input chain can be the entry node. 8942 SDValue Root; 8943 bool ConstantMemory = false; 8944 8945 // Do not serialize (non-volatile) loads of constant memory with anything. 8946 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8947 Root = Builder.DAG.getEntryNode(); 8948 ConstantMemory = true; 8949 } else { 8950 // Do not serialize non-volatile loads against each other. 8951 Root = Builder.DAG.getRoot(); 8952 } 8953 8954 SDValue Ptr = Builder.getValue(PtrVal); 8955 SDValue LoadVal = 8956 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8957 MachinePointerInfo(PtrVal), Align(1)); 8958 8959 if (!ConstantMemory) 8960 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8961 return LoadVal; 8962 } 8963 8964 /// Record the value for an instruction that produces an integer result, 8965 /// converting the type where necessary. 8966 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8967 SDValue Value, 8968 bool IsSigned) { 8969 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8970 I.getType(), true); 8971 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8972 setValue(&I, Value); 8973 } 8974 8975 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8976 /// true and lower it. Otherwise return false, and it will be lowered like a 8977 /// normal call. 8978 /// The caller already checked that \p I calls the appropriate LibFunc with a 8979 /// correct prototype. 8980 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8981 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8982 const Value *Size = I.getArgOperand(2); 8983 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8984 if (CSize && CSize->getZExtValue() == 0) { 8985 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8986 I.getType(), true); 8987 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8988 return true; 8989 } 8990 8991 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8992 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8993 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8994 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8995 if (Res.first.getNode()) { 8996 processIntegerCallValue(I, Res.first, true); 8997 PendingLoads.push_back(Res.second); 8998 return true; 8999 } 9000 9001 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 9002 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 9003 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 9004 return false; 9005 9006 // If the target has a fast compare for the given size, it will return a 9007 // preferred load type for that size. Require that the load VT is legal and 9008 // that the target supports unaligned loads of that type. Otherwise, return 9009 // INVALID. 9010 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 9011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9012 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 9013 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 9014 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 9015 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 9016 // TODO: Check alignment of src and dest ptrs. 9017 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 9018 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 9019 if (!TLI.isTypeLegal(LVT) || 9020 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 9021 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 9022 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 9023 } 9024 9025 return LVT; 9026 }; 9027 9028 // This turns into unaligned loads. We only do this if the target natively 9029 // supports the MVT we'll be loading or if it is small enough (<= 4) that 9030 // we'll only produce a small number of byte loads. 9031 MVT LoadVT; 9032 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 9033 switch (NumBitsToCompare) { 9034 default: 9035 return false; 9036 case 16: 9037 LoadVT = MVT::i16; 9038 break; 9039 case 32: 9040 LoadVT = MVT::i32; 9041 break; 9042 case 64: 9043 case 128: 9044 case 256: 9045 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 9046 break; 9047 } 9048 9049 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 9050 return false; 9051 9052 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 9053 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 9054 9055 // Bitcast to a wide integer type if the loads are vectors. 9056 if (LoadVT.isVector()) { 9057 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 9058 LoadL = DAG.getBitcast(CmpVT, LoadL); 9059 LoadR = DAG.getBitcast(CmpVT, LoadR); 9060 } 9061 9062 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 9063 processIntegerCallValue(I, Cmp, false); 9064 return true; 9065 } 9066 9067 /// See if we can lower a memchr call into an optimized form. If so, return 9068 /// true and lower it. Otherwise return false, and it will be lowered like a 9069 /// normal call. 9070 /// The caller already checked that \p I calls the appropriate LibFunc with a 9071 /// correct prototype. 9072 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 9073 const Value *Src = I.getArgOperand(0); 9074 const Value *Char = I.getArgOperand(1); 9075 const Value *Length = I.getArgOperand(2); 9076 9077 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9078 std::pair<SDValue, SDValue> Res = 9079 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 9080 getValue(Src), getValue(Char), getValue(Length), 9081 MachinePointerInfo(Src)); 9082 if (Res.first.getNode()) { 9083 setValue(&I, Res.first); 9084 PendingLoads.push_back(Res.second); 9085 return true; 9086 } 9087 9088 return false; 9089 } 9090 9091 /// See if we can lower a mempcpy call into an optimized form. If so, return 9092 /// true and lower it. Otherwise return false, and it will be lowered like a 9093 /// normal call. 9094 /// The caller already checked that \p I calls the appropriate LibFunc with a 9095 /// correct prototype. 9096 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 9097 SDValue Dst = getValue(I.getArgOperand(0)); 9098 SDValue Src = getValue(I.getArgOperand(1)); 9099 SDValue Size = getValue(I.getArgOperand(2)); 9100 9101 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 9102 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 9103 // DAG::getMemcpy needs Alignment to be defined. 9104 Align Alignment = std::min(DstAlign, SrcAlign); 9105 9106 SDLoc sdl = getCurSDLoc(); 9107 9108 // In the mempcpy context we need to pass in a false value for isTailCall 9109 // because the return pointer needs to be adjusted by the size of 9110 // the copied memory. 9111 SDValue Root = getMemoryRoot(); 9112 SDValue MC = DAG.getMemcpy( 9113 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr, 9114 std::nullopt, MachinePointerInfo(I.getArgOperand(0)), 9115 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); 9116 assert(MC.getNode() != nullptr && 9117 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9118 DAG.setRoot(MC); 9119 9120 // Check if Size needs to be truncated or extended. 9121 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9122 9123 // Adjust return pointer to point just past the last dst byte. 9124 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9125 Dst, Size); 9126 setValue(&I, DstPlusSize); 9127 return true; 9128 } 9129 9130 /// See if we can lower a strcpy call into an optimized form. If so, return 9131 /// true and lower it, otherwise return false and it will be lowered like a 9132 /// normal call. 9133 /// The caller already checked that \p I calls the appropriate LibFunc with a 9134 /// correct prototype. 9135 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9136 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9137 9138 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9139 std::pair<SDValue, SDValue> Res = 9140 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9141 getValue(Arg0), getValue(Arg1), 9142 MachinePointerInfo(Arg0), 9143 MachinePointerInfo(Arg1), isStpcpy); 9144 if (Res.first.getNode()) { 9145 setValue(&I, Res.first); 9146 DAG.setRoot(Res.second); 9147 return true; 9148 } 9149 9150 return false; 9151 } 9152 9153 /// See if we can lower a strcmp call into an optimized form. If so, return 9154 /// true and lower it, otherwise return false and it will be lowered like a 9155 /// normal call. 9156 /// The caller already checked that \p I calls the appropriate LibFunc with a 9157 /// correct prototype. 9158 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9159 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9160 9161 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9162 std::pair<SDValue, SDValue> Res = 9163 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9164 getValue(Arg0), getValue(Arg1), 9165 MachinePointerInfo(Arg0), 9166 MachinePointerInfo(Arg1)); 9167 if (Res.first.getNode()) { 9168 processIntegerCallValue(I, Res.first, true); 9169 PendingLoads.push_back(Res.second); 9170 return true; 9171 } 9172 9173 return false; 9174 } 9175 9176 /// See if we can lower a strlen call into an optimized form. If so, return 9177 /// true and lower it, otherwise return false and it will be lowered like a 9178 /// normal call. 9179 /// The caller already checked that \p I calls the appropriate LibFunc with a 9180 /// correct prototype. 9181 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9182 const Value *Arg0 = I.getArgOperand(0); 9183 9184 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9185 std::pair<SDValue, SDValue> Res = 9186 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9187 getValue(Arg0), MachinePointerInfo(Arg0)); 9188 if (Res.first.getNode()) { 9189 processIntegerCallValue(I, Res.first, false); 9190 PendingLoads.push_back(Res.second); 9191 return true; 9192 } 9193 9194 return false; 9195 } 9196 9197 /// See if we can lower a strnlen call into an optimized form. If so, return 9198 /// true and lower it, otherwise return false and it will be lowered like a 9199 /// normal call. 9200 /// The caller already checked that \p I calls the appropriate LibFunc with a 9201 /// correct prototype. 9202 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9203 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9204 9205 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9206 std::pair<SDValue, SDValue> Res = 9207 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9208 getValue(Arg0), getValue(Arg1), 9209 MachinePointerInfo(Arg0)); 9210 if (Res.first.getNode()) { 9211 processIntegerCallValue(I, Res.first, false); 9212 PendingLoads.push_back(Res.second); 9213 return true; 9214 } 9215 9216 return false; 9217 } 9218 9219 /// See if we can lower a unary floating-point operation into an SDNode with 9220 /// the specified Opcode. If so, return true and lower it, otherwise return 9221 /// false and it will be lowered like a normal call. 9222 /// The caller already checked that \p I calls the appropriate LibFunc with a 9223 /// correct prototype. 9224 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9225 unsigned Opcode) { 9226 // We already checked this call's prototype; verify it doesn't modify errno. 9227 if (!I.onlyReadsMemory()) 9228 return false; 9229 9230 SDNodeFlags Flags; 9231 Flags.copyFMF(cast<FPMathOperator>(I)); 9232 9233 SDValue Tmp = getValue(I.getArgOperand(0)); 9234 setValue(&I, 9235 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9236 return true; 9237 } 9238 9239 /// See if we can lower a binary floating-point operation into an SDNode with 9240 /// the specified Opcode. If so, return true and lower it. Otherwise return 9241 /// false, and it will be lowered like a normal call. 9242 /// The caller already checked that \p I calls the appropriate LibFunc with a 9243 /// correct prototype. 9244 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9245 unsigned Opcode) { 9246 // We already checked this call's prototype; verify it doesn't modify errno. 9247 if (!I.onlyReadsMemory()) 9248 return false; 9249 9250 SDNodeFlags Flags; 9251 Flags.copyFMF(cast<FPMathOperator>(I)); 9252 9253 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9254 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9255 EVT VT = Tmp0.getValueType(); 9256 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9257 return true; 9258 } 9259 9260 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9261 // Handle inline assembly differently. 9262 if (I.isInlineAsm()) { 9263 visitInlineAsm(I); 9264 return; 9265 } 9266 9267 diagnoseDontCall(I); 9268 9269 if (Function *F = I.getCalledFunction()) { 9270 if (F->isDeclaration()) { 9271 // Is this an LLVM intrinsic or a target-specific intrinsic? 9272 unsigned IID = F->getIntrinsicID(); 9273 if (!IID) 9274 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9275 IID = II->getIntrinsicID(F); 9276 9277 if (IID) { 9278 visitIntrinsicCall(I, IID); 9279 return; 9280 } 9281 } 9282 9283 // Check for well-known libc/libm calls. If the function is internal, it 9284 // can't be a library call. Don't do the check if marked as nobuiltin for 9285 // some reason or the call site requires strict floating point semantics. 9286 LibFunc Func; 9287 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9288 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9289 LibInfo->hasOptimizedCodeGen(Func)) { 9290 switch (Func) { 9291 default: break; 9292 case LibFunc_bcmp: 9293 if (visitMemCmpBCmpCall(I)) 9294 return; 9295 break; 9296 case LibFunc_copysign: 9297 case LibFunc_copysignf: 9298 case LibFunc_copysignl: 9299 // We already checked this call's prototype; verify it doesn't modify 9300 // errno. 9301 if (I.onlyReadsMemory()) { 9302 SDValue LHS = getValue(I.getArgOperand(0)); 9303 SDValue RHS = getValue(I.getArgOperand(1)); 9304 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9305 LHS.getValueType(), LHS, RHS)); 9306 return; 9307 } 9308 break; 9309 case LibFunc_fabs: 9310 case LibFunc_fabsf: 9311 case LibFunc_fabsl: 9312 if (visitUnaryFloatCall(I, ISD::FABS)) 9313 return; 9314 break; 9315 case LibFunc_fmin: 9316 case LibFunc_fminf: 9317 case LibFunc_fminl: 9318 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9319 return; 9320 break; 9321 case LibFunc_fmax: 9322 case LibFunc_fmaxf: 9323 case LibFunc_fmaxl: 9324 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9325 return; 9326 break; 9327 case LibFunc_fminimum_num: 9328 case LibFunc_fminimum_numf: 9329 case LibFunc_fminimum_numl: 9330 if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM)) 9331 return; 9332 break; 9333 case LibFunc_fmaximum_num: 9334 case LibFunc_fmaximum_numf: 9335 case LibFunc_fmaximum_numl: 9336 if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM)) 9337 return; 9338 break; 9339 case LibFunc_sin: 9340 case LibFunc_sinf: 9341 case LibFunc_sinl: 9342 if (visitUnaryFloatCall(I, ISD::FSIN)) 9343 return; 9344 break; 9345 case LibFunc_cos: 9346 case LibFunc_cosf: 9347 case LibFunc_cosl: 9348 if (visitUnaryFloatCall(I, ISD::FCOS)) 9349 return; 9350 break; 9351 case LibFunc_tan: 9352 case LibFunc_tanf: 9353 case LibFunc_tanl: 9354 if (visitUnaryFloatCall(I, ISD::FTAN)) 9355 return; 9356 break; 9357 case LibFunc_asin: 9358 case LibFunc_asinf: 9359 case LibFunc_asinl: 9360 if (visitUnaryFloatCall(I, ISD::FASIN)) 9361 return; 9362 break; 9363 case LibFunc_acos: 9364 case LibFunc_acosf: 9365 case LibFunc_acosl: 9366 if (visitUnaryFloatCall(I, ISD::FACOS)) 9367 return; 9368 break; 9369 case LibFunc_atan: 9370 case LibFunc_atanf: 9371 case LibFunc_atanl: 9372 if (visitUnaryFloatCall(I, ISD::FATAN)) 9373 return; 9374 break; 9375 case LibFunc_atan2: 9376 case LibFunc_atan2f: 9377 case LibFunc_atan2l: 9378 if (visitBinaryFloatCall(I, ISD::FATAN2)) 9379 return; 9380 break; 9381 case LibFunc_sinh: 9382 case LibFunc_sinhf: 9383 case LibFunc_sinhl: 9384 if (visitUnaryFloatCall(I, ISD::FSINH)) 9385 return; 9386 break; 9387 case LibFunc_cosh: 9388 case LibFunc_coshf: 9389 case LibFunc_coshl: 9390 if (visitUnaryFloatCall(I, ISD::FCOSH)) 9391 return; 9392 break; 9393 case LibFunc_tanh: 9394 case LibFunc_tanhf: 9395 case LibFunc_tanhl: 9396 if (visitUnaryFloatCall(I, ISD::FTANH)) 9397 return; 9398 break; 9399 case LibFunc_sqrt: 9400 case LibFunc_sqrtf: 9401 case LibFunc_sqrtl: 9402 case LibFunc_sqrt_finite: 9403 case LibFunc_sqrtf_finite: 9404 case LibFunc_sqrtl_finite: 9405 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9406 return; 9407 break; 9408 case LibFunc_floor: 9409 case LibFunc_floorf: 9410 case LibFunc_floorl: 9411 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9412 return; 9413 break; 9414 case LibFunc_nearbyint: 9415 case LibFunc_nearbyintf: 9416 case LibFunc_nearbyintl: 9417 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9418 return; 9419 break; 9420 case LibFunc_ceil: 9421 case LibFunc_ceilf: 9422 case LibFunc_ceill: 9423 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9424 return; 9425 break; 9426 case LibFunc_rint: 9427 case LibFunc_rintf: 9428 case LibFunc_rintl: 9429 if (visitUnaryFloatCall(I, ISD::FRINT)) 9430 return; 9431 break; 9432 case LibFunc_round: 9433 case LibFunc_roundf: 9434 case LibFunc_roundl: 9435 if (visitUnaryFloatCall(I, ISD::FROUND)) 9436 return; 9437 break; 9438 case LibFunc_trunc: 9439 case LibFunc_truncf: 9440 case LibFunc_truncl: 9441 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9442 return; 9443 break; 9444 case LibFunc_log2: 9445 case LibFunc_log2f: 9446 case LibFunc_log2l: 9447 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9448 return; 9449 break; 9450 case LibFunc_exp2: 9451 case LibFunc_exp2f: 9452 case LibFunc_exp2l: 9453 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9454 return; 9455 break; 9456 case LibFunc_exp10: 9457 case LibFunc_exp10f: 9458 case LibFunc_exp10l: 9459 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9460 return; 9461 break; 9462 case LibFunc_ldexp: 9463 case LibFunc_ldexpf: 9464 case LibFunc_ldexpl: 9465 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9466 return; 9467 break; 9468 case LibFunc_memcmp: 9469 if (visitMemCmpBCmpCall(I)) 9470 return; 9471 break; 9472 case LibFunc_mempcpy: 9473 if (visitMemPCpyCall(I)) 9474 return; 9475 break; 9476 case LibFunc_memchr: 9477 if (visitMemChrCall(I)) 9478 return; 9479 break; 9480 case LibFunc_strcpy: 9481 if (visitStrCpyCall(I, false)) 9482 return; 9483 break; 9484 case LibFunc_stpcpy: 9485 if (visitStrCpyCall(I, true)) 9486 return; 9487 break; 9488 case LibFunc_strcmp: 9489 if (visitStrCmpCall(I)) 9490 return; 9491 break; 9492 case LibFunc_strlen: 9493 if (visitStrLenCall(I)) 9494 return; 9495 break; 9496 case LibFunc_strnlen: 9497 if (visitStrNLenCall(I)) 9498 return; 9499 break; 9500 } 9501 } 9502 } 9503 9504 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9505 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9506 return; 9507 } 9508 9509 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9510 // have to do anything here to lower funclet bundles. 