1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetRegisterInfo.h" 48 #include "llvm/Target/TargetData.h" 49 #include "llvm/Target/TargetFrameInfo.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetIntrinsicInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 using namespace llvm; 62 63 /// LimitFloatPrecision - Generate low-precision inline sequences for 64 /// some float libcalls (6, 8 or 12 bits). 65 static unsigned LimitFloatPrecision; 66 67 static cl::opt<unsigned, true> 68 LimitFPPrecision("limit-float-precision", 69 cl::desc("Generate low-precision inline sequences " 70 "for some float libcalls"), 71 cl::location(LimitFloatPrecision), 72 cl::init(0)); 73 74 // Limit the width of DAG chains. This is important in general to prevent 75 // prevent DAG-based analysis from blowing up. For example, alias analysis and 76 // load clustering may not complete in reasonable time. It is difficult to 77 // recognize and avoid this situation within each individual analysis, and 78 // future analyses are likely to have the same behavior. Limiting DAG width is 79 // the safe approach, and will be especially important with global DAGs. 80 // 81 // MaxParallelChains default is arbitrarily high to avoid affecting 82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 83 // sequence over this should have been converted to llvm.memcpy by the 84 // frontend. It easy to induce this behavior with .ll code such as: 85 // %buffer = alloca [4096 x i8] 86 // %data = load [4096 x i8]* %argPtr 87 // store [4096 x i8] %data, [4096 x i8]* %buffer 88 static cl::opt<unsigned> 89 MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"), 90 cl::init(64), cl::Hidden); 91 92 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 93 const SDValue *Parts, unsigned NumParts, 94 EVT PartVT, EVT ValueVT); 95 96 /// getCopyFromParts - Create a value that contains the specified legal parts 97 /// combined into the value they represent. If the parts combine to a type 98 /// larger then ValueVT then AssertOp can be used to specify whether the extra 99 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 100 /// (ISD::AssertSext). 101 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 102 const SDValue *Parts, 103 unsigned NumParts, EVT PartVT, EVT ValueVT, 104 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 105 if (ValueVT.isVector()) 106 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 107 108 assert(NumParts > 0 && "No parts to assemble!"); 109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 110 SDValue Val = Parts[0]; 111 112 if (NumParts > 1) { 113 // Assemble the value from multiple parts. 114 if (ValueVT.isInteger()) { 115 unsigned PartBits = PartVT.getSizeInBits(); 116 unsigned ValueBits = ValueVT.getSizeInBits(); 117 118 // Assemble the power of 2 part. 119 unsigned RoundParts = NumParts & (NumParts - 1) ? 120 1 << Log2_32(NumParts) : NumParts; 121 unsigned RoundBits = PartBits * RoundParts; 122 EVT RoundVT = RoundBits == ValueBits ? 123 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 124 SDValue Lo, Hi; 125 126 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 127 128 if (RoundParts > 2) { 129 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 130 PartVT, HalfVT); 131 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 132 RoundParts / 2, PartVT, HalfVT); 133 } else { 134 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]); 135 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]); 136 } 137 138 if (TLI.isBigEndian()) 139 std::swap(Lo, Hi); 140 141 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 142 143 if (RoundParts < NumParts) { 144 // Assemble the trailing non-power-of-2 part. 145 unsigned OddParts = NumParts - RoundParts; 146 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 147 Hi = getCopyFromParts(DAG, DL, 148 Parts + RoundParts, OddParts, PartVT, OddVT); 149 150 // Combine the round and odd parts. 151 Lo = Val; 152 if (TLI.isBigEndian()) 153 std::swap(Lo, Hi); 154 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 155 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 156 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 157 DAG.getConstant(Lo.getValueType().getSizeInBits(), 158 TLI.getPointerTy())); 159 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 160 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 161 } 162 } else if (PartVT.isFloatingPoint()) { 163 // FP split into multiple FP parts (for ppcf128) 164 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 165 "Unexpected split"); 166 SDValue Lo, Hi; 167 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]); 168 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]); 169 if (TLI.isBigEndian()) 170 std::swap(Lo, Hi); 171 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 172 } else { 173 // FP split into integer parts (soft fp) 174 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 175 !PartVT.isVector() && "Unexpected split"); 176 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 177 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 178 } 179 } 180 181 // There is now one part, held in Val. Correct it to match ValueVT. 182 PartVT = Val.getValueType(); 183 184 if (PartVT == ValueVT) 185 return Val; 186 187 if (PartVT.isInteger() && ValueVT.isInteger()) { 188 if (ValueVT.bitsLT(PartVT)) { 189 // For a truncate, see if we have any information to 190 // indicate whether the truncated bits will always be 191 // zero or sign-extension. 192 if (AssertOp != ISD::DELETED_NODE) 193 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 194 DAG.getValueType(ValueVT)); 195 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 196 } 197 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 198 } 199 200 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 201 // FP_ROUND's are always exact here. 202 if (ValueVT.bitsLT(Val.getValueType())) 203 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 204 DAG.getIntPtrConstant(1)); 205 206 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 207 } 208 209 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 210 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 211 212 llvm_unreachable("Unknown mismatch!"); 213 return SDValue(); 214 } 215 216 /// getCopyFromParts - Create a value that contains the specified legal parts 217 /// combined into the value they represent. If the parts combine to a type 218 /// larger then ValueVT then AssertOp can be used to specify whether the extra 219 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 220 /// (ISD::AssertSext). 221 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 222 const SDValue *Parts, unsigned NumParts, 223 EVT PartVT, EVT ValueVT) { 224 assert(ValueVT.isVector() && "Not a vector value"); 225 assert(NumParts > 0 && "No parts to assemble!"); 226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 227 SDValue Val = Parts[0]; 228 229 // Handle a multi-element vector. 230 if (NumParts > 1) { 231 EVT IntermediateVT, RegisterVT; 232 unsigned NumIntermediates; 233 unsigned NumRegs = 234 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 235 NumIntermediates, RegisterVT); 236 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 237 NumParts = NumRegs; // Silence a compiler warning. 238 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 239 assert(RegisterVT == Parts[0].getValueType() && 240 "Part type doesn't match part!"); 241 242 // Assemble the parts into intermediate operands. 243 SmallVector<SDValue, 8> Ops(NumIntermediates); 244 if (NumIntermediates == NumParts) { 245 // If the register was not expanded, truncate or copy the value, 246 // as appropriate. 247 for (unsigned i = 0; i != NumParts; ++i) 248 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 249 PartVT, IntermediateVT); 250 } else if (NumParts > 0) { 251 // If the intermediate type was expanded, build the intermediate 252 // operands from the parts. 253 assert(NumParts % NumIntermediates == 0 && 254 "Must expand into a divisible number of parts!"); 255 unsigned Factor = NumParts / NumIntermediates; 256 for (unsigned i = 0; i != NumIntermediates; ++i) 257 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 258 PartVT, IntermediateVT); 259 } 260 261 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 262 // intermediate operands. 263 Val = DAG.getNode(IntermediateVT.isVector() ? 264 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 265 ValueVT, &Ops[0], NumIntermediates); 266 } 267 268 // There is now one part, held in Val. Correct it to match ValueVT. 269 PartVT = Val.getValueType(); 270 271 if (PartVT == ValueVT) 272 return Val; 273 274 if (PartVT.isVector()) { 275 // If the element type of the source/dest vectors are the same, but the 276 // parts vector has more elements than the value vector, then we have a 277 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 278 // elements we want. 279 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 280 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 281 "Cannot narrow, it would be a lossy transformation"); 282 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 283 DAG.getIntPtrConstant(0)); 284 } 285 286 // Vector/Vector bitcast. 287 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 288 } 289 290 assert(ValueVT.getVectorElementType() == PartVT && 291 ValueVT.getVectorNumElements() == 1 && 292 "Only trivial scalar-to-vector conversions should get here!"); 293 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 294 } 295 296 297 298 299 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 300 SDValue Val, SDValue *Parts, unsigned NumParts, 301 EVT PartVT); 302 303 /// getCopyToParts - Create a series of nodes that contain the specified value 304 /// split into legal parts. If the parts contain more bits than Val, then, for 305 /// integers, ExtendKind can be used to specify how to generate the extra bits. 306 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 307 SDValue Val, SDValue *Parts, unsigned NumParts, 308 EVT PartVT, 309 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 310 EVT ValueVT = Val.getValueType(); 311 312 // Handle the vector case separately. 313 if (ValueVT.isVector()) 314 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 315 316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 317 unsigned PartBits = PartVT.getSizeInBits(); 318 unsigned OrigNumParts = NumParts; 319 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 320 321 if (NumParts == 0) 322 return; 323 324 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 325 if (PartVT == ValueVT) { 326 assert(NumParts == 1 && "No-op copy with multiple parts!"); 327 Parts[0] = Val; 328 return; 329 } 330 331 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 332 // If the parts cover more bits than the value has, promote the value. 333 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 334 assert(NumParts == 1 && "Do not know what to promote to!"); 335 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 336 } else { 337 assert(PartVT.isInteger() && ValueVT.isInteger() && 338 "Unknown mismatch!"); 339 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 340 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 341 } 342 } else if (PartBits == ValueVT.getSizeInBits()) { 343 // Different types of the same size. 344 assert(NumParts == 1 && PartVT != ValueVT); 345 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 346 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 347 // If the parts cover less bits than value has, truncate the value. 348 assert(PartVT.isInteger() && ValueVT.isInteger() && 349 "Unknown mismatch!"); 350 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 351 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 352 } 353 354 // The value may have changed - recompute ValueVT. 355 ValueVT = Val.getValueType(); 356 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 357 "Failed to tile the value with PartVT!"); 358 359 if (NumParts == 1) { 360 assert(PartVT == ValueVT && "Type conversion failed!"); 361 Parts[0] = Val; 362 return; 363 } 364 365 // Expand the value into multiple parts. 366 if (NumParts & (NumParts - 1)) { 367 // The number of parts is not a power of 2. Split off and copy the tail. 368 assert(PartVT.isInteger() && ValueVT.isInteger() && 369 "Do not know what to expand to!"); 370 unsigned RoundParts = 1 << Log2_32(NumParts); 371 unsigned RoundBits = RoundParts * PartBits; 372 unsigned OddParts = NumParts - RoundParts; 373 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 374 DAG.getIntPtrConstant(RoundBits)); 375 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 376 377 if (TLI.isBigEndian()) 378 // The odd parts were reversed by getCopyToParts - unreverse them. 379 std::reverse(Parts + RoundParts, Parts + NumParts); 380 381 NumParts = RoundParts; 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 384 } 385 386 // The number of parts is a power of 2. Repeatedly bisect the value using 387 // EXTRACT_ELEMENT. 388 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL, 389 EVT::getIntegerVT(*DAG.getContext(), 390 ValueVT.getSizeInBits()), 391 Val); 392 393 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 394 for (unsigned i = 0; i < NumParts; i += StepSize) { 395 unsigned ThisBits = StepSize * PartBits / 2; 396 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 397 SDValue &Part0 = Parts[i]; 398 SDValue &Part1 = Parts[i+StepSize/2]; 399 400 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 401 ThisVT, Part0, DAG.getIntPtrConstant(1)); 402 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 403 ThisVT, Part0, DAG.getIntPtrConstant(0)); 404 405 if (ThisBits == PartBits && ThisVT != PartVT) { 406 Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0); 407 Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1); 408 } 409 } 410 } 411 412 if (TLI.isBigEndian()) 413 std::reverse(Parts, Parts + OrigNumParts); 414 } 415 416 417 /// getCopyToPartsVector - Create a series of nodes that contain the specified 418 /// value split into legal parts. 419 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 420 SDValue Val, SDValue *Parts, unsigned NumParts, 421 EVT PartVT) { 422 EVT ValueVT = Val.getValueType(); 423 assert(ValueVT.isVector() && "Not a vector"); 424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 425 426 if (NumParts == 1) { 427 if (PartVT == ValueVT) { 428 // Nothing to do. 429 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 430 // Bitconvert vector->vector case. 431 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 432 } else if (PartVT.isVector() && 433 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 434 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 435 EVT ElementVT = PartVT.getVectorElementType(); 436 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 437 // undef elements. 438 SmallVector<SDValue, 16> Ops; 439 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 440 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 441 ElementVT, Val, DAG.getIntPtrConstant(i))); 442 443 for (unsigned i = ValueVT.getVectorNumElements(), 444 e = PartVT.getVectorNumElements(); i != e; ++i) 445 Ops.push_back(DAG.getUNDEF(ElementVT)); 446 447 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 448 449 // FIXME: Use CONCAT for 2x -> 4x. 450 451 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 452 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 453 } else { 454 // Vector -> scalar conversion. 455 assert(ValueVT.getVectorElementType() == PartVT && 456 ValueVT.getVectorNumElements() == 1 && 457 "Only trivial vector-to-scalar conversions should get here!"); 458 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 459 PartVT, Val, DAG.getIntPtrConstant(0)); 460 } 461 462 Parts[0] = Val; 463 return; 464 } 465 466 // Handle a multi-element vector. 467 EVT IntermediateVT, RegisterVT; 468 unsigned NumIntermediates; 469 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 470 IntermediateVT, 471 NumIntermediates, RegisterVT); 472 unsigned NumElements = ValueVT.getVectorNumElements(); 473 474 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 475 NumParts = NumRegs; // Silence a compiler warning. 476 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 477 478 // Split the vector into intermediate operands. 479 SmallVector<SDValue, 8> Ops(NumIntermediates); 480 for (unsigned i = 0; i != NumIntermediates; ++i) { 481 if (IntermediateVT.isVector()) 482 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 483 IntermediateVT, Val, 484 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 485 else 486 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 487 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 488 } 489 490 // Split the intermediate operands into legal parts. 491 if (NumParts == NumIntermediates) { 492 // If the register was not expanded, promote or copy the value, 493 // as appropriate. 494 for (unsigned i = 0; i != NumParts; ++i) 495 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 496 } else if (NumParts > 0) { 497 // If the intermediate type was expanded, split each the value into 498 // legal parts. 499 assert(NumParts % NumIntermediates == 0 && 500 "Must expand into a divisible number of parts!"); 501 unsigned Factor = NumParts / NumIntermediates; 502 for (unsigned i = 0; i != NumIntermediates; ++i) 503 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 504 } 505 } 506 507 508 509 510 namespace { 511 /// RegsForValue - This struct represents the registers (physical or virtual) 512 /// that a particular set of values is assigned, and the type information 513 /// about the value. The most common situation is to represent one value at a 514 /// time, but struct or array values are handled element-wise as multiple 515 /// values. The splitting of aggregates is performed recursively, so that we 516 /// never have aggregate-typed registers. The values at this point do not 517 /// necessarily have legal types, so each value may require one or more 518 /// registers of some legal type. 519 /// 520 struct RegsForValue { 521 /// ValueVTs - The value types of the values, which may not be legal, and 522 /// may need be promoted or synthesized from one or more registers. 523 /// 524 SmallVector<EVT, 4> ValueVTs; 525 526 /// RegVTs - The value types of the registers. This is the same size as 527 /// ValueVTs and it records, for each value, what the type of the assigned 528 /// register or registers are. (Individual values are never synthesized 529 /// from more than one type of register.) 530 /// 531 /// With virtual registers, the contents of RegVTs is redundant with TLI's 532 /// getRegisterType member function, however when with physical registers 533 /// it is necessary to have a separate record of the types. 534 /// 535 SmallVector<EVT, 4> RegVTs; 536 537 /// Regs - This list holds the registers assigned to the values. 538 /// Each legal or promoted value requires one register, and each 539 /// expanded value requires multiple registers. 540 /// 541 SmallVector<unsigned, 4> Regs; 542 543 RegsForValue() {} 544 545 RegsForValue(const SmallVector<unsigned, 4> ®s, 546 EVT regvt, EVT valuevt) 547 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 548 549 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 550 unsigned Reg, const Type *Ty) { 551 ComputeValueVTs(tli, Ty, ValueVTs); 552 553 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 554 EVT ValueVT = ValueVTs[Value]; 555 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 556 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 557 for (unsigned i = 0; i != NumRegs; ++i) 558 Regs.push_back(Reg + i); 559 RegVTs.push_back(RegisterVT); 560 Reg += NumRegs; 561 } 562 } 563 564 /// areValueTypesLegal - Return true if types of all the values are legal. 565 bool areValueTypesLegal(const TargetLowering &TLI) { 566 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 567 EVT RegisterVT = RegVTs[Value]; 568 if (!TLI.isTypeLegal(RegisterVT)) 569 return false; 570 } 571 return true; 572 } 573 574 /// append - Add the specified values to this one. 575 void append(const RegsForValue &RHS) { 576 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 577 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 578 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 579 } 580 581 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 582 /// this value and returns the result as a ValueVTs value. This uses 583 /// Chain/Flag as the input and updates them for the output Chain/Flag. 584 /// If the Flag pointer is NULL, no flag is used. 585 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 586 DebugLoc dl, 587 SDValue &Chain, SDValue *Flag) const; 588 589 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 590 /// specified value into the registers specified by this object. This uses 591 /// Chain/Flag as the input and updates them for the output Chain/Flag. 592 /// If the Flag pointer is NULL, no flag is used. 593 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 594 SDValue &Chain, SDValue *Flag) const; 595 596 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 597 /// operand list. This adds the code marker, matching input operand index 598 /// (if applicable), and includes the number of values added into it. 599 void AddInlineAsmOperands(unsigned Kind, 600 bool HasMatching, unsigned MatchingIdx, 601 SelectionDAG &DAG, 602 std::vector<SDValue> &Ops) const; 603 }; 604 } 605 606 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 607 /// this value and returns the result as a ValueVT value. This uses 608 /// Chain/Flag as the input and updates them for the output Chain/Flag. 609 /// If the Flag pointer is NULL, no flag is used. 610 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 611 FunctionLoweringInfo &FuncInfo, 612 DebugLoc dl, 613 SDValue &Chain, SDValue *Flag) const { 614 // A Value with type {} or [0 x %t] needs no registers. 615 if (ValueVTs.empty()) 616 return SDValue(); 617 618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 619 620 // Assemble the legal parts into the final values. 621 SmallVector<SDValue, 4> Values(ValueVTs.size()); 622 SmallVector<SDValue, 8> Parts; 623 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 // Copy the legal parts from the registers. 625 EVT ValueVT = ValueVTs[Value]; 626 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 627 EVT RegisterVT = RegVTs[Value]; 628 629 Parts.resize(NumRegs); 630 for (unsigned i = 0; i != NumRegs; ++i) { 631 SDValue P; 632 if (Flag == 0) { 633 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 634 } else { 635 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 636 *Flag = P.getValue(2); 637 } 638 639 Chain = P.getValue(1); 640 641 // If the source register was virtual and if we know something about it, 642 // add an assert node. 643 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 644 RegisterVT.isInteger() && !RegisterVT.isVector()) { 645 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 646 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 647 const FunctionLoweringInfo::LiveOutInfo &LOI = 648 FuncInfo.LiveOutRegInfo[SlotNo]; 649 650 unsigned RegSize = RegisterVT.getSizeInBits(); 651 unsigned NumSignBits = LOI.NumSignBits; 652 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 653 654 // FIXME: We capture more information than the dag can represent. For 655 // now, just use the tightest assertzext/assertsext possible. 656 bool isSExt = true; 657 EVT FromVT(MVT::Other); 658 if (NumSignBits == RegSize) 659 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 660 else if (NumZeroBits >= RegSize-1) 661 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 662 else if (NumSignBits > RegSize-8) 663 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 664 else if (NumZeroBits >= RegSize-8) 665 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 666 else if (NumSignBits > RegSize-16) 667 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 668 else if (NumZeroBits >= RegSize-16) 669 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 670 else if (NumSignBits > RegSize-32) 671 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 672 else if (NumZeroBits >= RegSize-32) 673 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 674 675 if (FromVT != MVT::Other) 676 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 677 RegisterVT, P, DAG.getValueType(FromVT)); 678 } 679 } 680 681 Parts[i] = P; 682 } 683 684 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 685 NumRegs, RegisterVT, ValueVT); 686 Part += NumRegs; 687 Parts.clear(); 688 } 689 690 return DAG.getNode(ISD::MERGE_VALUES, dl, 691 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 692 &Values[0], ValueVTs.size()); 693 } 694 695 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 696 /// specified value into the registers specified by this object. This uses 697 /// Chain/Flag as the input and updates them for the output Chain/Flag. 698 /// If the Flag pointer is NULL, no flag is used. 699 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 700 SDValue &Chain, SDValue *Flag) const { 701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 702 703 // Get the list of the values's legal parts. 704 unsigned NumRegs = Regs.size(); 705 SmallVector<SDValue, 8> Parts(NumRegs); 706 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 707 EVT ValueVT = ValueVTs[Value]; 708 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 709 EVT RegisterVT = RegVTs[Value]; 710 711 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 712 &Parts[Part], NumParts, RegisterVT); 713 Part += NumParts; 714 } 715 716 // Copy the parts into the registers. 717 SmallVector<SDValue, 8> Chains(NumRegs); 718 for (unsigned i = 0; i != NumRegs; ++i) { 719 SDValue Part; 720 if (Flag == 0) { 721 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 722 } else { 723 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 724 *Flag = Part.getValue(1); 725 } 726 727 Chains[i] = Part.getValue(0); 728 } 729 730 if (NumRegs == 1 || Flag) 731 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 732 // flagged to it. That is the CopyToReg nodes and the user are considered 733 // a single scheduling unit. If we create a TokenFactor and return it as 734 // chain, then the TokenFactor is both a predecessor (operand) of the 735 // user as well as a successor (the TF operands are flagged to the user). 736 // c1, f1 = CopyToReg 737 // c2, f2 = CopyToReg 738 // c3 = TokenFactor c1, c2 739 // ... 740 // = op c3, ..., f2 741 Chain = Chains[NumRegs-1]; 742 else 743 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 744 } 745 746 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 747 /// operand list. This adds the code marker and includes the number of 748 /// values added into it. 749 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 750 unsigned MatchingIdx, 751 SelectionDAG &DAG, 752 std::vector<SDValue> &Ops) const { 753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 754 755 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 756 if (HasMatching) 757 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 758 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 759 Ops.push_back(Res); 760 761 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 762 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 763 EVT RegisterVT = RegVTs[Value]; 764 for (unsigned i = 0; i != NumRegs; ++i) { 765 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 766 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 767 } 768 } 769 } 770 771 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 772 AA = &aa; 773 GFI = gfi; 774 TD = DAG.getTarget().getTargetData(); 775 } 776 777 /// clear - Clear out the current SelectionDAG and the associated 778 /// state and prepare this SelectionDAGBuilder object to be used 779 /// for a new block. This doesn't clear out information about 780 /// additional blocks that are needed to complete switch lowering 781 /// or PHI node updating; that information is cleared out as it is 782 /// consumed. 783 void SelectionDAGBuilder::clear() { 784 NodeMap.clear(); 785 UnusedArgNodeMap.clear(); 786 PendingLoads.clear(); 787 PendingExports.clear(); 788 DanglingDebugInfoMap.clear(); 789 CurDebugLoc = DebugLoc(); 790 HasTailCall = false; 791 } 792 793 /// getRoot - Return the current virtual root of the Selection DAG, 794 /// flushing any PendingLoad items. This must be done before emitting 795 /// a store or any other node that may need to be ordered after any 796 /// prior load instructions. 797 /// 798 SDValue SelectionDAGBuilder::getRoot() { 799 if (PendingLoads.empty()) 800 return DAG.getRoot(); 801 802 if (PendingLoads.size() == 1) { 803 SDValue Root = PendingLoads[0]; 804 DAG.setRoot(Root); 805 PendingLoads.clear(); 806 return Root; 807 } 808 809 // Otherwise, we have to make a token factor node. 810 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 811 &PendingLoads[0], PendingLoads.size()); 812 PendingLoads.clear(); 813 DAG.setRoot(Root); 814 return Root; 815 } 816 817 /// getControlRoot - Similar to getRoot, but instead of flushing all the 818 /// PendingLoad items, flush all the PendingExports items. It is necessary 819 /// to do this before emitting a terminator instruction. 