9511 // CFGuardTarget bundles are lowered in LowerCallTo. 9512 assert(!I.hasOperandBundlesOtherThan( 9513 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9514 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9515 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9516 LLVMContext::OB_convergencectrl}) && 9517 "Cannot lower calls with arbitrary operand bundles!"); 9518 9519 SDValue Callee = getValue(I.getCalledOperand()); 9520 9521 if (I.hasDeoptState()) 9522 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9523 else 9524 // Check if we can potentially perform a tail call. More detailed checking 9525 // is be done within LowerCallTo, after more information about the call is 9526 // known. 9527 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9528 } 9529 9530 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9531 const CallBase &CB, const BasicBlock *EHPadBB) { 9532 auto PAB = CB.getOperandBundle("ptrauth"); 9533 const Value *CalleeV = CB.getCalledOperand(); 9534 9535 // Gather the call ptrauth data from the operand bundle: 9536 // [ i32 <key>, i64 <discriminator> ] 9537 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9538 const Value *Discriminator = PAB->Inputs[1]; 9539 9540 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9541 assert(Discriminator->getType()->isIntegerTy(64) && 9542 "Invalid ptrauth discriminator"); 9543 9544 // Look through ptrauth constants to find the raw callee. 9545 // Do a direct unauthenticated call if we found it and everything matches. 9546 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV)) 9547 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator, 9548 DAG.getDataLayout())) 9549 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(), 9550 CB.isMustTailCall(), EHPadBB); 9551 9552 // Functions should never be ptrauth-called directly. 9553 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9554 9555 // Otherwise, do an authenticated indirect call. 9556 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9557 getValue(Discriminator)}; 9558 9559 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9560 EHPadBB, &PAI); 9561 } 9562 9563 namespace { 9564 9565 /// AsmOperandInfo - This contains information for each constraint that we are 9566 /// lowering. 9567 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9568 public: 9569 /// CallOperand - If this is the result output operand or a clobber 9570 /// this is null, otherwise it is the incoming operand to the CallInst. 9571 /// This gets modified as the asm is processed. 9572 SDValue CallOperand; 9573 9574 /// AssignedRegs - If this is a register or register class operand, this 9575 /// contains the set of register corresponding to the operand. 9576 RegsForValue AssignedRegs; 9577 9578 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9579 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9580 } 9581 9582 /// Whether or not this operand accesses memory 9583 bool hasMemory(const TargetLowering &TLI) const { 9584 // Indirect operand accesses access memory. 9585 if (isIndirect) 9586 return true; 9587 9588 for (const auto &Code : Codes) 9589 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9590 return true; 9591 9592 return false; 9593 } 9594 }; 9595 9596 9597 } // end anonymous namespace 9598 9599 /// Make sure that the output operand \p OpInfo and its corresponding input 9600 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9601 /// out). 9602 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9603 SDISelAsmOperandInfo &MatchingOpInfo, 9604 SelectionDAG &DAG) { 9605 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9606 return; 9607 9608 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9609 const auto &TLI = DAG.getTargetLoweringInfo(); 9610 9611 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9612 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9613 OpInfo.ConstraintVT); 9614 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9615 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9616 MatchingOpInfo.ConstraintVT); 9617 const bool OutOpIsIntOrFP = 9618 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint(); 9619 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() || 9620 MatchingOpInfo.ConstraintVT.isFloatingPoint(); 9621 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) { 9622 // FIXME: error out in a more elegant fashion 9623 report_fatal_error("Unsupported asm: input constraint" 9624 " with a matching output constraint of" 9625 " incompatible type!"); 9626 } 9627 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9628 } 9629 9630 /// Get a direct memory input to behave well as an indirect operand. 9631 /// This may introduce stores, hence the need for a \p Chain. 9632 /// \return The (possibly updated) chain. 9633 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9634 SDISelAsmOperandInfo &OpInfo, 9635 SelectionDAG &DAG) { 9636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9637 9638 // If we don't have an indirect input, put it in the constpool if we can, 9639 // otherwise spill it to a stack slot. 9640 // TODO: This isn't quite right. We need to handle these according to 9641 // the addressing mode that the constraint wants. Also, this may take 9642 // an additional register for the computation and we don't want that 9643 // either. 9644 9645 // If the operand is a float, integer, or vector constant, spill to a 9646 // constant pool entry to get its address. 9647 const Value *OpVal = OpInfo.CallOperandVal; 9648 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9649 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9650 OpInfo.CallOperand = DAG.getConstantPool( 9651 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9652 return Chain; 9653 } 9654 9655 // Otherwise, create a stack slot and emit a store to it before the asm. 9656 Type *Ty = OpVal->getType(); 9657 auto &DL = DAG.getDataLayout(); 9658 TypeSize TySize = DL.getTypeAllocSize(Ty); 9659 MachineFunction &MF = DAG.getMachineFunction(); 9660 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 9661 int StackID = 0; 9662 if (TySize.isScalable()) 9663 StackID = TFI->getStackIDForScalableVectors(); 9664 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(), 9665 DL.getPrefTypeAlign(Ty), false, 9666 nullptr, StackID); 9667 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9668 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9669 MachinePointerInfo::getFixedStack(MF, SSFI), 9670 TLI.getMemValueType(DL, Ty)); 9671 OpInfo.CallOperand = StackSlot; 9672 9673 return Chain; 9674 } 9675 9676 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9677 /// specified operand. We prefer to assign virtual registers, to allow the 9678 /// register allocator to handle the assignment process. However, if the asm 9679 /// uses features that we can't model on machineinstrs, we have SDISel do the 9680 /// allocation. This produces generally horrible, but correct, code. 9681 /// 9682 /// OpInfo describes the operand 9683 /// RefOpInfo describes the matching operand if any, the operand otherwise 9684 static std::optional<unsigned> 9685 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9686 SDISelAsmOperandInfo &OpInfo, 9687 SDISelAsmOperandInfo &RefOpInfo) { 9688 LLVMContext &Context = *DAG.getContext(); 9689 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9690 9691 MachineFunction &MF = DAG.getMachineFunction(); 9692 SmallVector<Register, 4> Regs; 9693 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9694 9695 // No work to do for memory/address operands. 9696 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9697 OpInfo.ConstraintType == TargetLowering::C_Address) 9698 return std::nullopt; 9699 9700 // If this is a constraint for a single physreg, or a constraint for a 9701 // register class, find it. 9702 unsigned AssignedReg; 9703 const TargetRegisterClass *RC; 9704 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9705 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9706 // RC is unset only on failure. Return immediately. 9707 if (!RC) 9708 return std::nullopt; 9709 9710 // Get the actual register value type. This is important, because the user 9711 // may have asked for (e.g.) the AX register in i32 type. We need to 9712 // remember that AX is actually i16 to get the right extension. 9713 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9714 9715 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9716 // If this is an FP operand in an integer register (or visa versa), or more 9717 // generally if the operand value disagrees with the register class we plan 9718 // to stick it in, fix the operand type. 9719 // 9720 // If this is an input value, the bitcast to the new type is done now. 9721 // Bitcast for output value is done at the end of visitInlineAsm(). 9722 if ((OpInfo.Type == InlineAsm::isOutput || 9723 OpInfo.Type == InlineAsm::isInput) && 9724 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9725 // Try to convert to the first EVT that the reg class contains. If the 9726 // types are identical size, use a bitcast to convert (e.g. two differing 9727 // vector types). Note: output bitcast is done at the end of 9728 // visitInlineAsm(). 9729 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9730 // Exclude indirect inputs while they are unsupported because the code 9731 // to perform the load is missing and thus OpInfo.CallOperand still 9732 // refers to the input address rather than the pointed-to value. 9733 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9734 OpInfo.CallOperand = 9735 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9736 OpInfo.ConstraintVT = RegVT; 9737 // If the operand is an FP value and we want it in integer registers, 9738 // use the corresponding integer type. This turns an f64 value into 9739 // i64, which can be passed with two i32 values on a 32-bit machine. 9740 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9741 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9742 if (OpInfo.Type == InlineAsm::isInput) 9743 OpInfo.CallOperand = 9744 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9745 OpInfo.ConstraintVT = VT; 9746 } 9747 } 9748 } 9749 9750 // No need to allocate a matching input constraint since the constraint it's 9751 // matching to has already been allocated. 9752 if (OpInfo.isMatchingInputConstraint()) 9753 return std::nullopt; 9754 9755 EVT ValueVT = OpInfo.ConstraintVT; 9756 if (OpInfo.ConstraintVT == MVT::Other) 9757 ValueVT = RegVT; 9758 9759 // Initialize NumRegs. 9760 unsigned NumRegs = 1; 9761 if (OpInfo.ConstraintVT != MVT::Other) 9762 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9763 9764 // If this is a constraint for a specific physical register, like {r17}, 9765 // assign it now. 9766 9767 // If this associated to a specific register, initialize iterator to correct 9768 // place. If virtual, make sure we have enough registers 9769 9770 // Initialize iterator if necessary 9771 TargetRegisterClass::iterator I = RC->begin(); 9772 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9773 9774 // Do not check for single registers. 9775 if (AssignedReg) { 9776 I = std::find(I, RC->end(), AssignedReg); 9777 if (I == RC->end()) { 9778 // RC does not contain the selected register, which indicates a 9779 // mismatch between the register and the required type/bitwidth. 9780 return {AssignedReg}; 9781 } 9782 } 9783 9784 for (; NumRegs; --NumRegs, ++I) { 9785 assert(I != RC->end() && "Ran out of registers to allocate!"); 9786 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9787 Regs.push_back(R); 9788 } 9789 9790 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9791 return std::nullopt; 9792 } 9793 9794 static unsigned 9795 findMatchingInlineAsmOperand(unsigned OperandNo, 9796 const std::vector<SDValue> &AsmNodeOperands) { 9797 // Scan until we find the definition we already emitted of this operand. 9798 unsigned CurOp = InlineAsm::Op_FirstOperand; 9799 for (; OperandNo; --OperandNo) { 9800 // Advance to the next operand. 9801 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9802 const InlineAsm::Flag F(OpFlag); 9803 assert( 9804 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9805 "Skipped past definitions?"); 9806 CurOp += F.getNumOperandRegisters() + 1; 9807 } 9808 return CurOp; 9809 } 9810 9811 namespace { 9812 9813 class ExtraFlags { 9814 unsigned Flags = 0; 9815 9816 public: 9817 explicit ExtraFlags(const CallBase &Call) { 9818 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9819 if (IA->hasSideEffects()) 9820 Flags |= InlineAsm::Extra_HasSideEffects; 9821 if (IA->isAlignStack()) 9822 Flags |= InlineAsm::Extra_IsAlignStack; 9823 if (Call.isConvergent()) 9824 Flags |= InlineAsm::Extra_IsConvergent; 9825 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9826 } 9827 9828 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9829 // Ideally, we would only check against memory constraints. However, the 9830 // meaning of an Other constraint can be target-specific and we can't easily 9831 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9832 // for Other constraints as well. 9833 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9834 OpInfo.ConstraintType == TargetLowering::C_Other) { 9835 if (OpInfo.Type == InlineAsm::isInput) 9836 Flags |= InlineAsm::Extra_MayLoad; 9837 else if (OpInfo.Type == InlineAsm::isOutput) 9838 Flags |= InlineAsm::Extra_MayStore; 9839 else if (OpInfo.Type == InlineAsm::isClobber) 9840 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9841 } 9842 } 9843 9844 unsigned get() const { return Flags; } 9845 }; 9846 9847 } // end anonymous namespace 9848 9849 static bool isFunction(SDValue Op) { 9850 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9851 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9852 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9853 9854 // In normal "call dllimport func" instruction (non-inlineasm) it force 9855 // indirect access by specifing call opcode. And usually specially print 9856 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9857 // not do in this way now. (In fact, this is similar with "Data Access" 9858 // action). So here we ignore dllimport function. 9859 if (Fn && !Fn->hasDLLImportStorageClass()) 9860 return true; 9861 } 9862 } 9863 return false; 9864 } 9865 9866 /// visitInlineAsm - Handle a call to an InlineAsm object. 9867 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9868 const BasicBlock *EHPadBB) { 9869 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9870 9871 /// ConstraintOperands - Information about all of the constraints. 9872 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9873 9874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9875 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9876 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9877 9878 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9879 // AsmDialect, MayLoad, MayStore). 9880 bool HasSideEffect = IA->hasSideEffects(); 9881 ExtraFlags ExtraInfo(Call); 9882 9883 for (auto &T : TargetConstraints) { 9884 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9885 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9886 9887 if (OpInfo.CallOperandVal) 9888 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9889 9890 if (!HasSideEffect) 9891 HasSideEffect = OpInfo.hasMemory(TLI); 9892 9893 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9894 // FIXME: Could we compute this on OpInfo rather than T? 9895 9896 // Compute the constraint code and ConstraintType to use. 9897 TLI.ComputeConstraintToUse(T, SDValue()); 9898 9899 if (T.ConstraintType == TargetLowering::C_Immediate && 9900 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9901 // We've delayed emitting a diagnostic like the "n" constraint because 9902 // inlining could cause an integer showing up. 9903 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9904 "' expects an integer constant " 9905 "expression"); 9906 9907 ExtraInfo.update(T); 9908 } 9909 9910 // We won't need to flush pending loads if this asm doesn't touch 9911 // memory and is nonvolatile. 9912 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9913 9914 bool EmitEHLabels = isa<InvokeInst>(Call); 9915 if (EmitEHLabels) { 9916 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9917 } 9918 bool IsCallBr = isa<CallBrInst>(Call); 9919 9920 if (IsCallBr || EmitEHLabels) { 9921 // If this is a callbr or invoke we need to flush pending exports since 9922 // inlineasm_br and invoke are terminators. 9923 // We need to do this before nodes are glued to the inlineasm_br node. 9924 Chain = getControlRoot(); 9925 } 9926 9927 MCSymbol *BeginLabel = nullptr; 9928 if (EmitEHLabels) { 9929 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9930 } 9931 9932 int OpNo = -1; 9933 SmallVector<StringRef> AsmStrs; 9934 IA->collectAsmStrs(AsmStrs); 9935 9936 // Second pass over the constraints: compute which constraint option to use. 9937 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9938 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9939 OpNo++; 9940 9941 // If this is an output operand with a matching input operand, look up the 9942 // matching input. If their types mismatch, e.g. one is an integer, the 9943 // other is floating point, or their sizes are different, flag it as an 9944 // error. 9945 if (OpInfo.hasMatchingInput()) { 9946 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9947 patchMatchingInput(OpInfo, Input, DAG); 9948 } 9949 9950 // Compute the constraint code and ConstraintType to use. 9951 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9952 9953 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9954 OpInfo.Type == InlineAsm::isClobber) || 9955 OpInfo.ConstraintType == TargetLowering::C_Address) 9956 continue; 9957 9958 // In Linux PIC model, there are 4 cases about value/label addressing: 9959 // 9960 // 1: Function call or Label jmp inside the module. 9961 // 2: Data access (such as global variable, static variable) inside module. 9962 // 3: Function call or Label jmp outside the module. 9963 // 4: Data access (such as global variable) outside the module. 9964 // 9965 // Due to current llvm inline asm architecture designed to not "recognize" 9966 // the asm code, there are quite troubles for us to treat mem addressing 9967 // differently for same value/adress used in different instuctions. 9968 // For example, in pic model, call a func may in plt way or direclty 9969 // pc-related, but lea/mov a function adress may use got. 9970 // 9971 // Here we try to "recognize" function call for the case 1 and case 3 in 9972 // inline asm. And try to adjust the constraint for them. 9973 // 9974 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9975 // label, so here we don't handle jmp function label now, but we need to 9976 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9977 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9978 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9979 TM.getCodeModel() != CodeModel::Large) { 9980 OpInfo.isIndirect = false; 9981 OpInfo.ConstraintType = TargetLowering::C_Address; 9982 } 9983 9984 // If this is a memory input, and if the operand is not indirect, do what we 9985 // need to provide an address for the memory input. 9986 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9987 !OpInfo.isIndirect) { 9988 assert((OpInfo.isMultipleAlternative || 9989 (OpInfo.Type == InlineAsm::isInput)) && 9990 "Can only indirectify direct input operands!"); 9991 9992 // Memory operands really want the address of the value. 9993 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9994 9995 // There is no longer a Value* corresponding to this operand. 9996 OpInfo.CallOperandVal = nullptr; 9997 9998 // It is now an indirect operand. 9999 OpInfo.isIndirect = true; 10000 } 10001 10002 } 10003 10004 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 10005 std::vector<SDValue> AsmNodeOperands; 10006 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 10007 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 10008 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 10009 10010 // If we have a !srcloc metadata node associated with it, we want to attach 10011 // this to the ultimately generated inline asm machineinstr. To do this, we 10012 // pass in the third operand as this (potentially null) inline asm MDNode. 10013 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 10014 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 10015 10016 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 10017 // bits as operand 3. 10018 AsmNodeOperands.push_back(DAG.getTargetConstant( 10019 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10020 10021 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 10022 // this, assign virtual and physical registers for inputs and otput. 10023 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10024 // Assign Registers. 10025 SDISelAsmOperandInfo &RefOpInfo = 10026 OpInfo.isMatchingInputConstraint() 10027 ? ConstraintOperands[OpInfo.getMatchedOperand()] 10028 : OpInfo; 10029 const auto RegError = 10030 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 10031 if (RegError) { 10032 const MachineFunction &MF = DAG.getMachineFunction(); 10033 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10034 const char *RegName = TRI.getName(*RegError); 10035 emitInlineAsmError(Call, "register '" + Twine(RegName) + 10036 "' allocated for constraint '" + 10037 Twine(OpInfo.ConstraintCode) + 10038 "' does not match required type"); 10039 return; 10040 } 10041 10042 auto DetectWriteToReservedRegister = [&]() { 10043 const MachineFunction &MF = DAG.getMachineFunction(); 10044 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10045 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 10046 if (Register::isPhysicalRegister(Reg) && 10047 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 10048 const char *RegName = TRI.getName(Reg); 10049 emitInlineAsmError(Call, "write to reserved register '" + 10050 Twine(RegName) + "'"); 10051 return true; 10052 } 10053 } 10054 return false; 10055 }; 10056 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 10057 (OpInfo.Type == InlineAsm::isInput && 10058 !OpInfo.isMatchingInputConstraint())) && 10059 "Only address as input operand is allowed."); 10060 10061 switch (OpInfo.Type) { 10062 case InlineAsm::isOutput: 10063 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10064 const InlineAsm::ConstraintCode ConstraintID = 10065 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10066 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10067 "Failed to convert memory constraint code to constraint id."); 10068 10069 // Add information to the INLINEASM node to know about this output. 10070 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 10071 OpFlags.setMemConstraint(ConstraintID); 10072 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 10073 MVT::i32)); 10074 AsmNodeOperands.push_back(OpInfo.CallOperand); 10075 } else { 10076 // Otherwise, this outputs to a register (directly for C_Register / 10077 // C_RegisterClass, and a target-defined fashion for 10078 // C_Immediate/C_Other). Find a register that we can use. 10079 if (OpInfo.AssignedRegs.Regs.empty()) { 10080 emitInlineAsmError( 10081 Call, "couldn't allocate output register for constraint '" + 10082 Twine(OpInfo.ConstraintCode) + "'"); 10083 return; 10084 } 10085 10086 if (DetectWriteToReservedRegister()) 10087 return; 10088 10089 // Add information to the INLINEASM node to know that this register is 10090 // set. 10091 OpInfo.AssignedRegs.AddInlineAsmOperands( 10092 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 10093 : InlineAsm::Kind::RegDef, 10094 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 10095 } 10096 break; 10097 10098 case InlineAsm::isInput: 10099 case InlineAsm::isLabel: { 10100 SDValue InOperandVal = OpInfo.CallOperand; 10101 10102 if (OpInfo.isMatchingInputConstraint()) { 10103 // If this is required to match an output register we have already set, 10104 // just use its register. 10105 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 10106 AsmNodeOperands); 10107 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 10108 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 10109 if (OpInfo.isIndirect) { 10110 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 10111 emitInlineAsmError(Call, "inline asm not supported yet: " 10112 "don't know how to handle tied " 10113 "indirect register inputs"); 10114 return; 10115 } 10116 10117 SmallVector<Register, 4> Regs; 10118 MachineFunction &MF = DAG.getMachineFunction(); 10119 MachineRegisterInfo &MRI = MF.getRegInfo(); 10120 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10121 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 10122 Register TiedReg = R->getReg(); 10123 MVT RegVT = R->getSimpleValueType(0); 10124 const TargetRegisterClass *RC = 10125 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 10126 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 10127 : TRI.getMinimalPhysRegClass(TiedReg); 10128 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 10129 Regs.push_back(MRI.createVirtualRegister(RC)); 10130 10131 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 10132 10133 SDLoc dl = getCurSDLoc(); 10134 // Use the produced MatchedRegs object to 10135 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 10136 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 10137 OpInfo.getMatchedOperand(), dl, DAG, 10138 AsmNodeOperands); 10139 break; 10140 } 10141 10142 assert(Flag.isMemKind() && "Unknown matching constraint!"); 10143 assert(Flag.getNumOperandRegisters() == 1 && 10144 "Unexpected number of operands"); 10145 // Add information to the INLINEASM node to know about this input. 10146 // See InlineAsm.h isUseOperandTiedToDef. 10147 Flag.clearMemConstraint(); 10148 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 10149 AsmNodeOperands.push_back(DAG.getTargetConstant( 10150 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10151 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 10152 break; 10153 } 10154 10155 // Treat indirect 'X' constraint as memory. 10156 if (OpInfo.ConstraintType == TargetLowering::C_Other && 10157 OpInfo.isIndirect) 10158 OpInfo.ConstraintType = TargetLowering::C_Memory; 10159 10160 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 10161 OpInfo.ConstraintType == TargetLowering::C_Other) { 10162 std::vector<SDValue> Ops; 10163 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 10164 Ops, DAG); 10165 if (Ops.empty()) { 10166 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 10167 if (isa<ConstantSDNode>(InOperandVal)) { 10168 emitInlineAsmError(Call, "value out of range for constraint '" + 10169 Twine(OpInfo.ConstraintCode) + "'"); 10170 return; 10171 } 10172 10173 emitInlineAsmError(Call, 10174 "invalid operand for inline asm constraint '" + 10175 Twine(OpInfo.ConstraintCode) + "'"); 10176 return; 10177 } 10178 10179 // Add information to the INLINEASM node to know about this input. 10180 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 10181 AsmNodeOperands.push_back(DAG.getTargetConstant( 10182 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10183 llvm::append_range(AsmNodeOperands, Ops); 10184 break; 10185 } 10186 10187 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10188 assert((OpInfo.isIndirect || 10189 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10190 "Operand must be indirect to be a mem!"); 10191 assert(InOperandVal.getValueType() == 10192 TLI.getPointerTy(DAG.getDataLayout()) && 10193 "Memory operands expect pointer values"); 10194 10195 const InlineAsm::ConstraintCode ConstraintID = 10196 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10197 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10198 "Failed to convert memory constraint code to constraint id."); 10199 10200 // Add information to the INLINEASM node to know about this input. 10201 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10202 ResOpType.setMemConstraint(ConstraintID); 10203 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10204 getCurSDLoc(), 10205 MVT::i32)); 10206 AsmNodeOperands.push_back(InOperandVal); 10207 break; 10208 } 10209 10210 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10211 const InlineAsm::ConstraintCode ConstraintID = 10212 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10213 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10214 "Failed to convert memory constraint code to constraint id."); 10215 10216 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10217 10218 SDValue AsmOp = InOperandVal; 10219 if (isFunction(InOperandVal)) { 10220 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10221 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10222 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10223 InOperandVal.getValueType(), 10224 GA->getOffset()); 10225 } 10226 10227 // Add information to the INLINEASM node to know about this input. 10228 ResOpType.setMemConstraint(ConstraintID); 10229 10230 AsmNodeOperands.push_back( 10231 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10232 10233 AsmNodeOperands.push_back(AsmOp); 10234 break; 10235 } 10236 10237 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10238 OpInfo.ConstraintType != TargetLowering::C_Register) { 10239 emitInlineAsmError(Call, "unknown asm constraint '" + 10240 Twine(OpInfo.ConstraintCode) + "'"); 10241 return; 10242 } 10243 10244 // TODO: Support this. 10245 if (OpInfo.isIndirect) { 10246 emitInlineAsmError( 10247 Call, "Don't know how to handle indirect register inputs yet " 10248 "for constraint '" + 10249 Twine(OpInfo.ConstraintCode) + "'"); 10250 return; 10251 } 10252 10253 // Copy the input into the appropriate registers. 10254 if (OpInfo.AssignedRegs.Regs.empty()) { 10255 emitInlineAsmError(Call, 10256 "couldn't allocate input reg for constraint '" + 10257 Twine(OpInfo.ConstraintCode) + "'"); 10258 return; 10259 } 10260 10261 if (DetectWriteToReservedRegister()) 10262 return; 10263 10264 SDLoc dl = getCurSDLoc(); 10265 10266 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10267 &Call); 10268 10269 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10270 0, dl, DAG, AsmNodeOperands); 10271 break; 10272 } 10273 case InlineAsm::isClobber: 10274 // Add the clobbered value to the operand list, so that the register 10275 // allocator is aware that the physreg got clobbered. 10276 if (!OpInfo.AssignedRegs.Regs.empty()) 10277 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10278 false, 0, getCurSDLoc(), DAG, 10279 AsmNodeOperands); 10280 break; 10281 } 10282 } 10283 10284 // Finish up input operands. Set the input chain and add the flag last. 10285 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10286 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10287 10288 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10289 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10290 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10291 Glue = Chain.getValue(1); 10292 10293 // Do additional work to generate outputs. 10294 10295 SmallVector<EVT, 1> ResultVTs; 10296 SmallVector<SDValue, 1> ResultValues; 10297 SmallVector<SDValue, 8> OutChains; 10298 10299 llvm::Type *CallResultType = Call.getType(); 10300 ArrayRef<Type *> ResultTypes; 10301 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10302 ResultTypes = StructResult->elements(); 10303 else if (!CallResultType->isVoidTy()) 10304 ResultTypes = ArrayRef(CallResultType); 10305 10306 auto CurResultType = ResultTypes.begin(); 10307 auto handleRegAssign = [&](SDValue V) { 10308 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10309 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10310 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10311 ++CurResultType; 10312 // If the type of the inline asm call site return value is different but has 10313 // same size as the type of the asm output bitcast it. One example of this 10314 // is for vectors with different width / number of elements. This can 10315 // happen for register classes that can contain multiple different value 10316 // types. The preg or vreg allocated may not have the same VT as was 10317 // expected. 10318 // 10319 // This can also happen for a return value that disagrees with the register 10320 // class it is put in, eg. a double in a general-purpose register on a 10321 // 32-bit machine. 10322 if (ResultVT != V.getValueType() && 10323 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10324 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10325 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10326 V.getValueType().isInteger()) { 10327 // If a result value was tied to an input value, the computed result 10328 // may have a wider width than the expected result. Extract the 10329 // relevant portion. 10330 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10331 } 10332 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10333 ResultVTs.push_back(ResultVT); 10334 ResultValues.push_back(V); 10335 }; 10336 10337 // Deal with output operands. 10338 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10339 if (OpInfo.Type == InlineAsm::isOutput) { 10340 SDValue Val; 10341 // Skip trivial output operands. 10342 if (OpInfo.AssignedRegs.Regs.empty()) 10343 continue; 10344 10345 switch (OpInfo.ConstraintType) { 10346 case TargetLowering::C_Register: 10347 case TargetLowering::C_RegisterClass: 10348 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10349 Chain, &Glue, &Call); 10350 break; 10351 case TargetLowering::C_Immediate: 10352 case TargetLowering::C_Other: 10353 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10354 OpInfo, DAG); 10355 break; 10356 case TargetLowering::C_Memory: 10357 break; // Already handled. 10358 case TargetLowering::C_Address: 10359 break; // Silence warning. 10360 case TargetLowering::C_Unknown: 10361 assert(false && "Unexpected unknown constraint"); 10362 } 10363 10364 // Indirect output manifest as stores. Record output chains. 10365 if (OpInfo.isIndirect) { 10366 const Value *Ptr = OpInfo.CallOperandVal; 10367 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10368 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10369 MachinePointerInfo(Ptr)); 10370 OutChains.push_back(Store); 10371 } else { 10372 // generate CopyFromRegs to associated registers. 10373 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10374 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10375 for (const SDValue &V : Val->op_values()) 10376 handleRegAssign(V); 10377 } else 10378 handleRegAssign(Val); 10379 } 10380 } 10381 } 10382 10383 // Set results. 10384 if (!ResultValues.empty()) { 10385 assert(CurResultType == ResultTypes.end() && 10386 "Mismatch in number of ResultTypes"); 10387 assert(ResultValues.size() == ResultTypes.size() && 10388 "Mismatch in number of output operands in asm result"); 10389 10390 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10391 DAG.getVTList(ResultVTs), ResultValues); 10392 setValue(&Call, V); 10393 } 10394 10395 // Collect store chains. 