820 /// 821 SDValue SelectionDAGBuilder::getControlRoot() { 822 SDValue Root = DAG.getRoot(); 823 824 if (PendingExports.empty()) 825 return Root; 826 827 // Turn all of the CopyToReg chains into one factored node. 828 if (Root.getOpcode() != ISD::EntryToken) { 829 unsigned i = 0, e = PendingExports.size(); 830 for (; i != e; ++i) { 831 assert(PendingExports[i].getNode()->getNumOperands() > 1); 832 if (PendingExports[i].getNode()->getOperand(0) == Root) 833 break; // Don't add the root if we already indirectly depend on it. 834 } 835 836 if (i == e) 837 PendingExports.push_back(Root); 838 } 839 840 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 841 &PendingExports[0], 842 PendingExports.size()); 843 PendingExports.clear(); 844 DAG.setRoot(Root); 845 return Root; 846 } 847 848 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 849 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 850 DAG.AssignOrdering(Node, SDNodeOrder); 851 852 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 853 AssignOrderingToNode(Node->getOperand(I).getNode()); 854 } 855 856 void SelectionDAGBuilder::visit(const Instruction &I) { 857 // Set up outgoing PHI node register values before emitting the terminator. 858 if (isa<TerminatorInst>(&I)) 859 HandlePHINodesInSuccessorBlocks(I.getParent()); 860 861 CurDebugLoc = I.getDebugLoc(); 862 863 visit(I.getOpcode(), I); 864 865 if (!isa<TerminatorInst>(&I) && !HasTailCall) 866 CopyToExportRegsIfNeeded(&I); 867 868 CurDebugLoc = DebugLoc(); 869 } 870 871 void SelectionDAGBuilder::visitPHI(const PHINode &) { 872 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 873 } 874 875 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 876 // Note: this doesn't use InstVisitor, because it has to work with 877 // ConstantExpr's in addition to instructions. 878 switch (Opcode) { 879 default: llvm_unreachable("Unknown instruction type encountered!"); 880 // Build the switch statement using the Instruction.def file. 881 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 882 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 883 #include "llvm/Instruction.def" 884 } 885 886 // Assign the ordering to the freshly created DAG nodes. 887 if (NodeMap.count(&I)) { 888 ++SDNodeOrder; 889 AssignOrderingToNode(getValue(&I).getNode()); 890 } 891 } 892 893 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 894 // generate the debug data structures now that we've seen its definition. 895 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 896 SDValue Val) { 897 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 898 if (DDI.getDI()) { 899 const DbgValueInst *DI = DDI.getDI(); 900 DebugLoc dl = DDI.getdl(); 901 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 902 MDNode *Variable = DI->getVariable(); 903 uint64_t Offset = DI->getOffset(); 904 SDDbgValue *SDV; 905 if (Val.getNode()) { 906 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 907 SDV = DAG.getDbgValue(Variable, Val.getNode(), 908 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 909 DAG.AddDbgValue(SDV, Val.getNode(), false); 910 } 911 } else { 912 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 913 Offset, dl, SDNodeOrder); 914 DAG.AddDbgValue(SDV, 0, false); 915 } 916 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 917 } 918 } 919 920 // getValue - Return an SDValue for the given Value. 921 SDValue SelectionDAGBuilder::getValue(const Value *V) { 922 // If we already have an SDValue for this value, use it. It's important 923 // to do this first, so that we don't create a CopyFromReg if we already 924 // have a regular SDValue. 925 SDValue &N = NodeMap[V]; 926 if (N.getNode()) return N; 927 928 // If there's a virtual register allocated and initialized for this 929 // value, use it. 930 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 931 if (It != FuncInfo.ValueMap.end()) { 932 unsigned InReg = It->second; 933 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 934 SDValue Chain = DAG.getEntryNode(); 935 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 936 } 937 938 // Otherwise create a new SDValue and remember it. 939 SDValue Val = getValueImpl(V); 940 NodeMap[V] = Val; 941 resolveDanglingDebugInfo(V, Val); 942 return Val; 943 } 944 945 /// getNonRegisterValue - Return an SDValue for the given Value, but 946 /// don't look in FuncInfo.ValueMap for a virtual register. 947 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 948 // If we already have an SDValue for this value, use it. 949 SDValue &N = NodeMap[V]; 950 if (N.getNode()) return N; 951 952 // Otherwise create a new SDValue and remember it. 953 SDValue Val = getValueImpl(V); 954 NodeMap[V] = Val; 955 resolveDanglingDebugInfo(V, Val); 956 return Val; 957 } 958 959 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 960 /// Create an SDValue for the given value. 961 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 962 if (const Constant *C = dyn_cast<Constant>(V)) { 963 EVT VT = TLI.getValueType(V->getType(), true); 964 965 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 966 return DAG.getConstant(*CI, VT); 967 968 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 969 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 970 971 if (isa<ConstantPointerNull>(C)) 972 return DAG.getConstant(0, TLI.getPointerTy()); 973 974 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 975 return DAG.getConstantFP(*CFP, VT); 976 977 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 978 return DAG.getUNDEF(VT); 979 980 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 981 visit(CE->getOpcode(), *CE); 982 SDValue N1 = NodeMap[V]; 983 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 984 return N1; 985 } 986 987 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 988 SmallVector<SDValue, 4> Constants; 989 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 990 OI != OE; ++OI) { 991 SDNode *Val = getValue(*OI).getNode(); 992 // If the operand is an empty aggregate, there are no values. 993 if (!Val) continue; 994 // Add each leaf value from the operand to the Constants list 995 // to form a flattened list of all the values. 996 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 997 Constants.push_back(SDValue(Val, i)); 998 } 999 1000 return DAG.getMergeValues(&Constants[0], Constants.size(), 1001 getCurDebugLoc()); 1002 } 1003 1004 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1005 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1006 "Unknown struct or array constant!"); 1007 1008 SmallVector<EVT, 4> ValueVTs; 1009 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1010 unsigned NumElts = ValueVTs.size(); 1011 if (NumElts == 0) 1012 return SDValue(); // empty struct 1013 SmallVector<SDValue, 4> Constants(NumElts); 1014 for (unsigned i = 0; i != NumElts; ++i) { 1015 EVT EltVT = ValueVTs[i]; 1016 if (isa<UndefValue>(C)) 1017 Constants[i] = DAG.getUNDEF(EltVT); 1018 else if (EltVT.isFloatingPoint()) 1019 Constants[i] = DAG.getConstantFP(0, EltVT); 1020 else 1021 Constants[i] = DAG.getConstant(0, EltVT); 1022 } 1023 1024 return DAG.getMergeValues(&Constants[0], NumElts, 1025 getCurDebugLoc()); 1026 } 1027 1028 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1029 return DAG.getBlockAddress(BA, VT); 1030 1031 const VectorType *VecTy = cast<VectorType>(V->getType()); 1032 unsigned NumElements = VecTy->getNumElements(); 1033 1034 // Now that we know the number and type of the elements, get that number of 1035 // elements into the Ops array based on what kind of constant it is. 1036 SmallVector<SDValue, 16> Ops; 1037 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1038 for (unsigned i = 0; i != NumElements; ++i) 1039 Ops.push_back(getValue(CP->getOperand(i))); 1040 } else { 1041 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1042 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1043 1044 SDValue Op; 1045 if (EltVT.isFloatingPoint()) 1046 Op = DAG.getConstantFP(0, EltVT); 1047 else 1048 Op = DAG.getConstant(0, EltVT); 1049 Ops.assign(NumElements, Op); 1050 } 1051 1052 // Create a BUILD_VECTOR node. 1053 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1054 VT, &Ops[0], Ops.size()); 1055 } 1056 1057 // If this is a static alloca, generate it as the frameindex instead of 1058 // computation. 1059 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1060 DenseMap<const AllocaInst*, int>::iterator SI = 1061 FuncInfo.StaticAllocaMap.find(AI); 1062 if (SI != FuncInfo.StaticAllocaMap.end()) 1063 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1064 } 1065 1066 // If this is an instruction which fast-isel has deferred, select it now. 1067 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1068 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1069 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1070 SDValue Chain = DAG.getEntryNode(); 1071 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1072 } 1073 1074 llvm_unreachable("Can't get register for value!"); 1075 return SDValue(); 1076 } 1077 1078 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1079 SDValue Chain = getControlRoot(); 1080 SmallVector<ISD::OutputArg, 8> Outs; 1081 SmallVector<SDValue, 8> OutVals; 1082 1083 if (!FuncInfo.CanLowerReturn) { 1084 unsigned DemoteReg = FuncInfo.DemoteRegister; 1085 const Function *F = I.getParent()->getParent(); 1086 1087 // Emit a store of the return value through the virtual register. 1088 // Leave Outs empty so that LowerReturn won't try to load return 1089 // registers the usual way. 1090 SmallVector<EVT, 1> PtrValueVTs; 1091 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1092 PtrValueVTs); 1093 1094 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1095 SDValue RetOp = getValue(I.getOperand(0)); 1096 1097 SmallVector<EVT, 4> ValueVTs; 1098 SmallVector<uint64_t, 4> Offsets; 1099 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1100 unsigned NumValues = ValueVTs.size(); 1101 1102 SmallVector<SDValue, 4> Chains(NumValues); 1103 for (unsigned i = 0; i != NumValues; ++i) { 1104 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1105 RetPtr.getValueType(), RetPtr, 1106 DAG.getIntPtrConstant(Offsets[i])); 1107 Chains[i] = 1108 DAG.getStore(Chain, getCurDebugLoc(), 1109 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1110 // FIXME: better loc info would be nice. 1111 Add, MachinePointerInfo(), false, false, 0); 1112 } 1113 1114 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1115 MVT::Other, &Chains[0], NumValues); 1116 } else if (I.getNumOperands() != 0) { 1117 SmallVector<EVT, 4> ValueVTs; 1118 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1119 unsigned NumValues = ValueVTs.size(); 1120 if (NumValues) { 1121 SDValue RetOp = getValue(I.getOperand(0)); 1122 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1123 EVT VT = ValueVTs[j]; 1124 1125 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1126 1127 const Function *F = I.getParent()->getParent(); 1128 if (F->paramHasAttr(0, Attribute::SExt)) 1129 ExtendKind = ISD::SIGN_EXTEND; 1130 else if (F->paramHasAttr(0, Attribute::ZExt)) 1131 ExtendKind = ISD::ZERO_EXTEND; 1132 1133 // FIXME: C calling convention requires the return type to be promoted 1134 // to at least 32-bit. But this is not necessary for non-C calling 1135 // conventions. The frontend should mark functions whose return values 1136 // require promoting with signext or zeroext attributes. 1137 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1138 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1139 if (VT.bitsLT(MinVT)) 1140 VT = MinVT; 1141 } 1142 1143 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1144 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1145 SmallVector<SDValue, 4> Parts(NumParts); 1146 getCopyToParts(DAG, getCurDebugLoc(), 1147 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1148 &Parts[0], NumParts, PartVT, ExtendKind); 1149 1150 // 'inreg' on function refers to return value 1151 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1152 if (F->paramHasAttr(0, Attribute::InReg)) 1153 Flags.setInReg(); 1154 1155 // Propagate extension type if any 1156 if (F->paramHasAttr(0, Attribute::SExt)) 1157 Flags.setSExt(); 1158 else if (F->paramHasAttr(0, Attribute::ZExt)) 1159 Flags.setZExt(); 1160 1161 for (unsigned i = 0; i < NumParts; ++i) { 1162 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1163 /*isfixed=*/true)); 1164 OutVals.push_back(Parts[i]); 1165 } 1166 } 1167 } 1168 } 1169 1170 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1171 CallingConv::ID CallConv = 1172 DAG.getMachineFunction().getFunction()->getCallingConv(); 1173 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1174 Outs, OutVals, getCurDebugLoc(), DAG); 1175 1176 // Verify that the target's LowerReturn behaved as expected. 1177 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1178 "LowerReturn didn't return a valid chain!"); 1179 1180 // Update the DAG with the new chain value resulting from return lowering. 1181 DAG.setRoot(Chain); 1182 } 1183 1184 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1185 /// created for it, emit nodes to copy the value into the virtual 1186 /// registers. 1187 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1188 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1189 if (VMI != FuncInfo.ValueMap.end()) { 1190 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1191 CopyValueToVirtualRegister(V, VMI->second); 1192 } 1193 } 1194 1195 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1196 /// the current basic block, add it to ValueMap now so that we'll get a 1197 /// CopyTo/FromReg. 1198 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1199 // No need to export constants. 1200 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1201 1202 // Already exported? 1203 if (FuncInfo.isExportedInst(V)) return; 1204 1205 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1206 CopyValueToVirtualRegister(V, Reg); 1207 } 1208 1209 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1210 const BasicBlock *FromBB) { 1211 // The operands of the setcc have to be in this block. We don't know 1212 // how to export them from some other block. 1213 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1214 // Can export from current BB. 1215 if (VI->getParent() == FromBB) 1216 return true; 1217 1218 // Is already exported, noop. 1219 return FuncInfo.isExportedInst(V); 1220 } 1221 1222 // If this is an argument, we can export it if the BB is the entry block or 1223 // if it is already exported. 1224 if (isa<Argument>(V)) { 1225 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1226 return true; 1227 1228 // Otherwise, can only export this if it is already exported. 1229 return FuncInfo.isExportedInst(V); 1230 } 1231 1232 // Otherwise, constants can always be exported. 1233 return true; 1234 } 1235 1236 static bool InBlock(const Value *V, const BasicBlock *BB) { 1237 if (const Instruction *I = dyn_cast<Instruction>(V)) 1238 return I->getParent() == BB; 1239 return true; 1240 } 1241 1242 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1243 /// This function emits a branch and is used at the leaves of an OR or an 1244 /// AND operator tree. 1245 /// 1246 void 1247 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1248 MachineBasicBlock *TBB, 1249 MachineBasicBlock *FBB, 1250 MachineBasicBlock *CurBB, 1251 MachineBasicBlock *SwitchBB) { 1252 const BasicBlock *BB = CurBB->getBasicBlock(); 1253 1254 // If the leaf of the tree is a comparison, merge the condition into 1255 // the caseblock. 1256 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1257 // The operands of the cmp have to be in this block. We don't know 1258 // how to export them from some other block. If this is the first block 1259 // of the sequence, no exporting is needed. 1260 if (CurBB == SwitchBB || 1261 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1262 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1263 ISD::CondCode Condition; 1264 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1265 Condition = getICmpCondCode(IC->getPredicate()); 1266 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1267 Condition = getFCmpCondCode(FC->getPredicate()); 1268 } else { 1269 Condition = ISD::SETEQ; // silence warning. 1270 llvm_unreachable("Unknown compare instruction"); 1271 } 1272 1273 CaseBlock CB(Condition, BOp->getOperand(0), 1274 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1275 SwitchCases.push_back(CB); 1276 return; 1277 } 1278 } 1279 1280 // Create a CaseBlock record representing this branch. 1281 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1282 NULL, TBB, FBB, CurBB); 1283 SwitchCases.push_back(CB); 1284 } 1285 1286 /// FindMergedConditions - If Cond is an expression like 1287 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1288 MachineBasicBlock *TBB, 1289 MachineBasicBlock *FBB, 1290 MachineBasicBlock *CurBB, 1291 MachineBasicBlock *SwitchBB, 1292 unsigned Opc) { 1293 // If this node is not part of the or/and tree, emit it as a branch. 1294 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1295 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1296 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1297 BOp->getParent() != CurBB->getBasicBlock() || 1298 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1299 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1300 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1301 return; 1302 } 1303 1304 // Create TmpBB after CurBB. 1305 MachineFunction::iterator BBI = CurBB; 1306 MachineFunction &MF = DAG.getMachineFunction(); 1307 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1308 CurBB->getParent()->insert(++BBI, TmpBB); 1309 1310 if (Opc == Instruction::Or) { 1311 // Codegen X | Y as: 1312 // jmp_if_X TBB 1313 // jmp TmpBB 1314 // TmpBB: 1315 // jmp_if_Y TBB 1316 // jmp FBB 1317 // 1318 1319 // Emit the LHS condition. 1320 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1321 1322 // Emit the RHS condition into TmpBB. 1323 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1324 } else { 1325 assert(Opc == Instruction::And && "Unknown merge op!"); 1326 // Codegen X & Y as: 1327 // jmp_if_X TmpBB 1328 // jmp FBB 1329 // TmpBB: 1330 // jmp_if_Y TBB 1331 // jmp FBB 1332 // 1333 // This requires creation of TmpBB after CurBB. 1334 1335 // Emit the LHS condition. 1336 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1337 1338 // Emit the RHS condition into TmpBB. 1339 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1340 } 1341 } 1342 1343 /// If the set of cases should be emitted as a series of branches, return true. 1344 /// If we should emit this as a bunch of and/or'd together conditions, return 1345 /// false. 1346 bool 1347 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1348 if (Cases.size() != 2) return true; 1349 1350 // If this is two comparisons of the same values or'd or and'd together, they 1351 // will get folded into a single comparison, so don't emit two blocks. 1352 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1353 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1354 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1355 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1356 return false; 1357 } 1358 1359 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1360 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1361 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1362 Cases[0].CC == Cases[1].CC && 1363 isa<Constant>(Cases[0].CmpRHS) && 1364 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1365 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1366 return false; 1367 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1368 return false; 1369 } 1370 1371 return true; 1372 } 1373 1374 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1375 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1376 1377 // Update machine-CFG edges. 1378 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1379 1380 // Figure out which block is immediately after the current one. 1381 MachineBasicBlock *NextBlock = 0; 1382 MachineFunction::iterator BBI = BrMBB; 1383 if (++BBI != FuncInfo.MF->end()) 1384 NextBlock = BBI; 1385 1386 if (I.isUnconditional()) { 1387 // Update machine-CFG edges. 1388 BrMBB->addSuccessor(Succ0MBB); 1389 1390 // If this is not a fall-through branch, emit the branch. 1391 if (Succ0MBB != NextBlock) 1392 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1393 MVT::Other, getControlRoot(), 1394 DAG.getBasicBlock(Succ0MBB))); 1395 1396 return; 1397 } 1398 1399 // If this condition is one of the special cases we handle, do special stuff 1400 // now. 1401 const Value *CondVal = I.getCondition(); 1402 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1403 1404 // If this is a series of conditions that are or'd or and'd together, emit 1405 // this as a sequence of branches instead of setcc's with and/or operations. 1406 // For example, instead of something like: 1407 // cmp A, B 1408 // C = seteq 1409 // cmp D, E 1410 // F = setle 1411 // or C, F 1412 // jnz foo 1413 // Emit: 1414 // cmp A, B 1415 // je foo 1416 // cmp D, E 1417 // jle foo 1418 // 1419 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1420 if (BOp->hasOneUse() && 1421 (BOp->getOpcode() == Instruction::And || 1422 BOp->getOpcode() == Instruction::Or)) { 1423 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1424 BOp->getOpcode()); 1425 // If the compares in later blocks need to use values not currently 1426 // exported from this block, export them now. This block should always 1427 // be the first entry. 1428 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1429 1430 // Allow some cases to be rejected. 1431 if (ShouldEmitAsBranches(SwitchCases)) { 1432 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1433 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1434 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1435 } 1436 1437 // Emit the branch for this block. 1438 visitSwitchCase(SwitchCases[0], BrMBB); 1439 SwitchCases.erase(SwitchCases.begin()); 1440 return; 1441 } 1442 1443 // Okay, we decided not to do this, remove any inserted MBB's and clear 1444 // SwitchCases. 1445 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1446 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1447 1448 SwitchCases.clear(); 1449 } 1450 } 1451 1452 // Create a CaseBlock record representing this branch. 1453 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1454 NULL, Succ0MBB, Succ1MBB, BrMBB); 1455 1456 // Use visitSwitchCase to actually insert the fast branch sequence for this 1457 // cond branch. 1458 visitSwitchCase(CB, BrMBB); 1459 } 1460 1461 /// visitSwitchCase - Emits the necessary code to represent a single node in 1462 /// the binary search tree resulting from lowering a switch instruction. 1463 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1464 MachineBasicBlock *SwitchBB) { 1465 SDValue Cond; 1466 SDValue CondLHS = getValue(CB.CmpLHS); 1467 DebugLoc dl = getCurDebugLoc(); 1468 1469 // Build the setcc now. 1470 if (CB.CmpMHS == NULL) { 1471 // Fold "(X == true)" to X and "(X == false)" to !X to 1472 // handle common cases produced by branch lowering. 1473 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1474 CB.CC == ISD::SETEQ) 1475 Cond = CondLHS; 1476 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1477 CB.CC == ISD::SETEQ) { 1478 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1479 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1480 } else 1481 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1482 } else { 1483 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1484 1485 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1486 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1487 1488 SDValue CmpOp = getValue(CB.CmpMHS); 1489 EVT VT = CmpOp.getValueType(); 1490 1491 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1492 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1493 ISD::SETLE); 1494 } else { 1495 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1496 VT, CmpOp, DAG.getConstant(Low, VT)); 1497 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1498 DAG.getConstant(High-Low, VT), ISD::SETULE); 1499 } 1500 } 1501 1502 // Update successor info 1503 SwitchBB->addSuccessor(CB.TrueBB); 1504 SwitchBB->addSuccessor(CB.FalseBB); 1505 1506 // Set NextBlock to be the MBB immediately after the current one, if any. 1507 // This is used to avoid emitting unnecessary branches to the next block. 1508 MachineBasicBlock *NextBlock = 0; 1509 MachineFunction::iterator BBI = SwitchBB; 1510 if (++BBI != FuncInfo.MF->end()) 1511 NextBlock = BBI; 1512 1513 // If the lhs block is the next block, invert the condition so that we can 1514 // fall through to the lhs instead of the rhs block. 1515 if (CB.TrueBB == NextBlock) { 1516 std::swap(CB.TrueBB, CB.FalseBB); 1517 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1518 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1519 } 1520 1521 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1522 MVT::Other, getControlRoot(), Cond, 1523 DAG.getBasicBlock(CB.TrueBB)); 1524 1525 // Insert the false branch. Do this even if it's a fall through branch, 1526 // this makes it easier to do DAG optimizations which require inverting 1527 // the branch condition. 1528 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1529 DAG.getBasicBlock(CB.FalseBB)); 1530 1531 DAG.setRoot(BrCond); 1532 } 1533 1534 /// visitJumpTable - Emit JumpTable node in the current MBB 1535 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1536 // Emit the code for the jump table 1537 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1538 EVT PTy = TLI.getPointerTy(); 1539 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1540 JT.Reg, PTy); 1541 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1542 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1543 MVT::Other, Index.getValue(1), 1544 Table, Index); 1545 DAG.setRoot(BrJumpTable); 1546 } 1547 1548 /// visitJumpTableHeader - This function emits necessary code to produce index 1549 /// in the JumpTable from switch case. 1550 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1551 JumpTableHeader &JTH, 1552 MachineBasicBlock *SwitchBB) { 1553 // Subtract the lowest switch case value from the value being switched on and 1554 // conditional branch to default mbb if the result is greater than the 1555 // difference between smallest and largest cases. 1556 SDValue SwitchOp = getValue(JTH.SValue); 1557 EVT VT = SwitchOp.getValueType(); 1558 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1559 DAG.getConstant(JTH.First, VT)); 1560 1561 // The SDNode we just created, which holds the value being switched on minus 1562 // the smallest case value, needs to be copied to a virtual register so it 1563 // can be used as an index into the jump table in a subsequent basic block. 1564 // This value may be smaller or larger than the target's pointer type, and 1565 // therefore require extension or truncating. 1566 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1567 1568 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1569 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1570 JumpTableReg, SwitchOp); 1571 JT.Reg = JumpTableReg; 1572 1573 // Emit the range check for the jump table, and branch to the default block 1574 // for the switch statement if the value being switched on exceeds the largest 1575 // case in the switch. 1576 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1577 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1578 DAG.getConstant(JTH.Last-JTH.First,VT), 1579 ISD::SETUGT); 1580 1581 // Set NextBlock to be the MBB immediately after the current one, if any. 1582 // This is used to avoid emitting unnecessary branches to the next block. 1583 MachineBasicBlock *NextBlock = 0; 1584 MachineFunction::iterator BBI = SwitchBB; 1585 1586 if (++BBI != FuncInfo.MF->end()) 1587 NextBlock = BBI; 1588 1589 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1590 MVT::Other, CopyTo, CMP, 1591 DAG.getBasicBlock(JT.Default)); 1592 1593 if (JT.MBB != NextBlock) 1594 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1595 DAG.getBasicBlock(JT.MBB)); 1596 1597 DAG.setRoot(BrCond); 1598 } 1599 1600 /// visitBitTestHeader - This function emits necessary code to produce value 1601 /// suitable for "bit tests" 1602 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1603 MachineBasicBlock *SwitchBB) { 1604 // Subtract the minimum value 1605 SDValue SwitchOp = getValue(B.SValue); 1606 EVT VT = SwitchOp.getValueType(); 1607 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1608 DAG.getConstant(B.First, VT)); 1609 1610 // Check range 1611 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1612 TLI.getSetCCResultType(Sub.getValueType()), 1613 Sub, DAG.getConstant(B.Range, VT), 1614 ISD::SETUGT); 1615 1616 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1617 TLI.getPointerTy()); 1618 1619 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1620 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1621 B.Reg, ShiftOp); 1622 1623 // Set NextBlock to be the MBB immediately after the current one, if any. 1624 // This is used to avoid emitting unnecessary branches to the next block. 