10396 if (!OutChains.empty()) 10397 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10398 10399 if (EmitEHLabels) { 10400 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10401 } 10402 10403 // Only Update Root if inline assembly has a memory effect. 10404 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10405 EmitEHLabels) 10406 DAG.setRoot(Chain); 10407 } 10408 10409 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10410 const Twine &Message) { 10411 LLVMContext &Ctx = *DAG.getContext(); 10412 Ctx.emitError(&Call, Message); 10413 10414 // Make sure we leave the DAG in a valid state 10415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10416 SmallVector<EVT, 1> ValueVTs; 10417 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10418 10419 if (ValueVTs.empty()) 10420 return; 10421 10422 SmallVector<SDValue, 1> Ops; 10423 for (const EVT &VT : ValueVTs) 10424 Ops.push_back(DAG.getUNDEF(VT)); 10425 10426 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10427 } 10428 10429 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10430 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10431 MVT::Other, getRoot(), 10432 getValue(I.getArgOperand(0)), 10433 DAG.getSrcValue(I.getArgOperand(0)))); 10434 } 10435 10436 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10438 const DataLayout &DL = DAG.getDataLayout(); 10439 SDValue V = DAG.getVAArg( 10440 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10441 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10442 DL.getABITypeAlign(I.getType()).value()); 10443 DAG.setRoot(V.getValue(1)); 10444 10445 if (I.getType()->isPointerTy()) 10446 V = DAG.getPtrExtOrTrunc( 10447 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10448 setValue(&I, V); 10449 } 10450 10451 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10452 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10453 MVT::Other, getRoot(), 10454 getValue(I.getArgOperand(0)), 10455 DAG.getSrcValue(I.getArgOperand(0)))); 10456 } 10457 10458 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10459 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10460 MVT::Other, getRoot(), 10461 getValue(I.getArgOperand(0)), 10462 getValue(I.getArgOperand(1)), 10463 DAG.getSrcValue(I.getArgOperand(0)), 10464 DAG.getSrcValue(I.getArgOperand(1)))); 10465 } 10466 10467 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10468 const Instruction &I, 10469 SDValue Op) { 10470 std::optional<ConstantRange> CR = getRange(I); 10471 10472 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10473 return Op; 10474 10475 APInt Lo = CR->getUnsignedMin(); 10476 if (!Lo.isMinValue()) 10477 return Op; 10478 10479 APInt Hi = CR->getUnsignedMax(); 10480 unsigned Bits = std::max(Hi.getActiveBits(), 10481 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10482 10483 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10484 10485 SDLoc SL = getCurSDLoc(); 10486 10487 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10488 DAG.getValueType(SmallVT)); 10489 unsigned NumVals = Op.getNode()->getNumValues(); 10490 if (NumVals == 1) 10491 return ZExt; 10492 10493 SmallVector<SDValue, 4> Ops; 10494 10495 Ops.push_back(ZExt); 10496 for (unsigned I = 1; I != NumVals; ++I) 10497 Ops.push_back(Op.getValue(I)); 10498 10499 return DAG.getMergeValues(Ops, SL); 10500 } 10501 10502 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10503 /// the call being lowered. 10504 /// 10505 /// This is a helper for lowering intrinsics that follow a target calling 10506 /// convention or require stack pointer adjustment. Only a subset of the 10507 /// intrinsic's operands need to participate in the calling convention. 10508 void SelectionDAGBuilder::populateCallLoweringInfo( 10509 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10510 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10511 AttributeSet RetAttrs, bool IsPatchPoint) { 10512 TargetLowering::ArgListTy Args; 10513 Args.reserve(NumArgs); 10514 10515 // Populate the argument list. 10516 // Attributes for args start at offset 1, after the return attribute. 10517 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10518 ArgI != ArgE; ++ArgI) { 10519 const Value *V = Call->getOperand(ArgI); 10520 10521 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10522 10523 TargetLowering::ArgListEntry Entry; 10524 Entry.Node = getValue(V); 10525 Entry.Ty = V->getType(); 10526 Entry.setAttributes(Call, ArgI); 10527 Args.push_back(Entry); 10528 } 10529 10530 CLI.setDebugLoc(getCurSDLoc()) 10531 .setChain(getRoot()) 10532 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10533 RetAttrs) 10534 .setDiscardResult(Call->use_empty()) 10535 .setIsPatchPoint(IsPatchPoint) 10536 .setIsPreallocated( 10537 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10538 } 10539 10540 /// Add a stack map intrinsic call's live variable operands to a stackmap 10541 /// or patchpoint target node's operand list. 10542 /// 10543 /// Constants are converted to TargetConstants purely as an optimization to 10544 /// avoid constant materialization and register allocation. 10545 /// 10546 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10547 /// generate addess computation nodes, and so FinalizeISel can convert the 10548 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10549 /// address materialization and register allocation, but may also be required 10550 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10551 /// alloca in the entry block, then the runtime may assume that the alloca's 10552 /// StackMap location can be read immediately after compilation and that the 10553 /// location is valid at any point during execution (this is similar to the 10554 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10555 /// only available in a register, then the runtime would need to trap when 10556 /// execution reaches the StackMap in order to read the alloca's location. 10557 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10558 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10559 SelectionDAGBuilder &Builder) { 10560 SelectionDAG &DAG = Builder.DAG; 10561 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10562 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10563 10564 // Things on the stack are pointer-typed, meaning that they are already 10565 // legal and can be emitted directly to target nodes. 10566 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10567 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10568 } else { 10569 // Otherwise emit a target independent node to be legalised. 10570 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10571 } 10572 } 10573 } 10574 10575 /// Lower llvm.experimental.stackmap. 10576 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10577 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10578 // [live variables...]) 10579 10580 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10581 10582 SDValue Chain, InGlue, Callee; 10583 SmallVector<SDValue, 32> Ops; 10584 10585 SDLoc DL = getCurSDLoc(); 10586 Callee = getValue(CI.getCalledOperand()); 10587 10588 // The stackmap intrinsic only records the live variables (the arguments 10589 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10590 // intrinsic, this won't be lowered to a function call. This means we don't 10591 // have to worry about calling conventions and target specific lowering code. 10592 // Instead we perform the call lowering right here. 10593 // 10594 // chain, flag = CALLSEQ_START(chain, 0, 0) 10595 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10596 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10597 // 10598 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10599 InGlue = Chain.getValue(1); 10600 10601 // Add the STACKMAP operands, starting with DAG house-keeping. 10602 Ops.push_back(Chain); 10603 Ops.push_back(InGlue); 10604 10605 // Add the <id>, <numShadowBytes> operands. 10606 // 10607 // These do not require legalisation, and can be emitted directly to target 10608 // constant nodes. 10609 SDValue ID = getValue(CI.getArgOperand(0)); 10610 assert(ID.getValueType() == MVT::i64); 10611 SDValue IDConst = 10612 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10613 Ops.push_back(IDConst); 10614 10615 SDValue Shad = getValue(CI.getArgOperand(1)); 10616 assert(Shad.getValueType() == MVT::i32); 10617 SDValue ShadConst = 10618 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10619 Ops.push_back(ShadConst); 10620 10621 // Add the live variables. 10622 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10623 10624 // Create the STACKMAP node. 10625 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10626 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10627 InGlue = Chain.getValue(1); 10628 10629 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10630 10631 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10632 10633 // Set the root to the target-lowered call chain. 10634 DAG.setRoot(Chain); 10635 10636 // Inform the Frame Information that we have a stackmap in this function. 10637 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10638 } 10639 10640 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10641 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10642 const BasicBlock *EHPadBB) { 10643 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10644 // i32 <numBytes>, 10645 // i8* <target>, 10646 // i32 <numArgs>, 10647 // [Args...], 10648 // [live variables...]) 10649 10650 CallingConv::ID CC = CB.getCallingConv(); 10651 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10652 bool HasDef = !CB.getType()->isVoidTy(); 10653 SDLoc dl = getCurSDLoc(); 10654 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10655 10656 // Handle immediate and symbolic callees. 10657 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10658 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10659 /*isTarget=*/true); 10660 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10661 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10662 SDLoc(SymbolicCallee), 10663 SymbolicCallee->getValueType(0)); 10664 10665 // Get the real number of arguments participating in the call <numArgs> 10666 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10667 unsigned NumArgs = NArgVal->getAsZExtVal(); 10668 10669 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10670 // Intrinsics include all meta-operands up to but not including CC. 10671 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10672 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10673 "Not enough arguments provided to the patchpoint intrinsic"); 10674 10675 // For AnyRegCC the arguments are lowered later on manually. 10676 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10677 Type *ReturnTy = 10678 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10679 10680 TargetLowering::CallLoweringInfo CLI(DAG); 10681 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10682 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10683 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10684 10685 SDNode *CallEnd = Result.second.getNode(); 10686 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10687 CallEnd = CallEnd->getOperand(0).getNode(); 10688 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10689 CallEnd = CallEnd->getOperand(0).getNode(); 10690 10691 /// Get a call instruction from the call sequence chain. 10692 /// Tail calls are not allowed. 10693 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10694 "Expected a callseq node."); 10695 SDNode *Call = CallEnd->getOperand(0).getNode(); 10696 bool HasGlue = Call->getGluedNode(); 10697 10698 // Replace the target specific call node with the patchable intrinsic. 10699 SmallVector<SDValue, 8> Ops; 10700 10701 // Push the chain. 10702 Ops.push_back(*(Call->op_begin())); 10703 10704 // Optionally, push the glue (if any). 10705 if (HasGlue) 10706 Ops.push_back(*(Call->op_end() - 1)); 10707 10708 // Push the register mask info. 10709 if (HasGlue) 10710 Ops.push_back(*(Call->op_end() - 2)); 10711 else 10712 Ops.push_back(*(Call->op_end() - 1)); 10713 10714 // Add the <id> and <numBytes> constants. 10715 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10716 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10717 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10718 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10719 10720 // Add the callee. 10721 Ops.push_back(Callee); 10722 10723 // Adjust <numArgs> to account for any arguments that have been passed on the 10724 // stack instead. 10725 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10726 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10727 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10728 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10729 10730 // Add the calling convention 10731 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10732 10733 // Add the arguments we omitted previously. The register allocator should 10734 // place these in any free register. 10735 if (IsAnyRegCC) 10736 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10737 Ops.push_back(getValue(CB.getArgOperand(i))); 10738 10739 // Push the arguments from the call instruction. 10740 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10741 Ops.append(Call->op_begin() + 2, e); 10742 10743 // Push live variables for the stack map. 10744 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10745 10746 SDVTList NodeTys; 10747 if (IsAnyRegCC && HasDef) { 10748 // Create the return types based on the intrinsic definition 10749 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10750 SmallVector<EVT, 3> ValueVTs; 10751 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10752 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10753 10754 // There is always a chain and a glue type at the end 10755 ValueVTs.push_back(MVT::Other); 10756 ValueVTs.push_back(MVT::Glue); 10757 NodeTys = DAG.getVTList(ValueVTs); 10758 } else 10759 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10760 10761 // Replace the target specific call node with a PATCHPOINT node. 10762 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10763 10764 // Update the NodeMap. 10765 if (HasDef) { 10766 if (IsAnyRegCC) 10767 setValue(&CB, SDValue(PPV.getNode(), 0)); 10768 else 10769 setValue(&CB, Result.first); 10770 } 10771 10772 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10773 // call sequence. Furthermore the location of the chain and glue can change 10774 // when the AnyReg calling convention is used and the intrinsic returns a 10775 // value. 10776 if (IsAnyRegCC && HasDef) { 10777 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10778 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10779 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10780 } else 10781 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10782 DAG.DeleteNode(Call); 10783 10784 // Inform the Frame Information that we have a patchpoint in this function. 10785 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10786 } 10787 10788 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10789 unsigned Intrinsic) { 10790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10791 SDValue Op1 = getValue(I.getArgOperand(0)); 10792 SDValue Op2; 10793 if (I.arg_size() > 1) 10794 Op2 = getValue(I.getArgOperand(1)); 10795 SDLoc dl = getCurSDLoc(); 10796 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10797 SDValue Res; 10798 SDNodeFlags SDFlags; 10799 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10800 SDFlags.copyFMF(*FPMO); 10801 10802 switch (Intrinsic) { 10803 case Intrinsic::vector_reduce_fadd: 10804 if (SDFlags.hasAllowReassociation()) 10805 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10806 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10807 SDFlags); 10808 else 10809 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10810 break; 10811 case Intrinsic::vector_reduce_fmul: 10812 if (SDFlags.hasAllowReassociation()) 10813 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10814 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10815 SDFlags); 10816 else 10817 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10818 break; 10819 case Intrinsic::vector_reduce_add: 10820 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10821 break; 10822 case Intrinsic::vector_reduce_mul: 10823 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10824 break; 10825 case Intrinsic::vector_reduce_and: 10826 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10827 break; 10828 case Intrinsic::vector_reduce_or: 10829 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10830 break; 10831 case Intrinsic::vector_reduce_xor: 10832 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10833 break; 10834 case Intrinsic::vector_reduce_smax: 10835 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10836 break; 10837 case Intrinsic::vector_reduce_smin: 10838 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10839 break; 10840 case Intrinsic::vector_reduce_umax: 10841 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10842 break; 10843 case Intrinsic::vector_reduce_umin: 10844 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10845 break; 10846 case Intrinsic::vector_reduce_fmax: 10847 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10848 break; 10849 case Intrinsic::vector_reduce_fmin: 10850 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10851 break; 10852 case Intrinsic::vector_reduce_fmaximum: 10853 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10854 break; 10855 case Intrinsic::vector_reduce_fminimum: 10856 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10857 break; 10858 default: 10859 llvm_unreachable("Unhandled vector reduce intrinsic"); 10860 } 10861 setValue(&I, Res); 10862 } 10863 10864 /// Returns an AttributeList representing the attributes applied to the return 10865 /// value of the given call. 10866 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10867 SmallVector<Attribute::AttrKind, 2> Attrs; 10868 if (CLI.RetSExt) 10869 Attrs.push_back(Attribute::SExt); 10870 if (CLI.RetZExt) 10871 Attrs.push_back(Attribute::ZExt); 10872 if (CLI.IsInReg) 10873 Attrs.push_back(Attribute::InReg); 10874 10875 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10876 Attrs); 10877 } 10878 10879 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10880 /// implementation, which just calls LowerCall. 