1625 MachineBasicBlock *NextBlock = 0; 1626 MachineFunction::iterator BBI = SwitchBB; 1627 if (++BBI != FuncInfo.MF->end()) 1628 NextBlock = BBI; 1629 1630 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1631 1632 SwitchBB->addSuccessor(B.Default); 1633 SwitchBB->addSuccessor(MBB); 1634 1635 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1636 MVT::Other, CopyTo, RangeCmp, 1637 DAG.getBasicBlock(B.Default)); 1638 1639 if (MBB != NextBlock) 1640 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1641 DAG.getBasicBlock(MBB)); 1642 1643 DAG.setRoot(BrRange); 1644 } 1645 1646 /// visitBitTestCase - this function produces one "bit test" 1647 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1648 unsigned Reg, 1649 BitTestCase &B, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1652 TLI.getPointerTy()); 1653 SDValue Cmp; 1654 if (CountPopulation_64(B.Mask) == 1) { 1655 // Testing for a single bit; just compare the shift count with what it 1656 // would need to be to shift a 1 bit in that position. 1657 Cmp = DAG.getSetCC(getCurDebugLoc(), 1658 TLI.getSetCCResultType(ShiftOp.getValueType()), 1659 ShiftOp, 1660 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1661 TLI.getPointerTy()), 1662 ISD::SETEQ); 1663 } else { 1664 // Make desired shift 1665 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1666 TLI.getPointerTy(), 1667 DAG.getConstant(1, TLI.getPointerTy()), 1668 ShiftOp); 1669 1670 // Emit bit tests and jumps 1671 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1672 TLI.getPointerTy(), SwitchVal, 1673 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1674 Cmp = DAG.getSetCC(getCurDebugLoc(), 1675 TLI.getSetCCResultType(AndOp.getValueType()), 1676 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1677 ISD::SETNE); 1678 } 1679 1680 SwitchBB->addSuccessor(B.TargetBB); 1681 SwitchBB->addSuccessor(NextMBB); 1682 1683 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1684 MVT::Other, getControlRoot(), 1685 Cmp, DAG.getBasicBlock(B.TargetBB)); 1686 1687 // Set NextBlock to be the MBB immediately after the current one, if any. 1688 // This is used to avoid emitting unnecessary branches to the next block. 1689 MachineBasicBlock *NextBlock = 0; 1690 MachineFunction::iterator BBI = SwitchBB; 1691 if (++BBI != FuncInfo.MF->end()) 1692 NextBlock = BBI; 1693 1694 if (NextMBB != NextBlock) 1695 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1696 DAG.getBasicBlock(NextMBB)); 1697 1698 DAG.setRoot(BrAnd); 1699 } 1700 1701 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1702 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1703 1704 // Retrieve successors. 1705 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1706 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1707 1708 const Value *Callee(I.getCalledValue()); 1709 if (isa<InlineAsm>(Callee)) 1710 visitInlineAsm(&I); 1711 else 1712 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1713 1714 // If the value of the invoke is used outside of its defining block, make it 1715 // available as a virtual register. 1716 CopyToExportRegsIfNeeded(&I); 1717 1718 // Update successor info 1719 InvokeMBB->addSuccessor(Return); 1720 InvokeMBB->addSuccessor(LandingPad); 1721 1722 // Drop into normal successor. 1723 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1724 MVT::Other, getControlRoot(), 1725 DAG.getBasicBlock(Return))); 1726 } 1727 1728 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1729 } 1730 1731 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1732 /// small case ranges). 1733 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1734 CaseRecVector& WorkList, 1735 const Value* SV, 1736 MachineBasicBlock *Default, 1737 MachineBasicBlock *SwitchBB) { 1738 Case& BackCase = *(CR.Range.second-1); 1739 1740 // Size is the number of Cases represented by this range. 1741 size_t Size = CR.Range.second - CR.Range.first; 1742 if (Size > 3) 1743 return false; 1744 1745 // Get the MachineFunction which holds the current MBB. This is used when 1746 // inserting any additional MBBs necessary to represent the switch. 1747 MachineFunction *CurMF = FuncInfo.MF; 1748 1749 // Figure out which block is immediately after the current one. 1750 MachineBasicBlock *NextBlock = 0; 1751 MachineFunction::iterator BBI = CR.CaseBB; 1752 1753 if (++BBI != FuncInfo.MF->end()) 1754 NextBlock = BBI; 1755 1756 // TODO: If any two of the cases has the same destination, and if one value 1757 // is the same as the other, but has one bit unset that the other has set, 1758 // use bit manipulation to do two compares at once. For example: 1759 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1760 1761 // Rearrange the case blocks so that the last one falls through if possible. 1762 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1763 // The last case block won't fall through into 'NextBlock' if we emit the 1764 // branches in this order. See if rearranging a case value would help. 1765 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1766 if (I->BB == NextBlock) { 1767 std::swap(*I, BackCase); 1768 break; 1769 } 1770 } 1771 } 1772 1773 // Create a CaseBlock record representing a conditional branch to 1774 // the Case's target mbb if the value being switched on SV is equal 1775 // to C. 1776 MachineBasicBlock *CurBlock = CR.CaseBB; 1777 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1778 MachineBasicBlock *FallThrough; 1779 if (I != E-1) { 1780 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1781 CurMF->insert(BBI, FallThrough); 1782 1783 // Put SV in a virtual register to make it available from the new blocks. 1784 ExportFromCurrentBlock(SV); 1785 } else { 1786 // If the last case doesn't match, go to the default block. 1787 FallThrough = Default; 1788 } 1789 1790 const Value *RHS, *LHS, *MHS; 1791 ISD::CondCode CC; 1792 if (I->High == I->Low) { 1793 // This is just small small case range :) containing exactly 1 case 1794 CC = ISD::SETEQ; 1795 LHS = SV; RHS = I->High; MHS = NULL; 1796 } else { 1797 CC = ISD::SETLE; 1798 LHS = I->Low; MHS = SV; RHS = I->High; 1799 } 1800 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1801 1802 // If emitting the first comparison, just call visitSwitchCase to emit the 1803 // code into the current block. Otherwise, push the CaseBlock onto the 1804 // vector to be later processed by SDISel, and insert the node's MBB 1805 // before the next MBB. 1806 if (CurBlock == SwitchBB) 1807 visitSwitchCase(CB, SwitchBB); 1808 else 1809 SwitchCases.push_back(CB); 1810 1811 CurBlock = FallThrough; 1812 } 1813 1814 return true; 1815 } 1816 1817 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1818 return !DisableJumpTables && 1819 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1820 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1821 } 1822 1823 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1824 APInt LastExt(Last), FirstExt(First); 1825 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1826 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1827 return (LastExt - FirstExt + 1ULL); 1828 } 1829 1830 /// handleJTSwitchCase - Emit jumptable for current switch case range 1831 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1832 CaseRecVector& WorkList, 1833 const Value* SV, 1834 MachineBasicBlock* Default, 1835 MachineBasicBlock *SwitchBB) { 1836 Case& FrontCase = *CR.Range.first; 1837 Case& BackCase = *(CR.Range.second-1); 1838 1839 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1840 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1841 1842 APInt TSize(First.getBitWidth(), 0); 1843 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1844 I!=E; ++I) 1845 TSize += I->size(); 1846 1847 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1848 return false; 1849 1850 APInt Range = ComputeRange(First, Last); 1851 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1852 if (Density < 0.4) 1853 return false; 1854 1855 DEBUG(dbgs() << "Lowering jump table\n" 1856 << "First entry: " << First << ". Last entry: " << Last << '\n' 1857 << "Range: " << Range 1858 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1859 1860 // Get the MachineFunction which holds the current MBB. This is used when 1861 // inserting any additional MBBs necessary to represent the switch. 1862 MachineFunction *CurMF = FuncInfo.MF; 1863 1864 // Figure out which block is immediately after the current one. 1865 MachineFunction::iterator BBI = CR.CaseBB; 1866 ++BBI; 1867 1868 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1869 1870 // Create a new basic block to hold the code for loading the address 1871 // of the jump table, and jumping to it. Update successor information; 1872 // we will either branch to the default case for the switch, or the jump 1873 // table. 1874 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1875 CurMF->insert(BBI, JumpTableBB); 1876 CR.CaseBB->addSuccessor(Default); 1877 CR.CaseBB->addSuccessor(JumpTableBB); 1878 1879 // Build a vector of destination BBs, corresponding to each target 1880 // of the jump table. If the value of the jump table slot corresponds to 1881 // a case statement, push the case's BB onto the vector, otherwise, push 1882 // the default BB. 1883 std::vector<MachineBasicBlock*> DestBBs; 1884 APInt TEI = First; 1885 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1886 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1887 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1888 1889 if (Low.sle(TEI) && TEI.sle(High)) { 1890 DestBBs.push_back(I->BB); 1891 if (TEI==High) 1892 ++I; 1893 } else { 1894 DestBBs.push_back(Default); 1895 } 1896 } 1897 1898 // Update successor info. Add one edge to each unique successor. 1899 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1900 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1901 E = DestBBs.end(); I != E; ++I) { 1902 if (!SuccsHandled[(*I)->getNumber()]) { 1903 SuccsHandled[(*I)->getNumber()] = true; 1904 JumpTableBB->addSuccessor(*I); 1905 } 1906 } 1907 1908 // Create a jump table index for this jump table. 1909 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1910 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1911 ->createJumpTableIndex(DestBBs); 1912 1913 // Set the jump table information so that we can codegen it as a second 1914 // MachineBasicBlock 1915 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1916 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1917 if (CR.CaseBB == SwitchBB) 1918 visitJumpTableHeader(JT, JTH, SwitchBB); 1919 1920 JTCases.push_back(JumpTableBlock(JTH, JT)); 1921 1922 return true; 1923 } 1924 1925 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1926 /// 2 subtrees. 1927 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1928 CaseRecVector& WorkList, 1929 const Value* SV, 1930 MachineBasicBlock *Default, 1931 MachineBasicBlock *SwitchBB) { 1932 // Get the MachineFunction which holds the current MBB. This is used when 1933 // inserting any additional MBBs necessary to represent the switch. 1934 MachineFunction *CurMF = FuncInfo.MF; 1935 1936 // Figure out which block is immediately after the current one. 1937 MachineFunction::iterator BBI = CR.CaseBB; 1938 ++BBI; 1939 1940 Case& FrontCase = *CR.Range.first; 1941 Case& BackCase = *(CR.Range.second-1); 1942 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1943 1944 // Size is the number of Cases represented by this range. 1945 unsigned Size = CR.Range.second - CR.Range.first; 1946 1947 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1948 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1949 double FMetric = 0; 1950 CaseItr Pivot = CR.Range.first + Size/2; 1951 1952 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1953 // (heuristically) allow us to emit JumpTable's later. 1954 APInt TSize(First.getBitWidth(), 0); 1955 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1956 I!=E; ++I) 1957 TSize += I->size(); 1958 1959 APInt LSize = FrontCase.size(); 1960 APInt RSize = TSize-LSize; 1961 DEBUG(dbgs() << "Selecting best pivot: \n" 1962 << "First: " << First << ", Last: " << Last <<'\n' 1963 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1964 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1965 J!=E; ++I, ++J) { 1966 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1967 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1968 APInt Range = ComputeRange(LEnd, RBegin); 1969 assert((Range - 2ULL).isNonNegative() && 1970 "Invalid case distance"); 1971 double LDensity = (double)LSize.roundToDouble() / 1972 (LEnd - First + 1ULL).roundToDouble(); 1973 double RDensity = (double)RSize.roundToDouble() / 1974 (Last - RBegin + 1ULL).roundToDouble(); 1975 double Metric = Range.logBase2()*(LDensity+RDensity); 1976 // Should always split in some non-trivial place 1977 DEBUG(dbgs() <<"=>Step\n" 1978 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1979 << "LDensity: " << LDensity 1980 << ", RDensity: " << RDensity << '\n' 1981 << "Metric: " << Metric << '\n'); 1982 if (FMetric < Metric) { 1983 Pivot = J; 1984 FMetric = Metric; 1985 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1986 } 1987 1988 LSize += J->size(); 1989 RSize -= J->size(); 1990 } 1991 if (areJTsAllowed(TLI)) { 1992 // If our case is dense we *really* should handle it earlier! 1993 assert((FMetric > 0) && "Should handle dense range earlier!"); 1994 } else { 1995 Pivot = CR.Range.first + Size/2; 1996 } 1997 1998 CaseRange LHSR(CR.Range.first, Pivot); 1999 CaseRange RHSR(Pivot, CR.Range.second); 2000 Constant *C = Pivot->Low; 2001 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2002 2003 // We know that we branch to the LHS if the Value being switched on is 2004 // less than the Pivot value, C. We use this to optimize our binary 2005 // tree a bit, by recognizing that if SV is greater than or equal to the 2006 // LHS's Case Value, and that Case Value is exactly one less than the 2007 // Pivot's Value, then we can branch directly to the LHS's Target, 2008 // rather than creating a leaf node for it. 2009 if ((LHSR.second - LHSR.first) == 1 && 2010 LHSR.first->High == CR.GE && 2011 cast<ConstantInt>(C)->getValue() == 2012 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2013 TrueBB = LHSR.first->BB; 2014 } else { 2015 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2016 CurMF->insert(BBI, TrueBB); 2017 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2018 2019 // Put SV in a virtual register to make it available from the new blocks. 2020 ExportFromCurrentBlock(SV); 2021 } 2022 2023 // Similar to the optimization above, if the Value being switched on is 2024 // known to be less than the Constant CR.LT, and the current Case Value 2025 // is CR.LT - 1, then we can branch directly to the target block for 2026 // the current Case Value, rather than emitting a RHS leaf node for it. 2027 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2028 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2029 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2030 FalseBB = RHSR.first->BB; 2031 } else { 2032 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2033 CurMF->insert(BBI, FalseBB); 2034 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2035 2036 // Put SV in a virtual register to make it available from the new blocks. 2037 ExportFromCurrentBlock(SV); 2038 } 2039 2040 // Create a CaseBlock record representing a conditional branch to 2041 // the LHS node if the value being switched on SV is less than C. 2042 // Otherwise, branch to LHS. 2043 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2044 2045 if (CR.CaseBB == SwitchBB) 2046 visitSwitchCase(CB, SwitchBB); 2047 else 2048 SwitchCases.push_back(CB); 2049 2050 return true; 2051 } 2052 2053 /// handleBitTestsSwitchCase - if current case range has few destination and 2054 /// range span less, than machine word bitwidth, encode case range into series 2055 /// of masks and emit bit tests with these masks. 2056 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2057 CaseRecVector& WorkList, 2058 const Value* SV, 2059 MachineBasicBlock* Default, 2060 MachineBasicBlock *SwitchBB){ 2061 EVT PTy = TLI.getPointerTy(); 2062 unsigned IntPtrBits = PTy.getSizeInBits(); 2063 2064 Case& FrontCase = *CR.Range.first; 2065 Case& BackCase = *(CR.Range.second-1); 2066 2067 // Get the MachineFunction which holds the current MBB. This is used when 2068 // inserting any additional MBBs necessary to represent the switch. 2069 MachineFunction *CurMF = FuncInfo.MF; 2070 2071 // If target does not have legal shift left, do not emit bit tests at all. 2072 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2073 return false; 2074 2075 size_t numCmps = 0; 2076 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2077 I!=E; ++I) { 2078 // Single case counts one, case range - two. 2079 numCmps += (I->Low == I->High ? 1 : 2); 2080 } 2081 2082 // Count unique destinations 2083 SmallSet<MachineBasicBlock*, 4> Dests; 2084 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2085 Dests.insert(I->BB); 2086 if (Dests.size() > 3) 2087 // Don't bother the code below, if there are too much unique destinations 2088 return false; 2089 } 2090 DEBUG(dbgs() << "Total number of unique destinations: " 2091 << Dests.size() << '\n' 2092 << "Total number of comparisons: " << numCmps << '\n'); 2093 2094 // Compute span of values. 2095 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2096 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2097 APInt cmpRange = maxValue - minValue; 2098 2099 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2100 << "Low bound: " << minValue << '\n' 2101 << "High bound: " << maxValue << '\n'); 2102 2103 if (cmpRange.uge(IntPtrBits) || 2104 (!(Dests.size() == 1 && numCmps >= 3) && 2105 !(Dests.size() == 2 && numCmps >= 5) && 2106 !(Dests.size() >= 3 && numCmps >= 6))) 2107 return false; 2108 2109 DEBUG(dbgs() << "Emitting bit tests\n"); 2110 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2111 2112 // Optimize the case where all the case values fit in a 2113 // word without having to subtract minValue. In this case, 2114 // we can optimize away the subtraction. 2115 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2116 cmpRange = maxValue; 2117 } else { 2118 lowBound = minValue; 2119 } 2120 2121 CaseBitsVector CasesBits; 2122 unsigned i, count = 0; 2123 2124 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2125 MachineBasicBlock* Dest = I->BB; 2126 for (i = 0; i < count; ++i) 2127 if (Dest == CasesBits[i].BB) 2128 break; 2129 2130 if (i == count) { 2131 assert((count < 3) && "Too much destinations to test!"); 2132 CasesBits.push_back(CaseBits(0, Dest, 0)); 2133 count++; 2134 } 2135 2136 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2137 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2138 2139 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2140 uint64_t hi = (highValue - lowBound).getZExtValue(); 2141 2142 for (uint64_t j = lo; j <= hi; j++) { 2143 CasesBits[i].Mask |= 1ULL << j; 2144 CasesBits[i].Bits++; 2145 } 2146 2147 } 2148 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2149 2150 BitTestInfo BTC; 2151 2152 // Figure out which block is immediately after the current one. 2153 MachineFunction::iterator BBI = CR.CaseBB; 2154 ++BBI; 2155 2156 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2157 2158 DEBUG(dbgs() << "Cases:\n"); 2159 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2160 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2161 << ", Bits: " << CasesBits[i].Bits 2162 << ", BB: " << CasesBits[i].BB << '\n'); 2163 2164 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2165 CurMF->insert(BBI, CaseBB); 2166 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2167 CaseBB, 2168 CasesBits[i].BB)); 2169 2170 // Put SV in a virtual register to make it available from the new blocks. 2171 ExportFromCurrentBlock(SV); 2172 } 2173 2174 BitTestBlock BTB(lowBound, cmpRange, SV, 2175 -1U, (CR.CaseBB == SwitchBB), 2176 CR.CaseBB, Default, BTC); 2177 2178 if (CR.CaseBB == SwitchBB) 2179 visitBitTestHeader(BTB, SwitchBB); 2180 2181 BitTestCases.push_back(BTB); 2182 2183 return true; 2184 } 2185 2186 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2187 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2188 const SwitchInst& SI) { 2189 size_t numCmps = 0; 2190 2191 // Start with "simple" cases 2192 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2193 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2194 Cases.push_back(Case(SI.getSuccessorValue(i), 2195 SI.getSuccessorValue(i), 2196 SMBB)); 2197 } 2198 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2199 2200 // Merge case into clusters 2201 if (Cases.size() >= 2) 2202 // Must recompute end() each iteration because it may be 2203 // invalidated by erase if we hold on to it 2204 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2205 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2206 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2207 MachineBasicBlock* nextBB = J->BB; 2208 MachineBasicBlock* currentBB = I->BB; 2209 2210 // If the two neighboring cases go to the same destination, merge them 2211 // into a single case. 2212 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2213 I->High = J->High; 2214 J = Cases.erase(J); 2215 } else { 2216 I = J++; 2217 } 2218 } 2219 2220 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2221 if (I->Low != I->High) 2222 // A range counts double, since it requires two compares. 2223 ++numCmps; 2224 } 2225 2226 return numCmps; 2227 } 2228 2229 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2230 MachineBasicBlock *Last) { 2231 // Update JTCases. 2232 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2233 if (JTCases[i].first.HeaderBB == First) 2234 JTCases[i].first.HeaderBB = Last; 2235 2236 // Update BitTestCases. 2237 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2238 if (BitTestCases[i].Parent == First) 2239 BitTestCases[i].Parent = Last; 2240 } 2241 2242 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2243 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2244 2245 // Figure out which block is immediately after the current one. 2246 MachineBasicBlock *NextBlock = 0; 2247 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2248 2249 // If there is only the default destination, branch to it if it is not the 2250 // next basic block. Otherwise, just fall through. 2251 if (SI.getNumOperands() == 2) { 2252 // Update machine-CFG edges. 2253 2254 // If this is not a fall-through branch, emit the branch. 2255 SwitchMBB->addSuccessor(Default); 2256 if (Default != NextBlock) 2257 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2258 MVT::Other, getControlRoot(), 2259 DAG.getBasicBlock(Default))); 2260 2261 return; 2262 } 2263 2264 // If there are any non-default case statements, create a vector of Cases 2265 // representing each one, and sort the vector so that we can efficiently 2266 // create a binary search tree from them. 2267 CaseVector Cases; 2268 size_t numCmps = Clusterify(Cases, SI); 2269 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2270 << ". Total compares: " << numCmps << '\n'); 2271 numCmps = 0; 2272 2273 // Get the Value to be switched on and default basic blocks, which will be 2274 // inserted into CaseBlock records, representing basic blocks in the binary 2275 // search tree. 2276 const Value *SV = SI.getOperand(0); 2277 2278 // Push the initial CaseRec onto the worklist 2279 CaseRecVector WorkList; 2280 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2281 CaseRange(Cases.begin(),Cases.end()))); 2282 2283 while (!WorkList.empty()) { 2284 // Grab a record representing a case range to process off the worklist 2285 CaseRec CR = WorkList.back(); 2286 WorkList.pop_back(); 2287 2288 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2289 continue; 2290 2291 // If the range has few cases (two or less) emit a series of specific 2292 // tests. 2293 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2294 continue; 2295 2296 // If the switch has more than 5 blocks, and at least 40% dense, and the 2297 // target supports indirect branches, then emit a jump table rather than 2298 // lowering the switch to a binary tree of conditional branches. 2299 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2300 continue; 2301 2302 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2303 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2304 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2305 } 2306 } 2307 2308 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2309 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2310 2311 // Update machine-CFG edges with unique successors. 2312 SmallVector<BasicBlock*, 32> succs; 2313 succs.reserve(I.getNumSuccessors()); 2314 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2315 succs.push_back(I.getSuccessor(i)); 2316 array_pod_sort(succs.begin(), succs.end()); 2317 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2318 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2319 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2320 2321 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2322 MVT::Other, getControlRoot(), 2323 getValue(I.getAddress()))); 2324 } 2325 2326 void SelectionDAGBuilder::visitFSub(const User &I) { 2327 // -0.0 - X --> fneg 2328 const Type *Ty = I.getType(); 2329 if (Ty->isVectorTy()) { 2330 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2331 const VectorType *DestTy = cast<VectorType>(I.getType()); 2332 const Type *ElTy = DestTy->getElementType(); 2333 unsigned VL = DestTy->getNumElements(); 2334 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2335 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2336 if (CV == CNZ) { 2337 SDValue Op2 = getValue(I.getOperand(1)); 2338 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2339 Op2.getValueType(), Op2)); 2340 return; 2341 } 2342 } 2343 } 2344 2345 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2346 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2347 SDValue Op2 = getValue(I.getOperand(1)); 2348 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2349 Op2.getValueType(), Op2)); 2350 return; 2351 } 2352 2353 visitBinary(I, ISD::FSUB); 2354 } 2355 2356 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2357 SDValue Op1 = getValue(I.getOperand(0)); 2358 SDValue Op2 = getValue(I.getOperand(1)); 2359 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2360 Op1.getValueType(), Op1, Op2)); 2361 } 2362 2363 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2364 SDValue Op1 = getValue(I.getOperand(0)); 2365 SDValue Op2 = getValue(I.getOperand(1)); 2366 if (!I.getType()->isVectorTy() && 2367 Op2.getValueType() != TLI.getShiftAmountTy()) { 2368 // If the operand is smaller than the shift count type, promote it. 2369 EVT PTy = TLI.getPointerTy(); 2370 EVT STy = TLI.getShiftAmountTy(); 2371 if (STy.bitsGT(Op2.getValueType())) 2372 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2373 TLI.getShiftAmountTy(), Op2); 2374 // If the operand is larger than the shift count type but the shift 2375 // count type has enough bits to represent any shift value, truncate 2376 // it now. This is a common case and it exposes the truncate to 2377 // optimization early. 2378 else if (STy.getSizeInBits() >= 2379 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2380 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2381 TLI.getShiftAmountTy(), Op2); 2382 // Otherwise we'll need to temporarily settle for some other 2383 // convenient type; type legalization will make adjustments as 2384 // needed. 2385 else if (PTy.bitsLT(Op2.getValueType())) 2386 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2387 TLI.getPointerTy(), Op2); 2388 else if (PTy.bitsGT(Op2.getValueType())) 2389 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2390 TLI.getPointerTy(), Op2); 2391 } 2392 2393 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2394 Op1.getValueType(), Op1, Op2)); 2395 } 2396 2397 void SelectionDAGBuilder::visitICmp(const User &I) { 2398 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2399 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2400 predicate = IC->getPredicate(); 2401 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2402 predicate = ICmpInst::Predicate(IC->getPredicate()); 2403 SDValue Op1 = getValue(I.getOperand(0)); 2404 SDValue Op2 = getValue(I.getOperand(1)); 2405 ISD::CondCode Opcode = getICmpCondCode(predicate); 2406 2407 EVT DestVT = TLI.getValueType(I.getType()); 2408 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2409 } 2410 2411 void SelectionDAGBuilder::visitFCmp(const User &I) { 2412 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2413 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2414 predicate = FC->getPredicate(); 2415 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2416 predicate = FCmpInst::Predicate(FC->getPredicate()); 2417 SDValue Op1 = getValue(I.getOperand(0)); 2418 SDValue Op2 = getValue(I.getOperand(1)); 2419 ISD::CondCode Condition = getFCmpCondCode(predicate); 2420 EVT DestVT = TLI.getValueType(I.getType()); 2421 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2422 } 2423 2424 void SelectionDAGBuilder::visitSelect(const User &I) { 2425 SmallVector<EVT, 4> ValueVTs; 2426 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2427 unsigned NumValues = ValueVTs.size(); 2428 if (NumValues == 0) return; 2429 2430 SmallVector<SDValue, 4> Values(NumValues); 2431 SDValue Cond = getValue(I.getOperand(0)); 2432 SDValue TrueVal = getValue(I.getOperand(1)); 2433 SDValue FalseVal = getValue(I.getOperand(2)); 2434 2435 for (unsigned i = 0; i != NumValues; ++i) 2436 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2437 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2438 Cond, 2439 SDValue(TrueVal.getNode(), 2440 TrueVal.getResNo() + i), 2441 SDValue(FalseVal.getNode(), 2442 FalseVal.getResNo() + i)); 2443 2444 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2445 DAG.getVTList(&ValueVTs[0], NumValues), 2446 &Values[0], NumValues)); 2447 } 2448 2449 void SelectionDAGBuilder::visitTrunc(const User &I) { 2450 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2451 SDValue N = getValue(I.getOperand(0)); 2452 EVT DestVT = TLI.getValueType(I.getType()); 2453 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2454 } 2455 2456 void SelectionDAGBuilder::visitZExt(const User &I) { 2457 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2458 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2459 SDValue N = getValue(I.getOperand(0)); 2460 EVT DestVT = TLI.getValueType(I.getType()); 2461 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2462 } 2463 2464 void SelectionDAGBuilder::visitSExt(const User &I) { 2465 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2466 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2467 SDValue N = getValue(I.getOperand(0)); 2468 EVT DestVT = TLI.getValueType(I.getType()); 2469 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2470 } 2471 2472 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2473 // FPTrunc is never a no-op cast, no need to check 2474 SDValue N = getValue(I.getOperand(0)); 2475 EVT DestVT = TLI.getValueType(I.getType()); 2476 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2477 DestVT, N, DAG.getIntPtrConstant(0))); 2478 } 2479 2480 void SelectionDAGBuilder::visitFPExt(const User &I){ 2481 // FPTrunc is never a no-op cast, no need to check 2482 SDValue N = getValue(I.getOperand(0)); 2483 EVT DestVT = TLI.getValueType(I.getType()); 2484 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2485 } 2486 2487 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2488 // FPToUI is never a no-op cast, no need to check 2489 SDValue N = getValue(I.getOperand(0)); 2490 EVT DestVT = TLI.getValueType(I.getType()); 2491 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2492 } 2493 2494 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2495 // FPToSI is never a no-op cast, no need to check 2496 SDValue N = getValue(I.getOperand(0)); 2497 EVT DestVT = TLI.getValueType(I.getType()); 2498 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2499 } 2500 2501 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2502 // UIToFP is never a no-op cast, no need to check 2503 SDValue N = getValue(I.getOperand(0)); 2504 EVT DestVT = TLI.getValueType(I.getType()); 2505 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2506 } 2507 2508 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2509 // SIToFP is never a no-op cast, no need to check 2510 SDValue N = getValue(I.getOperand(0)); 2511 EVT DestVT = TLI.getValueType(I.getType()); 2512 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2513 } 2514 2515 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2516 // What to do depends on the size of the integer and the size of the pointer. 2517 // We can either truncate, zero extend, or no-op, accordingly. 2518 SDValue N = getValue(I.getOperand(0)); 2519 EVT DestVT = TLI.getValueType(I.getType()); 2520 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2521 } 2522 2523 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2524 // What to do depends on the size of the integer and the size of the pointer. 2525 // We can either truncate, zero extend, or no-op, accordingly. 2526 SDValue N = getValue(I.getOperand(0)); 2527 EVT DestVT = TLI.getValueType(I.getType()); 2528 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2529 } 2530 2531 void SelectionDAGBuilder::visitBitCast(const User &I) { 2532 SDValue N = getValue(I.getOperand(0)); 2533 EVT DestVT = TLI.getValueType(I.getType()); 2534 2535 // BitCast assures us that source and destination are the same size so this is 2536 // either a BIT_CONVERT or a no-op. 2537 if (DestVT != N.getValueType()) 2538 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2539 DestVT, N)); // convert types. 2540 else 2541 setValue(&I, N); // noop cast. 2542 } 2543 2544 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2545 SDValue InVec = getValue(I.getOperand(0)); 2546 SDValue InVal = getValue(I.getOperand(1)); 2547 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2548 TLI.getPointerTy(), 2549 getValue(I.getOperand(2))); 2550 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2551 TLI.getValueType(I.getType()), 2552 InVec, InVal, InIdx)); 2553 } 2554 2555 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2556 SDValue InVec = getValue(I.getOperand(0)); 2557 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2558 TLI.getPointerTy(), 2559 getValue(I.getOperand(1))); 2560 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2561 TLI.getValueType(I.getType()), InVec, InIdx)); 2562 } 2563 2564 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2565 // from SIndx and increasing to the element length (undefs are allowed). 2566 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2567 unsigned MaskNumElts = Mask.size(); 2568 for (unsigned i = 0; i != MaskNumElts; ++i) 2569 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2570 return false; 2571 return true; 2572 } 2573 2574 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2575 SmallVector<int, 8> Mask; 2576 SDValue Src1 = getValue(I.getOperand(0)); 2577 SDValue Src2 = getValue(I.getOperand(1)); 2578 2579 // Convert the ConstantVector mask operand into an array of ints, with -1 2580 // representing undef values. 2581 SmallVector<Constant*, 8> MaskElts; 2582 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2583 unsigned MaskNumElts = MaskElts.size(); 2584 for (unsigned i = 0; i != MaskNumElts; ++i) { 2585 if (isa<UndefValue>(MaskElts[i])) 2586 Mask.push_back(-1); 2587 else 2588 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2589 } 2590 2591 EVT VT = TLI.getValueType(I.getType()); 2592 EVT SrcVT = Src1.getValueType(); 2593 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2594 2595 if (SrcNumElts == MaskNumElts) { 2596 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2597 &Mask[0])); 2598 return; 2599 } 2600 2601 // Normalize the shuffle vector since mask and vector length don't match. 2602 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2603 // Mask is longer than the source vectors and is a multiple of the source 2604 // vectors. We can use concatenate vector to make the mask and vectors 2605 // lengths match. 2606 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2607 // The shuffle is concatenating two vectors together. 2608 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2609 VT, Src1, Src2)); 2610 return; 2611 } 2612 2613 // Pad both vectors with undefs to make them the same length as the mask. 2614 unsigned NumConcat = MaskNumElts / SrcNumElts; 2615 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2616 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2617 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2618 2619 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2620 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2621 MOps1[0] = Src1; 2622 MOps2[0] = Src2; 2623 2624 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2625 getCurDebugLoc(), VT, 2626 &MOps1[0], NumConcat); 2627 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2628 getCurDebugLoc(), VT, 2629 &MOps2[0], NumConcat); 2630 2631 // Readjust mask for new input vector length. 2632 SmallVector<int, 8> MappedOps; 2633 for (unsigned i = 0; i != MaskNumElts; ++i) { 2634 int Idx = Mask[i]; 2635 if (Idx < (int)SrcNumElts) 2636 MappedOps.push_back(Idx); 2637 else 2638 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2639 } 2640 2641 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2642 &MappedOps[0])); 2643 return; 2644 } 2645 2646 if (SrcNumElts > MaskNumElts) { 2647 // Analyze the access pattern of the vector to see if we can extract 2648 // two subvectors and do the shuffle. The analysis is done by calculating 2649 // the range of elements the mask access on both vectors. 2650 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2651 int MaxRange[2] = {-1, -1}; 2652 2653 for (unsigned i = 0; i != MaskNumElts; ++i) { 2654 int Idx = Mask[i]; 2655 int Input = 0; 2656 if (Idx < 0) 2657 continue; 2658 2659 if (Idx >= (int)SrcNumElts) { 2660 Input = 1; 2661 Idx -= SrcNumElts; 2662 } 2663 if (Idx > MaxRange[Input]) 2664 MaxRange[Input] = Idx; 2665 if (Idx < MinRange[Input]) 2666 MinRange[Input] = Idx; 2667 } 2668 2669 // Check if the access is smaller than the vector size and can we find 2670 // a reasonable extract index. 2671 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2672 // Extract. 2673 int StartIdx[2]; // StartIdx to extract from 2674 for (int Input=0; Input < 2; ++Input) { 2675 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2676 RangeUse[Input] = 0; // Unused 2677 StartIdx[Input] = 0; 2678 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2679 // Fits within range but we should see if we can find a good 2680 // start index that is a multiple of the mask length. 2681 if (MaxRange[Input] < (int)MaskNumElts) { 2682 RangeUse[Input] = 1; // Extract from beginning of the vector 2683 StartIdx[Input] = 0; 2684 } else { 2685 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2686 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2687 StartIdx[Input] + MaskNumElts < SrcNumElts) 2688 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2689 } 2690 } 2691 } 2692 2693 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2694 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2695 return; 2696 } 2697 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2698 // Extract appropriate subvector and generate a vector shuffle 2699 for (int Input=0; Input < 2; ++Input) { 2700 SDValue &Src = Input == 0 ? Src1 : Src2; 2701 if (RangeUse[Input] == 0) 2702 Src = DAG.getUNDEF(VT); 2703 else 2704 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2705 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2706 } 2707 2708 // Calculate new mask. 2709 SmallVector<int, 8> MappedOps; 2710 for (unsigned i = 0; i != MaskNumElts; ++i) { 2711 int Idx = Mask[i]; 2712 if (Idx < 0) 2713 MappedOps.push_back(Idx); 2714 else if (Idx < (int)SrcNumElts) 2715 MappedOps.push_back(Idx - StartIdx[0]); 2716 else 2717 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2718 } 2719 2720 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2721 &MappedOps[0])); 2722 return; 2723 } 2724 } 2725 2726 // We can't use either concat vectors or extract subvectors so fall back to 2727 // replacing the shuffle with extract and build vector. 2728 // to insert and build vector. 2729 EVT EltVT = VT.getVectorElementType(); 2730 EVT PtrVT = TLI.getPointerTy(); 2731 SmallVector<SDValue,8> Ops; 2732 for (unsigned i = 0; i != MaskNumElts; ++i) { 2733 if (Mask[i] < 0) { 2734 Ops.push_back(DAG.getUNDEF(EltVT)); 2735 } else { 2736 int Idx = Mask[i]; 2737 SDValue Res; 2738 2739 if (Idx < (int)SrcNumElts) 2740 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2741 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2742 else 2743 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2744 EltVT, Src2, 2745 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2746 2747 Ops.push_back(Res); 2748 } 2749 } 2750 2751 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2752 VT, &Ops[0], Ops.size())); 2753 } 2754 2755 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2756 const Value *Op0 = I.getOperand(0); 2757 const Value *Op1 = I.getOperand(1); 2758 const Type *AggTy = I.getType(); 2759 const Type *ValTy = Op1->getType(); 2760 bool IntoUndef = isa<UndefValue>(Op0); 2761 bool FromUndef = isa<UndefValue>(Op1); 2762 2763 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2764 2765 SmallVector<EVT, 4> AggValueVTs; 2766 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2767 SmallVector<EVT, 4> ValValueVTs; 2768 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2769 2770 unsigned NumAggValues = AggValueVTs.size(); 2771 unsigned NumValValues = ValValueVTs.size(); 2772 SmallVector<SDValue, 4> Values(NumAggValues); 2773 2774 SDValue Agg = getValue(Op0); 2775 SDValue Val = getValue(Op1); 2776 unsigned i = 0; 2777 // Copy the beginning value(s) from the original aggregate. 2778 for (; i != LinearIndex; ++i) 2779 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2780 SDValue(Agg.getNode(), Agg.getResNo() + i); 2781 // Copy values from the inserted value(s). 2782 for (; i != LinearIndex + NumValValues; ++i) 2783 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2784 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2785 // Copy remaining value(s) from the original aggregate. 2786 for (; i != NumAggValues; ++i) 2787 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2788 SDValue(Agg.getNode(), Agg.getResNo() + i); 2789 2790 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2791 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2792 &Values[0], NumAggValues)); 2793 } 2794 2795 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2796 const Value *Op0 = I.getOperand(0); 2797 const Type *AggTy = Op0->getType(); 2798 const Type *ValTy = I.getType(); 2799 bool OutOfUndef = isa<UndefValue>(Op0); 2800 2801 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2802 2803 SmallVector<EVT, 4> ValValueVTs; 2804 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2805 2806 unsigned NumValValues = ValValueVTs.size(); 2807 SmallVector<SDValue, 4> Values(NumValValues); 2808 2809 SDValue Agg = getValue(Op0); 2810 // Copy out the selected value(s). 2811 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2812 Values[i - LinearIndex] = 2813 OutOfUndef ? 2814 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2815 SDValue(Agg.getNode(), Agg.getResNo() + i); 2816 2817 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2818 DAG.getVTList(&ValValueVTs[0], NumValValues), 2819 &Values[0], NumValValues)); 2820 } 2821 2822 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2823 SDValue N = getValue(I.getOperand(0)); 2824 const Type *Ty = I.getOperand(0)->getType(); 2825 2826 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2827 OI != E; ++OI) { 2828 const Value *Idx = *OI; 2829 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2830 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2831 if (Field) { 2832 // N = N + Offset 2833 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2834 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2835 DAG.getIntPtrConstant(Offset)); 2836 } 2837 2838 Ty = StTy->getElementType(Field); 2839 } else { 2840 Ty = cast<SequentialType>(Ty)->getElementType(); 2841 2842 // If this is a constant subscript, handle it quickly. 2843 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2844 if (CI->isZero()) continue; 2845 uint64_t Offs = 2846 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2847 SDValue OffsVal; 2848 EVT PTy = TLI.getPointerTy(); 2849 unsigned PtrBits = PTy.getSizeInBits(); 2850 if (PtrBits < 64) 2851 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2852 TLI.getPointerTy(), 2853 DAG.getConstant(Offs, MVT::i64)); 2854 else 2855 OffsVal = DAG.getIntPtrConstant(Offs); 2856 2857 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2858 OffsVal); 2859 continue; 2860 } 2861 2862 // N = N + Idx * ElementSize; 2863 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2864 TD->getTypeAllocSize(Ty)); 2865 SDValue IdxN = getValue(Idx); 2866 2867 // If the index is smaller or larger than intptr_t, truncate or extend 2868 // it. 2869 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2870 2871 // If this is a multiply by a power of two, turn it into a shl 2872 // immediately. This is a very common case. 2873 if (ElementSize != 1) { 2874 if (ElementSize.isPowerOf2()) { 2875 unsigned Amt = ElementSize.logBase2(); 2876 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2877 N.getValueType(), IdxN, 2878 DAG.getConstant(Amt, TLI.getPointerTy())); 2879 } else { 2880 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2881 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2882 N.getValueType(), IdxN, Scale); 2883 } 2884 } 2885 2886 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2887 N.getValueType(), N, IdxN); 2888 } 2889 } 2890 2891 setValue(&I, N); 2892 } 2893 2894 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2895 // If this is a fixed sized alloca in the entry block of the function, 2896 // allocate it statically on the stack. 2897 if (FuncInfo.StaticAllocaMap.count(&I)) 2898 return; // getValue will auto-populate this. 2899 2900 const Type *Ty = I.getAllocatedType(); 2901 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2902 unsigned Align = 2903 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2904 I.getAlignment()); 2905 2906 SDValue AllocSize = getValue(I.getArraySize()); 2907 2908 EVT IntPtr = TLI.getPointerTy(); 2909 if (AllocSize.getValueType() != IntPtr) 2910 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2911 2912 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2913 AllocSize, 2914 DAG.getConstant(TySize, IntPtr)); 2915 2916 // Handle alignment. If the requested alignment is less than or equal to 2917 // the stack alignment, ignore it. If the size is greater than or equal to 2918 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2919 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2920 if (Align <= StackAlign) 2921 Align = 0; 2922 2923 // Round the size of the allocation up to the stack alignment size 2924 // by add SA-1 to the size. 2925 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2926 AllocSize.getValueType(), AllocSize, 2927 DAG.getIntPtrConstant(StackAlign-1)); 2928 2929 // Mask out the low bits for alignment purposes. 2930 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2931 AllocSize.getValueType(), AllocSize, 2932 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2933 2934 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2935 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2936 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2937 VTs, Ops, 3); 2938 setValue(&I, DSA); 2939 DAG.setRoot(DSA.getValue(1)); 2940 2941 // Inform the Frame Information that we have just allocated a variable-sized 2942 // object. 2943 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2944 } 2945 2946 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2947 const Value *SV = I.getOperand(0); 2948 SDValue Ptr = getValue(SV); 2949 2950 const Type *Ty = I.getType(); 2951 2952 bool isVolatile = I.isVolatile(); 2953 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2954 unsigned Alignment = I.getAlignment(); 2955 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 2956 2957 SmallVector<EVT, 4> ValueVTs; 2958 SmallVector<uint64_t, 4> Offsets; 2959 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2960 unsigned NumValues = ValueVTs.size(); 2961 if (NumValues == 0) 2962 return; 2963 2964 SDValue Root; 2965 bool ConstantMemory = false; 2966 if (I.isVolatile() || NumValues > MaxParallelChains) 2967 // Serialize volatile loads with other side effects. 2968 Root = getRoot(); 2969 else if (AA->pointsToConstantMemory( 2970 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 2971 // Do not serialize (non-volatile) loads of constant memory with anything. 2972 Root = DAG.getEntryNode(); 2973 ConstantMemory = true; 2974 } else { 2975 // Do not serialize non-volatile loads against each other. 2976 Root = DAG.getRoot(); 2977 } 2978 2979 SmallVector<SDValue, 4> Values(NumValues); 2980 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2981 NumValues)); 2982 EVT PtrVT = Ptr.getValueType(); 2983 unsigned ChainI = 0; 2984 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2985 // Serializing loads here may result in excessive register pressure, and 2986 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2987 // could recover a bit by hoisting nodes upward in the chain by recognizing 2988 // they are side-effect free or do not alias. The optimizer should really 2989 // avoid this case by converting large object/array copies to llvm.memcpy 2990 // (MaxParallelChains should always remain as failsafe). 2991 if (ChainI == MaxParallelChains) { 2992 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2993 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2994 MVT::Other, &Chains[0], ChainI); 2995 Root = Chain; 2996 ChainI = 0; 2997 } 2998 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2999 PtrVT, Ptr, 3000 DAG.getConstant(Offsets[i], PtrVT)); 3001 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3002 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3003 isNonTemporal, Alignment, TBAAInfo); 3004 3005 Values[i] = L; 3006 Chains[ChainI] = L.getValue(1); 3007 } 3008 3009 if (!ConstantMemory) { 3010 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3011 MVT::Other, &Chains[0], ChainI); 3012 if (isVolatile) 3013 DAG.setRoot(Chain); 3014 else 3015 PendingLoads.push_back(Chain); 3016 } 3017 3018 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3019 DAG.getVTList(&ValueVTs[0], NumValues), 3020 &Values[0], NumValues)); 3021 } 3022 3023 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3024 const Value *SrcV = I.getOperand(0); 3025 const Value *PtrV = I.getOperand(1); 3026 3027 SmallVector<EVT, 4> ValueVTs; 3028 SmallVector<uint64_t, 4> Offsets; 3029 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3030 unsigned NumValues = ValueVTs.size(); 3031 if (NumValues == 0) 3032 return; 3033 3034 // Get the lowered operands. Note that we do this after 3035 // checking if NumResults is zero, because with zero results 3036 // the operands won't have values in the map. 3037 SDValue Src = getValue(SrcV); 3038 SDValue Ptr = getValue(PtrV); 3039 3040 SDValue Root = getRoot(); 3041 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3042 NumValues)); 3043 EVT PtrVT = Ptr.getValueType(); 3044 bool isVolatile = I.isVolatile(); 3045 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3046 unsigned Alignment = I.getAlignment(); 3047 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3048 3049 unsigned ChainI = 0; 3050 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3051 // See visitLoad comments. 3052 if (ChainI == MaxParallelChains) { 3053 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3054 MVT::Other, &Chains[0], ChainI); 3055 Root = Chain; 3056 ChainI = 0; 3057 } 3058 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3059 DAG.getConstant(Offsets[i], PtrVT)); 3060 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3061 SDValue(Src.getNode(), Src.getResNo() + i), 3062 Add, MachinePointerInfo(PtrV, Offsets[i]), 3063 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3064 Chains[ChainI] = St; 3065 } 3066 3067 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3068 MVT::Other, &Chains[0], ChainI); 3069 ++SDNodeOrder; 3070 AssignOrderingToNode(StoreNode.getNode()); 3071 DAG.setRoot(StoreNode); 3072 } 3073 3074 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3075 /// node. 3076 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3077 unsigned Intrinsic) { 3078 bool HasChain = !I.doesNotAccessMemory(); 3079 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3080 3081 // Build the operand list. 3082 SmallVector<SDValue, 8> Ops; 3083 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3084 if (OnlyLoad) { 3085 // We don't need to serialize loads against other loads. 3086 Ops.push_back(DAG.getRoot()); 3087 } else { 3088 Ops.push_back(getRoot()); 3089 } 3090 } 3091 3092 // Info is set by getTgtMemInstrinsic 3093 TargetLowering::IntrinsicInfo Info; 3094 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3095 3096 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3097 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3098 Info.opc == ISD::INTRINSIC_W_CHAIN) 3099 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3100 3101 // Add all operands of the call to the operand list. 3102 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3103 SDValue Op = getValue(I.getArgOperand(i)); 3104 assert(TLI.isTypeLegal(Op.getValueType()) && 3105 "Intrinsic uses a non-legal type?"); 3106 Ops.push_back(Op); 3107 } 3108 3109 SmallVector<EVT, 4> ValueVTs; 3110 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3111 #ifndef NDEBUG 3112 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3113 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3114 "Intrinsic uses a non-legal type?"); 3115 } 3116 #endif // NDEBUG 3117 3118 if (HasChain) 3119 ValueVTs.push_back(MVT::Other); 3120 3121 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3122 3123 // Create the node. 3124 SDValue Result; 3125 if (IsTgtIntrinsic) { 3126 // This is target intrinsic that touches memory 3127 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3128 VTs, &Ops[0], Ops.size(), 3129 Info.memVT, 3130 MachinePointerInfo(Info.ptrVal, Info.offset), 3131 Info.align, Info.vol, 3132 Info.readMem, Info.writeMem); 3133 } else if (!HasChain) { 3134 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3135 VTs, &Ops[0], Ops.size()); 3136 } else if (!I.getType()->isVoidTy()) { 3137 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3138 VTs, &Ops[0], Ops.size()); 3139 } else { 3140 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3141 VTs, &Ops[0], Ops.size()); 3142 } 3143 3144 if (HasChain) { 3145 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3146 if (OnlyLoad) 3147 PendingLoads.push_back(Chain); 3148 else 3149 DAG.setRoot(Chain); 3150 } 3151 3152 if (!I.getType()->isVoidTy()) { 3153 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3154 EVT VT = TLI.getValueType(PTy); 3155 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3156 } 3157 3158 setValue(&I, Result); 3159 } 3160 } 3161 3162 /// GetSignificand - Get the significand and build it into a floating-point 3163 /// number with exponent of 1: 3164 /// 3165 /// Op = (Op & 0x007fffff) | 0x3f800000; 3166 /// 3167 /// where Op is the hexidecimal representation of floating point value. 3168 static SDValue 3169 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3170 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3171 DAG.getConstant(0x007fffff, MVT::i32)); 3172 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3173 DAG.getConstant(0x3f800000, MVT::i32)); 3174 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3175 } 3176 3177 /// GetExponent - Get the exponent: 3178 /// 3179 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3180 /// 3181 /// where Op is the hexidecimal representation of floating point value. 3182 static SDValue 3183 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3184 DebugLoc dl) { 3185 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3186 DAG.getConstant(0x7f800000, MVT::i32)); 3187 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3188 DAG.getConstant(23, TLI.getPointerTy())); 3189 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3190 DAG.getConstant(127, MVT::i32)); 3191 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3192 } 3193 3194 /// getF32Constant - Get 32-bit floating point constant. 3195 static SDValue 3196 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3197 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3198 } 3199 3200 /// Inlined utility function to implement binary input atomic intrinsics for 3201 /// visitIntrinsicCall: I is a call instruction 3202 /// Op is the associated NodeType for I 3203 const char * 3204 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3205 ISD::NodeType Op) { 3206 SDValue Root = getRoot(); 3207 SDValue L = 3208 DAG.getAtomic(Op, getCurDebugLoc(), 3209 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3210 Root, 3211 getValue(I.getArgOperand(0)), 3212 getValue(I.getArgOperand(1)), 3213 I.getArgOperand(0)); 3214 setValue(&I, L); 3215 DAG.setRoot(L.getValue(1)); 3216 return 0; 3217 } 3218 3219 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3220 const char * 3221 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3222 SDValue Op1 = getValue(I.getArgOperand(0)); 3223 SDValue Op2 = getValue(I.getArgOperand(1)); 3224 3225 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3226 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3227 return 0; 3228 } 3229 3230 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3231 /// limited-precision mode. 3232 void 3233 SelectionDAGBuilder::visitExp(const CallInst &I) { 3234 SDValue result; 3235 DebugLoc dl = getCurDebugLoc(); 3236 3237 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3238 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3239 SDValue Op = getValue(I.getArgOperand(0)); 3240 3241 // Put the exponent in the right bit position for later addition to the 3242 // final result: 3243 // 3244 // #define LOG2OFe 1.4426950f 3245 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3246 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3247 getF32Constant(DAG, 0x3fb8aa3b)); 3248 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3249 3250 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3251 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3252 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3253 3254 // IntegerPartOfX <<= 23; 3255 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3256 DAG.getConstant(23, TLI.getPointerTy())); 3257 3258 if (LimitFloatPrecision <= 6) { 3259 // For floating-point precision of 6: 3260 // 3261 // TwoToFractionalPartOfX = 3262 // 0.997535578f + 3263 // (0.735607626f + 0.252464424f * x) * x; 3264 // 3265 // error 0.0144103317, which is 6 bits 3266 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3267 getF32Constant(DAG, 0x3e814304)); 3268 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3269 getF32Constant(DAG, 0x3f3c50c8)); 3270 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3271 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3272 getF32Constant(DAG, 0x3f7f5e7e)); 3273 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3274 3275 // Add the exponent into the result in integer domain. 