10881 /// FIXME: When all targets are 10882 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10883 std::pair<SDValue, SDValue> 10884 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10885 // Handle the incoming return values from the call. 10886 CLI.Ins.clear(); 10887 Type *OrigRetTy = CLI.RetTy; 10888 SmallVector<EVT, 4> RetTys; 10889 SmallVector<TypeSize, 4> Offsets; 10890 auto &DL = CLI.DAG.getDataLayout(); 10891 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10892 10893 if (CLI.IsPostTypeLegalization) { 10894 // If we are lowering a libcall after legalization, split the return type. 10895 SmallVector<EVT, 4> OldRetTys; 10896 SmallVector<TypeSize, 4> OldOffsets; 10897 RetTys.swap(OldRetTys); 10898 Offsets.swap(OldOffsets); 10899 10900 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10901 EVT RetVT = OldRetTys[i]; 10902 uint64_t Offset = OldOffsets[i]; 10903 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10904 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10905 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10906 RetTys.append(NumRegs, RegisterVT); 10907 for (unsigned j = 0; j != NumRegs; ++j) 10908 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10909 } 10910 } 10911 10912 SmallVector<ISD::OutputArg, 4> Outs; 10913 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10914 10915 bool CanLowerReturn = 10916 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10917 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10918 10919 SDValue DemoteStackSlot; 10920 int DemoteStackIdx = -100; 10921 if (!CanLowerReturn) { 10922 // FIXME: equivalent assert? 10923 // assert(!CS.hasInAllocaArgument() && 10924 // "sret demotion is incompatible with inalloca"); 10925 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10926 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10927 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10928 DemoteStackIdx = 10929 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10930 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10931 DL.getAllocaAddrSpace()); 10932 10933 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10934 ArgListEntry Entry; 10935 Entry.Node = DemoteStackSlot; 10936 Entry.Ty = StackSlotPtrType; 10937 Entry.IsSExt = false; 10938 Entry.IsZExt = false; 10939 Entry.IsInReg = false; 10940 Entry.IsSRet = true; 10941 Entry.IsNest = false; 10942 Entry.IsByVal = false; 10943 Entry.IsByRef = false; 10944 Entry.IsReturned = false; 10945 Entry.IsSwiftSelf = false; 10946 Entry.IsSwiftAsync = false; 10947 Entry.IsSwiftError = false; 10948 Entry.IsCFGuardTarget = false; 10949 Entry.Alignment = Alignment; 10950 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10951 CLI.NumFixedArgs += 1; 10952 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10953 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10954 10955 // sret demotion isn't compatible with tail-calls, since the sret argument 10956 // points into the callers stack frame. 10957 CLI.IsTailCall = false; 10958 } else { 10959 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10960 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10961 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10962 ISD::ArgFlagsTy Flags; 10963 if (NeedsRegBlock) { 10964 Flags.setInConsecutiveRegs(); 10965 if (I == RetTys.size() - 1) 10966 Flags.setInConsecutiveRegsLast(); 10967 } 10968 EVT VT = RetTys[I]; 10969 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10970 CLI.CallConv, VT); 10971 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10972 CLI.CallConv, VT); 10973 for (unsigned i = 0; i != NumRegs; ++i) { 10974 ISD::InputArg MyFlags; 10975 MyFlags.Flags = Flags; 10976 MyFlags.VT = RegisterVT; 10977 MyFlags.ArgVT = VT; 10978 MyFlags.Used = CLI.IsReturnValueUsed; 10979 if (CLI.RetTy->isPointerTy()) { 10980 MyFlags.Flags.setPointer(); 10981 MyFlags.Flags.setPointerAddrSpace( 10982 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10983 } 10984 if (CLI.RetSExt) 10985 MyFlags.Flags.setSExt(); 10986 if (CLI.RetZExt) 10987 MyFlags.Flags.setZExt(); 10988 if (CLI.IsInReg) 10989 MyFlags.Flags.setInReg(); 10990 CLI.Ins.push_back(MyFlags); 10991 } 10992 } 10993 } 10994 10995 // We push in swifterror return as the last element of CLI.Ins. 10996 ArgListTy &Args = CLI.getArgs(); 10997 if (supportSwiftError()) { 10998 for (const ArgListEntry &Arg : Args) { 10999 if (Arg.IsSwiftError) { 11000 ISD::InputArg MyFlags; 11001 MyFlags.VT = getPointerTy(DL); 11002 MyFlags.ArgVT = EVT(getPointerTy(DL)); 11003 MyFlags.Flags.setSwiftError(); 11004 CLI.Ins.push_back(MyFlags); 11005 } 11006 } 11007 } 11008 11009 // Handle all of the outgoing arguments. 11010 CLI.Outs.clear(); 11011 CLI.OutVals.clear(); 11012 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 11013 SmallVector<EVT, 4> ValueVTs; 11014 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 11015 // FIXME: Split arguments if CLI.IsPostTypeLegalization 11016 Type *FinalType = Args[i].Ty; 11017 if (Args[i].IsByVal) 11018 FinalType = Args[i].IndirectType; 11019 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 11020 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 11021 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 11022 ++Value) { 11023 EVT VT = ValueVTs[Value]; 11024 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 11025 SDValue Op = SDValue(Args[i].Node.getNode(), 11026 Args[i].Node.getResNo() + Value); 11027 ISD::ArgFlagsTy Flags; 11028 11029 // Certain targets (such as MIPS), may have a different ABI alignment 11030 // for a type depending on the context. Give the target a chance to 11031 // specify the alignment it wants. 11032 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 11033 Flags.setOrigAlign(OriginalAlignment); 11034 11035 if (Args[i].Ty->isPointerTy()) { 11036 Flags.setPointer(); 11037 Flags.setPointerAddrSpace( 11038 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 11039 } 11040 if (Args[i].IsZExt) 11041 Flags.setZExt(); 11042 if (Args[i].IsSExt) 11043 Flags.setSExt(); 11044 if (Args[i].IsNoExt) 11045 Flags.setNoExt(); 11046 if (Args[i].IsInReg) { 11047 // If we are using vectorcall calling convention, a structure that is 11048 // passed InReg - is surely an HVA 11049 if (CLI.CallConv == CallingConv::X86_VectorCall && 11050 isa<StructType>(FinalType)) { 11051 // The first value of a structure is marked 11052 if (0 == Value) 11053 Flags.setHvaStart(); 11054 Flags.setHva(); 11055 } 11056 // Set InReg Flag 11057 Flags.setInReg(); 11058 } 11059 if (Args[i].IsSRet) 11060 Flags.setSRet(); 11061 if (Args[i].IsSwiftSelf) 11062 Flags.setSwiftSelf(); 11063 if (Args[i].IsSwiftAsync) 11064 Flags.setSwiftAsync(); 11065 if (Args[i].IsSwiftError) 11066 Flags.setSwiftError(); 11067 if (Args[i].IsCFGuardTarget) 11068 Flags.setCFGuardTarget(); 11069 if (Args[i].IsByVal) 11070 Flags.setByVal(); 11071 if (Args[i].IsByRef) 11072 Flags.setByRef(); 11073 if (Args[i].IsPreallocated) { 11074 Flags.setPreallocated(); 11075 // Set the byval flag for CCAssignFn callbacks that don't know about 11076 // preallocated. This way we can know how many bytes we should've 11077 // allocated and how many bytes a callee cleanup function will pop. If 11078 // we port preallocated to more targets, we'll have to add custom 11079 // preallocated handling in the various CC lowering callbacks. 11080 Flags.setByVal(); 11081 } 11082 if (Args[i].IsInAlloca) { 11083 Flags.setInAlloca(); 11084 // Set the byval flag for CCAssignFn callbacks that don't know about 11085 // inalloca. This way we can know how many bytes we should've allocated 11086 // and how many bytes a callee cleanup function will pop. If we port 11087 // inalloca to more targets, we'll have to add custom inalloca handling 11088 // in the various CC lowering callbacks. 11089 Flags.setByVal(); 11090 } 11091 Align MemAlign; 11092 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 11093 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 11094 Flags.setByValSize(FrameSize); 11095 11096 // info is not there but there are cases it cannot get right. 11097 if (auto MA = Args[i].Alignment) 11098 MemAlign = *MA; 11099 else 11100 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 11101 } else if (auto MA = Args[i].Alignment) { 11102 MemAlign = *MA; 11103 } else { 11104 MemAlign = OriginalAlignment; 11105 } 11106 Flags.setMemAlign(MemAlign); 11107 if (Args[i].IsNest) 11108 Flags.setNest(); 11109 if (NeedsRegBlock) 11110 Flags.setInConsecutiveRegs(); 11111 11112 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11113 CLI.CallConv, VT); 11114 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11115 CLI.CallConv, VT); 11116 SmallVector<SDValue, 4> Parts(NumParts); 11117 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 11118 11119 if (Args[i].IsSExt) 11120 ExtendKind = ISD::SIGN_EXTEND; 11121 else if (Args[i].IsZExt) 11122 ExtendKind = ISD::ZERO_EXTEND; 11123 11124 // Conservatively only handle 'returned' on non-vectors that can be lowered, 11125 // for now. 11126 if (Args[i].IsReturned && !Op.getValueType().isVector() && 11127 CanLowerReturn) { 11128 assert((CLI.RetTy == Args[i].Ty || 11129 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 11130 CLI.RetTy->getPointerAddressSpace() == 11131 Args[i].Ty->getPointerAddressSpace())) && 11132 RetTys.size() == NumValues && "unexpected use of 'returned'"); 11133 // Before passing 'returned' to the target lowering code, ensure that 11134 // either the register MVT and the actual EVT are the same size or that 11135 // the return value and argument are extended in the same way; in these 11136 // cases it's safe to pass the argument register value unchanged as the 11137 // return register value (although it's at the target's option whether 11138 // to do so) 11139 // TODO: allow code generation to take advantage of partially preserved 11140 // registers rather than clobbering the entire register when the 11141 // parameter extension method is not compatible with the return 11142 // extension method 11143 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 11144 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 11145 CLI.RetZExt == Args[i].IsZExt)) 11146 Flags.setReturned(); 11147 } 11148 11149 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 11150 CLI.CallConv, ExtendKind); 11151 11152 for (unsigned j = 0; j != NumParts; ++j) { 11153 // if it isn't first piece, alignment must be 1 11154 // For scalable vectors the scalable part is currently handled 11155 // by individual targets, so we just use the known minimum size here. 11156 ISD::OutputArg MyFlags( 11157 Flags, Parts[j].getValueType().getSimpleVT(), VT, 11158 i < CLI.NumFixedArgs, i, 11159 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 11160 if (NumParts > 1 && j == 0) 11161 MyFlags.Flags.setSplit(); 11162 else if (j != 0) { 11163 MyFlags.Flags.setOrigAlign(Align(1)); 11164 if (j == NumParts - 1) 11165 MyFlags.Flags.setSplitEnd(); 11166 } 11167 11168 CLI.Outs.push_back(MyFlags); 11169 CLI.OutVals.push_back(Parts[j]); 11170 } 11171 11172 if (NeedsRegBlock && Value == NumValues - 1) 11173 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 11174 } 11175 } 11176 11177 SmallVector<SDValue, 4> InVals; 11178 CLI.Chain = LowerCall(CLI, InVals); 11179 11180 // Update CLI.InVals to use outside of this function. 11181 CLI.InVals = InVals; 11182 11183 // Verify that the target's LowerCall behaved as expected. 11184 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11185 "LowerCall didn't return a valid chain!"); 11186 assert((!CLI.IsTailCall || InVals.empty()) && 11187 "LowerCall emitted a return value for a tail call!"); 11188 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11189 "LowerCall didn't emit the correct number of values!"); 11190 11191 // For a tail call, the return value is merely live-out and there aren't 11192 // any nodes in the DAG representing it. Return a special value to 11193 // indicate that a tail call has been emitted and no more Instructions 11194 // should be processed in the current block. 11195 if (CLI.IsTailCall) { 11196 CLI.DAG.setRoot(CLI.Chain); 11197 return std::make_pair(SDValue(), SDValue()); 11198 } 11199 11200 #ifndef NDEBUG 11201 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11202 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11203 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11204 "LowerCall emitted a value with the wrong type!"); 11205 } 11206 #endif 11207 11208 SmallVector<SDValue, 4> ReturnValues; 11209 if (!CanLowerReturn) { 11210 // The instruction result is the result of loading from the 11211 // hidden sret parameter. 11212 SmallVector<EVT, 1> PVTs; 11213 Type *PtrRetTy = 11214 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11215 11216 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11217 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11218 EVT PtrVT = PVTs[0]; 11219 11220 unsigned NumValues = RetTys.size(); 11221 ReturnValues.resize(NumValues); 11222 SmallVector<SDValue, 4> Chains(NumValues); 11223 11224 // An aggregate return value cannot wrap around the address space, so 11225 // offsets to its parts don't wrap either. 11226 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11227 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11228 for (unsigned i = 0; i < NumValues; ++i) { 11229 SDValue Add = 11230 CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11231 CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT), 11232 SDNodeFlags::NoUnsignedWrap); 11233 SDValue L = CLI.DAG.getLoad( 11234 RetTys[i], CLI.DL, CLI.Chain, Add, 11235 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11236 DemoteStackIdx, Offsets[i]), 11237 HiddenSRetAlign); 11238 ReturnValues[i] = L; 11239 Chains[i] = L.getValue(1); 11240 } 11241 11242 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11243 } else { 11244 // Collect the legal value parts into potentially illegal values 11245 // that correspond to the original function's return values. 11246 std::optional<ISD::NodeType> AssertOp; 11247 if (CLI.RetSExt) 11248 AssertOp = ISD::AssertSext; 11249 else if (CLI.RetZExt) 11250 AssertOp = ISD::AssertZext; 11251 unsigned CurReg = 0; 11252 for (EVT VT : RetTys) { 11253 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11254 CLI.CallConv, VT); 11255 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11256 CLI.CallConv, VT); 11257 11258 ReturnValues.push_back(getCopyFromParts( 11259 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11260 CLI.Chain, CLI.CallConv, AssertOp)); 11261 CurReg += NumRegs; 11262 } 11263 11264 // For a function returning void, there is no return value. We can't create 11265 // such a node, so we just return a null return value in that case. In 11266 // that case, nothing will actually look at the value. 11267 if (ReturnValues.empty()) 11268 return std::make_pair(SDValue(), CLI.Chain); 11269 } 11270 11271 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11272 CLI.DAG.getVTList(RetTys), ReturnValues); 11273 return std::make_pair(Res, CLI.Chain); 11274 } 11275 11276 /// Places new result values for the node in Results (their number 11277 /// and types must exactly match those of the original return values of 11278 /// the node), or leaves Results empty, which indicates that the node is not 11279 /// to be custom lowered after all. 11280 void TargetLowering::LowerOperationWrapper(SDNode *N, 11281 SmallVectorImpl<SDValue> &Results, 11282 SelectionDAG &DAG) const { 11283 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11284 11285 if (!Res.getNode()) 11286 return; 11287 11288 // If the original node has one result, take the return value from 11289 // LowerOperation as is. It might not be result number 0. 11290 if (N->getNumValues() == 1) { 11291 Results.push_back(Res); 11292 return; 11293 } 11294 11295 // If the original node has multiple results, then the return node should 11296 // have the same number of results. 11297 assert((N->getNumValues() == Res->getNumValues()) && 11298 "Lowering returned the wrong number of results!"); 11299 11300 // Places new result values base on N result number. 11301 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11302 Results.push_back(Res.getValue(I)); 11303 } 11304 11305 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11306 llvm_unreachable("LowerOperation not implemented for this target!"); 11307 } 11308 11309 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11310 unsigned Reg, 11311 ISD::NodeType ExtendType) { 11312 SDValue Op = getNonRegisterValue(V); 11313 assert((Op.getOpcode() != ISD::CopyFromReg || 11314 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11315 "Copy from a reg to the same reg!"); 11316 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11317 11318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11319 // If this is an InlineAsm we have to match the registers required, not the 11320 // notional registers required by the type. 11321 11322 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11323 std::nullopt); // This is not an ABI copy. 11324 SDValue Chain = DAG.getEntryNode(); 11325 11326 if (ExtendType == ISD::ANY_EXTEND) { 11327 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11328 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11329 ExtendType = PreferredExtendIt->second; 11330 } 11331 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11332 PendingExports.push_back(Chain); 11333 } 11334 11335 #include "llvm/CodeGen/SelectionDAGISel.h" 11336 11337 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11338 /// entry block, return true. This includes arguments used by switches, since 11339 /// the switch may expand into multiple basic blocks. 