3276 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3277 TwoToFracPartOfX, IntegerPartOfX); 3278 3279 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3280 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3281 // For floating-point precision of 12: 3282 // 3283 // TwoToFractionalPartOfX = 3284 // 0.999892986f + 3285 // (0.696457318f + 3286 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3287 // 3288 // 0.000107046256 error, which is 13 to 14 bits 3289 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3290 getF32Constant(DAG, 0x3da235e3)); 3291 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3292 getF32Constant(DAG, 0x3e65b8f3)); 3293 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3294 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3295 getF32Constant(DAG, 0x3f324b07)); 3296 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3297 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3298 getF32Constant(DAG, 0x3f7ff8fd)); 3299 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3300 3301 // Add the exponent into the result in integer domain. 3302 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3303 TwoToFracPartOfX, IntegerPartOfX); 3304 3305 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3306 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3307 // For floating-point precision of 18: 3308 // 3309 // TwoToFractionalPartOfX = 3310 // 0.999999982f + 3311 // (0.693148872f + 3312 // (0.240227044f + 3313 // (0.554906021e-1f + 3314 // (0.961591928e-2f + 3315 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3316 // 3317 // error 2.47208000*10^(-7), which is better than 18 bits 3318 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3319 getF32Constant(DAG, 0x3924b03e)); 3320 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3321 getF32Constant(DAG, 0x3ab24b87)); 3322 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3323 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3324 getF32Constant(DAG, 0x3c1d8c17)); 3325 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3326 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3327 getF32Constant(DAG, 0x3d634a1d)); 3328 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3329 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3330 getF32Constant(DAG, 0x3e75fe14)); 3331 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3332 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3333 getF32Constant(DAG, 0x3f317234)); 3334 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3335 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3336 getF32Constant(DAG, 0x3f800000)); 3337 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3338 MVT::i32, t13); 3339 3340 // Add the exponent into the result in integer domain. 3341 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3342 TwoToFracPartOfX, IntegerPartOfX); 3343 3344 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3345 } 3346 } else { 3347 // No special expansion. 3348 result = DAG.getNode(ISD::FEXP, dl, 3349 getValue(I.getArgOperand(0)).getValueType(), 3350 getValue(I.getArgOperand(0))); 3351 } 3352 3353 setValue(&I, result); 3354 } 3355 3356 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3357 /// limited-precision mode. 3358 void 3359 SelectionDAGBuilder::visitLog(const CallInst &I) { 3360 SDValue result; 3361 DebugLoc dl = getCurDebugLoc(); 3362 3363 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3364 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3365 SDValue Op = getValue(I.getArgOperand(0)); 3366 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3367 3368 // Scale the exponent by log(2) [0.69314718f]. 3369 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3370 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3371 getF32Constant(DAG, 0x3f317218)); 3372 3373 // Get the significand and build it into a floating-point number with 3374 // exponent of 1. 3375 SDValue X = GetSignificand(DAG, Op1, dl); 3376 3377 if (LimitFloatPrecision <= 6) { 3378 // For floating-point precision of 6: 3379 // 3380 // LogofMantissa = 3381 // -1.1609546f + 3382 // (1.4034025f - 0.23903021f * x) * x; 3383 // 3384 // error 0.0034276066, which is better than 8 bits 3385 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3386 getF32Constant(DAG, 0xbe74c456)); 3387 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3388 getF32Constant(DAG, 0x3fb3a2b1)); 3389 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3390 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3391 getF32Constant(DAG, 0x3f949a29)); 3392 3393 result = DAG.getNode(ISD::FADD, dl, 3394 MVT::f32, LogOfExponent, LogOfMantissa); 3395 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3396 // For floating-point precision of 12: 3397 // 3398 // LogOfMantissa = 3399 // -1.7417939f + 3400 // (2.8212026f + 3401 // (-1.4699568f + 3402 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3403 // 3404 // error 0.000061011436, which is 14 bits 3405 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3406 getF32Constant(DAG, 0xbd67b6d6)); 3407 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3408 getF32Constant(DAG, 0x3ee4f4b8)); 3409 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3410 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3411 getF32Constant(DAG, 0x3fbc278b)); 3412 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3413 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3414 getF32Constant(DAG, 0x40348e95)); 3415 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3416 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3417 getF32Constant(DAG, 0x3fdef31a)); 3418 3419 result = DAG.getNode(ISD::FADD, dl, 3420 MVT::f32, LogOfExponent, LogOfMantissa); 3421 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3422 // For floating-point precision of 18: 3423 // 3424 // LogOfMantissa = 3425 // -2.1072184f + 3426 // (4.2372794f + 3427 // (-3.7029485f + 3428 // (2.2781945f + 3429 // (-0.87823314f + 3430 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3431 // 3432 // error 0.0000023660568, which is better than 18 bits 3433 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3434 getF32Constant(DAG, 0xbc91e5ac)); 3435 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3436 getF32Constant(DAG, 0x3e4350aa)); 3437 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3438 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3439 getF32Constant(DAG, 0x3f60d3e3)); 3440 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3441 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3442 getF32Constant(DAG, 0x4011cdf0)); 3443 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3444 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3445 getF32Constant(DAG, 0x406cfd1c)); 3446 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3447 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3448 getF32Constant(DAG, 0x408797cb)); 3449 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3450 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3451 getF32Constant(DAG, 0x4006dcab)); 3452 3453 result = DAG.getNode(ISD::FADD, dl, 3454 MVT::f32, LogOfExponent, LogOfMantissa); 3455 } 3456 } else { 3457 // No special expansion. 3458 result = DAG.getNode(ISD::FLOG, dl, 3459 getValue(I.getArgOperand(0)).getValueType(), 3460 getValue(I.getArgOperand(0))); 3461 } 3462 3463 setValue(&I, result); 3464 } 3465 3466 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3467 /// limited-precision mode. 3468 void 3469 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3470 SDValue result; 3471 DebugLoc dl = getCurDebugLoc(); 3472 3473 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3474 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3475 SDValue Op = getValue(I.getArgOperand(0)); 3476 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3477 3478 // Get the exponent. 3479 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3480 3481 // Get the significand and build it into a floating-point number with 3482 // exponent of 1. 3483 SDValue X = GetSignificand(DAG, Op1, dl); 3484 3485 // Different possible minimax approximations of significand in 3486 // floating-point for various degrees of accuracy over [1,2]. 3487 if (LimitFloatPrecision <= 6) { 3488 // For floating-point precision of 6: 3489 // 3490 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3491 // 3492 // error 0.0049451742, which is more than 7 bits 3493 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3494 getF32Constant(DAG, 0xbeb08fe0)); 3495 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3496 getF32Constant(DAG, 0x40019463)); 3497 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3498 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3499 getF32Constant(DAG, 0x3fd6633d)); 3500 3501 result = DAG.getNode(ISD::FADD, dl, 3502 MVT::f32, LogOfExponent, Log2ofMantissa); 3503 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3504 // For floating-point precision of 12: 3505 // 3506 // Log2ofMantissa = 3507 // -2.51285454f + 3508 // (4.07009056f + 3509 // (-2.12067489f + 3510 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3511 // 3512 // error 0.0000876136000, which is better than 13 bits 3513 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3514 getF32Constant(DAG, 0xbda7262e)); 3515 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3516 getF32Constant(DAG, 0x3f25280b)); 3517 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3518 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3519 getF32Constant(DAG, 0x4007b923)); 3520 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3521 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3522 getF32Constant(DAG, 0x40823e2f)); 3523 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3524 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3525 getF32Constant(DAG, 0x4020d29c)); 3526 3527 result = DAG.getNode(ISD::FADD, dl, 3528 MVT::f32, LogOfExponent, Log2ofMantissa); 3529 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3530 // For floating-point precision of 18: 3531 // 3532 // Log2ofMantissa = 3533 // -3.0400495f + 3534 // (6.1129976f + 3535 // (-5.3420409f + 3536 // (3.2865683f + 3537 // (-1.2669343f + 3538 // (0.27515199f - 3539 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3540 // 3541 // error 0.0000018516, which is better than 18 bits 3542 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3543 getF32Constant(DAG, 0xbcd2769e)); 3544 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3545 getF32Constant(DAG, 0x3e8ce0b9)); 3546 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3547 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3548 getF32Constant(DAG, 0x3fa22ae7)); 3549 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3550 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3551 getF32Constant(DAG, 0x40525723)); 3552 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3553 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3554 getF32Constant(DAG, 0x40aaf200)); 3555 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3556 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3557 getF32Constant(DAG, 0x40c39dad)); 3558 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3559 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3560 getF32Constant(DAG, 0x4042902c)); 3561 3562 result = DAG.getNode(ISD::FADD, dl, 3563 MVT::f32, LogOfExponent, Log2ofMantissa); 3564 } 3565 } else { 3566 // No special expansion. 3567 result = DAG.getNode(ISD::FLOG2, dl, 3568 getValue(I.getArgOperand(0)).getValueType(), 3569 getValue(I.getArgOperand(0))); 3570 } 3571 3572 setValue(&I, result); 3573 } 3574 3575 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3576 /// limited-precision mode. 3577 void 3578 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3579 SDValue result; 3580 DebugLoc dl = getCurDebugLoc(); 3581 3582 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3583 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3584 SDValue Op = getValue(I.getArgOperand(0)); 3585 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3586 3587 // Scale the exponent by log10(2) [0.30102999f]. 3588 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3589 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3590 getF32Constant(DAG, 0x3e9a209a)); 3591 3592 // Get the significand and build it into a floating-point number with 3593 // exponent of 1. 3594 SDValue X = GetSignificand(DAG, Op1, dl); 3595 3596 if (LimitFloatPrecision <= 6) { 3597 // For floating-point precision of 6: 3598 // 3599 // Log10ofMantissa = 3600 // -0.50419619f + 3601 // (0.60948995f - 0.10380950f * x) * x; 3602 // 3603 // error 0.0014886165, which is 6 bits 3604 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3605 getF32Constant(DAG, 0xbdd49a13)); 3606 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3607 getF32Constant(DAG, 0x3f1c0789)); 3608 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3609 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3610 getF32Constant(DAG, 0x3f011300)); 3611 3612 result = DAG.getNode(ISD::FADD, dl, 3613 MVT::f32, LogOfExponent, Log10ofMantissa); 3614 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3615 // For floating-point precision of 12: 3616 // 3617 // Log10ofMantissa = 3618 // -0.64831180f + 3619 // (0.91751397f + 3620 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3621 // 3622 // error 0.00019228036, which is better than 12 bits 3623 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3624 getF32Constant(DAG, 0x3d431f31)); 3625 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3626 getF32Constant(DAG, 0x3ea21fb2)); 3627 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3628 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3629 getF32Constant(DAG, 0x3f6ae232)); 3630 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3631 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3632 getF32Constant(DAG, 0x3f25f7c3)); 3633 3634 result = DAG.getNode(ISD::FADD, dl, 3635 MVT::f32, LogOfExponent, Log10ofMantissa); 3636 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3637 // For floating-point precision of 18: 3638 // 3639 // Log10ofMantissa = 3640 // -0.84299375f + 3641 // (1.5327582f + 3642 // (-1.0688956f + 3643 // (0.49102474f + 3644 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3645 // 3646 // error 0.0000037995730, which is better than 18 bits 3647 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3648 getF32Constant(DAG, 0x3c5d51ce)); 3649 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3650 getF32Constant(DAG, 0x3e00685a)); 3651 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3652 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3653 getF32Constant(DAG, 0x3efb6798)); 3654 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3655 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3656 getF32Constant(DAG, 0x3f88d192)); 3657 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3658 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3659 getF32Constant(DAG, 0x3fc4316c)); 3660 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3661 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3662 getF32Constant(DAG, 0x3f57ce70)); 3663 3664 result = DAG.getNode(ISD::FADD, dl, 3665 MVT::f32, LogOfExponent, Log10ofMantissa); 3666 } 3667 } else { 3668 // No special expansion. 3669 result = DAG.getNode(ISD::FLOG10, dl, 3670 getValue(I.getArgOperand(0)).getValueType(), 3671 getValue(I.getArgOperand(0))); 3672 } 3673 3674 setValue(&I, result); 3675 } 3676 3677 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3678 /// limited-precision mode. 3679 void 3680 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3681 SDValue result; 3682 DebugLoc dl = getCurDebugLoc(); 3683 3684 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3685 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3686 SDValue Op = getValue(I.getArgOperand(0)); 3687 3688 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3689 3690 // FractionalPartOfX = x - (float)IntegerPartOfX; 3691 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3692 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3693 3694 // IntegerPartOfX <<= 23; 3695 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3696 DAG.getConstant(23, TLI.getPointerTy())); 3697 3698 if (LimitFloatPrecision <= 6) { 3699 // For floating-point precision of 6: 3700 // 3701 // TwoToFractionalPartOfX = 3702 // 0.997535578f + 3703 // (0.735607626f + 0.252464424f * x) * x; 3704 // 3705 // error 0.0144103317, which is 6 bits 3706 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3707 getF32Constant(DAG, 0x3e814304)); 3708 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3709 getF32Constant(DAG, 0x3f3c50c8)); 3710 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3711 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3712 getF32Constant(DAG, 0x3f7f5e7e)); 3713 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3714 SDValue TwoToFractionalPartOfX = 3715 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3716 3717 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3718 MVT::f32, TwoToFractionalPartOfX); 3719 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3720 // For floating-point precision of 12: 3721 // 3722 // TwoToFractionalPartOfX = 3723 // 0.999892986f + 3724 // (0.696457318f + 3725 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3726 // 3727 // error 0.000107046256, which is 13 to 14 bits 3728 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3729 getF32Constant(DAG, 0x3da235e3)); 3730 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3731 getF32Constant(DAG, 0x3e65b8f3)); 3732 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3733 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3734 getF32Constant(DAG, 0x3f324b07)); 3735 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3736 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3737 getF32Constant(DAG, 0x3f7ff8fd)); 3738 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3739 SDValue TwoToFractionalPartOfX = 3740 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3741 3742 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3743 MVT::f32, TwoToFractionalPartOfX); 3744 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3745 // For floating-point precision of 18: 3746 // 3747 // TwoToFractionalPartOfX = 3748 // 0.999999982f + 3749 // (0.693148872f + 3750 // (0.240227044f + 3751 // (0.554906021e-1f + 3752 // (0.961591928e-2f + 3753 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3754 // error 2.47208000*10^(-7), which is better than 18 bits 3755 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3756 getF32Constant(DAG, 0x3924b03e)); 3757 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3758 getF32Constant(DAG, 0x3ab24b87)); 3759 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3760 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3761 getF32Constant(DAG, 0x3c1d8c17)); 3762 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3763 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3764 getF32Constant(DAG, 0x3d634a1d)); 3765 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3766 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3767 getF32Constant(DAG, 0x3e75fe14)); 3768 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3769 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3770 getF32Constant(DAG, 0x3f317234)); 3771 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3772 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3773 getF32Constant(DAG, 0x3f800000)); 3774 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3775 SDValue TwoToFractionalPartOfX = 3776 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3777 3778 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3779 MVT::f32, TwoToFractionalPartOfX); 3780 } 3781 } else { 3782 // No special expansion. 3783 result = DAG.getNode(ISD::FEXP2, dl, 3784 getValue(I.getArgOperand(0)).getValueType(), 3785 getValue(I.getArgOperand(0))); 3786 } 3787 3788 setValue(&I, result); 3789 } 3790 3791 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3792 /// limited-precision mode with x == 10.0f. 3793 void 3794 SelectionDAGBuilder::visitPow(const CallInst &I) { 3795 SDValue result; 3796 const Value *Val = I.getArgOperand(0); 3797 DebugLoc dl = getCurDebugLoc(); 3798 bool IsExp10 = false; 3799 3800 if (getValue(Val).getValueType() == MVT::f32 && 3801 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3802 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3803 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3804 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3805 APFloat Ten(10.0f); 3806 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3807 } 3808 } 3809 } 3810 3811 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3812 SDValue Op = getValue(I.getArgOperand(1)); 3813 3814 // Put the exponent in the right bit position for later addition to the 3815 // final result: 3816 // 3817 // #define LOG2OF10 3.3219281f 3818 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3819 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3820 getF32Constant(DAG, 0x40549a78)); 3821 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3822 3823 // FractionalPartOfX = x - (float)IntegerPartOfX; 3824 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3825 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3826 3827 // IntegerPartOfX <<= 23; 3828 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3829 DAG.getConstant(23, TLI.getPointerTy())); 3830 3831 if (LimitFloatPrecision <= 6) { 3832 // For floating-point precision of 6: 3833 // 3834 // twoToFractionalPartOfX = 3835 // 0.997535578f + 3836 // (0.735607626f + 0.252464424f * x) * x; 3837 // 3838 // error 0.0144103317, which is 6 bits 3839 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3840 getF32Constant(DAG, 0x3e814304)); 3841 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3842 getF32Constant(DAG, 0x3f3c50c8)); 3843 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3844 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3845 getF32Constant(DAG, 0x3f7f5e7e)); 3846 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3847 SDValue TwoToFractionalPartOfX = 3848 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3849 3850 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3851 MVT::f32, TwoToFractionalPartOfX); 3852 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3853 // For floating-point precision of 12: 3854 // 3855 // TwoToFractionalPartOfX = 3856 // 0.999892986f + 3857 // (0.696457318f + 3858 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3859 // 3860 // error 0.000107046256, which is 13 to 14 bits 3861 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3862 getF32Constant(DAG, 0x3da235e3)); 3863 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3864 getF32Constant(DAG, 0x3e65b8f3)); 3865 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3866 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3867 getF32Constant(DAG, 0x3f324b07)); 3868 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3869 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3870 getF32Constant(DAG, 0x3f7ff8fd)); 3871 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3872 SDValue TwoToFractionalPartOfX = 3873 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3874 3875 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3876 MVT::f32, TwoToFractionalPartOfX); 3877 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3878 // For floating-point precision of 18: 3879 // 3880 // TwoToFractionalPartOfX = 3881 // 0.999999982f + 3882 // (0.693148872f + 3883 // (0.240227044f + 3884 // (0.554906021e-1f + 3885 // (0.961591928e-2f + 3886 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3887 // error 2.47208000*10^(-7), which is better than 18 bits 3888 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3889 getF32Constant(DAG, 0x3924b03e)); 3890 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3891 getF32Constant(DAG, 0x3ab24b87)); 3892 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3893 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3894 getF32Constant(DAG, 0x3c1d8c17)); 3895 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3896 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3897 getF32Constant(DAG, 0x3d634a1d)); 3898 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3899 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3900 getF32Constant(DAG, 0x3e75fe14)); 3901 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3902 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3903 getF32Constant(DAG, 0x3f317234)); 3904 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3905 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3906 getF32Constant(DAG, 0x3f800000)); 3907 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3908 SDValue TwoToFractionalPartOfX = 3909 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3910 3911 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3912 MVT::f32, TwoToFractionalPartOfX); 3913 } 3914 } else { 3915 // No special expansion. 3916 result = DAG.getNode(ISD::FPOW, dl, 3917 getValue(I.getArgOperand(0)).getValueType(), 3918 getValue(I.getArgOperand(0)), 3919 getValue(I.getArgOperand(1))); 3920 } 3921 3922 setValue(&I, result); 3923 } 3924 3925 3926 /// ExpandPowI - Expand a llvm.powi intrinsic. 3927 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3928 SelectionDAG &DAG) { 3929 // If RHS is a constant, we can expand this out to a multiplication tree, 3930 // otherwise we end up lowering to a call to __powidf2 (for example). When 3931 // optimizing for size, we only want to do this if the expansion would produce 3932 // a small number of multiplies, otherwise we do the full expansion. 3933 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3934 // Get the exponent as a positive value. 3935 unsigned Val = RHSC->getSExtValue(); 3936 if ((int)Val < 0) Val = -Val; 3937 3938 // powi(x, 0) -> 1.0 3939 if (Val == 0) 3940 return DAG.getConstantFP(1.0, LHS.getValueType()); 3941 3942 const Function *F = DAG.getMachineFunction().getFunction(); 3943 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3944 // If optimizing for size, don't insert too many multiplies. This 3945 // inserts up to 5 multiplies. 3946 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3947 // We use the simple binary decomposition method to generate the multiply 3948 // sequence. There are more optimal ways to do this (for example, 3949 // powi(x,15) generates one more multiply than it should), but this has 3950 // the benefit of being both really simple and much better than a libcall. 3951 SDValue Res; // Logically starts equal to 1.0 3952 SDValue CurSquare = LHS; 3953 while (Val) { 3954 if (Val & 1) { 3955 if (Res.getNode()) 3956 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3957 else 3958 Res = CurSquare; // 1.0*CurSquare. 3959 } 3960 3961 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3962 CurSquare, CurSquare); 3963 Val >>= 1; 3964 } 3965 3966 // If the original was negative, invert the result, producing 1/(x*x*x). 3967 if (RHSC->getSExtValue() < 0) 3968 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3969 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3970 return Res; 3971 } 3972 } 3973 3974 // Otherwise, expand to a libcall. 3975 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3976 } 3977 3978 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3979 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3980 /// At the end of instruction selection, they will be inserted to the entry BB. 3981 bool 3982 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 3983 int64_t Offset, 3984 const SDValue &N) { 3985 const Argument *Arg = dyn_cast<Argument>(V); 3986 if (!Arg) 3987 return false; 3988 3989 MachineFunction &MF = DAG.getMachineFunction(); 3990 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3991 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 3992 3993 // Ignore inlined function arguments here. 3994 DIVariable DV(Variable); 3995 if (DV.isInlinedFnArgument(MF.getFunction())) 3996 return false; 3997 3998 MachineBasicBlock *MBB = FuncInfo.MBB; 3999 if (MBB != &MF.front()) 4000 return false; 4001 4002 unsigned Reg = 0; 4003 if (Arg->hasByValAttr()) { 4004 // Byval arguments' frame index is recorded during argument lowering. 4005 // Use this info directly. 4006 Reg = TRI->getFrameRegister(MF); 4007 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4008 // If byval argument ofset is not recorded then ignore this. 4009 if (!Offset) 4010 Reg = 0; 4011 } 4012 4013 if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) { 4014 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4015 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4016 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4017 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4018 if (PR) 4019 Reg = PR; 4020 } 4021 } 4022 4023 if (!Reg) { 4024 // Check if ValueMap has reg number. 4025 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4026 if (VMI != FuncInfo.ValueMap.end()) 4027 Reg = VMI->second; 4028 } 4029 4030 if (!Reg && N.getNode()) { 4031 // Check if frame index is available. 4032 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4033 if (FrameIndexSDNode *FINode = 4034 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4035 Reg = TRI->getFrameRegister(MF); 4036 Offset = FINode->getIndex(); 4037 } 4038 } 4039 4040 if (!Reg) 4041 return false; 4042 4043 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4044 TII->get(TargetOpcode::DBG_VALUE)) 4045 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4046 FuncInfo.ArgDbgValues.push_back(&*MIB); 4047 return true; 4048 } 4049 4050 // VisualStudio defines setjmp as _setjmp 4051 #if defined(_MSC_VER) && defined(setjmp) && \ 4052 !defined(setjmp_undefined_for_msvc) 4053 # pragma push_macro("setjmp") 4054 # undef setjmp 4055 # define setjmp_undefined_for_msvc 4056 #endif 4057 4058 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4059 /// we want to emit this as a call to a named external function, return the name 4060 /// otherwise lower it and return null. 4061 const char * 4062 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4063 DebugLoc dl = getCurDebugLoc(); 4064 SDValue Res; 4065 4066 switch (Intrinsic) { 4067 default: 4068 // By default, turn this into a target intrinsic node. 4069 visitTargetIntrinsic(I, Intrinsic); 4070 return 0; 4071 case Intrinsic::vastart: visitVAStart(I); return 0; 4072 case Intrinsic::vaend: visitVAEnd(I); return 0; 4073 case Intrinsic::vacopy: visitVACopy(I); return 0; 4074 case Intrinsic::returnaddress: 4075 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4076 getValue(I.getArgOperand(0)))); 4077 return 0; 4078 case Intrinsic::frameaddress: 4079 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4080 getValue(I.getArgOperand(0)))); 4081 return 0; 4082 case Intrinsic::setjmp: 4083 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4084 case Intrinsic::longjmp: 4085 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4086 case Intrinsic::memcpy: { 4087 // Assert for address < 256 since we support only user defined address 4088 // spaces. 4089 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4090 < 256 && 4091 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4092 < 256 && 4093 "Unknown address space"); 4094 SDValue Op1 = getValue(I.getArgOperand(0)); 4095 SDValue Op2 = getValue(I.getArgOperand(1)); 4096 SDValue Op3 = getValue(I.getArgOperand(2)); 4097 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4098 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4099 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4100 MachinePointerInfo(I.getArgOperand(0)), 4101 MachinePointerInfo(I.getArgOperand(1)))); 4102 return 0; 4103 } 4104 case Intrinsic::memset: { 4105 // Assert for address < 256 since we support only user defined address 4106 // spaces. 4107 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4108 < 256 && 4109 "Unknown address space"); 4110 SDValue Op1 = getValue(I.getArgOperand(0)); 4111 SDValue Op2 = getValue(I.getArgOperand(1)); 4112 SDValue Op3 = getValue(I.getArgOperand(2)); 4113 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4114 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4115 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4116 MachinePointerInfo(I.getArgOperand(0)))); 4117 return 0; 4118 } 4119 case Intrinsic::memmove: { 4120 // Assert for address < 256 since we support only user defined address 4121 // spaces. 4122 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4123 < 256 && 4124 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4125 < 256 && 4126 "Unknown address space"); 4127 SDValue Op1 = getValue(I.getArgOperand(0)); 4128 SDValue Op2 = getValue(I.getArgOperand(1)); 4129 SDValue Op3 = getValue(I.getArgOperand(2)); 4130 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4131 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4132 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4133 MachinePointerInfo(I.getArgOperand(0)), 4134 MachinePointerInfo(I.getArgOperand(1)))); 4135 return 0; 4136 } 4137 case Intrinsic::dbg_declare: { 4138 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4139 MDNode *Variable = DI.getVariable(); 4140 const Value *Address = DI.getAddress(); 4141 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4142 return 0; 4143 4144 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4145 // but do not always have a corresponding SDNode built. The SDNodeOrder 4146 // absolute, but not relative, values are different depending on whether 4147 // debug info exists. 4148 ++SDNodeOrder; 4149 4150 // Check if address has undef value. 4151 if (isa<UndefValue>(Address) || 4152 (Address->use_empty() && !isa<Argument>(Address))) { 4153 SDDbgValue*SDV = 4154 DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4155 0, dl, SDNodeOrder); 4156 DAG.AddDbgValue(SDV, 0, false); 4157 return 0; 4158 } 4159 4160 SDValue &N = NodeMap[Address]; 4161 if (!N.getNode() && isa<Argument>(Address)) 4162 // Check unused arguments map. 4163 N = UnusedArgNodeMap[Address]; 4164 SDDbgValue *SDV; 4165 if (N.getNode()) { 4166 // Parameters are handled specially. 4167 bool isParameter = 4168 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4169 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4170 Address = BCI->getOperand(0); 4171 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4172 4173 if (isParameter && !AI) { 4174 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4175 if (FINode) 4176 // Byval parameter. We have a frame index at this point. 4177 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4178 0, dl, SDNodeOrder); 4179 else 4180 // Can't do anything with other non-AI cases yet. This might be a 4181 // parameter of a callee function that got inlined, for example. 4182 return 0; 4183 } else if (AI) 4184 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4185 0, dl, SDNodeOrder); 4186 else 4187 // Can't do anything with other non-AI cases yet. 4188 return 0; 4189 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4190 } else { 4191 // If Address is an argument then try to emit its dbg value using 4192 // virtual register info from the FuncInfo.ValueMap. 4193 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4194 // If variable is pinned by a alloca in dominating bb then 4195 // use StaticAllocaMap. 4196 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4197 if (AI->getParent() != DI.getParent()) { 4198 DenseMap<const AllocaInst*, int>::iterator SI = 4199 FuncInfo.StaticAllocaMap.find(AI); 4200 if (SI != FuncInfo.StaticAllocaMap.end()) { 4201 SDV = DAG.getDbgValue(Variable, SI->second, 4202 0, dl, SDNodeOrder); 4203 DAG.AddDbgValue(SDV, 0, false); 4204 return 0; 4205 } 4206 } 4207 } 4208 // Otherwise add undef to help track missing debug info. 4209 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4210 0, dl, SDNodeOrder); 4211 DAG.AddDbgValue(SDV, 0, false); 4212 } 4213 } 4214 return 0; 4215 } 4216 case Intrinsic::dbg_value: { 4217 const DbgValueInst &DI = cast<DbgValueInst>(I); 4218 if (!DIVariable(DI.getVariable()).Verify()) 4219 return 0; 4220 4221 MDNode *Variable = DI.getVariable(); 4222 uint64_t Offset = DI.getOffset(); 4223 const Value *V = DI.getValue(); 4224 if (!V) 4225 return 0; 4226 4227 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4228 // but do not always have a corresponding SDNode built. The SDNodeOrder 4229 // absolute, but not relative, values are different depending on whether 4230 // debug info exists. 4231 ++SDNodeOrder; 4232 SDDbgValue *SDV; 4233 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4234 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4235 DAG.AddDbgValue(SDV, 0, false); 4236 } else { 4237 // Do not use getValue() in here; we don't want to generate code at 4238 // this point if it hasn't been done yet. 4239 SDValue N = NodeMap[V]; 4240 if (!N.getNode() && isa<Argument>(V)) 4241 // Check unused arguments map. 4242 N = UnusedArgNodeMap[V]; 4243 if (N.getNode()) { 4244 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4245 SDV = DAG.getDbgValue(Variable, N.getNode(), 4246 N.getResNo(), Offset, dl, SDNodeOrder); 4247 DAG.AddDbgValue(SDV, N.getNode(), false); 4248 } 4249 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4250 // Do not call getValue(V) yet, as we don't want to generate code. 4251 // Remember it for later. 4252 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4253 DanglingDebugInfoMap[V] = DDI; 4254 } else { 4255 // We may expand this to cover more cases. One case where we have no 4256 // data available is an unreferenced parameter; we need this fallback. 4257 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4258 Offset, dl, SDNodeOrder); 4259 DAG.AddDbgValue(SDV, 0, false); 4260 } 4261 } 4262 4263 // Build a debug info table entry. 4264 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4265 V = BCI->getOperand(0); 4266 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4267 // Don't handle byval struct arguments or VLAs, for example. 4268 if (!AI) 4269 return 0; 4270 DenseMap<const AllocaInst*, int>::iterator SI = 4271 FuncInfo.StaticAllocaMap.find(AI); 4272 if (SI == FuncInfo.StaticAllocaMap.end()) 4273 return 0; // VLAs. 4274 int FI = SI->second; 4275 4276 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4277 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4278 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4279 return 0; 4280 } 4281 case Intrinsic::eh_exception: { 4282 // Insert the EXCEPTIONADDR instruction. 4283 assert(FuncInfo.MBB->isLandingPad() && 4284 "Call to eh.exception not in landing pad!"); 4285 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4286 SDValue Ops[1]; 4287 Ops[0] = DAG.getRoot(); 4288 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4289 setValue(&I, Op); 4290 DAG.setRoot(Op.getValue(1)); 4291 return 0; 4292 } 4293 4294 case Intrinsic::eh_selector: { 4295 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4296 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4297 if (CallMBB->isLandingPad()) 4298 AddCatchInfo(I, &MMI, CallMBB); 4299 else { 4300 #ifndef NDEBUG 4301 FuncInfo.CatchInfoLost.insert(&I); 4302 #endif 4303 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4304 unsigned Reg = TLI.getExceptionSelectorRegister(); 4305 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4306 } 4307 4308 // Insert the EHSELECTION instruction. 4309 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4310 SDValue Ops[2]; 4311 Ops[0] = getValue(I.getArgOperand(0)); 4312 Ops[1] = getRoot(); 4313 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4314 DAG.setRoot(Op.getValue(1)); 4315 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4316 return 0; 4317 } 4318 4319 case Intrinsic::eh_typeid_for: { 4320 // Find the type id for the given typeinfo. 4321 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4322 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4323 Res = DAG.getConstant(TypeID, MVT::i32); 4324 setValue(&I, Res); 4325 return 0; 4326 } 4327 4328 case Intrinsic::eh_return_i32: 4329 case Intrinsic::eh_return_i64: 4330 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4331 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4332 MVT::Other, 4333 getControlRoot(), 4334 getValue(I.getArgOperand(0)), 4335 getValue(I.getArgOperand(1)))); 4336 return 0; 4337 case Intrinsic::eh_unwind_init: 4338 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4339 return 0; 4340 case Intrinsic::eh_dwarf_cfa: { 4341 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4342 TLI.getPointerTy()); 4343 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4344 TLI.getPointerTy(), 4345 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4346 TLI.getPointerTy()), 4347 CfaArg); 4348 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4349 TLI.getPointerTy(), 4350 DAG.getConstant(0, TLI.getPointerTy())); 4351 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4352 FA, Offset)); 4353 return 0; 4354 } 4355 case Intrinsic::eh_sjlj_callsite: { 4356 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4357 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4358 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4359 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4360 4361 MMI.setCurrentCallSite(CI->getZExtValue()); 4362 return 0; 4363 } 4364 case Intrinsic::eh_sjlj_setjmp: { 4365 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4366 getValue(I.getArgOperand(0)))); 4367 return 0; 4368 } 4369 case Intrinsic::eh_sjlj_longjmp: { 4370 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4371 getRoot(), getValue(I.getArgOperand(0)))); 4372 return 0; 4373 } 4374 case Intrinsic::eh_sjlj_dispatch_setup: { 4375 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4376 getRoot(), getValue(I.getArgOperand(0)))); 4377 return 0; 4378 } 4379 4380 case Intrinsic::x86_mmx_pslli_w: 4381 case Intrinsic::x86_mmx_pslli_d: 4382 case Intrinsic::x86_mmx_pslli_q: 4383 case Intrinsic::x86_mmx_psrli_w: 4384 case Intrinsic::x86_mmx_psrli_d: 4385 case Intrinsic::x86_mmx_psrli_q: 4386 case Intrinsic::x86_mmx_psrai_w: 4387 case Intrinsic::x86_mmx_psrai_d: { 4388 SDValue ShAmt = getValue(I.getArgOperand(1)); 4389 if (isa<ConstantSDNode>(ShAmt)) { 4390 visitTargetIntrinsic(I, Intrinsic); 4391 return 0; 4392 } 4393 unsigned NewIntrinsic = 0; 4394 EVT ShAmtVT = MVT::v2i32; 4395 switch (Intrinsic) { 4396 case Intrinsic::x86_mmx_pslli_w: 4397 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4398 break; 4399 case Intrinsic::x86_mmx_pslli_d: 4400 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4401 break; 4402 case Intrinsic::x86_mmx_pslli_q: 4403 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4404 break; 4405 case Intrinsic::x86_mmx_psrli_w: 4406 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4407 break; 4408 case Intrinsic::x86_mmx_psrli_d: 4409 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4410 break; 4411 case Intrinsic::x86_mmx_psrli_q: 4412 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4413 break; 4414 case Intrinsic::x86_mmx_psrai_w: 4415 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4416 break; 4417 case Intrinsic::x86_mmx_psrai_d: 4418 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4419 break; 4420 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4421 } 4422 4423 // The vector shift intrinsics with scalars uses 32b shift amounts but 4424 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4425 // to be zero. 4426 // We must do this early because v2i32 is not a legal type. 4427 DebugLoc dl = getCurDebugLoc(); 4428 SDValue ShOps[2]; 4429 ShOps[0] = ShAmt; 4430 ShOps[1] = DAG.getConstant(0, MVT::i32); 4431 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4432 EVT DestVT = TLI.getValueType(I.getType()); 4433 ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, DestVT, ShAmt); 4434 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4435 DAG.getConstant(NewIntrinsic, MVT::i32), 4436 getValue(I.getArgOperand(0)), ShAmt); 4437 setValue(&I, Res); 4438 return 0; 4439 } 4440 case Intrinsic::convertff: 4441 case Intrinsic::convertfsi: 4442 case Intrinsic::convertfui: 4443 case Intrinsic::convertsif: 4444 case Intrinsic::convertuif: 4445 case Intrinsic::convertss: 4446 case Intrinsic::convertsu: 4447 case Intrinsic::convertus: 4448 case Intrinsic::convertuu: { 4449 ISD::CvtCode Code = ISD::CVT_INVALID; 4450 switch (Intrinsic) { 4451 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4452 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4453 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4454 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4455 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4456 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4457 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4458 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4459 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4460 } 4461 EVT DestVT = TLI.getValueType(I.getType()); 4462 const Value *Op1 = I.getArgOperand(0); 4463 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4464 DAG.getValueType(DestVT), 4465 DAG.getValueType(getValue(Op1).getValueType()), 4466 getValue(I.getArgOperand(1)), 4467 getValue(I.getArgOperand(2)), 4468 Code); 4469 setValue(&I, Res); 4470 return 0; 4471 } 4472 case Intrinsic::sqrt: 4473 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4474 getValue(I.getArgOperand(0)).getValueType(), 4475 getValue(I.getArgOperand(0)))); 4476 return 0; 4477 case Intrinsic::powi: 4478 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4479 getValue(I.getArgOperand(1)), DAG)); 4480 return 0; 4481 case Intrinsic::sin: 4482 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4483 getValue(I.getArgOperand(0)).getValueType(), 4484 getValue(I.getArgOperand(0)))); 4485 return 0; 4486 case Intrinsic::cos: 4487 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4488 getValue(I.getArgOperand(0)).getValueType(), 4489 getValue(I.getArgOperand(0)))); 4490 return 0; 4491 case Intrinsic::log: 4492 visitLog(I); 4493 return 0; 4494 case Intrinsic::log2: 4495 visitLog2(I); 4496 return 0; 4497 case Intrinsic::log10: 4498 visitLog10(I); 4499 return 0; 4500 case Intrinsic::exp: 4501 visitExp(I); 4502 return 0; 4503 case Intrinsic::exp2: 4504 visitExp2(I); 4505 return 0; 4506 case Intrinsic::pow: 4507 visitPow(I); 4508 return 0; 4509 case Intrinsic::convert_to_fp16: 4510 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4511 MVT::i16, getValue(I.getArgOperand(0)))); 4512 return 0; 4513 case Intrinsic::convert_from_fp16: 4514 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4515 MVT::f32, getValue(I.getArgOperand(0)))); 4516 return 0; 4517 case Intrinsic::pcmarker: { 4518 SDValue Tmp = getValue(I.getArgOperand(0)); 4519 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4520 return 0; 4521 } 4522 case Intrinsic::readcyclecounter: { 4523 SDValue Op = getRoot(); 4524 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4525 DAG.getVTList(MVT::i64, MVT::Other), 4526 &Op, 1); 4527 setValue(&I, Res); 4528 DAG.setRoot(Res.getValue(1)); 4529 return 0; 4530 } 4531 case Intrinsic::bswap: 4532 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4533 getValue(I.getArgOperand(0)).getValueType(), 4534 getValue(I.getArgOperand(0)))); 4535 return 0; 4536 case Intrinsic::cttz: { 4537 SDValue Arg = getValue(I.getArgOperand(0)); 4538 EVT Ty = Arg.getValueType(); 4539 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4540 return 0; 4541 } 4542 case Intrinsic::ctlz: { 4543 SDValue Arg = getValue(I.getArgOperand(0)); 4544 EVT Ty = Arg.getValueType(); 4545 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4546 return 0; 4547 } 4548 case Intrinsic::ctpop: { 4549 SDValue Arg = getValue(I.getArgOperand(0)); 4550 EVT Ty = Arg.getValueType(); 4551 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4552 return 0; 4553 } 4554 case Intrinsic::stacksave: { 4555 SDValue Op = getRoot(); 4556 Res = DAG.getNode(ISD::STACKSAVE, dl, 4557 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4558 setValue(&I, Res); 4559 DAG.setRoot(Res.getValue(1)); 4560 return 0; 4561 } 4562 case Intrinsic::stackrestore: { 4563 Res = getValue(I.getArgOperand(0)); 4564 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4565 return 0; 4566 } 4567 case Intrinsic::stackprotector: { 4568 // Emit code into the DAG to store the stack guard onto the stack. 4569 MachineFunction &MF = DAG.getMachineFunction(); 4570 MachineFrameInfo *MFI = MF.getFrameInfo(); 4571 EVT PtrTy = TLI.getPointerTy(); 4572 4573 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4574 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4575 4576 int FI = FuncInfo.StaticAllocaMap[Slot]; 4577 MFI->setStackProtectorIndex(FI); 4578 4579 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4580 4581 // Store the stack protector onto the stack. 4582 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4583 MachinePointerInfo::getFixedStack(FI), 4584 true, false, 0); 4585 setValue(&I, Res); 4586 DAG.setRoot(Res); 4587 return 0; 4588 } 4589 case Intrinsic::objectsize: { 4590 // If we don't know by now, we're never going to know. 4591 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4592 4593 assert(CI && "Non-constant type in __builtin_object_size?"); 4594 4595 SDValue Arg = getValue(I.getCalledValue()); 4596 EVT Ty = Arg.getValueType(); 4597 4598 if (CI->isZero()) 4599 Res = DAG.getConstant(-1ULL, Ty); 4600 else 4601 Res = DAG.getConstant(0, Ty); 4602 4603 setValue(&I, Res); 4604 return 0; 4605 } 4606 case Intrinsic::var_annotation: 4607 // Discard annotate attributes 4608 return 0; 4609 4610 case Intrinsic::init_trampoline: { 4611 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4612 4613 SDValue Ops[6]; 4614 Ops[0] = getRoot(); 4615 Ops[1] = getValue(I.getArgOperand(0)); 4616 Ops[2] = getValue(I.getArgOperand(1)); 4617 Ops[3] = getValue(I.getArgOperand(2)); 4618 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4619 Ops[5] = DAG.getSrcValue(F); 4620 4621 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4622 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4623 Ops, 6); 4624 4625 setValue(&I, Res); 4626 DAG.setRoot(Res.getValue(1)); 4627 return 0; 4628 } 4629 case Intrinsic::gcroot: 4630 if (GFI) { 4631 const Value *Alloca = I.getArgOperand(0); 4632 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4633 4634 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4635 GFI->addStackRoot(FI->getIndex(), TypeMap); 4636 } 4637 return 0; 4638 case Intrinsic::gcread: 4639 case Intrinsic::gcwrite: 4640 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4641 return 0; 4642 case Intrinsic::flt_rounds: 4643 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4644 return 0; 4645 case Intrinsic::trap: 4646 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4647 return 0; 4648 case Intrinsic::uadd_with_overflow: 4649 return implVisitAluOverflow(I, ISD::UADDO); 4650 case Intrinsic::sadd_with_overflow: 4651 return implVisitAluOverflow(I, ISD::SADDO); 4652 case Intrinsic::usub_with_overflow: 4653 return implVisitAluOverflow(I, ISD::USUBO); 4654 case Intrinsic::ssub_with_overflow: 4655 return implVisitAluOverflow(I, ISD::SSUBO); 4656 case Intrinsic::umul_with_overflow: 4657 return implVisitAluOverflow(I, ISD::UMULO); 4658 case Intrinsic::smul_with_overflow: 4659 return implVisitAluOverflow(I, ISD::SMULO); 4660 4661 case Intrinsic::prefetch: { 4662 SDValue Ops[4]; 4663 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4664 Ops[0] = getRoot(); 4665 Ops[1] = getValue(I.getArgOperand(0)); 4666 Ops[2] = getValue(I.getArgOperand(1)); 4667 Ops[3] = getValue(I.getArgOperand(2)); 4668 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 4669 DAG.getVTList(MVT::Other), 4670 &Ops[0], 4, 4671 EVT::getIntegerVT(*Context, 8), 4672 MachinePointerInfo(I.getArgOperand(0)), 4673 0, /* align */ 4674 false, /* volatile */ 4675 rw==0, /* read */ 4676 rw==1)); /* write */ 4677 return 0; 4678 } 4679 case Intrinsic::memory_barrier: { 4680 SDValue Ops[6]; 4681 Ops[0] = getRoot(); 4682 for (int x = 1; x < 6; ++x) 4683 Ops[x] = getValue(I.getArgOperand(x - 1)); 4684 4685 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4686 return 0; 4687 } 4688 case Intrinsic::atomic_cmp_swap: { 4689 SDValue Root = getRoot(); 4690 SDValue L = 4691 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4692 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4693 Root, 4694 getValue(I.getArgOperand(0)), 4695 getValue(I.getArgOperand(1)), 4696 getValue(I.getArgOperand(2)), 4697 MachinePointerInfo(I.getArgOperand(0))); 4698 setValue(&I, L); 4699 DAG.setRoot(L.getValue(1)); 4700 return 0; 4701 } 4702 case Intrinsic::atomic_load_add: 4703 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4704 case Intrinsic::atomic_load_sub: 4705 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4706 case Intrinsic::atomic_load_or: 4707 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4708 case Intrinsic::atomic_load_xor: 4709 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4710 case Intrinsic::atomic_load_and: 4711 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4712 case Intrinsic::atomic_load_nand: 4713 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4714 case Intrinsic::atomic_load_max: 4715 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4716 case Intrinsic::atomic_load_min: 4717 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4718 case Intrinsic::atomic_load_umin: 4719 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4720 case Intrinsic::atomic_load_umax: 4721 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4722 case Intrinsic::atomic_swap: 4723 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4724 4725 case Intrinsic::invariant_start: 4726 case Intrinsic::lifetime_start: 4727 // Discard region information. 4728 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4729 return 0; 4730 case Intrinsic::invariant_end: 4731 case Intrinsic::lifetime_end: 4732 // Discard region information. 4733 return 0; 4734 } 4735 } 4736 4737 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4738 bool isTailCall, 4739 MachineBasicBlock *LandingPad) { 4740 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4741 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4742 const Type *RetTy = FTy->getReturnType(); 4743 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4744 MCSymbol *BeginLabel = 0; 4745 4746 TargetLowering::ArgListTy Args; 4747 TargetLowering::ArgListEntry Entry; 4748 Args.reserve(CS.arg_size()); 4749 4750 // Check whether the function can return without sret-demotion. 4751 SmallVector<ISD::OutputArg, 4> Outs; 4752 SmallVector<uint64_t, 4> Offsets; 4753 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4754 Outs, TLI, &Offsets); 4755 4756 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4757 FTy->isVarArg(), Outs, FTy->getContext()); 4758 4759 SDValue DemoteStackSlot; 4760 int DemoteStackIdx = -100; 4761 4762 if (!CanLowerReturn) { 4763 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4764 FTy->getReturnType()); 4765 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4766 FTy->getReturnType()); 4767 MachineFunction &MF = DAG.getMachineFunction(); 4768 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4769 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4770 4771 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4772 Entry.Node = DemoteStackSlot; 4773 Entry.Ty = StackSlotPtrType; 4774 Entry.isSExt = false; 4775 Entry.isZExt = false; 4776 Entry.isInReg = false; 4777 Entry.isSRet = true; 4778 Entry.isNest = false; 4779 Entry.isByVal = false; 4780 Entry.Alignment = Align; 4781 Args.push_back(Entry); 4782 RetTy = Type::getVoidTy(FTy->getContext()); 4783 } 4784 4785 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4786 i != e; ++i) { 4787 SDValue ArgNode = getValue(*i); 4788 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4789 4790 unsigned attrInd = i - CS.arg_begin() + 1; 4791 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4792 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4793 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4794 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4795 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4796 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4797 Entry.Alignment = CS.getParamAlignment(attrInd); 4798 Args.push_back(Entry); 4799 } 4800 4801 if (LandingPad) { 4802 // Insert a label before the invoke call to mark the try range. This can be 4803 // used to detect deletion of the invoke via the MachineModuleInfo. 4804 BeginLabel = MMI.getContext().CreateTempSymbol(); 4805 4806 // For SjLj, keep track of which landing pads go with which invokes 4807 // so as to maintain the ordering of pads in the LSDA. 4808 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4809 if (CallSiteIndex) { 4810 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4811 // Now that the call site is handled, stop tracking it. 4812 MMI.setCurrentCallSite(0); 4813 } 4814 4815 // Both PendingLoads and PendingExports must be flushed here; 4816 // this call might not return. 4817 (void)getRoot(); 4818 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4819 } 4820 4821 // Check if target-independent constraints permit a tail call here. 4822 // Target-dependent constraints are checked within TLI.LowerCallTo. 4823 if (isTailCall && 4824 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4825 isTailCall = false; 4826 4827 // If there's a possibility that fast-isel has already selected some amount 4828 // of the current basic block, don't emit a tail call. 4829 if (isTailCall && EnableFastISel) 4830 isTailCall = false; 4831 4832 std::pair<SDValue,SDValue> Result = 4833 TLI.LowerCallTo(getRoot(), RetTy, 4834 CS.paramHasAttr(0, Attribute::SExt), 4835 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4836 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4837 CS.getCallingConv(), 4838 isTailCall, 4839 !CS.getInstruction()->use_empty(), 4840 Callee, Args, DAG, getCurDebugLoc()); 4841 assert((isTailCall || Result.second.getNode()) && 4842 "Non-null chain expected with non-tail call!"); 4843 assert((Result.second.getNode() || !Result.first.getNode()) && 4844 "Null value expected with tail call!"); 4845 if (Result.first.getNode()) { 4846 setValue(CS.getInstruction(), Result.first); 4847 } else if (!CanLowerReturn && Result.second.getNode()) { 4848 // The instruction result is the result of loading from the 4849 // hidden sret parameter. 