11340 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11341 // With FastISel active, we may be splitting blocks, so force creation 11342 // of virtual registers for all non-dead arguments. 11343 if (FastISel) 11344 return A->use_empty(); 11345 11346 const BasicBlock &Entry = A->getParent()->front(); 11347 for (const User *U : A->users()) 11348 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11349 return false; // Use not in entry block. 11350 11351 return true; 11352 } 11353 11354 using ArgCopyElisionMapTy = 11355 DenseMap<const Argument *, 11356 std::pair<const AllocaInst *, const StoreInst *>>; 11357 11358 /// Scan the entry block of the function in FuncInfo for arguments that look 11359 /// like copies into a local alloca. Record any copied arguments in 11360 /// ArgCopyElisionCandidates. 11361 static void 11362 findArgumentCopyElisionCandidates(const DataLayout &DL, 11363 FunctionLoweringInfo *FuncInfo, 11364 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11365 // Record the state of every static alloca used in the entry block. Argument 11366 // allocas are all used in the entry block, so we need approximately as many 11367 // entries as we have arguments. 11368 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11369 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11370 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11371 StaticAllocas.reserve(NumArgs * 2); 11372 11373 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11374 if (!V) 11375 return nullptr; 11376 V = V->stripPointerCasts(); 11377 const auto *AI = dyn_cast<AllocaInst>(V); 11378 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11379 return nullptr; 11380 auto Iter = StaticAllocas.insert({AI, Unknown}); 11381 return &Iter.first->second; 11382 }; 11383 11384 // Look for stores of arguments to static allocas. Look through bitcasts and 11385 // GEPs to handle type coercions, as long as the alloca is fully initialized 11386 // by the store. Any non-store use of an alloca escapes it and any subsequent 11387 // unanalyzed store might write it. 11388 // FIXME: Handle structs initialized with multiple stores. 11389 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11390 // Look for stores, and handle non-store uses conservatively. 11391 const auto *SI = dyn_cast<StoreInst>(&I); 11392 if (!SI) { 11393 // We will look through cast uses, so ignore them completely. 11394 if (I.isCast()) 11395 continue; 11396 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11397 // to allocas. 11398 if (I.isDebugOrPseudoInst()) 11399 continue; 11400 // This is an unknown instruction. Assume it escapes or writes to all 11401 // static alloca operands. 11402 for (const Use &U : I.operands()) { 11403 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11404 *Info = StaticAllocaInfo::Clobbered; 11405 } 11406 continue; 11407 } 11408 11409 // If the stored value is a static alloca, mark it as escaped. 11410 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11411 *Info = StaticAllocaInfo::Clobbered; 11412 11413 // Check if the destination is a static alloca. 11414 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11415 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11416 if (!Info) 11417 continue; 11418 const AllocaInst *AI = cast<AllocaInst>(Dst); 11419 11420 // Skip allocas that have been initialized or clobbered. 11421 if (*Info != StaticAllocaInfo::Unknown) 11422 continue; 11423 11424 // Check if the stored value is an argument, and that this store fully 11425 // initializes the alloca. 11426 // If the argument type has padding bits we can't directly forward a pointer 11427 // as the upper bits may contain garbage. 11428 // Don't elide copies from the same argument twice. 11429 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11430 const auto *Arg = dyn_cast<Argument>(Val); 11431 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11432 Arg->getType()->isEmptyTy() || 11433 DL.getTypeStoreSize(Arg->getType()) != 11434 DL.getTypeAllocSize(AI->getAllocatedType()) || 11435 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11436 ArgCopyElisionCandidates.count(Arg)) { 11437 *Info = StaticAllocaInfo::Clobbered; 11438 continue; 11439 } 11440 11441 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11442 << '\n'); 11443 11444 // Mark this alloca and store for argument copy elision. 11445 *Info = StaticAllocaInfo::Elidable; 11446 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11447 11448 // Stop scanning if we've seen all arguments. This will happen early in -O0 11449 // builds, which is useful, because -O0 builds have large entry blocks and 11450 // many allocas. 11451 if (ArgCopyElisionCandidates.size() == NumArgs) 11452 break; 11453 } 11454 } 11455 11456 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11457 /// ArgVal is a load from a suitable fixed stack object. 11458 static void tryToElideArgumentCopy( 11459 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11460 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11461 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11462 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11463 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11464 // Check if this is a load from a fixed stack object. 11465 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11466 if (!LNode) 11467 return; 11468 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11469 if (!FINode) 11470 return; 11471 11472 // Check that the fixed stack object is the right size and alignment. 11473 // Look at the alignment that the user wrote on the alloca instead of looking 11474 // at the stack object. 11475 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11476 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11477 const AllocaInst *AI = ArgCopyIter->second.first; 11478 int FixedIndex = FINode->getIndex(); 11479 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11480 int OldIndex = AllocaIndex; 11481 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11482 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11483 LLVM_DEBUG( 11484 dbgs() << " argument copy elision failed due to bad fixed stack " 11485 "object size\n"); 11486 return; 11487 } 11488 Align RequiredAlignment = AI->getAlign(); 11489 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11490 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11491 "greater than stack argument alignment (" 11492 << DebugStr(RequiredAlignment) << " vs " 11493 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11494 return; 11495 } 11496 11497 // Perform the elision. Delete the old stack object and replace its only use 11498 // in the variable info map. Mark the stack object as mutable and aliased. 11499 LLVM_DEBUG({ 11500 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11501 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11502 << '\n'; 11503 }); 11504 MFI.RemoveStackObject(OldIndex); 11505 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11506 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11507 AllocaIndex = FixedIndex; 11508 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11509 for (SDValue ArgVal : ArgVals) 11510 Chains.push_back(ArgVal.getValue(1)); 11511 11512 // Avoid emitting code for the store implementing the copy. 11513 const StoreInst *SI = ArgCopyIter->second.second; 11514 ElidedArgCopyInstrs.insert(SI); 11515 11516 // Check for uses of the argument again so that we can avoid exporting ArgVal 11517 // if it is't used by anything other than the store. 11518 for (const Value *U : Arg.users()) { 11519 if (U != SI) { 11520 ArgHasUses = true; 11521 break; 11522 } 11523 } 11524 } 11525 11526 void SelectionDAGISel::LowerArguments(const Function &F) { 11527 SelectionDAG &DAG = SDB->DAG; 11528 SDLoc dl = SDB->getCurSDLoc(); 11529 const DataLayout &DL = DAG.getDataLayout(); 11530 SmallVector<ISD::InputArg, 16> Ins; 11531 11532 // In Naked functions we aren't going to save any registers. 11533 if (F.hasFnAttribute(Attribute::Naked)) 11534 return; 11535 11536 if (!FuncInfo->CanLowerReturn) { 11537 // Put in an sret pointer parameter before all the other parameters. 11538 SmallVector<EVT, 1> ValueVTs; 11539 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11540 PointerType::get(F.getContext(), 11541 DAG.getDataLayout().getAllocaAddrSpace()), 11542 ValueVTs); 11543 11544 // NOTE: Assuming that a pointer will never break down to more than one VT 11545 // or one register. 11546 ISD::ArgFlagsTy Flags; 11547 Flags.setSRet(); 11548 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11549 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11550 ISD::InputArg::NoArgIndex, 0); 11551 Ins.push_back(RetArg); 11552 } 11553 11554 // Look for stores of arguments to static allocas. Mark such arguments with a 11555 // flag to ask the target to give us the memory location of that argument if 11556 // available. 11557 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11558 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11559 ArgCopyElisionCandidates); 11560 11561 // Set up the incoming argument description vector. 11562 for (const Argument &Arg : F.args()) { 11563 unsigned ArgNo = Arg.getArgNo(); 11564 SmallVector<EVT, 4> ValueVTs; 11565 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11566 bool isArgValueUsed = !Arg.use_empty(); 11567 unsigned PartBase = 0; 11568 Type *FinalType = Arg.getType(); 11569 if (Arg.hasAttribute(Attribute::ByVal)) 11570 FinalType = Arg.getParamByValType(); 11571 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11572 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11573 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11574 Value != NumValues; ++Value) { 11575 EVT VT = ValueVTs[Value]; 11576 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11577 ISD::ArgFlagsTy Flags; 11578 11579 11580 if (Arg.getType()->isPointerTy()) { 11581 Flags.setPointer(); 11582 Flags.setPointerAddrSpace( 11583 cast<PointerType>(Arg.getType())->getAddressSpace()); 11584 } 11585 if (Arg.hasAttribute(Attribute::ZExt)) 11586 Flags.setZExt(); 11587 if (Arg.hasAttribute(Attribute::SExt)) 11588 Flags.setSExt(); 11589 if (Arg.hasAttribute(Attribute::InReg)) { 11590 // If we are using vectorcall calling convention, a structure that is 11591 // passed InReg - is surely an HVA 11592 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11593 isa<StructType>(Arg.getType())) { 11594 // The first value of a structure is marked 11595 if (0 == Value) 11596 Flags.setHvaStart(); 11597 Flags.setHva(); 11598 } 11599 // Set InReg Flag 11600 Flags.setInReg(); 11601 } 11602 if (Arg.hasAttribute(Attribute::StructRet)) 11603 Flags.setSRet(); 11604 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11605 Flags.setSwiftSelf(); 11606 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11607 Flags.setSwiftAsync(); 11608 if (Arg.hasAttribute(Attribute::SwiftError)) 11609 Flags.setSwiftError(); 11610 if (Arg.hasAttribute(Attribute::ByVal)) 11611 Flags.setByVal(); 11612 if (Arg.hasAttribute(Attribute::ByRef)) 11613 Flags.setByRef(); 11614 if (Arg.hasAttribute(Attribute::InAlloca)) { 11615 Flags.setInAlloca(); 11616 // Set the byval flag for CCAssignFn callbacks that don't know about 11617 // inalloca. This way we can know how many bytes we should've allocated 11618 // and how many bytes a callee cleanup function will pop. If we port 11619 // inalloca to more targets, we'll have to add custom inalloca handling 11620 // in the various CC lowering callbacks. 11621 Flags.setByVal(); 11622 } 11623 if (Arg.hasAttribute(Attribute::Preallocated)) { 11624 Flags.setPreallocated(); 11625 // Set the byval flag for CCAssignFn callbacks that don't know about 11626 // preallocated. This way we can know how many bytes we should've 11627 // allocated and how many bytes a callee cleanup function will pop. If 11628 // we port preallocated to more targets, we'll have to add custom 11629 // preallocated handling in the various CC lowering callbacks. 11630 Flags.setByVal(); 11631 } 11632 11633 // Certain targets (such as MIPS), may have a different ABI alignment 11634 // for a type depending on the context. Give the target a chance to 11635 // specify the alignment it wants. 11636 const Align OriginalAlignment( 11637 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11638 Flags.setOrigAlign(OriginalAlignment); 11639 11640 Align MemAlign; 11641 Type *ArgMemTy = nullptr; 11642 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11643 Flags.isByRef()) { 11644 if (!ArgMemTy) 11645 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11646 11647 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11648 11649 // For in-memory arguments, size and alignment should be passed from FE. 11650 // BE will guess if this info is not there but there are cases it cannot 11651 // get right. 11652 if (auto ParamAlign = Arg.getParamStackAlign()) 11653 MemAlign = *ParamAlign; 11654 else if ((ParamAlign = Arg.getParamAlign())) 11655 MemAlign = *ParamAlign; 11656 else 11657 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11658 if (Flags.isByRef()) 11659 Flags.setByRefSize(MemSize); 11660 else 11661 Flags.setByValSize(MemSize); 11662 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11663 MemAlign = *ParamAlign; 11664 } else { 11665 MemAlign = OriginalAlignment; 11666 } 11667 Flags.setMemAlign(MemAlign); 11668 11669 if (Arg.hasAttribute(Attribute::Nest)) 11670 Flags.setNest(); 11671 if (NeedsRegBlock) 11672 Flags.setInConsecutiveRegs(); 11673 if (ArgCopyElisionCandidates.count(&Arg)) 11674 Flags.setCopyElisionCandidate(); 11675 if (Arg.hasAttribute(Attribute::Returned)) 11676 Flags.setReturned(); 11677 11678 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11679 *CurDAG->getContext(), F.getCallingConv(), VT); 11680 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11681 *CurDAG->getContext(), F.getCallingConv(), VT); 11682 for (unsigned i = 0; i != NumRegs; ++i) { 11683 // For scalable vectors, use the minimum size; individual targets 11684 // are responsible for handling scalable vector arguments and 11685 // return values. 11686 ISD::InputArg MyFlags( 11687 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11688 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11689 if (NumRegs > 1 && i == 0) 11690 MyFlags.Flags.setSplit(); 11691 // if it isn't first piece, alignment must be 1 11692 else if (i > 0) { 11693 MyFlags.Flags.setOrigAlign(Align(1)); 11694 if (i == NumRegs - 1) 11695 MyFlags.Flags.setSplitEnd(); 11696 } 11697 Ins.push_back(MyFlags); 11698 } 11699 if (NeedsRegBlock && Value == NumValues - 1) 11700 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11701 PartBase += VT.getStoreSize().getKnownMinValue(); 11702 } 11703 } 11704 11705 // Call the target to set up the argument values. 11706 SmallVector<SDValue, 8> InVals; 11707 SDValue NewRoot = TLI->LowerFormalArguments( 11708 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11709 11710 // Verify that the target's LowerFormalArguments behaved as expected. 11711 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11712 "LowerFormalArguments didn't return a valid chain!"); 11713 assert(InVals.size() == Ins.size() && 11714 "LowerFormalArguments didn't emit the correct number of values!"); 11715 LLVM_DEBUG({ 11716 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11717 assert(InVals[i].getNode() && 11718 "LowerFormalArguments emitted a null value!"); 11719 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11720 "LowerFormalArguments emitted a value with the wrong type!"); 11721 } 11722 }); 11723 11724 // Update the DAG with the new chain value resulting from argument lowering. 11725 DAG.setRoot(NewRoot); 11726 11727 // Set up the argument values. 11728 unsigned i = 0; 11729 if (!FuncInfo->CanLowerReturn) { 11730 // Create a virtual register for the sret pointer, and put in a copy 11731 // from the sret argument into it. 11732 SmallVector<EVT, 1> ValueVTs; 11733 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11734 PointerType::get(F.getContext(), 11735 DAG.getDataLayout().getAllocaAddrSpace()), 11736 ValueVTs); 11737 MVT VT = ValueVTs[0].getSimpleVT(); 11738 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11739 std::optional<ISD::NodeType> AssertOp; 11740 SDValue ArgValue = 11741 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11742 F.getCallingConv(), AssertOp); 11743 11744 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11745 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11746 Register SRetReg = 11747 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11748 FuncInfo->DemoteRegister = SRetReg; 11749 NewRoot = 11750 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11751 DAG.setRoot(NewRoot); 11752 11753 // i indexes lowered arguments. Bump it past the hidden sret argument. 11754 ++i; 11755 } 11756 11757 SmallVector<SDValue, 4> Chains; 11758 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11759 for (const Argument &Arg : F.args()) { 11760 SmallVector<SDValue, 4> ArgValues; 11761 SmallVector<EVT, 4> ValueVTs; 11762 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11763 unsigned NumValues = ValueVTs.size(); 11764 if (NumValues == 0) 11765 continue; 11766 11767 bool ArgHasUses = !Arg.use_empty(); 11768 11769 // Elide the copying store if the target loaded this argument from a 11770 // suitable fixed stack object. 11771 if (Ins[i].Flags.isCopyElisionCandidate()) { 11772 unsigned NumParts = 0; 11773 for (EVT VT : ValueVTs) 11774 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11775 F.getCallingConv(), VT); 11776 11777 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11778 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11779 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11780 } 11781 11782 // If this argument is unused then remember its value. It is used to generate 11783 // debugging information. 