4850 SmallVector<EVT, 1> PVTs; 4851 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4852 4853 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4854 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4855 EVT PtrVT = PVTs[0]; 4856 unsigned NumValues = Outs.size(); 4857 SmallVector<SDValue, 4> Values(NumValues); 4858 SmallVector<SDValue, 4> Chains(NumValues); 4859 4860 for (unsigned i = 0; i < NumValues; ++i) { 4861 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4862 DemoteStackSlot, 4863 DAG.getConstant(Offsets[i], PtrVT)); 4864 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4865 Add, 4866 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 4867 false, false, 1); 4868 Values[i] = L; 4869 Chains[i] = L.getValue(1); 4870 } 4871 4872 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4873 MVT::Other, &Chains[0], NumValues); 4874 PendingLoads.push_back(Chain); 4875 4876 // Collect the legal value parts into potentially illegal values 4877 // that correspond to the original function's return values. 4878 SmallVector<EVT, 4> RetTys; 4879 RetTy = FTy->getReturnType(); 4880 ComputeValueVTs(TLI, RetTy, RetTys); 4881 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4882 SmallVector<SDValue, 4> ReturnValues; 4883 unsigned CurReg = 0; 4884 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4885 EVT VT = RetTys[I]; 4886 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4887 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4888 4889 SDValue ReturnValue = 4890 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4891 RegisterVT, VT, AssertOp); 4892 ReturnValues.push_back(ReturnValue); 4893 CurReg += NumRegs; 4894 } 4895 4896 setValue(CS.getInstruction(), 4897 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4898 DAG.getVTList(&RetTys[0], RetTys.size()), 4899 &ReturnValues[0], ReturnValues.size())); 4900 4901 } 4902 4903 // As a special case, a null chain means that a tail call has been emitted and 4904 // the DAG root is already updated. 4905 if (Result.second.getNode()) 4906 DAG.setRoot(Result.second); 4907 else 4908 HasTailCall = true; 4909 4910 if (LandingPad) { 4911 // Insert a label at the end of the invoke call to mark the try range. This 4912 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4913 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4914 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4915 4916 // Inform MachineModuleInfo of range. 4917 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4918 } 4919 } 4920 4921 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4922 /// value is equal or not-equal to zero. 4923 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4924 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4925 UI != E; ++UI) { 4926 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4927 if (IC->isEquality()) 4928 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4929 if (C->isNullValue()) 4930 continue; 4931 // Unknown instruction. 4932 return false; 4933 } 4934 return true; 4935 } 4936 4937 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4938 const Type *LoadTy, 4939 SelectionDAGBuilder &Builder) { 4940 4941 // Check to see if this load can be trivially constant folded, e.g. if the 4942 // input is from a string literal. 4943 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4944 // Cast pointer to the type we really want to load. 4945 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4946 PointerType::getUnqual(LoadTy)); 4947 4948 if (const Constant *LoadCst = 4949 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4950 Builder.TD)) 4951 return Builder.getValue(LoadCst); 4952 } 4953 4954 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4955 // still constant memory, the input chain can be the entry node. 4956 SDValue Root; 4957 bool ConstantMemory = false; 4958 4959 // Do not serialize (non-volatile) loads of constant memory with anything. 4960 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4961 Root = Builder.DAG.getEntryNode(); 4962 ConstantMemory = true; 4963 } else { 4964 // Do not serialize non-volatile loads against each other. 4965 Root = Builder.DAG.getRoot(); 4966 } 4967 4968 SDValue Ptr = Builder.getValue(PtrVal); 4969 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4970 Ptr, MachinePointerInfo(PtrVal), 4971 false /*volatile*/, 4972 false /*nontemporal*/, 1 /* align=1 */); 4973 4974 if (!ConstantMemory) 4975 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4976 return LoadVal; 4977 } 4978 4979 4980 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4981 /// If so, return true and lower it, otherwise return false and it will be 4982 /// lowered like a normal call. 4983 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4984 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4985 if (I.getNumArgOperands() != 3) 4986 return false; 4987 4988 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4989 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4990 !I.getArgOperand(2)->getType()->isIntegerTy() || 4991 !I.getType()->isIntegerTy()) 4992 return false; 4993 4994 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4995 4996 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4997 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4998 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4999 bool ActuallyDoIt = true; 5000 MVT LoadVT; 5001 const Type *LoadTy; 5002 switch (Size->getZExtValue()) { 5003 default: 5004 LoadVT = MVT::Other; 5005 LoadTy = 0; 5006 ActuallyDoIt = false; 5007 break; 5008 case 2: 5009 LoadVT = MVT::i16; 5010 LoadTy = Type::getInt16Ty(Size->getContext()); 5011 break; 5012 case 4: 5013 LoadVT = MVT::i32; 5014 LoadTy = Type::getInt32Ty(Size->getContext()); 5015 break; 5016 case 8: 5017 LoadVT = MVT::i64; 5018 LoadTy = Type::getInt64Ty(Size->getContext()); 5019 break; 5020 /* 5021 case 16: 5022 LoadVT = MVT::v4i32; 5023 LoadTy = Type::getInt32Ty(Size->getContext()); 5024 LoadTy = VectorType::get(LoadTy, 4); 5025 break; 5026 */ 5027 } 5028 5029 // This turns into unaligned loads. We only do this if the target natively 5030 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5031 // we'll only produce a small number of byte loads. 5032 5033 // Require that we can find a legal MVT, and only do this if the target 5034 // supports unaligned loads of that type. Expanding into byte loads would 5035 // bloat the code. 5036 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5037 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5038 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5039 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5040 ActuallyDoIt = false; 5041 } 5042 5043 if (ActuallyDoIt) { 5044 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5045 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5046 5047 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5048 ISD::SETNE); 5049 EVT CallVT = TLI.getValueType(I.getType(), true); 5050 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5051 return true; 5052 } 5053 } 5054 5055 5056 return false; 5057 } 5058 5059 5060 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5061 // Handle inline assembly differently. 5062 if (isa<InlineAsm>(I.getCalledValue())) { 5063 visitInlineAsm(&I); 5064 return; 5065 } 5066 5067 // See if any floating point values are being passed to this function. This is 5068 // used to emit an undefined reference to fltused on Windows. 5069 const FunctionType *FT = 5070 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5071 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5072 if (FT->isVarArg() && 5073 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5074 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5075 const Type* T = I.getArgOperand(i)->getType(); 5076 for (po_iterator<const Type*> i = po_begin(T), e = po_end(T); 5077 i != e; ++i) { 5078 if (!i->isFloatingPointTy()) continue; 5079 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5080 break; 5081 } 5082 } 5083 } 5084 5085 const char *RenameFn = 0; 5086 if (Function *F = I.getCalledFunction()) { 5087 if (F->isDeclaration()) { 5088 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5089 if (unsigned IID = II->getIntrinsicID(F)) { 5090 RenameFn = visitIntrinsicCall(I, IID); 5091 if (!RenameFn) 5092 return; 5093 } 5094 } 5095 if (unsigned IID = F->getIntrinsicID()) { 5096 RenameFn = visitIntrinsicCall(I, IID); 5097 if (!RenameFn) 5098 return; 5099 } 5100 } 5101 5102 // Check for well-known libc/libm calls. If the function is internal, it 5103 // can't be a library call. 5104 if (!F->hasLocalLinkage() && F->hasName()) { 5105 StringRef Name = F->getName(); 5106 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5107 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5108 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5109 I.getType() == I.getArgOperand(0)->getType() && 5110 I.getType() == I.getArgOperand(1)->getType()) { 5111 SDValue LHS = getValue(I.getArgOperand(0)); 5112 SDValue RHS = getValue(I.getArgOperand(1)); 5113 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5114 LHS.getValueType(), LHS, RHS)); 5115 return; 5116 } 5117 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5118 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5119 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5120 I.getType() == I.getArgOperand(0)->getType()) { 5121 SDValue Tmp = getValue(I.getArgOperand(0)); 5122 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5123 Tmp.getValueType(), Tmp)); 5124 return; 5125 } 5126 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5127 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5128 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5129 I.getType() == I.getArgOperand(0)->getType() && 5130 I.onlyReadsMemory()) { 5131 SDValue Tmp = getValue(I.getArgOperand(0)); 5132 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5133 Tmp.getValueType(), Tmp)); 5134 return; 5135 } 5136 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5137 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5138 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5139 I.getType() == I.getArgOperand(0)->getType() && 5140 I.onlyReadsMemory()) { 5141 SDValue Tmp = getValue(I.getArgOperand(0)); 5142 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5143 Tmp.getValueType(), Tmp)); 5144 return; 5145 } 5146 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5147 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5148 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5149 I.getType() == I.getArgOperand(0)->getType() && 5150 I.onlyReadsMemory()) { 5151 SDValue Tmp = getValue(I.getArgOperand(0)); 5152 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5153 Tmp.getValueType(), Tmp)); 5154 return; 5155 } 5156 } else if (Name == "memcmp") { 5157 if (visitMemCmpCall(I)) 5158 return; 5159 } 5160 } 5161 } 5162 5163 SDValue Callee; 5164 if (!RenameFn) 5165 Callee = getValue(I.getCalledValue()); 5166 else 5167 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5168 5169 // Check if we can potentially perform a tail call. More detailed checking is 5170 // be done within LowerCallTo, after more information about the call is known. 5171 LowerCallTo(&I, Callee, I.isTailCall()); 5172 } 5173 5174 namespace llvm { 5175 5176 /// AsmOperandInfo - This contains information for each constraint that we are 5177 /// lowering. 5178 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 5179 public TargetLowering::AsmOperandInfo { 5180 public: 5181 /// CallOperand - If this is the result output operand or a clobber 5182 /// this is null, otherwise it is the incoming operand to the CallInst. 5183 /// This gets modified as the asm is processed. 5184 SDValue CallOperand; 5185 5186 /// AssignedRegs - If this is a register or register class operand, this 5187 /// contains the set of register corresponding to the operand. 5188 RegsForValue AssignedRegs; 5189 5190 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5191 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5192 } 5193 5194 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5195 /// busy in OutputRegs/InputRegs. 5196 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5197 std::set<unsigned> &OutputRegs, 5198 std::set<unsigned> &InputRegs, 5199 const TargetRegisterInfo &TRI) const { 5200 if (isOutReg) { 5201 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5202 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5203 } 5204 if (isInReg) { 5205 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5206 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5207 } 5208 } 5209 5210 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5211 /// corresponds to. If there is no Value* for this operand, it returns 5212 /// MVT::Other. 5213 EVT getCallOperandValEVT(LLVMContext &Context, 5214 const TargetLowering &TLI, 5215 const TargetData *TD) const { 5216 if (CallOperandVal == 0) return MVT::Other; 5217 5218 if (isa<BasicBlock>(CallOperandVal)) 5219 return TLI.getPointerTy(); 5220 5221 const llvm::Type *OpTy = CallOperandVal->getType(); 5222 5223 // If this is an indirect operand, the operand is a pointer to the 5224 // accessed type. 5225 if (isIndirect) { 5226 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5227 if (!PtrTy) 5228 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5229 OpTy = PtrTy->getElementType(); 5230 } 5231 5232 // If OpTy is not a single value, it may be a struct/union that we 5233 // can tile with integers. 5234 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5235 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5236 switch (BitSize) { 5237 default: break; 5238 case 1: 5239 case 8: 5240 case 16: 5241 case 32: 5242 case 64: 5243 case 128: 5244 OpTy = IntegerType::get(Context, BitSize); 5245 break; 5246 } 5247 } 5248 5249 return TLI.getValueType(OpTy, true); 5250 } 5251 5252 private: 5253 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5254 /// specified set. 5255 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5256 const TargetRegisterInfo &TRI) { 5257 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5258 Regs.insert(Reg); 5259 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5260 for (; *Aliases; ++Aliases) 5261 Regs.insert(*Aliases); 5262 } 5263 }; 5264 5265 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5266 5267 } // end llvm namespace. 5268 5269 /// isAllocatableRegister - If the specified register is safe to allocate, 5270 /// i.e. it isn't a stack pointer or some other special register, return the 5271 /// register class for the register. Otherwise, return null. 5272 static const TargetRegisterClass * 5273 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5274 const TargetLowering &TLI, 5275 const TargetRegisterInfo *TRI) { 5276 EVT FoundVT = MVT::Other; 5277 const TargetRegisterClass *FoundRC = 0; 5278 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5279 E = TRI->regclass_end(); RCI != E; ++RCI) { 5280 EVT ThisVT = MVT::Other; 5281 5282 const TargetRegisterClass *RC = *RCI; 5283 // If none of the value types for this register class are valid, we 5284 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5285 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5286 I != E; ++I) { 5287 if (TLI.isTypeLegal(*I)) { 5288 // If we have already found this register in a different register class, 5289 // choose the one with the largest VT specified. For example, on 5290 // PowerPC, we favor f64 register classes over f32. 5291 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5292 ThisVT = *I; 5293 break; 5294 } 5295 } 5296 } 5297 5298 if (ThisVT == MVT::Other) continue; 5299 5300 // NOTE: This isn't ideal. In particular, this might allocate the 5301 // frame pointer in functions that need it (due to them not being taken 5302 // out of allocation, because a variable sized allocation hasn't been seen 5303 // yet). This is a slight code pessimization, but should still work. 5304 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5305 E = RC->allocation_order_end(MF); I != E; ++I) 5306 if (*I == Reg) { 5307 // We found a matching register class. Keep looking at others in case 5308 // we find one with larger registers that this physreg is also in. 5309 FoundRC = RC; 5310 FoundVT = ThisVT; 5311 break; 5312 } 5313 } 5314 return FoundRC; 5315 } 5316 5317 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5318 /// specified operand. We prefer to assign virtual registers, to allow the 5319 /// register allocator to handle the assignment process. However, if the asm 5320 /// uses features that we can't model on machineinstrs, we have SDISel do the 5321 /// allocation. This produces generally horrible, but correct, code. 5322 /// 5323 /// OpInfo describes the operand. 5324 /// Input and OutputRegs are the set of already allocated physical registers. 5325 /// 5326 void SelectionDAGBuilder:: 5327 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5328 std::set<unsigned> &OutputRegs, 5329 std::set<unsigned> &InputRegs) { 5330 LLVMContext &Context = FuncInfo.Fn->getContext(); 5331 5332 // Compute whether this value requires an input register, an output register, 5333 // or both. 5334 bool isOutReg = false; 5335 bool isInReg = false; 5336 switch (OpInfo.Type) { 5337 case InlineAsm::isOutput: 5338 isOutReg = true; 5339 5340 // If there is an input constraint that matches this, we need to reserve 5341 // the input register so no other inputs allocate to it. 5342 isInReg = OpInfo.hasMatchingInput(); 5343 break; 5344 case InlineAsm::isInput: 5345 isInReg = true; 5346 isOutReg = false; 5347 break; 5348 case InlineAsm::isClobber: 5349 isOutReg = true; 5350 isInReg = true; 5351 break; 5352 } 5353 5354 5355 MachineFunction &MF = DAG.getMachineFunction(); 5356 SmallVector<unsigned, 4> Regs; 5357 5358 // If this is a constraint for a single physreg, or a constraint for a 5359 // register class, find it. 5360 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5361 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5362 OpInfo.ConstraintVT); 5363 5364 unsigned NumRegs = 1; 5365 if (OpInfo.ConstraintVT != MVT::Other) { 5366 // If this is a FP input in an integer register (or visa versa) insert a bit 5367 // cast of the input value. More generally, handle any case where the input 5368 // value disagrees with the register class we plan to stick this in. 5369 if (OpInfo.Type == InlineAsm::isInput && 5370 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5371 // Try to convert to the first EVT that the reg class contains. If the 5372 // types are identical size, use a bitcast to convert (e.g. two differing 5373 // vector types). 5374 EVT RegVT = *PhysReg.second->vt_begin(); 5375 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5376 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5377 RegVT, OpInfo.CallOperand); 5378 OpInfo.ConstraintVT = RegVT; 5379 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5380 // If the input is a FP value and we want it in FP registers, do a 5381 // bitcast to the corresponding integer type. This turns an f64 value 5382 // into i64, which can be passed with two i32 values on a 32-bit 5383 // machine. 5384 RegVT = EVT::getIntegerVT(Context, 5385 OpInfo.ConstraintVT.getSizeInBits()); 5386 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5387 RegVT, OpInfo.CallOperand); 5388 OpInfo.ConstraintVT = RegVT; 5389 } 5390 } 5391 5392 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5393 } 5394 5395 EVT RegVT; 5396 EVT ValueVT = OpInfo.ConstraintVT; 5397 5398 // If this is a constraint for a specific physical register, like {r17}, 5399 // assign it now. 5400 if (unsigned AssignedReg = PhysReg.first) { 5401 const TargetRegisterClass *RC = PhysReg.second; 5402 if (OpInfo.ConstraintVT == MVT::Other) 5403 ValueVT = *RC->vt_begin(); 5404 5405 // Get the actual register value type. This is important, because the user 5406 // may have asked for (e.g.) the AX register in i32 type. We need to 5407 // remember that AX is actually i16 to get the right extension. 5408 RegVT = *RC->vt_begin(); 5409 5410 // This is a explicit reference to a physical register. 5411 Regs.push_back(AssignedReg); 5412 5413 // If this is an expanded reference, add the rest of the regs to Regs. 5414 if (NumRegs != 1) { 5415 TargetRegisterClass::iterator I = RC->begin(); 5416 for (; *I != AssignedReg; ++I) 5417 assert(I != RC->end() && "Didn't find reg!"); 5418 5419 // Already added the first reg. 5420 --NumRegs; ++I; 5421 for (; NumRegs; --NumRegs, ++I) { 5422 assert(I != RC->end() && "Ran out of registers to allocate!"); 5423 Regs.push_back(*I); 5424 } 5425 } 5426 5427 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5428 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5429 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5430 return; 5431 } 5432 5433 // Otherwise, if this was a reference to an LLVM register class, create vregs 5434 // for this reference. 5435 if (const TargetRegisterClass *RC = PhysReg.second) { 5436 RegVT = *RC->vt_begin(); 5437 if (OpInfo.ConstraintVT == MVT::Other) 5438 ValueVT = RegVT; 5439 5440 // Create the appropriate number of virtual registers. 5441 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5442 for (; NumRegs; --NumRegs) 5443 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5444 5445 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5446 return; 5447 } 5448 5449 // This is a reference to a register class that doesn't directly correspond 5450 // to an LLVM register class. Allocate NumRegs consecutive, available, 5451 // registers from the class. 5452 std::vector<unsigned> RegClassRegs 5453 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5454 OpInfo.ConstraintVT); 5455 5456 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5457 unsigned NumAllocated = 0; 5458 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5459 unsigned Reg = RegClassRegs[i]; 5460 // See if this register is available. 5461 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5462 (isInReg && InputRegs.count(Reg))) { // Already used. 5463 // Make sure we find consecutive registers. 5464 NumAllocated = 0; 5465 continue; 5466 } 5467 5468 // Check to see if this register is allocatable (i.e. don't give out the 5469 // stack pointer). 5470 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5471 if (!RC) { // Couldn't allocate this register. 5472 // Reset NumAllocated to make sure we return consecutive registers. 5473 NumAllocated = 0; 5474 continue; 5475 } 5476 5477 // Okay, this register is good, we can use it. 5478 ++NumAllocated; 5479 5480 // If we allocated enough consecutive registers, succeed. 5481 if (NumAllocated == NumRegs) { 5482 unsigned RegStart = (i-NumAllocated)+1; 5483 unsigned RegEnd = i+1; 5484 // Mark all of the allocated registers used. 5485 for (unsigned i = RegStart; i != RegEnd; ++i) 5486 Regs.push_back(RegClassRegs[i]); 5487 5488 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5489 OpInfo.ConstraintVT); 5490 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5491 return; 5492 } 5493 } 5494 5495 // Otherwise, we couldn't allocate enough registers for this. 5496 } 5497 5498 /// visitInlineAsm - Handle a call to an InlineAsm object. 5499 /// 5500 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5501 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5502 5503 /// ConstraintOperands - Information about all of the constraints. 5504 SDISelAsmOperandInfoVector ConstraintOperands; 5505 5506 std::set<unsigned> OutputRegs, InputRegs; 5507 5508 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS); 5509 bool hasMemory = false; 5510 5511 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5512 unsigned ResNo = 0; // ResNo - The result number of the next output. 5513 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5514 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5515 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5516 5517 EVT OpVT = MVT::Other; 5518 5519 // Compute the value type for each operand. 5520 switch (OpInfo.Type) { 5521 case InlineAsm::isOutput: 5522 // Indirect outputs just consume an argument. 5523 if (OpInfo.isIndirect) { 5524 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5525 break; 5526 } 5527 5528 // The return value of the call is this value. As such, there is no 5529 // corresponding argument. 5530 assert(!CS.getType()->isVoidTy() && 5531 "Bad inline asm!"); 5532 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5533 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5534 } else { 5535 assert(ResNo == 0 && "Asm only has one result!"); 5536 OpVT = TLI.getValueType(CS.getType()); 5537 } 5538 ++ResNo; 5539 break; 5540 case InlineAsm::isInput: 5541 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5542 break; 5543 case InlineAsm::isClobber: 5544 // Nothing to do. 5545 break; 5546 } 5547 5548 // If this is an input or an indirect output, process the call argument. 5549 // BasicBlocks are labels, currently appearing only in asm's. 5550 if (OpInfo.CallOperandVal) { 5551 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5552 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5553 } else { 5554 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5555 } 5556 5557 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5558 } 5559 5560 OpInfo.ConstraintVT = OpVT; 5561 5562 // Indirect operand accesses access memory. 5563 if (OpInfo.isIndirect) 5564 hasMemory = true; 5565 else { 5566 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5567 TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]); 5568 if (CType == TargetLowering::C_Memory) { 5569 hasMemory = true; 5570 break; 5571 } 5572 } 5573 } 5574 } 5575 5576 SDValue Chain, Flag; 5577 5578 // We won't need to flush pending loads if this asm doesn't touch 5579 // memory and is nonvolatile. 5580 if (hasMemory || IA->hasSideEffects()) 5581 Chain = getRoot(); 5582 else 5583 Chain = DAG.getRoot(); 5584 5585 // Second pass over the constraints: compute which constraint option to use 5586 // and assign registers to constraints that want a specific physreg. 5587 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5588 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5589 5590 // If this is an output operand with a matching input operand, look up the 5591 // matching input. If their types mismatch, e.g. one is an integer, the 5592 // other is floating point, or their sizes are different, flag it as an 5593 // error. 5594 if (OpInfo.hasMatchingInput()) { 5595 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5596 5597 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5598 if ((OpInfo.ConstraintVT.isInteger() != 5599 Input.ConstraintVT.isInteger()) || 5600 (OpInfo.ConstraintVT.getSizeInBits() != 5601 Input.ConstraintVT.getSizeInBits())) { 5602 report_fatal_error("Unsupported asm: input constraint" 5603 " with a matching output constraint of" 5604 " incompatible type!"); 5605 } 5606 Input.ConstraintVT = OpInfo.ConstraintVT; 5607 } 5608 } 5609 5610 // Compute the constraint code and ConstraintType to use. 5611 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5612 5613 // If this is a memory input, and if the operand is not indirect, do what we 5614 // need to to provide an address for the memory input. 5615 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5616 !OpInfo.isIndirect) { 5617 assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && 5618 "Can only indirectify direct input operands!"); 5619 5620 // Memory operands really want the address of the value. If we don't have 5621 // an indirect input, put it in the constpool if we can, otherwise spill 5622 // it to a stack slot. 5623 5624 // If the operand is a float, integer, or vector constant, spill to a 5625 // constant pool entry to get its address. 5626 const Value *OpVal = OpInfo.CallOperandVal; 5627 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5628 isa<ConstantVector>(OpVal)) { 5629 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5630 TLI.getPointerTy()); 5631 } else { 5632 // Otherwise, create a stack slot and emit a store to it before the 5633 // asm. 5634 const Type *Ty = OpVal->getType(); 5635 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5636 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5637 MachineFunction &MF = DAG.getMachineFunction(); 5638 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5639 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5640 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5641 OpInfo.CallOperand, StackSlot, 5642 MachinePointerInfo::getFixedStack(SSFI), 5643 false, false, 0); 5644 OpInfo.CallOperand = StackSlot; 5645 } 5646 5647 // There is no longer a Value* corresponding to this operand. 5648 OpInfo.CallOperandVal = 0; 5649 5650 // It is now an indirect operand. 5651 OpInfo.isIndirect = true; 5652 } 5653 5654 // If this constraint is for a specific register, allocate it before 5655 // anything else. 5656 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5657 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5658 } 5659 5660 // Second pass - Loop over all of the operands, assigning virtual or physregs 5661 // to register class operands. 5662 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5663 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5664 5665 // C_Register operands have already been allocated, Other/Memory don't need 5666 // to be. 5667 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5668 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5669 } 5670 5671 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5672 std::vector<SDValue> AsmNodeOperands; 5673 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5674 AsmNodeOperands.push_back( 5675 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5676 TLI.getPointerTy())); 5677 5678 // If we have a !srcloc metadata node associated with it, we want to attach 5679 // this to the ultimately generated inline asm machineinstr. To do this, we 5680 // pass in the third operand as this (potentially null) inline asm MDNode. 5681 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5682 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5683 5684 // Remember the AlignStack bit as operand 3. 5685 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5686 MVT::i1)); 5687 5688 // Loop over all of the inputs, copying the operand values into the 5689 // appropriate registers and processing the output regs. 5690 RegsForValue RetValRegs; 5691 5692 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5693 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5694 5695 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5696 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5697 5698 switch (OpInfo.Type) { 5699 case InlineAsm::isOutput: { 5700 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5701 OpInfo.ConstraintType != TargetLowering::C_Register) { 5702 // Memory output, or 'other' output (e.g. 'X' constraint). 5703 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5704 5705 // Add information to the INLINEASM node to know about this output. 5706 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5707 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5708 TLI.getPointerTy())); 5709 AsmNodeOperands.push_back(OpInfo.CallOperand); 5710 break; 5711 } 5712 5713 // Otherwise, this is a register or register class output. 5714 5715 // Copy the output from the appropriate register. Find a register that 5716 // we can use. 5717 if (OpInfo.AssignedRegs.Regs.empty()) 5718 report_fatal_error("Couldn't allocate output reg for constraint '" + 5719 Twine(OpInfo.ConstraintCode) + "'!"); 5720 5721 // If this is an indirect operand, store through the pointer after the 5722 // asm. 5723 if (OpInfo.isIndirect) { 5724 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5725 OpInfo.CallOperandVal)); 5726 } else { 5727 // This is the result value of the call. 5728 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5729 // Concatenate this output onto the outputs list. 5730 RetValRegs.append(OpInfo.AssignedRegs); 5731 } 5732 5733 // Add information to the INLINEASM node to know that this register is 5734 // set. 5735 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5736 InlineAsm::Kind_RegDefEarlyClobber : 5737 InlineAsm::Kind_RegDef, 5738 false, 5739 0, 5740 DAG, 5741 AsmNodeOperands); 5742 break; 5743 } 5744 case InlineAsm::isInput: { 5745 SDValue InOperandVal = OpInfo.CallOperand; 5746 5747 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5748 // If this is required to match an output register we have already set, 5749 // just use its register. 5750 unsigned OperandNo = OpInfo.getMatchedOperand(); 5751 5752 // Scan until we find the definition we already emitted of this operand. 5753 // When we find it, create a RegsForValue operand. 5754 unsigned CurOp = InlineAsm::Op_FirstOperand; 5755 for (; OperandNo; --OperandNo) { 5756 // Advance to the next operand. 5757 unsigned OpFlag = 5758 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5759 assert((InlineAsm::isRegDefKind(OpFlag) || 5760 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5761 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5762 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5763 } 5764 5765 unsigned OpFlag = 5766 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5767 if (InlineAsm::isRegDefKind(OpFlag) || 5768 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5769 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5770 if (OpInfo.isIndirect) { 5771 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5772 LLVMContext &Ctx = *DAG.getContext(); 5773 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5774 " don't know how to handle tied " 5775 "indirect register inputs"); 5776 } 5777 5778 RegsForValue MatchedRegs; 5779 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5780 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5781 MatchedRegs.RegVTs.push_back(RegVT); 5782 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5783 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5784 i != e; ++i) 5785 MatchedRegs.Regs.push_back 5786 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5787 5788 // Use the produced MatchedRegs object to 5789 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5790 Chain, &Flag); 5791 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5792 true, OpInfo.getMatchedOperand(), 5793 DAG, AsmNodeOperands); 5794 break; 5795 } 5796 5797 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5798 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5799 "Unexpected number of operands"); 5800 // Add information to the INLINEASM node to know about this input. 5801 // See InlineAsm.h isUseOperandTiedToDef. 5802 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5803 OpInfo.getMatchedOperand()); 5804 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5805 TLI.getPointerTy())); 5806 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5807 break; 5808 } 5809 5810 // Treat indirect 'X' constraint as memory. 5811 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5812 OpInfo.isIndirect) 5813 OpInfo.ConstraintType = TargetLowering::C_Memory; 5814 5815 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5816 std::vector<SDValue> Ops; 5817 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5818 Ops, DAG); 5819 if (Ops.empty()) 5820 report_fatal_error("Invalid operand for inline asm constraint '" + 5821 Twine(OpInfo.ConstraintCode) + "'!"); 5822 5823 // Add information to the INLINEASM node to know about this input. 5824 unsigned ResOpType = 5825 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5826 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5827 TLI.getPointerTy())); 5828 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5829 break; 5830 } 5831 5832 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5833 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5834 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5835 "Memory operands expect pointer values"); 5836 5837 // Add information to the INLINEASM node to know about this input. 5838 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5839 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5840 TLI.getPointerTy())); 5841 AsmNodeOperands.push_back(InOperandVal); 5842 break; 5843 } 5844 5845 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5846 OpInfo.ConstraintType == TargetLowering::C_Register) && 5847 "Unknown constraint type!"); 5848 assert(!OpInfo.isIndirect && 5849 "Don't know how to handle indirect register inputs yet!"); 5850 5851 // Copy the input into the appropriate registers. 5852 if (OpInfo.AssignedRegs.Regs.empty() || 5853 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5854 report_fatal_error("Couldn't allocate input reg for constraint '" + 5855 Twine(OpInfo.ConstraintCode) + "'!"); 5856 5857 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5858 Chain, &Flag); 5859 5860 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5861 DAG, AsmNodeOperands); 5862 break; 5863 } 5864 case InlineAsm::isClobber: { 5865 // Add the clobbered value to the operand list, so that the register 5866 // allocator is aware that the physreg got clobbered. 5867 if (!OpInfo.AssignedRegs.Regs.empty()) 5868 OpInfo.AssignedRegs.AddInlineAsmOperands( 5869 InlineAsm::Kind_RegDefEarlyClobber, 5870 false, 0, DAG, 5871 AsmNodeOperands); 5872 break; 5873 } 5874 } 5875 } 5876 5877 // Finish up input operands. Set the input chain and add the flag last. 5878 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5879 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5880 5881 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5882 DAG.getVTList(MVT::Other, MVT::Flag), 5883 &AsmNodeOperands[0], AsmNodeOperands.size()); 5884 Flag = Chain.getValue(1); 5885 5886 // If this asm returns a register value, copy the result from that register 5887 // and set it as the value of the call. 5888 if (!RetValRegs.Regs.empty()) { 5889 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5890 Chain, &Flag); 5891 5892 // FIXME: Why don't we do this for inline asms with MRVs? 5893 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5894 EVT ResultType = TLI.getValueType(CS.getType()); 5895 5896 // If any of the results of the inline asm is a vector, it may have the 5897 // wrong width/num elts. This can happen for register classes that can 5898 // contain multiple different value types. The preg or vreg allocated may 5899 // not have the same VT as was expected. Convert it to the right type 5900 // with bit_convert. 5901 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5902 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5903 ResultType, Val); 5904 5905 } else if (ResultType != Val.getValueType() && 5906 ResultType.isInteger() && Val.getValueType().isInteger()) { 5907 // If a result value was tied to an input value, the computed result may 5908 // have a wider width than the expected result. Extract the relevant 5909 // portion. 5910 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5911 } 5912 5913 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5914 } 5915 5916 setValue(CS.getInstruction(), Val); 5917 // Don't need to use this as a chain in this case. 5918 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5919 return; 5920 } 5921 5922 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5923 5924 // Process indirect outputs, first output all of the flagged copies out of 5925 // physregs. 5926 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5927 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5928 const Value *Ptr = IndirectStoresToEmit[i].second; 5929 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5930 Chain, &Flag); 5931 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5932 } 5933 5934 // Emit the non-flagged stores from the physregs. 5935 SmallVector<SDValue, 8> OutChains; 5936 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5937 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5938 StoresToEmit[i].first, 5939 getValue(StoresToEmit[i].second), 5940 MachinePointerInfo(StoresToEmit[i].second), 5941 false, false, 0); 5942 OutChains.push_back(Val); 5943 } 5944 5945 if (!OutChains.empty()) 5946 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5947 &OutChains[0], OutChains.size()); 5948 5949 DAG.setRoot(Chain); 5950 } 5951 5952 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5953 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5954 MVT::Other, getRoot(), 5955 getValue(I.getArgOperand(0)), 5956 DAG.getSrcValue(I.getArgOperand(0)))); 5957 } 5958 5959 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5960 const TargetData &TD = *TLI.getTargetData(); 5961 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5962 getRoot(), getValue(I.getOperand(0)), 5963 DAG.getSrcValue(I.getOperand(0)), 5964 TD.getABITypeAlignment(I.getType())); 5965 setValue(&I, V); 5966 DAG.setRoot(V.getValue(1)); 5967 } 5968 5969 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5970 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5971 MVT::Other, getRoot(), 5972 getValue(I.getArgOperand(0)), 5973 DAG.getSrcValue(I.getArgOperand(0)))); 5974 } 5975 5976 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5977 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5978 MVT::Other, getRoot(), 5979 getValue(I.getArgOperand(0)), 5980 getValue(I.getArgOperand(1)), 5981 DAG.getSrcValue(I.getArgOperand(0)), 5982 DAG.getSrcValue(I.getArgOperand(1)))); 5983 } 5984 5985 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5986 /// implementation, which just calls LowerCall. 5987 /// FIXME: When all targets are 5988 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5989 std::pair<SDValue, SDValue> 5990 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5991 bool RetSExt, bool RetZExt, bool isVarArg, 5992 bool isInreg, unsigned NumFixedArgs, 5993 CallingConv::ID CallConv, bool isTailCall, 5994 bool isReturnValueUsed, 5995 SDValue Callee, 5996 ArgListTy &Args, SelectionDAG &DAG, 5997 DebugLoc dl) const { 5998 // Handle all of the outgoing arguments. 5999 SmallVector<ISD::OutputArg, 32> Outs; 6000 SmallVector<SDValue, 32> OutVals; 6001 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6002 SmallVector<EVT, 4> ValueVTs; 6003 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6004 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6005 Value != NumValues; ++Value) { 6006 EVT VT = ValueVTs[Value]; 6007 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6008 SDValue Op = SDValue(Args[i].Node.getNode(), 6009 Args[i].Node.getResNo() + Value); 6010 ISD::ArgFlagsTy Flags; 6011 unsigned OriginalAlignment = 6012 getTargetData()->getABITypeAlignment(ArgTy); 6013 6014 if (Args[i].isZExt) 6015 Flags.setZExt(); 6016 if (Args[i].isSExt) 6017 Flags.setSExt(); 6018 if (Args[i].isInReg) 6019 Flags.setInReg(); 6020 if (Args[i].isSRet) 6021 Flags.setSRet(); 6022 if (Args[i].isByVal) { 6023 Flags.setByVal(); 6024 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 6025 const Type *ElementTy = Ty->getElementType(); 6026 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 6027 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 6028 // For ByVal, alignment should come from FE. BE will guess if this 6029 // info is not there but there are cases it cannot get right. 6030 if (Args[i].Alignment) 6031 FrameAlign = Args[i].Alignment; 6032 Flags.setByValAlign(FrameAlign); 6033 Flags.setByValSize(FrameSize); 6034 } 6035 if (Args[i].isNest) 6036 Flags.setNest(); 6037 Flags.setOrigAlign(OriginalAlignment); 6038 6039 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6040 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6041 SmallVector<SDValue, 4> Parts(NumParts); 6042 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6043 6044 if (Args[i].isSExt) 6045 ExtendKind = ISD::SIGN_EXTEND; 6046 else if (Args[i].isZExt) 6047 ExtendKind = ISD::ZERO_EXTEND; 6048 6049 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6050 PartVT, ExtendKind); 6051 6052 for (unsigned j = 0; j != NumParts; ++j) { 6053 // if it isn't first piece, alignment must be 1 6054 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6055 i < NumFixedArgs); 6056 if (NumParts > 1 && j == 0) 6057 MyFlags.Flags.setSplit(); 6058 else if (j != 0) 6059 MyFlags.Flags.setOrigAlign(1); 6060 6061 Outs.push_back(MyFlags); 6062 OutVals.push_back(Parts[j]); 6063 } 6064 } 6065 } 6066 6067 // Handle the incoming return values from the call. 6068 SmallVector<ISD::InputArg, 32> Ins; 6069 SmallVector<EVT, 4> RetTys; 6070 ComputeValueVTs(*this, RetTy, RetTys); 6071 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6072 EVT VT = RetTys[I]; 6073 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6074 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6075 for (unsigned i = 0; i != NumRegs; ++i) { 6076 ISD::InputArg MyFlags; 6077 MyFlags.VT = RegisterVT.getSimpleVT(); 6078 MyFlags.Used = isReturnValueUsed; 6079 if (RetSExt) 6080 MyFlags.Flags.setSExt(); 6081 if (RetZExt) 6082 MyFlags.Flags.setZExt(); 6083 if (isInreg) 6084 MyFlags.Flags.setInReg(); 6085 Ins.push_back(MyFlags); 6086 } 6087 } 6088 6089 SmallVector<SDValue, 4> InVals; 6090 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6091 Outs, OutVals, Ins, dl, DAG, InVals); 6092 6093 // Verify that the target's LowerCall behaved as expected. 6094 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6095 "LowerCall didn't return a valid chain!"); 6096 assert((!isTailCall || InVals.empty()) && 6097 "LowerCall emitted a return value for a tail call!"); 6098 assert((isTailCall || InVals.size() == Ins.size()) && 6099 "LowerCall didn't emit the correct number of values!"); 6100 6101 // For a tail call, the return value is merely live-out and there aren't 6102 // any nodes in the DAG representing it. Return a special value to 6103 // indicate that a tail call has been emitted and no more Instructions 6104 // should be processed in the current block. 6105 if (isTailCall) { 6106 DAG.setRoot(Chain); 6107 return std::make_pair(SDValue(), SDValue()); 6108 } 6109 6110 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6111 assert(InVals[i].getNode() && 6112 "LowerCall emitted a null value!"); 6113 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6114 "LowerCall emitted a value with the wrong type!"); 6115 }); 6116 6117 // Collect the legal value parts into potentially illegal values 6118 // that correspond to the original function's return values. 6119 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6120 if (RetSExt) 6121 AssertOp = ISD::AssertSext; 6122 else if (RetZExt) 6123 AssertOp = ISD::AssertZext; 6124 SmallVector<SDValue, 4> ReturnValues; 6125 unsigned CurReg = 0; 6126 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6127 EVT VT = RetTys[I]; 6128 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6129 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6130 6131 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6132 NumRegs, RegisterVT, VT, 6133 AssertOp)); 6134 CurReg += NumRegs; 6135 } 6136 6137 // For a function returning void, there is no return value. We can't create 6138 // such a node, so we just return a null return value in that case. In 6139 // that case, nothing will actualy look at the value. 6140 if (ReturnValues.empty()) 6141 return std::make_pair(SDValue(), Chain); 6142 6143 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6144 DAG.getVTList(&RetTys[0], RetTys.size()), 6145 &ReturnValues[0], ReturnValues.size()); 6146 return std::make_pair(Res, Chain); 6147 } 6148 6149 void TargetLowering::LowerOperationWrapper(SDNode *N, 6150 SmallVectorImpl<SDValue> &Results, 6151 SelectionDAG &DAG) const { 6152 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6153 if (Res.getNode()) 6154 Results.push_back(Res); 6155 } 6156 6157 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6158 llvm_unreachable("LowerOperation not implemented for this target!"); 6159 return SDValue(); 6160 } 6161 6162 void 6163 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6164 SDValue Op = getNonRegisterValue(V); 6165 assert((Op.getOpcode() != ISD::CopyFromReg || 6166 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6167 "Copy from a reg to the same reg!"); 6168 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6169 6170 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6171 SDValue Chain = DAG.getEntryNode(); 6172 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6173 PendingExports.push_back(Chain); 6174 } 6175 6176 #include "llvm/CodeGen/SelectionDAGISel.h" 6177 6178 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6179 // If this is the entry block, emit arguments. 6180 const Function &F = *LLVMBB->getParent(); 6181 SelectionDAG &DAG = SDB->DAG; 6182 DebugLoc dl = SDB->getCurDebugLoc(); 6183 const TargetData *TD = TLI.getTargetData(); 6184 SmallVector<ISD::InputArg, 16> Ins; 6185 6186 // Check whether the function can return without sret-demotion. 6187 SmallVector<ISD::OutputArg, 4> Outs; 6188 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6189 Outs, TLI); 6190 6191 if (!FuncInfo->CanLowerReturn) { 6192 // Put in an sret pointer parameter before all the other parameters. 6193 SmallVector<EVT, 1> ValueVTs; 6194 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6195 6196 // NOTE: Assuming that a pointer will never break down to more than one VT 6197 // or one register. 6198 ISD::ArgFlagsTy Flags; 6199 Flags.setSRet(); 6200 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6201 ISD::InputArg RetArg(Flags, RegisterVT, true); 6202 Ins.push_back(RetArg); 6203 } 6204 6205 // Set up the incoming argument description vector. 6206 unsigned Idx = 1; 6207 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6208 I != E; ++I, ++Idx) { 6209 SmallVector<EVT, 4> ValueVTs; 6210 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6211 bool isArgValueUsed = !I->use_empty(); 6212 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6213 Value != NumValues; ++Value) { 6214 EVT VT = ValueVTs[Value]; 6215 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6216 ISD::ArgFlagsTy Flags; 6217 unsigned OriginalAlignment = 6218 TD->getABITypeAlignment(ArgTy); 6219 6220 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6221 Flags.setZExt(); 6222 if (F.paramHasAttr(Idx, Attribute::SExt)) 6223 Flags.setSExt(); 6224 if (F.paramHasAttr(Idx, Attribute::InReg)) 6225 Flags.setInReg(); 6226 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6227 Flags.setSRet(); 6228 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6229 Flags.setByVal(); 6230 const PointerType *Ty = cast<PointerType>(I->getType()); 6231 const Type *ElementTy = Ty->getElementType(); 6232 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6233 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6234 // For ByVal, alignment should be passed from FE. BE will guess if 6235 // this info is not there but there are cases it cannot get right. 6236 if (F.getParamAlignment(Idx)) 6237 FrameAlign = F.getParamAlignment(Idx); 6238 Flags.setByValAlign(FrameAlign); 6239 Flags.setByValSize(FrameSize); 6240 } 6241 if (F.paramHasAttr(Idx, Attribute::Nest)) 6242 Flags.setNest(); 6243 Flags.setOrigAlign(OriginalAlignment); 6244 6245 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6246 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6247 for (unsigned i = 0; i != NumRegs; ++i) { 6248 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6249 if (NumRegs > 1 && i == 0) 6250 MyFlags.Flags.setSplit(); 6251 // if it isn't first piece, alignment must be 1 6252 else if (i > 0) 6253 MyFlags.Flags.setOrigAlign(1); 6254 Ins.push_back(MyFlags); 6255 } 6256 } 6257 } 6258 6259 // Call the target to set up the argument values. 6260 SmallVector<SDValue, 8> InVals; 6261 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6262 F.isVarArg(), Ins, 6263 dl, DAG, InVals); 6264 6265 // Verify that the target's LowerFormalArguments behaved as expected. 6266 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6267 "LowerFormalArguments didn't return a valid chain!"); 6268 assert(InVals.size() == Ins.size() && 6269 "LowerFormalArguments didn't emit the correct number of values!"); 6270 DEBUG({ 6271 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6272 assert(InVals[i].getNode() && 6273 "LowerFormalArguments emitted a null value!"); 6274 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6275 "LowerFormalArguments emitted a value with the wrong type!"); 6276 } 6277 }); 6278 6279 // Update the DAG with the new chain value resulting from argument lowering. 6280 DAG.setRoot(NewRoot); 6281 6282 // Set up the argument values. 6283 unsigned i = 0; 6284 Idx = 1; 6285 if (!FuncInfo->CanLowerReturn) { 6286 // Create a virtual register for the sret pointer, and put in a copy 6287 // from the sret argument into it. 6288 SmallVector<EVT, 1> ValueVTs; 6289 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6290 EVT VT = ValueVTs[0]; 6291 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6292 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6293 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6294 RegVT, VT, AssertOp); 6295 6296 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6297 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6298 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6299 FuncInfo->DemoteRegister = SRetReg; 6300 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6301 SRetReg, ArgValue); 6302 DAG.setRoot(NewRoot); 6303 6304 // i indexes lowered arguments. Bump it past the hidden sret argument. 6305 // Idx indexes LLVM arguments. Don't touch it. 6306 ++i; 6307 } 6308 6309 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6310 ++I, ++Idx) { 6311 SmallVector<SDValue, 4> ArgValues; 6312 SmallVector<EVT, 4> ValueVTs; 6313 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6314 unsigned NumValues = ValueVTs.size(); 6315 6316 // If this argument is unused then remember its value. It is used to generate 6317 // debugging information. 6318 if (I->use_empty() && NumValues) 6319 SDB->setUnusedArgValue(I, InVals[i]); 6320 6321 for (unsigned Value = 0; Value != NumValues; ++Value) { 6322 EVT VT = ValueVTs[Value]; 6323 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6324 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6325 6326 if (!I->use_empty()) { 6327 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6328 if (F.paramHasAttr(Idx, Attribute::SExt)) 6329 AssertOp = ISD::AssertSext; 6330 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6331 AssertOp = ISD::AssertZext; 6332 6333 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6334 NumParts, PartVT, VT, 6335 AssertOp)); 6336 } 6337 6338 i += NumParts; 6339 } 6340 6341 // Note down frame index for byval arguments. 6342 if (I->hasByValAttr() && !ArgValues.empty()) 6343 if (FrameIndexSDNode *FI = 6344 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6345 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6346 6347 if (!I->use_empty()) { 6348 SDValue Res; 6349 if (!ArgValues.empty()) 6350 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6351 SDB->getCurDebugLoc()); 6352 SDB->setValue(I, Res); 6353 6354 // If this argument is live outside of the entry block, insert a copy from 6355 // whereever we got it to the vreg that other BB's will reference it as. 6356 SDB->CopyToExportRegsIfNeeded(I); 6357 } 6358 } 6359 6360 assert(i == InVals.size() && "Argument register count mismatch!"); 6361 6362 // Finally, if the target has anything special to do, allow it to do so. 6363 // FIXME: this should insert code into the DAG! 6364 EmitFunctionEntryCode(); 6365 } 6366 6367 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6368 /// ensure constants are generated when needed. Remember the virtual registers 6369 /// that need to be added to the Machine PHI nodes as input. We cannot just 6370 /// directly add them, because expansion might result in multiple MBB's for one 6371 /// BB. As such, the start of the BB might correspond to a different MBB than 6372 /// the end. 6373 /// 6374 void 6375 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6376 const TerminatorInst *TI = LLVMBB->getTerminator(); 6377 6378 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6379 6380 // Check successor nodes' PHI nodes that expect a constant to be available 6381 // from this block. 6382 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6383 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6384 if (!isa<PHINode>(SuccBB->begin())) continue; 6385 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6386 6387 // If this terminator has multiple identical successors (common for 6388 // switches), only handle each succ once. 6389 if (!SuccsHandled.insert(SuccMBB)) continue; 6390 6391 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6392 6393 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6394 // nodes and Machine PHI nodes, but the incoming operands have not been 6395 // emitted yet. 6396 for (BasicBlock::const_iterator I = SuccBB->begin(); 6397 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6398 // Ignore dead phi's. 6399 if (PN->use_empty()) continue; 6400 6401 unsigned Reg; 6402 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6403 6404 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6405 unsigned &RegOut = ConstantsOut[C]; 6406 if (RegOut == 0) { 6407 RegOut = FuncInfo.CreateRegs(C->getType()); 6408 CopyValueToVirtualRegister(C, RegOut); 6409 } 6410 Reg = RegOut; 6411 } else { 6412 DenseMap<const Value *, unsigned>::iterator I = 6413 FuncInfo.ValueMap.find(PHIOp); 6414 if (I != FuncInfo.ValueMap.end()) 6415 Reg = I->second; 6416 else { 6417 assert(isa<AllocaInst>(PHIOp) && 6418 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6419 "Didn't codegen value into a register!??"); 6420 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6421 CopyValueToVirtualRegister(PHIOp, Reg); 6422 } 6423 } 6424 6425 // Remember that this register needs to added to the machine PHI node as 6426 // the input for this MBB. 6427 SmallVector<EVT, 4> ValueVTs; 6428 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6429 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6430 EVT VT = ValueVTs[vti]; 6431 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6432 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6433 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6434 Reg += NumRegisters; 6435 } 6436 } 6437 } 6438 ConstantsOut.clear(); 6439 } 6440