11784 bool isSwiftErrorArg = 11785 TLI->supportSwiftError() && 11786 Arg.hasAttribute(Attribute::SwiftError); 11787 if (!ArgHasUses && !isSwiftErrorArg) { 11788 SDB->setUnusedArgValue(&Arg, InVals[i]); 11789 11790 // Also remember any frame index for use in FastISel. 11791 if (FrameIndexSDNode *FI = 11792 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11793 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11794 } 11795 11796 for (unsigned Val = 0; Val != NumValues; ++Val) { 11797 EVT VT = ValueVTs[Val]; 11798 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11799 F.getCallingConv(), VT); 11800 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11801 *CurDAG->getContext(), F.getCallingConv(), VT); 11802 11803 // Even an apparent 'unused' swifterror argument needs to be returned. So 11804 // we do generate a copy for it that can be used on return from the 11805 // function. 11806 if (ArgHasUses || isSwiftErrorArg) { 11807 std::optional<ISD::NodeType> AssertOp; 11808 if (Arg.hasAttribute(Attribute::SExt)) 11809 AssertOp = ISD::AssertSext; 11810 else if (Arg.hasAttribute(Attribute::ZExt)) 11811 AssertOp = ISD::AssertZext; 11812 11813 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11814 PartVT, VT, nullptr, NewRoot, 11815 F.getCallingConv(), AssertOp)); 11816 } 11817 11818 i += NumParts; 11819 } 11820 11821 // We don't need to do anything else for unused arguments. 11822 if (ArgValues.empty()) 11823 continue; 11824 11825 // Note down frame index. 11826 if (FrameIndexSDNode *FI = 11827 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11828 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11829 11830 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11831 SDB->getCurSDLoc()); 11832 11833 SDB->setValue(&Arg, Res); 11834 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11835 // We want to associate the argument with the frame index, among 11836 // involved operands, that correspond to the lowest address. The 11837 // getCopyFromParts function, called earlier, is swapping the order of 11838 // the operands to BUILD_PAIR depending on endianness. The result of 11839 // that swapping is that the least significant bits of the argument will 11840 // be in the first operand of the BUILD_PAIR node, and the most 11841 // significant bits will be in the second operand. 11842 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11843 if (LoadSDNode *LNode = 11844 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11845 if (FrameIndexSDNode *FI = 11846 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11847 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11848 } 11849 11850 // Analyses past this point are naive and don't expect an assertion. 11851 if (Res.getOpcode() == ISD::AssertZext) 11852 Res = Res.getOperand(0); 11853 11854 // Update the SwiftErrorVRegDefMap. 11855 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11856 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11857 if (Reg.isVirtual()) 11858 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11859 Reg); 11860 } 11861 11862 // If this argument is live outside of the entry block, insert a copy from 11863 // wherever we got it to the vreg that other BB's will reference it as. 11864 if (Res.getOpcode() == ISD::CopyFromReg) { 11865 // If we can, though, try to skip creating an unnecessary vreg. 11866 // FIXME: This isn't very clean... it would be nice to make this more 11867 // general. 11868 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11869 if (Reg.isVirtual()) { 11870 FuncInfo->ValueMap[&Arg] = Reg; 11871 continue; 11872 } 11873 } 11874 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11875 FuncInfo->InitializeRegForValue(&Arg); 11876 SDB->CopyToExportRegsIfNeeded(&Arg); 11877 } 11878 } 11879 11880 if (!Chains.empty()) { 11881 Chains.push_back(NewRoot); 11882 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11883 } 11884 11885 DAG.setRoot(NewRoot); 11886 11887 assert(i == InVals.size() && "Argument register count mismatch!"); 11888 11889 // If any argument copy elisions occurred and we have debug info, update the 11890 // stale frame indices used in the dbg.declare variable info table. 11891 if (!ArgCopyElisionFrameIndexMap.empty()) { 11892 for (MachineFunction::VariableDbgInfo &VI : 11893 MF->getInStackSlotVariableDbgInfo()) { 11894 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11895 if (I != ArgCopyElisionFrameIndexMap.end()) 11896 VI.updateStackSlot(I->second); 11897 } 11898 } 11899 11900 // Finally, if the target has anything special to do, allow it to do so. 11901 emitFunctionEntryCode(); 11902 } 11903 11904 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11905 /// ensure constants are generated when needed. Remember the virtual registers 11906 /// that need to be added to the Machine PHI nodes as input. We cannot just 11907 /// directly add them, because expansion might result in multiple MBB's for one 11908 /// BB. As such, the start of the BB might correspond to a different MBB than 11909 /// the end. 11910 void 11911 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11912 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11913 11914 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11915 11916 // Check PHI nodes in successors that expect a value to be available from this 11917 // block. 11918 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11919 if (!isa<PHINode>(SuccBB->begin())) continue; 11920 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB); 11921 11922 // If this terminator has multiple identical successors (common for 11923 // switches), only handle each succ once. 11924 if (!SuccsHandled.insert(SuccMBB).second) 11925 continue; 11926 11927 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11928 11929 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11930 // nodes and Machine PHI nodes, but the incoming operands have not been 11931 // emitted yet. 11932 for (const PHINode &PN : SuccBB->phis()) { 11933 // Ignore dead phi's. 11934 if (PN.use_empty()) 11935 continue; 11936 11937 // Skip empty types 11938 if (PN.getType()->isEmptyTy()) 11939 continue; 11940 11941 unsigned Reg; 11942 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11943 11944 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11945 unsigned &RegOut = ConstantsOut[C]; 11946 if (RegOut == 0) { 11947 RegOut = FuncInfo.CreateRegs(C); 11948 // We need to zero/sign extend ConstantInt phi operands to match 11949 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11950 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11951 if (auto *CI = dyn_cast<ConstantInt>(C)) 11952 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11953 : ISD::ZERO_EXTEND; 11954 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11955 } 11956 Reg = RegOut; 11957 } else { 11958 DenseMap<const Value *, Register>::iterator I = 11959 FuncInfo.ValueMap.find(PHIOp); 11960 if (I != FuncInfo.ValueMap.end()) 11961 Reg = I->second; 11962 else { 11963 assert(isa<AllocaInst>(PHIOp) && 11964 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11965 "Didn't codegen value into a register!??"); 11966 Reg = FuncInfo.CreateRegs(PHIOp); 11967 CopyValueToVirtualRegister(PHIOp, Reg); 11968 } 11969 } 11970 11971 // Remember that this register needs to added to the machine PHI node as 11972 // the input for this MBB. 11973 SmallVector<EVT, 4> ValueVTs; 11974 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11975 for (EVT VT : ValueVTs) { 11976 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11977 for (unsigned i = 0; i != NumRegisters; ++i) 11978 FuncInfo.PHINodesToUpdate.push_back( 11979 std::make_pair(&*MBBI++, Reg + i)); 11980 Reg += NumRegisters; 11981 } 11982 } 11983 } 11984 11985 ConstantsOut.clear(); 11986 } 11987 11988 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11989 MachineFunction::iterator I(MBB); 11990 if (++I == FuncInfo.MF->end()) 11991 return nullptr; 11992 return &*I; 11993 } 11994 11995 /// During lowering new call nodes can be created (such as memset, etc.). 11996 /// Those will become new roots of the current DAG, but complications arise 11997 /// when they are tail calls. In such cases, the call lowering will update 11998 /// the root, but the builder still needs to know that a tail call has been 11999 /// lowered in order to avoid generating an additional return. 12000 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 12001 // If the node is null, we do have a tail call. 12002 if (MaybeTC.getNode() != nullptr) 12003 DAG.setRoot(MaybeTC); 12004 else 12005 HasTailCall = true; 12006 } 12007 12008 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 12009 MachineBasicBlock *SwitchMBB, 12010 MachineBasicBlock *DefaultMBB) { 12011 MachineFunction *CurMF = FuncInfo.MF; 12012 MachineBasicBlock *NextMBB = nullptr; 12013 MachineFunction::iterator BBI(W.MBB); 12014 if (++BBI != FuncInfo.MF->end()) 12015 NextMBB = &*BBI; 12016 12017 unsigned Size = W.LastCluster - W.FirstCluster + 1; 12018 12019 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12020 12021 if (Size == 2 && W.MBB == SwitchMBB) { 12022 // If any two of the cases has the same destination, and if one value 12023 // is the same as the other, but has one bit unset that the other has set, 12024 // use bit manipulation to do two compares at once. For example: 12025 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 12026 // TODO: This could be extended to merge any 2 cases in switches with 3 12027 // cases. 12028 // TODO: Handle cases where W.CaseBB != SwitchBB. 12029 CaseCluster &Small = *W.FirstCluster; 12030 CaseCluster &Big = *W.LastCluster; 12031 12032 if (Small.Low == Small.High && Big.Low == Big.High && 12033 Small.MBB == Big.MBB) { 12034 const APInt &SmallValue = Small.Low->getValue(); 12035 const APInt &BigValue = Big.Low->getValue(); 12036 12037 // Check that there is only one bit different. 12038 APInt CommonBit = BigValue ^ SmallValue; 12039 if (CommonBit.isPowerOf2()) { 12040 SDValue CondLHS = getValue(Cond); 12041 EVT VT = CondLHS.getValueType(); 12042 SDLoc DL = getCurSDLoc(); 12043 12044 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 12045 DAG.getConstant(CommonBit, DL, VT)); 12046 SDValue Cond = DAG.getSetCC( 12047 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 12048 ISD::SETEQ); 12049 12050 // Update successor info. 12051 // Both Small and Big will jump to Small.BB, so we sum up the 12052 // probabilities. 12053 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 12054 if (BPI) 12055 addSuccessorWithProb( 12056 SwitchMBB, DefaultMBB, 12057 // The default destination is the first successor in IR. 12058 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 12059 else 12060 addSuccessorWithProb(SwitchMBB, DefaultMBB); 12061 12062 // Insert the true branch. 12063 SDValue BrCond = 12064 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 12065 DAG.getBasicBlock(Small.MBB)); 12066 // Insert the false branch. 12067 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 12068 DAG.getBasicBlock(DefaultMBB)); 12069 12070 DAG.setRoot(BrCond); 12071 return; 12072 } 12073 } 12074 } 12075 12076 if (TM.getOptLevel() != CodeGenOptLevel::None) { 12077 // Here, we order cases by probability so the most likely case will be 12078 // checked first. However, two clusters can have the same probability in 12079 // which case their relative ordering is non-deterministic. So we use Low 12080 // as a tie-breaker as clusters are guaranteed to never overlap. 12081 llvm::sort(W.FirstCluster, W.LastCluster + 1, 12082 [](const CaseCluster &a, const CaseCluster &b) { 12083 return a.Prob != b.Prob ? 12084 a.Prob > b.Prob : 12085 a.Low->getValue().slt(b.Low->getValue()); 12086 }); 12087 12088 // Rearrange the case blocks so that the last one falls through if possible 12089 // without changing the order of probabilities. 12090 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 12091 --I; 12092 if (I->Prob > W.LastCluster->Prob) 12093 break; 12094 if (I->Kind == CC_Range && I->MBB == NextMBB) { 12095 std::swap(*I, *W.LastCluster); 12096 break; 12097 } 12098 } 12099 } 12100 12101 // Compute total probability. 12102 BranchProbability DefaultProb = W.DefaultProb; 12103 BranchProbability UnhandledProbs = DefaultProb; 12104 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 12105 UnhandledProbs += I->Prob; 12106 12107 MachineBasicBlock *CurMBB = W.MBB; 12108 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 12109 bool FallthroughUnreachable = false; 12110 MachineBasicBlock *Fallthrough; 12111 if (I == W.LastCluster) { 12112 // For the last cluster, fall through to the default destination. 12113 Fallthrough = DefaultMBB; 12114 FallthroughUnreachable = isa<UnreachableInst>( 12115 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 12116 } else { 12117 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 12118 CurMF->insert(BBI, Fallthrough); 12119 // Put Cond in a virtual register to make it available from the new blocks. 12120 ExportFromCurrentBlock(Cond); 12121 } 12122 UnhandledProbs -= I->Prob; 12123 12124 switch (I->Kind) { 12125 case CC_JumpTable: { 12126 // FIXME: Optimize away range check based on pivot comparisons. 12127 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 12128 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 12129 12130 // The jump block hasn't been inserted yet; insert it here. 12131 MachineBasicBlock *JumpMBB = JT->MBB; 12132 CurMF->insert(BBI, JumpMBB); 12133 12134 auto JumpProb = I->Prob; 12135 auto FallthroughProb = UnhandledProbs; 12136 12137 // If the default statement is a target of the jump table, we evenly 12138 // distribute the default probability to successors of CurMBB. Also 12139 // update the probability on the edge from JumpMBB to Fallthrough. 12140 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 12141 SE = JumpMBB->succ_end(); 12142 SI != SE; ++SI) { 12143 if (*SI == DefaultMBB) { 12144 JumpProb += DefaultProb / 2; 12145 FallthroughProb -= DefaultProb / 2; 12146 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 12147 JumpMBB->normalizeSuccProbs(); 12148 break; 12149 } 12150 } 12151 12152 // If the default clause is unreachable, propagate that knowledge into 12153 // JTH->FallthroughUnreachable which will use it to suppress the range 12154 // check. 12155 // 12156 // However, don't do this if we're doing branch target enforcement, 12157 // because a table branch _without_ a range check can be a tempting JOP 12158 // gadget - out-of-bounds inputs that are impossible in correct 12159 // execution become possible again if an attacker can influence the 12160 // control flow. So if an attacker doesn't already have a BTI bypass 12161 // available, we don't want them to be able to get one out of this 12162 // table branch. 12163 if (FallthroughUnreachable) { 12164 Function &CurFunc = CurMF->getFunction(); 12165 if (!CurFunc.hasFnAttribute("branch-target-enforcement")) 12166 JTH->FallthroughUnreachable = true; 12167 } 12168 12169 if (!JTH->FallthroughUnreachable) 12170 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 12171 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12172 CurMBB->normalizeSuccProbs(); 12173 12174 // The jump table header will be inserted in our current block, do the 12175 // range check, and fall through to our fallthrough block. 12176 JTH->HeaderBB = CurMBB; 12177 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12178 12179 // If we're in the right place, emit the jump table header right now. 12180 if (CurMBB == SwitchMBB) { 12181 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12182 JTH->Emitted = true; 12183 } 12184 break; 12185 } 12186 case CC_BitTests: { 12187 // FIXME: Optimize away range check based on pivot comparisons. 12188 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12189 12190 // The bit test blocks haven't been inserted yet; insert them here. 12191 for (BitTestCase &BTC : BTB->Cases) 12192 CurMF->insert(BBI, BTC.ThisBB); 12193 12194 // Fill in fields of the BitTestBlock. 12195 BTB->Parent = CurMBB; 12196 BTB->Default = Fallthrough; 12197 12198 BTB->DefaultProb = UnhandledProbs; 12199 // If the cases in bit test don't form a contiguous range, we evenly 12200 // distribute the probability on the edge to Fallthrough to two 12201 // successors of CurMBB. 12202 if (!BTB->ContiguousRange) { 12203 BTB->Prob += DefaultProb / 2; 12204 BTB->DefaultProb -= DefaultProb / 2; 12205 } 12206 12207 if (FallthroughUnreachable) 12208 BTB->FallthroughUnreachable = true; 12209 12210 // If we're in the right place, emit the bit test header right now. 12211 if (CurMBB == SwitchMBB) { 12212 visitBitTestHeader(*BTB, SwitchMBB); 12213 BTB->Emitted = true; 12214 } 12215 break; 12216 } 12217 case CC_Range: { 12218 const Value *RHS, *LHS, *MHS; 12219 ISD::CondCode CC; 12220 if (I->Low == I->High) { 12221 // Check Cond == I->Low. 12222 CC = ISD::SETEQ; 12223 LHS = Cond; 12224 RHS=I->Low; 12225 MHS = nullptr; 12226 } else { 12227 // Check I->Low <= Cond <= I->High. 12228 CC = ISD::SETLE; 12229 LHS = I->Low; 12230 MHS = Cond; 12231 RHS = I->High; 12232 } 12233 12234 // If Fallthrough is unreachable, fold away the comparison. 12235 if (FallthroughUnreachable) 12236 CC = ISD::SETTRUE; 12237 12238 // The false probability is the sum of all unhandled cases. 12239 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12240 getCurSDLoc(), I->Prob, UnhandledProbs); 12241 12242 if (CurMBB == SwitchMBB) 12243 visitSwitchCase(CB, SwitchMBB); 12244 else 12245 SL->SwitchCases.push_back(CB); 12246 12247 break; 12248 } 12249 } 12250 CurMBB = Fallthrough; 12251 } 12252 } 12253 12254 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12255 const SwitchWorkListItem &W, 12256 Value *Cond, 12257 MachineBasicBlock *SwitchMBB) { 12258 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12259 "Clusters not sorted?"); 12260 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12261 12262 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12263 SL->computeSplitWorkItemInfo(W); 12264 12265 // Use the first element on the right as pivot since we will make less-than 12266 // comparisons against it. 12267 CaseClusterIt PivotCluster = FirstRight; 12268 assert(PivotCluster > W.FirstCluster); 12269 assert(PivotCluster <= W.LastCluster); 12270 12271 CaseClusterIt FirstLeft = W.FirstCluster; 12272 CaseClusterIt LastRight = W.LastCluster; 12273 12274 const ConstantInt *Pivot = PivotCluster->Low; 12275 12276 // New blocks will be inserted immediately after the current one. 12277 MachineFunction::iterator BBI(W.MBB); 12278 ++BBI; 12279 12280 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12281 // we can branch to its destination directly if it's squeezed exactly in 12282 // between the known lower bound and Pivot - 1. 12283 MachineBasicBlock *LeftMBB; 12284 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12285 FirstLeft->Low == W.GE && 12286 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12287 LeftMBB = FirstLeft->MBB; 12288 } else { 12289 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12290 FuncInfo.MF->insert(BBI, LeftMBB); 12291 WorkList.push_back( 12292 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12293 // Put Cond in a virtual register to make it available from the new blocks. 12294 ExportFromCurrentBlock(Cond); 12295 } 12296 12297 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12298 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12299 // directly if RHS.High equals the current upper bound. 12300 MachineBasicBlock *RightMBB; 12301 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12302 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12303 RightMBB = FirstRight->MBB; 12304 } else { 12305 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12306 FuncInfo.MF->insert(BBI, RightMBB); 12307 WorkList.push_back( 12308 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12309 // Put Cond in a virtual register to make it available from the new blocks. 12310 ExportFromCurrentBlock(Cond); 12311 } 12312 12313 // Create the CaseBlock record that will be used to lower the branch. 12314 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12315 getCurSDLoc(), LeftProb, RightProb); 12316 12317 if (W.MBB == SwitchMBB) 12318 visitSwitchCase(CB, SwitchMBB); 12319 else 12320 SL->SwitchCases.push_back(CB); 12321 } 12322 12323 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12324 // from the swith statement. 12325 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12326 BranchProbability PeeledCaseProb) { 12327 if (PeeledCaseProb == BranchProbability::getOne()) 12328 return BranchProbability::getZero(); 12329 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12330 12331 uint32_t Numerator = CaseProb.getNumerator(); 12332 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12333 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12334 } 12335 12336 // Try to peel the top probability case if it exceeds the threshold. 12337 // Return current MachineBasicBlock for the switch statement if the peeling 12338 // does not occur. 12339 // If the peeling is performed, return the newly created MachineBasicBlock 12340 // for the peeled switch statement. Also update Clusters to remove the peeled 12341 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12342 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12343 const SwitchInst &SI, CaseClusterVector &Clusters, 12344 BranchProbability &PeeledCaseProb) { 12345 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12346 // Don't perform if there is only one cluster or optimizing for size. 12347 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12348 TM.getOptLevel() == CodeGenOptLevel::None || 12349 SwitchMBB->getParent()->getFunction().hasMinSize()) 12350 return SwitchMBB; 12351 12352 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12353 unsigned PeeledCaseIndex = 0; 12354 bool SwitchPeeled = false; 12355 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12356 CaseCluster &CC = Clusters[Index]; 12357 if (CC.Prob < TopCaseProb) 12358 continue; 12359 TopCaseProb = CC.Prob; 12360 PeeledCaseIndex = Index; 12361 SwitchPeeled = true; 12362 } 12363 if (!SwitchPeeled) 12364 return SwitchMBB; 12365 12366 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12367 << TopCaseProb << "\n"); 12368 12369 // Record the MBB for the peeled switch statement. 12370 MachineFunction::iterator BBI(SwitchMBB); 12371 ++BBI; 12372 MachineBasicBlock *PeeledSwitchMBB = 12373 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12374 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12375 12376 ExportFromCurrentBlock(SI.getCondition()); 12377 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12378 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12379 nullptr, nullptr, TopCaseProb.getCompl()}; 12380 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12381 12382 Clusters.erase(PeeledCaseIt); 12383 for (CaseCluster &CC : Clusters) { 12384 LLVM_DEBUG( 12385 dbgs() << "Scale the probablity for one cluster, before scaling: " 12386 << CC.Prob << "\n"); 12387 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12388 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12389 } 12390 PeeledCaseProb = TopCaseProb; 12391 return PeeledSwitchMBB; 12392 } 12393 12394 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12395 // Extract cases from the switch. 12396 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12397 CaseClusterVector Clusters; 12398 Clusters.reserve(SI.getNumCases()); 12399 for (auto I : SI.cases()) { 12400 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor()); 12401 const ConstantInt *CaseVal = I.getCaseValue(); 12402 BranchProbability Prob = 12403 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12404 : BranchProbability(1, SI.getNumCases() + 1); 12405 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12406 } 12407 12408 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest()); 12409 12410 // Cluster adjacent cases with the same destination. We do this at all 12411 // optimization levels because it's cheap to do and will make codegen faster 12412 // if there are many clusters. 12413 sortAndRangeify(Clusters); 12414 12415 // The branch probablity of the peeled case. 12416 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12417 MachineBasicBlock *PeeledSwitchMBB = 12418 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12419 12420 // If there is only the default destination, jump there directly. 12421 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12422 if (Clusters.empty()) { 12423 assert(PeeledSwitchMBB == SwitchMBB); 12424 SwitchMBB->addSuccessor(DefaultMBB); 12425 if (DefaultMBB != NextBlock(SwitchMBB)) { 12426 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12427 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12428 } 12429 return; 12430 } 12431 12432 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12433 DAG.getBFI()); 12434 SL->findBitTestClusters(Clusters, &SI); 12435 12436 LLVM_DEBUG({ 12437 dbgs() << "Case clusters: "; 12438 for (const CaseCluster &C : Clusters) { 12439 if (C.Kind == CC_JumpTable) 12440 dbgs() << "JT:"; 12441 if (C.Kind == CC_BitTests) 12442 dbgs() << "BT:"; 12443 12444 C.Low->getValue().print(dbgs(), true); 12445 if (C.Low != C.High) { 12446 dbgs() << '-'; 12447 C.High->getValue().print(dbgs(), true); 12448 } 12449 dbgs() << ' '; 12450 } 12451 dbgs() << '\n'; 12452 }); 12453 12454 assert(!Clusters.empty()); 12455 SwitchWorkList WorkList; 12456 CaseClusterIt First = Clusters.begin(); 12457 CaseClusterIt Last = Clusters.end() - 1; 12458 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12459 // Scale the branchprobability for DefaultMBB if the peel occurs and 12460 // DefaultMBB is not replaced. 12461 if (PeeledCaseProb != BranchProbability::getZero() && 12462 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest())) 12463 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12464 WorkList.push_back( 12465 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12466 12467 while (!WorkList.empty()) { 12468 SwitchWorkListItem W = WorkList.pop_back_val(); 12469 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12470 12471 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12472 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12473 // For optimized builds, lower large range as a balanced binary tree. 12474 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12475 continue; 12476 } 12477 12478 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12479 } 12480 } 12481 12482 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12484 auto DL = getCurSDLoc(); 12485 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12486 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12487 } 12488 12489 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12491 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12492 12493 SDLoc DL = getCurSDLoc(); 12494 SDValue V = getValue(I.getOperand(0)); 12495 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12496 12497 if (VT.isScalableVector()) { 12498 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12499 return; 12500 } 12501 12502 // Use VECTOR_SHUFFLE for the fixed-length vector 12503 // to maintain existing behavior. 12504 SmallVector<int, 8> Mask; 12505 unsigned NumElts = VT.getVectorMinNumElements(); 12506 for (unsigned i = 0; i != NumElts; ++i) 12507 Mask.push_back(NumElts - 1 - i); 12508 12509 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12510 } 12511 12512 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12513 auto DL = getCurSDLoc(); 12514 SDValue InVec = getValue(I.getOperand(0)); 12515 EVT OutVT = 12516 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12517 12518 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12519 12520 // ISD Node needs the input vectors split into two equal parts 12521 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12522 DAG.getVectorIdxConstant(0, DL)); 12523 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12524 DAG.getVectorIdxConstant(OutNumElts, DL)); 12525 12526 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12527 // legalisation and combines. 12528 if (OutVT.isFixedLengthVector()) { 12529 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12530 createStrideMask(0, 2, OutNumElts)); 12531 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12532 createStrideMask(1, 2, OutNumElts)); 12533 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12534 setValue(&I, Res); 12535 return; 12536 } 12537 12538 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12539 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12540 setValue(&I, Res); 12541 } 12542 12543 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12544 auto DL = getCurSDLoc(); 12545 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12546 SDValue InVec0 = getValue(I.getOperand(0)); 12547 SDValue InVec1 = getValue(I.getOperand(1)); 12548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12549 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12550 12551 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12552 // legalisation and combines. 12553 if (OutVT.isFixedLengthVector()) { 12554 unsigned NumElts = InVT.getVectorMinNumElements(); 12555 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12556 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12557 createInterleaveMask(NumElts, 2))); 12558 return; 12559 } 12560 12561 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12562 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12563 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12564 Res.getValue(1)); 12565 setValue(&I, Res); 12566 } 12567 12568 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12569 SmallVector<EVT, 4> ValueVTs; 12570 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12571 ValueVTs); 12572 unsigned NumValues = ValueVTs.size(); 12573 if (NumValues == 0) return; 12574 12575 SmallVector<SDValue, 4> Values(NumValues); 12576 SDValue Op = getValue(I.getOperand(0)); 12577 12578 for (unsigned i = 0; i != NumValues; ++i) 12579 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12580 SDValue(Op.getNode(), Op.getResNo() + i)); 12581 12582 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12583 DAG.getVTList(ValueVTs), Values)); 12584 } 12585 12586 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12588 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12589 12590 SDLoc DL = getCurSDLoc(); 12591 SDValue V1 = getValue(I.getOperand(0)); 12592 SDValue V2 = getValue(I.getOperand(1)); 12593 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12594 12595 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12596 if (VT.isScalableVector()) { 12597 setValue( 12598 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12599 DAG.getSignedConstant( 12600 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 12601 return; 12602 } 12603 12604 unsigned NumElts = VT.getVectorNumElements(); 12605 12606 uint64_t Idx = (NumElts + Imm) % NumElts; 12607 12608 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12609 SmallVector<int, 8> Mask; 12610 for (unsigned i = 0; i < NumElts; ++i) 12611 Mask.push_back(Idx + i); 12612 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12613 } 12614 12615 // Consider the following MIR after SelectionDAG, which produces output in 12616 // phyregs in the first case or virtregs in the second case. 12617 // 12618 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12619 // %5:gr32 = COPY $ebx 12620 // %6:gr32 = COPY $edx 12621 // %1:gr32 = COPY %6:gr32 12622 // %0:gr32 = COPY %5:gr32 12623 // 12624 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12625 // %1:gr32 = COPY %6:gr32 12626 // %0:gr32 = COPY %5:gr32 12627 // 12628 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12629 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12630 // 12631 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12632 // to a single virtreg (such as %0). The remaining outputs monotonically 12633 // increase in virtreg number from there. If a callbr has no outputs, then it 12634 // should not have a corresponding callbr landingpad; in fact, the callbr 12635 // landingpad would not even be able to refer to such a callbr. 12636 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12637 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12638 // There is definitely at least one copy. 12639 assert(MI->getOpcode() == TargetOpcode::COPY && 12640 "start of copy chain MUST be COPY"); 12641 Reg = MI->getOperand(1).getReg(); 12642 MI = MRI.def_begin(Reg)->getParent(); 12643 // There may be an optional second copy. 12644 if (MI->getOpcode() == TargetOpcode::COPY) { 12645 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12646 Reg = MI->getOperand(1).getReg(); 12647 assert(Reg.isPhysical() && "expected COPY of physical register"); 12648 MI = MRI.def_begin(Reg)->getParent(); 12649 } 12650 // The start of the chain must be an INLINEASM_BR. 12651 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12652 "end of copy chain MUST be INLINEASM_BR"); 12653 return Reg; 12654 } 12655 12656 // We must do this walk rather than the simpler 12657 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12658 // otherwise we will end up with copies of virtregs only valid along direct 12659 // edges. 12660 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12661 SmallVector<EVT, 8> ResultVTs; 12662 SmallVector<SDValue, 8> ResultValues; 12663 const auto *CBR = 12664 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12665 12666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12667 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12668 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12669 12670 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12671 SDValue Chain = DAG.getRoot(); 12672 12673 // Re-parse the asm constraints string. 12674 TargetLowering::AsmOperandInfoVector TargetConstraints = 12675 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12676 for (auto &T : TargetConstraints) { 12677 SDISelAsmOperandInfo OpInfo(T); 12678 if (OpInfo.Type != InlineAsm::isOutput) 12679 continue; 12680 12681 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12682 // individual constraint. 12683 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12684 12685 switch (OpInfo.ConstraintType) { 12686 case TargetLowering::C_Register: 12687 case TargetLowering::C_RegisterClass: { 12688 // Fill in OpInfo.AssignedRegs.Regs. 12689 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12690 12691 // getRegistersForValue may produce 1 to many registers based on whether 12692 // the OpInfo.ConstraintVT is legal on the target or not. 12693 for (Register &Reg : OpInfo.AssignedRegs.Regs) { 12694 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12695 if (Register::isPhysicalRegister(OriginalDef)) 12696 FuncInfo.MBB->addLiveIn(OriginalDef); 12697 // Update the assigned registers to use the original defs. 12698 Reg = OriginalDef; 12699 } 12700 12701 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12702 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12703 ResultValues.push_back(V); 12704 ResultVTs.push_back(OpInfo.ConstraintVT); 12705 break; 12706 } 12707 case TargetLowering::C_Other: { 12708 SDValue Flag; 12709 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12710 OpInfo, DAG); 12711 ++InitialDef; 12712 ResultValues.push_back(V); 12713 ResultVTs.push_back(OpInfo.ConstraintVT); 12714 break; 12715 } 12716 default: 12717 break; 12718 } 12719 } 12720 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12721 DAG.getVTList(ResultVTs), ResultValues); 12722 setValue(&I, V); 12723 } 12724